WorldWideScience

Sample records for avian paramyxovirus apmv

  1. Novel avian paramyxovirus (APMV-15 isolated from a migratory bird in South America.

    Directory of Open Access Journals (Sweden)

    Luciano Matsumiya Thomazelli

    Full Text Available A novel avian paramyxovirus (APMV isolated from a migratory bird cloacal swab obtained during active surveillance in April 2012 in the Lagoa do Peixe National Park, Rio Grande do Sul state, South of Brazil was biologically and genetically characterized. The nucleotide sequence of the full viral genome was completed using a next-generation sequencing approach. The genome was 14,952 nucleotides (nt long, with six genes (3'-NP-P-M-F-HN-L-5' encoding 7 different proteins, typical of APMV. The fusion (F protein gene of isolate RS-1177 contained 1,707 nucleotides in a single open reading frame encoding a protein of 569 amino acids. The F protein cleavage site contained two basic amino acids (VPKER↓L, typical of avirulent strains. Phylogenetic analysis of the whole genome indicated that the virus is related to APMV-10, -2 and -8, with 60.1% nucleotide sequence identity to the closest APMV-10 virus, 58.7% and 58.5% identity to the closest APMV-8 and APMV-2 genome, respectively, and less than 52% identity to representatives of the other APMVs groups. Such distances are comparable to the distances observed among other previously identified APMVs serotypes. These results suggest that unclassified/calidris_fuscicollis/Brazil/RS-1177/2012 is the prototype strain of a new APMV serotype, APMV-15.

  2. Complete Genome Sequence of an Avian Paramyxovirus Representative of Putative New Serotype 13

    OpenAIRE

    Goraichuk, Iryna; Sharma, Poonam; Stegniy, Borys; Muzyka, Denys; Pantin-Jackwood, Mary J.; Gerilovych, Anton; Solodiankin, Olexii; Bolotin, Vitaliy; Miller, Patti J.; Dimitrov, Kiril M.; Afonso, Claudio L.

    2016-01-01

    Here, we report the complete genome sequence of a virus of a putative new serotype of avian paramyxovirus (APMV). The virus was isolated from a white-fronted goose in Ukraine in 2011 and designated white-fronted goose/Ukraine/Askania-Nova/48-15-02/2011. The genomic characterization of the isolate suggests that it represents the novel avian paramyxovirus group APMV 13.

  3. Complete Genome Sequence of an Avian Paramyxovirus Representative of Putative New Serotype 13

    Science.gov (United States)

    Goraichuk, Iryna; Sharma, Poonam; Stegniy, Borys; Muzyka, Denys; Pantin-Jackwood, Mary J.; Gerilovych, Anton; Solodiankin, Olexii; Bolotin, Vitaliy; Miller, Patti J.; Dimitrov, Kiril M.

    2016-01-01

    Here, we report the complete genome sequence of a virus of a putative new serotype of avian paramyxovirus (APMV). The virus was isolated from a white-fronted goose in Ukraine in 2011 and designated white-fronted goose/Ukraine/Askania-Nova/48-15-02/2011. The genomic characterization of the isolate suggests that it represents the novel avian paramyxovirus group APMV 13. PMID:27469958

  4. Replication, neurotropism, and pathogenicity of avian paramyxovirus serotypes 1-9 in chickens and ducks.

    Directory of Open Access Journals (Sweden)

    Shin-Hee Kim

    Full Text Available Avian paramyxovirus (APMV serotypes 1-9 have been isolated from many different avian species. APMV-1 (Newcastle disease virus is the only well-characterized serotype, because of the high morbidity, mortality, and economic loss caused by highly virulent strains. Very little is known about the pathogenesis, replication, virulence, and tropism of the other APMV serotypes. Here, this was evaluated for prototypes strains of APMV serotypes 2-9 in cell culture and in chickens and ducks. In cell culture, only APMV-1, -3 and -5 induced syncytium formation. In chicken DF1 cells, APMV-3 replicated with an efficiency approaching that of APMV-1, while APMV-2 and -5 replicated to lower, intermediate titers and the others were much lower. Mean death time (MDT assay in chicken eggs and intracerebral pathogenicity index (ICPI test in 1-day-old SPF chicks demonstrated that APMV types 2-9 were avirulent. Evaluation of replication in primary neuronal cells in vitro as well as in the brains of 1-day-old chicks showed that, among types 2-9, only APMV-3 was neurotropic, although this virus was not neurovirulent. Following intranasal infection of 1-day-old and 2-week-old chickens, replication of APMV types 2-9 was mostly restricted to the respiratory tract, although APMV-3 was neuroinvasive and neurotropic (but not neurovirulent and also was found in the spleen. Experimental intranasal infection of 3-week-old mallard ducks with the APMVs did not produce any clinical signs (even for APMV-1 and exhibited restricted viral replication of the APMVs (including APMV-1 to the upper respiratory tract regardless of their isolation source, indicating avirulence of APMV types 1-9 in mallard ducks. The link between the presence of a furin cleavage site in the F protein, syncytium formation, systemic spread, and virulence that has been well-established with APMV-1 pathotypes was not evident with the other APMV serotypes.

  5. Dispersal and Transmission of Avian Paramyxovirus Serotype 4 among Wild Birds and Domestic Poultry

    Directory of Open Access Journals (Sweden)

    Renfu Yin

    2017-05-01

    Full Text Available Avian paramyxovirus serotype 4 (APMV-4 is found sporadically in wild birds worldwide, and it is an economically important poultry pathogen. Despite the existence of several published strains, very little is known about the distribution, host species, and transmission of APMV-4 strains. To better understand the relationships among these factors, we conducted an APMV-4 surveillance of wild birds and domestic poultry in six provinces of China suspected of being intercontinental flyways and sites of interspecies transmission. APMV-4 surveillance was conducted in 9,160 wild birds representing seven species, and 1,461 domestic poultry in live bird markets (LMBs from December 2013 to June 2016. The rate of APMV-4 isolation was 0.10% (11/10,621, and viruses were isolated from swan geese, bean geese, cormorants, mallards, and chickens. Sequencing and phylogenetic analyses of the 11 isolated viruses indicated that all the isolates belonging to genotype I were epidemiologically connected with wild bird-origin viruses from the Ukraine and Italy. Moreover, chicken-origin APMV-4 strains isolated from the LBMs were highly similar to wild bird-origin viruses from nearby lakes with free-living wild birds. In additional, a hemagglutination-negative APMV-4 virus was identified. These findings, together with recent APMV-4 studies, suggest potential virus interspecies transmission between wild birds and domestic poultry, and reveal possible epidemiological intercontinental connections between APMV-4 transmission by wild birds.

  6. Complete Genome Sequences of Four Avian Paramyxoviruses of Serotype 10 Isolated from Rockhopper Penguins on the Falkland Islands

    OpenAIRE

    Goraichuk, Iryna V.; Dimitrov, Kiril M.; Sharma, Poonam; Miller, Patti J.; Swayne, David E.; Suarez, David L.; Afonso, Claudio L.

    2017-01-01

    ABSTRACT The first complete genome sequences of four avian paramyxovirus serotype 10 (APMV-10) isolates are described here. The viruses were isolated from rockhopper penguins on the Falkland Islands, sampled in 2007. All four genomes are 15,456 nucleotides in length, and phylogenetic analyses show them to be closely related.

  7. Complete Genome Sequences of Four Avian Paramyxoviruses of Serotype 10 Isolated from Rockhopper Penguins on the Falkland Islands

    Science.gov (United States)

    Goraichuk, Iryna V.; Dimitrov, Kiril M.; Sharma, Poonam; Miller, Patti J.; Swayne, David E.; Suarez, David L.

    2017-01-01

    ABSTRACT The first complete genome sequences of four avian paramyxovirus serotype 10 (APMV-10) isolates are described here. The viruses were isolated from rockhopper penguins on the Falkland Islands, sampled in 2007. All four genomes are 15,456 nucleotides in length, and phylogenetic analyses show them to be closely related. PMID:28572332

  8. Molecular characterization and complete genome sequence of avian paramyxovirus type 4 prototype strain duck/Hong Kong/D3/75

    Directory of Open Access Journals (Sweden)

    Collins Peter L

    2008-10-01

    Full Text Available Abstract Background Avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds throughout the world. All APMVs, except avian metapneumovirus, are classified in the genus Avulavirus of the family Paramyxoviridae. At present, the APMVs of genus Avulavirus are divided into nine serological types (APMV 1–9. Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. Very little is known about the molecular characteristics and pathogenicity of APMV 2–9. Results As a first step towards understanding the molecular genetics and pathogenicity of APMV-4, we have sequenced the complete genome of APMV-4 strain duck/Hong Kong/D3/75 and determined its pathogenicity in embryonated chicken eggs. The genome of APMV-4 is 15,054 nucleotides (nt in length, which is consistent with the "rule of six". The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 9 to 42 nt. The genome contains a 55 nt leader region at 3' end. The 5' trailer region is 17 nt, which is the shortest in the family Paramyxoviridae. Analysis of mRNAs transcribed from the P gene showed that 35% of the transcripts were edited by insertion of one non-templated G residue at an editing site leading to production of V mRNAs. No message was detected that contained insertion of two non-templated G residues, indicating that the W mRNAs are inefficiently produced in APMV-4 infected cells. The cleavage site of the F protein (DIPQR↓F does not conform to the preferred cleavage site of the ubiquitous intracellular protease furin. However, exogenous proteases were not required for the growth of APMV-4 in cell culture, indicating that the cleavage does not depend on a furin site. Conclusion Phylogenic analysis of the nucleotide sequences of viruses of all five genera of the family

  9. The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1.

    Directory of Open Access Journals (Sweden)

    Yee Ling Chong

    2010-04-01

    Full Text Available Newcastle Disease Virus (NDV is a pathogenic strain of avian paramyxovirus (aPMV-1 that is among the most serious of disease threats to the poultry industry worldwide. Viral diversity is high in aPMV-1; eight genotypes are recognized based on phylogenetic reconstruction of gene sequences. Modified live vaccines have been developed to decrease the economic losses caused by this virus. Vaccines derived from avirulent genotype II strains were developed in the 1950s and are in use globally, whereas Australian strains belonging to genotype I were developed as vaccines in the 1970s and are used mainly in Asia. In this study, we evaluated the consequences of attenuated live virus vaccination on the evolution of aPMV-1 genotypes. There was phylogenetic incongruence among trees based on individual genes and complete coding region of 54 full length aPMV-1 genomes, suggesting that recombinant sequences were present in the data set. Subsequently, five recombinant genomes were identified, four of which contained sequences from either genotype I or II. The population history of vaccine-related genotype II strains was distinct from other aPMV-1 genotypes; genotype II emerged in the late 19(th century and is evolving more slowly than other genotypes, which emerged in the 1960s. Despite vaccination efforts, genotype II viruses have experienced constant population growth to the present. In contrast, other contemporary genotypes showed population declines in the late 1990s. Additionally, genotype I and II viruses, which are circulating in the presence of homotypic vaccine pressure, have unique selection profiles compared to nonvaccine-related strains. Collectively, these data show that vaccination with live attenuated viruses has changed the evolution of aPMV-1 by maintaining a large effective population size of a vaccine-related genotype, allowing for coinfection and recombination of vaccine and wild type strains, and by applying unique selective pressures on

  10. Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America

    Science.gov (United States)

    Ramey, Andy M.; Goraichuk, Iryna V.; Hicks, Joseph T.; Dimitrov, Kiril M.; Poulson, Rebecca L.; Stallknecht, David E.; Bahl, Justin; Afonso, Claudio L.

    2017-01-01

    BackgroundAvian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health.MethodsIn this study we sequenced the fusion gene from 58 APMV-1 isolates recovered from thirteen species of wild birds sampled throughout the USA during 2007–2014. We analyzed sequence information with previously reported data in order to assess contemporary genetic diversity and inter-taxa/inter-region exchange of APMV-1 in wild birds sampled in North America.ResultsOur results suggest that wild birds maintain previously undescribed genetic diversity of APMV-1; however, such diversity is unlikely to be pathogenic to domestic poultry. Phylogenetic analyses revealed that APMV-1 diversity detected in wild birds of North America has been found in birds belonging to numerous taxonomic host orders and within hosts inhabiting multiple geographic regions suggesting some level of viral exchange. However, our results also provide statistical support for associations between phylogenetic tree topology and host taxonomic order/region of sample origin which supports restricted exchange among taxa and geographical regions of North America for some APMV-1 sub-genotypes.ConclusionsWe identify previously unrecognized genetic diversity of APMV-1 in wild birds in North America which is likely a function of continued viral evolution in reservoir hosts. We did not, however, find support for the emergence or maintenance of APMV-1 strains predicted to be pathogenic to poultry in wild birds of North America outside of the order Suliformes (i.e., cormorants). Furthermore, genetic evidence suggests that ecological drivers or other mechanisms may restrict viral exchange among taxa and regions of North America. Additional and more systematic sampling for APMV-1 in North America would likely provide further inference on viral

  11. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus)

    Science.gov (United States)

    Dimitrov, Kiril M.; Ramey, Andy M.; Qiu, Xueting; Bahl, Justin; Afonso, Claudio L.

    2016-01-01

    Newcastle disease is caused by virulent forms of avian paramyxovirus of serotype 1 (APMV-1) and has global economic importance. The disease reached panzootic proportions within two decades after first being identified in 1926 in the United Kingdom and Indonesia and still remains endemic in many countries across the world. Here we review information on the host, temporal, and geographic distribution of APMV-1 genetic diversity based on the evolutionary systematics of the complete coding region of the fusion gene. Strains of APMV-1 are phylogenetically separated into two classes (class I and class II) and further classified into genotypes based on genetic differences. Class I viruses are genetically less diverse, generally present in wild waterfowl, and are of low virulence. Class II viruses are genetically and phenotypically more diverse, frequently isolated from poultry with occasional spillovers into wild birds, and exhibit a wider range of virulence. Waterfowl, cormorants, and pigeons are natural reservoirs of all APMV-1 pathotypes, except viscerotropic velogenic viruses for which natural reservoirs have not been identified. Genotypes I and II within class II include isolates of high and low virulence, the latter often being used as vaccines. Viruses of genotypes III and IX that emerged decades ago are now isolated rarely, but may be found in domestic and wild birds in China. Containing only virulent viruses and responsible for the majority of recent outbreaks in poultry and wild birds, viruses from genotypes V, VI, and VII, are highly mobile and have been isolated on different continents. Conversely, virulent viruses of genotypes XI (Madagascar), XIII (mainly Southwest Asia), XVI (North America) and XIV, XVII and XVIII (Africa) appear to have a more limited geographic distribution and have been isolated predominantly from poultry.

  12. Complete genome sequence of a velogenic neurotropic avian paramyxovirus 1 isolated from peacocks (Pavo cristatus) in a wildlife park in Pakistan.

    Science.gov (United States)

    Munir, Muhammad; Shabbir, Muhammad Z; Yaqub, Tahir; Shabbir, Muhammad A B; Mukhtar, Nadia; Khan, Muhammad R; Berg, Mikael

    2012-12-01

    Avian paramyxovirus serotype 1 (APMV-1) was isolated from an acute and highly contagious outbreak in peacocks (Pavo cristatus) in a wildlife park in Pakistan. A velogenic neurotropic form of APMV-1 caused a 100% case fatality rate and killed 190 peacocks within a week. Biological and serological characterizations showed features of a velogenic strain of APMV-1, and these results were further confirmed by sequence analysis of the cleavage site in the fusion protein. The complete genome of one of the isolates was sequenced, and phylogenetic analysis was conducted. The analysis showed that this isolate belonged to genotype VII, specifically, to subgenotype VIIa, and clustered closely with isolates characterized from Indonesia in the 1990s. Interestingly, the isolate showed significant differences from previously characterized APMV-1 isolates from commercial and rural chickens in Pakistan. The work presented here is the first complete genome sequence of any APMV-1 isolate from wild birds in the region and therefore highlights the need for increased awareness and surveillance in such bird species.

  13. Thermal inactivation of avian viral and bacterial pathogens in an effluent treatment system within a biosafety level 2 and 3 enhanced facility

    Science.gov (United States)

    Avian influenza (AI) virus, avian paramyxovirus Type 1 (APMV-1 or Newcastle disease virus [NDV]), reovirus, rotavirus, turkey astrovirus (TAstV), avian metapneumovirus (aMPV), Marek’s disease virus (MDV-1), avian parvovirus (ChPV) and Salmonella enterica serovar Enteritidis are significant biosafety...

  14. Avian paramyxovirus serotype 1 (Newcastle disease virus), avian influenza virus, and Salmonella spp. in mute swans (Cygnus olor) in the Great Lakes region and Atlantic Coast of the United States.

    Science.gov (United States)

    Pedersen, Kerri; Marks, David R; Arsnoe, Dustin M; Afonso, Claudio L; Bevins, Sarah N; Miller, Patti J; Randall, Adam R; DeLiberto, Thomas J

    2014-03-01

    Since their introduction to the United States in the late 19th century, mute swans (Cygnus olor) have become a nuisance species by causing damage to aquatic habitats, acting aggressively toward humans, competing with native waterfowl, and potentially transmitting or serving as a reservoir of infectious diseases to humans and poultry. In an effort to investigate their potential role as a disease reservoir and to establish avian health baselines for pathogens that threaten agricultural species or human health, we collected samples from 858 mute swans and tested them for avian paramyxovirus serotype 1 (APMV-1), avian influenza virus (AIV), and Salmonella spp. when possible. Our results indicate that exposure to APMV-1 and AIV is common (60%, n = 771, and 45%, n = 344, antibody prevalence, respectively) in mute swans, but detection of active viral shedding is less common (8.7%, n = 414, and 0.8%, n = 390, respectively). Salmonella was isolated from three mute swans (0.6%, n = 459), and although the serovars identified have been implicated in previous human outbreaks, it does not appear that Salmonella is commonly carried by mute swans.

