WorldWideScience

Sample records for avian paramyxovirus apmv

  1. Raising Hyperimmune Serum Against Avian Paramyxo Virus (APMV-1 and Pigeon Paramyxovirus (PPMV-l in Rabbits and Their Cross Reactivity

    Directory of Open Access Journals (Sweden)

    M. Samiullah

    2006-01-01

    Full Text Available Polyclonal antibodies against avian paramyxovirus-1 (APMV-1 and pigeon paramyxovirus-1 (PPMV-1 were raised in rabbits to examine their diagnostic efficacy against APMV-1 and PPMV-1 infections in birds. Rabbits were divided into two groups A (immunized with APMV-1 and group B (immunized with PPMV-1. An antibody titer of 1:1024 group A against APMV-1 antigen and group B against PPMV-1 antigen were found 1:1024. While final titer of group A was found 1:256 against PPMV-1 and for group B, 1:512 against APMV-1. This study suggests that it is possible to diagnose Newcastle disease and its type by the use of these polyclonal antibodies from the field out breaks. However, the subjected serum must be examined with both antiseras. This will only suggest the type of infection. By the use of these polyclonal antibodies screening at large scale can be done and samples can be selected for further diagnosis using advanced techniques. This will in turn save time and expensive foreign exchange.

  2. Complete Genome Sequence of a Novel Avian Paramyxovirus (APMV-13) Isolated from a Wild Bird in Kazakhstan.

    Science.gov (United States)

    Karamendin, K; Kydyrmanov, A; Seidalina, A; Asanova, S; Sayatov, M; Kasymbekov, E; Khan, E; Daulbayeva, K; Harrison, S M; Carr, I M; Goodman, S J; Zhumatov, K

    2016-01-01

    A novel avian paramyxovirus was identified during annual viral surveillance of wild bird populations in Kazakhstan in 2013. The virus was isolated from a white fronted goose (Anser albifrons) in northern Kazakhstan. Here, we report the complete genome sequence of the isolate, which we suggest should constitute a novel serotype. PMID:27198008

  3. Evidence for a new avian paramyxovirus serotype-10 detected in Rockhopper penguins from the Falkland Islands

    Science.gov (United States)

    The biological, serological and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus group, APMV10. This penguin virus resembled other APMV by electron microscopy; however, its vi...

  4. MATRIX PROTEIN GENE SEQUENCE ANALYSIS OF AVIAN PARAMYXOVIRUS 1 ISOLATES OBTAINED FROM PIGEONS

    Science.gov (United States)

    The matrix protein gene was cloned and sequenced for several recent isolates of avian paramyxovirus 1 (APMV1). Specifically, isolates from pigeons and doves, members of the Columbidae family were examined. APMV1 is the causative agent of Newcastle disease and the virus is associated with disease amo...

  5. Replication, neurotropism, and pathogenicity of avian paramyxovirus serotypes 1-9 in chickens and ducks.

    Directory of Open Access Journals (Sweden)

    Shin-Hee Kim

    Full Text Available Avian paramyxovirus (APMV serotypes 1-9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2-9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT assay in chicken eggs and intracerebral pathogenicity index (ICPI test in 1-day-old SPF chicks demonstrated that APMV types 2-9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2-9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2-9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1 and exhibited restricted viral replication of the APMVs (including APMV-1 to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1-9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes.

  6. Evidence for a new avian paramyxovirus serotype 10 detected in rockhopper penguins from the Falkland Islands.

    Science.gov (United States)

    Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Scott, Melissa A; Pedersen, Janice C; Senne, Dennis A; Brown, Justin D; Fuller, Chad M; Uhart, Marcela M; Karesh, William B; Brown, Ian H; Alexander, Dennis J; Swayne, David E

    2010-11-01

    The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons. PMID:20702635

  7. Experimental infection of hamsters with avian paramyxovirus serotypes 1 to 9

    Directory of Open Access Journals (Sweden)

    Samuel Arthur S

    2011-02-01

    Full Text Available Abstract Avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds throughout the world and are separated into nine serotypes (APMV-1 to -9. Only in the case of APMV-1, the infection of non-avian species has been investigated. The APMVs presently are being considered as human vaccine vectors. In this study, we evaluated the replication and pathogenicity of all nine APMV serotypes in hamsters. The hamsters were inoculated intranasally with each virus and monitored for clinical disease, pathology, histopathology, virus replication, and seroconversion. On the basis of one or more of these criteria, each of the APMV serotypes was found to replicate in hamsters. The APMVs produced mild or inapparent clinical signs in hamsters except for APMV-9, which produced moderate disease. Gross lesions were observed over the pulmonary surface of hamsters infected with APMV-2 & -3, which showed petechial and ecchymotic hemorrhages, respectively. Replication of all of the APMVs except APMV-5 was confirmed in the nasal turbinates and lungs, indicating a tropism for the respiratory tract. Histologically, the infection resulted in lung lesions consistent with bronchointerstitial pneumonia of varying severity and nasal turbinates with blunting or loss of cilia of the epithelium lining the nasal septa. The majority of APMV-infected hamsters exhibited transient histological lesions that self resolved by 14 days post infection (dpi. All of the hamsters infected with the APMVs produced serotype-specific HI or neutralizing antibodies, confirming virus replication. Taken together, these results demonstrate that all nine known APMV serotypes are capable of replicating in hamsters with minimal disease and pathology.

  8. Isolation and characterization of avian paramyxovirus type 3b from farmed Namibian ostriches (Struthio camelus f. dom.).

    Science.gov (United States)

    Kaleta, Erhard F; Werner, Ortrud; Hemberger, Yvonne

    2010-01-01

    Meat and skin from farmed ostriches are valuable products for European consumers. The EU regulations require that ostrich products deamed for export need to come from ostriches that are free of antibodies against Newcastle disease virus (avian paramxovirus type 1, aPMV-1). After the detection of antibodies against aPMV-1 in one of five ostrich farms in Namibia, attempts were made to isolate the causative virus. No aPMV-1 but an avian paramyxovirus type 3 (aPMV-3) was isolated from five pharyngeal/cloacal swabs of clinically healthy farmed Namibian ostriches. Subtype determination proved that all isolates are members of the subtype aPMV-3 of psittacine bird origin and were designated as aPMV-3b. In the haemagglutination inhibition test, the aPMV-3b isolates cross-reacted with aPMV-1. This allows the conclusion that the antibodies originally detected in sera of the ostriches are due to the cross-reaction with aPMV-3b, rather than to an infection with aPMV-1.To our knowledge, this is the first description of the occurrence of aPMV-3b in farmed ostriches. PMID:20329642

  9. Similarity of avian paramyxovirus serotype 1 isolates of low virulence for chickens obtained from contaminated poultry vaccines and from poultry flocks

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Handberg, K. J.; Ahrens, Peter; Manvell, R.J.; Frost, K.M.; Alexander, D.J.

    2000-01-01

    At present Denmark has the status of a 'non-vaccinating' country for Newcastle disease and its poultry population should therefore be free of antibodies to avian paramyxovirus 1 (APMV-1). Three live avian vaccines against infectious bronchitis, avian encephalomyelitis, and chick anaemia which had...

  10. Limited evidence of intercontinental dispersal of avian paramyxovirus serotype 4 by migratory birds

    Science.gov (United States)

    Reeves, Andrew; Poulson, Rebecca L.; Muzyka, Denys; Ogawa, Haruko; Imai, Kunitoshi; Nghia Bui, Vuong; Hall, Jeffrey S.; Pantin-Jackwood, Mary; Stallknecht, David E.; Ramey, Andrew M.

    2016-01-01

    Avian paramyxovirus serotype 4 (APMV-4) is a single stranded RNA virus that has most often been isolated from waterfowl. Limited information has been reported regarding the prevalence, pathogenicity, and genetic diversity of AMPV-4. To assess the intercontinental dispersal of this viral agent, we sequenced the fusion gene of 58 APMV-4 isolates collected in the United States, Japan and the Ukraine and compared them to all available sequences on GenBank. With only a single exception the phylogenetic clades of APMV-4 sequences were monophyletic with respect to their continents of origin (North America, Asia and Europe). Thus, we detected limited evidence for recent intercontinental dispersal of APMV-4 in this study.

  11. Limited evidence of intercontinental dispersal of avian paramyxovirus serotype 4 by migratory birds.

    Science.gov (United States)

    Reeves, Andrew B; Poulson, Rebecca L; Muzyka, Denys; Ogawa, Haruko; Imai, Kunitoshi; Bui, Vuong Nghia; Hall, Jeffrey S; Pantin-Jackwood, Mary; Stallknecht, David E; Ramey, Andrew M

    2016-06-01

    Avian paramyxovirus serotype 4 (APMV-4) is a single stranded RNA virus that has most often been isolated from waterfowl. Limited information has been reported regarding the prevalence, pathogenicity, and genetic diversity of AMPV-4. To assess the intercontinental dispersal of this viral agent, we sequenced the fusion gene of 58 APMV-4 isolates collected in the United States, Japan and the Ukraine and compared them to all available sequences on GenBank. With only a single exception the phylogenetic clades of APMV-4 sequences were monophyletic with respect to their continents of origin (North America, Asia and Europe). Thus, we detected limited evidence for recent intercontinental dispersal of APMV-4 in this study. PMID:26925702

  12. Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread

    Science.gov (United States)

    Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease (ND), one of the most economically important diseases for poultry production worldwide and a cause of periodic epornitics in wild birds in North America. In this study, we explored the ge...

  13. Isolation of Avian Paramyxovirus 1 from a Patient with a Lethal Case of Pneumonia▿

    OpenAIRE

    Goebel, Scott J.; Taylor, Jill; Barr, Bradd C.; Kiehn, Timothy E.; Castro-Malaspina, Hugo R.; Hedvat, Cyrus V.; Rush-Wilson, Kim A.; Kelly, Cassandra D.; Davis, Stephen W.; Samsonoff, William A.; Hurst, Kelley R.; Behr, Melissa J.; Masters, Paul S.

    2007-01-01

    An unknown virus was isolated from a lung biopsy sample and multiple other samples from a patient who developed a lethal case of pneumonia following a peripheral blood stem cell transplant. A random PCR-based molecular screening method was used to identify the infectious agent as avian paramyxovirus 1 (APMV-1; a group encompassing Newcastle disease virus), which is a highly contagious poultry pathogen that has only rarely been found in human infections. Immunohistochemical analysis confirmed ...

  14. Evaluation of avian paramyxovirus serotypes 2 to 10 as vaccine vectors in chickens previously immunized against Newcastle disease virus.

    Science.gov (United States)

    Tsunekuni, Ryota; Hikono, Hirokazu; Saito, Takehiko

    2014-08-15

    Newcastle disease virus (NDV), also known as avian paramyxovirus (APMV) serotype 1, is used as a vaccine vector to express the hemagglutinin protein of avian influenza (AI) virus. However, use of live NDV recombinant vaccines expressing AI virus hemagglutinin is not desirable in emergency vaccination programs to control severe AI outbreaks in chickens, because commercial chickens often possess pre-existing NDV immunity induced by routine vaccination. Therefore, a novel vaccine vector is required for emergency vaccination of chickens to control AI during outbreaks. We investigated whether candidate APMV strains could be used as vaccine vectors that could evade the pre-existing immunity acquired by chickens through NDV vaccination and that would replicate in the mucosal tissues where AI virus primarily replicates. To this end, we examined strains of APMV serotypes 2 to 10 for their immunogenicity and replication in chickens with pre-existing immunity to NDV. APMV serotypes 2, 6, and 10 were the least cross-reactive to antibodies to NDV in hemagglutination inhibition and/or virus neutralization tests. Virus replication in mucosal tissues, as well as antibody response after oculonasal inoculation, was observed when 7-week-old chickens were challenged with APMV of serotype 2, 6, or 10. The APMV also replicated in mucosal tissues and induced antibody responses in chickens that had been vaccinated twice with NDV before challenge. These results warrant further study to develop vaccine vectors based on APMV serotype 2, 6, or 10 for emergency vaccination of chickens against AI. PMID:24880702

  15. Avian Paramyxovirus Serotype-1: A Review of Disease Distribution, Clinical Symptoms, and Laboratory Diagnostics

    Directory of Open Access Journals (Sweden)

    Nichole L. Hines

    2012-01-01

    Full Text Available Avian paramyxovirus serotype-1 (APMV-1 is capable of infecting a wide range of avian species leading to a broad range of clinical symptoms. Ease of transmission has allowed the virus to spread worldwide with varying degrees of virulence depending on the virus strain and host species. Classification systems have been designed to group isolates based on their genetic composition. The genetic composition of the fusion gene cleavage site plays an important role in virulence. Presence of multiple basic amino acids at the cleavage site allows enzymatic cleavage of the fusion protein enabling virulent viruses to spread systemically. Diagnostic tests, including virus isolation, real-time reverse-transcription PCR, and sequencing, are used to characterize the virus and identify virulent strains. Genetic diversity within APMV-1 demonstrates the need for continual monitoring for changes that may arise requiring modifications to the molecular assays to maintain their usefulness for diagnostic testing.

  16. Molecular characterization and complete genome sequence of avian paramyxovirus type 4 prototype strain duck/Hong Kong/D3/75

    Directory of Open Access Journals (Sweden)

    Collins Peter L

    2008-10-01

    Full Text Available Abstract Background Avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds throughout the world. All APMVs, except avian metapneumovirus, are classified in the genus Avulavirus of the family Paramyxoviridae. At present, the APMVs of genus Avulavirus are divided into nine serological types (APMV 1–9. Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. Very little is known about the molecular characteristics and pathogenicity of APMV 2–9. Results As a first step towards understanding the molecular genetics and pathogenicity of APMV-4, we have sequenced the complete genome of APMV-4 strain duck/Hong Kong/D3/75 and determined its pathogenicity in embryonated chicken eggs. The genome of APMV-4 is 15,054 nucleotides (nt in length, which is consistent with the "rule of six". The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 9 to 42 nt. The genome contains a 55 nt leader region at 3' end. The 5' trailer region is 17 nt, which is the shortest in the family Paramyxoviridae. Analysis of mRNAs transcribed from the P gene showed that 35% of the transcripts were edited by insertion of one non-templated G residue at an editing site leading to production of V mRNAs. No message was detected that contained insertion of two non-templated G residues, indicating that the W mRNAs are inefficiently produced in APMV-4 infected cells. The cleavage site of the F protein (DIPQR↓F does not conform to the preferred cleavage site of the ubiquitous intracellular protease furin. However, exogenous proteases were not required for the growth of APMV-4 in cell culture, indicating that the cleavage does not depend on a furin site. Conclusion Phylogenic analysis of the nucleotide sequences of viruses of all five genera of the family

  17. The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1.

    Directory of Open Access Journals (Sweden)

    Yee Ling Chong

    2010-04-01

    Full Text Available Newcastle Disease Virus (NDV is a pathogenic strain of avian paramyxovirus (aPMV-1 that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19(th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on

  18. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus).

    Science.gov (United States)

    Dimitrov, Kiril M; Ramey, Andrew M; Qiu, Xueting; Bahl, Justin; Afonso, Claudio L

    2016-04-01

    Newcastle disease is caused by virulent forms of avian paramyxovirus of serotype 1 (APMV-1) and has global economic importance. The disease reached panzootic proportions within two decades after first being identified in 1926 in the United Kingdom and Indonesia and still remains endemic in many countries across the world. Here we review information on the host, temporal, and geographic distribution of APMV-1 genetic diversity based on the evolutionary systematics of the complete coding region of the fusion gene. Strains of APMV-1 are phylogenetically separated into two classes (class I and class II) and further classified into genotypes based on genetic differences. Class I viruses are genetically less diverse, generally present in wild waterfowl, and are of low virulence. Class II viruses are genetically and phenotypically more diverse, frequently isolated from poultry with occasional spillovers into wild birds, and exhibit a wider range of virulence. Waterfowl, cormorants, and pigeons are natural reservoirs of all APMV-1 pathotypes, except viscerotropic velogenic viruses for which natural reservoirs have not been identified. Genotypes I and II within class II include isolates of high and low virulence, the latter often being used as vaccines. Viruses of genotypes III and IX that emerged decades ago are now isolated rarely, but may be found in domestic and wild birds in China. Containing only virulent viruses and responsible for the majority of recent outbreaks in poultry and wild birds, viruses from genotypes V, VI, and VII, are highly mobile and have been isolated on different continents. Conversely, virulent viruses of genotypes XI (Madagascar), XIII (mainly Southwest Asia), XVI (North America) and XIV, XVII and XVIII (Africa) appear to have a more limited geographic distribution and have been isolated predominantly from poultry. PMID:26792710

  19. Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 4 confer increased replication and syncytium formation in vitro but not increased replication and pathogenicity in chickens and ducks.

    Science.gov (United States)

    Kim, Shin-Hee; Xiao, Sa; Shive, Heather; Collins, Peter L; Samal, Siba K

    2013-01-01

    To evaluate the role of the F protein cleavage site in the replication and pathogenicity of avian paramyxoviruses (APMVs), we constructed a reverse genetics system for recovery of infectious recombinant APMV-4 from cloned cDNA. The recovered recombinant APMV-4 resembled the biological virus in growth characteristics in vitro and in pathogenicity in vivo. The F cleavage site sequence of APMV-4 (DIQPR↓F) contains a single basic amino acid, at the -1 position. Six mutant APMV-4 viruses were recovered in which the F protein cleavage site was mutated to contain increased numbers of basic amino acids or to mimic the naturally occurring cleavage sites of several paramyxoviruses, including neurovirulent and avirulent strains of NDV. The presence of a glutamine residue at the -3 position was found to be important for mutant virus recovery. In addition, cleavage sites containing the furin protease motif conferred increased replication and syncytium formation in vitro. However, analysis of viral pathogenicity in 9-day-old embryonated chicken eggs, 1-day-old and 2-week-old chickens, and 3-week-old ducks showed that none the F protein cleavage site mutations altered the replication, tropism, and pathogenicity of APMV-4, and no significant differences were observed among the parental and mutant APMV-4 viruses in vivo. Although parental and mutant viruses replicated somewhat better in ducks than in chickens, they all were highly restricted and avirulent in both species. These results suggested that the cleavage site sequence of the F protein is not a limiting determinant of APMV-4 pathogenicity in chickens and ducks. PMID:23341874

  20. Characteristics of pigeon paramyxovirus serotype-1 isolates (PPMV-1) from the Russian Federation from 2001 to 2009

    Science.gov (United States)

    Monitoring programs for highly dangerous avian diseases in the Russian Federation, from 2001 to 2009, detected 77 samples PCR-positive for avian paramyxovirus serotype-1 (APMV-1) isolates from sick or dead feral and domestic pigeons. Nucleotide sequences of the fusion (F) gene, including a nucleoti...

  1. Identification and complete genome sequencing of paramyxoviruses in mallard ducks (Anas platyrhynchos using random access amplification and next generation sequencing technologies

    Directory of Open Access Journals (Sweden)

    van den Berg Thierry

    2011-10-01

    Full Text Available Abstract Background During a wildlife screening program for avian influenza A viruses (AIV and avian paramyxoviruses (APMV in Belgium, we isolated two hemagglutinating agents from pools of cloacal swabs of wild mallards (Anas platyrhynchos caught in a single sampling site at two different times. AIV and APMV1 were excluded using hemagglutination inhibition (HI testing and specific real-time RT-PCR tests. Methods To refine the virological identification of APMV2-10 realized by HI subtyping tests and in lack of validated molecular tests for APMV2-10, random access amplification was used in combination with next generation sequencing for the sequence independent identification of the viruses and the determination of their genomes. Results Three different APMVs were identified. From one pooled sample, the complete genome sequence (15054 nucleotides of an APMV4 was assembled from the random sequences. From the second pooled sample, the nearly complete genome sequence of an APMV6 (genome size of 16236 nucleotides was determined, as well as a partial sequence for an APMV4. This APMV4 was closely related but not identical to the APMV4 isolated from the first sample. Although a cross-reactivity with other APMV subtypes did not allow formal identification, the HI subtyping revealed APMV4 and APMV6 in the respective pooled samples but failed to identify the co-infecting APMV4 in the APMV6 infected pool. Conclusions These data further contribute to the knowledge about the genetic diversity within the serotypes APMV4 and 6, and confirm the limited sensitivity of the HI subtyping test. Moreover, this study demonstrates the value of a random access nucleic acid amplification method in combination with massive parallel sequencing. Using only a moderate and economical sequencing effort, the characterization and full genome sequencing of APMVs can be obtained, including the identification of viruses in mixed infections.

  2. Seroprevalence of paramyxoviruses in synanthropic and semi-free-range birds.

    Science.gov (United States)

    Esperón, Fernando; Vázquez, Belén; Sánchez, Azucena; Fernández-Piñero, Jovita; Yuste, María; Neves, Elena; Nogal, Verónica; Muñoz, María Jesús

    2014-06-01

    Avian paramyxoviruses (APMVs) are classified into nine different serotypes (APMV 1-9). Virulent strains of APMV-1 are already well characterized as the etiologic agent of Newcastle disease (ND), an important disease in poultry that is potentially capable of infecting all orders of avian species. However, very little is known about the other eight serotypes, the majority of which can cause disease in domestic birds. The role of synanthropic and semi-free-range birds as reservoirs of avian paramyxoviruses is not well understood and the main objective of this work was to evaluate the seroprevalence of APMV 1-9 in these kind of birds. A total of 296 sera, oropharyngeal swabs, and cloacal enemas were collected from semi-free-range birds belonging to four different species: feral pigeons (Columba livia var. domestica), hybrid ducks (Anas sp.), domestic geese (Anser anser domesticus), and white storks (Ciconia ciconia). Antibodies against NDV were found in 56.3% of domestic geese, 42.9% of feral pigeons, and 30.4% of hybrid ducks. Antibodies for other APMVs (-3, -4, -6, -7, -8, -9) were also found. Seven positive individuals were positive to real-time RT-PCR detection, all of them feral pigeons captured in 2006 and 2007. The results obtained reinforce the idea that semi-free-range birds may be good sentinels for the detection of NDV and other avian paramyxoviruses. PMID:25055638

  3. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  4. Avian paramyxovirus serotype 1 strains of low virulence with unusual fusion protein cleavage sites isolated from poultry species

    Science.gov (United States)

    Avian paramyxo-serotype-1 viruses (APMV1) with fusion cleavage sites containing two basic amino acids and a phenylalanine (F) at position 117 have been isolated from poultry species in two states from 2007-2009. The intracerebral pathogenicity indices for these viruses are of low virulence at 0.00 ...

  5. Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011—Review and recommendations for surveillance

    DEFF Research Database (Denmark)

    Dundon, William G.; Heidari, Alireza; Fusaro, Alice;

    2012-01-01

    Since 2006, the members of the molecular epidemiological working group of the European “EPIZONE” network of excellence have been generating sequence data on avian influenza and avian paramyxoviruses from both European and African sources in an attempt to more fully understand the circulation and...... impact of these viruses. This review presents a timely update on the epidemiological situation of these viruses based on sequence data generated during the lifetime of this project in addition to data produced by other groups during the same period. Based on this information and putting it all into a...

  6. Strains of avian paramyxovirus type 1 of low pathogenicity for chickens isolated from poultry and wild birds in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Handberg, Kurt; Ahrens, Peter; Therkildsen, O.R.; Manvell, R.J.; Alexander, D.J.

    2004-01-01

    Twenty-one strains of avian paramyxovirus type 1 of low virulence for chickens were isolated in Denmark between 1996 and the beginning of 2003. The low virulence of the strains was demonstrated by sequencing the fusion (F) gene at the cleavage site motif and in some cases by determining the intra...... phylogenetic analysis of a partial sequence of the F gene. The origin of the six E isolates was probably contaminated vaccines; the other viruses were isolated from wild birds and from poultry which probably came into contact with wild birds....

  7. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction--positive

    Science.gov (United States)

    Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...

  8. Determination of the seroprevalence of Newcastle disease virus (avian paramyxovirus type 1 in Zambian backyard chicken flocks

    Directory of Open Access Journals (Sweden)

    Chimuka Musako

    2012-02-01

    Full Text Available A cross-sectional study was conducted in five provinces and 11 districts of Zambia to determine the seroprevalence of Newcastle disease in Zambian backyard chicken flocks. Of the chickens sampled, 73.9% tested positive for avian paramyxovirus type 1 antibodies by means of an enzyme-linked immunosorbent assay. Seroprevalence varied amongst the five provinces sampled, ranging from 82.6% in the Eastern Province to 48.3% in Luapula Province. Seroprevalence also varied amongst the 11 districts sampled, ranging from 91.3% in Monze district of Southern Province to 22.8% in Mufulira district of the Copperbelt province. Overall, the seroprevalence of Newcastle disease in Zambian backyard chicken flocks has increased since the previous study conducted in 1994.

  9. New avian paramyxoviruses type I strains identified in Africa provide new outcomes for phylogeny reconstruction and genotype classification.

    Directory of Open Access Journals (Sweden)

    Renata Servan de Almeida

    Full Text Available Newcastle disease (ND is one of the most lethal diseases of poultry worldwide. It is caused by an avian paramyxovirus 1 that has high genomic diversity. In the framework of an international surveillance program launched in 2007, several thousand samples from domestic and wild birds in Africa were collected and analyzed. ND viruses (NDV were detected and isolated in apparently healthy fowls and wild birds. However, two thirds of the isolates collected in this study were classified as virulent strains of NDV based on the molecular analysis of the fusion protein and experimental in vivo challenges with two representative isolates. Phylogenetic analysis based on the F and HN genes showed that isolates recovered from poultry in Mali and Ethiopia form new groups, herein proposed as genotypes XIV and sub-genotype VIf with reference to the new nomenclature described by Diel's group. In Madagascar, the circulation of NDV strains of genotype XI, originally reported elsewhere, is also confirmed. Full genome sequencing of five African isolates was generated and an extensive phylogeny reconstruction was carried out based on the nucleotide sequences. The evolutionary distances between groups and the specific amino acid signatures of each cluster allowed us to refine the genotype nomenclature.

  10. Expansion of an exotic species and concomitant disease outbreaks: pigeon paramyxovirus in free-ranging Eurasian collared doves

    Science.gov (United States)

    Schuler, Krysten L.; Green, David E.; Justice-Allen, Anne E.; Jaffe, Rosemary; Cunningham, Mark; Thomas, Nancy J.; Spalding, Marilyn G.; Ip, Hon S.

    2012-01-01

    Eurasian collared doves (Streptopelia decaocto) have expanded their range across the United States since their introduction several decades ago. Recent mortality events in Eurasian collared doves in Arizona and Montana, USA, during the winter of 2009-2010 were the result of pigeon paramyxovirus (PPMV), a novel disease agent. The first instance of mortality by this emerging infectious disease in this species occurred in Florida in 2001 with subsequent disease events in 2006 and 2008. Full diagnostic necropsies were performed on carcasses from the three states. PPMV was identified by RT-PCR and virus isolation and was sequenced to the VIb genotype of avian paramyxovirus-1 (APMV). Other APMVs are common in a variety of free-ranging birds, but concern is warranted because of the potential for commingling of this species with native birds, virus evolution, and threats to domestic poultry. Improved surveillance for wildlife mortality events and efforts to prevent introduction of non-native animals could reduce the threat of introducing new pathogens.

  11. A single R36Q mutation in the matrix protein of pigeon paramyxovirus type 1 reduces virus replication and shedding in pigeons.

    Science.gov (United States)

    Xu, Haixu; Song, Qingqing; Zhu, Jie; Liu, Jiajia; Cheng, Xin; Hu, Shunlin; Wu, Shuang; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan

    2016-07-01

    Pigeon paramyxovirus type 1 (PPMV-1) is considered an antigenic and variant of avian paramyxovirus type 1 (APMV-1) that has adapted to pigeons as hosts. However, how this host-specific adaption of PPMV-1 is related to its biological characteristics is unknown. In this study, seven unique amino acids in PPMV-1 that are not present in other APMV-1 strains (n = 39 versus n = 106) were identified. R36 of the M protein was found to be not only a unique amino acid but also a positive-selection site. To investigate the role of R36 in host adaptation, a recombinant PPMV-1 with R36Q mutation was constructed. Our results indicated that the an R36Q mutation significantly attenuates pathogenicity in chickens, viral growth in both chicken embryo fibroblasts (CEFs) and pigeon embryo fibroblasts (PEFs), and virus replication and shedding in pigeons in comparison with the wild-type virus, suggesting that R36 is a key residue that evolved during the adaptation of PPMV-1 in pigeons. PMID:27038826

  12. Similarity of avian paramyxovirus serotype 1 isolates of low virulence for chickens obtained from contaminated poultry vaccines and from poultry flocks

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Handberg, K. J.; Ahrens, Peter; Manvell, R.J.; Frost, K.M.; Alexander, D.J.

    2000-01-01

    been found to be contaminated with APMV-1 viruses of low virulence for chickens were examined. The vaccines were produced by the same company and the affected batches had been used in Denmark in 1996/97. Furthermore, APMV-1 isolates of low virulence were obtained from three commercial broiler breeder...

  13. Avian Paramyxovirus serotypes circulating in wild bird populations of the Azov-Black Sea region of Ukraine in 2006-2011

    Science.gov (United States)

    Over the past 40 years many different paramyxoviruses have been isolated from animals and birds. Paramyxovirus serotypes PMV-1, PMV-2, and PMV-3 are important because they can cause disease in poultry. The goal of our research was to study PMV-1 to PMV-9 paramyxovirus serotypes circulating in diff...

  14. Detection of paramyxoviruses in Magellanic penguins (Spheniscus magellanicus) on the Brazilian tropical coast.

    Science.gov (United States)

    Fornells, Luz Alba M G; Silva, Tatiane F; Bianchi, Iliani; Travassos, Carlos E P F; Liberal, Maíra H T; Andrade, Claúdio M; Petrucci, Melissa P; Veiga, Venicio F; Vaslin, Maite F S; Couceiro, José Nelson S S

    2012-05-01

    Aquatic migratory birds are a major vectors by which influenza viruses and paramyxoviruses are spread in nature. Magellanic penguins (Spheniscus magellanicus) are usually present on the southern shores of South America and can swim as far as the southern coast of Brazil in winter. In 2008, however, several Magellanic penguins were observed on the northeastern coast of Brazil. Paramyxoviruses were isolated from Magellanic penguins on the Espírito Santo state coast, approximately 4000 km from their breeding colonies, although influenza viruses were not detected. Among the paramyxoviruses, five Avulavirus isolates belonging to serotype APMV-2 and the serotype APMV-10, which was proposed by Miller et al. (2010), were identified. These results highlight the risks associated with the spread of paramyxoviruses between natural to non-natural habitats by birds exhibiting unusual migration patterns, and they document for the first time the presence of the APMV-2 and APMV-10 serotypes on penguins in Brazil. The local avifauna may become infected with these viruses through close contact between migratory and resident birds. Continued surveillance of virus incidence in these migratory populations of penguins is necessary to detect and prevent the potential risks associated with these unusual migration patterns. PMID:22189432

  15. Characterization of a genetic and antigenic variant of avian paramyxovirus 6 isolated from a migratory wild bird, the red-necked stint (Calidris ruficollis).

    Science.gov (United States)

    Bui, Vuong Nghia; Mizutani, Tetsuya; Nguyen, Tung Hoang; Trinh, Dai Quang; Awad, Sanaa S A; Minoungou, Germaine L; Yamamoto, Yu; Nakamura, Kikuyasu; Saito, Keisuke; Watanabe, Yukiko; Runstadler, Jonathan; Huettmann, Falk; Ogawa, Haruko; Imai, Kunitoshi

    2014-11-01

    A hemagglutinating virus (8KS0813) was isolated from a red-necked stint. Hemagglutination inhibition and neutralization tests indicated that 8KS0813 was antigenically related to a prototype strain, APMV-6/duck/Hong Kong/18/199/77, but with an 8- and 16-fold difference, respectively, in their titers. The full genome sequence of 8KS0813 showed 98.6 % nucleotide sequence identity to that of APMV-6/duck/Italy/4524-2/07, which has been reported to belong to an APMV-6 subgroup, and showed less similarity to that of the prototype strain (70.6 % similarity). The growth of 8KS0813 and the prototype strain in four different cell cultures was greatly enhanced by adding trypsin. Interestingly, this virus induced syncytia only in Vero cells. 8KS0813 was identified as APMV-6/red-necked stint/Japan/8KS0813/08, but it is antigenically and genetically distinguishable from the prototype strain, suggesting that variant APMV-6 is circulating in migratory birds. PMID:25000900

  16. The spread of non-OIE-listed avian diseases through international trade of chicken meat: an assessment of the risks to New Zealand.

    Science.gov (United States)

    Cobb, S P; Smith, H

    2015-12-01

    Twelve avian diseases are listed by the World Organisation for Animal Health (OIE), although more than 100 infectious diseases have been described in commercial poultry. This article summarises a recent assessment of the biosecurity risks posed by non-listed avian diseases associated with imports of chilled or frozen chicken meat and meat products into New Zealand. Following the guidelines described in Chapter 2.1 of the OIE Terrestrial Animal Health Code, avian adenovirus splenomegaly virus, avian paramyxovirus-2 (APMV-2), Bordetella avium, Mycoplasma spp., Ureaplasma spp., Ornithobacterium rhinotracheale, Riemerella anatipestifer, and Salmonella arizonae have been identified as hazards. However, of all the non-listed avian diseases discussed here, only APMV-2 and S. arizonae are assessed as being risks associated with the commercial import of chicken meat into New Zealand. Specific control measures may have to be implemented to mitigate such risks. This conclusion is likely to reflect both the high-health status of New Zealand poultry and the threat posed by these infectious agents to New Zealand's unique population of native psittacine species. PMID:27044152

  17. Chimeric newcastle disease virus protects chickens against avian influenza in the presence of maternally derived NDV immunity.

    Directory of Open Access Journals (Sweden)

    Constanze Steglich

    Full Text Available Newcastle disease virus (NDV, an avian paramyxovirus type 1, is a promising vector for expression of heterologous proteins from a variety of unrelated viruses including highly pathogenic avian influenza virus (HPAIV. However, pre-existing NDV antibodies may impair vector virus replication, resulting in an inefficient immune response against the foreign antigen. A chimeric NDV-based vector with functional surface glycoproteins unrelated to NDV could overcome this problem. Therefore, an NDV vector was constructed which carries the fusion (F and hemagglutinin-neuraminidase (HN proteins of avian paramyxovirus type 8 (APMV-8 instead of the corresponding NDV proteins in an NDV backbone derived from the lentogenic NDV Clone 30 and a gene expressing HPAIV H5 inserted between the F and HN genes. After successful virus rescue by reverse genetics, the resulting chNDVFHN PMV8H5 was characterized in vitro and in vivo. Expression and virion incorporation of the heterologous proteins was verified by Western blot and electron microscopy. Replication of the newly generated recombinant virus was comparable to parental NDV in embryonated chicken eggs. Immunization with chNDVFHN PMV8H5 stimulated full protection against lethal HPAIV infection in chickens without as well as with maternally derived NDV antibodies. Thus, tailored NDV vector vaccines can be provided for use in the presence or absence of routine NDV vaccination.