  15. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  16. Detection of Inter-lineage Natural Recombination in Avian Paramyxovirus Serotype 1 using Simplified Deep Sequencing Platform

    Directory of Open Access Journals (Sweden)

    Dilan Amila Satharasinghe

    2016-11-01

    Full Text Available Newcastle disease virus (NDV is a prototype member of avian paramyxovirus serotype 1 (APMV-1, which causes severe and contagious disease in the commercial poultry and wild birds. Despite extensive vaccination programs and other control measures, the disease remains endemic around the globe especially in Asia, Africa, and the Middle East. Being a single serotype, genotype II based vaccines remained most acceptable means of immunization. However, the evidence is emerging on failures of vaccines mainly due to evolving nature of the virus and higher genetic gaps between vaccine and field strains of APMV-1. Most of the epidemiological and genetic characterizations of APMVs are based on conventional methods, which are prone to mask the diverse population of viruses in complex samples. In this study, we report the application of a simple, robust, and less resource-demanding methodology for the whole genome sequencing of NDV, using next-generation sequencing on the Illumina MiSeq platform. Using this platform, we sequenced full genomes of five virulent Malaysian NDV strains collected during 2004-2013. All isolates clustered within highly prevalent lineage 5 (specifically in lineage 5a; however, a significantly greater genetic divergence was observed in isolates collected from 2004 to 2011. Interestingly, genetic characterization of one isolate collected in 2013 (IBS025/13 shown natural recombination between lineage 2 and lineage 5. In the event of recombination, the isolate (IBS025/13 carried nucleocapsid protein consist of 55-1801 nucleotides (nts and near-complete phosphoprotein (1804-3254 nts genes of lineage 2 whereas surface glycoproteins (fusion, hemagglutinin-neuraminidase and large polymerase of lineage 5. Additionally, the recombinant virus has a genome size of 15,186 nts which is characteristics for the old genotypes I to IV isolated from 1930 to 1960. Taken together, we report the occurrence of a natural recombination in circulating strains

  17. Detection of Inter-Lineage Natural Recombination in Avian Paramyxovirus Serotype 1 Using Simplified Deep Sequencing Platform.

    Science.gov (United States)

    Satharasinghe, Dilan A; Murulitharan, Kavitha; Tan, Sheau W; Yeap, Swee K; Munir, Muhammad; Ideris, Aini; Omar, Abdul R

    2016-01-01

    Newcastle disease virus (NDV) is a prototype member of avian paramyxovirus serotype 1 (APMV-1), which causes severe and contagious disease in the commercial poultry and wild birds. Despite extensive vaccination programs and other control measures, the disease remains endemic around the globe especially in Asia, Africa, and the Middle East. Being a single serotype, genotype II based vaccines remained most acceptable means of immunization. However, the evidence is emerging on failures of vaccines mainly due to evolving nature of the virus and higher genetic gaps between vaccine and field strains of APMV-1. Most of the epidemiological and genetic characterizations of APMVs are based on conventional methods, which are prone to mask the diverse population of viruses in complex samples. In this study, we report the application of a simple, robust, and less resource-demanding methodology for the whole genome sequencing of NDV, using next-generation sequencing (NGS) on the Illumina MiSeq platform. Using this platform, we sequenced full genomes of five virulent Malaysian NDV strains collected during 2004-2013. All isolates clustered within highly prevalent lineage 5 (specifically in lineage 5a); however, a significantly greater genetic divergence was observed in isolates collected from 2004 to 2011. Interestingly, genetic characterization of one isolate collected in 2013 (IBS025/13) shown natural recombination between lineage 2 and lineage 5. In the event of recombination, the isolate (IBS025/13) carried nucleocapsid protein consist of 55-1801 nucleotides (nts) and near-complete phosphoprotein (1804-3254 nts) genes of lineage 2 whereas surface glycoproteins (fusion, hemagglutinin-neuraminidase) and large polymerase of lineage 5. Additionally, the recombinant virus has a genome size of 15,186 nts which is characteristics for the old genotypes I-IV isolated from 1930 to 1960. Taken together, we report the occurrence of a natural recombination in circulating strains of NDV in

  18. Strains of avian paramyxovirus type 1 of low pathogenicity for chickens isolated from poultry and wild birds in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Handberg, Kurt; Ahrens, Peter

    2004-01-01

    Twenty-one strains of avian paramyxovirus type 1 of low virulence for chickens were isolated in Denmark between 1996 and the beginning of 2003. The low virulence of the strains was demonstrated by sequencing the fusion (F) gene at the cleavage site motif and in some cases by determining the intra......Twenty-one strains of avian paramyxovirus type 1 of low virulence for chickens were isolated in Denmark between 1996 and the beginning of 2003. The low virulence of the strains was demonstrated by sequencing the fusion (F) gene at the cleavage site motif and in some cases by determining...

  19. Isolation and properties of viruses from poultry in Hong Kong which represent a new (sixth) distinct group of avian paramyxoviruses.

    Science.gov (United States)

    Shortridge, K F; Alexander, D J; Collins, M S

    1980-08-01

    Eight viruses isolated in Hong Kong were shown to be serologically related. One was obtained from the tracheal swab of a chicken and four were from cloacal swabs of ducks sampled at a poultry dressing plant. Three isolations were made from samples taken at a duck farm: two from pond water and one from faeces. Representatives of these isolates were shown to be paramyxoviruses but were serologically distinct from other avian and mammalian paramyxoviruses by haemagglutination inhibition and neuraminidase inhibition tests. Slight variations were seen in the properties of three isolates examined in detail. All three were apathogenic for chickens. The structural polypeptides of one isolate, PMV-6/duck/Hong Kong/199/77, were examined by SDS-polyacrylamide gel electrophoresis. Seven polypeptides were detected, with mol. wt. 180000, 76000, 60000, 55000, 51000, 48000 and 40000. The isolates represent a sixth serologically distinct avian paramyxovirus group.

  20. The evolution of pigeon paramyxovirus type 1 (PPMV-1) in Great Britain: a molecular epidemiological study.

    Science.gov (United States)

    Aldous, E W; Fuller, C M; Ridgeon, J H; Irvine, R M; Alexander, D J; Brown, I H

    2014-04-01

    Newcastle disease (ND), caused by virulent strains of avian paramyxovirus type 1 (APMV-1), is considered throughout the world as one of the most important animal diseases. For over three decades now, there has been a continuing panzootic caused by a variant virulent APMV-1 strain, so-called pigeon paramyxovirus type 1 (PPMV-1), primarily in racing pigeons, which has also spread to wild birds and poultry. PPMV-1 isolations have been made in Great Britain every year since 1983. In this study, we have completed a comparative phylogenetic analysis based on a 374 nucleotide section of the fusion protein gene of 63 isolates of PPMV-1 that were isolated over a 26-year period; 43 of these were sequenced for this study. Phylogenetic analysis of these sequences revealed that all were closely related and placed in the genetic sublineage 4b (VIb), subdivision 4biif. © 2012 Crown copyright.

  1. Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011—Review and recommendations for surveillance

    DEFF Research Database (Denmark)

    Dundon, William G.; Heidari, Alireza; Fusaro, Alice

    2012-01-01

    Since 2006, the members of the molecular epidemiological working group of the European “EPIZONE” network of excellence have been generating sequence data on avian influenza and avian paramyxoviruses from both European and African sources in an attempt to more fully understand the circulation...... and impact of these viruses. This review presents a timely update on the epidemiological situation of these viruses based on sequence data generated during the lifetime of this project in addition to data produced by other groups during the same period. Based on this information and putting it all...

  2. Determination of the seroprevalence of Newcastle disease virus (avian paramyxovirus type 1 in Zambian backyard chicken flocks

    Directory of Open Access Journals (Sweden)

    Chimuka Musako

    2012-02-01

    Full Text Available A cross-sectional study was conducted in five provinces and 11 districts of Zambia to determine the seroprevalence of Newcastle disease in Zambian backyard chicken flocks. Of the chickens sampled, 73.9% tested positive for avian paramyxovirus type 1 antibodies by means of an enzyme-linked immunosorbent assay. Seroprevalence varied amongst the five provinces sampled, ranging from 82.6% in the Eastern Province to 48.3% in Luapula Province. Seroprevalence also varied amongst the 11 districts sampled, ranging from 91.3% in Monze district of Southern Province to 22.8% in Mufulira district of the Copperbelt province. Overall, the seroprevalence of Newcastle disease in Zambian backyard chicken flocks has increased since the previous study conducted in 1994.

  3. Isolation of influenza A virus, subtype H5N2, and avian paramyxovirus type 1 from a flock of ostriches in Europe

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Nielsen, O.L.; Hansen, C.

    1998-01-01

    A total of 146 of 506 ostriches (Struthio camelus) introduced into a quarantine in Denmark died within the first 23 days. The majority of deaths were in young birds up to 10 kg body weight. Avian influenza A viruses (AIVs) were isolated from 14 pools of organ tissues representing seven groups each......-Q-R-E-T-R*G-L-F- at the cleavage site of the haemagglutinin protein, typical of non-pathogenic AIVs. In addition, an avirulent avian paramyxovirus type 1 virus was isolated from one pool of kidney tissues. Bacteriological examination gave no significant results. The most characteristic pathological findings were impaction...

  4. Screening of Feral Pigeon (Colomba livia, Mallard (Anas platyrhynchos and Graylag Goose (Anser anser Populations for Campylobacter spp., Salmonella spp., Avian Influenza Virus and Avian Paramyxovirus

    Directory of Open Access Journals (Sweden)

    Nesse LL

    2005-12-01

    Full Text Available A total of 119 fresh faecal samples were collected from graylag geese migrating northwards in April. Also, cloacal swabs were taken from 100 carcasses of graylag geese shot during the hunting season in August. In addition, samples were taken from 200 feral pigeons and five mallards. The cultivation of bacteria detected Campylobacter jejuni jejuni in six of the pigeons, and in one of the mallards. Salmonella diarizona 14:k:z53 was detected in one graylag goose, while all pigeons and mallards were negative for salmonellae. No avian paramyxovirus was found in any of the samples tested. One mallard, from an Oslo river, was influenza A virus positive, confirmed by RT-PCR and by inoculation of embryonated eggs. The isolate termed A/Duck/Norway/1/03 was found to be of H3N8 type based on sequence analyses of the hemagglutinin and neuraminidase segments, and serological tests. This is the first time an avian influenza virus has been isolated in Norway. The study demonstrates that the wild bird species examined may constitute a reservoir for important bird pathogens and zoonotic agents in Norway.

  5. New avian paramyxoviruses type I strains identified in Africa provide new outcomes for phylogeny reconstruction and genotype classification.

    Directory of Open Access Journals (Sweden)

    Renata Servan de Almeida

    Full Text Available Newcastle disease (ND is one of the most lethal diseases of poultry worldwide. It is caused by an avian paramyxovirus 1 that has high genomic diversity. In the framework of an international surveillance program launched in 2007, several thousand samples from domestic and wild birds in Africa were collected and analyzed. ND viruses (NDV were detected and isolated in apparently healthy fowls and wild birds. However, two thirds of the isolates collected in this study were classified as virulent strains of NDV based on the molecular analysis of the fusion protein and experimental in vivo challenges with two representative isolates. Phylogenetic analysis based on the F and HN genes showed that isolates recovered from poultry in Mali and Ethiopia form new groups, herein proposed as genotypes XIV and sub-genotype VIf with reference to the new nomenclature described by Diel's group. In Madagascar, the circulation of NDV strains of genotype XI, originally reported elsewhere, is also confirmed. Full genome sequencing of five African isolates was generated and an extensive phylogeny reconstruction was carried out based on the nucleotide sequences. The evolutionary distances between groups and the specific amino acid signatures of each cluster allowed us to refine the genotype nomenclature.

  6. Population dynamics and rates of molecular evolution of a recently emerged paramyxovirus, avian metapneumovirus subtype C.

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-02-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 x 10(-3) to 7 x 10(-3) substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present.

  7. Expansion of an exotic species and concomitant disease outbreaks: pigeon paramyxovirus in free-ranging Eurasian collared doves.

    Science.gov (United States)

    Schuler, Krysten L; Green, David E; Justice-Allen, Anne E; Jaffe, Rosemary; Cunningham, Mark; Thomas, Nancy J; Spalding, Marilyn G; Ip, Hon S

    2012-06-01

    Eurasian collared doves (Streptopelia decaocto) have expanded their range across the United States since their introduction several decades ago. Recent mortality events in Eurasian collared doves in Arizona and Montana, USA, during the winter of 2009-2010 were the result of pigeon paramyxovirus (PPMV), a novel disease agent. The first instance of mortality by this emerging infectious disease in this species occurred in Florida in 2001 with subsequent disease events in 2006 and 2008. Full diagnostic necropsies were performed on carcasses from the three states. PPMV was identified by RT-PCR and virus isolation and was sequenced to the VIb genotype of avian paramyxovirus-1 (APMV). Other APMVs are common in a variety of free-ranging birds, but concern is warranted because of the potential for commingling of this species with native birds, virus evolution, and threats to domestic poultry. Improved surveillance for wildlife mortality events and efforts to prevent introduction of non-native animals could reduce the threat of introducing new pathogens.

  8. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    OpenAIRE

    Padhi, Abinash; Poss, Mary

    2008-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes exam...

  9. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present. PMID:19052092

  10. Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds.

    Science.gov (United States)

    Rohaim, M A; El Naggar, R F; Helal, A M; Hussein, H A; Munir, Muhammad

    2017-06-16

    Transmission of viruses from the commercial poultry to wild birds is an emerging paradigm of livestock-wildlife interface. Here, we report the identification and isolation of vaccine strains of avian paramyxovirus serotype 1 (APMV1) and avian coronaviruses (ACoV) from different wild bird species across eight Egyptian governorates between January 2014 and December 2015. Surveillance of avian respiratory viruses in free-ranging wild birds (n=297) identified three species that harboured or excreted APMV1 and ACoVs. Genetic characterization and phylogenetic analysis of recovered viruses revealed a close association with the most widely utilized vaccine strains in the country. These results highlight the potential spillover of vaccine-viruses probably due to extensive use of live-attenuated vaccines in the commercial poultry, and close interaction between domesticated and wild bird populations. Further exploring the full spectrum of vaccine-derived viral vaccine strains in wild birds might help to assess the emergence of future wild-birds origin viruses. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Isolation of herpesvirus and Newcastle disease virus from White Storks (Ciconia ciconia) maintained at four rehabilitation centres in northern Germany during 1983 to 2001 and failure to detect antibodies against avian influenza A viruses of subtypes H5 and H7 in these birds.

    Science.gov (United States)

    Kaleta, Erhard F; Kummerfeld, Norbert

    2012-01-01

    Herpesvirus isolations from peripheral white blood cells of 253 White Storks (Ciconia ciconia) were obtained during a long-term study (1983 to 2001). The storks lived for a few months to 20 years at four rehabilitation centres. Isolates were obtained from 83 of 253 storks. This herpesvirus is indigenous for storks and unrelated to any other avian herpesvirus. Significantly more herpesvirus isolates were obtained during spring than in autumn samplings. The intervals between the first and last virus isolation ranged from 1 to 15 years. Herpesvirus isolates were simultaneously obtained from white blood cells and from pharyngeal swabs of four of 34 storks but not from cloacal swabs. Neutralizing antibodies to stork herpesvirus were detected in 178 of 191 examined blood plasma samples. Neutralizing antibodies against stork herpesvirus did not correlate with herpesvirus viraemia. The results further substantiate the persistence of herpesvirus in White Storks and underline the previously unrecorded long periods of virus and antibody presence. Virulent avian paramyxovirus type 1 (APMV-1; Newcastle disease virus) was isolated from white blood cells during 1992 and 1993 from four healthy migrating storks, and possessed virulence markers on the cleavage site of the H and F genes. These properties resemble the NE type of APMV-1. Haemagglutination inhibition antibodies against APMV-1 were detected in 16 of 191 blood plasma samples. Avian influenza A virus was not isolated and antibodies against subtypes H5 and H7 were not detected.

  12. Isolation and characterization of avian paramyxovirus type 1 (Newcastle disease) viruses from a flock of ostriches (Struthio camelus) and emus (Dromaius novaehollandiae) in Europe with inconsistent serology

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Herczeg, J.; Lomniczi, B.

    1998-01-01

    of Newcastle disease in back yard poultry ire Denmark. Blood samples were taken from all live birds in the flock after 25 and 95 days of quarantine and all were negative for antibodies to APMV-1 in haemagglutination inhibition tests. All samples taken after 95 days of quarantine were also negative...

  13. Paramyxoviruses of fish: Chapter 17

    Science.gov (United States)

    Meyers, Theodore R.; Batts, William N.; Kibenge, Frederick S. B.; Godoy, Marcos

    2016-01-01

    The first fish paramyxovirus was isolated from normal adult Chinook salmon returning to a coastal hatchery in Oregon in the fall of 1982. Subsequently, the virus was isolated from other stocks of adult Chinook salmon and one stock of adult coho salmon in California, Oregon, Washington and Alaska, leading to its designation as the Pacific salmon paramyxovirus (PSPV). The slow-growing virus can be isolated from tissues and ovarian fluids of healthy adult fish returning to spawn and apparently causes no clinical signs of disease or mortality. In 1995, a different and widely disseminated paramyxovirus was isolated from farmed Atlantic salmon in Norway and was designated as Atlantic salmon paramyxovirus (ASPV). Although this virus caused no disease or mortality when injected into juvenile Atlantic salmon, ASPV has been associated with proliferative gill inflammation in sea-reared yearling fish; however, additional infectious agents may be involved in the etiology of the condition. Sequence analysis of PSPV and ASPV isolates using the polymerase gene established their placement in the family Paramyxoviridaeand has shown the two viruses to be closely related but sufficiently different from each other and from other known paramyxoviruses to possibly represent new genera within the family. The viruses can be diagnosed by isolation in cell culture with final confirmation by molecular methods. Other paramyxovirus-like agents have been observed or isolated from rainbow trout in Germany, from seabream in Japan associated with epithelial necrosis, from turbot in Spain associated with erythrocytic inclusion bodies and buccal/opercular hemorrhaging and from koi and common carp associated with gill necrosis in the European Union.

  14. A theoretical adaptive model of thermal comfort - Adaptive Predicted Mean Vote (aPMV)

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [School of Construction Management and Engineering, The University of Reading (United Kingdom); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Li, Baizhan [Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University (China); Liu, Jing [School of Construction Management and Engineering, The University of Reading (United Kingdom)

    2009-10-15

    This paper presents in detail a theoretical adaptive model of thermal comfort based on the ''Black Box'' theory, taking into account factors such as culture, climate, social, psychological and behavioural adaptations, which have an impact on the senses used to detect thermal comfort. The model is called the Adaptive Predicted Mean Vote (aPMV) model. The aPMV model explains, by applying the cybernetics concept, the phenomena that the Predicted Mean Vote (PMV) is greater than the Actual Mean Vote (AMV) in free-running buildings, which has been revealed by many researchers in field studies. An Adaptive coefficient ({lambda}) representing the adaptive factors that affect the sense of thermal comfort has been proposed. The empirical coefficients in warm and cool conditions for the Chongqing area in China have been derived by applying the least square method to the monitored onsite environmental data and the thermal comfort survey results. (author)

  15. Newcastle disease: An in-depth review including epidemiology and molecular diagnostics

    Science.gov (United States)

    Infections of birds with strains of avian paramyxovirus serotype 1 (APMV-1), (synonyms: Newcastle disease virus (NDV), pigeon PMV-1 (PPMV-1)) are associated with two clinical outcomes: 1) Newcastle disease (ND) results from infections with virulent APMV-1, and is also called Exotic ND (END) in U. S...

  16. Biochemical characterization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Song, Minxun; Demers, Andrew; Weng, Yuejin; Lu, Wuxun; Wang, Dan; Kaushik, Radhey S; Yu, Qingzhong; Li, Feng

    2012-08-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that has three membrane proteins (G, F, and SH). Among them, the SH protein is a small type II integral membrane protein that is incorporated into virions and is only present in certain paramyxoviruses. In the present study, we show that the AMPV SH protein is modified by N-linked glycans and can be released into the extracellular environment. Furthermore, we demonstrate that glycosylated AMPV SH proteins form homodimers through cysteine-mediated disulfide bonds, which has not been reported previously for SH proteins of paramyxoviruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. ORTHOMYXO- AND PARAMYXOVIRUSES IN MARINE MAMMALS

    Directory of Open Access Journals (Sweden)

    Marina G. Gulyaeva

    2018-01-01

    Full Text Available Abstract. Aim. Marine mammals play the role of "sentries", standing guard over the health and functioning of marine ecosystems. The analysis of data reported in literature was carried out to understand and to evaluate a circulation of representatives of the Orthomyxoviridae and Paramyxoviridae, dangerous pathogens capable to cause morbidity and mortality in marine warm-blooded animals. Discussion. In the population of marine animals, in the available literature, no more than twenty infectious diseases were described. At the same time, according to preliminary estimates, about 15% of marine mammals die from indicated diseases. Previous studies conducted by various groups of scientists have already shown the circulation of various viral pathogens, which cause different infections in these animals. The present fact indicates the important role of marine mammals in the ecology and spreading of a number of viruses. In accordance with a literature data, representatives of Orthomixoviruses and Paramyxoviruses are among the most dangerous pathogens, which may infect this type of animals. Thus, it was suggested that seals may be infected with a wide range of influenza viruses without prior adaptation. It was emphasized that pinnipeds are one of the reservoir of a human influenza B virus in nature. Infections caused by morbilliviruses, can be the reason of epizootics in a population of seals and among the other species of marine mammals. Signs of a disease are similar to the clinic of carnivore plague. Main conclusions. The data presented in literature is extremely not enough for fully understanding a role of marine mammals as hosts or carriers of potential zoonotic pathogens, such as avian influenza virus (AIV, morbilliviruses and others. Thus, this issue requires further more detailed study.

  18. Newcastle disease B1 vaccine strain in wild rock pigeons in Atlanta, Georgia

    Science.gov (United States)

    From June to October of 2012, samples were collected from wild Rock Pigeons (Columba livia) in urban neighborhoods of Atlanta, Georgia to ascertain the prevalence of pigeon paramyxovirus serotype-1 (PPMV-1). PPMV-1 strains are a subset of avian paramyxovirus serotype-1 (APMV-1) commonly isolated fro...

  19. Avian and human metapneumovirus.

    Science.gov (United States)

    Broor, Shobha; Bharaj, Preeti

    2007-04-01

    Pneumovirus infection remains a significant problem for both human and veterinary medicine. Both avian pneumovirus (aMPV, Turkey rhinotracheitis virus) and human metapneumovirus (hMPV) are pathogens of birds and humans, which are associated with respiratory tract infections. Based on their different genomic organization and low level of nucleotide (nt) and amino acid (aa) identity with paramyxoviruses in the genus Pneumovirus, aMPV and hMPV have been classified into a new genus referred to as Metapneumovirus. The advancement of our understanding of pneumovirus biology and pathogenesis of pneumovirus disease in specific natural hosts can provide us with strategies for vaccine formulations and combined antiviral and immunomodulatory therapies.

  20. A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study.

    Directory of Open Access Journals (Sweden)

    Sander van Boheemen

    Full Text Available Family-wide molecular diagnostic assays are valuable tools for initial identification of viruses during outbreaks and to limit costs of surveillance studies. Recent discoveries of paramyxoviruses have called for such assay that is able to detect all known and unknown paramyxoviruses in one round of PCR amplification. We have developed a RT-PCR assay consisting of a single degenerate primer set, able to detect all members of the Paramyxoviridae family including all virus genera within the subfamilies Paramyxovirinae and Pneumovirinae. Primers anneal to domain III of the polymerase gene, with the 3' end of the reverse primer annealing to the conserved motif GDNQ, which is proposed to be the active site for nucleotide polymerization. The assay was fully optimized and was shown to indeed detect all available paramyxoviruses tested. Clinical specimens from hospitalized patients that tested positive for known paramyxoviruses in conventional assays were also detected with the novel family-wide test. A high-throughput fluorescence-based RT-PCR version of the assay was developed for screening large numbers of specimens. A large number of samples collected from wild birds was tested, resulting in the detection of avian paramyxoviruses type 1 in both barnacle and white-fronted geese, and type 8 in barnacle geese. Avian metapneumovirus type C was found for the first time in Europe in mallards, greylag geese and common gulls. The single round family-wide RT-PCR assay described here is a useful tool for the detection of known and unknown paramyxoviruses, and screening of large sample collections from humans and animals.

  1. The Paramyxovirus Polymerase Complex as a Target for Next-Generation Anti-Paramyxovirus Therapeutics

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2015-05-01

    Full Text Available The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV, as well as the emerging zoonotic Hendra and Nipah viruses. In the United States, RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path towards the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.

  2. Novel paramyxoviruses in free-ranging European bats.

    Directory of Open Access Journals (Sweden)

    Andreas Kurth

    Full Text Available The zoonotic potential of paramyxoviruses is particularly demonstrated by their broad host range like the highly pathogenic Hendra and Nipah viruses originating from bats. But while so far all bat-borne paramyxoviruses have been identified in fruit bats across Africa, Australia, South America, and Asia, we describe the detection and characterization of the first paramyxoviruses in free-ranging European bats. Moreover, we examined the possible impact of paramyxovirus infection on individual animals by comparing histo-pathological findings and virological results. Organs from deceased insectivorous bats of various species were sampled in Germany and tested for paramyxovirus RNA in parallel to a histo-pathological examination. Nucleic acids of three novel paramyxoviruses were detected, two viruses in phylogenetic relationship to the recently proposed genus Jeilongvirus and one closely related to the genus Rubulavirus. Two infected animals revealed subclinical pathological changes within their kidneys, suggestive of a similar pathogenesis as the one described in fruit bats experimentally infected with Hendra virus.Our findings indicate the presence of bat-born paramyxoviruses in geographic areas free of fruit bat species and therefore emphasize a possible virus-host co-evolution in European bats. Since these novel viruses are related to the very distinct genera Rubulavirus and Jeilongvirus, a similarly broad genetic diversity among paramyxoviruses in other Microchiroptera compared to Megachiroptera can be assumed. Given that the infected bats were either found in close proximity to heavily populated human habitation or areas of intensive agricultural use, a potential risk of the emergence of zoonotic paramyxoviruses in Europe needs to be considered.

  3. An in-depth review of NDV, including epidemiology and molecular diagnostics

    Science.gov (United States)

    Birds infected with virulent strains of avian paramyxovirus serotype 1 (APMV-1), also known as Newcastle disease virus (NDV), and pigeon PMV-1 (PPMV-1)are defined as having Newcastle disease (ND), which in the United States is sometimes called Exoctic Newcastle disease (END). Infections with virule...

  4. Avian influenza A virus and Newcastle disease virus mono- and co-infections in birds

    Directory of Open Access Journals (Sweden)

    Iv. Zarkov

    2017-06-01

    Full Text Available The main features of avian influenza viruses (AIV and Newcastle disease virus (APMV-1, the possibilities for isolation and identification in laboratory conditions, methods of diagnostics, main hosts, clinical signs and virus shedding are reviewed in chronological order. The other part of the review explains the mechanisms and interactions in cases of co-infection of AIV and APMV-1, either between them or with other pathogens in various indicator systems – cell cultures, chick embryos or birds. The emphasis is placed on quantitative data on the virus present mainly in the first ten days following experimental infection of birds, the periods of virus carrier ship and shedding, clinical signs, pathological changes, diagnostic challenges

  5. Avian influenza

    Science.gov (United States)

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  6. Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses In Vitro and against Human Metapneumovirus in Hamsters.

    Science.gov (United States)

    Jochmans, D; van Nieuwkoop, S; Smits, S L; Neyts, J; Fouchier, R A M; van den Hoogen, B G

    2016-08-01

    The clinical impact of infections with respiratory viruses belonging to the family Paramyxoviridae argues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstrate in vitro activity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses tested in vitro, with 90% effective concentration (EC90) values of 8 to 40 μM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Structural and mechanistic studies of measles virus illuminate paramyxovirus entry.

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2011-06-01

    Full Text Available Measles virus (MeV, a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H and fusion (F proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.

  8. Avian Metapneumoviruses

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important virus that is the primary causal agent of turkey rhinotracheitis (TRT), also known as avian rhinotracheitis (ART). The virus causes an acute highly contagious infection of the upper respiratory tract in turkeys and was first isolated from tur...

  9. Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

    International Nuclear Information System (INIS)

    Lamb, Robert A.; Paterson, Reay G.; Jardetzky, Theodore S.

    2006-01-01

    Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxoviruses (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described

  10. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  11. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    Science.gov (United States)

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  12. Structure and assembly of a paramyxovirus matrix protein.

    Science.gov (United States)

    Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G

    2012-08-28

    Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

  13. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  14. Avian Flu

    International Nuclear Information System (INIS)

    Eckburg, Paul

    2006-01-01

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  15. Natural Infections With Pigeon Paramyxovirus Serotype 1: Pathologic Changes in Eurasian Collared-Doves ( Streptopelia decaocto) and Rock Pigeons ( Columba livia) in the United States.

    Science.gov (United States)

    Isidoro-Ayza, M; Afonso, C L; Stanton, J B; Knowles, S; Ip, H S; White, C L; Fenton, H; Ruder, M G; Dolinski, A C; Lankton, J

    2017-07-01

    Pigeon paramyxovirus serotype 1 (PPMV-1) is a globally distributed, virulent member of the avian paramyxovirus serotype 1 serogroup that causes mortality in columbiformes and poultry. Following introduction into the United States in the mid-1980s, PPMV-1 rapidly spread causing numerous mortality events in Eurasian collared-doves ( Streptopelia decaocto) (ECDOs) and rock pigeons ( Columba livia) (ROPIs). The investigators reviewed pathological findings of 70 naturally infected, free-ranging columbiforms from 25 different mortality events in the United States. Immunohistochemistry targeting PPMV-1 nucleoprotein was used to determine the tissue distribution of the virus in a subset of 17 birds from 10 of the studied outbreaks. ECDOs (61 birds) and ROPIs (9 birds) were the only species in which PPMV-1-associated disease was confirmed by viral isolation and presence of histologic lesions. Acute to subacute tubulointerstitial nephritis and necrotizing pancreatitis were the most frequent histologic lesions, with immunolabeling of viral antigen in renal tubular epithelial cells and pancreatic acinar epithelium. Lymphoid depletion of bursa of Fabricius and spleen was common, but the presence of viral antigen in these organs was inconsistent among infected birds. Hepatocellular necrosis was occasionally present with immunolabeling of hypertrophic Kupffer cells, and immunopositive eosinophilic intracytoplasmic inclusion bodies were present in hepatocytes of 1 ECDO. Immunopositive lymphocytic choroiditis was present in 1 ECDO, while lymphocytic meningoencephalitis was frequent in ROPIs in absence of immunolabeling. This study demonstrates widespread presence of PPMV-1 antigen in association with histologic lesions, confirming the lethal potential of this virus in these particular bird species.

  16. Natural infections with pigeon paramyxovirus serotype 1: Pathologic changes in Eurasian collared-doves (Streptopelia decaocto) and rock pigeons (Columba livia) in the United States

    Science.gov (United States)

    Isidoro Ayza, Marcos; Afonso, C.L.; Stanton, J.B.; Knowles, Susan N.; Ip, Hon S.; White, C. LeAnn; Fenton, Heather; Ruder, M.G.; Dolinski, A. C.; Lankton, Julia S.

    2017-01-01

    Pigeon paramyxovirus serotype 1 (PPMV-1) is a globally distributed, virulent member of the avian paramyxovirus serotype 1 serogroup that causes mortality in columbiformes and poultry. Following introduction into the United States in the mid-1980s, PPMV-1 rapidly spread causing numerous mortality events in Eurasian collared-doves (Streptopelia decaocto) (ECDOs) and rock pigeons (Columba livia) (ROPIs). The investigators reviewed pathological findings of 70 naturally infected, free-ranging columbiforms from 25 different mortality events in the United States. Immunohistochemistry targeting PPMV-1 nucleoprotein was used to determine the tissue distribution of the virus in a subset of 17 birds from 10 of the studied outbreaks. ECDOs (61 birds) and ROPIs (9 birds) were the only species in which PPMV-1-associated disease was confirmed by viral isolation and presence of histologic lesions. Acute to subacute tubulointerstitial nephritis and necrotizing pancreatitis were the most frequent histologic lesions, with immunolabeling of viral antigen in renal tubular epithelial cells and pancreatic acinar epithelium. Lymphoid depletion of bursa of Fabricius and spleen was common, but the presence of viral antigen in these organs was inconsistent among infected birds. Hepatocellular necrosis was occasionally present with immunolabeling of hypertrophic Kupffer cells, and immunopositive eosinophilic intracytoplasmic inclusion bodies were present in hepatocytes of 1 ECDO. Immunopositive lymphocytic choroiditis was present in 1 ECDO, while lymphocytic meningoencephalitis was frequent in ROPIs in absence of immunolabeling. This study demonstrates widespread presence of PPMV-1 antigen in association with histologic lesions, confirming the lethal potential of this virus in these particular bird species.

  17. Antagonism of Innate Immunity by Paramyxovirus Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Raychel Chambers

    2009-10-01

    Full Text Available Paramyxovirinae, a subfamily of Paramyxoviridae, are negative strand RNA viruses comprised of many important human and animal pathogens, which share a high degree of genetic and structural homology. The accessory proteins expressed from the P/V/C gene are major factors in the pathogenicity of the viruses, because of their ability to abrogate various facets of type I interferon (IFN induction and signaling. Most of the paramyxoviruses exhibit a commonality in their ability to antagonize innate immunity by blocking IFN induction and the Jak/STAT pathway. However, the manner in which the accessory proteins inhibit the pathway differs among viruses. Similarly, there are variations in the capability of the viruses to counteract intracellular detectors (RNA helicases, mda-5 and RIG-I. Furthermore, a functional specificity in the antagonism of the IFN response has been reported, suggesting that specificity in the circumvention of innate immunity restricts viral host range. Available evidence indicates that paramyxoviruses employ specific strategies to antagonize the IFN response of their specific hosts, which is one of the major factors that determine viral pathogenicity and host range.