  18. A comparative infection study of pigeon and avian paramyxovirus type 1 viruses in pigeons: Evaluation of clinical signs, virus shedding and seroconversion

    NARCIS (Netherlands)

    Dortmans, J.C.F.M.; Koch, G.; Rottier, P.J.M.; Peeters, B.P.H.

    2011-01-01

    The pathogenesis of pigeon paramyxovirus type 1 (PPMV-1) isolate AV324/96 and of its recombinant derivative, rgAV324, was studied in pigeons. For comparison, the virulent chicken virus FL-Herts, which is a recombinant derivative of strain Herts/33, was also included. After inoculation by the combine

  19. Isolation and characterization of avian paramyxovirus type 1 (Newcastle disease) viruses from a flock of ostriches (Struthio camelus) and emus (Dromaius novaehollandiae) in Europe with inconsistent serology

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Herczeg, J.; Lomniczi, B.;

    1998-01-01

    During a 95-day study period in 1995 in Denmark, 18 ostriches in a flock of 77 ostriches and four emus held in quarantine died, Clinical and pathological observations did not indicate the presence of transmissible infectious disease in the hock. Management failures and indoor housing were believed...... epizootic of Newcastle disease in back yard poultry ire Denmark. Blood samples were taken from all live birds in the flock after 25 and 95 days of quarantine and all were negative for antibodies to APMV-1 in haemagglutination inhibition tests. All samples taken after 95 days of quarantine were also negative...

  20. Isolation of influenza A virus, subtype H5N2, and avian paramyxovirus type 1 from a flock of ostriches in Europe

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Nielsen, O.L.; Hansen, C.;

    1998-01-01

    A total of 146 of 506 ostriches (Struthio camelus) introduced into a quarantine in Denmark died within the first 23 days. The majority of deaths were in young birds up to 10 kg body weight. Avian influenza A viruses (AIVs) were isolated from 14 pools of organ tissues representing seven groups eac...

  1. Interacting domains of the HN and F Proteins of paramyxovirus

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaojia; ZHANG Guozhong; ZHAO Jixun; WANG Ming

    2005-01-01

    Binding sialates to hemagglutinin-neuramini- dase (HN) activates (triggers) the fusion protein (F) to start the membrane fusion process of paramyxovirus, but the mechanism by which the HN and F associate with each other to induce membrane fusion is still unclear. It is noteworthy to study the interaction domains of HN and F of paramyxovirus. To screen interacting domains of the HN and F proteins of Avian parainfluenza virus-2 (APIV-2) and identify the structure of binding proteins, the GST pull-down assay and mass spectroscopy (MS) and circular dichroism (CD) experiments were performed in this study. The study revealed that the globular head region of HN protein tends to form a complex with either the heptad repeat 1 (HR1) or the heptad repeat 2 (HR2) of F protein respectively. This paper discusses the novel fusion mechanism induced by paramyxovirus HN and F proteins.

  2. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-01-24

    ... poultry caused by a paramyxovirus. END is one of most infectious diseases of poultry in the world. A death... avian influenza (HPAI) is an extremely infectious and potentially fatal form of the disease in birds and... birds' or poultry's freedom from END, HPAI subtype H5N1, and other communicable diseases,...

  3. Newcastle disease B1 vaccine strain in wild rock pigeons in Atlanta, Georgia

    Science.gov (United States)

    From June to October of 2012, samples were collected from wild Rock Pigeons (Columba livia) in urban neighborhoods of Atlanta, Georgia to ascertain the prevalence of pigeon paramyxovirus serotype-1 (PPMV-1). PPMV-1 strains are a subset of avian paramyxovirus serotype-1 (APMV-1) commonly isolated fro...

  4. Molecular Characterization and Phylogenetic Analysis of Selected Pigeon Paramyxovirus Type-1 (PPMV-1 Indian Isolates

    Directory of Open Access Journals (Sweden)

    K.A. Naveen

    2014-01-01

    Full Text Available Newcastle Disease (ND is a highly contagious infection of poultry which manifest in a wide range of severity from subclinical infection to lethal disease. In the past, a number of Newcastle disease outbreaks in poultry and other bird species have been ascribed to pigeon paramyxovirus type-1 (PPMV-1 infection. The conventional in vivo pathogenicity tests to assess the pathogenicity of PPMV-1 viruses have provided equivocal results. Lately, restriction enzyme analysis technique has been employed for unequivocal identification of individual strains of Newcastle Disease Virus (NDV in poultry. In this study, sequence analysis of the F1/F2 cleavage site of the F gene of APMV-1 isolated from pigeons in India was attempted for pathotype prediction and determination of molecular epidemiology. Six pigeon origin NDV isolated in India between 1991 and 2001 were selected for this study. A portion of NDV F gene including the cleavage site was amplified by Polymerase Chain Reaction (PCR and sequenced directly. The total number of nucleotide substitution among all six isolates ranged from 6 to 20; whereas, only four amino acid substitutions were observed. Nucleotides at position 304 and 357 were unique to all the pigeon isolates. The cleavage-activation site (380-397 had no nucleotide substitution and all the six pigeon isolates shared the amino acid sequence 112RRQKRF117 as that of velogenic viruses. The results of this molecular characterization study of Indian PPMV-1 isolates would help design better prevention and control measures for this important pathogen.

  5. The Paramyxovirus Polymerase Complex as a Target for Next-Generation Anti-Paramyxovirus Therapeutics

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2015-05-01

    Full Text Available The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV, as well as the emerging zoonotic Hendra and Nipah viruses. In the United States, RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path towards the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.

  6. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    Science.gov (United States)

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies. PMID:26478162

  7. Use of bioinformatics in improving detection of Newcastle disease virus

    Science.gov (United States)

    Newcastle disease (ND) is a major concern for poultry producers around the world and the rapid diagnosis of an outbreak is crucial to any control program. Prompt detection of the causative agent of ND, virulent forms of avian paramyxovirus serotype-1 (APMV-1) also known as virulent Newcastle diseas...

  8. Complete genome and clinicopathological characterization of a virulent Newcastle disease virus isolate from South America

    Science.gov (United States)

    Newcastle disease (ND) is one of the most important diseases of poultry, negatively affecting trade and poultry production worldwide. The disease is caused by Newcastle disease virus (NDV) or avian paramyxovirus type-1 (APMV-1), a negative sense single-stranded RNA virus of the genus Avulavirus, fam...

  9. Discovery of new feline paramyxoviruses in domestic cats with chronic kidney disease

    NARCIS (Netherlands)

    Sieg, Michael; Heenemann, Kristin; Rückner, Antje; Burgener, Iwan; Oechtering, Gerhard; Vahlenkamp, Thomas W

    2015-01-01

    Paramyxoviruses constitute a large family of enveloped RNA viruses including important pathogens in veterinary and human medicine. Recently, feline paramyxoviruses, genus morbillivirus, were detected in cats from Hong Kong and Japan. Here we describe the discovery of several new feline paramyxovirus

  10. Molecular characterisation of Atlantic salmon paramyxovirus (ASPV): A novel paramyxovirus associated with proliferative gill inflammation

    Science.gov (United States)

    Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.

    2008-01-01

    Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.

  11. Structural and mechanistic studies of measles virus illuminate paramyxovirus entry.

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2011-06-01

    Full Text Available Measles virus (MeV, a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H and fusion (F proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.

  12. Avian influenza

    Science.gov (United States)

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  13. Paramyxovirus-1 in feral pigeons (Columba livia) in Ontario

    OpenAIRE

    Johnston, Kathleen M.; Key, Douglas W.

    1992-01-01

    Paramyxovirus-1 (PMV-1) infection was diagnosed in racing pigeons in Ontario during 1985, but it was not until January 1989, that the virus was isolated from feral pigeons (Columba livia) in this province. During an 18 month period beginning January 1988, a total of 43 feral pigeons was submitted to the Wildlife Diseases Laboratory, Pathology Department, Ontario Veterinary College. A history of neurological signs accompanied most of the birds. Tissues from 29 birds were submitted for PMV-1 is...

  14. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion

    OpenAIRE

    Charles J Russell; Theodore S Jardetzky; Lamb, Robert A.

    2001-01-01

    Peptides derived from heptad repeat regions adjacent to the fusion peptide and transmembrane domains of many viral fusion proteins form stable helical bundles and inhibit fusion specifically. Paramyxovirus SV5 fusion (F) protein-mediated fusion and its inhibition by the peptides N-1 and C-1 were analyzed. The temperature dependence of fusion by F suggests that thermal energy, destabilizing proline residues and receptor binding by the hemagglutinin–neuraminidase (HN) protein collectively contr...

  15. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    Science.gov (United States)

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  16. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California.

    Science.gov (United States)

    Straub, Mary H; Kelly, Terra R; Rideout, Bruce A; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  17. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California.

    Directory of Open Access Journals (Sweden)

    Mary H Straub

    Full Text Available Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus, turkey vulture (Cathartes aura and golden eagle (Aquila chrysaetos. California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats.

  18. Avian influenza

    Science.gov (United States)

    ... of avian influenza A in Asia, Africa, Europe, Indonesia, Vietnam, the Pacific, and the near East. Hundreds ... to detect abnormal breath sounds) Chest x-ray Culture from the nose or throat A method or ...

  19. Avian Flu

    Energy Technology Data Exchange (ETDEWEB)

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  20. Avian Flu

    International Nuclear Information System (INIS)

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  1. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish high quality contents that will be internationally accessible to any reader at no cost.

  2. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced. PMID:18411943

  3. Avian Influenza

    OpenAIRE

    Tsung-Zu Wu; Li-Min Huang

    2005-01-01

    Influenza is an old disease but remains vital nowadays. Three types of influenza viruses,namely A, B, C, have been identified; among them influenza A virus has pandemic potential.The first outbreak of human illness due to avian influenza virus (H5N1) occurred in1997 in Hong Kong with a mortality of 30%. The most recent outbreak of the avian influenzaepidemic has been going on in Asian countries since 2003. As of March 2005, 44 incidentalhuman infections and 32 deaths have been documented. Hum...

  4. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  5. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  6. Avian Encephalomyelitis in Layer Pullets Associated with Vaccination.

    Science.gov (United States)

    Sentíes-Cué, C Gabriel; Gallardo, Rodrigo A; Reimers, Nancy; Bickford, Arthur A; Charlton, Bruce R; Shivaprasad, H L

    2016-06-01

    Avian encephalomyelitis (AE) was diagnosed in three flocks of leghorn layer pullets following AE vaccination. Ages of the birds were 11, 12, and 14 wk. The submissions came from three different companies located in two geographic areas of the Central Valley of California. The clinical signs included birds down on their legs, unilateral recumbency or sitting on their hocks, lethargy, reluctance to move, dehydration, unevenness in size, low weight, tremors of the head in a few birds, and mildly to moderately elevated mortality. The flocks had been vaccinated against fowl pox and AE with a combined product in the wing-web 2 wk prior to the onset of AE clinical signs. Histopathologic examination revealed lesions consistent with AE, including lymphocytic perivascular infiltration and neuronal central chromatolysis in the brain and spinal cord, as well as gliosis in the cerebellar molecular layer. The AE virus was detected by reverse-transcriptase PCR in the brain homogenate from three cases and peripheral nerves in one case. Additionally, the AE virus was isolated in specific-pathogen-free (SPF) embryonated eggs from brain tissue pool samples. Other avian viral infections capable of causing encephalitis, including avian paramyxoviruses, avian influenza virus (AIV), West Nile virus (WNV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), were ruled out by attempting virus isolation and molecular procedures. PMID:27309297

  7. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    International Nuclear Information System (INIS)

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry

  8. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sayantan, E-mail: sayantan_bose@hms.harvard.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Jardetzky, Theodore S. [Department of Structural Biology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Lamb, Robert A., E-mail: ralamb@northwestern.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500 (United States)

    2015-05-15

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.

  9. The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)

    International Nuclear Information System (INIS)

    The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses, which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae

  10. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  11. Avian Influenza

    OpenAIRE

    Tjandra Y. Aditama

    2008-01-01

    Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%). Indonesia has 27 cases, 20 were dead (74.07%). AI cases...

  12. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  13. Avian Influenza in Birds

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza in Birds Language: English Español Recommend on ...

  14. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... this? Submit Button Past Newsletters Information on Avian Influenza Language: English Español Recommend on Facebook Tweet ...

  15. A Histidine Switch in Hemagglutinin-Neuraminidase Triggers Paramyxovirus-Cell Membrane Fusion▿

    OpenAIRE

    Krishnan, Anuja; Santosh K Verma; Mani, Prashant; Gupta, Rahul; Kundu, Suman; Sarkar, Debi P

    2008-01-01

    Most paramyxovirus fusion proteins require coexpression of and activation by a homotypic attachment protein, hemagglutinin-neuraminidase (HN), to promote membrane fusion. However, the molecular mechanism of the activation remains unknown. We previously showed that the incorporation of a monohistidylated lipid into F-virosome (Sendai viral envelope containing only fusion protein) enhanced its fusion to hepatocytes, suggesting that the histidine residue in the lipid accelerated membrane fusion....

  16. Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins.

    Science.gov (United States)

    Song, Albert S; Poor, Taylor A; Abriata, Luciano A; Jardetzky, Theodore S; Dal Peraro, Matteo; Lamb, Robert A

    2016-07-01

    Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin-neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design. PMID:27335462

  17. Characterization of pigeon paramyxoviruses (Newcastle disease virus isolated in South Africa from 2001 to 2006

    Directory of Open Access Journals (Sweden)

    C. Abolnik

    2008-08-01

    Full Text Available Pigeon paramyxovirus type 1 (PPMV-1, a variant of Newcastle disease virus that primarily affects doves and pigeons has been isolated in South Africa since the mid-1980s. Phylogenetic evidence indicates that pigeon paramyxovirus type 1 viruses were introduced in to South Africa on multiple occasions, based on the presence of two separate lineages, 4bi and 4bii, that have been circulating in Europe and the Far East since the early 1990s. During 2006, a PPMV-1 virus was isolated from an African ground hornbil(l Bucorvus leadbeateri which becamea cutely infected with PPMV-1 and died, probably after scavenging off infected dove carcasses in the region, since a closely-related PPMV-1 strain was also isolated from doves collected nearby. The hornbill isolate had lCPl and MDT values characteristic of PPMV-1s trains. The threat of PPMV-1 to poultry production and biodiversity in southern Africa highlights the importance of monitoring the spread of this strain.

  18. Avian influenza – Review

    OpenAIRE

    Öner, Ahmet Faik

    2007-01-01

    Recent spread of avian influenza A H5N1 virus to poultry and wild birds has increased the threat of human infections with H5N1 virus worldwide In this review the epidemiology virolgy clinical and laboratory characteristics and management of avian influenza is described The virus has demonsrated considerable pandemic potential and is the most likely candidate of next pandemic threat For pandemic preparedness stockpiling antiviral agents and vaccination are the most important intervention measu...

  19. Editorial: Avian Research

    Institute of Scientific and Technical Information of China (English)

    Yong; Wang; Guangmei; Zheng

    2014-01-01

    <正>Welcome to Avian Research!This new journal is a continuation and enhancement of Chinese Birds,which has been and continues to be sponsored by the China Ornithological Society and Beijing Forestry University.In the four years since its inception,the original journal—the only one in China focusing on avian research—has published over 130 manuscripts,with authors from all continents across the world,garnering global respect in

  20. Characterization of Pigeon Paramyxoviruses (Newcastle disease virus) Isolated in Kazakhstan in 2005

    Institute of Scientific and Technical Information of China (English)

    Andrey Bogoyavlenskiy; Vladimir Berezin; Alexey Prilipov; Eugeniy Usachev; Ilya Korotetskiy; Irina Zaitceva; Aydyn Kydyrmanov; Marat Sayatov

    2012-01-01

    Isolates of Newcastle disease virus (NDV) from deceased wild and domestic pigeons in Kazakhstan were obtained from the Almaty region during 2005 and were genotypically analyzed by using reverse transcription polymerase chain reaction (RT-PCR) with primers specific to the viral fusion (F) protein gene.Part of the amplified F protein DNA product (nucleotide sequence 47-422) and the deduced amino acid sequenceswere compared phylogenetically with those from strains previously reported in other geographic regions.Phylogenetic analysis indicated that the Kazakhstanian pigeon paramyxovirus type 1 (PPMV-1) isolates belong to genotype Ⅵ or 4bii.To our knowledge,this is the first reported Ⅵ isolates that possess the sequences of 112 GKRQKR116* F117 within the F0 protein.The information is fundamental to improving the efficiency of control strategies and vaccine development for NDV.

  1. Avian influenza (fowl plague)

    Science.gov (United States)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  2. Avian pox in ostriches.

    Science.gov (United States)

    Allwright, D M; Burger, W P; Geyer, A; Wessles, J

    1994-03-01

    Nodular cutaneous and diphtheric oral lesions, resembling avian pox were observed in 2 flocks of young ostrich chicks. Typical eosinophilic intracytoplasmic inclusion bodies were seen in histological sections and a pox virus was isolated from the lesions. A commercial fowl pox vaccine was used to protect young ostriches in the field. PMID:7745588

  3. Avian dark cells

    Science.gov (United States)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  4. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend on Facebook Tweet ... A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses usually do not ...

  5. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  6. COMPLETE GENOMIC SEQUENCE OF VIRULENT PIGEON PARAMYXOVIRUS IN LAUGHING DOVES (STREPTOPELIA SENEGALENSIS) IN KENYA.

    Science.gov (United States)

    Obanda, Vincent; Michuki, George; Jowers, Michael J; Rumberia, Cecilia; Mutinda, Mathew; Lwande, Olivia Wesula; Wangoru, Kihara; Kasiiti-Orengo, Jacquiline; Yongo, Moses; Angelone-Alasaad, Samer

    2016-07-01

    Following mass deaths of Laughing Doves (Streptopelia senegalensis) in different localities throughout Kenya, internal organs obtained during necropsy of two moribund birds were sampled and analyzed by next generation sequencing. We isolated the virulent strain of pigeon paramyxovirus type-1 (PPMV-1), PPMV1/Laughing Dove/Kenya/Isiolo/B2/2012, which had a characteristic fusion gene motif (110)GGRRQKRF(117). We obtained a partial full genome of 15,114 nucleotides. The phylogenetic relationship based on the fusion gene and genomic sequence grouped our isolate as class II genotype VI, a group of viruses commonly isolated from wild birds but potentially lethal to Chickens ( Gallus gallus domesticus ). The fusion gene isolate clustered with PPMV-I strains from pigeons (Columbidae) in Nigeria. The complete genome showed a basal and highly divergent lineage to American, European, and Asian strains, indicating a divergent evolutionary pathway. The isolated strain is highly virulent and apparently species-specific to Laughing Doves in Kenya. Risk of transmission of such a strain to poultry is potentially high whereas the cyclic epizootic in doves is a threat to conservation of wild Columbidae in Kenya. PMID:27224210

  7. Biological and phylogenetic characterization of pigeon paramyxovirus serotype-1 circulating in North American pigeons

    Science.gov (United States)

    As part of a surveillance program in Rhode Island and in the Houston Metropolitan Area, brain tissue was collected during 2000 to 2007 from 5,608 dead birds representing 21 avian orders found in public places or reported by homeowners. Fifteen Newcastle disease virus isolates were recovered only fr...

  8. An overview on avian influenza

    OpenAIRE

    Nelson Rodrigo da Silva Martins

    2012-01-01

    Avian influenza (AI) is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA), with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS) for health control. Poultry health standards are adopted for the confo...

  9. Avian influenza viruses in humans.

    OpenAIRE

    Malik Peiris, J S

    2009-01-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to...

  10. SEKILAS TENTANG AVIAN INFLUENZA (AI)

    OpenAIRE

    Fauziah Elytha

    2011-01-01

    Fluburung atau Avian Influenza (AI) adalah penyakit zoonosis fatal dan menular serta dapat menginfeksi semua jenis burung, manusia, babi, kuda dan anjing, Virus Avian Influenza tipe A (hewan) dari keluarga Drthomyxoviridae telah menyerang manusia dan menyebabkan banyak korban meninggal dunia. Saat ini avian Influenza telah menjadi masalah kesehatan global yang sangat serius, termasuk di Indonesia. Sejak Juli 2005 Sampai 12 April 2006 telah ditemukan 479 kasus kumulatif dan dicurigai flu burun...

  11. The avian haemophili.

    OpenAIRE

    Blackall, P. J.

    1989-01-01

    There are four currently recognized taxa to accommodate the avian haemophili: Haemophilus paragallinarum, Pasteurella avium, Pasteurella volantium, and Pasteurella species A (the last three being formerly united as Haemophilus avium). A range of other taxa has also been recognized, but they have been neither named nor assigned to a genus. All of these various taxa, legitimate and otherwise, have the common characteristic of requiring V factor, but not X factor, for in vitro growth. Several re...

  12. BIRD FLU (AVIAN INFLUENZA)

    OpenAIRE

    Acar, Ali; Bulent BESIRBELLIOÐLU

    2005-01-01

    Avian influenza (bird flu) is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, ...

  13. Avian psychology and communication.

    OpenAIRE

    Rowe, Candy; Skelhorn, John

    2004-01-01

    The evolution of animal communication is a complex issue and one that attracts much research and debate. 'Receiver psychology' has been highlighted as a potential selective force, and we review how avian psychological processes and biases can influence the evolution and design of signals as well as the progress that has been made in testing these ideas in behavioural studies. Interestingly, although birds are a focal group for experimental psychologists and behavioural ecologists alike, the i...

  14. Avian mycoplasmosis update

    OpenAIRE

    ER Nascimento; VLA Pereira; MGF Nascimento; ML Barreto

    2005-01-01

    Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG), M. synoviae (MS), and M. meleagridis. Besides, M. iowe (MI) is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorga...

  15. Applications of avian transgenesis.

    Science.gov (United States)

    Scott, Benjamin B; Velho, Tarciso A; Sim, Shuyin; Lois, Carlos

    2010-01-01

    The ability to introduce foreign DNA into the genome of an organism has proven to be one of the most powerful tools in modern biology. Methods for the manipulation of the animal genome have been developed at an impressive pace for 3 decades, but only in the past 5 years have useful tools for avian transgenesis emerged. The most efficient technique involves the use of replication-deficient lentiviral vectors to deliver foreign DNA into the avian germline. Although lentiviral-mediated transgenesis presents some constraints, progress in this area has garnered interest in both industry and academia for its potential applications in biological research, biotechnology, and agriculture. In this review we evaluate methods for the production of transgenic birds, focusing on the advantages and limitations of lentiviral-mediated transgenesis. We also provide an overview of future applications of this technology. The most exciting of these include disease-resistant transgenic poultry, genetically modified hens that produce therapeutic proteins in their eggs, and transgenic songbirds that serve as a model to study communication disorders. Finally, we discuss technological advances that will be necessary to make avian transgenesis a more versatile tool. PMID:21131712

  16. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  17. Avian influenza: Vaccination and control

    Science.gov (United States)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  18. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    International Nuclear Information System (INIS)

    Highlights: ► Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. ► HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. ► HRS domains of F protein form three single α-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from β-sheet conformation to an elongated coil and then spontaneously to an α-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  19. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  20. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus [Centro de Biologia Molecular ' Severo Ochoa' (CSIC/UAM), C/ Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid (Spain); Biomol-Informatics SL, Parque Cientifico de Madrid, C/ Faraday, 7, Cantoblanco, 28049 Madrid (Spain); Gomez-Puertas, Paulino, E-mail: pagomez@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' (CSIC/UAM), C/ Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  1. Inhibition of Nipah Virus Infectin In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

    Energy Technology Data Exchange (ETDEWEB)

    M Porotto; B Rockx; C Yokoyama; A Talekar; I DeVito; l Palermo; J Liu; R Cortese; M Lu; et al.

    2011-12-31

    In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

  2. A Recently Discovered Pathogenic Paramyxovirus, Sosuga Virus, is Present in Rousettus aegyptiacus Fruit Bats at Multiple Locations in Uganda

    Science.gov (United States)

    Amman, Brian R.; Albariño, Cesar G.; Bird, Brian H.; Nyakarahuka, Luke; Sealy, Tara K.; Balinandi, Stephen; Schuh, Amy J.; Campbell, Shelly M.; Ströher, Ute; Jones, Megan E. B.; Vodzack, Megan E.; Reeder, DeeAnn M.; Kaboyo, Winyi; Nichol, Stuart T.; S.Towner, Jonathan

    2016-01-01

    In August 2012, a wildlife biologist became ill immediately following a 6-wk field trip to collect bats and rodents in South Sudan and Uganda. After returning to the US, the biologist was admitted to the hospital with multiple symptoms including fever, malaise, headache, generalized myalgia and arthralgia, stiffness in the neck, and sore throat. Soon after admission, the patient developed a maculopapular rash and oropharynx ulcerations. The patient remained hospitalized for 14 d. Several suspect pathogens, including viral hemorrhagic fever viruses such as Ebola viruses and Marburg viruses, were ruled out through standard diagnostic testing. However, deep sequencing and metagenomic analyses identified a novel paramyxovirus, later named Sosuga virus, in the patient’s blood. To determine the potential source, bat tissues collected during the 3-wk period just prior to the onset of symptoms were tested for Sosuga virus, and several Egyptian rousette bats (Rousettus aegyptiacus) were found to be positive. Further analysis of archived Egyptian rousette tissues collected at other localities in Uganda found additional Sosuga virus–positive bats, suggesting this species could be a potential natural reservoir for this novel paramyxovirus. PMID:25919464

  3. The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus.

    Science.gov (United States)

    Audsley, Michelle D; Marsh, Glenn A; Lieu, Kim G; Tachedjian, Mary; Joubert, D Albert; Wang, Lin-Fa; Jans, David A; Moseley, Gregory W

    2016-03-01

    IFN-antagonist function is a major determinant of pathogenicity and cross-species infection by viruses, but remains poorly defined for many potentially zoonotic viruses resident in animal species. The paramyxovirus family contains several zoonotic viruses, including highly pathogenic viruses such as Nipah virus and Hendra virus, and an increasing number of largely uncharacterized animal viruses. Here, we report the characterization of IFN antagonism by the rodent viruses J virus (JPV) and Beilong virus (BeiPV) of the proposed genus Jeilongvirus of the paramyxoviruses. Infection of cells by JPV and BeiPV was found to inhibit IFN-activated nuclear translocation of signal transducer and activator of transcription 1 (STAT1). However, in contrast to most other paramyxoviruses, the JPV and BeiPV V proteins did not interact with or inhibit signalling by STAT1 or STAT2, suggesting that JPV/BeiPV use an atypical V protein-independent strategy to target STATs, consistent with their inclusion in a separate genus. Nevertheless, the V proteins of both viruses interacted with melanoma differentiation-associated protein 5 (MDA5) and robustly inhibited MDA5-dependent activation of the IFN-β promoter. This supports a growing body of evidence that MDA5 is a universal target of paramyxovirus V proteins, such that the V-MDA5 interaction represents a potential target for broad-spectrum antiviral approaches. PMID:26703878

  4. ISOLATION OF AN OPHIDIAN PARAMYXOVIRUS (OPMV IN A CAPTIVE RATTLESNAKE (Crotalus durissus terrificus FROM BOTUCATU, SÃO PAULO STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    M. F. NOGUEIRA

    2002-01-01

    Full Text Available This study reports the isolation of an Ophidian Paramyxovirus (OPMV in sputum of a captive rattlesnake (Crotalus durissus terrificus kept in a serpentarium located in Botucatu, São Paulo State, Brazil. Polymerase chain reaction (PCR and nested-PCR were performed for the identification of the isolated virus.

  5. Avian Influenza Infection Dynamics in Minor Avian Species

    OpenAIRE

    Bertran Dols, Kateri

    2013-01-01

    Avian influenza (AI) has become one of the most important challenges that ever emerged from animal reservoirs. The constant outbreaks detected worldwide in domestic and wild bird species are of concern to the economics of the poultry industry, wildlife conservation, and animal and public health. Susceptibility to AI viruses (AIVs) varies deeply among avian species, as well as their possible role as sentinels, intermediate hosts or reservoirs. To date, several experimental studies and natural ...

  6. Influenza pandemics and avian flu

    OpenAIRE

    2005-01-01

    Douglas Fleming is general practitioner in a large suburban practice in Birmingham. In this article he seeks to clarify clinical issues relating to potential pandemics of influenza, including avian influenza

  7. Low Speed Avian Maneuvering Flight

    OpenAIRE

    Ros, Ivo

    2013-01-01

    Low speed avian maneuvering flight is an ecologically crucial behavior that has contributed to the explosive diversification of several avian taxa by allowing access to complex spatial environments. Negotiating a sharp aerial turn requires finely tuned interactions between an animal's sensory-motor system and its environment. My thesis work focuses on how aerodynamic forces, wing and body dynamics, and sensory feedback interact during aerial turning in the pigeon (Columba livea).

  8. Avian influenza : a review article

    OpenAIRE

    A. Yalda; EMADI H; M. Haji Abdolbaghi

    2006-01-01

    The purpose of this paper is to provides general information about avian influenza (bird flu) and specific information about one type of bird flu, called avian influenza A (H5N1), that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO) , world organization for animal health (OIE) , food and agriculture organization of the united nations (FAO) information and recommendations and review of th...

  9. The Avian Development Facility

    Science.gov (United States)

    2003-01-01

    The Avian Development Facility (ADF) supports 36 eggs in two carousels, one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF was designed to incubate up to 36 Japanese quail eggs, 18 in microgravity and 18 in artificial gravity. The two sets of eggs were exposed to otherwise identical conditions, the first time this is been accomplished in space. Eggs are preserved at intervals to provide snapshots of their development for later analysis. Quails incubate in just 15 days, so they are an ideal species to be studied within the duration of space shuttle missions. Further, several investigators can use the same specimens to address different questions. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations.

  10. BIRD FLU (AVIAN INFLUENZA

    Directory of Open Access Journals (Sweden)

    Ali ACAR

    2005-12-01

    Full Text Available Avian influenza (bird flu is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, severe respiratory diseases and other severe and life-threatening complications. In such situation, people should avoid contact with infected birds or contaminated surface, and should be careful when handling and cooking poultry. [TAF Prev Med Bull 2005; 4(6.000: 345-353

  11. Thromboelastography in Selected Avian Species.

    Science.gov (United States)

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M; Wiinberg, Bo; Kristensen, Annemarie T; Bertelsen, Mads F

    2015-12-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison. Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest reaction time. Species differed significantly in reaction time (P = .007), clotting rate (P < .001), rate of clot formation (α angle; P < .001), and maximum amplitude (P < .001) values, indicating that species-specific reference intervals are necessary. Based on these results, TEG with specific reference intervals could prove useful in evaluating avian hemostatic disorders. PMID:26771317

  12. Avian mycoplasmosis update

    Directory of Open Access Journals (Sweden)

    ER Nascimento

    2005-03-01

    Full Text Available Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG, M. synoviae (MS, and M. meleagridis. Besides, M. iowe (MI is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorganisms, whereas all other mycoplasmas are considered facultative intracellular organisms. Their pathogenic mechanism for disease include adherence to host target cells, mediation of apoptosis, innocent bystander damage to host cell due to intimate membrane contact, molecular (antigen mimicry that may lead to tolerance, and mitotic effect for B and/or T lymphocytes, which could lead to suppressed T-cell function and/or production of cytotoxic T cell, besides mycoplasma by-products, such as hydrogen peroxide and superoxide radicals. Moreover, mycoplasma ability to stimulate macrophages, monocytes, T-helper cells and NK cells, results in the production of substances, such as tumor necrosing factor (TNF-alpha, interleukin (IL-1, 2, 6 and interferon (a, b, g. The major clinical signs seen in avian mycoplasmosis are coughing, sneezing, snicks, respiratory rales, ocular and nasal discharge, decreased feed intake and egg production, increased mortality, poor hatchability, and, primarily in turkeys, swelling of the infraorbital sinus(es. Nevertheless, chronic and unapparent infections are most common and more threatening. Mycoplasmas are transmitted horizontally, from bird to bird, and vertically, from dam to offspring through the eggs. Losses attributed to mycoplasmosis, mainly MG and MS infections, result from decreased egg production and egg quality, poor hatchability (high rate of embryonic mortality and culling of day-old birds, poor feed efficiency, increase in

  13. Markov Chain Estimation of Avian Seasonal Fecundity

    Science.gov (United States)

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  14. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  15. Avian infectious laryngotracheitis.

    Science.gov (United States)

    Bagust, T J; Jones, R C; Guy, J S

    2000-08-01

    Avian infectious laryngotracheitis (ILT) herpesvirus continues to cause sporadic cases of respiratory disease in chickens world-wide. Sources of transmission of ILT infection are three-fold, namely: chickens with acute upper respiratory tract disease, latently infected 'carrier' fowls which excrete infectious laryngotracheitis virus (ILTV) when stressed, and all fomites (inanimate articles as well as the personnel in contact with infected chickens). Infectious laryngotracheitis virus infectivity can persist for weeks to months in tracheal mucus or carcasses. Rigorous site biosecurity is therefore critical in ILT disease control. Furthermore, while current (modified live) ILT vaccines can offer good protection, the strains of ILTV used in vaccines can also produce latent infections, as well as ILT disease following bird-to-bird spread. The regional nature of reservoirs of ILTV-infected flocks will tend to interact unfavourably with widely varying ILT control practices in the poultry industry, so as to periodically result in sporadic and unexpected outbreaks of ILT in intensive poultry industry populations. Precautions for trade-related movements of chickens of all ages must therefore include an accurate knowledge of the ILT infection status, both of the donor and recipient flocks. PMID:10935275

  16. Avian influenza virus in pregnancy.

    Science.gov (United States)

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  17. Avian Influenza infection in Human

    OpenAIRE

    Mohan M; Trevor Francis Fernandez and Feroz Mohammed.M.S.

    2008-01-01

    Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe dise...

  18. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  19. Molecular characterization of Indonesia avian influenza virus

    Directory of Open Access Journals (Sweden)

    N.L.P.I. Dharmayanti

    2005-06-01

    Full Text Available Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1. Molecular basis of pathogenicity in HA cleavage site indicated that the isolates of avian influenza virus have multiple basic amino acid (B-X-B-R indicating that all of the isolates representing virulent avian influenza virus (highly pathogenic avian influenza virus.

  20. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  1. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Strindberg, Sophie; Nielsen, Tenna W; Ribeiro, Ângela M;

    2015-01-01

    . Regardless of the mode of activation, clot formation in the species studied was markedly delayed compared with mammals. Because of prolonged reaction time (14.7-52.7 minutes) with kaolin and diluted tissue factor, undiluted human tissue factor was used in all avian samples because it provided the shortest...

  2. OFFLU Network on Avian Influenza

    OpenAIRE

    Edwards, Steven

    2006-01-01

    OFFLU is the name of the network of avian influenza expertise inaugurated jointly in 2005 by the Food and Agriculture Organization of the United Nations and the World Organisation for Animal Health. Achievements and constraints to date and plans for the future are described.

  3. Avian Influenza: Our current understanding

    Science.gov (United States)

    Avian influenza virus (AIV) has become one of the most important diseases of the poultry industry around the world. The virus has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infection. T...

  4. Avian influenza virus RNA extraction

    Science.gov (United States)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  5. Synthesis, antimicrobial, and antiviral activities of some new 5-sulphonamido-8-hydroxyquinoline derivatives.

    Science.gov (United States)

    Kassem, Emad M; El-Sawy, Eslam R; Abd-Alla, Howaida I; Mandour, Adel H; Abdel-Mogeed, Dina; El-Safty, Mounir M

    2012-06-01

    A series of fused pyranopyrazole and pyranoimidazole, namely 5-(3,6-diamino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-2-yl)sulphonyl-8-hydroxyquinolines (5a-e), 5-(6-amino-4-aryl-5-carbonitrile-pyrano(2,3-c)pyrazol-3-yl)sulphonamido-8-hydroxyquinolines (6a-e), 5-(2-thioxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl)sulphonyl-8-hydroxyquinolines (10a-e), and 5-(2-oxo-4-aryl-5-carbonitrile-6-amino-pyrano(2,3-d)imidazol-2-yl) sulphonyl-8-hydroxyquinolines (11a-e), have been prepared via condensation of some arylidine malononitriles with 5-sulphonamido-8-hydroxyquinoline derivatives 3, 4, 8 and 9. All the synthesized compounds were screened for their antimicrobial activities, and most of the tested compounds showed potent inhibition growth activity towards Escherichia coli, Pseudomonas aeruginosa (Gramnegative bacteria). Furthermore, six selected compounds were tested for their antiviral activity against avian paramyxovirus type1 (APMV-1) and laryngotracheitis virus (LTV), and the results showed that a concentration range of 3-4 μg per mL of compounds 2, 3, and 4 showed marked viral inhibitory activity for APMV-1 of 5000 tissue culture infected dose fifty (TCID(50)) and LTV of 500 TCID(50) in Vero cell cultures based on their cytopathic effect. Chicken embryo experiments show that compounds 2, 3, and 4 possess high antiviral activity in vitro with an inhibitory concentration fifty (IC(50)) range of 3-4 μg per egg against avian APMV-1 and LTV and their toxic concentration fifty (CC(50)) of 200-300 μg per egg. PMID:22870804

  6. Genomic Characterizations of Six Pigeon Paramyxovirus Type 1 Viruses Isolated from Live Bird Markets in China during 2011 to 2013.

    Directory of Open Access Journals (Sweden)

    Jingjing Wang

    Full Text Available The genomes of six pigeon paramyxovirus type 1 (PPMV-1 isolated from symptomless pigeons in live poultry markets during the national active surveillance from 2011 to 2013 were sequenced and analyzed in this study. The complete genome lengths of all isolates were 15,192 nucleotides with the gene order of 3'-NP-P-M-F-HN-L-5'. All isolates had the same motif of 112RRQKRF117 at the cleavage site of the fusion protein, which was typical of velogenic Newcastle disease virus (NDV. Several mutations were identified in the functional domains of F and HN proteins, including fusion peptide, heptad repeat region, transmembrane domains and neutralizing epitopes. Phylogenetic analysis based on sequences of complete genomes and six genes revealed that all isolates belonged to genotype VI in class II, but at least 2 sub-genotypes were identified. Most isolates were placed into sub-genotype VIb with the exception of pi/GX/1015/13, which was classified in sub-genotype VIa. The obvious antigenic difference between PPMV-1 isolates and La Sota strain was found based on the R-value calculated by cross hemagglutination inhibition (HI assay. These results provided the evidence that PPMV-1 could be detected from healthy pigeons, and our study may be useful in designing vaccines used in pigeon, and developing molecular diagnostic tools to monitor and prevent future PPMV-1 outbreaks.

  7. Transfection by DNAs of avian erythroblastosis virus and avian myelocytomatosis virus strain MC29.

    OpenAIRE

    Copeland, N G; Cooper, G M

    1980-01-01

    Chicken embryo fibroblasts and NIH 3T3 mouse cells were transformable by DNAs of chicken cells infected with avian myelocytomatosis virus strain MC29 or with avian erythroblastosis virus. Transfection of chicken cells appeared to require replication of MC29 or avian erythroblastosis virus in the presence of a nontransforming helper virus. In contrast, NIH 3T3 cells transformed by MC29 or avian erythroblastosis virus DNA contained only replication-defective transforming virus genomes.

  8. Chymotrypsin and trypsin sensitivities of avian reoviruses.

    OpenAIRE

    Drastini, Y; McKenna, P K; Kibenge, F S; Lopez, A

    1994-01-01

    Experiments were undertaken to examine the chymotrypsin sensitivity and trypsin sensitivity of 13 avian reoviruses, and to determine if there was any correlation with pathogenicity of some chicken reoviruses. A wide variation in the degree of sensitivity of avian reoviruses to chymotrypsin and trypsin was observed. Overall, the infectivity of the 13 avian reoviruses for Vero cells was markedly reduced by treatment with 0.01% chymotrypsin (the lowest concentration tested) while 0.5% trypsin si...

  9. Molecular characterization of Indonesia avian influenza virus

    OpenAIRE

    N.L.P.I Dharmayanti; R Damayanti; R Indriani; A Wiyono; R.M.A Adjid

    2005-01-01

    Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1). Mo...

  10. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  11. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  12. Simulating Avian Wingbeats and Wakes

    OpenAIRE

    Parslew, Ben

    2012-01-01

    Analytical models of avian flight have previously been used to predict mechanical and metabolic power consumption during cruise. These models are limited, in that they neglect details of wing kinematics, and model power by assuming a fixed or rotary wing (actuator disk) weight support mechanism. Theoretical methods that incorporate wing kinematics potentially offer more accurate predictions of power consumption by calculating instantaneous aerodynamic loads on the wing. However, the success o...

  13. Avian zoonoses – a review

    OpenAIRE

    Kozdruń Wojciech; Czekaj Hanna; Styś Natalia

    2015-01-01

    Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other h...

  14. Using EGEE against avian flu

    CERN Multimedia

    2006-01-01

    During April 2006 avian flu was spreading across the world with the potential of turning into a pandemic, a drug to treat the deadly H5N1 strain was needed. Such a task required the huge processing power provided by EGEE, which analysed 300 000 possible drug components for their suitability. This map shows the network of computer centres and their activity during this time.

  15. Avian zoonoses – a review

    Directory of Open Access Journals (Sweden)

    Kozdruń Wojciech

    2015-06-01

    Full Text Available Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other hazardous bacterial factors, Salmonella and Campylobacter are responsible for gastrointestinal diseases. Avian influenza is the most dangerous of the viral diseases. It should be noted, however, that avian influenza is a disease of birds, not humans. The recent threat which has appeared is infection with West Nile virus. The results of serological examinations of birds and humans indicate that the virus exists in our ecosystem. Allergic alveolitis connected with the pigeon tick and the Dermanyssus gallinae mite also merits mention. In any case, where people have contact with birds or their droppings and secretions, special precautions should be taken. This way the negative effects of birds on human health can be minimised or eliminated

  16. Avian influenza and the poultry trade

    OpenAIRE

    Nicita, Alessandro

    2008-01-01

    Because of high mortality rates, high rates of contagion, and the possibility of cross-species infection to mammals including humans, high pathogenic avian influenza is a major concern both to consumers and producers of poultry. The implications of the avian influenza for international poultry markets are large and include the loss of consumer confidence, loss of competitiveness, loss of m...

  17. Atypical Avian Influenza (H5N1)

    OpenAIRE

    Apisarnthanarak, Anucha; Kitphati, Rungrueng; Thongphubeth, Kanokporn; Patoomanunt, Prisana; Anthanont, Pimjai; Auwanit, Wattana; Thawatsupha, Pranee; Chittaganpitch, Malinee; Saeng-Aroon, Siriphan; Waicharoen, Sunthareeya; Apisarnthanarak, Piyaporn; Storch, Gregory A.; Mundy, Linda M.; Fraser, Victoria J.

    2004-01-01

    We report the first case of avian influenza in a patient with fever and diarrhea but no respiratory symptoms. Avian influenza should be included in the differential diagnosis for patients with predominantly gastrointestinal symptoms, particularly if they have a history of exposure to poultry.

  18. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... (76 FR 4046-4056, Docket No. APHIS-2006-0074) an interim rule that amended the regulations governing... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist....

  19. A brief introduction to avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high pathogenicity AIV in poultry were reported in Italy in the 1870’s and avian influenza been recognized in domestic poultry through the modern era of ...

  20. The global nature of avian influenza

    Science.gov (United States)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  1. Molecular patterns of avian influenza A viruses

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; LEI FuMin; WANG ShengYue; ZHOU YanHong; LI TianXian

    2008-01-01

    Avian influenza A viruses could get across the species barrier and be fatal to humans. Highly patho-genic avian influenza H5N1 virus was an example. The mechanism of interspecies transmission is not clear as yet. In this research, the protein sequences of 237 influenza A viruses with different subtypes were transformed into pseudo-signals. The energy features were extracted by the method of wavelet packet decomposition and used for virus classification by the method of hierarchical clustering. The clustering results showed that five patterns existed in avian influenza A viruses, which associated with the phenotype of interspecies transmission, and that avian viruses with patterns C and E could across species barrier and those with patterns A, B and D might not have the abilities. The results could be used to construct an early warning system to predict the transmissibility of avian influenza A viruses to humans.

  2. Cryoconservation of avian gonads in Canada.

    Science.gov (United States)

    Silversides, F G; Robertson, M C; Liu, J

    2013-10-01

    Avian genetic resources have declined dramatically over the past half century as the cost of maintaining populations has exceeded the perceived benefit of keeping them. Despite the early importance of poultry in the development of cryopreservation techniques, very little avian germplasm has been conserved. Cryopreservation and recovery of avian gonads preserve the W chromosome and overcome problems of freezing and recovering semen or conserving and manipulating embryonic cells, and the use of vitrification procedures for preserving gonads minimizes cellular damage. On the basis of research demonstrating the biological possibility of cryopreserving and transplanting avian gonads, 5,125 testicles and 2,667 ovaries from 10 populations of Japanese quail, 9 populations of chickens, and 1 population of Chilean tinamou were cryopreserved and sent to the Canadian Animal Genetic Resources program for long-term storage. These gonads represent 20 of the 33 distinct avian populations currently maintained at Canadian public institutions of agricultural research. PMID:24046407

  3. Influenza vaccines for avian species.

    Science.gov (United States)

    Kapczynski, Darrell R; Swayne, David E

    2009-01-01

    Beginning in Southeast Asia in 2003, a multinational epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity and mortality in many bird species, was responsible for considerable economic losses via trade restrictions, and crossed species barriers (including its recovery from human cases). To date, these H5N1 HPAI viruses have been isolated in European, Middle Eastern, and African countries, and are considered endemic in many areas where regulatory control and different production sectors face substantial hurdles in controlling the spread of this disease. While control of avian influenza (AI) virus infections in wild bird populations may not be feasible at this point, control and eradiation of AI from commercial, semicommercial, zoo, pet, and village/backyard birds will be critical to preventing events that could lead to the emergence of epizootic influenza virus. Efficacious vaccines can help reduce disease, viral shedding, and transmission to susceptible cohorts. However, only when vaccines are used in a comprehensive program including biosecurity, education, culling, diagnostics and surveillance can control and eradication be considered achievable goals. In humans, protection against influenza is provided by vaccines that are chosen based on molecular, epidemiologic, and antigenic data. In poultry and other birds, AI vaccines are produced against a specific hemagglutinin subtype of AI, and use is decided by government and state agricultural authorities based on risk and economic considerations, including the potential for trade restrictions. In the current H5N1 HPAI epizootic, vaccines have been used in a variety of avian species as a part of an overall control program to aid in disease management and control. PMID:19768403

  4. An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism.

    Science.gov (United States)

    Mélade, Julien; Wieseke, Nicolas; Ramasindrazana, Beza; Flores, Olivier; Lagadec, Erwan; Gomard, Yann; Goodman, Steven M; Dellagi, Koussay; Pascalis, Hervé

    2016-01-01

    An eco-epidemiological investigation was carried out on Madagascar bat communities to better understand the evolutionary mechanisms and environmental factors that affect virus transmission among bat species in closely related members of the genus Morbillivirus, currently referred to as Unclassified Morbilli-related paramyxoviruses (UMRVs). A total of 947 bats were investigated originating from 52 capture sites (22 caves, 18 buildings, and 12 outdoor sites) distributed over different bioclimatic zones of the island. Using RT-PCR targeting the L-polymerase gene of the Paramyxoviridae family, we found that 10.5% of sampled bats were infected, representing six out of seven families and 15 out of 31 species analyzed. Univariate analysis indicates that both abiotic and biotic factors may promote viral infection. Using generalized linear modeling of UMRV infection overlaid on biotic and abiotic variables, we demonstrate that sympatric occurrence of bats is a major factor for virus transmission. Phylogenetic analyses revealed that all paramyxoviruses infecting Malagasy bats are UMRVs and showed little host specificity. Analyses using the maximum parsimony reconciliation tool CoRe-PA, indicate that host-switching, rather than co-speciation, is the dominant macro-evolutionary mechanism of UMRVs among Malagasy bats. PMID:27068130

  5. Avian Influenza Virus: The Threat of A Pandemic

    OpenAIRE

    Shih-Cheng Chang; Yi-Ying Cheng; Shin-Ru Shih

    2006-01-01

    The 1918 influenza A virus pandemic caused a death toll of 40~50 million. Currently,because of the widespread dissemination of the avian influenza virus (H5N1), there is a highrisk of another pandemic. Avian species are the natural hosts for numerous subtypes ofinfluenza A viruses; however, the highly pathogenic avian influenza virus (HPAI) is not onlyextremely lethal to domestic avian species but also can infect humans and cause death. Thisreview discusses why the avian influenza virus is co...

  6. Avian botulism and avian chlamydiosis in wild water birds, Benton Lake National Wildlife Refuge, Montana, USA

    Science.gov (United States)

    Docherty, Douglas E.; Franson, J. Christian; Brannian, Roger E.; Long, Renee R.; Radi, Craig A.; Krueger, David; Johnson, Robert F.

    2012-01-01

    In 1999, the U.S. Geological Survey (USGS) National Wildlife Health Center, Madison, Wisconsin, conducted a diagnostic investigation into a water bird mortality event involving intoxication with avian botulism type C and infection with avian chlamydiosis at the Benton Lake National Wildlife Refuge in Montana, USA. Of 24 carcasses necropsied, 11 had lesions consistent with avian chlamydiosis, including two that tested positive for infectious Chlamydophila psittaci, and 12 were positive for avian botulism type C. One bird tested positive for both avian botulism type C and C. psittaci. Of 61 apparently healthy water birds sampled and released, 13 had serologic evidence of C. psittaci infection and 7 were, at the time of capture, shedding infectious C. psittaci via the cloacal or oropharyngeal route. Since more routinely diagnosed disease conditions may mask avian chlamydiosis, these findings support the need for a comprehensive diagnostic investigation when determining the cause of a wildlife mortality event.

  7. Presence of avian bornavirus RNA and anti-avian bornavirus antibodies in apparently healthy macaws.

    Science.gov (United States)

    De Kloet, Siwo R; Dorrestein, Gerry M

    2009-12-01

    Recently a novel avian bornavirus has been described that has been suggested to be the possible etiological agent for proventricular dilatation disease or macaw wasting disease. This article describes two macaws that shed avian bornaviral RNA sequences and demonstrated anti-avian bornavirus antibodies as revealed by reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot, yet are free of outward clinical signs of the disease. PMID:20095158

  8. Avian influenza: an osteopathic component to treatment

    OpenAIRE

    Hruby, Raymond J; Hoffman, Keasha N

    2007-01-01

    Avian influenza is an infection caused by the H5N1 virus. The infection is highly contagious among birds, and only a few known cases of human avian influenza have been documented. However, healthcare experts around the world are concerned that mutation or genetic exchange with more commonly transmitted human influenza viruses could result in a pandemic of avian influenza. Their concern remains in spite of the fact that the first United States vaccine against the H5N1 virus was recently approv...

  9. Different regions of the newcastle disease virus fusion protein modulate pathogenicity.

    Directory of Open Access Journals (Sweden)

    Sandra Heiden

    Full Text Available Newcastle disease virus (NDV, also designated as Avian paramyxovirus type 1 (APMV-1, is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic, intermediate (mesogenic and low (lentogenic virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1 isolate with an intracerebral pathogenicity index (ICPI of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site.

  10. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056... Register on May 3, 2011 (76 FR 24793, Docket No. APHIS-2006-0074), we reopened the comment period for...

  11. Clipping the wings of avian influenza

    OpenAIRE

    2012-01-01

    Up to now, the threat of avian influenza has been lessened by effective animal husbandry methods. However, the public health community is trying to ensure enough measures are in place to prevent a possible pandemic. Jane Parry reports.

  12. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  13. Montana 2006 Avian Influenza Surveillance Project Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the summer of 2006, the U.S. Department of Agriculture (USDA) and the U.S. Fish and Wildlife Service (USFWS) initiated a nationwide avian influenza...

  14. Oseltamivir in human avian influenza infection

    OpenAIRE

    Smith, James R.

    2010-01-01

    Avian influenza A viruses continue to cause disease outbreaks in humans, and extrapulmonary infection is characteristic. In vitro studies demonstrate the activity of oseltamivir against avian viruses of the H5, H7 and H9 subtypes. In animal models of lethal infection, oseltamivir treatment and prophylaxis limit viral replication and improve survival. Outcomes are influenced by the virulence of the viral strain, dosage regimen and treatment delay; it is also critical for the compound to act sy...

  15. Avian influenza: an emerging pandemic threat.

    Science.gov (United States)

    Jin, Xian Wen; Mossad, Sherif B

    2005-12-01

    While we are facing the threat of an emerging pandemic from the current avian flu outbreak in Asia, we have learned important traits of the virus responsible for the 1918 Spanish influenza pandemic that made it so deadly. By using stockpiled antiviral drugs effectively and developing an effective vaccine, we can be in a better position than ever to mitigate the global impact of an avian influenza pandemic. PMID:16392727

  16. Cell killing by avian leukosis viruses.

    OpenAIRE

    Weller, S K; Temin, H M

    1981-01-01

    Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with c...

  17. Avian Circadian Organization: A Chorus of Clocks

    OpenAIRE

    Cassone, Vincent M.

    2013-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to...

  18. A review of avian probiotics.

    Science.gov (United States)

    Smith, Jeanne Marie

    2014-06-01

    Probiotics have been used in poultry for decades and have become common in the pet bird industry. Desirable characteristics of probiotic organisms are that they are nonpathogenic, have the ability to adhere to intestinal epithelial cells, have the ability to colonize and reproduce in the host, have the ability to be host-specific, survive transit through the gastrointestinal tract and exposure to stomach acid and bile, produce metabolites that inhibit or kill pathogenic bacteria, modulate gastrointestinal immune responses, and survive processing and storage. Purported benefits in birds are disease prevention and promotion of growth. Recommendations for use in avian species are for periodic use to replenish normal flora, use after antibiotic therapy to reestablish normal flora, and use during periods of stress to counter effects of immunosuppression. PMID:25115036

  19. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  20. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  1. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A (H7N9) Virus Language: English Español Recommend ...

  2. Avian Point Count Locations - Dahomey NWR 2007-2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Map depicts locations of avian point counts conducted on Dahomey in 2007 and 2008. Actual point count data are contained in the avian knowledge network database

  3. Radioimmunological comparison of the DNA polymerases of avian retroviruses.

    OpenAIRE

    Bauer, G.; Temin, H M

    1980-01-01

    125I-labeled DNA polymerases of avian myeloblastosis virus and spleen necrosis virus were used in a radioimmunological characterization of avian retrovirus DNA polymerases. It was shown that avian leukosis virus and reticuloendotheliosis virus DNA polymerases do not cross-react in radioimmunoassays. Within the avian leukosis virus species, species-specific and type-specific antigenic determinants of the DNA polymerase were defined. The previous finding of genus-specific antigenic determinants...

  4. Proceedings of National Avian-Wind Power Planning Meeting IV

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  5. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the...

  6. Immunology of avian influenza virus: a review.

    Science.gov (United States)

    Suarez, D L; Schultz-Cherry, S

    2000-01-01

    Avian influenza virus can cause serious disease in a wide variety of birds and mammals, but its natural host range is in wild ducks, gulls, and shorebirds. Infections in poultry can be inapparent or cause respiratory disease, decreases in production, or a rapidly fatal systemic disease known as highly pathogenic avian influenza (HPAI). For the protection of poultry, neutralizing antibody to the hemagglutinin and neuraminidase proteins provide the primary protection against disease. A variety of vaccines elicit neutralizing antibody, including killed whole virus vaccines and fowl-pox recombinant vaccines. Antigenic drift of influenza viruses appears to be less important in causing vaccine failures in poultry as compared to humans. The cytotoxic T lymphocyte response can reduce viral shedding in mildly pathogenic avian influenza viruses, but provides questionable protection against HPAI. Influenza viruses can directly affect the immune response of infected birds, and the role of the Mx gene, interferons, and other cytokines in protection from disease remains unknown. PMID:10717293

  7. [Progress in microRNAs associated with major avian viruses].

    Science.gov (United States)

    Man, Chaolai; Mu, Weitao; Zhao, Dongxue; Chang, Yang

    2015-09-01

    Recently, avian viral diseases have become one of the main models to study mechanisms of viral infections and pathogenesis. The study of regulatory relationships and mechanisms between viruses and microRNAs has also become the focus. In this review, we briefly summarize the general situations of microRNAs encoded by avian herpesviruses. Also, we analyze the regulatory relationships between tumorigenicity of avian herpesviruses and microRNAs. Additionally, the possible applications for prevention and treatment of viral diseases (such as infectious bursal disease, avian influenza and avian leucosis) using the regulatory mechanisms of microRNAs are also discussed. PMID:26955707

  8. Avian influenza surveillance of wild birds

    Science.gov (United States)

    Slota, Paul

    2007-01-01

    The President's National Strategy for Pandemic Influenza directs federal agencies to expand the surveillance of United States domestic livestock and wildlife to ensure early warning of hightly pathogenic avian influenza (HPAI) in the U.S. The immediate concern is a potential introduction of HPAI H5N1 virus into the U.S. The presidential directive resulted in the U.S. Interagency Strategic Plan for Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (referred to as the Wild Bird Surveillance Plan or the Plan).

  9. Composting for Avian Influenza Virus Elimination

    OpenAIRE

    Elving, Josefine; Emmoth, Eva; Albihn, Ann; Vinnerås, Björn; Ottoson, Jakob

    2012-01-01

    Effective sanitization is important in viral epizootic outbreaks to avoid further spread of the pathogen. This study examined thermal inactivation as a sanitizing treatment for manure inoculated with highly pathogenic avian influenza virus H7N1 and bacteriophages MS2 and ϕ6. Rapid inactivation of highly pathogenic avian influenza virus H7N1 was achieved at both mesophilic (35°C) and thermophilic (45 and 55°C) temperatures. Similar inactivation rates were observed for bacteriophage ϕ6, while b...

  10. Avian Influenza: Should China Be Alarmed?

    OpenAIRE

    Su, Zhaoliang; Xu, Huaxi; Chen, Jianguo

    2007-01-01

    Avian influenza has emerged as one of the primary public health concern of the 21st century. Influenza strain H5N1 is capable of incidentally infecting humans and other mammals. Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have been transmitted from poultry to humans (by direct or indirect contact with infected birds) in several provinces of Mainland China, which has resulted in 22 cases of human infection and has created repercussions for the Chinese ec...

  11. Avian influenza virus risk assessment in falconry

    OpenAIRE

    Lüschow Dörte; Lierz Peter; Jansen Andreas; Harder Timm; Hafez Hafez; Kohls Andrea; Schweiger Brunhilde; Lierz Michael

    2011-01-01

    Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV). In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks) as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds) seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their ...

  12. Thermal emissivity of avian eggshells.

    Science.gov (United States)

    Björn, Lars Olof; Bengtson, Sven-Axel; Li, Shaoshan; Hecker, Christoph; Ullah, Saleem; Roos, Arne; Nilsson, Annica M

    2016-04-01

    The hypothesis has been tested that evolution has resulted in lower thermal emissivity of eggs of birds breeding openly in cold climates than of eggs of birds that nest under protective covering or in warmer climates. Directional thermal emissivity has been estimated from directional-hemispherical reflectance spectra. Due to several methodological difficulties the absolute emissivity is not accurately determined, but differences between species are obvious. Most notably, small waders of the genus Calidris, breeding in cold climates on the tundra, and in most cases with uniparental nest attendance, have low directional emissivity of their eggshells, about 0.92 when integration is carried out for wavelengths up to 16μm. Species belonging to Galloanserinae have the highest directional emissivity, about 0.96, of their eggs. No differences due to climate or breeding conditions were found within this group. Eggs of most other birds tested possess intermediate emissivity, but the values for Pica pica and Corvus corone cornix are as low as for Calidris. Large species-dependent differences in spectral reflectance were found at specific wavelengths. For instance, at 4.259μm the directional-hemispherical reflectance for galliforms range from 0.05 to 0.09, while for Fratercula arctica and Fulmarus glacialis it is about 0.3. The reflection peaks at 6.5 and 11.3μm due to calcite are differentially attenuated in different species. In conclusion, the hypothesis that evolution has resulted in lower thermal emissivity of bird eggs being exposed in cold climates is not supported by our results. The emissivity is not clearly related to nesting habits or climate, and it is unlikely that the small differences observed are ecologically important. The spectral differences between eggs that nevertheless exist should be taken into account when using infrared thermometers for estimating the surface temperature of avian eggs. PMID:27033033

  13. Website for avian flu information and bioinformatics

    Institute of Scientific and Technical Information of China (English)

    GAO; George; Fu

    2009-01-01

    Highly pathogenic influenza A virus H5N1 has spread out worldwide and raised the public concerns. This increased the output of influenza virus sequence data as well as the research publication and other reports. In order to fight against H5N1 avian flu in a comprehensive way, we designed and started to set up the Website for Avian Flu Information (http://www.avian-flu.info) from 2004. Other than the influenza virus database available, the website is aiming to integrate diversified information for both researchers and the public. From 2004 to 2009, we collected information from all aspects, i.e. reports of outbreaks, scientific publications and editorials, policies for prevention, medicines and vaccines, clinic and diagnosis. Except for publications, all information is in Chinese. Till April 15, 2009, the cumulative news entries had been over 2000 and research papers were approaching 5000. By using the curated data from Influenza Virus Resource, we have set up an influenza virus sequence database and a bioinformatic platform, providing the basic functions for the sequence analysis of influenza virus. We will focus on the collection of experimental data and results as well as the integration of the data from the geological information system and avian influenza epidemiology.

  14. Website for avian flu information and bioinformatics

    Institute of Scientific and Technical Information of China (English)

    LIU Di; LIU Quan-He; WU Lin-Huan; LIU Bin; WU Jun; LAO Yi-Mei; LI Xiao-Jing; GAO George Fu; MA Jun-Cai

    2009-01-01

    Highly pathogenic influenza A virus H5N1 has spread out worldwide and raised the public concerns. This increased the output of influenza virus sequence data as well as the research publication and other reports. In order to fight against H5N1 avian flu in a comprehensive way, we designed and started to set up the Website for Avian Flu Information (http://www.avian-flu.info) from 2004. Other than the influenza virus database available, the website is aiming to integrate diversified information for both researchers and the public. From 2004 to 2009, we collected information from all aspects, i.e. reports of outbreaks, scientific publications and editorials, policies for prevention, medicines and vaccines, clinic and diagnosis. Except for publications, all information is in Chinese. Till April 15, 2009, the cumulative news entries had been over 2000 and research papers were approaching 5000. By using the curated data from Influenza Virus Resource, we have set up an influenza virus sequence database and a bioin-formatic platform, providing the basic functions for the sequence analysis of influenza virus. We will focus on the collection of experimental data and results as well as the integration of the data from the geological information system and avian influenza epidemiology.

  15. Avian Influenza Risk Perception, Europe and Asia

    OpenAIRE

    de Zwart, Onno; Veldhuijzen, Irene K; Elam, Gillian; Aro, Arja R; Abraham, Thomas; Bishop, George D.; Richardus, Jan Hendrik; Brug, Johannes

    2007-01-01

    During autumn 2005, we conducted 3,436 interviews in European and Asian countries. We found risk perceptions of avian influenza to be at an intermediate level and beliefs of efficacy to be slightly lower. Risk perceptions were higher in Asia than Europe; efficacy beliefs were lower in Europe than Asia.

  16. Avian Influenza Outbreaks in Chickens, Bangladesh

    OpenAIRE

    Paritosh K Biswas; Christensen, Jens P.; Ahmed, Syed S.U.; Barua, Himel; Das, Ashutosh; Rahman, Mohammed H.; Giasuddin, Mohammad; Hannan, Abu S. M. A.; Habib, Mohammad A.; Ahad, Abdul; Rahman, Abu S.M.S.; Faruque, Rayhan; Nitish C Debnath

    2008-01-01

    To determine the epidemiology of outbreaks of avian influenza A virus (subtypes H5N1, H9N2) in chickens in Bangladesh, we conducted surveys and examined virus isolates. The outbreak began in backyard chickens. Probable sources of infection included egg trays and vehicles from local live bird markets and larger live bird markets.

  17. Avian pox in Magellanic Penguins (Spheniscus magellanicus).

    Science.gov (United States)

    Kane, Olivia J; Uhart, Marcela M; Rago, Virginia; Pereda, Ariel J; Smith, Jeffrey R; Van Buren, Amy; Clark, J Alan; Boersma, P Dee

    2012-07-01

    Avian pox is an enveloped double-stranded DNA virus that is mechanically transmitted via arthropod vectors or mucosal membrane contact with infectious particles or birds. Magellanic Penguins (Spheniscus magellanicus) from two colonies (Punta Tombo and Cabo Dos Bahías) in Argentina showed sporadic, nonepidemic signs of avian pox during five and two of 29 breeding seasons (1982-2010), respectively. In Magellanic Penguins, avian pox expresses externally as wart-like lesions around the beak, flippers, cloaca, feet, and eyes. Fleas (Parapsyllus longicornis) are the most likely arthropod vectors at these colonies. Three chicks with cutaneous pox-like lesions were positive for Avipoxvirus and revealed phylogenetic proximity with an Avipoxvirus found in Black-browed Albatross (Thalassarche melanophrys) from the Falkland Islands in 1987. This proximity suggests a long-term circulation of seabird Avipoxviruses in the southwest Atlantic. Avian pox outbreaks in these colonies primarily affected chicks, often resulted in death, and were not associated with handling, rainfall, or temperature. PMID:22740548

  18. Avian Disease & Oncology Lab (ADOL) Research Update

    Science.gov (United States)

    Employing Genomics, Epigenetics, and Immunogenetics to Control Diseases Induced by Avian Tumor Viruses - Gene expression is a major factor accounting for phenotypic variation. Taking advantage of allele-specific expression (ASE) screens, we found the use of genetic markers was superior to traditiona...

  19. A clinical survey of common avian infectious diseases in China.

    Science.gov (United States)

    Zhuang, Qing-Ye; Wang, Su-Chun; Li, Jin-Ping; Liu, Dong; Liu, Shuo; Jiang, Wen-Ming; Chen, Ji-Ming

    2014-06-01

    Multiple common avian infectious diseases (CAIDs), namely, avian infectious diseases excluding highly pathogenic avian influenza and Newcastle disease, such as avian salmonellosis and coccidiosis, cause huge economic loss in poultry production and are of great significance in public health. However, they are usually not covered in the systems for reporting of animal diseases. Consequently, the distribution of CAIDs is not clear in many countries. Here, we report a clinical survey of CAIDs in China based on clinical diagnosis of eight veterinary clinics in 2011 and 2012. This survey provided the distribution data of viral, bacterial, and parasitic CAIDs in different types of avian flocks, seasons, and regions, data that are of great value in the research, prevention, and control of poultry diseases. This survey suggested that avian colibacillosis, infectious serositis in ducks caused by Riemerella anatipestifer, avian salmonellosis, fowl cholera, avian mycoplasmosis, avian aspergillosis, coccidiosis, low pathogenic avian influenza, infectious bronchitis, infectious bursal disease, and infectious laryngotracheitis are likely to be prevalent in the poultry in China. PMID:25055636

  20. Morphometric Analysis of the Sternum in Avian Species

    OpenAIRE

    DÜZLER, Ayhan; Özgel, Özcan; DURSUN, Nejdet

    2006-01-01

    The anatomy of the sternum in avian species differs according to their movement and particularly flight capability, as well as species and habitat. Various studies aimed at the examination and measurement of the sternum in avian species have been carried out. However, to the authors' knowledge, no study on the correlation between sternal measurements and movement style has been published previously. In this study, the sternums of certain avian species including the red falcon (Buteo rufi...

  1. Multiple Control Strategies for Prevention of Avian Influenza Pandemic

    OpenAIRE

    Roman Ullah; Gul Zaman; Saeed Islam

    2014-01-01

    We present the prevention of avian influenza pandemic by adjusting multiple control functions in the human-to-human transmittable avian influenza model. First we show the existence of the optimal control problem; then by using both analytical and numerical techniques, we investigate the cost-effective control effects for the prevention of transmission of disease. To do this, we use three control functions, the effort to reduce the number of contacts with human infected with mutant avian influ...

  2. Avian influenza infections in birds – a moving target

    OpenAIRE

    Capua, Ilaria; Alexander, Dennis J.

    2006-01-01

    Avian influenza (AI) is a complex infection of birds, of which the ecology and epidemiology have undergone substantial changes over the last decade. Avian influenza viruses infecting poultry can be divided into two groups. The very virulent viruses cause highly pathogenic avian influenza (HPAI), with flock mortality as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all H5 and H7 viruses cause HPAI. All other viruses cause a milder, primarily respiratory, ...

  3. Economic effects of avian influenza on egg producers in Turkey

    OpenAIRE

    V Demircan; Yilmaz, H.; Z Dernek; T Bal; Gül, M; H Koknaroglu

    2009-01-01

    This study determined the economic effects of avian influenza on the egg-production sector of Afyon Province, Turkey. Economic indicators were compared before and during the avian influenza outbreak. A questionnaire was conducted with 75 poultry farmers. Farms were divided into three groups according to their size. The profitability of the three farm size groups was compared during two study periods: before and during the avian influenza outbreak. The results indicate that, as compared to pre...