  18. Avian cholera

    Science.gov (United States)

    Friend, Milton

    1999-01-01

    Avian cholera is a contagious disease resulting from infection by the bacterium Pasteurella multocida. Several subspecies of bacteria have been proposed for P. multocida, and at least 16 different P. multocida serotypes or characteristics of antigens in bacterial cells that differentiate bacterial variants from each other have been recognized. The serotypes are further differentiated by other methods, including DNA fingerprinting. These evaluations are useful for studying the ecology of avian cholera (Fig. 7.1), because different serotypes are generally found in poultry and free-ranging migratory birds. These evaluations also show that different P. multocida serotypes are found in wild birds in the eastern United States than those that are found in the birds in the rest of the Nation (Fig. 7.2).

  19. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  20. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become ...... of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures....

  1. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... of Avian Influenza A(H5N1) Avian influenza: guidelines. recommendations, descriptions Global Influenza and Surveillance Response System (GISRS) Food safety authorities network OIE Avian Influenza ...

  2. Avian pox

    Science.gov (United States)

    Hansen, W.

    1999-01-01

    Avian pox is the common name for a mild-to-severe, slowdeveloping disease of birds that is caused by a large virus belonging to the avipoxvirus group, a subgroup of poxviruses. This group contains several similar virus strains; some strains have the ability to infect several groups or species of birds but others appear to be species-specific. Mosquitoes are common mechanical vectors or transmitters of this disease. Avian pox is transmitted when a mosquito feeds on an infected bird that has viremia or pox virus circulating in its blood, or when a mosquito feeds on virus-laden secretions seeping from a pox lesion and then feeds on another bird that is susceptible to that strain of virus. Contact with surfaces or exposure to air-borne particles contaminated with poxvirus can also result in infections when virus enters the body through abraded skin or the conjunctiva or the mucous membrane lining that covers the front part of the eyeball and inner surfaces of the eyelids of the eye.

  3. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sayantan, E-mail: sayantan_bose@hms.harvard.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Jardetzky, Theodore S. [Department of Structural Biology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Lamb, Robert A., E-mail: ralamb@northwestern.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500 (United States)

    2015-05-15

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.

  4. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  5. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... type="submit" value="Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Avian Influenza Language: English (US) Español Recommend on Facebook Tweet ...

  6. Paramyxovirus-1 in feral pigeons (Columba livia) in Ontario

    Science.gov (United States)

    Johnston, Kathleen M.; Key, Douglas W.

    1992-01-01

    Paramyxovirus-1 (PMV-1) infection was diagnosed in racing pigeons in Ontario during 1985, but it was not until January 1989, that the virus was isolated from feral pigeons (Columba livia) in this province. During an 18 month period beginning January 1988, a total of 43 feral pigeons was submitted to the Wildlife Diseases Laboratory, Pathology Department, Ontario Veterinary College. A history of neurological signs accompanied most of the birds. Tissues from 29 birds were submitted for PMV-1 isolation. Allantoic inoculation of embryonated chicken eggs yielded PMV-1 in 10 of the pigeons submitted. On the basis of histological criteria, we believe that 12 other birds were also infected with PMV-1. Gross pathological changes were unremarkable. Lymphplasmacytic interstitial nephritis was observed histologically in all birds from which PMV-1 was isolated. Other lesions seen, in decreasing frequency of occurrence, were lymphoplasmacytic interstitial hepatitis and multifocal hepatic necrosis, lymphoplasmacytic interstitial pancreatitis, nonsuppurative encephalitis and myelitis. The existence of PMV-1 in feral pigeons poses a potential threat to the poultry population since there is ample opportunity for mingling with poultry under open housing management. There is also a concern that pigeons may harbor the virus, perhaps in the kidney, and become chronic carriers and potential long-term disseminators of the disease. ImagesFigure 1.Figure 2. PMID:17424132

  7. The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)

    International Nuclear Information System (INIS)

    Nylund, Stian; Karlsen, Marius; Nylund, Are

    2008-01-01

    The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses, which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae

  8. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  9. Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain.

    Science.gov (United States)

    Sun, Jing; Wei, Yongwei; Rauf, Abdul; Zhang, Yu; Ma, Yuanmei; Zhang, Xiaodong; Shilo, Konstantin; Yu, Qingzhong; Saif, Y M; Lu, Xingmeng; Yu, Lian; Li, Jianrong

    2014-11-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene

  10. The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity.

    Science.gov (United States)

    Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K

    2018-04-15

    The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral

  11. Bird Flu (Avian Influenza)

    Science.gov (United States)

    Bird flu (avian influenza) Overview Bird flu is caused by a type of influenza virus that rarely infects humans. More than a ... for Disease Control and Prevention estimates that seasonal influenza is responsible for ... heat destroys avian viruses, cooked poultry isn't a health threat. ...

  12. Characterization of pigeon paramyxoviruses (Newcastle disease virus) isolated in South Africa from 2001 to 2006.

    Science.gov (United States)

    Abolnik, C; Gerdes, G H; Kitching, J; Swanepoel, S; Romito, M; Bisschop, S P R

    2008-06-01

    Pigeon paramyxovirus type 1 (PPMV-1), a variant of Newcastle disease virus that primarily affects doves and pigeons has been isolated in South Africa since the mid-1980s. Phylogenetic evidence indicates that pigeon paramyxovirus type 1 viruses were introduced into South Africa on multiple occasions, based on the presence of two separate lineages, 4bi and 4bii, that have been circulating in Europe and the Far East since the early 1990s. During 2006, a PPMV-1 virus was isolated from an African ground hornbill (Bucorvus leadbeateri) which became acutely infected with PPMV-1 and died, probably after scavenging off infected dove carcasses in the region, since a closely-related PPMV-1 strain was also isolated from doves collected nearby. The hornbill isolate had ICPI and MDT values characteristic of PPMV-1 strains. The threat of PPMV-1 to poultry production and biodiversity in southern Africa highlights the importance of monitoring the spread of this strain.

  13. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    International Nuclear Information System (INIS)

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis

    2006-01-01

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1 V12 or Cdc42 V12 could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA L63 decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia

  14. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Weng, Yuejin; Lu, Wuxun; Demers, Andrew; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-09-01

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size amongst the different viruses. Human respiratory syncytial virus (HRSV) encodes the smallest SH protein consisting of only 64 amino acids, while metapneumoviruses have the longest SH protein ranging from 174 to 179 amino acids in length. Little is currently known about the cellular localization and topology of the metapneumovirus SH protein. Here we characterize for the first time metapneumovirus SH protein with respect to topology, subcellular localization, and transport using avian metapneumovirus subgroup C (AMPV-C) as a model system. We show that AMPV-C SH is an integral membrane protein with N(in)C(out) orientation located in both the plasma membrane as well as within intracellular compartments, which is similar to what has been described previously for SH proteins of other paramyxoviruses. Furthermore, we demonstrate that AMPV-C SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Avian Influenza in Birds

    Science.gov (United States)

    ... the United States Department of Agriculture’s Animal and Plant Health Inspection Service . Surveillance for Avian Influenza CDC, ... maintained by: Office of the Associate Director for Communication, Digital Media Branch, Division of Public Affairs Email ...

  16. A family-wide rt-pcr assay for detection of paramyxoviruses and application to a large-scale surveillance study

    NARCIS (Netherlands)

    S. van Boheemen (Sander); T.M. Bestebroer (Theo); J.H. Verhagen (Josanne); A.D.M.E. Osterhaus (Albert); S.D. Pas (Suzan); S. Herfst (Sander); R.A.M. Fouchier (Ron)

    2012-01-01

    textabstractFamily-wide molecular diagnostic assays are valuable tools for initial identification of viruses during outbreaks and to limit costs of surveillance studies. Recent discoveries of paramyxoviruses have called for such assay that is able to detect all known and unknown paramyxoviruses in

  17. Molecular characterization of Newcastle disease viruses in Ostriches (Struthio camelus L.): further evidences of recombination within avian paramyxovirus type 1.

    Science.gov (United States)

    Yin, Yanbo; Cortey, Martí; Zhang, Yi; Cui, Shangjin; Dolz, Roser; Wang, Jianlin; Gong, Zhenhua

    2011-05-05

    Newcastle disease virus (NDV) strains isolated from ostriches have been genotyped for the first time by partial sequencing of the F gene to determine the epidemiologic role that this species can play within ND outbreaks. Fifteen additional NDV strains, mostly isolated from chickens but also from pigeons and penguins, were also included in the study to determine genetic relationships with ostriches NDV isolates. High genetic diversity was demonstrated in ostrich NDV isolates, as the 10 isolates were grouped in four distinct NDV genotypes. In agreement with the results obtained when chicken isolates have been molecularly characterized, the predominant genotype in ostriches was the genotype VII. More interestingly, evidences of recombination between genotype II and VII were observed in one ostrich isolate and in two further chicken isolates. Therefore, it seems that ostriches may play a relevant role in the ecology and epidemiology of ND particularly in those regions where they have an increasing farming importance as minor poultry species. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Andersen, Sophie Susanna Strindberg; Nielsen, Tenna W; Ribeiro, Ângela M

    2015-01-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species...... to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber...

  19. Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses

    Science.gov (United States)

    Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.

    2004-01-01

    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.

  20. Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion.

    Science.gov (United States)

    Peisajovich, S G; Samuel, O; Shai, Y

    2000-03-10

    Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses. Copyright 2000 Academic Press.

  1. Characterization of pigeon paramyxoviruses (Newcastle disease virus isolated in South Africa from 2001 to 2006

    Directory of Open Access Journals (Sweden)

    C. Abolnik

    2008-08-01

    Full Text Available Pigeon paramyxovirus type 1 (PPMV-1, a variant of Newcastle disease virus that primarily affects doves and pigeons has been isolated in South Africa since the mid-1980s. Phylogenetic evidence indicates that pigeon paramyxovirus type 1 viruses were introduced in to South Africa on multiple occasions, based on the presence of two separate lineages, 4bi and 4bii, that have been circulating in Europe and the Far East since the early 1990s. During 2006, a PPMV-1 virus was isolated from an African ground hornbil(l Bucorvus leadbeateri which becamea cutely infected with PPMV-1 and died, probably after scavenging off infected dove carcasses in the region, since a closely-related PPMV-1 strain was also isolated from doves collected nearby. The hornbill isolate had lCPl and MDT values characteristic of PPMV-1s trains. The threat of PPMV-1 to poultry production and biodiversity in southern Africa highlights the importance of monitoring the spread of this strain.

  2. Avian dark cells

    Science.gov (United States)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  3. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  4. Avian influenza: a review.

    Science.gov (United States)

    Thomas, Jennifer K; Noppenberger, Jennifer

    2007-01-15

    A review of the avian influenza A/H5N1 virus, including human cases, viral transmission, clinical features, vaccines and antivirals, surveillance plans, infection control, and emergency response plans, is presented. The World Health Organization (WHO) considers the avian influenza A/H5N1 virus a public health risk with pandemic potential. The next human influenza pandemic, if caused by the avian influenza A/H5N1 virus, is estimated to have a potential mortality rate of more than a hundred million. Outbreaks in poultry have been associated with human transmission. WHO has documented 258 confirmed human infections with a mortality rate greater than 50%. Bird-to-human transmission of the avian influenza virus is likely by the oral-fecal route. The most effective defense against an influenza pandemic would be a directed vaccine to elicit a specific immune response toward the strain or strains of the influenza virus. However, until there is an influenza pandemic, there is no evidence that vaccines or antivirals used in the treatment or prevention of such an outbreak would decrease morbidity or mortality. Surveillance of the bird and human populations for the highly pathogenic H5N1 is being conducted. Infection-control measures and an emergency response plan are discussed. Avian influenza virus A/H5N1 is a public health threat that has the potential to cause serious illness and death in humans. Understanding its pathology, transmission, clinical features, and pharmacologic treatments and preparing for the prevention and management of its outbreak will help avoid its potentially devastating consequences.

  5. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  6. A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines.

    Science.gov (United States)

    Zhang, Yu; Sun, Jing; Wei, Yongwei; Li, Jianrong

    2016-01-01

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.

  7. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  8. Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein.

    Science.gov (United States)

    Yuan, Ping; Leser, George P; Demeler, Borries; Lamb, Robert A; Jardetzky, Theodore S

    2008-09-01

    The mechanism by which the paramyxovirus hemagglutinin-neuraminidase (HN) protein couples receptor binding to activation of virus entry remains to be fully understood, but the HN stalk is thought to play an important role in the process. We have characterized ectodomain constructs of the parainfluenza virus 5 HN to understand better the underlying architecture and oligomerization properties that may influence HN functions. The PIV 5 neuraminidase (NA) domain is monomeric whereas the ectodomain forms a well-defined tetramer. The HN stalk also forms tetramers and higher order oligomers with high alpha-helical content. Together, the data indicate that the globular NA domains form weak intersubunit interactions at the end of the HN stalk tetramer, while stabilizing the stalk and overall oligomeric state of the ectodomain. Electron microscopy of the HN ectodomain reveals flexible arrangements of the NA and stalk domains, which may be important for understanding how these two HN domains impact virus entry.

  9. Avian influenza surveillance and diagnosis

    Science.gov (United States)

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  10. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    .... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...

  11. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    Science.gov (United States)

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-04

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  12. Clinical avian nutrition.

    Science.gov (United States)

    Orosz, Susan E

    2014-09-01

    Psittacine birds eat plant-based foods. Birds in the wild seem to be able to balance their energy needs, amino acids, and calcium. Companion birds in captivity do not do as well when self-selecting, and balanced diets are needed to improve their general health. A nutritional history is important to determine whether the avian patient is in balance nutritionally. Understanding the various sources of the fat-soluble vitamins, calcium, and protein will help guide clients to provide nutritious foods for their birds. Owners need to learn to use foraging as a major source of their bird's diet and techniques. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Influenza pandemics and avian flu

    OpenAIRE

    Fleming, Douglas

    2005-01-01

    Douglas Fleming is general practitioner in a large suburban practice in Birmingham. In this article he seeks to clarify clinical issues relating to potential pandemics of influenza, including avian influenza

  14. Isolation and molecular identification of Sunshine virus, a novel paramyxovirus found in Australian snakes.

    Science.gov (United States)

    Hyndman, Timothy H; Marschang, Rachel E; Wellehan, James F X; Nicholls, Philip K

    2012-10-01

    This paper describes the isolation and molecular identification of a novel paramyxovirus found during an investigation of an outbreak of neurorespiratory disease in a collection of Australian pythons. Using Illumina® high-throughput sequencing, a 17,187 nucleotide sequence was assembled from RNA extracts from infected viper heart cells (VH2) displaying widespread cytopathic effects in the form of multinucleate giant cells. The sequence appears to contain all the coding regions of the genome, including the following predicted paramyxoviral open reading frames (ORFs): 3'--Nucleocapsid (N)--putative Phosphoprotein (P)--Matrix (M)--Fusion (F)--putative attachment protein--Polymerase (L)--5'. There is also a 540 nucleotide ORF between the N and putative P genes that may be an additional coding region. Phylogenetic analyses of the complete N, M, F and L genes support the clustering of this virus within the family Paramyxoviridae but outside both of the current subfamilies: Paramyxovirinae and Pneumovirinae. We propose to name this new virus, Sunshine virus, after the geographic origin of the first isolate--the Sunshine Coast of Queensland, Australia. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  16. Carcass Management During Avian Influenza Outbreaks

    Science.gov (United States)

    This page on Avian Influenza (AI) describes carcass management during Avian Flu outbreaks, including who oversees carcass management, how they're managed, environmental concerns from carcass management, and disinfection. The page also describes what AI is.

  17. Avian mycoplasmosis update

    Directory of Open Access Journals (Sweden)

    ER Nascimento

    2005-03-01

    Full Text Available Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG, M. synoviae (MS, and M. meleagridis. Besides, M. iowe (MI is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorganisms, whereas all other mycoplasmas are considered facultative intracellular organisms. Their pathogenic mechanism for disease include adherence to host target cells, mediation of apoptosis, innocent bystander damage to host cell due to intimate membrane contact, molecular (antigen mimicry that may lead to tolerance, and mitotic effect for B and/or T lymphocytes, which could lead to suppressed T-cell function and/or production of cytotoxic T cell, besides mycoplasma by-products, such as hydrogen peroxide and superoxide radicals. Moreover, mycoplasma ability to stimulate macrophages, monocytes, T-helper cells and NK cells, results in the production of substances, such as tumor necrosing factor (TNF-alpha, interleukin (IL-1, 2, 6 and interferon (a, b, g. The major clinical signs seen in avian mycoplasmosis are coughing, sneezing, snicks, respiratory rales, ocular and nasal discharge, decreased feed intake and egg production, increased mortality, poor hatchability, and, primarily in turkeys, swelling of the infraorbital sinus(es. Nevertheless, chronic and unapparent infections are most common and more threatening. Mycoplasmas are transmitted horizontally, from bird to bird, and vertically, from dam to offspring through the eggs. Losses attributed to mycoplasmosis, mainly MG and MS infections, result from decreased egg production and egg quality, poor hatchability (high rate of embryonic mortality and culling of day-old birds, poor feed efficiency, increase in

  18. Current situation on highly pathogenic avian influenza

    Science.gov (United States)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  19. Markov Chain Estimation of Avian Seasonal Fecundity

    Science.gov (United States)

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  20. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... [Docket No. APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant... regions where any subtype of highly pathogenic avian influenza (HPAI) is considered to exist. The interim... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  1. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  2. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  3. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry.

    Directory of Open Access Journals (Sweden)

    Matteo Porotto

    2010-10-01

    Full Text Available In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

  4. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    International Nuclear Information System (INIS)

    Martín-García, Fernando; Mendieta-Moreno, Jesús Ignacio; Mendieta, Jesús; Gómez-Puertas, Paulino

    2012-01-01

    Highlights: ► Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. ► HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. ► HRS domains of F protein form three single α-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from β-sheet conformation to an elongated coil and then spontaneously to an α-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  5. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  6. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  7. Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam.