  4. Avian influenza virus and free-ranging wild birds

    Science.gov (United States)

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  5. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  6. Applications of thermal imaging in avian science

    OpenAIRE

    McCafferty, D. J.

    2013-01-01

    Thermal imaging, or infrared thermography, has been used in avian science since the 1960s. More than 30 species of birds, ranging in size from passerines to ratites, have been studied using this technology. The main strength of this technique is that it is a non-invasive and non-contact method of measuring surface temperature. Its limitations and measurement errors are well understood and suitable protocols have been developed for a variety of experimental settings. Thermal imaging has been u...

  7. Avian influenza and poultry workers, Peru, 2006

    OpenAIRE

    Ortiz, Ernesto J.; Tadeusz J Kochel; Capuano, Ana W; Setterquist, Sharon F.; Gray, Gregory C.

    2007-01-01

    Background  Currently numerous countries in Asia, Africa and Europe are encountering highly pathogenic avian influenza (AI) infections in poultry and humans. In the Americas, home of the world’s largest poultry exporters, contingency plans are being developed and evaluated in preparation for the arrival of these viral strains. Objectives  With this cross‐sectional study, to our knowledge the first in its kind in Central or South America, we sought to learn whether Peruvian poultry workers had...

  8. Prevalence of avian influenza and host ecology

    OpenAIRE

    Garamszegi, László Zsolt; Møller, Anders Pape

    2007-01-01

    Waterfowl and shorebirds are common reservoirs of the low pathogenic subtypes of avian influenza (LPAI), which are easily transmitted to poultry and become highly pathogenic. As the risk of virus transmission depends on the prevalence of LPAI in host-reservoir systems, there is an urgent need for understanding how host ecology, life history and behaviour can affect virus prevalence in the wild. To test for the most important ecological correlates of LPAI virus prevalence at the interspecific ...

  9. Aerosolized avian influenza virus by laboratory manipulations

    OpenAIRE

    Li Zhiping; Li Jinsong; Zhang Yandong; Li Lin; Ma Limin; Li Dan; Gao Feng; Xia Zhiping

    2012-01-01

    Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used ...

  10. Control of Avian Influenza in Poultry

    OpenAIRE

    Capua, Ilaria; Marangon, Stefano

    2006-01-01

    Avian influenza, listed by the World Organization for Animal Health (OIE), has become a disease of great importance for animal and human health. Several aspects of the disease lack scientific information, which has hampered the management of some recent crises. Millions of animals have died, and concern is growing over the loss of human lives and management of the pandemic potential. On the basis of data generated in recent outbreaks and in light of new OIE regulations and maintenance of anim...

  11. Avian influenza: The tip of the iceberg

    OpenAIRE

    Balkhy Hanan

    2008-01-01

    For some years now, we have been living with the fear of an impending pandemic of avian influenza (AI). Despite the recognition, in 1996, of the global threat posed by the highly pathogenic H5N1 influenza virus found in farmed geese in Guangdong Province, China, planning for the anticipated epidemic remains woefully inadequate; this is especially true in developing countries such as Saudi Arabia. These deficiencies became obvious in 1997, with the outbreak of AI in the live animal markets in...

  12. Avian influenza: Myth or mass murder?

    OpenAIRE

    Carol Louie

    2005-01-01

    The purpose of the present article was to determine whether avian influenza (AI) is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A virus...

  13. Evaluation of Antiviral Compounds Against Avian Influenza

    OpenAIRE

    Call, Evan W.

    1991-01-01

    Tests in vitro for antiviral activity against avian influenza viruses, A/Turkey/Sanpete/85 (H6N8) and A/Turkey/Sanpete/86 (H10N9), isolated in Sanpete County, Utah, utilized known antiviral agents, amantadine•HCl (adamantanamine hydrochloride) and ribavirin (1-β-D ribofuranosyl-1,2,4-triazole-3-carboxamide). The testing involved evaluation of seven drug concentrations. Maximum tolerated dose, minimum inhibitory concentration and therapeutic indexes were determined for each drug used. Both dru...

  14. Avian influenza: genetic evolution under vaccination pressure

    OpenAIRE

    Nava Gerardo M; Lucio Eduardo; Rodríguez-Ropón Andrea; Méndez Sara T; Vázquez Lourdes; Escorcia Magdalena

    2008-01-01

    Abstract Antigenic drift of avian influenza viruses (AIVs) has been observed in chickens after extended vaccination program, similar to those observed with human influenza viruses. To evaluate the evolutionary properties of endemic AIV under high vaccination pressure (around 2 billion doses used in the last 12 years), we performed a pilot phylogenic analysis of the hemagglutinin (HA) gene of AIVs isolated from 1994 to 2006. This study demonstrates that Mexican low pathogenicity (LP) H5N2-AIVs...

  15. Avian Influenza: Mixed Infections and Missing Viruses

    OpenAIRE

    Wentworth, David E.; Dugan, Vivien G.; Xudong Lin; Seth Schobel; Magdalena Plancarte; Kelly, Terra R.; Lindsay, LeAnn L.; Boyce, Walter M.

    2013-01-01

    A high prevalence and diversity of avian influenza (AI) viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA) gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined ...

  16. Avian Coronavirus in Wild Aquatic Birds

    OpenAIRE

    Chu, D. K. W.; Leung, C. Y. H.; Gilbert, M.; Joyner, P. H.; Ng, E. M.; Tse, T. M.; Guan, Y; Peiris, J. S. M.; Poon, L.L.M

    2011-01-01

    We detected a high prevalence (12.5%) of novel avian coronaviruses in aquatic wild birds. Phylogenetic analyses of these coronaviruses suggest that there is a diversity of gammacoronaviruses and deltacoronaviruses circulating in birds. Gammacoronaviruses were found predominantly in Anseriformes birds, whereas deltacoronaviruses could be detected in Ciconiiformes, Pelecaniformes, and Anseriformes birds in this study. We observed that there are frequent interspecies transmissions of gammacorona...

  17. Scaling of avian primary feather length

    OpenAIRE

    Nudds, Robert L.; Kaiser, Gary V.; Dyke, Gareth J.

    2011-01-01

    The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather ( ) contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus). The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was contro...

  18. Avian cytokines in health and disease

    Directory of Open Access Journals (Sweden)

    Wigley P

    2003-01-01

    Full Text Available Cytokines are proteins secreted by cells that play an important role in the activation and regulation of other cells and tissues during inflammation and immune responses. Although well described in several mammalian species, the role of cytokines and other related proteins is poorly understood in avian species. Recent advances in avian genetics and immunology have begun to allow the exploration of cytokines in health and disease. Cytokines may be classified in a number of ways, but may be conveniently arranged into four broad groups on the basis of their function. Proinflammatory cytokines such as interleukin-6 and interleukin-1beta play a role in mediating inflammation during disease or injury. Th1 cytokines, including interleukin-12 and interferon-gamma, are involved in the induction of cell-mediated immunity, whereas Th2 cytokines such as interleukin-4 are involved in the induction of humoral immunity. The final group Th3 or Tr cytokines play a role in regulation of immunity. The role of various cytokines in infectious and non-infectious diseases of chickens and turkeys is now being investigated. Although there are only a few reliable ELISAs or bioassays developed for avian cytokines, the use of molecular techniques, and in particular quantitative RT-PCR (Taqman has allowed investigation of cytokine responses in a number of diseases including salmonellosis, coccidiosis and autoimmune thyroiditis. In addition the use of recombinant cytokines as therapeutic agents or as vaccine adjuvants is now being explored.

  19. Occurrence of Bacterial and Viral Pathogens in Common and Noninvasive Diagnostic Sampling from Parrots and Racing Pigeons in Slovenia.

    Science.gov (United States)

    Dovč, Alenka; Jereb, Gregor; Krapež, Uroš; Gregurić-Gračner, Gordana; Pintarič, Štefan; Slavec, Brigita; Knific, Renata Lindtner; Kastelic, Marjan; Kvapil, Pavel; Mićunović, Jasna; Vadnjal, Stanka; Ocepek, Matjaž; Zadravec, Marko; Zorman-Rojs, Olga

    2016-06-01

    Airborne pathogens can cause infections within parrot (Psittaciformes) and pigeon (Columbiformes) holdings and, in the case of zoonoses, can even spread to humans. Air sampling is a useful, noninvasive method which can enhance the common sampling methods for detection of microorganisms in bird flocks. In this study, fecal and air samples were taken from four parrot holdings. Additionally, cloacal and oropharyngeal swabs as well as air samples were taken from 15 racing pigeon holdings. Parrots were examined for psittacine beak and feather disease virus (PBFDV), proventricular dilatation disease virus (PDDV), adenoviruses (AdVs), avian paramyxovirus type-1 (APMV-1), avian influenza virus (AIV), Chlamydia psittaci (CP), and Mycobacterium avium complex (MAC). MAC and AdVs were detected in three parrot holdings, CP was detected in two parrot holdings, and PBFDV and PDDV were each detected in one parrot holding. Pigeons were examined for the pigeon circovirus (PiCV), AdVs, and CP; PiCV and AdVs were detected in all investigated pigeon holdings and CP was detected in five pigeon holdings. PMID:27309292

  20. Avian Influenza Viruses in Water Birds, Africa 1

    OpenAIRE

    Gaidet, Nicolas; Dodman, Tim; Caron, Alexandre; Balança, Gilles; Desvaux, Stephanie; Goutard, Flavie; Cattoli, Giovanni; Lamarque, François; Hagemeijer, Ward; Monicat, François

    2007-01-01

    We report the first large-scale surveillance of avian influenza viruses in water birds conducted in Africa. This study shows evidence of avian influenza viruses in wild birds, both Eurasian and Afro-tropical species, in several major wetlands of Africa.

  1. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  2. 9 CFR 113.408 - Avian mycoplasma antigen.

    Science.gov (United States)

    2010-01-01

    ... with 9 CFR 114.8. If phenol is used, a direct titration with a standardized bromide-bromate solution... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian mycoplasma antigen. 113.408... Diagnostics and Reagents § 113.408 Avian mycoplasma antigen. Mycoplasma antigens shall be prepared...

  3. Molecular cloning and functional characterization of avian interleukin-19

    Science.gov (United States)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  4. China's Cool Handling of Avian Flu

    Institute of Scientific and Technical Information of China (English)

    LIWUZHOU

    2004-01-01

    ON January 27, 2004,the China National Avian Flu Reference Lab confirmed that in Dingdang Town, Long'an County,Guangxi Zhuang Autonomous Region a duck had died of the highly pathogenic H5N1 avian influenza. In contrast to the SARS epidemic last year, this occurrence has been handled coolly and efficiently by the Chinese government and people in general.

  5. Practical aspects of vaccination of poultry against avian influenza virus

    Science.gov (United States)

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  6. THE MOLECULAR BIOLOGY OF AVIAN INFLUENZA VIRUS IN SHORT

    Science.gov (United States)

    Avian influenza virus (AIV) is an important pathogen of poultry as it can cause severe economic losses through disease, including respiratory signs and mortality, and effects on trade. Avian influenza virus is classified as type A influenza, which is a member of the orthomyxoviridae family. Charact...

  7. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus

    Science.gov (United States)

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...

  8. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  9. Infection of Avian Pox Virus in Oriental Turtle-Doves

    Directory of Open Access Journals (Sweden)

    Kyung-Yeon Eo1, Young-Hoan Kim2, Kwang-Hyun Cho3, Jong-Sik Jang4, Tae-Hwan Kim5, Dongmi Kwak5 and Oh-Deog Kwon5*

    2011-10-01

    Full Text Available Three Oriental Turtle-doves (Streptopelia orientalis exhibiting lethargy, dyspnea, poor physical condition, and poor flight endurance, were rescued and referred to the Animal Health Center, Seoul Zoo, Korea. The doves had wart-like lesions on the legs and head. All of them died the following day after arrival, with the exception of one that survived for 6 days. Diphtheritic membranes on the tongue and oral mucosa were apparent at necropsy. Avian pox virus infection was suspected based on the proliferative skin lesions and oral diphtheritic lesions. Infection of the avian pox virus was confirmed by PCR using primers specific to the 4b core protein gene of avian pox virus. All cases were diagnosed with avian pox virus infection. This is believed to be the first description on natural infection of avian pox in Oriental Turtle-doves in Korea.

  10. Avian artificial insemination and semen preservation

    Science.gov (United States)

    Gee, G.F.

    1983-01-01

    Summary: Artificial insemination is a practical propagation tool that has been successful with a variety of birds. Cooperative, massage, and electroejaculation and modifications of these three basic methods of semen collection are described for a variety of birds. Semen color and consistency and sperm number, moti!ity, and morphology, as discussed, are useful indicators of semen quality, but the most reliable test of semen quality is the production of fertile eggs. Successful cryogenic preservation of avian semen with DMSO or glycerol as the cryoprotectant has been possible. Although the methods for preservation require special equipment, use of frozen semen requires only simple insemination supplies

  11. Avian influenza risk perception, Hong Kong

    OpenAIRE

    Fielding, Richard; Lam, Wendy W.T.; Ho, Ella Y.Y.; Lam, Tai Hing; Hedley, Anthony J.; Leung, Gabriel M

    2005-01-01

    A telephone survey of 986 Hong Kong households determined exposure and risk perception of avian influenza from live chicken sales. Householders bought 38,370,000 live chickens; 11% touched them when buying, generating 4,220,000 exposures annually; 36% (95% confidence interval [CI] 33%–39%) perceived this as risky, 9% (7%–11%) estimated >50% likelihood of resultant sickness, whereas 46% (43%–49%) said friends worried about such sickness. Recent China travel (adjusted odds ratio 0.35; CI 0.13–0...

  12. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James; McLay, Emma;

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful......, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has...

  13. Mapping and modelling of Angola's avian diversity

    OpenAIRE

    Monteiro, Miguel José Ascensão Freire Parada

    2014-01-01

    Mestrado em Gestão e Conservação de Recursos Naturais - Instituto Superior de Agronomia / Universidade de Évora Angola harbours one of the richest and most diverse avifaunas in Africa, due to its vast number of biomas and ecosystems. However, mainly due to the Portuguese Colonial war (1961-1974) and Angolan civil war (1974-2002), the country’s avian diversity and distribution is still poorly known. One way to increase the scientific knowledge of Angolan ornithology is by studyi...

  14. Avian colibacillosis: still many black holes.

    Science.gov (United States)

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis. PMID:26204893

  15. Avian Bornaviruses in North American Gulls.

    Science.gov (United States)

    Guo, Jianhua; Tizard, Ian; Baroch, John; Shivaprasad, H L; Payne, Susan L

    2015-07-01

    Avian bornaviruses, recently described members of the family Bornaviridae, have been isolated from captive parrots and passerines as well as wild waterfowl in which they may cause lethal neurologic disease. We report detection of avian bornavirus RNA in the brains of apparently healthy gulls. We tested 439 gull brain samples from 18 states, primarily in the northeastern US, using a reverse-transcriptase PCR assay with primers designed to detect a conserved region of the bornavirus M gene. Nine birds yielded a PCR product of appropriate size. Sequencing of PCR products indicated that the virus was closely related to aquatic bird bornavirus 1 (ABBV-1). Viral RNA was detected in Herring Gulls (Larus argentatus), Ring-billed Gulls (Larus delawarensis), and Laughing Gulls (Leucophaeus atricilla). Eight of the nine positive birds came from the New York/New Jersey area. One positive Herring Gull came from New Hampshire. Histopathologic examination of one well-preserved brain from a Herring Gull from Union County New Jersey, showed a lymphocytic encephalitis similar to that observed in bornavirus-infected parrots and geese. Bornavirus N protein was confirmed in two Herring Gull brains by immunohistochemistry. Thus ABBV-1 can infect gulls and cause encephalitic brain lesions similar to those observed in other birds. PMID:25973630

  16. Collapsing avian community on a Hawaiian island.

    Science.gov (United States)

    Paxton, Eben H; Camp, Richard J; Gorresen, P Marcos; Crampton, Lisa H; Leonard, David L; VanderWerf, Eric A

    2016-09-01

    The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua'i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species' ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua'i represents an early warning for the forest bird communities on the Maui and Hawai'i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing. PMID:27617287

  17. Studying avian encephalization with geometric morphometrics.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Watanabe, Akinobu; Kawabe, Soichiro

    2016-08-01

    Encephalization is a core concept in comparative neurobiology, aiming to quantify the neurological capacity of organisms. For measuring encephalization, many studies have employed relative brain sizes corrected for expected allometric scaling to body size. Here we highlight the utility of a multivariate geometric morphometric (GM) approach for visualizing and analyzing neuroanatomical shape variation associated with encephalization. GM readily allows the statistical evaluation of covariates, such as size, and many software tools exist for visualizing their effects on shape. Thus far, however, studies using GM have not attempted to translate the meaning of encephalization to shape data. As such, we tested the statistical relationship between size and encephalization quotients (EQs) to brain shape utilizing a broad interspecific sample of avian endocranial data. Although statistically significant, the analyses indicate that allometry accounts for <10% of total neuroanatomical shape variation. Notably, we find that EQs, despite being corrected for allometric scaling based on size, contain size-related neuroanatomical shape changes. In addition, much of what is traditionally considered encephalization comprises clade-specific trends in relative forebrain expansion, particularly driven by landbirds. EQs, therefore, fail to capture 90% of the total neuroanatomical variation after correcting for allometry and shared phylogenetic history. Moving forward, GM techniques provide crucial tools for investigating key drivers of this vast, largely unexplored aspect of avian brain morphology. PMID:27112986

  18. Risk Mapping of Highly Pathogenic Avian Influenza Distribution and Spread

    Directory of Open Access Journals (Sweden)

    Richard A. J. Williams

    2008-12-01

    Full Text Available The rapid emergence and spread of highly pathogenic H5N1 avian influenza begs effective and accurate mapping of current knowledge and future risk of infection. Methods for such mapping, however, are rudimentary, and few good examples exist for use as templates for risk-mapping efforts. We review the transmission cycle of avian influenza viruses, and identify points on which risk-mapping can focus. We provide examples from the literature and from our work that illustrate mapping risk based on (1 avian influenza case occurrences, (2 poultry distributions and movements, and (3 migratory bird movements.

  19. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R. G.; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  20. Virulence of Avian Influenza A Viruses for Squirrel Monkeys

    Science.gov (United States)

    Murphy, Brian R.; Hinshaw, Virginia S.; Sly, D. Lewis; London, William T.; Hosier, Nanette T.; Wood, Frank T.; Webster, Robert G.; Chanock, Robert M.

    1982-01-01

    Ten serologically distinct avian influenza A viruses were administered to squirrel monkeys and hamsters to compare their replication and virulence with those of human influenza A virus, A/Udorn/307/72 (H3N2). In squirrel monkeys, the 10 avian influenza A viruses exhibited a spectrum of replication and virulence. The levels of virus replication and clinical response were closely correlated. Two viruses, A/Mallard/NY/6874/78 (H3N2) and A/Pintail/Alb/121/79 (H7N8), resembled the human virus in their level and duration of replication and in their virulence. At the other end of the spectrum, five avian viruses were restricted by 100- to 10,000-fold in replication in the upper and lower respiratory tract and were clearly attenuated compared with the human influenza virus. In hamsters, the 10 viruses exhibited a spectrum of replication in the nasal turbinates, ranging from viruses that replicated as efficiently as the human virus to those that were 8,000- fold restricted. Since several avian viruses were closely related serologically to human influenza viruses, studies were done to confirm the avian nature of these isolates. Each of the avian viruses plaqued efficiently at 42°C, a restrictive temperature for replication of human influenza A viruses. Avian strains that had replicated either very efficiently or very poorly in squirrel monkeys still grew to high titer in the intestinal tracts of ducks, a tropism characteristic of avian, but not mammalian, influenza viruses. These observations indicate that some avian influenza A viruses grow well and cause disease in a primate host, whereas other avian viruses are very restricted in this host. These findings also provide a basis for determining the gene or genes involved in the restriction of replication that is observed with the attenuated avian viruses. Application of such information may allow the preparation of reassortant viruses derived from a virulent human influenza virus and an attenuated avian virus for possible

  1. Data base on avian mortality on man-made structures

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, N. S.

    1978-01-01

    A computerized data base concerning avian mortality on man-made structures is available for searching at the Ecological Sciences Information Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory. This data base, which contains entries from the available literature, provides information on avian mortality from either collision into or electrocution on man-made structures. Primary emphasis has been placed on avian collision with obstacles such as television and radio towers, airport ceilometers, transmission lines, and cooling towers. Other structures included in the studies are fences, glass walls and windows, lighthouses, telegraph and telephone wires, buildings, monuments, smokestacks, and water towers.

  2. Analysis of avian leukosis virus infections with an enzyme immunoassay.

    OpenAIRE

    Clark, D P; Ball, R F; Dougherty, R M

    1981-01-01

    An enzyme-linked immunosorbent assay (ELISA) for avian leukosis virus group-specific antigen was used to study infections with and shedding of avian leukosis virus in a commercial flock of chickens with a known high incidence of infection. Avian leukosis virus group-specific antigen was detected in serum or cloacal washings from 76% of a group of 100 61-week-old hens. With eggs collected during the next 3 weeks, antigen was detected in the albumen of 88% of the eggs from ELISA-positive hens a...

  3. The Helper Activities of Different Avian Viruses for Propagation of Recombinant Avian Adeno-Associated Virus

    Institute of Scientific and Technical Information of China (English)

    WANG An-ping; SUN Huai-chang; WANG Jian-ye; WANG Yong-juan; YUAN Wei-feng

    2007-01-01

    To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV-mediated transgene expression could be enhanced by super infection with the helper viruses.

  4. The 3rd International Symposium on Avian Brood Parasitism

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    正Invited participants on the 3rd International Symposium on Avian Brood Parasitism, sponsored by Hainan Normal University (HNU), China, Norwegian University of Science and Technology (NTNU), Norway, the Research Council of Norway, and China Ornithological Society (COS).

  5. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye;

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size......, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this...... pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits....

  6. Historical review of avian botulism at Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to review historical information on avian botulism at Stillwater Wildlife Management Area. This report includes incidental reports of...

  7. Markov Chain Estimation of Avian Seasonal Fecundity, Presentation

    Science.gov (United States)

    Avian seasonal fecundity is of interest from evolutionary, ecological, and conservation perspectives. However, direct estimation of seasonal fecundity is difficult, especially with multibrooded birds, and models representing the renesting and quitting processes are usually requi...

  8. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  9. Transmission of Avian Influenza A Viruses Between Animals and People

    Science.gov (United States)

    ... Newsletters Transmission of Avian Influenza A Viruses Between Animals and People Language: English Español Recommend on ... Compartir Influenza A viruses have infected many different animals, including ducks, chickens, pigs, whales, horses, and seals. ...

  10. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Newsletters Prevention and Treatment of Avian Influenza A Viruses in ... Recommend on Facebook Tweet Share Compartir The Best Prevention is to Avoid Sources of Exposure Currently, the ...

  11. Avian influenza surveillance sample collection and shipment protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Instructions for mortality collection and shipment of avian influenza (AI) live bird surveillance sample collections. AI sample collections will include...

  12. The avian tectorial membrane: Why is it tapered?

    CERN Document Server

    Iwasa, Kuni H

    2015-01-01

    While the mammalian- and the avian inner ears have well defined tonotopic organizations as well as hair cells specialized for motile and sensing roles, the structural organization of the avian ear is different from its mammalian cochlear counterpart. Presumably this difference stems from the difference in the way motile hair cells function. Short hair cells, whose role is considered analogous to mammalian outer hair cells, presumably depends on their hair bundles, and not motility of their cell body, in providing the motile elements of the cochlear amplifier. This report focuses on the role of the avian tectorial membrane, specifically by addressing the question, "Why is the avian tectorial membrane tapered from the neural to the abneural direction?"

  13. Avian Point Transect Survey; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian point-transect survey data and habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We...

  14. Chemical ions affect survival of avian cholera organisms in pondwater

    Science.gov (United States)

    Price, J.I.; Yandell, B.S.; Porter, W.P.

    1992-01-01

    Avian cholera (Pasteurella multocida) is a major disease of wild waterfowl, but its epizootiology remains little understood. Consequently, we examined whether chemical ions affected survival of avian cholera organisms in water collected from the Nebraska Rainwater Basin where avian cholera is enzootic. We tested the response of P. multocida to ammonium (NH4), calcium (Ca), magnesium (Mg), nitrate (NO3), and ortho-phosphate (PO4) ions individually and in combination using a fractional factorial design divided into 4 blocks. High concentrations of Ca and Mg, singly or in combination, increased survival of P. multocida organisms (P < 0.001). We developed a survival index to predict whether or not specific ponds could be "problem" or "nonproblem" avian cholera sites based on concentrations of these ions in the water.

  15. Region 6 Avian Health Program FY2011 Annual Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report describes activities and fund allocations of the Region 6 Avian Health Program in FY2011. Activities include morbidity and mortality monitoring, disease...

  16. Avian populations and habitat use in interior Alaska taiga

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Avian community structure, habitat occupancy levels, and species habitat use patterns were examined in the woody habitats of interior Alaska taiga. Some birds...

  17. Migratory Bird Avian Influenza Sampling; Yukon Kuskokwim Delta, Alaska, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data set containing avian influenza sampling information for spring and summer waterbirds on the Yukon Kuskokwim Delta, 2015. Data contains sample ID, species...

  18. Avian ecology of arid habitats in Namibia / Henriette Cornelia Potgieter

    OpenAIRE

    Potgieter, Henriette Cornelia

    2015-01-01

    Examination of bird assemblages along an environmental gradient which encompasses both climate and habitat change is needed if we are to better understand the potential effects of these changes for avians and the ecological process that depend upon them. Climate change is predicted to have a significant impact on deserts and desert margins, resulting in distributional shifts of entire ecosystems and new community associations. This study explores the probable responses of avian communities to...

  19. The role of the avian hippocampus in spatial memory.

    OpenAIRE

    Macphail E. M.

    2002-01-01

    Avian hippocampal function is surveyed, using data drawn from three areas: conventional laboratory paradigms, pigeon navigation, and food-storing. Damage to the avian hippocampus disrupts performance in laboratory tasks that tap spatial learning and memory, and also disrupts both pigeon homing and cache recovery by food-storing birds. Further evidence of hippocampal involvement in food-storing is provided by the fact that the hippocampus of food-storing birds is ...

  20. Avian-like breathing mechanics in maniraptoran dinosaurs

    OpenAIRE

    Codd, Jonathan R.; Phillip L. Manning; Mark A Norell; Perry, Steven F.

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in th...

  1. Predicting power-optimal kinematics of avian wings

    OpenAIRE

    Parslew, Ben

    2015-01-01

    A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livia, and the results are compared with previous experimental measurements. In cruise, the model uneart...

  2. Surveillance of wild birds for avian influenza virus

    OpenAIRE

    Hoye, B.; Munster, V.J.; Nishiura, H.M.; Klaassen, M.; Fouchier, R. A. M.

    2010-01-01

    Recent demand for increased understanding of avian infl uenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian infl uenza virus surveillance in wild birds, including consideratio...

  3. Detecting emerging transmissibility of avian influenza virus in human households

    OpenAIRE

    van Boven, M.; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C. A.; Heesterbeek, J A P

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i) the animal reservoir, (ii) humans who were infected b...

  4. Low-pathogenic avian influenza viruses in wild house mice.

    Directory of Open Access Journals (Sweden)

    Susan A Shriner

    Full Text Available BACKGROUND: Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. METHODOLOGY/PRINCIPAL FINDINGS: We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50 equivalents/mL across all lung samples from seven days of sampling (three mice/day ranged from 10(3.89 (H3N6 to 10(5.06 (H4N6 for the wild bird viruses and 10(2.08 (H6N2 to 10(2.85 (H4N8 for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05 higher concentrations of avian influenza RNA found in females compared with males. CONCLUSIONS/SIGNIFICANCE: Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.

  5. Avian bornavirus in the urine of infected birds

    OpenAIRE

    Heatley, J. Jill; Villalobos, de, Leonor Cristina

    2012-01-01

    J Jill Heatley,1 Alice R Villalobos21Zoological Medicine, 2Department of Nutrition & Food Science, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USAAbstract: Avian bornavirus (ABV) causes proventricular dilatation disease in multiple avian species. In severe clinical disease, the virus, while primarily neurotropic, can be detected in many organs, including the kidneys. We postulated that ABV could be shed by the kidneys and ...

  6. Will Wallace's Line Save Australia from Avian Influenza?

    Directory of Open Access Journals (Sweden)

    Leo Joseph

    2008-12-01

    Full Text Available Australia is separated from the Asian faunal realm by Wallace's Line, across which there is relatively little avian migration. Although this does diminish the risk of high pathogenicity avian influenza of Asian origin arriving with migratory birds, the barrier is not complete. Migratory shorebirds, as well as a few landbirds, move through the region on annual migrations to and from Southeast Asia and destinations further north, although the frequency of infection of avian influenza in these groups is low. Nonetheless, high pathogenicity H5N1 has recently been recorded on the island of New Guinea in West Papua in domestic poultry. This event increases interest in the movements of birds between Wallacea in eastern Indonesia, New Guinea, and Australia, particularly by waterbirds. There are frequent but irregular movements of ducks, geese, and other waterbirds across Torres Strait between New Guinea and Australia, including movements to regions in which H5N1 has occurred in the recent past. Although the likelihood of avian influenza entering Australia via an avian vector is presumed to be low, the nature and extent of bird movements in this region is poorly known. There have been five recorded outbreaks of high pathogenicity avian influenza in Australian poultry flocks, all of the H7 subtype. To date, Australia is the only inhabited continent not to have recorded high pathogenicity avian influenza since 1997, and H5N1 has never been recorded. The ability to map risk from high pathogenicity avian influenza to Australia is hampered by the lack of quantitative data on the extent of bird movements between Australia and its northern neighbors. Recently developed techniques offer the promise to fill this knowledge gap.

  7. Comparative genomic data of the Avian Phylogenomics Project

    OpenAIRE

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M. Thomas P.; Jarvis, Erich D.; Wang, Jun; Avian Genome Consortium

    2014-01-01

    Background The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al....

  8. Artist conception of the Avian Development Facility

    Science.gov (United States)

    2003-01-01

    The Avian Development Facility (ADF) supports 36 eggs in two carousels, one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF was designed to incubate up to 36 Japanese quail eggs, 18 in microgravity and 18 in artificial gravity. The two sets of eggs were exposed to otherwise identical conditions, the first time this is been accomplished in space. Eggs are preserved at intervals to provide snapshots of their development for later analysis. Quails incubate in just 15 days, so they are an ideal species to be studied within the duration of space shuttle missions. Further, several investigators can use the same specimens to address different questions. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations.

  9. 禽流感病%Avian Influenza

    Institute of Scientific and Technical Information of China (English)

    周先志

    1999-01-01

    @@ 禽流感病(avian influenza)是由甲型流感病毒引起的一种禽类疾病综合征.1997年5月,我国香港特别行政区1例3岁儿童死于不明原因的多器官功能衰竭,同年8月经美国疾病预防和控制中心以及WHO荷兰鹿特丹国家流感中心鉴定为禽甲型流感病毒H5N1[A(H5N1)]引起的人类流感[1~3].这是世界上首次证实A(H5N1)感染人类,因而引起医学界的广泛关注.

  10. 禽流感%Avian influenza

    Institute of Scientific and Technical Information of China (English)

    范学工; 龙云铸

    2005-01-01

    禽流感(avian influenza)是禽类流行性感冒的简称,是由甲型流感病毒株的某些亚型引起的急性呼吸道传染病。通常情况下,禽流感病毒并不感染人类,但自1997年禽甲型流感病毒H5N1感染人类之后,相继有H9N2、H7N7.亚型感染人类和H5N1再次感染人类的报道,引起了世人的广泛关注。

  11. Quantum coherence and sensitivity of avian magnetoreception

    CERN Document Server

    Bandyopadhyay, Jayendra N; Kaszlikowski, Dagomir

    2012-01-01

    Migratory birds and other species have the ability to navigate by sensing the geomagnetic field. Recent experiments indicate that the essential process in the navigation takes place in bird's eye and uses chemical reaction involving molecular ions with unpaired electron spins (radical pair). Sensing is achieved via geomagnetic-dependent dynamics of the spins of the unpaired electrons. Here we utilize the results of all behavioral experiments conducted on European Robins to argue that the average life-time of the radical pair is of the order of a microsecond and therefore agrees with experimental estimations of this parameter for cryptochrome --- a pigment believed to form the radical pairs. We also found a reasonable parameter regime where sensitivity of the avian compass is enhanced by environmental noise, showing that long coherence time is not required for navigation and may even spoil it.

  12. Efficient statistical mapping of avian count data

    Science.gov (United States)

    Royle, J. Andrew; Wikle, C.K.

    2005-01-01

    We develop a spatial modeling framework for count data that is efficient to implement in high-dimensional prediction problems. We consider spectral parameterizations for the spatially varying mean of a Poisson model. The spectral parameterization of the spatial process is very computationally efficient, enabling effective estimation and prediction in large problems using Markov chain Monte Carlo techniques. We apply this model to creating avian relative abundance maps from North American Breeding Bird Survey (BBS) data. Variation in the ability of observers to count birds is modeled as spatially independent noise, resulting in over-dispersion relative to the Poisson assumption. This approach represents an improvement over existing approaches used for spatial modeling of BBS data which are either inefficient for continental scale modeling and prediction or fail to accommodate important distributional features of count data thus leading to inaccurate accounting of prediction uncertainty.

  13. Infrasound and the avian navigational map

    Science.gov (United States)

    Hagstrum, J.T.

    2001-01-01

    Birds can accurately navigate over hundreds to thousands of kilometres, and use celestial and magnetic compass senses to orient their flight. How birds determine their location in order to select the correct homeward bearing (map sense) remains controversial, and has been attributed to their olfactory or magnetic senses. Pigeons can hear infrasound down to 0??05 Hz, and an acoustic avian map is proposed consisting of infrasonic cues radiated from steep-sided topographic features. The source of these infrasonic signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting the infrasonic map cues can explain perplexing experimental results from pigeon releases. Moreover, four recent disrupted pigeon races in Europe and the north-eastern USA intersected infrasonic shock waves from the Concorde supersonic transport. Having an acoustic map might also allow clock-shifted birds to test their homeward progress and select between their magnetic and solar compasses.

  14. Serological diagnosis of avian influenza in poultry

    DEFF Research Database (Denmark)

    Comin, Arianna; Toft, Nils; Stegeman, Arjan;

    2013-01-01

    Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the gold standard' for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy...... Sp, the HI test may be effectively considered a gold standard. In the framework of LPAI surveillance, where large numbers of samples have to be processed, the blocking ELISA could be a valid alternative to the HI test, in that it is almost as sensitive and specific as the HI test yet quicker and...... has been evaluated in comparison with HI test results, whose performance for poultry has not been properly evaluated. Objective The objective of this study was to estimate the diagnostic sensitivity (Se) and specificity (Sp) of the HI test and six other diagnostic assays for the detection of AI...

  15. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    . The use of thin, flexible endoscopes has made direct observation of the syrinx possible in situ. The effects of direct muscle stimulation on the syringeal aperture have identified adductor and abductor muscles, confirming results from electromyographic studies. Endoscopic observations have revealed...... the dynamics of syringeal reconfiguration during phonation, which in most bird species investigated results in simultaneous movement of soft tissue masses (the medial and lateral labia in songbirds and lateral tympaniform membranes in non-songbirds) into the bronchial lumen where they collide. High......-speed video-filming during sound production has revealed that sound pulses coincide with short duration formation of slots between the soft tissue masses forming a pneumatic valve, which suggests that the avian sound generating mechanism is a similar to that in the human larynx. Lately studies have revealed...

  16. A glossary for avian conservation biology

    Science.gov (United States)

    Koford, Rolf R.; Dunning, J.B., Jr.; Ribic, C.A.; Finch, D.M.

    1994-01-01

    This glossary provides standard definitions for many of the terms used in avian conservation biology. We compiled these definitions to assist communication among researchers, managers, and others involved in the Neotropical Migratory Bird Conservation Program, also known as Partners in Flight. We used existing glossaries and recent literature to prepare this glossary. The cited sources were not necessarily the first ones to use the terms. Many definitions were taken verbatim from the cited source material. Others were modified slightly to clarify the meaning. Definitions that were modified to a greater extent are indicated as being adapted from the originals. Terms that have been used in more than one way by different authors are listed with numbered alternative definitions if the definitions differ substantially.

  17. Avian Influenza spread and transmission dynamics

    Science.gov (United States)

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  18. Avian influenza in Croatia - Current status

    International Nuclear Information System (INIS)

    Full text: Wild birds can carry a wide range of viral and other zoonotic agents, which may be transmitted to humans. From October 2005 to March 2006 HPAI H5N1 virus was isolated from wild birds (mute swans, black-headed gulls and a mallard duck) in Croatia at five locations. After isolation of H5N1 virus at 2006 from mallard duck near City of Zagreb (capital of Croatia) Department of Poultry Diseases with Clinic at the Faculty of Veterinary Medicine, has conducted monitoring of avian viruses that could endanger human health. Samples (999 pharyngeal and cloacal swabs) from 23 wild bird species were taken. After year 2006 Croatia has regular monitoring for avian influenza in wild birds and poultry (especially in the backyard flocks). During 2007 (6,928 wild birds and 18,000 blood samples from poultry) and 2008 (2,486 wild birds; 20,000 blood samples and 1,500 cloacal swabs from poultry) were taken. Isolation was performed with classical virus detection method by inoculation of 10 day old chicken embryos, and molecular methods by conventional PCR and Real Time PCR (M gene, H5, H7 and N1 genes), and serological methods by antibody detection from blood samples (inhibition hemagglutination and ELISA). All samples were HPAI virus negative but investigators from the Poultry Centre of the Croatian Veterinary Institute isolated from wild birds LPAI viruses: H2N3, H3N8, H5N3 and H10N7. The results obtained by these investigations and monitoring revealed the need for permanent monitoring of wild bird's health status, especially the water birds species. Vaccination against AI is never practiced in Croatia. Quick and accurate detection of wild migratory birds infected with the H5N1 virus prevented the spread of the virus to the domestic poultry in Croatia which would have had enormous consequences. (author)

  19. Early warning: Avian flu and nuclear science

    International Nuclear Information System (INIS)

    Avian flu has spread to 51 countries, 36 this year alone, many of which are densely populated and deprived. The joint FAO/IAEA programme is working on the rapid detection of emerging diseases, including bird flu, and using nuclear and radiation techniques in the process. The problems are serious and challenging, but nuclear technologies may offer a solution. For most developing countries, TAD (transboundary animal diseases) detection is still vital. The bottleneck is their inability to rapidly detect the virus and to determine early enough whether it is H5N1 or another subtype, so that authorities can take appropriate control measures. Serious efforts are focused on the early detection of the agents. Timely recognition of such viral infections would prevent the spread of the diseases to large animal populations in huge geographic areas. Thus, the development of novel, powerful diagnostic nuclear and nuclear-related assays is a crucial issue today in veterinary research and animal health care. Molecular virology offers a range of new methods, which are able to accelerate and improve the diagnosis of infectious diseases in animals and in man. The molecular detection assays, like the polymerase chain reaction (PCR) technologies, provide possibilities for a very rapid diagnosis. The detection of viruses can be completed within hours or hopefully even within minutes with a sensitivity level of less than one pathogenic organism. Molecular approaches have contributed significantly to the rapid detection of well-established, as well as newly emerging, infectious agents such as Nipah and Hendra viruses or corona viruses in the SARS scenario and the detection and molecular characterisation of the highly pathogenic avian influenza H5N1 subtype that threatens the world today. The nucleic acid amplification assays, although they were at first expensive and cumbersome, have become relatively cheap and user-friendly tools in the diagnostic laboratories

  20. Avian influenza virus risk assessment in falconry

    Directory of Open Access Journals (Sweden)

    Lüschow Dörte

    2011-04-01

    Full Text Available Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV. In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008 falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54 in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74 and 3.8% of ducks (n = 53 using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.

  1. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  2. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    Directory of Open Access Journals (Sweden)

    Sanhong Liu

    2015-01-01

    Full Text Available Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  3. Avian antimicrobial host defense peptides: from biology to therapeutic applications.

    Science.gov (United States)

    Zhang, Guolong; Sunkara, Lakshmi T

    2014-01-01

    Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933

  4. Lack of evidence of endogenous avian leukosis virus and endogenous avian retrovirus transmission to measles, mumps, and rubella vaccine recipients.

    OpenAIRE

    Hussain, A. I.; V. Shanmugam; Switzer, W. M.; Tsang, S. X.; Fadly, A.; Thea, D.; Helfand, R; Bellini, W J; Folks, T M; Heneine, W

    2001-01-01

    The identification of endogenous avian leukosis virus (ALV) and endogenous avian retrovirus (EAV) in chick cell-derived measles and mumps vaccines in current use has raised concern about transmission of these retroviruses to vaccine recipients. We used serologic and molecular methods to analyze specimens from 206 recipients of measles, mumps, and rubella (MMR) vaccine for evidence of infection with ALV and EAV. A Western blot assay for detecting antibodies to endogenous ALV was developed and ...

  5. An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza?

    OpenAIRE

    Morens, David M.; Taubenberger, Jeffery K.

    2010-01-01

    Please cite this paper as: Morens and Taubenberger (2010) An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza? Influenza and Other Respiratory Viruses 4(6), 373–377. Background  An explosive fatal epizootic in poultry, prairie chickens, turkeys, ducks and geese, occurred over much of the populated United States between 15 November and 15 December 1872. To our knowledge the scientific literature contains no mention of the ...

  6. Newcastle disease virus infection in sparrows (Passer domesticus, Linneaus, 1758 captured in poultry farms of the agreste region of the State of Pernambuco

    Directory of Open Access Journals (Sweden)

    JSA Silva

    2006-06-01

    Full Text Available Reservoir competence for the Newcastle Disease virus (NDV was evaluated in sparrows (Passer domesticus, Linnaeus 1758 captured on a commercial poultry farm and a chicken hatchery in the State of Pernambuco, Northeastern Brazil. A total number of 103 birds collected from a poultry farm (24/103 and a chicken hatchery (79/103 were examined. Hemagglutination inhibition tests, isolation, and viral characterization were performed in all samples collected from each bird. Titers ranging from 1:2 to 1:64 were detectable in 10.68% of sparrows, but positive serology and viral isolation were obtained only from sparrows captured at the hatchery. Hemagglutination activity was inhibited by anti-avian paramyxovirus serotype 1 (APMV-1 serum, and this sample showed an intracerebral pathogenicity index (ICOI of 0.21, which is similar to the B1 stock vaccine (0.20 used for vaccination in those farms. Therefore, it was concluded that the sparrows were infected by stock vaccine virus, and that these birds could be a reservoir for NDV. However, additional studies involving sequencing of the virus genome of stock vaccine must be carried out.

  7. Avian influenza viruses - new causative a gents of human infections

    Directory of Open Access Journals (Sweden)

    Hrnjaković-Cvjetković Ivana

    2006-01-01

    Full Text Available Introduction. Influenza A viruses can infect humans, some mammals and especially birds. Subtypes of human influenza A viruses: ACH1N1, ACH2N2 and A(H3N2 have caused pandemics. Avian influenza viruses vary owing to their 15 hemagglutinins (H and 9 neuraminidases (N. Human cases of avian influenza A In the Netherlands in 2003, there were 83 human cases of influenza A (H7N7. In 1997, 18 cases of H5N1 influenza A, of whom 6 died, were found among residents of Hong Kong. In 2004, 34 human cases (23 deaths were reported in Viet Nam and Thailand. H5N1 virus-infected patients presented with fever and respiratory symptoms. Complications included respiratory distress syndrome, renal failure, liver dysfunction and hematologic disorders. Since 1999, 7 cases of human influenza H9N2 infection have been identified in China and Hong Kong. The importance of human infection with avian influenza viruses. H5N1 virus can directly infect humans. Genetic reassortment of human and avian influenza viruses may occur in humans co infected with current human A(HIN1 or A(H3N2 subtypes and avian influenza viruses. The result would be a new influenza virus with pandemic potential. All genes of H5Nl viruses isolated from humans are of avian origin. Prevention and control. The reassortant virus containing H and N from avian and the remaining proteins from human influenza viruses will probably be used as a vaccine strain. The most important control measures are rapid destruction of all infected or exposed birds and rigorous disinfection of farms. Individuals exposed to suspected animals should receive prophylactic treatment with antivirals and annual vaccination. .

  8. Avian Influenza (H5N1) Expert System using Dempster-Shafer Theory

    OpenAIRE

    Maseleno, Andino; Hasan, Md. Mahmud

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built an Avian Influenza (H5N1) Expert System for identifying avian influenza disease and displaying the result of identification process. In this paper, we describe five symptoms as major symptoms which include depression, combs,...

  9. Access to health information may improve behavior in preventing Avian influenza among women

    OpenAIRE

    Ajeng T. Endarti; Shamsul A. Shah

    2011-01-01

    Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian inf...

  10. Seroepidemiological Evidence of Avian Influenza A Virus Transmission to Pigs in Southern China

    OpenAIRE

    Su, Shuo; Qi, Wenbao; Chen, Jidang; Zhu, Wanjun; Huang, Zhen; Xie, Jiexiong; Zhang, Guihong

    2013-01-01

    Recently, three novel avian-origin swine influenza viruses (SIVs) were first isolated from pigs in Guangdong Province, southern China, yet little is known about the seroprevalence of avian influenza viruses among pigs in southern China. Here, we report for the first time the seroprevalence of avian H3, H4, and H6 influenza viruses in swine populations and the lack of seroepidemiological evidence of avian H5 influenza virus transmission to pigs in China.

  11. Evaluation of Amplified Fragment Length Polymorphism for Differentiation of Avian Mycoplasma Species

    OpenAIRE

    Hong, Y; Garcia, M.; Levisohn, S; Lysnyansky, I.; Leiting, V.; Savelkoul, P. H. M.; Kleven, S. H.

    2005-01-01

    Amplified fragment length polymorphism (AFLP) was used for typing avian mycoplasma species. Forty-four avian mycoplasma strains were successfully typed into eight distinct groups, with each representing a different species. Homology of AFLP patterns of 35% or less was used as a cutoff value to differentiate avian mycoplasma strains into different species.

  12. H5N1 Avian Flu (H5N1 Bird Flu)

    Science.gov (United States)

    ... Swine Flu H5N1 - Avian/Bird Flu H5N1 Avian Flu - H5N1 Bird Flu H5N1 is a highly pathogenic avian (bird) flu ... WhiteHouse.gov USA.gov GobiernoUSA.gov BusinessUSA.gov Flu Basics Symptoms (CDC) Prevention (CDC) Treatment (CDC) Vaccination ( ...

  13. Human Illness from Avian Influenza H7N3, British Columbia

    OpenAIRE

    Tweed, S. Aleina; Skowronski, Danuta M.; David, Samara T; Larder, Andrew; Petric, Martin; Lees, Wayne; Li, Yan; Katz, Jacqueline; Krajden, Mel; Tellier, Raymond; Halpert, Christine; Hirst, Martin; Astell, Caroline; Lawrence, David; Mak, Annie

    2004-01-01

    Avian influenza that infects poultry in close proximity to humans is a concern because of its pandemic potential. In 2004, an outbreak of highly pathogenic avian influenza H7N3 occurred in poultry in British Columbia, Canada. Surveillance identified two persons with confirmed avian influenza infection. Symptoms included conjunctivitis and mild influenzalike illness.

  14. 75 FR 10645 - Low Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity

    Science.gov (United States)

    2010-03-09

    ... Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity AGENCY: Animal and Plant... avian influenza in commercial poultry. As amended by this document, the rule provides that the amount of... agencies with respect to H5/H7 low pathogenic avian influenza outbreaks, provides that consistency...

  15. Evidence of previous avian influenza infection among US turkey workers.

    Science.gov (United States)

    Kayali, G; Ortiz, E J; Chorazy, M L; Gray, G C

    2010-06-01

    The threat of an influenza pandemic is looming, with new cases of sporadic avian influenza infections in man frequently reported. Exposure to diseased poultry is a leading risk factor for these infections. In this study, we used logistic regression to investigate serological evidence of previous infection with avian influenza subtypes H4, H5, H6, H7, H8, H9, H10, and H11 among 95 adults occupationally exposed to turkeys in the US Midwest and 82 unexposed controls. Our results indicate that farmers practising backyard, organic or free-ranging turkey production methods are at an increased risk of infection with avian influenza. Among these farmers, the adjusted odds ratios (ORs) for elevated microneutralization assay titres against avian H4, H5, H6, H9, and H10 influenza strains ranged between 3.9 (95% CI 1.2-12.8) and 15.3 (95% CI 2.0-115.2) when compared to non-exposed controls. The measured ORs were adjusted for antibody titres against human influenza viruses and other exposure variables. These data suggest that sometime in their lives, the workers had been exposed to low pathogenicity avian influenza viruses. These findings support calls for inclusion of agricultural workers in priority groups in pandemic influenza preparedness efforts. These data further support increasing surveillance and other preparedness efforts to include not only confinement poultry facilities, but more importantly, also small scale farms. PMID:19486492

  16. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  17. Next generation sequencing technologies: tool to study avian virus diversity.

    Science.gov (United States)

    Kapgate, S S; Barbuddhe, S B; Kumanan, K

    2015-03-01

    Increased globalisation, climatic changes and wildlife-livestock interface led to emergence of novel viral pathogens or zoonoses that have become serious concern to avian, animal and human health. High biodiversity and bird migration facilitate spread of the pathogen and provide reservoirs for emerging infectious diseases. Current classical diagnostic methods designed to be virus-specific or aim to be limited to group of viral agents, hinder identifying of novel viruses or viral variants. Recently developed approaches of next-generation sequencing (NGS) provide culture-independent methods that are useful for understanding viral diversity and discovery of novel virus, thereby enabling a better diagnosis and disease control. This review discusses the different possible steps of a NGS study utilizing sequence-independent amplification, high-throughput sequencing and bioinformatics approaches to identify novel avian viruses and their diversity. NGS lead to the identification of a wide range of new viruses such as picobirnavirus, picornavirus, orthoreovirus and avian gamma coronavirus associated with fulminating disease in guinea fowl and is also used in describing viral diversity among avian species. The review also briefly discusses areas of viral-host interaction and disease associated causalities with newly identified avian viruses. PMID:25790045

  18. Avian Blood-Vessel Formation in Space

    Science.gov (United States)

    Lelkes, Peter I.

    1999-01-01

    Based on previous studies, we hypothesized that the developmental anomalies observed in the past might be related to or caused by delayed or improper vascular development. The objective of our research is to test the hypothesis that exposure to microgravity during space flight cause delayed or improper vascular development during embryogenesis. The effects of microgravity on the time course and extent of avian blood-vessel formation are assessed using two models, one for angiogenesis and one for vasculogenesis. The methodological approach is dictated by the constraints of the tissue preservation method used in space. Thus, both in the chorioallantoic membrane (CAM) and in the adrenal, we will evaluate microscopically the vascular architecture and immunostain endothelial cells with specific antibodies (anti- vWF and QH1). The extent of ECM protein deposition will be assessed by immunohistochemistry and correlated with the degree of vascularization, using computer-based image analysis. Also, the cellular source for ECM proteins will be assessed by in situ hybridization.

  19. Scaling of avian primary feather length.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available The evolution of the avian wing has long fascinated biologists, yet almost no work includes the length of primary feathers in consideration of overall wing length variation. Here we show that the length of the longest primary feather (f(prim contributing to overall wing length scales with negative allometry against total arm (ta = humerus+ulna+manus. The scaling exponent varied slightly, although not significantly so, depending on whether a species level analysis was used or phylogeny was controlled for using independent contrasts: f(prim is proportional to ta(0.78-0.82. The scaling exponent was not significantly different from that predicted (0.86 by earlier work. It appears that there is a general trend for the primary feathers of birds to contribute proportionally less, and ta proportionally more, to overall wingspan as this dimension increases. Wingspan in birds is constrained close to mass (M(1/3 because of optimisation for lift production, which limits opportunities for exterior morphological change. Within the wing, variations in underlying bone and feather lengths nevertheless may, in altering the joint positions, permit a range of different flight styles by facilitating variation in upstroke kinematics.

  20. Research progress in avian dispersal behavior

    Institute of Scientific and Technical Information of China (English)

    Yang LIU; Zhengwang ZHANG

    2008-01-01

    Dispersal, defined as a linear spreading move-ment of individuals away from others of the population is a fundamental characteristic of organisms in nature. Dispersal is a central concept in ecological, behavioral and evolutionary studies, driven by different forces such as avoidance of inbreeding depression, density-dependent competition and the need to change breeding locations. By effective dispersal, organisms can enlarge their geo-graphic range and adjust the dynamic, sex ratio and gen-etic compositions of a population. Birds are one of the groups that are studied intensively by human beings. Due to their diurnal habits, diverse life history strategies and complex movement, birds are also ideal models for the study of dispersal behaviors. Certain topics of avian dispersal including sex-biased, asymmetric dispersal caused by differences in body conditions, dispersal pro-cesses, habitat selection and long distance dispersal are discussed here. Bird-ringing or marking, radio-telemetry and genetic markers are useful tools widely applied in dispersal studies. There are three major challenges regard-ing theoretical study and methodology research of dis-persal: (1) improvement in research methodology is needed, (2) more in-depth theoretical research is neces-sary, and (3) application of theoretical research into the conservation efforts for threatened birds and the manage-ment of their habitats should be carried out immediately.

  1. Comparison of lead residues among avian bones

    International Nuclear Information System (INIS)

    To determine if significant differences exist in lead (Pb) accumulation in different bones, especially those most often used for bone-Pb studies in wildlife, we compared Pb concentrations in radius, ulna, humerus, femur, and tibia of Common Eider (Somateria mollissima); and radius/ulna (combined), femur, and tibia of American Woodcock (Scolopax minor). There were no significant differences in bone-Pb concentrations among woodcock bones over a wide range of Pb concentrations (3-311 μg/g). In eider, where bone-Pb concentrations were low (<10 μg/g), leg bones had significantly higher Pb concentrations (approximately 30-40%) than wing bones from the same individuals. The variation among individual birds was greater than the variation among different bones within a bird. Based on our findings, we conclude that one type of bone may be substituted for another in bone-Pb studies although the same bone type should be analyzed for all birds within a study, whenever possible. - Variability in Pb concentrations among avian bones

  2. Avian Influenza: Mixed Infections and Missing Viruses

    Directory of Open Access Journals (Sweden)

    David E. Wentworth

    2013-08-01

    Full Text Available A high prevalence and diversity of avian influenza (AI viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture.

  3. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    Science.gov (United States)

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China. PMID:26733295

  4. Interactive mechanism between avian infectious bronchitis S1 protein T cell peptide and avian MHC I molecule.

    Science.gov (United States)

    Zhu, Feng-Zhu; Lu, Mei; Huang, Qing-Hua; Huang, Yan-Yan; Yang, Shao-Hua; Cui, Yan-Shun; Liu, Chang; Tan, Liugang; Kong, Zhengjie; Xu, Chuan-Tian

    2016-04-01

    This study aims to construct a 3D structure of the avian major histocompatibility complex (MHC)-β2M complex through homology modelling technology, perform molecular docking of the predicted infectious bronchitis virus (IBV) S1 protein potential epitope peptide Sp6 (NQFYIKLT) and the avian MHC-β2M complex, and demonstrate the interactive mechanism between Sp6 and MHC using molecular dynamical simulations. The peptide Sp6 and the non-related peptide NP89-97 (PKKTGGPIY) were used to stimulate in vitro recombinant plasmid (pCAGGS-S1) avian splenic lymphocytes. Flow cytometric results show that CD8(+) T lymphocytes reproduce stimulated by the Sp6 and the nonrelated peptide proliferate by 34.8% and 2.6%, respectively. Meanwhile, fluorescent quantitative PCR results show that the secretion of IFN-γ in avian splenic lymphocytes increases after Sp6 stimulation. These data suggest that Sp6 can induce the activated avian lymphocytes in vitro to produce CTL, which is the CTL epitope in IBV S1. PMID:26876645

  5. ABCD: a functional database for the avian brain.

    Science.gov (United States)

    Schrott, Aniko; Kabai, Peter

    2008-01-30

    Here we present the first database developed for storing, retrieving and cross-referencing neuroscience information about the connectivity of the avian brain. The Avian Brain Circuitry Database (ABCD) contains entries about the new and old terminology of the areas and their hierarchy, data on connections between brain regions, as well as a functional keyword system linked to brain regions and connections. Data were collected from the primary literature and textbooks, and an online submission system was developed to facilitate further data collection directly from researchers. The database aims to help spread the results of avian connectivity studies, the recently revised nomenclature and also to provide data for brain network research. ABCD is freely available at http://www.behav.org/abcd. PMID:17889371

  6. Antigenic properties of avian hepatitis E virus capsid protein.

    Science.gov (United States)

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail. PMID:26340899

  7. Sequence conservation of an avian centromeric repeated DNA component.

    Science.gov (United States)

    Madsen, C S; Brooks, J E; de Kloet, E; de Kloet, S R

    1994-06-01

    The approximately 190-bp centromeric repeat monomers of the spur-winged lapwing (Vanellus spinosus, Charadriidae), the Chilean flamingo (Phoenicopterus chilensis, Phoenicopteridae), the sarus crane (Grus antigone, Gruidae), parrots (Psittacidae), waterfowl (Anatidae), and the merlin (Falco columbarius, Falconidae) contain elements that are interspecifically highly variable, as well as elements (trinucleotides and higher order oligonucleotides) that are highly conserved in sequence and relative location within the repeat. Such conservation suggests that the centromeric repeats of these avian species have evolved from a common ancestral sequence that may date from very early stages of avian radiation. PMID:8034177

  8. The challenges of avian influenza virus: mechanism, epidemiology and control

    Institute of Scientific and Technical Information of China (English)

    George F. GAO; Pang-Chui SHAW

    2009-01-01

    @@ Early 2009, eight human infection cases of H5N1 highly pathogenic avian influenza (HPAI) virus, with 5 death cases, were reported in China. This again made the world alert on a possible pandemic worldwide, probably caused by avian-origin influenza virus. Again H5N1 is in the spotlight of the world, not only for the scientists but also for the ordinary people. How much do we know about this virus? Where will this virus go and where did it come? Can we avoid a possible pandemic of influenza? Will the human beings conquer this devastating agent? Obviously we can list more questions than we know the answers.

  9. Emergence of Fatal Avian Influenza in New England Harbor Seals

    OpenAIRE

    Anthony, S. J.; St. Leger, J. A.; Pugliares, K.; Ip, H S; Chan, J. M.; Carpenter, Z. W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J T; Pedersen, J; Karesh, W; Daszak, P; Rabadan, R.; Rowles, T.; Lipkin, W. I.

    2012-01-01

    ABSTRACT From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. L...

  10. Avian Influenza: a global threat needing a global solution

    OpenAIRE

    Koh GCH; Wong TY; Cheong SK; Koh DSQ

    2008-01-01

    Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI) is endemic in Asia as a result of unre...

  11. Avian tuberculosis in a captive cassowary (Casuarius casuarius

    Directory of Open Access Journals (Sweden)

    Krajewska Monika

    2015-12-01

    Full Text Available The paper describes avian tuberculosis in a captive bred cassowary. A two-and-a-half-year-old bird was obtained by a Polish zoo in 2010 from the Netherlands under conditions compliant with the recommendations of the European Association of Zoos and Aquaria. Despite being of small size for the age, the bird appeared healthy and showed no signs of the disease until the day when it was found recumbent in its pen. Later on it was euthanised due to lack of treatment possibilities. Pathological changes typical of avian tuberculosis were found in the liver and spleen. Mycobacterium avium ssp. avium was cultured from both organs.

  12. Virulence of Avian Influenza A Viruses for Squirrel Monkeys

    OpenAIRE

    Murphy, Brian R.; Hinshaw, Virginia S.; Sly, D. Lewis; London, William T.; Hosier, Nanette T.; Wood, Frank T.; Webster, Robert G.; Chanock, Robert M.

    1982-01-01

    Ten serologically distinct avian influenza A viruses were administered to squirrel monkeys and hamsters to compare their replication and virulence with those of human influenza A virus, A/Udorn/307/72 (H3N2). In squirrel monkeys, the 10 avian influenza A viruses exhibited a spectrum of replication and virulence. The levels of virus replication and clinical response were closely correlated. Two viruses, A/Mallard/NY/6874/78 (H3N2) and A/Pintail/Alb/121/79 (H7N8), resembled the human virus in t...

  13. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    OpenAIRE

    Sanhong Liu; Liuyong Pang; Shigui Ruan; Xinan Zhang

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward...

  14. Avian influenza viruses - new causative a gents of human infections

    OpenAIRE

    Hrnjaković-Cvjetković Ivana; Cvjetković Dejan; Jerant-Patić Vera; Milošević Vesna; Tadić-Radovanov Jelena; Kovačević Gordana

    2006-01-01

    Introduction. Influenza A viruses can infect humans, some mammals and especially birds. Subtypes of human influenza A viruses: ACH1N1), ACH2N2) and A(H3N2) have caused pandemics. Avian influenza viruses vary owing to their 15 hemagglutinins (H) and 9 neuraminidases (N). Human cases of avian influenza A In the Netherlands in 2003, there were 83 human cases of influenza A (H7N7). In 1997, 18 cases of H5N1 influenza A, of whom 6 died, were found among residents of Hong Kong. In 2004, 34 human ca...

  15. Applied comparative anatomy of the avian middle ear.

    OpenAIRE

    Mills, R.

    1994-01-01

    The anatomy of the middle ear has been studied in nine species of birds, with particular reference to the structure of the ossicle and its relationship to the tympanic membrane. The morphology of the avian middle ear has been compared to that of the reconstructed human middle ear. Drum to stapes foot plate assemblies created during ossiculoplasty operations differ from the pattern found in the avian middle ear in a number of important respects and this may help to explain why they are often u...

  16. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    OpenAIRE

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. I...

  17. Avian Influenza: Myth or Mass Murder?

    Directory of Open Access Journals (Sweden)

    Carol Louie

    2005-01-01

    Full Text Available The purpose of the present article was to determine whether avian influenza (AI is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  18. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  19. Role of estrogen in avian osteoporosis.

    Science.gov (United States)

    Beck, M M; Hansen, K K

    2004-02-01

    One of the difficulties associated with commercial layer production is the development of osteoporosis in hens late in the production cycle. In light of this fact and because of hens' unique requirements for Ca, many studies have focused on the regulation of Ca and the role of estrogen in this process. The time course of estrogen synthesis over the productive life of hens has been well documented; increased circulating estrogen accompanies the onset of sexual maturity while decreases signal a decline in egg production prior to a molt. Numbers of estrogen receptors decrease with age in numerous tissues. The parallel changes in calcium-regulating proteins, primarily Calbindin D28K, and in the ability of duodenal cells to transport Ca, are thought to occur as a result of the changes in estrogen, and are also reversible by the molt process. In addition to the traditional model of estrogen action, evidence now exists for a possible nongenomic action of estrogen via membrane-bound receptors, demonstrated by extremely rapid surges of ionized Ca in chicken granulosa cells in response to 17beta-estradiol. Estrogen receptors have also been discovered in duodenal tissue, and tamoxifen, which binds to the estrogen receptor, has been shown to cause a rapid increase in Ca transport in the duodenum. In addition, recent evidence also suggests that mineralization of bone per se may not explain entirely the etiology of osteoporosis in the hen but that changes in the collagen matrix may contribute through decreases in bone elasticity. Taken together, these studies suggest that changes in estrogen synthesis and estrogen receptor populations may underlie the age-related changes in avian bone. As with postmenopausal women, dietary Ca and vitamin D are of limited benefit as remedies for osteoporosis in the hen. PMID:14979570

  20. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    OpenAIRE

    Kučerová, D. (Dana); Plachý, J; Reinišová, M. (Markéta); Šenigl, F. (Filip); Trejbalová, K. (Kateřina); Geryk, J. (Josef); Hejnar, J. (Jiří)

    2013-01-01

    Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na+/H+ exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive...

  1. Quantitative Risk Assessment of Avian Influenza Virus Infection via Water

    NARCIS (Netherlands)

    Schijven FJ; Teunis PFM; Roda Husman AM de; MGB

    2006-01-01

    Using literature data, daily infection risks of chickens and humans with H5N1 avian influenza virus (AIV) by drinking water consumption were estimated for the Netherlands. A highly infectious virus and less than 4 log10 drinking water treatment (reasonably inefficient) may lead to a high infection r

  2. DETECTION OF AVIAN INFLUENZA VIRUS USING AN INTERFEROMETRIC BIOSENSOR

    Science.gov (United States)

    An optical interferometric waveguide immunoassay for direct and label-less detection of avian influenza virus is described. The assay response is based on index of refraction changes that occur upon binding of virus particles to antigen (hemagglutinin) specific antibodies on the waveguide surface. ...

  3. Highly Pathogenic Avian Influenza Virus Infection in Feral Raccoons, Japan

    OpenAIRE

    Horimoto, Taisuke; Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; SASHIKA, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-01-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health.

  4. Avian Metapneumovirus Molecular Biology and Development of Genetically Engineered Vaccines

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important pathogen of turkeys with a worldwide distribution. aMPV is a member of the genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae. The genome of aMPV is a non-segmented, single-stranded, negative-sense RNA of 1...

  5. Low frequency of paleoviral infiltration across the avian phylogeny

    DEFF Research Database (Denmark)

    Cui, Jie; Zhao, Wei; Huang, Zhiyong;

    2014-01-01

    endogenous viral element evolution.Results: Through a systematic screening of the genomes of 48 species sampled across the avian phylogeny we reveal that birds harbor a limited number of endogenous viral elements compared to mammals, with only five viral families observed: Retroviridae, Hepadnaviridae...

  6. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus....

  7. Avian Influenza H5N1 in Tigers and Leopards

    OpenAIRE

    Keawcharoen, Juthatip; Oraveerakul, Kanisak; Kuiken, Thijs; Fouchier, Ron A M; Amonsin, Alongkorn; Payungporn, Sunchai; Noppornpanth, Suwanna; Wattanodorn, Sumitra; Theamboonlers, Apiradee; Tantilertcharoen, Rachod; Pattanarangsan, Rattapan; Arya, Nlin; Ratanakorn, Parntep; Osterhaus, Albert D. M. E.; Poovorawan, Yong

    2004-01-01

    Influenza virus is not known to affect wild felids. We demonstrate that avian influenza A (H5N1) virus caused severe pneumonia in tigers and leopards that fed on infected poultry carcasses. This finding extends the host range of influenza virus and has implications for influenza virus epidemiology and wildlife conservation.

  8. Avian Influenza in wild birds from Chile, 2007-2009.

    Science.gov (United States)

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-01

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms. PMID:25602438

  9. 9 CFR 113.326 - Avian Pox Vaccine.

    Science.gov (United States)

    2010-01-01

    ... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... established as follows: (1) Fowl pox susceptible birds all of the same age and from the same source, shall be... controls do not develop fowl pox during the observation period, the test is inconclusive and may...

  10. Pathobiology of avian influenza virus infections in wild birds

    Science.gov (United States)

    Individual avian Influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological features in chickens, AI viruses (AIV) are categorized as low pathogenicity (LPAI) or high pathogenicity (HPAI) viruses, and can be of any of...

  11. 9 CFR 113.31 - Detection of avian lymphoid leukosis.

    Science.gov (United States)

    2010-01-01

    ... REQUIREMENTS Standard Procedures § 113.31 Detection of avian lymphoid leukosis. The complement-fixation test... the same week from material harvested from each source flock (or other sampling procedure acceptable... cultures shall be prepared from the same cell suspension as the cultures for testing the vaccine....

  12. Scare of Avian Flu Revisits India: A Bumpy Road Ahead

    Directory of Open Access Journals (Sweden)

    Rajnish Kumar Rai

    2008-04-01

    Full Text Available With the threat of an avian flu pandemic once again looming over eastern India, issues regarding patents and affordability and accessibility of drugs have taken center stage. The key priority of India should be to remain prepared to address the public health crisis effectively, by stockpiling the drug tamiflu so that it can be easily distributed and administered to the needy.India had been confronted with a serious threat of avian flu in 2005-06, but past experience shows that, despite having some of the broadest and most comprehensive compulsory patent licensing laws, India's policymaking elite shied away from fully exploiting these legal 'flexibilities.' Fortunately, the danger of avian flu did not turn into a substantial public health crisis that year. Under this backdrop, this paper explores various ‘flexibilities’ available in the Indian patent law and suggests short term and long term strategies to effectively tackle the impending danger of an avian flu pandemic, and similar public health crises in future. This paper will discuss potential areas of conflict between the indigenous generic drug firms and the multi-national companies with respect to TRIPS compliance in the event that these flexibilities are exploited. This paper also highlights the administrative constraints and the economic viability of the compulsory licensing system. Finally, this paper shows how political will is often more critical than having well documented provisions in statute books to respond to such situations effectively.