    Science.gov (United States)

    Berto, A; Anh, P H; Carrique-Mas, J J; Simmonds, P; Van Cuong, N; Tue, N T; Van Dung, N; Woolhouse, M E; Smith, I; Marsh, G A; Bryant, J E; Thwaites, G E; Baker, S; Rabaa, M A

    2018-02-01

    Bats and rodents are being increasingly recognized as reservoirs of emerging zoonotic viruses. Various studies have investigated bat viruses in tropical regions, but to date there are no data regarding viruses with zoonotic potential that circulate in bat and rat populations in Viet Nam. To address this paucity of data, we sampled three bat farms and three wet markets trading in rat meat in the Mekong Delta region of southern Viet Nam. Faecal and urine samples were screened for the presence of RNA from paramyxoviruses, coronaviruses and filoviruses. Paramyxovirus RNA was detected in 4 of 248 (1%) and 11 of 222 (4.9%) bat faecal and urine samples, respectively. Coronavirus RNA was detected in 55 of 248 (22%) of bat faecal samples; filovirus RNA was not detected in any of the bat samples. Further, coronavirus RNA was detected in 12 of 270 (4.4%) of rat faecal samples; all samples tested negative for paramyxovirus. Phylogenetic analysis revealed that the bat paramyxoviruses and bat and rat coronaviruses were related to viruses circulating in bat and rodent populations globally, but showed no cross-species mixing of viruses between bat and rat populations within Viet Nam. Our study shows that potentially novel variants of paramyxoviruses and coronaviruses commonly circulate in bat and rat populations in Viet Nam. Further characterization of the viruses and additional human and animal surveillance is required to evaluate the likelihood of viral spillover and to assess whether these viruses pose a risk to human health. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  8. Control strategies against avian influenza

    Science.gov (United States)

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  9. Avian metapneumovirus in the USA

    Science.gov (United States)

    In the United States of America (USA), avian metapneumovirus (aMPV) causes an upper respiratory tract infection in turkeys; no outbreaks have been reported in commercial chicken flocks. Typical clinical signs of the disease in turkey poults include coughing, sneezing, nasal discharge, tracheal rale...

  10. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  11. Similarity of avian paramyxovirus serotype 1 isolates of low virulence for chickens obtained from contaminated poultry vaccines and from poultry flocks

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Handberg, K. J.; Ahrens, Peter

    2000-01-01

    flocks. one of which had been vaccinated with two of the contaminated vaccines. The flocks belonged to the same hatchery organisation. A comparison of viral F0 gene sequences and typing of virus isolates with a panel of monoclonal antibodies showed that the vaccine and field isolates were identical....

  12. Structure of the Paramyxovirus Parainfluenza Virus 5 Nucleoprotein in Complex with an Amino-Terminal Peptide of the Phosphoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Megha; Leser, George P.; Kors, Christopher A.; Lamb, Robert A.; Sundquist, Wesley I.

    2017-12-13

    Parainfluenza virus 5 (PIV5) belongs to the familyParamyxoviridae, which consists of enveloped viruses with a nonsegmented negative-strand RNA genome encapsidated by the nucleoprotein (N). Paramyxovirus replication is regulated by the phosphoprotein (P) through protein-protein interactions with N and the RNA polymerase (L). The chaperone activity of P is essential to maintain the unassembled RNA-free form of N in order to prevent nonspecific RNA binding and premature N oligomerization. Here, we determined the crystal structure of unassembled PIV5 N in complex with a P peptide (N0P) derived from the N terminus of P (P50) at 2.65 Å. The PIV5 N0P consists of two domains: an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a hinge region. The cleft at the hinge region of RNA-bound PIV5 N was previously shown to be an RNA binding site. The N0P structure shows that the P peptide binds to the CTD of N and extends toward the RNA binding site to inhibit N oligomerization and, hence, RNA binding. Binding of P peptide also keeps the PIV5 N in the open form. A molecular dynamics (MD) analysis of both the open and closed forms of N shows the flexibility of the CTD and the preference of the N protein to be in an open conformation. The gradual opening of the hinge region, to release the RNA, was also observed. Together, these results advance our knowledge of the conformational swapping of N required for the highly regulated paramyxovirus replication.

    IMPORTANCEParamyxovirus replication is regulated by the interaction of P with N and L proteins. Here, we report the crystal structure of unassembled parainfluenza virus 5 (PIV5) N chaperoned with P peptide. Our results provide a detailed understanding of the binding of P to N. The conformational switching of N between closed and open forms during its initial interaction with P, as well as

  13. Avian disease at the Salton Sea

    Science.gov (United States)

    Friend, M.

    2002-01-01

    A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907a??1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated

  14. Genetic characterization of bank vole virus (BaVV), a new paramyxovirus isolated from kidneys of bank voles in Russia.

    Science.gov (United States)

    Alkhovsky, Sergey; Butenko, Alexander; Eremyan, Aykaz; Shchetinin, Alexey

    2018-03-01

    A genome of bank vole virus (BaVV), isolated from kidney tissues of bank voles (Myodes glareolus) in Russia in 1973, was sequenced. The genomic organization of BaVV (3'-N-P/V/C-M-F-G-L-5', 16,992 nt in length; GenBank accession number MF943130) is most similar to that of Mossman virus (MoV) and Nariva virus (NarPV), two ungrouped paramyxoviruses isolated from rodents in Australia and Trinidad, respectively. The proteins of BaVV have the highest level of sequence identity (ranging from 23-28% for G protein to 66-73% for M protein) to proteins of MoV and NarPV. The results of genetic and phylogenetic analysis suggest that BaVV represents a new species and, together with MoV and NarPV, belongs to a new, yet not established genus of the family Paramyxoviridae.

  15. Evidence-Based Advances in Avian Medicine.

    Science.gov (United States)

    Summa, Noémie M; Guzman, David Sanchez-Migallon

    2017-09-01

    This article presents relevant advances in avian medicine and surgery over the past 5 years. New information has been published to improve clinical diagnosis in avian diseases. This article also describes new pharmacokinetic studies. Advances in the understanding and treatment of common avian disorders are presented in this article, as well. Although important progress has been made over the past years, there is still much research that needs to be done regarding the etiology, pathophysiology, diagnosis, and treatment of avian diseases and evidence-based information is still sparse in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Nonlinear dynamics of avian influenza epidemic models.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Using EGEE against avian flu

    CERN Multimedia

    2006-01-01

    During April 2006 avian flu was spreading across the world with the potential of turning into a pandemic, a drug to treat the deadly H5N1 strain was needed. Such a task required the huge processing power provided by EGEE, which analysed 300 000 possible drug components for their suitability. This map shows the network of computer centres and their activity during this time.

  18. Avian Egg and Egg Coat.

    Science.gov (United States)

    Okumura, Hiroki

    2017-01-01

    An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.

  19. Avian zoonoses – a review

    Directory of Open Access Journals (Sweden)

    Kozdruń Wojciech

    2015-06-01

    Full Text Available Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other hazardous bacterial factors, Salmonella and Campylobacter are responsible for gastrointestinal diseases. Avian influenza is the most dangerous of the viral diseases. It should be noted, however, that avian influenza is a disease of birds, not humans. The recent threat which has appeared is infection with West Nile virus. The results of serological examinations of birds and humans indicate that the virus exists in our ecosystem. Allergic alveolitis connected with the pigeon tick and the Dermanyssus gallinae mite also merits mention. In any case, where people have contact with birds or their droppings and secretions, special precautions should be taken. This way the negative effects of birds on human health can be minimised or eliminated

  20. MANAGING AVIAN FLU, CARCASS MANAGEMENT & BIOSOLIDS

    Science.gov (United States)

    The avian influenza virus is discussed with emphasis on the impact to poultry and possible movement of the highly pathogenic H5N 1 virus to humans. A review is made of the worldwide effects to date of the avian influenza viruses; methods for the viruses to enter recreational wate...

  1. Seasonality, distribution and taxonomic status of avian ...

    African Journals Online (AJOL)

    Description of a new species is based upon morphology of gametocyte development in the peripheral blood of the avian host. This does not distinguish between morphologically identical gametocytes from different avian host families, nor is species or family level a valid taxonomic character. Thus, Haemoproteus and ...

  2. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    The avian vocal organ, the syrinx, is a specialized structure located rather inaccessibly in an air sac close to the heart where the trachea bifurcates into the two primary bronchi. The syrinx of different avian taxa varies so much in position and morphology that it has been used for taxonomy. It...

  3. Global spread and control of avian influenza

    Science.gov (United States)

    H5 and H7 high pathogenicity avian influenza (HPAI) viruses emerge from the mutation of H5 and H7 low pathogenicity avian influenza viruses (LPAI) after circulation in terrestrial poultry for a few weeks to years. There have been 42 distinct HPAI epizootics since 1959. The largest being the H5N1 A/G...

  4. Avian Influenza: A growing threat to Africa

    Science.gov (United States)

    The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...

  5. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  6. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  7. Emerging and reemerging diseases of avian wildlife.

    Science.gov (United States)

    Pello, Susan J; Olsen, Glenn H

    2013-05-01

    Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Emerging and reemerging diseases of avian wildlife

    Science.gov (United States)

    Pello, Susan J.; Olsen, Glenn H.

    2013-01-01

    Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive.

  9. Avian Influenza Policy Analysis | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... to the loss of tens of millions of birds, either to disease or preventive culling. ... is to stimulate regional collaboration on avian influenza prevention and control. ... IWRA/IDRC webinar on climate change and adaptive water management.

  10. Avian models in teratology and developmental toxicology.

    Science.gov (United States)

    Smith, Susan M; Flentke, George R; Garic, Ana

    2012-01-01

    The avian embryo is a long-standing model for developmental biology research. It also has proven utility for toxicology research both in ovo and in explant culture. Like mammals, avian embryos have an allantois and their developmental pathways are highly conserved with those of mammals, thus avian models have biomedical relevance. Fertile eggs are inexpensive and the embryo develops rapidly, allowing for high-throughput. The chick genome is sequenced and significant molecular resources are available for study, including the ability for genetic manipulation. The absence of a placenta permits the direct study of an agent's embryotoxic effects. Here, we present protocols for using avian embryos in toxicology research, including egg husbandry and hatch, toxicant delivery, and assessment of proliferation, apoptosis, and cardiac structure and function.

  11. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  12. Isolation of avian influenza virus in Texas.

    Science.gov (United States)

    Glass, S E; Naqi, S A; Grumbles, L C

    1981-01-01

    An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.

  13. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  14. Habitat use and implications for avian species in Sambisa game ...

    African Journals Online (AJOL)

    Habitat use and implications for avian species in Sambisa game reserve, Borno state, Nigeria. ... avian species diversity and abundance in Sambisa Game Reserve in Borno State, Sudano-Sahelian vegetation. ... AJOL African Journals Online.

  15. Proceedings of National Avian-Wind Power Planning Meeting IV

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  16. Avian metapneumovirus subgroup C infection in chickens, China.

    Science.gov (United States)

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-07-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  17. Avian Metapneumovirus Subgroup C Infection in Chickens, China

    OpenAIRE

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-01-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  18. Deforestation and avian infectious diseases.

    Science.gov (United States)

    Sehgal, R N M

    2010-03-15

    In this time of unprecedented global change, infectious diseases will impact humans and wildlife in novel and unknown ways. Climate change, the introduction of invasive species, urbanization, agricultural practices and the loss of biodiversity have all been implicated in increasing the spread of infectious pathogens. In many regards, deforestation supersedes these other global events in terms of its immediate potential global effects in both tropical and temperate regions. The effects of deforestation on the spread of pathogens in birds are largely unknown. Birds harbor many of the same types of pathogens as humans and in addition can spread infectious agents to humans and other wildlife. It is thought that avifauna have gone extinct due to infectious diseases and many are presently threatened, especially endemic island birds. It is clear that habitat degradation can pose a direct threat to many bird species but it is uncertain how these alterations will affect disease transmission and susceptibility to disease. The migration and dispersal of birds can also change with habitat degradation, and thus expose populations to novel pathogens. Some recent work has shown that the results of landscape transformation can have confounding effects on avian malaria, other haemosporidian parasites and viruses. Now with advances in many technologies, including mathematical and computer modeling, genomics and satellite tracking, scientists have tools to further research the disease ecology of deforestation. This research will be imperative to help predict and prevent outbreaks that could affect avifauna, humans and other wildlife worldwide.

  19. An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism.

    Science.gov (United States)

    Mélade, Julien; Wieseke, Nicolas; Ramasindrazana, Beza; Flores, Olivier; Lagadec, Erwan; Gomard, Yann; Goodman, Steven M; Dellagi, Koussay; Pascalis, Hervé

    2016-04-12

    An eco-epidemiological investigation was carried out on Madagascar bat communities to better understand the evolutionary mechanisms and environmental factors that affect virus transmission among bat species in closely related members of the genus Morbillivirus, currently referred to as Unclassified Morbilli-related paramyxoviruses (UMRVs). A total of 947 bats were investigated originating from 52 capture sites (22 caves, 18 buildings, and 12 outdoor sites) distributed over different bioclimatic zones of the island. Using RT-PCR targeting the L-polymerase gene of the Paramyxoviridae family, we found that 10.5% of sampled bats were infected, representing six out of seven families and 15 out of 31 species analyzed. Univariate analysis indicates that both abiotic and biotic factors may promote viral infection. Using generalized linear modeling of UMRV infection overlaid on biotic and abiotic variables, we demonstrate that sympatric occurrence of bats is a major factor for virus transmission. Phylogenetic analyses revealed that all paramyxoviruses infecting Malagasy bats are UMRVs and showed little host specificity. Analyses using the maximum parsimony reconciliation tool CoRe-PA, indicate that host-switching, rather than co-speciation, is the dominant macro-evolutionary mechanism of UMRVs among Malagasy bats.

  20. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    Science.gov (United States)

    Weng, Yuejin; Lu, Wuxun; Harmon, Aaron; Xiang, Xiaoxiao; Deng, Qiji; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-05-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.

  1. Different regions of the newcastle disease virus fusion protein modulate pathogenicity.

    Directory of Open Access Journals (Sweden)

    Sandra Heiden

    Full Text Available Newcastle disease virus (NDV, also designated as Avian paramyxovirus type 1 (APMV-1, is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic, intermediate (mesogenic and low (lentogenic virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1 isolate with an intracerebral pathogenicity index (ICPI of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site.

  2. Paul D. Sturkie: Avian cardiac physiologist.

    Science.gov (United States)

    Bello, Nicholas T; Cohick, Wendie S; McKeever, Kenneth H; Malinowski, Karyn

    2018-06-01

    Sturkie's Avian Physiology is a highly regarded textbook for the study of comparative poultry physiology. Less well known, however, is the contribution of Paul D. Sturkie (1909-2002) as a pioneer in the experimental physiology of avian species. His seminal research on the cardiovascular and hemodynamic controls of chickens and egg-laying hens had a notable impact on the poultry industry and breeding practices of farmers. The purpose of this article is to highlight the contributions and practical insights of Paul D. Sturkie to the field of poultry science.

  3. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  4. Avian pox in Magellanic Penguins (Spheniscus magellanicus).

    Science.gov (United States)

    Kane, Olivia J; Uhart, Marcela M; Rago, Virginia; Pereda, Ariel J; Smith, Jeffrey R; Van Buren, Amy; Clark, J Alan; Boersma, P Dee

    2012-07-01

    Avian pox is an enveloped double-stranded DNA virus that is mechanically transmitted via arthropod vectors or mucosal membrane contact with infectious particles or birds. Magellanic Penguins (Spheniscus magellanicus) from two colonies (Punta Tombo and Cabo Dos Bahías) in Argentina showed sporadic, nonepidemic signs of avian pox during five and two of 29 breeding seasons (1982-2010), respectively. In Magellanic Penguins, avian pox expresses externally as wart-like lesions around the beak, flippers, cloaca, feet, and eyes. Fleas (Parapsyllus longicornis) are the most likely arthropod vectors at these colonies. Three chicks with cutaneous pox-like lesions were positive for Avipoxvirus and revealed phylogenetic proximity with an Avipoxvirus found in Black-browed Albatross (Thalassarche melanophrys) from the Falkland Islands in 1987. This proximity suggests a long-term circulation of seabird Avipoxviruses in the southwest Atlantic. Avian pox outbreaks in these colonies primarily affected chicks, often resulted in death, and were not associated with handling, rainfall, or temperature.

  5. Measuring steroid hormones in avian eggs

    NARCIS (Netherlands)

    Von Engelhardt, Nikolaus; Groothuis, Ton G. G.; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  6. Measuring Steroid Hormones in Avian Eggs

    NARCIS (Netherlands)

    Engelhardt, Nikolaus von; Groothuis, Ton G.G.

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  7. Avian Schistosomes and Outbreaks of Cercarial Dermatitis

    Science.gov (United States)

    Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226

  8. New Avian Hepadnavirus in Palaeognathous Bird, Germany

    NARCIS (Netherlands)

    Jo, Wendy K; Pfankuche, Vanessa M; Petersen, Henning; Frei, Samuel; Kummrow, Maya; Lorenzen, Stephan; Ludlow, Martin; Metzger, Julia; Baumgärtner, Wolfgang; Osterhaus, Albert; van der Vries, Erhard

    2017-01-01

    In 2015, we identified an avian hepatitis B virus associated with hepatitis in a group of captive elegant-crested tinamous (Eudromia elegans) in Germany. The full-length genome of this virus shares <76% sequence identity with other avihepadnaviruses. The virus may therefore be considered a new

  9. the Avian Park Service Learning Centre story

    African Journals Online (AJOL)

    The Ukwanda Centre for Rural Health (UCRH) opened in 2001, followed 10 years later by the establishment of the Ukwanda Rural Clinical School in one of the rural health districts of the Western Cape. This paper relates the journey of the Faculty with the underserviced community of Avian Park through the provision of ...