  13. MHC haplotype involvement in avian resistance to an ectoparasite.

    Science.gov (United States)

    Owen, Jeb P; Delany, Mary E; Mullens, Bradley A

    2008-10-01

    Research on immune function in evolutionary ecology has frequently focused on avian ectoparasites (e.g., mites and lice). However, host immunogenetics involved with bird resistance to ectoparasites has not been determined. The critical role of the major histocompatibility complex (MHC) in adaptive immunity and high genetic variation found within the MHC make this gene complex useful for exploring the immunogenetic basis for bird resistance to ectoparasites. The objective of this study was to determine if the avian MHC influenced resistance to a blood-feeding ectoparasite. Four congenic lines of chickens, differing only at the MHC, were comparatively infested with a cosmopolitan ectoparasite of birds-northern fowl mite (NFM)-which is also a serious pest species of poultry. Mite infestations were monitored over time and mite densities (weekly and maximum) were compared among lines. Chickens with the MHC haplotype B21 were relatively resistant to NFM, compared with birds in the B15 congenic line (P density were tested. The highest peak NFM populations occurred more often on hens with the B15 haplotype versus the B21 haplotype (P = 0.012), which supported the results of the congenic study. These data indicate the avian MHC influences ectoparasite resistance, which is relevant to disease ecology and avian-ectoparasite interaction. PMID:18626638

  14. Avian Bornavirus in Free-Ranging Psittacine Birds, Brazil

    OpenAIRE

    Encinas-Nagel, Nuri; Enderlein, Dirk; Piepenbring, Anne; Herden, Christiane; Heffels-Redmann, Ursula; Felippe, Paulo A.N.; Arns, Clarice; Hafez, Hafez M.; Lierz, Michael

    2014-01-01

    Avian bornavirus (ABV) has been identified as the cause of proventricular dilatation disease in birds, but the virus is also found in healthy birds. Most studies of ABV have focused on captive birds. We investigated 86 free-ranging psittacine birds in Brazil and found evidence for natural, long-term ABV infection.

  15. Prevention and control of avian influenza in Asia

    Science.gov (United States)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  16. Highly Pathogenic Avian Influenza: Intersecting Humans, Animals, and the Environment

    Science.gov (United States)

    The Eurasian-African H5N1 highly pathogenic avian influenza (HPAI) virus has caused an unprecedented epizootic affecting mainly poultry, but has crossed multiple species barriers to infect captive and wild birds, carnivorous mammals and humans. There is still great concern over the continued infecti...

  17. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Science.gov (United States)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  18. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations. PMID:22702421

  19. Immunohistochemical staining of avian influenza virus in tissues

    Science.gov (United States)

    Immunohistochemical methods are commonly used for studying the pathogenesis of avian influenza (AI) virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and metho...

  20. Avian influenza diagnosis in the Russian Federation: Achievements and perspectives

    International Nuclear Information System (INIS)

    According to the Rosselkhoznadzor data, during 2005-2006, the avian influenza H5N1 outbreaks were reported in the Russian Federation in the Siberian, Ural, Central and South Federal Okrugs. In 2007, the RF officials notified the IOE about HPAI/H5N1 outbreaks in the territories of the Krasnodarsky Krai, Republic of Adygea, Moskovskaya and Kaluzhskaya Oblast. In 2008 there was one report about HPAI/H5N1 outbreak in Primorskii Krai (Far Eastern Okrug). To detect and characterize the avian influenza virus the following diagnostic scheme was used in ARRIAH: suspected cases (poultry, wild birds) and for monitoring purposes. 392 samples were positive in PCR to avian influenza virus type A. The most part of them were HPAI H5N1. In 2005 it was discovered 618 samples (223 - from poultry and 395 are from wild birds). Avian influenza type A virus genome was detected in 174 samples (85 - from poultry and 89 are from wild birds). 84 poultry samples and 36 wild birds samples were positive to subtype H5N1 (HPAI). 44 AI virus isolates were recovered (28 - from poultry and 16 are from wild birds). In 2006 it was discovered 1014 samples (159 - from poultry and 855 are from wild birds). Avian influenza type A virus genome was detected in 144 samples (84 - from poultry and 60 are from wild birds). Most part of these samples were positive to subtype H5N1. 67 AI virus isolates were recovered (50 - from poultry and 17 are from wild birds). In 2007 there were analyzed 833 samples (233 - from poultry and 600 are from wild birds). Avian influenza type A virus genome was detected in 55 poultry samples. All are positive to H5N1 subtype. Avian Influenza type A virus genome was detected in 7 samples from 1 region. Avian Influenza subtype H5N1 virus was not found. In 2008 we analyzed approximately 1400 samples. Most of them are from wild birds. Only 30 samples are from poultry. Avian influenza type A virus genome was detected in 1 poultry sample (HPAI H5N1). Avian Influenza type A virus genome

  1. Risk Mapping for Avian Influenza: a Social–Ecological Problem

    Directory of Open Access Journals (Sweden)

    Graeme S. Cumming

    2010-09-01

    Full Text Available Pathogen dynamics are inseparable from the broader environmental context in which pathogens occur. Although some pathogens of people are primarily limited to the human population, occurrences of zoonoses and vector-borne diseases are intimately linked to ecosystems. The emergence of these diseases is currently being driven by a variety of influences that include, among other things, changes in the human population, long-distance travel, high-intensity animal-production systems, and anthropogenic modification of ecosystems. Anthropogenic impacts on ecosystems have both direct and indirect (food-web mediated effects. Therefore, understanding disease risk for zoonoses is a social–ecological problem. The articles in this special feature focus on risk assessment for avian influenza. They include analyses of the history and epidemiological context of avian influenza; planning and policy issues relating to risk; the roles of biogeography and spatial and temporal variation in driving the movements of potential avian influenza carriers; approaches to quantifying risk; and an assessment of risk-related interactions among people and birds in Vietnamese markets. They differ from the majority of published studies of avian influenza in that they emphasize unknowns and uncertainties in risk mapping and societal responses to avian influenza, rather than concentrating on known or proven facts. From a systems perspective, the different aspects of social–ecological systems that are relevant to the problem of risk mapping can be summarized under the general categories of structural, spatial, and temporal components. I present some examples of relevant system properties, as suggested by this framework, and argue that, ultimately, risk mapping for infectious disease will need to develop a more holistic perspective that includes explicit consideration of the roles of policy, disease management, and feedbacks between ecosystems and societies.

  2. Evaluation and optimization of avian embryos and cell culture methods for efficient isolation and propagation of avian influenza viruses

    Science.gov (United States)

    Surveillance of wild bird populations for avian influenza viruses (AIV) contributes to our understanding of AIV evolution and ecology. Both real-time reverse transcriptase polymerase chain reaction (RRT-PCR) and virus isolation in embryonating chicken eggs (ECE) are standard methods for detecting A...

  3. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef; Hejnar, Jiří

    2013-01-01

    Roč. 87, č. 15 (2013), s. 8399-8407. ISSN 0022-538X R&D Projects: GA ČR GAP502/10/1651 Institutional support: RVO:68378050 Keywords : avian leukosis virus * ALV-J * NHE1 * host resistance * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.648, year: 2013

  4. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza.

    Science.gov (United States)

    Killian, Mary Lea; Kim-Torchetti, Mia; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  5. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza

    Science.gov (United States)

    Killian, Mary Lea; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  6. Changes in avian disease and mosquito vector prevalence; A 15-year perceptive and assessment of future risk: Hakalau National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mosquito-borne avian disease, avian malaria and avian pox, is a major limiting factor for Hawaiian forest birds. While native bird communities at Hakalau Forest NWR...

  7. Molecular diagnostics of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2006-01-01

    direct sequencing of the PCR product. The possibility of typization using molecular methods is based on the big difference at the amino acid and nucleotide levels between different HA subtypes (from 20- 74%, while the differences between strains of the same HA subtype are relatively small (0- 9%. The basic advantage in the detection and typization of influenza viruses using the RTPCR method is that it saves time. Namely, it can be performed directly from the samples taken in the field, and the result can be obtained within the same day, contrary to conventional methods that take 7 to 10 days. The obtained PCR product can also be sequenced immediately, which can provide an answer to the possible virulent potential of the isolate and its further spreading. The establishment of changes in the HA gene sequence can provide us with the information about the direction of the development of the genetic drift. The paper will describe in detail the possibilities for the implementation of molecular methods in diagnostics and typization, in fact, in the molecular epizootiology of avian influenza.

  8. Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Wallace P.; Johnson, Gregory D.; Strickland, Dale M.; Young, Jr., David P.; Sernka, Karyn J.; Good, Rhett E.

    2001-08-01

    It has been estimated that from 100 million to well over 1 billion birds are killed annually in the United States due to collisions with human-made structures, including vehicles, buildings and windows, powerlines, communication towers, and wind turbines. Although wind energy is generally considered environmentally friendly (because it generates electricity without emitting air pollutants or greenhouse gases), the potential for avian fatalities has delayed and even significantly contributed to blocking the development of some windplants in the U.S. Given the importance of developing a viable renewable source of energy, the objective of this paper is to put the issue of avian mortality associated with windpower into perspective with other sources of avian collision mortality across the U.S. The purpose of this paper is to provide a detailed summary of the mortality data collected at windplants and put avian collision mortality associated with windpower development into perspective with other significant sources of avian collision mortality across the United States. We provide a summary of data collected at many of the U.S. windplants and provide annual bird fatality estimates and projections for all wind turbines in the U.S. For comparison, we also review studies of avian collision mortality from other major human-made structures and report annual bird fatality estimates for these sources. Other sources also significantly contribute to overall avian mortality. For example, the National Audubon Society estimates avian mortality due to house cats at 100 million birds per year. Pesticide use, oil spills, disease, etc., are other significant sources of unintended avian mortality. Due to funding constraints, the scope of this paper is limited to examining only avian mortality resulting from collisions with human-made obstacles.

  9. Evolution of olfaction in non-avian theropod dinosaurs and birds

    OpenAIRE

    Darla K Zelenitsky; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M.

    2011-01-01

    Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we...

  10. Avian Influenza (H5N1) Warning System using Dempster-Shafer Theory and Web Mapping

    OpenAIRE

    Maseleno, Andino; Hasan, Md. Mahmud

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built a Web Mapping and Dempster-Shafer theory as early warning system of avian influenza. Early warning is the provision of timely and effective information, through identified institutions, that allows individuals exposed to a h...

  11. Avian leukosis virus infection: analysis of viremia and DNA integration in susceptible and resistant chicken lines.

    OpenAIRE

    Baba, T W; Humphries, E H

    1984-01-01

    Avian leukosis viruses induce lymphoid leukosis, a lymphoma which develops within the bursa of Fabricius several months after virus infection. Chickens from the Hyline SC and FP lines are, respectively, susceptible and resistant to avian leukosis virus-induced lymphoid leukosis. We examined plasma and cellular DNA obtained from avian leukosis virus-infected chickens for the presence of viremia and integrated viral sequences to determine whether the extent of virus infection is comparable in i...

  12. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines

    OpenAIRE

    Tang, De-chu C.; Zhang, Jianfeng; Toro, Haroldo; Shi, Zhongkai; van Kampen, Kent R.

    2009-01-01

    A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many o...

  13. A Complete Molecular Diagnostic Procedure for Applications in Surveillance and Subtyping of Avian Influenza Virus

    OpenAIRE

    Chun-Hsien Tseng; Hsiang-Jung Tsai; Chung-Ming Chang

    2014-01-01

    Introduction. The following complete molecular diagnostic procedure we developed, based on real-time quantitative PCR and traditional PCR, is effective for avian influenza surveillance, virus subtyping, and viral genome sequencing. Method. This study provides a specific and sensitive step-by-step procedure for efficient avian influenza identification of 16 hemagglutinin and 9 neuraminidase avian influenza subtypes. Result and Conclusion. This diagnostic procedure may prove exceedingly useful ...

  14. Linking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups

    Directory of Open Access Journals (Sweden)

    Caron Alexandre

    2012-10-01

    Full Text Available Abstract The ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG concept to explore the relationships between wild bird communities and avian influenza virus (AIV in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks and charadriiforms (waders drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology.

  15. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin

    Institute of Scientific and Technical Information of China (English)

    XU Xing; ZHAO Qi; NORELL Mark; SULLIVAN Corwin; HONE David; ERICKSON Gregory; WANG XiaoLin; HAN FengLu; GUO Yu

    2009-01-01

    Recent fossil discoveries have substantially reduced the morphological gap between non-avian and avian dinosaurs, yet avians including Archaeopteryx differ from non-avian theropods in their limb proportions. In particular, avians have proportionally longer and more robust forelimbs that are capable of supporting a large aerodynamic surface. Here we report on a new maniraptoran dinosaur, Anchiornis huxleyi gen. et sp. nov., based on a specimen collected from Iacustrine deposits of uncertain age in western Liaoning, China. With an estimated mass of 110 grams, Anchiornis is the smallest known non-avian theropod dinosaur. It exhibits some wrist features indicative of high mobility, presaging the wing-folding mechanisms seen in more derived birds and suggesting rapid evolution of the carpus. Otherwise, Anchiornis is intermediate in general morphology between non-avian and avian dinosaurs, particularly with regard to relative forelimb length and thickness, and represents a transitional step toward the avian condition. In contrast with some recent comprehensive phylogenetic analyses, our phylogenetic analysis incorporates subtle morphological variations and recovers a conventional result supporting the monophyly of Avialae.

  16. Access to health information may improve behavior in preventing Avian influenza among women

    Directory of Open Access Journals (Sweden)

    Ajeng T. Endarti

    2011-02-01

    Full Text Available Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian influenza. The heads of household as the sample unit were chosen by multi-stage sampling.Results: Among 387 subjects, 29.5% of them was had good behavior toward Avian influenza. The final model revealed that gender and access to health information were two dominant factors for good behavior in preventing Avian influenza. Compared with men, women had 67% higher risk to have good behavior [adjusted relative risk (RRa = 1.67; 95% confidence interval (CI = 0.92-3.04; P = 0.092]. Compared to those with no access to health information, subjects with access to health information had 3.4 fold increase to good behavior (RRa = 3.40; 95% CI =  0.84-13.76; P = 0.087.Conclusion: Acces to health information concerning Avian influenza was more effective among women in promoting good behavior toward preventing Avian influenza. (Med J Indones 2011; 20:56-61Keywords: avian influenza, behavior, gender, health promotion

  17. Avian influenza vaccines against H5N1 'bird flu'.

    Science.gov (United States)

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI. PMID:24491922

  18. Session: Avoiding, minimizing, and mitigating avian and bat impacts

    International Nuclear Information System (INIS)

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger

  19. Multiscale assessment of patterns of avian species richness

    DEFF Research Database (Denmark)

    Rahbek, C; Graves, G R

    2001-01-01

    -250% greater than those recorded at equivalent latitudes in the central Amazon basin. These findings reflect the extraordinary abundance of species associated with humid montane regions at equatorial latitudes and the importance of orography in avian speciation. In a broader context, our data reinforce......The search for a common cause of species richness gradients has spawned more than 100 explanatory hypotheses in just the past two decades. Despite recent conceptual advances, further refinement of the most plausible models has been stifled by the difficulty of compiling high-resolution databases...... at continental scales. We used a database of the geographic ranges of 2,869 species of birds breeding in South America (nearly a third of the world's living avian species) to explore the influence of climate, quadrat area, ecosystem diversity, and topography on species richness gradients at 10 spatial scales...

  20. Free-grazing ducks and highly pathogenic avian influenza, Thailand

    OpenAIRE

    Gilbert, Marius; Chaitaweesup, P.; Parakamawongsa, T.; Premashthira, S.; Tiensin, T.; Kalpravidh, W.; Wagner, H.; Slingenbergh, J.

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 viru...

  1. Global Climate Change Leads to Mistimed Avian Reproduction

    OpenAIRE

    Visser, Marcel E; Both, Christiaan; Lambrechts, Marcel M.

    2004-01-01

    Climate change is apparent as an advancement of spring phenology. However, there is no a priori reason to expect that all components of food chains will shift their phenology at the same rate. This differential shift will lead to mistimed reproduction in many species, including seasonally breeding birds. We argue that climate change induced mistiming in avian reproduction occurs because there is a substantial period between the moment of decision making on when to reproduce and the moment at ...

  2. The Bird of Time: Cognition and the Avian Biological Clock

    OpenAIRE

    Vincent Michael Cassone; David F Westneat

    2012-01-01

    Avian behavior and physiology are embedded in time at many levels of biological organization. Biological clock function in birds is critical for sleep/wake cycles, but may also regulate the acquisition of place memory, learning of song from tutors, social integration and time-compensated navigation. This relationship has two major implications. First, mechanisms of the circadian clock should be linked in some way to the mechanisms of all these behaviors. How is not yet clear, and evidence tha...

  3. The Bird of Time: Cognition and the Avian Biological Clock

    Directory of Open Access Journals (Sweden)

    Vincent Michael Cassone

    2012-03-01

    Full Text Available Avian behavior and physiology are embedded in time at many levels of biological organization. Biological clock function in birds is critical for sleep/wake cycles, but may also regulate the acquisition of place memory, learning of song from tutors, social integration and time-compensated navigation. This relationship has two major implications. First, mechanisms of the circadian clock should be linked in some way to the mechanisms of all these behaviors. How is not yet clear, and evidence that the central clock has effects is piecemeal. Second, selection acting on characters that are linked to the circadian clock should influence aspects of the clock mechanism itself. Little evidence exists for this in birds, but there have been few attempts to assess this idea. At its core, the avian circadian clock is a multi-oscillator system comprising the pineal gland, the retinae and the avian homologues of the suprachiasmatic nuclei, whose mutual interactions ensure coordinated physiological functions, which are in turn synchronized to ambient light cycles via encephalic, pineal and retinal photoreceptors. At the molecular level, avian biological clocks comprise a genetic network of positive elements clock and bmal1 whose interactions with the negative elements period2, period3 and the cryptochromes form an oscillatory feedback loop that circumnavigates the 24 hrs of the day. We assess the possibilities for dual integration of the clock with time-dependent cognitive processes. Closer examination of the molecular, physiological, and behavioral elements of the circadian system would place birds at a very interesting fulcrum in the neurobiology of time in learning, memory and navigation. 

  4. The bird of time: cognition and the avian biological clock

    OpenAIRE

    Cassone, Vincent M.; David F Westneat

    2012-01-01

    Avian behavior and physiology are embedded in time at many levels of biological organization. Biological clock function in birds is critical for sleep/wake cycles, but may also regulate the acquisition of place memory, learning of song from tutors, social integration, and time-compensated navigation. This relationship has two major implications. First, mechanisms of the circadian clock should be linked in some way to the mechanisms of all these behaviors. How is not yet clear, and evidence th...

  5. The physiology and biomechanics of avian flight at high altitude

    OpenAIRE

    Altshuler, Douglas L.; Dudley, Robert

    2006-01-01

    Many birds fly at high altitude, either during long-distance flights or by virtue of residence in high-elevation habitats. Among the many environmental features that vary systematically with altitude, five have significant consequences for avian flight performance: ambient wind speeds, air temperature, humidity, oxygen availability, and air density. During migratory flights, birds select flight altitudes that minimize energy expenditure via selection of advantageous tail- and cross-winds. Oxy...

  6. Infection of Avian Pox Virus in Oriental Turtle-Doves

    OpenAIRE

    Kyung-Yeon Eo1, Young-Hoan Kim2, Kwang-Hyun Cho3, Jong-Sik Jang4, Tae-Hwan Kim5, Dongmi Kwak5 and Oh-Deog Kwon5*

    2011-01-01

    Three Oriental Turtle-doves (Streptopelia orientalis) exhibiting lethargy, dyspnea, poor physical condition, and poor flight endurance, were rescued and referred to the Animal Health Center, Seoul Zoo, Korea. The doves had wart-like lesions on the legs and head. All of them died the following day after arrival, with the exception of one that survived for 6 days. Diphtheritic membranes on the tongue and oral mucosa were apparent at necropsy. Avian pox virus infection was suspected based on the...

  7. Is low pathogenic avian influenza virus virulent for wild waterbirds?

    OpenAIRE

    Kuiken, T

    2013-01-01

    Although low pathogenic avian influenza virus (LPAIV) is traditionally considered to have adapted to its wild waterbird host to become avirulent, recent studies have suggested that LPAIV infection might after all have clinical effects. Therefore, I reviewed the literature on LPAIV infections in wild waterbirds. The virulence of LPAIV was assessed in 17 studies on experimental infections and nine studies on natural infections. Reported evidence for virulence were reductions in return rate, fee...

  8. Embryonic growth and antioxidant provision in avian eggs

    OpenAIRE

    Deeming, D Charles; Pike , Thomas W.

    2013-01-01

    Avian embryos undergo extremely rapid development over a relatively short period of time, and so are likely to suffer high levels of oxidative damage unless this is mitigated by sufficient maternal allocation of appropriate antioxidants. At a species level, it is therefore predicted that antioxidants should be allocated to eggs according to the rate of embryonic growth, such that eggs containing embryos that grow faster are furnished with higher antioxidant levels, independent of egg size. We...

  9. Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds

    OpenAIRE

    Gaidet, Nicolas; El Mamy, Ahmed B. Ould; Cappelle, Julien; Caron, Alexandre; Graeme S. Cumming; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; Servan de Almeida, Renata; Fereidouni, Sasan R.; Cattoli, Giovanni; Abolnik, Celia; Mundava, Josphine; Fofana, Bouba; Ndlovu, Mduduzi

    2012-01-01

    Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location a...

  10. Pathogenicity of highly pathogenic avian influenza virus in mammals

    OpenAIRE

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno; Fouchier, Ron

    2008-01-01

    textabstractIn recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the current knowledge of the determinants of pathogenicity of HPAI viruses in mammals is summarized. It is becoming apparent that common mechanisms exist across influenza A virus strains and...

  11. Cell culture based production of avian influenza vaccines

    OpenAIRE

    Wielink, van, P.

    2012-01-01

    Vaccination of poultry can be used as a tool to control outbreaks of avian influenza, including that of highly pathogenic H5 and H7 strains. Influenza vaccines are traditionally produced in embryonated chicken eggs. Continuous cell lines have been suggested as an alternative substrate to produce influenza vaccines, as they are more robust and lack the long lead times associated with the production of large quantities of embryonated eggs. In the study that is described in this thesis, the prod...

  12. The Irrationality of GOF Avian Influenza Virus Research

    OpenAIRE

    Wain-Hobson, Simon

    2014-01-01

    The last two and a half years have witnessed a curious debate in virology characterized by a remarkable lack of discussion. It goes by the misleading epithet “gain of function” (GOF) influenza virus research, or simply GOF. As will be seen, there is nothing good to be gained. The controversial experiments confer aerosol transmission on avian influenza virus strains that can infect humans, but which are not naturally transmitted between humans. Some of the newer strains are clearly highly path...

  13. Potential Economic Impacts of Avian Influenza in LAC

    OpenAIRE

    César Falconi

    2006-01-01

    This presentation discuses bird flu in two different related scenarios: as a disease that could affect the Poultry Sector and as a disease that could cause a Human Pandemic. The paper includes an analysis on what's at stake, risks and probabilities, costs, impacts and ways of prevention, as well as a series of conclusions. This presentation was created for the Seminar "The Mass Media and the Threat of Avian Influenza in Latin America" held in August of 2006.

  14. Molecular cloning of avian myelocytomatosis virus (MC29) transforming sequences.

    OpenAIRE

    Lautenberger, J A; Schulz, R A; Garon, C F; Tsichlis, P N; Papas, T S

    1981-01-01

    Avian myelocytomatosis virus (MC29), a defective acute leukemia virus, has a broad oncogenic spectrum in vivo and transforms fibroblasts and hematopoietic target cells in vitro. We have used recombinant DNA technology to isolate and to characterize the sequences that are essential in the transformation process. Integrated MC29 proviral DNA was isolated from a library of recombinant phage containing DNA from the MC29-transformed nonproducer quail cell line Q5. The cloned DNA was analyzed by So...

  15. Microhabitat choice in island lizards enhances camouflage against avian predators

    OpenAIRE

    Marshall, Kate L A; Philpot, Kate E.; Martin Stevens

    2016-01-01

    Camouflage can often be enhanced by genetic adaptation to different local environments. However, it is less clear how individual behaviour improves camouflage effectiveness. We investigated whether individual Aegean wall lizards (Podarcis erhardii) inhabiting different islands rest on backgrounds that improve camouflage against avian predators. In free-ranging lizards, we found that dorsal regions were better matched against chosen backgrounds than against other backgrounds on the same island...

  16. Control of Avian Coccidiosis: Future and Present Natural Alternatives

    OpenAIRE

    Rosa Estela Quiroz-Castañeda; Edgar Dantán-González

    2015-01-01

    Numerous efforts to date have been implemented in the control of avian coccidiosis caused by the Eimeria parasite. Since the appearance of anticoccidial chemical compounds, the search for new alternatives continues. Today, no product is available to cope with the disease; however, the number of products commercially available is constantly increasing. In this review, we focus on natural products and their anticoccidial activity. This group comprises fatty acids, antioxidants, fungal and herba...

  17. Avian Bornavirus Associated with Fatal Disease in Psittacine Birds▿

    OpenAIRE

    Staeheli, Peter; Rinder, Monika; Kaspers, Bernd

    2010-01-01

    Thanks to new technologies which enable rapid and unbiased screening for viral nucleic acids in clinical specimens, an impressive number of previously unknown viruses have recently been discovered. Two research groups independently identified a novel negative-strand RNA virus, now designated avian bornavirus (ABV), in parrots with proventricular dilatation disease (PDD), a severe lymphoplasmacytic ganglioneuritis of the gastrointestinal tract of psittacine birds that is frequently accompanied...

  18. Sociable schedules: interplay between avian seasonal and social behaviour

    OpenAIRE

    Helm, Barbara; Piersma, Theunis; van der Jeugd, Henk

    2006-01-01

    Timing is essential in seasonally changing habitats. Survival and reproduction are enhanced through precise adjustment to environmental conditions. Avian seasonal behaviour, that is, diverse activities associated with reproduction, moult and migration, has an endogenous basis and is ultimately linked to changes in environmental factors such as food supply. However, behaviour occurs in social contexts, and interactions with conspecifics are intimately linked to seasonal activities. Time progra...

  19. Does weather affect biting fly abundance in avian nests?

    OpenAIRE

    Martínez de la Puente, Josué; Merino, Santiago; Lobato, Elisa; Rivero de Aguilar, Juan; Cerro Gómez, Sara del; Ruiz De Castañeda, Rafael; Moreno Klemming, Juan

    2009-01-01

    Environmental factors may strongly affect avian-biting fly interactions in different ways because insects are heterothermic organisms that depend greatly on environmental variables to activate their metabolism and behaviour. We studied the effects of weather on both blackfly (Simuliidae) and biting midge Culicoides (Ceratopogonidae) abundance in nests of three passerine species: blue tits Cyanistes caeruleus, great tits Parus major and pied flycatchers Ficedula hypoleuca, breeding in the sam...

  20. Phylogenetic Position of Avian Nocturnal and Diurnal Raptors

    OpenAIRE

    Mahmood, Muhammad Tariq; McLenachan, Patricia A.; Gillian C Gibb; Penny, David

    2014-01-01

    We report three new avian mitochondrial genomes, two from widely separated groups of owls and a falcon relative (the Secretarybird). We then report additional progress in resolving Neoavian relationships in that the two groups of owls do come together (it is not just long-branch attraction), and the Secretarybird is the deepest divergence on the Accipitridae lineage. This is now agreed between mitochondrial and nuclear sequences. There is no evidence for the monophyly of the combined three gr...

  1. Mimicry and masquerade from the avian visual perspective

    Directory of Open Access Journals (Sweden)

    Mary Caswell STODDARD

    2012-08-01

    Full Text Available Several of the most celebrated examples of visual mimicry, like mimetic eggs laid by avian brood parasites and pala­table insects mimicking distasteful ones, involve signals directed at the eyes of birds. Despite this, studies of mimicry from the avian visual perspective have been rare, particularly with regard to defensive mimicry and masquerade. Defensive visual mimicry, which includes Batesian and Müllerian mimicry, occurs when organisms share a visual signal that functions to deter predators. Masquerade occurs when an organism mimics an inedible or uninteresting object, such as a leaf, stick, or pebble. In this paper, I present five case studies covering diverse examples of defensive mimicry and masquerade as seen by birds. The best-known cases of defensive visual mimicry typically come from insect prey, but birds themselves can exhibit defensive visual mimicry in an attempt to escape mobbing or dissuade avian predators. Using examples of defensive visual mimicry by both insects and birds, I show how quantitative models of avian color, luminance, and pattern vision can be used to enhance our understanding of mimicry in many systems and produce new hypotheses about the evolution and diversity of signals. Overall, I investigate examples of Batesian mimicry (1 and 2, Müllerian mimicry (3 and 4, and masquerade (5 as follows: 1 Polymorphic mimicry in African mocker swallowtail butterflies; 2 Cuckoos mimicking sparrowhawks; 3 Mimicry rings in Neotropical butterflies; 4 Plumage mimicry in toxic pitohuis; and 5 Dead leaf-mimicking butterflies and mantids [Current Zoology 58 (4: 630–648, 2012].

  2. Immunological phenotype of lymphomas induced by avian leukosis viruses.

    OpenAIRE

    Chen, L. C.; S.A. Courtneidge; Bishop, J M

    1983-01-01

    The production of immunoglobulin by six cell lines derived from bursal tumors induced by avian leukosis virus follows two general patterns: (i) three cell lines that have been extensively passaged in culture synthesize and secrete light chains only; (ii) three cell lines that are recently isolated produce and secrete monomeric immunoglobulin M in addition to free light chains. All six cell lines synthesize and secrete both glycosylated and unglycosylated forms of light chain. We conclude that...

  3. Rapid induction of hypothyroidism by an avian leukosis virus.

    OpenAIRE

    Carter, J K; Smith, R. E.

    1983-01-01

    Infection of 10-day chicken embryos with an avian leukosis virus, RAV-7, resulted in hypothyroidism within 3 weeks posthatching. Histological examination of the thyroids from infected chickens showed an extensive infiltration of lymphoblastoid cells by 7 days posthatching. Areas resembling germinal centers were present in the thyroids of infected chickens by 3 weeks posthatching. Examination of circulating thyroid and pancreas hormones showed a significant reduction in T3 and T4 levels and a ...

  4. Relationship of avian retrovirus DNA synthesis to integration in vitro.

    OpenAIRE

    Lee, Y.M.; Coffin, J M

    1991-01-01

    An in vitro integration system derived from avian leukosis virus-infected cells supports both intra- and intermolecular integration of the viral DNA. In the absence of polyethylene glycol, intramolecular integration of viral DNA molecules into themselves (autointegration) was preferred. In the presence of polyethylene glycol, integration into an exogenously supplied DNA target was greatly promoted. Analysis of integration intermediates revealed that the strand transfer mechanisms of both reac...

  5. Mimicry and masquerade from the avian visual perspective

    Institute of Scientific and Technical Information of China (English)

    Mary Caswell STODDARD

    2012-01-01

    Several of the most celebrated examples of visual mimicry,like mimetic eggs laid by avian brood parasites and palatable insects mimicking distasteful ones,involve signals directed at the eyes of birds.Despite this,studies of mimicry from the avian visual perspective have been rare,particularly with regard to defensive mimicry and masquerade.Defensive visual mimicry,which includes Batesian and Müllerian mimicry,occurs when organisms share a visual signal that functions to deter predators.Masquerade occurs when an organism mimics an inedible or uninteresting object,such as a leaf,stick,or pebble.In this paper,I present five case studies covering diverse examples of defensive mimicry and masquerade as seen by birds.The best-known cases of defensive visual mimicry typically come from insect prey,but birds themselves can exhibit defensive visual mimicry in an attempt to escape mobbing or dissuade avian predators.Using examples of defensive visual mimicry by both insects and birds,I show how quantitative models of avian color,luminance,and pattern vision can be used to enhance our understanding of mimicry in many systems and produce new hypotheses about the evolution and diversity of signals.Overall,I investigate examples of Batesian mimicry (1 and 2),Müllerian mimicry (3 and 4),and masquerade (5) as follows:1) Polymorphic mimicry in African mocker swallowtail butterflies; 2) Cuckoos mimicking sparrowhawks; 3) Mimicry rings in Neotropical butterflies; 4) Plumage mimicry in toxic pitohuis; and 5) Dead leaf-mimicking butterflies and mantids.

  6. Review of avian mortality studies at concentrating solar power plants

    Science.gov (United States)

    Ho, Clifford K.

    2016-05-01

    This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.

  7. The cuticle modulates ultraviolet reflectance of avian eggshells

    Directory of Open Access Journals (Sweden)

    Daphne C. Fecheyr-Lippens

    2015-07-01

    Full Text Available Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

  8. Emergence of fatal avian influenza in New England harbor seals

    Science.gov (United States)

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  9. Protective roles of free avian respiratory macrophages in captive birds.

    Science.gov (United States)

    Mutua, Mbuvi P; Muya, Shadrack; Gicheru, Muita M

    2016-01-01

    In the mammalian lung, respiratory macrophages provide front line defense against invading pathogens and particulate matter. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM) and a dearth of the cells in the avian lung has been purported to foreordain a weak first line of pulmonary defense, a condition associated with high mortality of domestic birds occasioned by respiratory inflictions. Avian pulmonary mechanisms including a three tiered aerodynamic filtration system, tight epithelial junctions and an efficient mucociliary escalator system have been known to supplement FARM protective roles. Current studies, however, report FARM to exhibit an exceptionally efficient phagocytic capacity and are effective in elimination of invading pathogens. In this review, we also report on effects of selective synthetic peroxisome proliferator activated receptor gamma (PPAR γ) agonists on non phlogistic phagocytic properties in the FARM. To develop effective therapeutic interventions targeting FARM in treatment and management of respiratory disease conditions in the poultry, further studies are required to fully understand the role of FARM in innate and adaptive immune responses. PMID:27306902

  10. Avian bornavirus in the urine of infected birds

    Directory of Open Access Journals (Sweden)

    Villalobos AR

    2012-06-01

    Full Text Available J Jill Heatley,1 Alice R Villalobos21Zoological Medicine, 2Department of Nutrition & Food Science, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USAAbstract: Avian bornavirus (ABV causes proventricular dilatation disease in multiple avian species. In severe clinical disease, the virus, while primarily neurotropic, can be detected in many organs, including the kidneys. We postulated that ABV could be shed by the kidneys and found in the urine of infected birds. Immunohistochemical staining demonstrated viral N and P proteins of ABV within the renal tubules. We adapted a nonsurgical method of urine collection for use in parrots known to be shedding ABV in their droppings. We obtained urine without feces, and results were compared with swabs of fresh voided feces. Reverse transcription–polymerase chain reaction assay performed on these paired samples from five birds indicated that ABV was shed in quantity in the urine of infected birds, and a single sample was urine-positive and fecal-negative. We suggest that urine sampling may be a superior sample for detection of birds shedding ABV, and advocate that additional birds, known to be shedding or infected with ABV, should be investigated via this method.Keywords: avian bornavirus, Psittaciformes, parrot, urine, proventricular dilatation disease

  11. New Perspectives on the Ontogeny and Evolution of Avian Locomotion.

    Science.gov (United States)

    Heers, Ashley M

    2016-09-01

    Close correspondence between form and function is a central tenet of natural selection. One of the most striking, textbook cases for form-function congruence is the evolution of flight and the body plan of birds: compared with other tetrapods, extant adult birds have highly modified integuments and skeletons, and it has traditionally been assumed that many of these modifications are adaptations or exaptations for flight. However, developing birds that lack many of the morphological signatures of flight capacity nevertheless use their developing wings for a variety of flapping behaviors, such as wing-assisted incline running and even brief flight. Immature birds thereby demonstrate that rudimentary "flight" apparatuses are more functional than traditional assumptions about form-function relationships would predict. Here, I review the ontogeny of avian locomotion, highlighting how the developmental acquisition of flight in extant birds can improve our understanding of form-function relationships in the avian body plan, and provide insight into the evolutionary origin of flight among extinct non-avian theropod dinosaurs. PMID:27371381

  12. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Science.gov (United States)

    Bailleul, Alida M; Hall, Brian K; Horner, John R

    2013-01-01

    The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors. PMID:23418610

  13. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  14. A simple vitrification method for cryobanking avian testicular tissue.

    Science.gov (United States)

    Liu, J; Cheng, K M; Purdy, P H; Silversides, F G

    2012-12-01

    Cryopreservation of testicular tissue is a promising method of preserving male reproductive potential for avian species. This study was conducted to assess whether a vitrification method can be used to preserve avian testicular tissue, using the Japanese quail (Coturnix japonica) as a model. A simple vitrification method that included dimethyl sulphoxide, ethylene glycol, and sucrose as cryoprotective agents, and allowed the storage of tissue in a sealed macrotube was applied to the testicular tissue from 1-wk-old Japanese quail. The vitrified tissue was warmed at room temperature or at 40°C. After warming, tissue was implanted onto the chorioallantoic membrane of 8- to 9-d-old chicken embryos and the vascularization of the grafts was evaluated. When compared with fresh tissue, the tissue that had been warmed at 40°C showed no difference in vascularization. The tissue that had been warmed at room temperature was significantly less vascularized than the fresh tissue. Vitrification of testicular tissue and storage in macrotubes provide a promising model for preservation and recovery of male germplasm of avian species. PMID:23155032

  15. Avian Flu School: A Training Approach to Prepare for H5N1 Highly Pathogenic Avian Influenza

    OpenAIRE

    Beltran-Alcrudo, Daniel; Bunn, David A.; Sandrock, Christian E.; Cardona, Carol J.

    2008-01-01

    Since the reemergence of highly pathogenic avian influenza (H5N1 HPAI) in 2003, a panzootic that is historically unprecedented in the number of infected flocks, geographic spread, and economic consequences for agriculture has developed. The epidemic has affected a wide range of birds and mammals, including humans. The ineffective management of outbreaks, mainly due to a lack of knowledge among those involved in detection, prevention, and response, points to the need for training on H5N1 HPAI....

  16. A new scenario for the evolutionary origin of hair, feather, and avian scales. : Origin of hair, feather and avian scales

    OpenAIRE

    Dhouailly, Danielle

    2009-01-01

    In zoology it is well known that birds are characterized by the presence of feathers, and mammals by hairs. Another common point of view is that avian scales are directly related to reptilian scales. As a skin embryologist, I have been fascinated by the problem of regionalization of skin appendages in amniotes throughout my scientific life. Here I have collected the arguments that result from classical experimental embryology, from the modern molecular biology era, and from the recent discove...

  17. Nonlinear dynamical model and response of avian cranial kinesis.

    Science.gov (United States)

    Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence

    2006-05-01

    All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial

  18. The passage of cells can improve the detection rate of avian leukosis virus to facilitate the elimination of avian leukosis in chickens

    OpenAIRE

    Wang, Xiuzhen; Wang, Bo; Zhang, Peipei; Cheng, Hegang; Sun, Shuhong

    2013-01-01

    Avian leukosis (AL) is one of the most harmful diseases to the poultry industry in China. The detection of the avian leukosis virus (ALV) p27 antigen plays a decisive role in the elimination of avian leukosis. To explore the influence of passaging cells on the detection rate of the ALV p27 antigen, 21 aseptic anticoagulated blood samples were collected from 21 chickens for which the cloacal swabs were positive for the p27 antigen to inoculate two sets of cell culture plates containing DF1 cel...

  19. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal ...

  20. Complete Genome Sequence of an Avian-Like H4N8 Swine Influenza Virus Discovered in Southern China

    OpenAIRE

    Su, Shuo; Qi, Wen-bao; Chen, Ji-dang; Cao, Nan; Zhu, Wan-jun; Yuan, Li-Guo; Wang, Heng; Zhang, Gui-hong

    2012-01-01

    We report here the complete genomic sequence of an avian-like H4N8 swine influenza virus containing an H5N1 avian influenza virus segment from swine in southern China. Phylogenetic analyses of the sequences of all eight viral RNA segments demonstrated that these are wholly avian influenza viruses of the Asia lineage. To our knowledge, this is the first report of interspecies transmission of an avian H4N8 influenza virus to domestic pigs under natural conditions.

  1. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  2. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α,

  3. H5N1 Highly pathogenic avian influenza virus in wild birds

    Science.gov (United States)

    The existing H5N1 HPAI experimental infection data in wild avian species has validated observations made from field data and provided useful objective data on susceptibility, viral shedding, and pathobiology in different avian species. However, a complete understanding of the H5N1 HPAI virus epidem...

  4. The Pathology of Avian Influenza in Birds and Animals: An Analytical Review

    International Nuclear Information System (INIS)

    Influenza virus remains enigmatic despite of long extensive studies. Avian influenza virus (H5N1) is able to infect a large spectrum of animal and bird species. Highly pathogenic avian influenza virus represents a serious problem both for a human and birds, particularly for chicks. Many studies have been performed in order to show differences between highly and low pathogenic avian influenza H5N1 viruses, and examine their biological properties. Many separate pathological and microscopic descriptions are interspersed in numerous published articles. The aim of our study was to analyze data published in international scientific journals, and to attempt a generalized view of avian influenza pathology in various animal and bird hosts. We summarized and systematized data describing pathological changes caused by both highly and low pathogenic types of avian influenza virus (H5N1) in animals and birds, and developed generalized descriptions with accent at the type of virus. We also tried to show up species specific features of pathological changes in birds and animals infected with avian influenza virus (H5N1). The results of this analytical work may be useful for pathological studies of a new avian influenza virus isolates, and for understanding of avian influenza pathogenesis in birds and animals. (author)

  5. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Standard test procedures for avian influenza. 147.9 Section 147.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Blood Testing Procedures § 147.9 Standard test procedures for avian influenza. (a) The agar...

  6. Risk Perceptions for Avian Influenza Virus Infection among Poultry Workers, China

    OpenAIRE

    Yu, Qi; Liu, Linqing; Pu, Juan; Zhao, Jingyi; Sun, Yipeng; Shen, Guangnian; Wei, Haitao; Zhu, Junjie; Zheng, Ruifeng; Xiong, Dongyan; Liu, Xiaodong; Liu, Jinhua

    2013-01-01

    To determine risk for avian influenza virus infection, we conducted serologic surveillance for H5 and H9 subtypes among poultry workers in Beijing, China, 2009–2010, and assessed workers’ understanding of avian influenza. We found that poultry workers had considerable risk for infection with H9 subtypes. Increasing their knowledge could prevent future infections.

  7. Surveillance of low pathogenic avian influenza in layer chickens: risk factors, transmission and early detection

    NARCIS (Netherlands)

    Gonzales Rojas, J.L.

    2012-01-01

    Low pathogenic avian influenza virus (LPAIv) of H5 and H7 subtypes are able to mutate to highly pathogenic avian influenza virus (HPAIv), which are lethal for most poultry species, can cause large epidemics and are a serious threat to public health. Thus, circulation of these LPAIv in poultry is und

  8. Chicken dendritic cells are susceptible to highly pathogenic avian influenza viruses which induce strong cytokine responses

    NARCIS (Netherlands)

    Vervelde, L.; Reemens, S.S.; Haarlem, van D.A.; Post, J.; Claassen, E.A.W.; Rebel, J.M.J.; Jansen, C.A.

    2013-01-01

    Infection with highly pathogenic avian influenza (HPAI) in birds and mammals is associated with severe pathology and increased mortality. We hypothesize that in contrast to low pathogenicity avian influenza (LPAI) infection, HPAI infection of chicken dendritic cells (DC) induces a cytokine deregulat

  9. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  10. Development, standardization and assessment of PCR systems for purity testing of avian viral vaccines.

    Science.gov (United States)

    Ottiger, Hans-Peter

    2010-05-01

    The European Pharmacopoeia (Ph. Eur.) requires avian viral vaccines to be free of adventitious agents. Purity testing is an essential quality requirement of immunological veterinary medicinal products (IVMPs) and testing for extraneous agents includes monitoring for many different viruses. Conventional virus detection methods include serology or virus culture, however, molecular tests have become a valid alternative testing method. Nucleic acid testing (NAT) is fast, highly sensitive and has a higher degree of discrimination than conventional approaches. These advantages have led to the development and standardization of polymerase chain reaction (PCR) assays for the detection of avian leucosis virus, avian orthoreovirus, infectious bursal disease virus, infectious bronchitis virus, Newcastle disease virus, infectious laryngotracheitis virus, influenza A virus, Marek's disease virus, turkey rhinotracheitis virus, egg drop syndrome virus, chicken anaemia virus, avian adenovirus and avian encephalomyelitis virus. This paper reviews the development, standardization and assessment of PCR for extraneous agent testing in IVMPs with examples from an Official Medicines Control Laboratory (OMCL). PMID:20338785

  11. Avian influenza H5N1: an update on molecular pathogenesis

    Institute of Scientific and Technical Information of China (English)

    WANG HongLiang; JIANG ChengYu

    2009-01-01

    Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly patho-genic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effec-tive therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.

  12. Avian influenza H5N1: an update on molecular pathogenesis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly pathogenic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effective therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.

  13. Avian Influenza: a global threat needing a global solution

    Directory of Open Access Journals (Sweden)

    Koh GCH

    2008-11-01

    Full Text Available Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical.

  14. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  15. Risky Zoographies: The Limits of Place in Avian Flu Management

    Directory of Open Access Journals (Sweden)

    Natalie Porter

    2012-11-01

    Full Text Available Global anxieties about avian influenza stem from a growing recognition that highly-virulent, highly-mobile disease vectors infiltrate human spaces in ways that are difficult to perceive, and even more difficult to manage. This article analyses a participatory health intervention in Việt Nam to explore how avian influenza threats challenge long-held understandings of animals’ place in the environment and society. In this intervention, poultry farmers collaborated with health workers to illustrate maps of avian flu risks in their communities. Participant-observation of the risk-mapping exercises shows that health workers treated poultry as commodities, and located these animals in environments that could be transformed and dominated by humans. However, these maps did not sufficiently represent the physical and social landscapes where humans and poultry coexist in Việt Nam. As such, farmers located poultry in environments dominated by risky nonhuman forces such as winds, waterways, and other organisms. I argue that these divergent risk maps demonstrate how ecological factors, interpersonal networks, and global market dynamics combine to engender a variety of interspecies relationships, which in turn shape the location of disease risks in space. I develop the term risky zoographies to signal the emergence of competing descriptions of animals and their habitats in zoonotic disease contexts. This concept suggests that as wild animals, livestock products, and microbial pathogens continue to globalise, place-based health interventions that limit animals to particular locales are proving inadequate. Risky zoographies signal the inextricability of nonhuman animals from human spaces, and reveal interspecies interactions that transect and transcend environments.

  16. Public Health and Epidemiological Considerations For Avian Influenza Risk Mapping and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Joseph P. Dudley

    2008-12-01

    Full Text Available Avian influenza viruses are now widely recognized as important threats to agricultural biosecurity and public health, and as the potential source for pandemic human influenza viruses. Human infections with avian influenza viruses have been reported from Asia (H5N1, H5N2, H9N2, Africa (H5N1, H10N7, Europe (H7N7, H7N3, H7N2, and North America (H7N3, H7N2, H11N9. Direct and indirect public health risks from avian influenzas are not restricted to the highly pathogenic H5N1 "bird flu" virus, and include low pathogenic as well as high pathogenic strains of other avian influenza virus subtypes, e.g., H1N1, H7N2, H7N3, H7N7, and H9N2. Research has shown that the 1918 Spanish Flu pandemic was caused by an H1N1 influenza virus of avian origins, and during the past decade, fatal human disease and human-to-human transmission has been confirmed among persons infected with H5N1 and H7N7 avian influenza viruses. Our ability to accurately assess and map the potential economic and public health risks associated with avian influenza outbreaks is currently constrained by uncertainties regarding key aspects of the ecology and epidemiology of avian influenza viruses in birds and humans, and the mechanisms by which highly pathogenic avian influenza viruses are transmitted between and among wild birds, domestic poultry, mammals, and humans. Key factors needing further investigation from a risk management perspective include identification of the driving forces behind the emergence and persistence of highly pathogenic avian influenza viruses within poultry populations, and a comprehensive understanding of the mechanisms regulating transmission of highly pathogenic avian influenza viruses between industrial poultry farms and backyard poultry flocks. More information is needed regarding the extent to which migratory bird populations to contribute to the transnational and transcontinental spread of highly pathogenic avian influenza viruses, and the potential for wild bird

  17. E Protein Prokaryotic Expression of Avian Infectious Bronchitis Virus

    Institute of Scientific and Technical Information of China (English)

    WEI Ping; ZHANG Fang; MING Xiaobo; ZENG Xiangwei; ZHU Yuqing; WANG Lin

    2008-01-01

    The small envelope protein (E) gene of avian infectious bronchitis virus (IBV) M41 strain was cloned,and then it was subeloned into prokaryotic expressing vector pGEX-6P-1.The recombinant plasmid was transformed into E.coli.BL21 and induced by IPTG.SDS-PAGE result showed that when objective protein fused with GST (about 20 ku), the relative molecular mass of fusion protein was 38 ku.It indicated that objective protein was about 12.4 ku.The result showed that E protein was expressed successfully, it was useful to the subsequent E protein research.

  18. Avian radioecology on a nuclear power station site. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, C.K.; Maletskos, C.J.; Youngstrom, K.A.

    1975-01-01

    A summary of a six-year avian radioecology study at the site of a nuclear power plant in Massachusetts is reported. A completed historical summary is followed by a description of mathematical models developed to calculate the effects on bird body burdens of various changes in environmental radionuclide levels. Examples are presented. Radionuclide metabolism studies in which acute doses of /sup 131/I and /sup 137/Cs were administered to four species of wild birds are presented. Radionuclides were administered both intravenously and orally; no apparent differences in uptake or elimination rates were observed between the two methods.

  19. Molecular diversity of avian schistosomes in Danish freshwater snails

    DEFF Research Database (Denmark)

    Christiansen, Anne Ø.; Olsen, Annette; Buchmann, Kurt; Kania, Per Walter; Nejsum, Peter; Vennervald, Birgitte J

    2015-01-01

    Avian schistosomes are widespread parasites of snails and waterfowl and may cause cercarial dermatitis (swimmer's itch) in humans, a disease that is frequently reported in European countries. These parasites are known to occur in Denmark, but here, we applied a new approach using molecular tools to...... subjected to molecular investigation by sequencing and phylogenetic analysis of the 5.8S and ITS2 ribosomal DNA for species identification. Additionally, snail hosts belonging to the genus Radix were identified by sequencing and phylogenetic analysis of partial ITS2 ribosomal DNA. Three out of 499 snails...

  20. Avian radioecology on a nuclear power station site. Final report

    International Nuclear Information System (INIS)

    A summary of a six-year avian radioecology study at the site of a nuclear power plant in Massachusetts is reported. A completed historical summary is followed by a description of mathematical models developed to calculate the effects on bird body burdens of various changes in environmental radionuclide levels. Examples are presented. Radionuclide metabolism studies in which acute doses of 131I and 137Cs were administered to four species of wild birds are presented. Radionuclides were administered both intravenously and orally; no apparent differences in uptake or elimination rates were observed between the two methods

  1. Avian influenza, domestic ducks and rice agriculture in Thailand

    OpenAIRE

    Gilbert, Marius; Xiao, Xiangming; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Premashthira, Sith; Boles, Stephen; Slingenbergh, Jan

    2007-01-01

    Highly pathogenic avian influenza (HPAI) caused by H5N1 viruses has become a global scale problem which first emerged in southern China and from there spread to other countries in Southeast and East Asia, where it was first confirmed in end 2003. In previous work, geospatial analyses demonstrated that free grazing ducks played critical role in the epidemiology of the disease in Thailand in the winter 2004/2005, both in terms of HPAI emergence and spread. This study explored the geographic ass...

  2. Within-host variation of avian influenza viruses

    OpenAIRE

    Iqbal, Munir; Xiao, Hiaxia; Baillie, Greg; Warry, Andrew; Essen, Steve C.; Londt, Brandon; Brookes, Sharon M; Brown, Ian H.; McCauley, John W.

    2009-01-01

    The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, b...

  3. Transmission of highly pathogenic avian influenza H7 virus

    OpenAIRE

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The method was based on a stochastic epidemic model in which birds move from being susceptible, latently infected and infectious, to death. Our results indicated that two weeks can elapse before a noticeab...

  4. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    OpenAIRE

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and ...

  5. Avian sarcoma virus 17 carries the jun oncogene.

    OpenAIRE

    Maki, Y; Bos, T J; Davis, C; Starbuck, M; Vogt, P K

    1987-01-01

    Biologically active molecular clones of avian sarcoma virus 17 (ASV 17) contain a replication-defective proviral genome of 3.5 kilobases (kb). The genome retains partial gag and env sequences, which flank a cell-derived putative oncogene of 0.93 kb, termed jun. The jun gene lacks preserved coding domains of tyrosine-specific protein kinases. It also shows no significant nucleic acid homology with other known oncogenes. The probable transformation-specific protein in ASV 17-transformed cells i...

  6. First characterization of avian influenza viruses from Greenland 2014

    DEFF Research Database (Denmark)

    Hartby, Christina Marie; Krog, Jesper Schak; Ravn Merkel, Flemming;

    2016-01-01

    In late February 2014, unusually high numbers of wild birds, thick-billed murre (Uria lomvia), were found dead at the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examinations in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2 and...... emaciated appearance of birds, suggests that the murre die-off was not due to infection with AIV, but could be the mere cause of sparse food availability or stormy weather. Here we present the first characterization of AIVs isolated in Greenland, and our results support the idea that wild birds in Greenland...

  7. Specificity of avian leukosis virus-induced hyperlipidemia.

    OpenAIRE

    Carter, J K; Smith, R. E.

    1984-01-01

    Rous-associated virus 7 (RAV-7) is a subgroup C avian leukosis virus which does not transform cells in vitro or carry an oncogene. When injected into 1-day-old hatched chicks, RAV-7 causes a low incidence of lymphoid leukosis after a latent period of several months. In contrast, infection of 10-day-old chicken embryos with RAV-7 leads to a disease syndrome characterized by stunting, obesity, atrophy of the bursa and the thymus, high triglyceride and cholesterol levels, reduced thyroxine level...

  8. The role of the legal and illegal trade of live birds and avian products in the spread of avian influenza.

    Science.gov (United States)

    van den Berg, T

    2009-04-01

    The panzootic of the H5N1 strain of highly pathogenic avian influenza has become an international crisis. All parts of the world are now considered at risk due to trade globalisation, with the worldwide movement of animals, products and humans, and because of the possible spread of the virus through the migration of wild birds. The risk of introducing notifiable avian influenza (NAI) through trade depends on several factors, including the disease status of the exporting country and the type of products. The highest risk occurs in the trade of live birds. It is important to assess and manage these risks to ensure that global trade does not result in the dissemination of NAI. However, it is also important that the risk of infection is not used as an unjustified trade barrier. The role of the regulatory authorities is thus to facilitate the safe trade of animal products according to international guidelines. Nevertheless, the balance between acceptable risk and safe trade is difficult to achieve. Since the movements of poultry and birds are sometimes difficult to trace, the signature or 'identity card' of each isolated virus can be very informative. Indeed, sequencing the genes of H5N1 and other avian influenza viruses has assisted greatly in establishing links and highlighting differences between isolates from different countries and tracing the possible source of introduction. Recent examples from Asia, Europe and Africa, supported by H5N1 molecular fingerprinting, have demonstrated that the sources of introduction can be many and no route should be underestimated. PMID:19618621

  9. Avian evolution: from Darwin's finches to a new way of thinking about avian forebrain organization and behavioural capabilities

    Science.gov (United States)

    Reiner, Anton

    2008-01-01

    The study of birds, especially the Galapagos finches, was important to Darwin in the development of the theory of evolution by natural selection. Birds have also been at the centre of a recent reformulation in understanding cerebral evolution and the substrates for higher cognition. While it was once thought that birds possess a simple cerebrum and were thus limited to instinctive behaviours, it is now clear that birds possess a well-developed cerebrum that looks very different from the mammalian cerebrum but can support a cognitive ability that for some avian species rivals that in primates. PMID:18854290

  10. Antigenic characterization of avian influenza H9 subtype isolated from desi and zoo birds

    Directory of Open Access Journals (Sweden)

    Farrukh Saleem

    2011-08-01

    Full Text Available Avian influenza is a viral infection which affects mainly the respiratory system of birds. The H9N2 considered as low pathogenic avian influenza (LPAI virus and continuously circulating in poultry flocks causing enormous economic losses to poultry industry of Pakistan. As these viruses have RNA genome and their RNA polymerase enzyme lacks proof reading activity which resulted in spontaneous mutation in surface glycoproteins (HA and NA and reassortment of their genomic segments results in escape from host immune response produced by the vaccine. Efforts made for the isolation and identification of avian influenza virus from live desi and zoo birds of Lahore and performed antigenic characterization. The local vaccines although gives a little bit less titer when we raise the antisera against these vaccines but their antisera have more interaction with the local H9 subtype antigen so it gives better protective immune response. Infected chicken antisera are more reactive as compare to rabbit antisera. This shows that our isolates have highest similarity with the currently circulating viruses. These results guided us to devise a new control strategy against avian influenza viral infections. The antigenic characterization of these avian influenza isolates helped us to see the antigenic differences between the isolates of this study and H9 subtype avian influenza viruses used in vaccines. Therefore, this study clearly suggests that a new local H9 subtype avian influenza virus should be used as vaccinal candidate every year for the effective control of influenza viral infections of poultry.

  11. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  12. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  13. Molecular diversity of avian schistosomes in Danish freshwater snails.

    Science.gov (United States)

    Christiansen, Anne Ø; Olsen, Annette; Buchmann, Kurt; Kania, Per W; Nejsum, Peter; Vennervald, Birgitte J

    2016-03-01

    Avian schistosomes are widespread parasites of snails and waterfowl and may cause cercarial dermatitis (swimmer's itch) in humans, a disease that is frequently reported in European countries. These parasites are known to occur in Denmark, but here, we applied a new approach using molecular tools to identify the parasites at species level. In order to do that, 499 pulmonate freshwater snails (Radix sp., Lymnaea stagnalis, Stagnicola sp. and Planorbarius corneus) were sampled from 12 lakes, ponds, and marshes in the greater Copenhagen area. Avian schistosome cercariae were identified by microscopy and subjected to molecular investigation by sequencing and phylogenetic analysis of the 5.8S and ITS2 ribosomal DNA for species identification. Additionally, snail hosts belonging to the genus Radix were identified by sequencing and phylogenetic analysis of partial ITS2 ribosomal DNA. Three out of 499 snails shed different species of Trichobilharzia cercariae: Trichobilharzia szidati was isolated from L. stagnalis, Trichobilharzia franki from Radix auricularia and Trichobilharzia regenti from Radix peregra. In the light of the public health risk represented by bird schistosomes, these findings are of concern and, particularly, the presence of the potentially neuro-pathogenic species, T. regenti, in Danish freshwaters calls for attention. PMID:26573519

  14. Subtype Identification of Avian Influenza Virus on DNA Microarray

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-rong; YU Kang-zhen; DENG Guo-hua; SHI Rui; LIU Li-ling; QIAO Chuan-ling; BAO Hong-mei; KONG Xian-gang; CHEN Hua-lan

    2005-01-01

    We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-1abeled fluorescent cDNAs,which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.

  15. Avian influenza infection alters fecal odor in mallards.

    Directory of Open Access Journals (Sweden)

    Bruce A Kimball

    Full Text Available Changes in body odor are known to be a consequence of many diseases. Much of the published work on disease-related and body odor changes has involved parasites and certain cancers. Much less studied have been viral diseases, possibly due to an absence of good animal model systems. Here we studied possible alteration of fecal odors in animals infected with avian influenza viruses (AIV. In a behavioral study, inbred C57BL/6 mice were trained in a standard Y-maze to discriminate odors emanating from feces collected from mallard ducks (Anas platyrhynchos infected with low-pathogenic avian influenza virus compared to fecal odors from non-infected controls. Mice could discriminate odors from non-infected compared to infected individual ducks on the basis of fecal odors when feces from post-infection periods were paired with feces from pre-infection periods. Prompted by this indication of odor change, fecal samples were subjected to dynamic headspace and solvent extraction analyses employing gas chromatography/mass spectrometry to identify chemical markers indicative of AIV infection. Chemical analyses indicated that AIV infection was associated with a marked increase of acetoin (3-hydroxy-2-butanone in feces. These experiments demonstrate that information regarding viral infection exists via volatile metabolites present in feces. Further, they suggest that odor changes following virus infection could play a role in regulating behavior of conspecifics exposed to infected individuals.

  16. Proceedings of national avian-wind power planning meeting II

    International Nuclear Information System (INIS)

    This meeting was the second in a series. The purposes of this meeting were to: (1) provide information on avian/wind power interactions that will help meet the needs of regulators, researchers, and other stakeholders concerned with responsible development and permitting of wind plants; (2) create dialogue among regulators, researchers and other stakeholders to help all parties understand the role that research can play in responsible development and permitting of wind plants, and allow researchers to understand the relevance of their research to the process; and (3) propose research projects and the appropriate sponsorship. The meeting began with oral presentations and discussions of nine White Papers on the theory and methods for studying and understanding impacts. The Proceedings include the written version of each of the nine White Papers, plus a summary of the oral discussion associated with each paper. The second part of the meeting consisted of four working group sessions: (1) site evaluation and pre-permit research and planning; (2) operational monitoring; (3) modeling and forecasting, including population dynamics models; and (4) avian behavior and mortality reduction. The Proceedings includes a summary of the discussions on these topics, including each working group's recommendations for future research or associated activities. A final plenary session drew together the main recommendations

  17. Avian response to bottomland hardwood reforestation: the first 10 years

    Science.gov (United States)

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Grosshuesch, D.A.

    2002-01-01

    Bttomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana using either predominantly Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2 - 3 m / yr) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower-growing oak species. Grassland birds (Spiza americana [Dickcissel], and Sturnella magna [Eastern Meadowlark]) were indicative of species breeding on oak-dominated reforestation # 10 years old. Agelaius phoeniceus (Red-winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation # 4 years old, whereas 14 species of shrub-scrub birds (e.g., Passerina cyanea [Indigo Bunting]) and early-successional forest birds (e.g., Vireo gilvus [Warbling Vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands, but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods include a high proportion of fast-growing, early successional species such as cottonwood.

  18. The role of passive avian head stabilization in flapping flight.

    Science.gov (United States)

    Pete, Ashley E; Kress, Daniel; Dimitrov, Marina A; Lentink, David

    2015-09-01

    Birds improve vision by stabilizing head position relative to their surroundings, while their body is forced up and down during flapping flight. Stabilization is facilitated by compensatory motion of the sophisticated avian head-neck system. While relative head motion has been studied in stationary and walking birds, little is known about how birds accomplish head stabilization during flapping flight. To unravel this, we approximate the avian neck with a linear mass-spring-damper system for vertical displacements, analogous to proven head stabilization models for walking humans. We corroborate the model's dimensionless natural frequency and damping ratios from high-speed video recordings of whooper swans (Cygnus cygnus) flying over a lake. The data show that flap-induced body oscillations can be passively attenuated through the neck. We find that the passive model robustly attenuates large body oscillations, even in response to head mass and gust perturbations. Our proof of principle shows that bird-inspired drones with flapping wings could record better images with a swan-inspired passive camera suspension. PMID:26311316

  19. THE AVIAN FLU IMPACT ON THE ROMANIAN POULTRY MARKET

    Directory of Open Access Journals (Sweden)

    Silvius Stanciu

    2015-05-01

    Full Text Available Poultry meat represents one of the most dynamic branches of the local meat production. The poultry sector represents a good quality protein source, at an acceptable price as compared to other animal production domains. There has been an ascending evolution of the sector after the year 2000, although there appeared a series of discontinuities that affected agricultural production, mainly on a short-term basis. The Avian Flu led to 190 million euros’ worth losses at the level of Romanian national economy. Low consumption due to the impact was a short-term consequence, being rapidly amortized by the Romanian producers. The lack of some business continuity insurance measures can further affect the poultry meat sector, which does not have the necessary robustness needed in case of larger shocks. The following article proposes an analysis of the Avian Flu crisis economic effects on the Romanian meat sector, and it is part of a general framework of research regarding the Romanian food chain resilience to critical situations.

  20. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Directory of Open Access Journals (Sweden)

    Haiming Zhang

    Full Text Available Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  1. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Science.gov (United States)

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; Zheng, Lilan; Yang, Jianyu; Zhang, Zhen; Zhou, Zhiwei; Li, Wenhua; Hu, Mailing; Zhong, Jinhui; Chen, Yuhua

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area. PMID:25356738

  2. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  3. Diversity and Distribution of Avian Fauna of Swat, Khyber Pakhtunkhwa, Pakistan

    OpenAIRE

    Amir Jan Pathan; Shahroz Khan; Naveed Akhtar; Kausar Saeed

    2014-01-01

    This survey was conducted from January 2013 to December 2013 to explore the avian fauna of Swat valley and to find out the major threats to the avian fauna of the area as it was neglected for years. Direct and indirect methods were used in the study by visiting the field and by interviewing the local peoples and hunters about the current and past status of the avian fauna of the area. During the current study direct and indirect methods were used. A total of 138 species were recorded belongin...

  4. A Cross-Sectional Study of Avian Influenza in One District of Guangzhou, 2013

    OpenAIRE

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; ZHENG Lilan; Yang, Jianyu; Zhang, Zhen

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs i...

  5. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation

    OpenAIRE

    Pengxiang Chang; Kuchipudi, Suresh V; Kenneth H. Mellits; Sujith Sebastian; Joe James; Jinhua Liu; Holly Shelton; Kin-Chow Chang

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) in...

  6. Seroprevalensi Avian influenza H5N1 pada Unggas di Kabupaten Aceh Utara

    OpenAIRE

    Darmawi Darmawi; Darniati Darniati; Maryulia Dewi; Fakhrurrazi Fakhrurrazi; Mahdi Abrar; Erina Erina

    2013-01-01

    Seroprevalence of avian influenza H5N1 in birds in north aceh district ABSTRACT. Avian influenza virus H5N1 infections are an important cause of diseases in humans and several animal species, including birds. The present study conducted to investigate the seroprevalence Avian Influenza H5N1 in native birds from 15 sub-districts of North Aceh.  This study utilized 1108 serum samples collected from the axilaris vein (left or right) of birds. The standard Hemaglutination Inhibition (HI) assa...

  7. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.; Fomsgaard, A.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  8. Genome Sequence of a Novel Reassortant H3N2 Avian Influenza Virus in Southern China

    OpenAIRE

    Tian, Jin; Zhang, Changhui; Qi, Wenbao; XU, CHENGGANG; Huang, Lihong; Li, Huanan; Liao, Ming

    2012-01-01

    The distribution and prevalence of H3 subtype influenza viruses in avian and mammalian hosts constitutes a potential threat to both human and avian health. We report a complete genome sequence of a novel reassortant H3N2 avian influenza virus. Phylogenetic analysis showed that HA and NA showed the highest sequence homologies with those of A/white-backed munia/Hong Kong/4519/2009 (H3N2). However, the internal genes had the highest sequence homologies with those of H6 and H7 subtypes. The data ...

  9. Emergence of avian H1N1 influenza viruses in pigs in China.

    OpenAIRE

    Guan, Y.; Shortridge, K. F.; Krauss, S.; Li, P H; Kawaoka, Y.; Webster, R G

    1996-01-01

    Avian influenza A viruses from Asia are recognized as the source of genes that reassorted with human vital genes to generate the Asian/57 (H2N2) and Hong Kong/68 (H3N2) pandemic strains earlier in this century. Here we report the genetic analysis of avian influenza A H1N1 viruses recently isolated from pigs in southern China, a host suspected to generate new pandemic strains through gene reassortment events. Each of the eight gene segments was of avian origin. Phylogenetic analysis indicates ...

  10. Control of avian influenza: philosophy and perspectives on behalf of migratory birds

    Science.gov (United States)

    Friend, Milton

    1992-01-01

    Aquatic birds are considered the primary reservoir for influenza A viruses (Nettles et al., 1987).  However, there is little concern about avian influenza among conservation agencies responsible for the welfare of those species.  IN contrast, the poultry industry has great concern about avian influenza and view aquatic birds as a source for infection of poultry flocks.  In some instances, differences in these perspectives created conflict between conservation agencies and the poultry industry.  I speak on behalf of migratory birds, but philosophy and perspectives offered are intended to be helpful to the poultry industry in their efforts to combat avian influenza.

  11. Correlates of avian building strikes at a glass façade museum surrounded by avian habitat

    Science.gov (United States)

    Kahle, L.; Flannery, M.; Dumbacher, J. P.

    2013-12-01

    Bird window collisions are the second largest anthropogenic cause of bird deaths in the world. Effective mitigation requires an understanding of which birds are most likely to strike, when, and why. Here, we examine five years of avian window strike data from the California Academy of Sciences - a relatively new museum with significant glass façade situated in Golden Gate Park, San Francisco. We examine correlates of window-killed birds, including age, sex, season, and migratory or sedentary tendencies of the birds. We also examine correlates of window kills such as presence of habitat surrounding the building and overall window area. We found that males are almost three times more likely than females to mortally strike windows, and immature birds are three times more abundant than adults in our window kill dataset. Among seasons, strikes were not notably different in spring, summer, and fall; however they were notably reduced in winter. There was no statistical effect of building orientation (north, south, east, or west), and the presence of avian habitat directly adjacent to windows had a minor effect. We also report ongoing studies examining various efforts to reduce window kill (primarily external decals and large electronic window blinds.) We hope that improving our understanding of the causes of the window strikes will help us strategically reduce window strikes.

  12. Living with avian FLU⬝Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    Science.gov (United States)

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions. PMID:27066713

  13. 'O sibling, where art thou?'--a review of avian sibling recognition with respect to the mammalian literature.