  10. Avian influenza A (H5N1)

    NARCIS (Netherlands)

    de Jong, Menno D.; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited

  11. Vocal communication in an avian hybrid zone

    NARCIS (Netherlands)

    Hartog, Paula Maria den

    2008-01-01

    Avian vocalizations function in mate attraction and territorial defence. Vocalizations can act as behavioural barriers and play an important role in speciation processes. Hybrid zones illustrate behavioural barriers are not always impermeable and provide a natural laboratory to examine the role of

  12. Effects of drought on avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Brian D. Wardlow; Volker C. Radeloff

    2010-01-01

    Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most...

  13. A glossary for avian conservation biology

    Science.gov (United States)

    Rolf R. Koford; John B. Dunning; Christine A. Ribic; Deborah M. Finch

    1994-01-01

    This glossary provides standard definitions for many of the terms used in avian conservation biology. We compiled these definitions to assist communication among researchers, managers, and others involved in the Neotropical Migratory Bird Conservation Program, also known as Partners in Flight. We used existing glossaries and recent literature to prepare this glossary....

  14. Serological diagnosis of avian influenza in poultry

    DEFF Research Database (Denmark)

    Comin, Arianna; Toft, Nils; Stegeman, Arjan

    2013-01-01

    Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the gold standard' for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy...

  15. Avian Disease & Oncology Lab (ADOL) Research Update

    Science.gov (United States)

    Employing Genomics, Epigenetics, and Immunogenetics to Control Diseases Induced by Avian Tumor Viruses - Gene expression is a major factor accounting for phenotypic variation. Taking advantage of allele-specific expression (ASE) screens, we found the use of genetic markers was superior to traditiona...

  16. Solar activity affects avian timing of reproduction

    NARCIS (Netherlands)

    Visser, M.E.; Sanz, J.J.

    2009-01-01

    Avian timing of reproduction is strongly affected by ambient temperature. Here we show that there is an additional effect of sunspots on laying date, from five long-term population studies of great and blue tits (Parus major and Cyanistes caeruleus), demonstrating for the first time that solar

  17. On avian influenza epidemic models with time delay.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  18. Avian Plasmodium in Eastern Austrian mosquitoes.

    Science.gov (United States)

    Schoener, Ellen; Uebleis, Sarah Susanne; Butter, Julia; Nawratil, Michaela; Cuk, Claudia; Flechl, Eva; Kothmayer, Michael; Obwaller, Adelheid G; Zechmeister, Thomas; Rubel, Franz; Lebl, Karin; Zittra, Carina; Fuehrer, Hans-Peter

    2017-09-29

    Insect vectors, namely mosquitoes (Diptera: Culicidae), are compulsory for malaria parasites (Plasmodium spp.) to complete their life cycle. Despite this, little is known about vector competence of different mosquito species for the transmission of avian malaria parasites. In this study, nested PCR was used to determine Plasmodium spp. occurrence in pools of whole individuals, as well as the diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across Eastern Austria in 2013-2015. A total of 45,749 mosquitoes in 2628 pools were collected, of which 169 pools (6.43%) comprising 9 mosquito species were positive for avian Plasmodium, with the majority of positives in mosquitoes of Culex pipiens s.l./Culex torrentium. Six different avian Plasmodium lineages were found, the most common were Plasmodium vaughani SYAT05, Plasmodium sp. Linn1 and Plasmodium relictum SGS1. In 2014, mosquitoes of the Culex pipiens complex were genetically identified and Culex pipiens f. pipiens presented with the highest number of avian Plasmodium positives (n = 37; 16.74%). Despite this, the minimum infection rate (MIR) was highest in Culex torrentium (5.36%) and Culex pipiens f. pipiens/f. molestus hybrids (5.26%). During 2014 and 2015, seasonal and annual changes in Plasmodium lineage distribution were also observed. In both years P. vaughani SYAT05 dominated at the beginning of the sampling period to be replaced later in the year by P. relictum SGS1 (2014) and Plasmodium sp. Linn1 (2015). This is the first large-scale study of avian Plasmodium parasites in Austrian mosquitoes. These results are of special interest, because molecular identification of the taxa of the Cx. pipiens complex and Cx. torrentium enabled the determination of Plasmodium prevalence in the different mosquito taxa and hybrids of this complex. Since pools of whole insects were used, it is not possible to assert any vector competence in any of the examined mosquitoes, but the results

  19. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  20. Infrasound and the avian navigational map.

    Science.gov (United States)

    Hagstrum, J T

    2000-04-01

    Birds can navigate accurately over hundreds to thousands of kilometres, and this ability of homing pigeons is the basis for a worldwide sport. Compass senses orient avian flight, but how birds determine their location in order to select the correct homeward bearing (map sense) remains a mystery. Also mysterious are rare disruptions of pigeon races in which most birds are substantially delayed and large numbers are lost. Here, it is shown that in four recent pigeon races in Europe and the northeastern USA the birds encountered infrasonic (low-frequency acoustic) shock waves from the Concorde supersonic transport. An acoustic avian map is proposed that consists of infrasonic cues radiated from steep-sided topographic features; the source of these signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting these infrasonic map cues can explain perplexing experimental results from pigeon releases.

  1. A bibliography of references to avian botulism

    Science.gov (United States)

    Allen, Jack E.; Wilson, Sonoma S.

    1977-01-01

    This bibliography, first compiled in 1970 in response to many requests for information on avian botulism, has been updated to include the literature published through 1975.In general, only articles dealing primarily with the avian disease are included, as opposed to those concerned with various aspects of the biology of Clostridium botulinum, either type C or type E. A few exceptions, such as Bengton’s report of the first isolation and description of the type C organism, are included for their historical interest. Progress reports and other administrative documents not available for distribution or request are excluded, as are textbook accounts, which are generally summaries of work published elsewhere.Although Mr. Allen and Mrs. Wilson have attempted to list every important reference, they make no claim to complete coverage of the published literature. The authors will be grateful to users of the bibliography who call attention to errors or omissions.

  2. Common Avian Infection Plagued the Tyrant Dinosaurs

    Science.gov (United States)

    Wolff, Ewan D. S.; Salisbury, Steven W.; Horner, John R.; Varricchio, David J.

    2009-01-01

    Background Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name ‘Sue’) has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. Methodology/Principal Findings We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. Conclusions/Significance This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation. PMID:19789646

  3. Avian influenza in birds and mammals.

    Science.gov (United States)

    Cardona, Carol J; Xing, Zheng; Sandrock, Christian E; Davis, Cristina E

    2009-07-01

    The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).

  4. Common avian infection plagued the tyrant dinosaurs.

    Directory of Open Access Journals (Sweden)

    Ewan D S Wolff

    Full Text Available BACKGROUND: Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name 'Sue' has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. CONCLUSIONS/SIGNIFICANCE: This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation.

  5. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Functionally heterogenous ryanodine receptors in avian cerebellum.

    Science.gov (United States)

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  7. Avian influenza overview September–November 2017

    DEFF Research Database (Denmark)

    Brown, Ian; Kuiken, Thijs; Mulatti, Paolo

    2017-01-01

    Between 1 September and 15 November 2017, 48 A(H5N8) highly pathogenic avian influenza (HPAI) outbreaks in poultry holdings and 9 H5 HPAI wild bird events were reported within Europe. A second epidemic HPAI A(H5N8) wave started in Italy on the third week of July and is still ongoing on 15November...... to focus in order to achieve the most effective testing of dead birds for detection of H5 HPAI viruses. Monitoring the avian influenza situation in other continents revealed the same risks as in the previous report (October 2016-August 2017): the recent human case of HPAI A(H5N6) in China underlines...... the continuing threat of this avian influenza virus to human health and possible introduction via migratory wild birds into Europe. Close monitoring is required of the situation in Africa with regards to HPAI of the subtypes A(H5N1) and A(H5N8), given the rapidity of the evolution and the uncertainty...

  8. Global phylogeographic limits of Hawaii's avian malaria

    Science.gov (United States)

    Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; Rahmani, A.R.; Fonseca, D.M.; Fleischer, R.C.

    2006-01-01

    The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13 000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species. ?? 2006 The Royal Society.

  9. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  10. 9 CFR 113.326 - Avian Pox Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... established as follows: (1) Fowl pox susceptible birds all of the same age and from the same source, shall be...

  11. Avian influenza, Newcastle and Gumboro disease antibodies and ...

    African Journals Online (AJOL)

    Studies on avian influenza and Newcastle disease focus on waterfowls, considered natural reservoirs of these viruses. This study surveyed avian influenza (AI), Gumboro and Newcastle disease antibodies and antigens in birds in live wild bird markets (LWBMs), live poultry markets (LPMs) and free flying in Kaduna State ...

  12. Flock-based surveillance for lowpathogenic avian influenza virus in ...

    African Journals Online (AJOL)

    Flock-based surveillance for lowpathogenic avian influenza virus in commercial breeders and layers, southwest Nigeria. ... African Journal of Infectious Diseases ... Background: Flock surveillance systems for avian influenza (AI) virus play a critical role in countries where vaccination is not practiced so as to establish the ...

  13. Molecular cloning and functional characterization of avian interleukin-19

    Science.gov (United States)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  14. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian...

  15. Avian research in the U.S. Forest Service

    Science.gov (United States)

    Beatrice Van Horne

    2005-01-01

    Avian research in the Federal Government is in a crisis. Yes, there is a strong interest in avian research, as evidenced by the size and level of interest in this conference. But political parties increasingly see wildlife research as expendable. At the same time, the reaction to environment-friendly legislation of the 1970s and 1980s has been strong from both sides....

  16. Avian fossils from the Early Miocene Moghra Formation of Egypt ...

    African Journals Online (AJOL)

    Avian remains from the Early Miocene (~17 Ma) Moghra Formation of Egypt include new records of 'waterbirds' (storks, herons, pelicans and allies) and a ratite. Only a single avian fossil has been previously reported from Wadi Moghra and, thus, additional knowledge of the avifauna complements previously documented ...

  17. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  18. Socioeconomic Impacts of Avian Influenza on Small and Backyard ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant will allow APAIR to assess the socioeconomic impact of avian ... control measure to mitigate the negative effects of avian influenza and its control on ... New website will help record vital life events to improve access to services for all.

  19. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  20. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, van R.M.; Koopmans, M.; Du Ry Beest Holle, van M.; Meijer, A.; Klinkenberg, D.; Donnelly, C.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  1. Ontogeny of avian thermoregulation from a neural point of view

    NARCIS (Netherlands)

    Baarendse, P.J.J.; Debonne, M.; Decuypere, M.P.; Kemp, B.; Brand, van den H.

    2007-01-01

    The ontogeny of thermoregulation differs among (avian) species, but in all species both neural and endocrinological processes are involved. In this review the neural processes in ontogeny of thermoregulation during the prenatal and early postnatal phase are discussed. Only in a few avian species

  2. Avian nestling predation by endangered Mount Graham red squirrel

    Science.gov (United States)

    Claire A. Zugmeyer; John L. Koprowski

    2007-01-01

    Studies using artificial nests or remote cameras have documented avian predation by red squirrels (Tamiasciurus hudsonicus). Although several direct observations of avian predation events are known in the northern range of the red squirrel distribution, no accounts have been reported in the southern portion. We observed predation upon a hermit thrush...

  3. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  4. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  5. Paramyxovirus Infection Mimics In Vivo Cellular Dynamics in Three-Demensional Human Bronchio-Epithelial Tissue-Like Assemblies

    Science.gov (United States)

    Deatly, Anne M.; Lin, Yen-Huei; McCarthy, Maureen; Chen, Wei; Miller, Lynn Z.; Quiroz, Jorge; Nowak, Becky M.; Lerch, Robert A.; Udem, Stephen A.; Goodwin, Thomas J.

    2012-01-01

    Respiratory syncytial virus and parainfluenza virus cause severe respiratory disease, especially in infants, children and the elderly. An in vitro model that accurately mimics infection of the human respiratory epithelium (HRE) would facilitate vaccine development greatly. Monolayer cultures traditionally used to study these viruses do not accurately and precisely differentiate the replication efficiencies of wild type and attenuated viruses. Therefore, we engineered novel three-dimensional (3D) tissue-like assemblies (TLAs) of human broncho-epithelial (HBE) cells to produce a more physiologically relevant in vitro model of the HRE. TLAs resemble HRE structurally and by expression of differentiated epithelial cell markers. Most significantly, wild type viruses exhibited a clear growth advantage over attenuated strains in TLAs unlike monolayer cultures. In addition, the TLAs responded to virus infection by secreting pro-inflammatory mediators similar to the respiratory epithelia of infected children. These characteristics make the TLA model a valuable platform technology to develop and evaluate live, attenuated respiratory virus vaccine candidates for human use. Respiratory virus diseases, the most frequent and least preventable of all infectious diseases, range in severity from the common cold to severe bronchiolitis and pneumonia . Two paramyxoviruses, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3), are responsible for a majority of the most severe respiratory diseases of infants and young children. RSV causes 70% of all bronchiolitis cases and is a major cause of morbidity and mortality worldwide, especially in infants. PIV3 causes 10-15% of bronchiolitis and pneumonia during infancy, second only to RSV, and 40% of croup in infants To date, licensed vaccines are not available to prevent these respiratory diseases. At present, traditional monkey kidney (Vero and LLC-MK2) and human (HEp-2) tissue culture cells and small animal models (mouse

  6. assessment of the economic and social implications of the avian flu ...

    African Journals Online (AJOL)

    Admin

    2006-01-22

    Jan 22, 2006 ... KEYWORDS: Assessment, Economic, Social Implications, Avian Flu, Nigerian Poultry. INTRODUCTION. Avian flu is a highly infectious, contagious and zoonotic disease of man, poultry and other birds caused by the avian influenza type A virus, Emmanuel et.al. (2006). The avian influenza virus belongs to ...

  7. The public health impact of avian influenza viruses.

    Science.gov (United States)

    Katz, J M; Veguilla, V; Belser, J A; Maines, T R; Van Hoeven, N; Pappas, C; Hancock, K; Tumpey, T M

    2009-04-01

    Influenza viruses with novel hemagglutinin and 1 or more accompanying genes derived from avian influenza viruses sporadically emerge in humans and have the potential to result in a pandemic if the virus causes disease and spreads efficiently in a population that lacks immunity to the novel hemagglutinin. Since 1997, multiple avian influenza virus subtypes have been transmitted directly from domestic poultry to humans and have caused a spectrum of human disease, from asymptomatic to severe and fatal. To assess the pandemic risk that avian influenza viruses pose, we have used multiple strategies to better understand the capacity of avian viruses to infect, cause disease, and transmit among mammals, including humans. Seroepidemiologic studies that evaluate the frequency and risk of human infection with avian influenza viruses in populations with exposure to domestic or wild birds can provide a better understanding of the pandemic potential of avian influenza subtypes. Investigations conducted in Hong Kong following the first H5N1 outbreak in humans in 1997 determined that exposure to poultry in live bird markets was a key risk factor for human disease. Among poultry workers, butchering and exposure to sick poultry were risk factors for antibody to H5 virus, which provided evidence for infection. A second risk assessment tool, the ferret, can be used to evaluate the level of virulence and potential for host-to-host transmission of avian influenza viruses in this naturally susceptible host. Avian viruses isolated from humans exhibit a level of virulence and transmissibility in ferrets that generally reflects that seen in humans. The ferret model thus provides a means to monitor emerging avian influenza viruses for pandemic risk, as well as to evaluate laboratory-generated reassortants and mutants to better understand the molecular basis of influenza virus transmissibility. Taken together, such studies provide valuable information with which we can assess the public

  8. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    Science.gov (United States)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  9. [Epidemiological perspectives on SARS and avian influenza].

    Science.gov (United States)

    del Rey Calero, Juan

    2004-01-01

    SARS is a respiratory infection caused by Coronavirus (Nidoviruses, RNA) from which 3 groups are known. Group 1 affects dogs, cats, pigs, and the human agent is 229 E. Group 2 affects bovines or rodents, and the human agent is OC43. And group 3 corresponds to the avian pathology.... The epidemics emerged on February 2003 in Guangdong, South China, due to consumption of exotic animals (Civeta, etc.), and it spread through interperson contagion to other regions in Asia, America and Europe. Incubation period is about 2-7 days. Transmission Of the virus is person-to person, but also by excretions and residual water. Basic reproductive rate is 2 to 4, and it is considered that 2.7 persons are infected from the initial case. In June 2003, SARS affected over 8,000 people and 774 were killed. Mortality approaches to 10%, and it is higher among older people rising up to 50% in those aged over 65 years. It is important to quickly establish action protocols regarding clinical, epidemiological and prevention aspects. Avian influenza is an infection caused by type A Influenza Orthomixovirus, in which migration birds and wild ducks are the main reservoir. Avian viruses correspond to H5, H7, H9. In 1997 it was observed that type AH5N1 jumped interspecies barrier and affected 18 humans, and 6 of them died. At the end of 2003 and in 2004 this type of poultry flu was described in Asia. FAO has emphasized that sacrifice of chicken in affected farms is the most effective measure to fight against the disease. It has also been established suppression of imports from these countries. There is no evidence on interperson contagion from chicken contagion, nor on food-borne contagion to humans.

  10. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  11. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  12. Facteurs favorisant l'apparition de la maladie de Newcastle au Tchad

    African Journals Online (AJOL)

    SARAH

    31 oct. 2013 ... 5591. Facteurs favorisant l'apparition de la maladie de. Newcastle au Tchad. BAN-BO Bebanto Antipas1; KEBKIBA Bidjeh2; NADJILEMDigamtar1. 1. Faculté des Sciences ... L'agent causal est un paramyxovirus aviaire 1. (APMV 1) du ... de la République Tchad, Bongor, Fianga (région du Mayo. Kebbi Est) ...

  13. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus

    Science.gov (United States)

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...

  14. A duetting perspective on avian song learning.

    Science.gov (United States)

    Rivera-Cáceres, Karla D; Templeton, Christopher N

    2017-12-25

    Avian song learning has a rich history of study and has become the preeminent system for understanding the ontogeny of vocal communication in animals. Song learning in birds has many parallels with human language learning, ranging from the neural mechanisms involved to the importance of social factors in shaping signal acquisition. While much has been learned about the process of song learning, virtually all of the research done to date has focused on temperate species, where often only one sex (the male) sings. Duetting species, in which both males and females learn to sing and learn to combine their songs into temporally coordinated joint displays, could provide many insights into the processes by which vocal learning takes place. Here we highlight three key features of song learning-neuroendocrine control mechanisms, timing and life history stages of song acquisition, and the role of social factors in song selection and use-that have been elucidated from species where only males sing, and compare these with duetting species. We summarize what is known about song learning in duetting species and then provide several suggestions for fruitful directions for future research. We suggest that focusing research efforts on duetting species could significantly advance our understanding of vocal learning in birds and further cement the importance of avian species as models for understanding human conversations and the processes of vocal learning more broadly. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Developmental studies of avian brain organization.

    Science.gov (United States)

    Puelles, Luis

    2018-01-01

    Avian brain organization or brain Bauplan is identical with that of vertebrates in general. This essay visits avian studies that contained advances or discussions about brain organization, trying to explain critically what they contributed. In order to start from a specific background, the new prevailing paradigm as regards brain organization, the prosomeric model, is presented first. Next a brief historic survey is made of how ideas on this topic evolved from the start of modern neuromorphology at the end of the 19th century. Longitudinal zonal organization with or without transverse segmentation (neuromeres) was the first overall concept applied to the brain. The idea of neuromeric structure later decayed in favour of a columnar model. This emphasized functional correlations rather than causal developmental content, assimilating forebrain functions to hindbrain ones. Though it became prevalent in the post-world-war period of neuroscience, in the last decades of the 20th century advances in molecular biology allowed developmental genes to be mapped, and it became evident that gene expression patterns support the old neuromeric model rather than the columnar one. This was also corroborated by modern experimental approaches (fate-mapping and analysis of patterning).

  16. Avian colibacillosis: still many black holes.

    Science.gov (United States)

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Bibliography of references to avian botulism: Update

    Science.gov (United States)

    Wilson, Sonoma S.; Locke, Louis N.

    1982-01-01

    This bibliography, first compiled in 1970 (Allen and Wilson 1977) and published in 1977 in response to many requests for information on avian botulism, has been updated to include the literature published through 1980.In general, only articles dealing primarily with the avian disease are included, as opposed to those concerned with the various aspects of the biology of Clostridium botulinum, either type C or E. A few exceptions, such as Bengtson's report of the first isolation and description of the type C organism, are included for their historical interest. Progress reports and other administrative documents not available for distribution on request are excluded, as are most textbook accounts, which are generally summaries of work published elsewhere.This bibliography was a cooperative effort by the National Wildlife Health Laboratory, U.S. Fish and Wildlife Service, and the U.S. National Park Service. The National Park Service provided partial funding for the work through Contract No. 89100-0491.Although the authors attempted to list every important reference, they make no claim to complete coverage of the published literature. The authors will be grateful to users of the bibliography who call attention to errors or omissions.Wayne I. Jensen (Retired)Milton Friend, Director, National Wildlife Health Laboratory

  18. Collapsing avian community on a Hawaiian island

    Science.gov (United States)

    Paxton, Eben H.; Camp, Richard J.; Gorresen, P. Marcos; Crampton, Lisa H.; Leonard, David L.; VanderWerf, Eric

    2016-01-01

    The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua‘i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species’ ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua‘i represents an early warning for the forest bird communities on the Maui and Hawai‘i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing.

  19. Gas exchange in avian embryos and hatchlings.

    Science.gov (United States)

    Mortola, Jacopo P

    2009-08-01

    The avian egg has been proven to be an excellent model for the study of the physical principles and the physiological characteristics of embryonic gas exchange. In recent years, it has become a model for the studies of the prenatal development of pulmonary ventilation, its chemical control and its interaction with extra-pulmonary gas exchange. Differently from mammals, in birds the initiation of pulmonary ventilation and the transition from diffusive to convective gas exchange are gradual and slow-occurring events amenable to detailed investigations. The absence of the placenta and of the mother permits the study of the mechanisms of embryonic adaptation to prenatal perturbations in a way that would be impossible with mammalian preparations. First, this review summarises the general aspects of the natural history of the avian egg that are pertinent to embryonic metabolism, growth and gas exchange and the characteristics of the structures participating in gas exchange. Then, the review focuses on the embryonic development of pulmonary ventilation, its regulation in relation to the embryo's environment and metabolic state, the effects that acute or sustained changes in embryonic temperature or oxygenation can have on growth, metabolism and ventilatory control.

  20. Avian influenza virus transmission to mammals.

    Science.gov (United States)

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  1. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R G; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  2. Data base on avian mortality on man-made structures

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, N. S.

    1978-01-01

    A computerized data base concerning avian mortality on man-made structures is available for searching at the Ecological Sciences Information Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory. This data base, which contains entries from the available literature, provides information on avian mortality from either collision into or electrocution on man-made structures. Primary emphasis has been placed on avian collision with obstacles such as television and radio towers, airport ceilometers, transmission lines, and cooling towers. Other structures included in the studies are fences, glass walls and windows, lighthouses, telegraph and telephone wires, buildings, monuments, smokestacks, and water towers.

  3. The avian fossil record in Insular Southeast Asia and its implications for avian biogeography and palaeoecology

    Directory of Open Access Journals (Sweden)

    Hanneke J.M. Meijer

    2014-03-01

    Full Text Available Excavations and studies of existing collections during the last decades have significantly increased the abundance as well as the diversity of the avian fossil record for Insular Southeast Asia. The avian fossil record covers the Eocene through the Holocene, with the majority of bird fossils Pleistocene in age. Fossil bird skeletal remains represent at least 63 species in 54 genera and 27 families, and two ichnospecies are represented by fossil footprints. Birds of prey, owls and swiftlets are common elements. Extinctions seem to have been few, suggesting continuity of avian lineages since at least the Late Pleistocene, although some shifts in species ranges have occurred in response to climatic change. Similarities between the Late Pleistocene avifaunas of Flores and Java suggest a dispersal route across southern Sundaland. Late Pleistocene assemblages of Niah Cave (Borneo and Liang Bua (Flores support the rainforest refugium hypothesis in Southeast Asia as they indicate the persistence of forest cover, at least locally, throughout the Late Pleistocene and Holocene.

  4. Avian Influenza in Migratory Birds : Regional Surveillance and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Asia Partnership for Avian Influenza Research (APAIR) brings together research agencies and ... Chinese Academy of Sciences. Institution Country. China. Institution Website ... Building resilience through socially equitable climate action.

  5. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Sinclair, K.

    2001-01-01

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  6. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  7. Detection of avian nephritis virus and chicken astrovirus in Nigerian ...

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... Avian nephritis virus (ANV) and chicken astrovirus (CAstV) are widely distributed in poultry flocks ... sheep, cats, dogs, deer, mice, turkeys, guinea fowl and ..... complex: turkey astrovirus, turkey coronavirus, and turkey reovirus.

  8. Avian Flu (H7N9) in China

    Science.gov (United States)

    ... Mobile Apps RSS Feeds Avian Flu (H7N9) in China Recommend on Facebook Tweet Share Compartir Warning - Level ... of H7N9 have been reported outside of mainland China but most of these infections have occurred among ...

  9. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... and Treatment of Avian Influenza A Viruses in People Language: English (US) Español Recommend on Facebook Tweet ... can happen when enough virus gets into a person’s eyes, nose or mouth, or is inhaled. This ...

  10. Markov Chain Estimation of Avian Seasonal Fecundity, Presentation

    Science.gov (United States)

    Avian seasonal fecundity is of interest from evolutionary, ecological, and conservation perspectives. However, direct estimation of seasonal fecundity is difficult, especially with multibrooded birds, and models representing the renesting and quitting processes are usually requi...

  11. 2 original article non-attenuation of highly pathogenic avian

    African Journals Online (AJOL)

    Dr Oboro VO

    AFRICAN JOURNAL OF CLINICAL AND EXPERIMENTAL MICROBIOLOGY JANUARY 2010. ISBN 1595-689X ... NON-ATTENUATION OF HIGHLY PATHOGENIC AVIAN INFLUENZA. H5N1 BY .... Diagnostic PCR was conducted to determine ...

  12. Identifying avian sources of faecal contamination using sterol analysis.

    Science.gov (United States)

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  13. Cisplatin Ototoxicity Blocks Sensory Regeneration in the Avian Inner Ear

    OpenAIRE

    Slattery, Eric L.; Warchol, Mark E.

    2010-01-01

    Cisplatin is a chemotherapeutic agent that is widely-used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy, and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was al...

  14. Avian Conservation Practices Strengthen Ecosystem Services in California Vineyards

    OpenAIRE

    Jedlicka, Julie A.; Greenberg, Russell; Letourneau, Deborah K.

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without...

  15. Production and Characterization of an Avian Ricin Antitoxin

    Science.gov (United States)

    1992-01-15

    naturally -occurring plant and/or bacterial toxins as biological threat agents, effective antitoxins are needed for either piophylactic or causal...system, an avian antitoxin against the potent phytotoxin , ricin. will be developed and evaluated. The production of therapeutic antibodies in avian...Dynatech). PolyacrylmIde gel electrophoresis (PAGE): Acrylamide gels were prepared according to methods described by Laemmli ( Nature . 227. 1970) and

  16. (Highly pathogenic) Avian Influenza as a zoonotic agent

    OpenAIRE

    Kalthoff , Donata; Globig , Anja; Beer , Martin

    2010-01-01

    Summary Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence b...

  17. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James Seymour; McLay, Emma

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful...... isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids......, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has...

  18. Avian Influenza spread and transmission dynamics

    Science.gov (United States)

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  19. A novel estrogen-regulated avian apolipoprotein☆

    Science.gov (United States)

    Nikolay, Birgit; Plieschnig, Julia A.; Šubik, Desiree; Schneider, Jeannine D.; Schneider, Wolfgang J.; Hermann, Marcela

    2013-01-01

    In search for yet uncharacterized proteins involved in lipid metabolism of the chicken, we have isolated a hitherto unknown protein from the serum lipoprotein fraction with a buoyant density of ≤1.063 g/ml. Data obtained by protein microsequencing and molecular cloning of cDNA defined a 537 bp cDNA encoding a precursor molecule of 178 residues. As determined by SDS-PAGE, the major circulating form of the protein, which we designate apolipoprotein-VLDL-IV (Apo-IV), has an apparent Mr of approximately 17 kDa. Northern Blot analysis of different tissues of laying hens revealed Apo-IV expression mainly in the liver and small intestine, compatible with an involvement of the protein in lipoprotein metabolism. To further investigate the biology of Apo-IV, we raised an antibody against a GST-Apo-IV fusion protein, which allowed the detection of the 17-kDa protein in rooster plasma, whereas in laying hens it was detectable only in the isolated ≤1.063 g/ml density lipoprotein fraction. Interestingly, estrogen treatment of roosters caused a reduction of Apo-IV in the liver and in the circulation to levels similar to those in mature hens. Furthermore, the antibody crossreacted with a 17-kDa protein in quail plasma, indicating conservation of Apo-IV in avian species. In search for mammalian counterparts of Apo-IV, alignment of the sequence of the novel chicken protein with those of different mammalian apolipoproteins revealed stretches with limited similarity to regions of ApoC-IV and possibly with ApoE from various mammalian species. These data suggest that Apo-IV is a newly identified avian apolipoprotein. PMID:24047540

  20. Pathogenesis of avian pneumovirus infection in turkeys.

    Science.gov (United States)

    Jirjis, F F; Noll, S L; Halvorson, D A; Nagaraja, K V; Shaw, D P

    2002-05-01

    Avian pneumovirus (APV) is the cause of a respiratory disease of turkeys characterized by coughing, ocular and nasal discharge, and swelling of the infraorbital sinuses. Sixty turkey poults were reared in isolation conditions. At 3 weeks of age, serum samples were collected and determined to be free of antibodies against APV, avian influenza, hemorrhagic enteritis, Newcastle disease, Mycoplasma gallisepticum, Mycoplasma synoviae, Mycoplasma meleagridis, Ornithobacterium rhinotracheale, and Bordetella avium. When the poults were 4 weeks old, they were inoculated with cell culture-propagated APV (APV/Minnesota/turkey/2a/97) via the conjunctival spaces and nostrils. After inoculation, four poults were euthanatized every 2 days for 14 days, and blood, swabs, and tissues were collected. Clinical signs consisting of nasal discharge, swelling of the infraorbital sinuses, and frothy ocular discharge were evident by 2 days postinoculation (PI) and persisted until day 12 PI. Mild inflammation of the mucosa of the nasal turbinates and infraorbital sinuses was present between days 2 and 10 PI. Mild inflammatory changes were seen in tracheas of poults euthanatized between days 4 and 10 PI. Antibody to APV was detected by day 7 PI. The virus was detected in tissue preparations and swabs of nasal turbinates and infraorbital sinuses by reverse transcription polymerase chain reaction, virus isolation, and immunohistochemical staining methods between days 2 and 10 PI. Virus was detected in tracheal tissue and swabs between days 2 and 6 PI using the same methods. In this experiment, turkey poults inoculated with tissue culture-propagated APV developed clinical signs similar to those seen in field cases associated with infection with this virus.

  1. Avian influenza virus risk assessment in falconry

    Directory of Open Access Journals (Sweden)

    Lüschow Dörte

    2011-04-01

    Full Text Available Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV. In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008 falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54 in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74 and 3.8% of ducks (n = 53 using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.

  2. Early warning: Avian flu and nuclear science

    International Nuclear Information System (INIS)

    Belak, S.

    2006-01-01

    Avian flu has spread to 51 countries, 36 this year alone, many of which are densely populated and deprived. The joint FAO/IAEA programme is working on the rapid detection of emerging diseases, including bird flu, and using nuclear and radiation techniques in the process. The problems are serious and challenging, but nuclear technologies may offer a solution. For most developing countries, TAD (transboundary animal diseases) detection is still vital. The bottleneck is their inability to rapidly detect the virus and to determine early enough whether it is H5N1 or another subtype, so that authorities can take appropriate control measures. Serious efforts are focused on the early detection of the agents. Timely recognition of such viral infections would prevent the spread of the diseases to large animal populations in huge geographic areas. Thus, the development of novel, powerful diagnostic nuclear and nuclear-related assays is a crucial issue today in veterinary research and animal health care. Molecular virology offers a range of new methods, which are able to accelerate and improve the diagnosis of infectious diseases in animals and in man. The molecular detection assays, like the polymerase chain reaction (PCR) technologies, provide possibilities for a very rapid diagnosis. The detection of viruses can be completed within hours or hopefully even within minutes with a sensitivity level of less than one pathogenic organism. Molecular approaches have contributed significantly to the rapid detection of well-established, as well as newly emerging, infectious agents such as Nipah and Hendra viruses or corona viruses in the SARS scenario and the detection and molecular characterisation of the highly pathogenic avian influenza H5N1 subtype that threatens the world today. The nucleic acid amplification assays, although they were at first expensive and cumbersome, have become relatively cheap and user-friendly tools in the diagnostic laboratories

  3. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  4. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    Directory of Open Access Journals (Sweden)

    Sanhong Liu

    2015-01-01

    Full Text Available Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  5. Fusariotoxins in Avian Species: Toxicokinetics, Metabolism and Persistence in Tissues

    Directory of Open Access Journals (Sweden)

    Philippe Guerre

    2015-06-01

    Full Text Available Fusariotoxins are mycotoxins produced by different species of the genus Fusarium whose occurrence and toxicity vary considerably. Despite the fact avian species are highly exposed to fusariotoxins, the avian species are considered as resistant to their toxic effects, partly because of low absorption and rapid elimination, thereby reducing the risk of persistence of residues in tissues destined for human consumption. This review focuses on the main fusariotoxins deoxynivalenol, T-2 and HT-2 toxins, zearalenone and fumonisin B1 and B2. The key parameters used in the toxicokinetic studies are presented along with the factors responsible for their variations. Then, each toxin is analyzed separately. Results of studies conducted with radiolabelled toxins are compared with the more recent data obtained with HPLC/MS-MS detection. The metabolic pathways of deoxynivalenol, T-2 toxin, and zearalenone are described, with attention paid to the differences among the avian species. Although no metabolite of fumonisins has been reported in avian species, some differences in toxicokinetics have been observed. All the data reviewed suggest that the toxicokinetics of fusariotoxins in avian species differs from those in mammals, and that variations among the avian species themselves should be assessed.