    Science.gov (United States)

    Nakagawa, Shinichi; Waas, Joseph R

    2004-02-01

    Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where 'mixing potential' of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through 'direct familiarisation' (commonly known as associative learning or familiarity); future experiments should also incorporate tests for 'indirect familiarisation' (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic. PMID:15005175

  14. Investigations of avian populations and wetland habitats at Square Lake study site: 1978 final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document covers the investigations of avian populations and wetland habitats at Square Lake study site. Study sites, methods, physical conditions, wetland...

  15. Avian Influenza (H5N1) Expert System using Dempster-Shafer Theory

    CERN Document Server

    Maseleno, Andino

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built an Avian Influenza (H5N1) Expert System for identifying avian influenza disease and displaying the result of identification process. In this paper, we describe five symptoms as major symptoms which include depression, combs, wattle, bluish face region, swollen face region, narrowness of eyes, and balance disorders. We use chicken as research object. Research location is in the Lampung Province, South Sumatera. The researcher reason to choose Lampung Province in South Sumatera on the basis that has a high poultry population. Dempster-Shafer theory to quantify the degree of belief as inference engine in expert system, our approach uses Dempster-Shafer theory to combine beliefs under conditions of uncertainty and ignorance, and allows quantitat...

  16. The challenges of avian influenza virus:mechanism,epidemiology and control

    Institute of Scientific and Technical Information of China (English)

    George; F.GAO; Pang-Chui; SHAW

    2009-01-01

    Early 2009, eight human infection cases of H5N1 highly pathogenic avian influenza (HPAI) virus, with 5 death cases, were reported in China. This again made the world alert on a possible pandemic worldwide, probably caused by

  17. Avian Influenza Surveillance and Disease Contingency Plan for Prime Hook National Wildlife Refuge 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — With Avian Influenza, a nonclinical viral infection, becoming a growing concern for wild bird populations in North America and the United States, it has become...

  18. 9 CFR 113.118 - Pasteurella Multocida Bacterin, Avian Isolate, Type 3.

    Science.gov (United States)

    2010-01-01

    ... Isolate, Type 3. Pasteurella Multocida Bacterin, Avian Isolate, Type 3, shall be prepared from culture of... turkey, test results shall be determined by observing the remaining 20 turkeys. The test is...

  19. VMRCVM's Center for Public and Corporate Veterinary Medicine presents Avian Influenza Program

    OpenAIRE

    Douglas, Jeffrey S.

    2005-01-01

    About 50 people from state and federal agencies and veterinary practitioners recently gathered at the Virginia-Maryland Regional College of Veterinary Medicine's (VMRCVM) College Park Campus for a four-hour seminar on Avian Influenza recently.

  20. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    CERN Document Server

    Zhang, Yiteng; Kais, Sabre

    2015-01-01

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on (1) the hyperfine interaction involving electron spins and neighboring nuclear spins and (2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects o...

  1. Classical Markov Chains: A Unifying Framework for Understanding Avian Reproductive Success

    Science.gov (United States)

    Traditional methods for monitoring and analysis of avian nesting success have several important shortcomings, including 1) inability to handle multiple classes of nest failure, and 2) inability to provide estimates of annual reproductive success (because birds can, and typically ...

  2. Avian Influenza A(H5N1) Virus in Egypt

    Science.gov (United States)

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  3. Antimicrobial properties of avian eggshell-specific C-type lectin-like proteins.

    Science.gov (United States)

    Wellman-Labadie, Olivier; Lakshminarayanan, Rajamani; Hincke, Maxwell T

    2008-03-01

    C-type lectin-like proteins are major components of the calcified eggshell of multiple avian species. In this study, two representative avian C-type lectin-like proteins, ovocleidin-17 and ansocalcin, were purified from decalcified chicken and goose eggshell protein extracts and investigated for carbohydrate binding activity as well as antimicrobial activity. Purified ovocleidin-17 and ansocalcin were found to bind bacterial polysaccharides, and were bactericidal against Bacillus subtilis, Staphylococcus aureus and Pseudomona aeruginosa. Bactericidal activity was found to be enhanced in the presence of calcium but was not dependent on its presence. The results suggest that avian C-type lectin-like proteins may play an important antimicrobial role in defence of the avian embryo. PMID:18258195

  4. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector.

    Science.gov (United States)

    Toro, Haroldo; Tang, De-chu C; Suarez, David L; Sylte, Matt J; Pfeiffer, Jennifer; Van Kampen, Kent R

    2007-04-12

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. This vaccine can be mass-administered using available robotic in ovo injectors which provide a major advantage over current vaccination regimens. In addition, this class of adenovirus-vectored vaccines can be produced rapidly with improved safety since they do not contain any replication-competent adenoviruses. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  5. Seroprevalence of avian influenza (H9N2) in broiler chickens in Northwest of Iran

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Ghaniei; Manoochehr Allymehr; Ali Moradschendi

    2013-01-01

    Objective:To demonstrate seroprevalence of avian invluenza (H9N2) subtybe in broiler chickens in Northwest of Iran. Materials:A total of 310 blood samples were collected from 25 broiler flocks in slaughterhouses of West Azarbayjan, Iran. Serum samples were subjected to haemagglutination inhibition test. Results:The test showed 40.6%of positive serums. Mean antibody titer of avian influenza virus differed between geographical locations in this survey. Conclusions:High prevalence of avian influenza virus antibodies in serum of birds emphasize that avian influenza has an important role in respiratory complexes in broiler chickens in this region, and probably throughout Iran. Biosecurity measures, monitoring and surveillance programs, and to some degree vaccination are effective tools to prevent introduction of H9N2 infection and its economic losses.

  6. Avian vacuolar myelinopathy in the southeast: An ecoepidemiological assessment with emphasis on Lake Surf, North Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Between 2000 and 2005, the U.S. Fish and Wildlife Service (Service) and partners conducted an investigation of avian vacuolar myelinopathy (AVM), an unusual...

  7. Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida

    OpenAIRE

    Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.; Briggs, Robert E.

    2013-01-01

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P. multocida strain Pm70.

  8. Survelliance for Avian Influenza in Wood Ducks at Coldwater and Tallahatchie NWRs in 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report contains sampling effort and results of Avian Influenza testing in live wood ducks at Coldwater, Walker Tract, and Tallahatchie in 2009. All samples were...

  9. Transmission and reassortment of avian influenza viruses at the Asian-North American interface

    Science.gov (United States)

    Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.

    2010-01-01

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.

  10. Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages

    OpenAIRE

    Friesenhagen, Judith; Boergeling, Yvonne; Hrincius, Eike; Ludwig, Stephan; Roth, Johannes; Viemann, Dorothee

    2012-01-01

    Human blood-derived macrophages are non-permissive for influenza virus propagation, and fail to elicit inflammatory and antiviral responses upon infection with high pathogenic avian influenza viruses.

  11. Chest imaging of H7N9 subtype of human avian influenza

    Directory of Open Access Journals (Sweden)

    Xi-ming Wang

    2015-03-01

    Conclusions: The characteristic imaging demonstrations of H7N9 subtype of human avian influenza are segmental or lobar exudative lesions at lungs at the initial stage, which rapidly progress into bilateral distribution at lungs at the progressive stage.

  12. A comparison of biologically active elements in geese in relation to avian cholera

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Avian cholera caused an estimated mortality of between 166,000 to 197,000 migrating waterfowl in the Rainwater Basin of Nebraska in the 10-year period 1975 through...

  13. Agro-Environmental Determinants of Avian Influenza Circulation: A Multisite Study in Thailand, Vietnam and Madagascar

    OpenAIRE

    Paul, Mathilde; Gilbert, Marius; Desvaux, Stephanie; Andriamanivo, Harena Rasamoelina; Peyre, Marisa; Nguyen Viet Khong; Thanapongtharm, Weerapong; Chevalier, Veronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lowe...

  14. Avian brood parasitism——a growing research area in behavioral ecology

    Institute of Scientific and Technical Information of China (English)

    Eivin; RSKAFT; Wei; LIANG; Brd; G.STOKKE

    2012-01-01

    正We are pleased to be responsible guest editors for the two special issues of Chinese Birds(Vol.3,No.4,2012 and Vol.4,No.1,2013),entitled "Avian Brood Parasitism — a Growing Research Area in Behavioral Ecology".The goal of the two special issues is to publish accumulated knowledge and some of the recent developments in the fascinating research occurring in avian

  15. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    Science.gov (United States)

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  16. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014-2015.

    Science.gov (United States)

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S; DeLiberto, Thomas J; Swayne, David E

    2016-07-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  17. Examination of presence of specific antibodies against avian influenza virus in some species of wild birds

    OpenAIRE

    Šekler Milanko; Ašanin Ružica; Krnjaić D.; Palić T.; Milić N.; Jovanović Tanja; Kovačević Dragana; Plavšić B.; Stojanović Dragica; Vidanović D.; Ašanin N.

    2009-01-01

    Infections caused by the avian influenza virus have been known for a long time and they are present, to a smaller or greater extent, in both extensive and intensive poultry production in many parts of the world. Epidemiological investigations have established a definite significance of the population of wild birds in maintaining and spreading this infection. Avian influenza is a zoonosis, and the virus has a great potential for causing mortality in humans, in particular its subtypes H5 and H7...

  18. Reference Genes for Quantitative Gene Expression Studies in Multiple Avian Species

    OpenAIRE

    Olias, Philipp; Adam, Iris; Meyer, Anne; Scharff, Constance; Gruber, Achim D.

    2014-01-01

    Quantitative real-time PCR (qPCR) rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 ...

  19. Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses

    OpenAIRE

    Graaf, Marieke; Herfst, Sander; Schrauwen, Eefje; Choi, Ying; Hoogen, Bernadette; Osterhaus, Ab; Fouchier, Ron

    2008-01-01

    textabstractHuman metapneumovirus (HMPV) and avian metapneumovirus (AMPV) have a similar genome organization and protein composition, but a different host range. AMPV subgroup C (AMPV-C) is more closely relaled to HMPV than other AMPVs. To investigate the specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses, a minireplicon system was generated for AMPV-C and used in combination with minireplicon systems for HMPV lineages A1 and B1. Vir...

  20. A Transmission Model for the Ecology of an Avian Blood Parasite in a Temperate Ecosystem

    OpenAIRE

    Murdock, Courtney C.; Foufopoulos, Johannes; Simon, Carl P.

    2013-01-01

    Most of our knowledge about avian haemosporidian parasites comes from the Hawaiian archipelago, where recently introduced Plasmodium relictum has contributed to the extinction of many endemic avian species. While the ecology of invasive malaria is reasonably understood, the ecology of endemic haemosporidian infection in mainland systems is poorly understood, even though it is the rule rather than the exception. We develop a mathematical model to explore and identify the ecological factors tha...

  1. Food plant diversity as broad-scale determinant of avian frugivore richness

    OpenAIRE

    Kissling, W. Daniel; Rahbek, Carsten; Böhning-Gaese, Katrin

    2007-01-01

    The causes of variation in animal species richness at large spatial scales are intensively debated. Here, we examine whether the diversity of food plants, contemporary climate and energy, or habitat heterogeneity determine species richness patterns of avian frugivores across sub-Saharan Africa. Path models indicate that species richness of Ficus (their fruits being one of the major food resources for frugivores in the tropics) has the strongest direct effect on richness of avian frugivores, w...

  2. Complete Genome Sequence of Avian Bornavirus Genotype 1 from a Macaw with Proventricular Dilatation Disease

    OpenAIRE

    Mirhosseini, Negin; Gray, Patricia L.; Tizard, Ian; Payne, Susan

    2012-01-01

    Avian bornaviruses (ABV) were first detected and described in 2008. They are the etiologic agents of proventricular dilatation disease (PDD), a frequently fatal neurologic disease of captive parrots. Seven ABV genogroups have been identified worldwide from a variety of sources, and that number may increase as surveillance for novel bornaviruses continues. Here, we report the first complete sequence of a genogroup 1 avian bornavirus (ABV1).

  3. Complete genome sequence of avian bornavirus genotype 1 from a Macaw with proventricular dilatation disease.

    Science.gov (United States)

    Mirhosseini, Negin; Gray, Patricia L; Tizard, Ian; Payne, Susan

    2012-06-01

    Avian bornaviruses (ABV) were first detected and described in 2008. They are the etiologic agents of proventricular dilatation disease (PDD), a frequently fatal neurologic disease of captive parrots. Seven ABV genogroups have been identified worldwide from a variety of sources, and that number may increase as surveillance for novel bornaviruses continues. Here, we report the first complete sequence of a genogroup 1 avian bornavirus (ABV1). PMID:22628404

  4. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    Science.gov (United States)

    Dong-Hun Lee; Justin Bahl; Mia Kim Torchetti; Mary Lea Killian; Ip, Hon S.; David E Swayne

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  5. Avian myeloblastosis virus-induced lymphosarcoma producing erythroblastic leucosis in chicks

    Directory of Open Access Journals (Sweden)

    Kanzaki,Yoshito

    1975-10-01

    Full Text Available Acute myeloblastosis and several forms of tumor, including one case of lymphosarcoma occurred when avian myeloblastosis virus (BAI-A strain was inoculated into newly hatched chicks (SPF. The homogenate of lymphosarcoma inoculated intraperitoneally into other newly hatched chicks induced a high incidence of erythroblastic leucosis. Electron microscopy did not reveal the presence of C-type virus particles in the tumor tissue. The relationship between avian myeloblastosis virus, lymphosarcoma and erythroblastic leucosis is discussed.

  6. Avian cholera causes marine bird mortality in the Bering Sea of Alaska

    Science.gov (United States)

    Bodenstein, Barbara; Kimberlee Beckmen; Gay Sheffield; Kathy Kuletz; Van Hemert, Caroline R.; Berlowski-Zier, Brenda M.; Shearn-Bochsler, Valerie I.

    2015-01-01

    The first known avian cholera outbreak among wild birds in Alaska occurred during November 2013. Liver, intestinal, and splenic necrosis consistent with avian cholera was noted, and Pasteurella multocida serotype 1 was isolated from liver and lung or spleen in Crested Auklets (Aethia cristatella), Thick-billed Murres (Uria lomvia), Common Eider (Somateria mollissima), Northern Fulmars (Fulmarus glacialis), and Glaucous-winged Gulls (Larus glaucescens).

  7. Host Specificity And Co-Speciation In Avian Haemosporidia In The Western Cape, South Africa

    OpenAIRE

    Okanga, Sharon; Graeme S. Cumming; Philip A. R. Hockey; Nupen, Lisa; Peters, Jeffrey L.

    2014-01-01

    Host and pathogen ecology are often closely linked, with evolutionary processes often leading to the development of host specificity traits in some pathogens. Host specificity may range from ‘generalist’, where pathogens infect any available competent host; to ‘specialist’, where pathogens repeatedly infect specific host species or families. Avian malaria ecology in the region remains largely unexplored, despite the presence of vulnerable endemic avian species. We analysed the expression of h...

  8. Peningkatan Titer Antibodi Terhadap Avian Influenza Dalam Serum Ayam Petelur yang Divaksin Dengan Vaksin Komersial

    OpenAIRE

    Ummu Balqis; Muhammad Hambal; Mulyadi Mulyadi; Samadi Samadi; Darmawi Darmawi

    2011-01-01

    Increasing of antibody titre against avian influenza in serum of vaccinated laying hens with commercial vaccine ABSTRACT. The advantages of vaccination are that it reduces the risk of infection, and concurrently reduces morbidity, mortality and shedding of virus. The goal of the present study was to evaluate efficacy of Avian Influenza commercial vaccine based on humoral immunity responses of laying hens. Totally, 20 breakel silver layer hens were used in this research. The laying hens we...

  9. How Predation Risk Shapes Avian Nest Site Selection and Processes Underlying Nest Predation Patterns

    OpenAIRE

    Latif, Quresh Shabbir

    2009-01-01

    Given the importance of nest predation to avian fitness, ornithologists expect birds to select nest sites that minimize predation risk. Despite numerous studies contributing to a large body of literature, how predation shapes avian nest site selection is not well understood largely because studies rarely examine the processes underlying either nest site selection or predation risk. I investigated how predation shapes nest site selection for a population of Yellow Warblers with an eye for the ...

  10. Molecular Detection of Avian Pathogens in Poultry Red Mite (Dermanyssus gallinae) Collected in Chicken Farms

    OpenAIRE

    HUONG, Chu Thi Thanh; MURANO, Takako; UNO, Yukiko; USUI, Tatsufumi; Yamaguchi, Tsuyoshi

    2014-01-01

    Poultry red mite (PRM, Dermanyssus gallinae) is a blood-sucking ectoparasite as well as a possible vector of several avian pathogens. In this study, to define the role of PRM in the prevalence of avian infectious agents, we used polymerase chain reaction (PCR) to check for the presence of seven pathogens: Avipox virus (APV), Fowl Adenovirus (FAdV), Marek’s disease virus (MDV), Erysipelothrix rhusiopathiae (ER), Salmonella enterica (SE), Mycoplasma synoviae (MS) and Mycoplasma gallisepticum (M...

  11. Incidence of Avian Mycoplasmosis in the region of Batna, Eastern Algeria

    OpenAIRE

    Heleili; N.; Mamache; B. and Chelihi; A.

    2011-01-01

    Avian mycoplasmosis is infectious and contagious disease which affects chicken and turkey as well as many other species with many economics losses. The absence of data on avian mycoplasmosis in Algeria and the importance of the poultry breeding in Batna encouraged us to undertake the prevalence of the most pathogenic mycoplasmas in broiler and layer chickens in this area, Mycoplasma gallisepticum (MG). 143 Mycoplasmas were isolate from 237 samples, at a rate of 60.33%. MG was isolate at a rat...

  12. Risk maps for the spread of highly pathogenic avian influenza in poultry.

    OpenAIRE

    Gert Jan Boender; Hagenaars, Thomas J; Annemarie Bouma; Gonnie Nodelijk; Elbers, Armin R. W; De Jong, Mart C. M.; Michiel van Boven

    2007-01-01

    Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spr...

  13. Risk maps for the spread of highly pathogenic avian influenza in poultry

    OpenAIRE

    Boender, G.J.; Hagenaars, T.H.J.; Bouma, A.; Nodelijk, G.; Elbers, A.R.W.; Jong, de, D.; Boven, van, R.M.

    2007-01-01

    Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spr...

  14. Generation of transforming viruses in cultures of chicken fibroblasts infected with an avian leukosis virus.

    OpenAIRE

    Stavnezer, E; Gerhard, D S; Binari, R C; Balazs, I.

    1981-01-01

    During serial passages of an avian leukosis virus (the transformation-defective, src deletion mutant of Bratislava 77 avian sarcoma virus, designated tdB77) in chicken embryo fibroblasts, viruses which transformed chicken embryo fibroblasts in vitro emerged. Chicken embryo fibroblasts infected with these viruses (SK770 and Sk780) had a distinctive morphology, formed foci in monolayer cultures, and grew independent of anchorage in semisolid agar. Bone marrow cells were not transformed by these...

  15. Genetic determinants of neoplastic diseases induced by a subgroup F avian leukosis virus.

    OpenAIRE

    Simon, M C; Neckameyer, W S; Hayward, W S; Smith, R. E.

    1987-01-01

    Two subgroup F avian leukosis viruses, ring-necked pheasant virus (RPV) and RAV-61, were previously shown to induce a high incidence of a fatal proliferative disorder in the lungs of infected chickens. These lung lesions, termed angiosarcomas, appear rapidly (4 to 5 weeks after infection), show no evidence of proto-oncogene activation by proviral integration, and are not induced by avian leukosis viruses belonging to other subgroups. To identify the viral sequences responsible for induction o...

  16. Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs

    OpenAIRE

    Meng Qing-Wen; Zhang Zai-Ping; Wang Wei; Tian Jin; Xiao Zhi-Guang

    2011-01-01

    Abstract Background Avian leukosis virus (ALV) is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi) is considered an effective antiviral strategy. Results In this study, the avian leukosis virus subgroup J (ALV-J) provira...

  17. Avian Influenza A Virus in Wild Birds in Highly Urbanized Areas

    OpenAIRE

    2012-01-01

    Avian influenza virus (AIV) surveillance studies in wild birds are usually conducted in rural areas and nature reserves. Less is known of avian influenza virus prevalence in wild birds located in densely populated urban areas, while these birds are more likely to be in close contact with humans. Influenza virus prevalence was investigated in 6059 wild birds sampled in cities in the Netherlands between 2006 and 2009, and compared with parallel AIV surveillance data from low urbanized areas in ...

  18. Large-Scale Avian Influenza Surveillance in Wild Birds throughout the United States

    OpenAIRE

    Bevins, Sarah N.; Pedersen, Kerri; Lutman, Mark W.; Baroch, John A.; Schmit, Brandon S.; Kohler, Dennis; Gidlewski, Thomas; Nolte, Dale L.; Swafford, Seth R.; DeLiberto, Thomas J.

    2014-01-01

    Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, rep...

  19. Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012

    OpenAIRE

    Marinjho Jonduo; Sook-San Wong; Nime Kapo; Paskalis Ominipi; Mohammad Abdad; Peter Siba; Pamela McKenzie; Richard Webby; Paul Horwood

    2013-01-01

    We investigated the circulation of avian influenza viruses in poultry populations throughout Papua New Guinea to assess the risk to the poultry industry and human health. Oropharyngeal swabs, cloacal swabs and serum were collected from 537 poultry from 14 provinces of Papua New Guinea over an 11–month period (June 2011 through April 2012). Virological and serological investigations were undertaken to determine the prevalence of avian influenza viruses. Neither influenza A viruses nor antibodi...

  20. Crossing the species barrier: the threat of an avian influenza pandemic

    OpenAIRE

    Riedel, Stefan

    2006-01-01

    Avian influenza (H5N1) has recently been recognized as a new emerging infectious disease that may pose a threat to international public health. Most recent developments lead to the belief that H5N1 could become the cause of the next influenza pandemic. This review discusses the characteristics of H5N1 avian influenza virus as an emerging infectious disease with the potential for pandemic development. In addition, the current pandemic influenza alert status and guidelines for pandemic prepared...

  1. Cambodia’s patient zero: The political economy of foreign aid and avian influenza

    OpenAIRE

    Ear, Sophal

    2009-01-01

    The article of record may be found at https://mpra.ub.uni-muenchen.de/21825/ What happens when a developing country with poor health infrastructure and even poorer animal health surveillance is thought to be a potential source for the next emerging infectious disease? This is the story of Cambodia and Avian Influenza. This paper undertakes a review of the relevant literature and analyzes the results of detailed semi-structured interviews of individuals highly engaged in Avian I...

  2. Complete Genome Sequence of Avian Bornavirus Genotype 1 from a Macaw with Proventricular Dilatation Disease

    Science.gov (United States)

    Mirhosseini, Negin; Gray, Patricia L.; Tizard, Ian

    2012-01-01

    Avian bornaviruses (ABV) were first detected and described in 2008. They are the etiologic agents of proventricular dilatation disease (PDD), a frequently fatal neurologic disease of captive parrots. Seven ABV genogroups have been identified worldwide from a variety of sources, and that number may increase as surveillance for novel bornaviruses continues. Here, we report the first complete sequence of a genogroup 1 avian bornavirus (ABV1). PMID:22628404

  3. Descriptive Study of an Outbreak of Avian Urolithiasis in a Large Commercial Egg Complex in Algeria

    OpenAIRE

    Hicham SID; Amine FETTAH; Abdelaziz LOUNAS

    2011-01-01

    Avian urolithiasis is one of the major causes of mortality in poultry. However, in Algeria this condition has never been described. An outbreak of avian urolithiasis was observed on a large commercial egg complex in the department of Chlef (West of Algeria). The clinical features of this condition are to be described. Mortality associated to urolithiasis started at the onset of egg production, estimated to 0.7 % per week. Urolithiasis induced an egg drop estimated to 12%. Dead and live layers...

  4. The evolution of host specialisation in avian brood parasites.

    Science.gov (United States)

    Medina, Iliana; Langmore, Naomi E

    2016-09-01

    Traditional ecological theory predicts that specialisation can promote speciation; hence, recently derived species are specialists. However, an alternative view is that new species have broad niches, which become narrower and specialised over time. Here, we test these hypotheses using avian brood parasites and three different measures of host specialisation. Brood parasites provide an ideal system in which to investigate the evolution of specialisation, because some exploit more than 40 host species and others specialise on only one. We find that young brood parasite species are smaller and specialise on a narrower range of host sizes, as expected, if specialisation is linked with the generation of new species. Moreover, we show that highly virulent parasites are more specialised, supporting findings in other host-parasite systems. Finally, we demonstrate that different measures of specialisation can lead to different conclusions, and specialisation indices should be designed taking into account the biology of each system. PMID:27417381

  5. Toxicological perspectives on perfluorinated compounds in avian species

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, J.; Jones, P. [Michigan State Univ., East Lansing, MI (United States)

    2004-09-15

    Perfluorinated chemicals have been widely used in commerce for the last few decades. Until recently little was known about their environmental fate and even less was known about their potential environmental effects. Since Giesy and co-workers first demonstrated the widespread occurrence of perfluorooctane sulfonic acid (PFOS) in wildlife there has been renewed interest in determining the biological and possible ecological effects of these compounds. The assessment of possible effects of these chemicals has been hampered by a limited understanding of their mode of action and by a lack of toxicological data for wildlife species. Here we summarize recently obtained toxicological studies available for perfluorinated compounds (PFCs) in two avian species and use this information and environmental concentration data to evaluate the potential for environmental risk that these compounds pose.

  6. Urbanisation tolerance and the loss of avian diversity.

    Science.gov (United States)

    Sol, Daniel; González-Lagos, Cesar; Moreira, Darío; Maspons, Joan; Lapiedra, Oriol

    2014-08-01

    Urbanisation is considered an important driver of current biodiversity loss, but the underlying causes are not fully understood. It is generally assumed that this loss reflects the fact that most organisms do not tolerate well the environmental alterations associated with urbanisation. Nevertheless, current evidence is inconclusive and the alternative that the biodiversity loss is the result of random mechanisms has never been evaluated. Analysing changes in abundance between urbanised environments and their non-urbanised surroundings of > 800 avian species from five continents, we show here that although random processes account for part of the species loss associated with urbanisation, much of the loss is associated with a lack of appropriate adaptations of most species for exploiting resources and avoiding risks of the urban environments. These findings have important conservation implications because the extinction of species with particular features should have higher impact on biodiversity and ecosystem function than a random loss. PMID:24835452

  7. Zoonosis Update on H9N2 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Abdul Ahad*, Masood Rabbani, Altaf Mahmood1, Zulfiqar Hussan Kuthu2, Arfan Ahmad and Muhammad Mahmudur Rahman3

    2013-07-01

    Full Text Available Influenza A viruses infect various mammals like human, horse, pig and birds as well. A total of 16 hemagglutinin (HA and 9 neuraminidase (NA subtypes have been identified. Most of the combinations are found in birds and relatively few have been isolated from mammals. Although there is no report of human to human transmission till to date, several cases of H5N1, H7N7 and H9N2 identified in humans since 1997 raised serious concern for health and veterinary profession. This review paper will focus H9N2 avian influenza virus (AIV with special emphasis on zoonosis. The virus H9N2 though not highly pathogenic like H5N1 but can be virulent through antigenic drift and shift.

  8. Research Development on Cryopreservation Technique to Preserve Avian Semen

    Directory of Open Access Journals (Sweden)

    Tatan Kostaman

    2011-09-01

    Full Text Available Cryopreservation technique could be used to preserve animal cell, plant or other genetic materials (included semen in frozen. In this case, the cryopreservation technique is a storage technique that carries out at very low temperature in liquid nitrogen at -196oC. At this temperature, semen does not experience the process of metabolism but still has the ability to live on when used later. Semen that is preserved by cryopreservation technique has unlimited shelf life. This method is more efficient in terms of cost, time, space, and labour than other methods. Cryopreservation techniques can be divided into conventional technique (controlled slow freezing and rapid freezing technique. Besides cryopreservation of semen, other genetic material from avian that can be cryopreservesed is Primodial Germ Cells (PGC. Balitnak has succesfully isolated the PGC of some Indonesian native chickens. The success of cryopreservation is indicated by not only the high rate of survival, but also the fertility after cryopreservation.

  9. Control of Avian Coccidiosis: Future and Present Natural Alternatives

    Directory of Open Access Journals (Sweden)

    Rosa Estela Quiroz-Castañeda

    2015-01-01

    Full Text Available Numerous efforts to date have been implemented in the control of avian coccidiosis caused by the Eimeria parasite. Since the appearance of anticoccidial chemical compounds, the search for new alternatives continues. Today, no product is available to cope with the disease; however, the number of products commercially available is constantly increasing. In this review, we focus on natural products and their anticoccidial activity. This group comprises fatty acids, antioxidants, fungal and herbal extracts, and immune response modulators with proven anticoccidial activity, many of which exist as dietary supplements. Additionally, we offer an overview of the poultry industry and the economic cost of coccidiosis as well as the classical strategies used to control the disease.

  10. Spectrophotometric and Refractometric Determination of Total Protein in Avian Plasma

    Directory of Open Access Journals (Sweden)

    Rodica Căpriță

    2013-10-01

    Full Text Available The aim of this study was to compare the total protein values obtained in heparin plasma of chickens by a spectrophotometric technique (biuret method, and the values obtained on the same day in the same samples by refractometry. The results obtained by refractometry (average value 2.638±0.153g% were higher than those obtained by the spectrophotometric method (average value 2.441±0.181g%. There was a low correlation (r = 0.6709 between the total protein values, determined with both methods. Protein is the major determinant of plasma refractive index, but glucose contributes too. The refractometric method is not recommended in chickens for the determination of total protein, because avian blood glucose concentration averages about twice than in mammalian blood.

  11. Scale-Free Distribution of Avian Influenza Outbreaks

    Science.gov (United States)

    Small, Michael; Walker, David M.; Tse, Chi Kong

    2007-11-01

    Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.

  12. Phylogenomic analyses data of the avian phylogenomics project

    DEFF Research Database (Denmark)

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J;

    2015-01-01

    , amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences...... filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based Exa......ML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. CONCLUSIONS: The Avian Phylogenomics Project is the largest...

  13. Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.

    Science.gov (United States)

    Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H

    1997-07-01

    As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements. PMID:9327626

  14. Avian infectious bronchitis virus in Africa: a review.

    Science.gov (United States)

    Khataby, Khadija; Fellahi, Siham; Loutfi, Chafiqa; Mustapha, Ennaji Moulay

    2016-06-01

    Infectious bronchitis virus (IBV) is worldwide in distribution, highly infectious, and extremely difficult to control because it has extensive genetic diversity, a short generation time, and a high mutation rate. IBV is a Gammacoronavirus, single-stranded, and positive-sense RNA virus. Avian infectious bronchitis is well studied in European countries with identification of a large number of IBV variants, whereas in African countries epidemiological and scientific data are poor and not updated. However, previous studies reported that an IBV variant continues to appear regularly in Africa, as currently described in Morocco. No cross-protection between IBV strains was reported, some being unique to a particular country, others having a more general distribution. This review aims to provide a general overview on IB disease distribution in African countries and an update on the available studies of IBV variants in each country. PMID:27150555

  15. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    Directory of Open Access Journals (Sweden)

    David J Varricchio

    Full Text Available Embryonic remains within a small (4.75 by 2.23 cm egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  16. Avian survey and field guide for Osan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J.

    2006-12-05

    This report summarizes the results of the avian surveys conducted at Osan Air Base (AB). This ongoing survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Osan AB, and the 51st Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred ten bird species representing 35 families were identified and recorded. Seven species are designated as Natural Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Three species appear on the Korean Association for Conservation of Nature's (KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, ten different species are Republic of Korea (ROK)-protected. The primary objective of the avian survey at Osan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex J.14.c of the 51st Fighter BASH Plan 91-212 (51 FW OPLAN 91-212). The second objective was to initiate surveys to determine what bird species are present on Osan AB throughout the year and from the survey results, determine if threatened, endangered, or other Korean-listed bird species are present on Osan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Osan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a that are also favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  17. Control strategies for highly pathogenic avian influenza: a global perspective.

    Science.gov (United States)

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade. PMID:18411931

  18. Avian Field guide and checklist for Kunsan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J. B.; Environmental Assessment

    2005-11-15

    This report summarizes the results of the avian surveys conducted at Kunsan Air Base (AB). This on-going survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Kunsan AB, and the 8th Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred sixteen bird species representing 34 families were identified and recorded. Seven species are designated as Cultural Property Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Six species appear on the Korean Association for Conservation of Nature's(KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, only ten different species are Republic of Korea (ROK)-protected because the Eurasian Spoonbill, Peregrine Falcon, and Eurasian Oystercatcher are listed by both agencies. The primary objective of the avian survey at Kunsan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex C.4.a.(1-4) of the 8th Fighter Wing BASH Plan(8FWOPLAN 91-202). The second objective was to initiate surveys to determine what bird species are present on Kunsan AB throughout the year, and from the survey results determine if threatened, endangered, or other Korean-listed bird species are present on Kunsan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Kunsan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a and also that are favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  19. Estimates of Avian Mortality Attributed to Vehicle Collisions in Canada

    Directory of Open Access Journals (Sweden)

    Christine A. Bishop

    2013-12-01

    Full Text Available Although mortality of birds from collisions with vehicles is estimated to be in the millions in the USA, Europe, and the UK, to date, no estimates exist for Canada. To address this, we calculated an estimate of annual avian mortality attributed to vehicular collisions during the breeding and fledging season, in Canadian ecozones, by applying North American literature values for avian mortality to Canadian road networks. Because owls are particularly susceptible to collisions with vehicles, we also estimated the number of roadkilled Barn owls (Tyto alba in its last remaining range within Canada. (This species is on the IUCN red list and is also listed federally as threatened; Committee on the Status of Endangered Wildlife in Canada 2010, International Union for the Conservation of Nature 2012. Through seven Canadian studies in existence, 80 species and 2,834 specimens have been found dead on roads representing species from 14 orders of birds. On Canadian 1 and 2-lane paved roads outside of major urban centers, the unadjusted number of bird mortalities/yr during an estimated 4-mo (122-d breeding and fledging season for most birds in Canada was 4,650,137 on roads traversing through deciduous, coniferous, cropland, wetlands and nonagricultural landscapes with less than 10% treed area. On average, this represents 1,167 birds killed/100 km in Canada. Adjusted for scavenging, this estimate was 13,810,906 (3,462 dead birds/100 km. For barn owls, the unadjusted number of birds killed annually on 4-lane roads during the breeding and fledging season, within the species geographic range in southern British Columbia, was estimated as 244 owls and, when adjusted for scavenging and observer bias (3.6 factor, the total was 851 owls.

  20. Highly pathogenic avian influenza virus among wild birds in Mongolia.

    Directory of Open Access Journals (Sweden)

    Martin Gilbert

    Full Text Available Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005-2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured from 7,855 environmental fecal samples (primarily from ducks, or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans, while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2, or 2009 and 2010 (clade 2.3.2.1; all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.