  6. Avian-like breathing mechanics in maniraptoran dinosaurs

    Science.gov (United States)

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs. PMID:17986432

  7. Global dynamics of avian influenza epidemic models with psychological effect.

    Science.gov (United States)

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  8. (Highly pathogenic) avian influenza as a zoonotic agent.

    Science.gov (United States)

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    Science.gov (United States)

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  10. Rapid detection of the avian influenza virus H5N1 subtype in Egypt

    African Journals Online (AJOL)

    Dr

    highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and ... Key words: Avian influenza virus, H5N1, fluorescent antibody enzyme-linked immunosorbent assay (ELISA) ..... poultry and is potentially zoonotic.

  11. Avian vocal mimicry: a unified conceptual framework.

    Science.gov (United States)

    Dalziell, Anastasia H; Welbergen, Justin A; Igic, Branislav; Magrath, Robert D

    2015-05-01

    Mimicry is a classical example of adaptive signal design. Here, we review the current state of research into vocal mimicry in birds. Avian vocal mimicry is a conspicuous and often spectacular form of animal communication, occurring in many distantly related species. However, the proximate and ultimate causes of vocal mimicry are poorly understood. In the first part of this review, we argue that progress has been impeded by conceptual confusion over what constitutes vocal mimicry. We propose a modified version of Vane-Wright's (1980) widely used definition of mimicry. According to our definition, a vocalisation is mimetic if the behaviour of the receiver changes after perceiving the acoustic resemblance between the mimic and the model, and the behavioural change confers a selective advantage on the mimic. Mimicry is therefore specifically a functional concept where the resemblance between heterospecific sounds is a target of selection. It is distinct from other forms of vocal resemblance including those that are the result of chance or common ancestry, and those that have emerged as a by-product of other processes such as ecological convergence and selection for large song-type repertoires. Thus, our definition provides a general and functionally coherent framework for determining what constitutes vocal mimicry, and takes account of the diversity of vocalisations that incorporate heterospecific sounds. In the second part we assess and revise hypotheses for the evolution of avian vocal mimicry in the light of our new definition. Most of the current evidence is anecdotal, but the diverse contexts and acoustic structures of putative vocal mimicry suggest that mimicry has multiple functions across and within species. There is strong experimental evidence that vocal mimicry can be deceptive, and can facilitate parasitic interactions. There is also increasing support for the use of vocal mimicry in predator defence, although the mechanisms are unclear. Less progress has

  12. Pathotyping and Phylogenetic Characterization of Newcastle Disease Viruses Isolated in Peru: Defining Two Novel Subgenotypes Within Genotype XII.

    Science.gov (United States)

    Chumbe, Ana; Izquierdo-Lara, Ray; Tataje, Luis; Gonzalez, Rosa; Cribillero, Giovana; González, Armando E; Fernández-Díaz, Manolo; Icochea, Eliana

    2017-03-01

    Infections of poultry with virulent strains of avian paramyxovirus 1 (APMV-1), also known as Newcastle disease viruses (NDVs), cause Newcastle disease (ND). This highly contagious disease affects poultry and many other species of birds worldwide. In countries where the disease is prevalent, constant monitoring and characterization of isolates causing outbreaks are necessary. In this study, we report the results of pathogenicity testing and phylogenetic analyses of seven NDVs isolated from several regions of Peru between 2004 and 2015. Six viruses had intracerebral pathogenicity indices (ICPIs) of between 1.75 and 1.88, corresponding to a velogenic pathotype. The remaining virus had an ICPI of 0.00, corresponding to a lentogenic pathotype. These results were consistent with amino acid sequences at the fusion protein (F) cleavage site. All velogenic isolates had the polybasic amino acid sequence 112 RRQKR↓F 117 at the F cleavage site. Phylogenetic analyses of complete F gene sequences showed that all isolates are classified in class II of APMV-1. The velogenic viruses are classified in genotype XII, while the lentogenic virus is classified in genotype II, closely related to the LaSota vaccine strain. Moreover, tree topology, bootstrap values, and genetic distances observed within genotype XII resulted in the identification of novel subgenotypes XIIa (in South America) and XIIb (in China) and possibly two clades within genotype XIIa. All velogenic Peruvian viruses belonged to subgenotype XIIa. Overall, our results confirm the presence of genotype XII in Peru and suggest that it is the prevalent genotype currently circulating in our country. The phylogenetic characterization of these isolates helps to characterize the evolution of NDV and may help with the development of vaccines specific to our regional necessities.

  13. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity

    Science.gov (United States)

    Patrick D. Culbert; Volker C. Radeloff; Curtis H. Flather; Josef M. Kellndorfer; Chadwick D. Rittenhouse; Anna M. Pidgeon

    2013-01-01

    With limited resources for habitat conservation, the accurate identification of high-value avian habitat is crucial. Habitat structure affects avian biodiversity but is difficult to quantify over broad extents. Our goal was to identify which measures of vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity across the...

  14. 76 FR 66032 - Availability of an Environmental Assessment for Field Testing Avian Influenza-Marek's Disease...

    Science.gov (United States)

    2011-10-25

    ... Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector AGENCY... authorization to ship for the purpose of field testing, and then to field test, an unlicensed Avian Influenza... product: Requester: Biomune Company. Product: Avian Influenza-Marek's Disease Vaccine, H5 Subtype...

  15. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  16. An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed ...

    African Journals Online (AJOL)

    An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed Farm By The Introduction Of A Water Fowl. ... C A Meseko, A T Oladokun, B Shehu. Abstract. Avian influenza (AI) is caused by a range of Influenza type A viruses of high and low pathogenicity (Fauci, 2005). H5N1 Highly Pathogenic Avian Influenza (HPAI) ...

  17. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  18. Radical-pair based avian magnetoreception

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2014-03-01

    Behavioural experiments suggest that migratory birds possess a magnetic compass sensor able to detect the direction of the geomagnetic. One hypothesis for the basis of this remarkable sensory ability is that the coherent quantum spin dynamics of photoinduced radical pair reactions transduces directional magnetic information from the geomagnetic field into changes of reaction yields, possibly involving the photoreceptor cryptochrome in the birds retina. The suggested radical-pair based avian magnetoreception has attracted attention in the field of quantum biology as an example of a biological sensor which might exploit quantum coherences for its biological function. Investigations on such a spin-based sensor have focussed on uncovering the design features for the design of a biomimetic magnetic field sensor. We study the effects of slow fluctuations in the nuclear spin environment on the directional signal. We quantitatively evaluate the robustness of signals under fluctuations on a timescale longer than the lifetime of a radical pair, utilizing two models of radical pairs. Our results suggest design principles for building a radical-pair based compass sensor that is both robust and highly directional sensitive.

  19. Target organs for avian pancreatic polypeptide

    International Nuclear Information System (INIS)

    Kimmel, J.R.; Pollock, H.G.

    1981-01-01

    The problem of the physiological function of pancreatic polypeptide (PP) has been approached by attempting to identify target organs. Avian PP (aPP) labeled with 125I at either the C-terminus (aPP-C) or the N-terminus (aPP-N) was injected into fasted chickens and allowed to circulate for 3-120 min. At the end of the equilibration period, the anesthetized bird was perfused first with saline, then with Buoin's solution. Samples of fixed tissue from various organs were collected, weighed, and counted. Control experiments consisted of coinjection of unlabeled aPP to compete for receptors. The rate of disappearance of aPP-N from plasma was greater than that of aPP-C. Binding of aPP-N by spleen, duodenum, ileum, pancreas, and bone marrow was markedly reduced by coinjection of unlabeled aPP. A similar but less marked reduction in binding was found in liver and proventriculus. aPP-C gave less conclusive results. The maximal competitive effect of unlabeled PP could be achieved in most cases with 30 microgram unlabeled aPP. It is concluded that pancreas, duodenum, ileum, spleen, and bone marrow, and probably liver and proventriculus, are target organs for aPP in the chicken and that the C-terminal region of aPP is involved in receptor binding

  20. Comparison of lead residues among avian bones

    International Nuclear Information System (INIS)

    Ethier, A.L.M.; Braune, B.M.; Scheuhammer, A.M.; Bond, D.E.

    2007-01-01

    To determine if significant differences exist in lead (Pb) accumulation in different bones, especially those most often used for bone-Pb studies in wildlife, we compared Pb concentrations in radius, ulna, humerus, femur, and tibia of Common Eider (Somateria mollissima); and radius/ulna (combined), femur, and tibia of American Woodcock (Scolopax minor). There were no significant differences in bone-Pb concentrations among woodcock bones over a wide range of Pb concentrations (3-311 μg/g). In eider, where bone-Pb concentrations were low (<10 μg/g), leg bones had significantly higher Pb concentrations (approximately 30-40%) than wing bones from the same individuals. The variation among individual birds was greater than the variation among different bones within a bird. Based on our findings, we conclude that one type of bone may be substituted for another in bone-Pb studies although the same bone type should be analyzed for all birds within a study, whenever possible. - Variability in Pb concentrations among avian bones

  1. A bibliography of references to avian cholera

    Science.gov (United States)

    Wilson, Sonoma S.

    1979-01-01

    Mrs. Wilson has made a genuine effort to include in this bibliography every significant reference to avian cholera since Louis Pasteur's articles appeared in 1880, although she recognizes the likelihood that a few have been overlooked. New listings have been added throughout 1978, but comprehensive coverage of the literature cannot be claimed beyond June of that year.Textbook accounts, because they are generally summaries of work published elsewhere, are excluded. Papers dealing primarily with the biology of Pasteurella multocida, as opposed to the disease it induces in birds, are also excluded, unless they report information of diagnostic usefulness. Short abstracts are not included unless the journals in which they are published are more widely available than those in which the complete articles appear or they are English summaries of foreign language articles.In compiling this bibliography, Mrs. Wilson has made extensive use of Biological Abstracts, the Pesticide Documentation Bulletin, and printouts generated by Bibliographic Retrieval Services, Inc. The "Literature Cited" sections of textbooks and journal articles pertinent to the subject were sources of many additional references. Regardless of the origin of the citation, its accuracy was confirmed by comparison with the original publication, except in those few instances (marked with an asterisk) when the journal was not on the shelves of the libraries accessible to us.The author will be grateful to users of the bibliography who point out errors or omissions.Wayne I. JensenMicrobiologist In Charge

  2. On the origin of avian air sacs.

    Science.gov (United States)

    Farmer, C G

    2006-11-01

    For many vertebrates the lung is the largest and lightest organ in the body cavity and for these reasons can greatly affect an organism's shape, density, and its distribution of mass; characters that are important to locomotion. In this paper non-respiratory functions of the lung are considered along with data on the respiratory capacities and gas exchange abilities of birds and crocodilians to infer the evolutionary history of the respiratory systems of dinosaurs, including birds. From a quadrupedal ancestry theropod dinosaurs evolved a bipedal posture. Bipedalism is an impressive balancing act, especially for tall animals with massive heads. During this transition selection for good balance and agility may have helped shape pulmonary morphology. Respiratory adaptations arising for bipedalism are suggested to include a reduction in costal ventilation and the use of cuirassal ventilation with a caudad expansion of the lung into the dorsal abdominal cavity. The evolution of volant animals from bipeds required yet again a major reorganization in body form. With this transition avian air sacs may have been favored because they enhanced balance and agility in flight. Finally, I propose that these hypotheses can be tested by examining the importance of the air sacs to balance and agility in extant animals and that these data will enhance our understanding of the evolution of the respiratory system in archosaurs.

  3. Avian Metapneumovirus circulation in Italian broiler farms.

    Science.gov (United States)

    Tucciarone, Claudia Maria; Franzo, Giovanni; Lupini, Caterina; Alejo, Carolina Torres; Listorti, Valeria; Mescolini, Giulia; Brandão, Paulo Eduardo; Martini, Marco; Catelli, Elena; Cecchinato, Mattia

    2018-02-01

    With increasing frequency, avian Metapneumovirus (aMPV) is reported to induce respiratory signs in chickens. An adequate knowledge of current aMPV prevalence among Italian broilers is lacking, with little information available on its economical and health impact on the poultry industry. In order to collect preliminary data on the epidemiological context of aMPV in broiler flocks, a survey was performed in areas of Northern Italy with high poultry density from 2014 to 2016. Upper respiratory tract swabs were collected and processed by A and B subtype-specific multiplex real-time reverse transcription PCR (RT-PCR). Samples were also screened for infectious bronchitis virus (IBV) by generic RT-PCR and sequencing. Productive data and respiratory signs were detailed where possible. The high prevalence of aMPV was confirmed in broilers older than 26 d and also attested in IBV-negative farms. All aMPV detections belonged to subtype B. Italian strain genetic variability was evaluated by the partial attachment (G) gene sequencing of selected strains and compared with contemporary turkey strains and previously published aMPV references, revealing no host specificity and the progressive evolution of this virus in Italy. © 2017 Poultry Science Association Inc.

  4. Avian genomics lends insights into endocrine function in birds.

    Science.gov (United States)

    Mello, C V; Lovell, P V

    2018-01-15

    The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Phylogenomic analyses data of the avian phylogenomics project

    DEFF Research Database (Denmark)

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J

    2015-01-01

    BACKGROUND: Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae...... and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. FINDINGS: Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides......ML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. CONCLUSIONS: The Avian Phylogenomics Project is the largest...

  6. Surveillance of wild birds for avian influenza virus.

    Science.gov (United States)

    Hoye, Bethany J; Munster, Vincent J; Nishiura, Hiroshi; Klaassen, Marcel; Fouchier, Ron A M

    2010-12-01

    Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host-pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.

  7. Laser use in avian and exotic animal medicine

    Science.gov (United States)

    Parrott, Terri

    2000-05-01

    The use of lasers in clinical avian and exotic animal practice has increased the types of surgical procedures available to the veterinarian. Tissue injury and blood loss can be minimized with both the CO2 and Diode laser. The physical properties of these lasers give them direct advantages over other types of lasers for small animal and avian surgical patients. Routine salpingohysterectomy, castration and mass removal can be accomplished with the CO2 laser. Power, pulse settings and tip diameters for the various tissues make the CO2 laser a versatile instrument in surgery. Endoscopic surgery in the avian patient has been revolutionized with the use of the Diode laser. The use of the flexible fiber system makes it amendable to both rigid and flexible scopes.

  8. [Summary of Guangdong provincial seminar on avian influenza and influenza].

    Science.gov (United States)

    Yu, Shou-yi; Chen, Qing; Hu, Gui-fang

    2005-12-01

    On 8th November 2005, an academic seminar on avian influenza and influenza in Guangdong Province was held by Guangdong Society of Tropical Medicine and the Epidemiology Committee of the Guangdong Preventive Medicine Society in Southern Medical University, addressing the current problems in epidemics of avian influenza. The specialists attending the conference arrived at the common consideration that at present, the avian influenza virus H5N1 has not the capacity to trigger an pandemic in human population, but scattered cases had been reported to increase the suspicions of H5N1 virus transmission between humans. Due attention should be paid to the tendency of expansion of the host range and epidemic area, and the possibility of disastrous influenza pandemic among human populations persists, for which rational consideration is called for, and the role of specialists should be fully recognized who are endeavoring to examine the possible scale of influenza occurrence and devise strategy to deal with the epidemic in Guangdong province according to the practical situation in China. Increased funds and investment in scientific research on avian influenza is urged for influenza prediction and surveillance, rapid and early diagnostic assays, understanding of virus variation, mechanism of H5N1 virus adaptation to human hosts, effective medicines and vaccines for prevention and therapy of avian influenza. Laboratory bio-safety control should be enforced to prevent infections originated from laboratories. The specialists appeal that the media report the news objectively and issue the public warnings against avian influenza after consulting specialists, so as to avoid unnecessary social panic.

  9. [Highly pathogenic avian influenza--monitoring of migratory waterfowl].

    Science.gov (United States)

    Otsuki, Koichi; Ito, Toshihiro

    2006-10-01

    Since 1979, the group belonging to Departments of Veterinary Microbiology, Veterinary Public Health and the Avian Zoonoses Research Centre, Faculty of Agriculture, Tottori University is continuing isolation of avian influenza virus from such migratory waterfowls as whistling swan, pintail and tufted dugs flying from Siberia and/or northern China. They have already isolated many interesting influenza viruses. Serotype of the isolates is various; some H5 and H7 and human types of viruses were also isolated; and its pathogenicity for chickens is not high. It was interested that low pathogenic H5N3 virus isolated from whistling swan acquired severe pathogenicity during passage in chicks.

  10. Movements of Birds and Avian Influenza from Asia into Alaska

    OpenAIRE

    Winker, Kevin; McCracken, Kevin G.; Gibson, Daniel D.; Pruett, Christin L.; Meier, Rose; Huettmann, Falk; Wege, Michael; Kulikova, Irina V.; Zhuravlev, Yuri N.; Perdue, Michael L.; Spackman, Erica; Suarez, David L.; Swayne, David E.

    2007-01-01

    Asian-origin avian influenza (AI) viruses are spread in part by migratory birds. In Alaska, diverse avian hosts from Asia and the Americas overlap in a region of intercontinental avifaunal mixing. This region is hypothesized to be a zone of Asia-to-America virus transfer because birds there can mingle in waters contaminated by wild-bird?origin AI viruses. Our 7 years of AI virus surveillance among waterfowl and shorebirds in this region (1998?2004; 8,254 samples) showed remarkably low infecti...

  11. The anatomy and physiology of the avian endocrine system.

    Science.gov (United States)

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  12. Avian Influenza: Myth or Mass Murder?

    Directory of Open Access Journals (Sweden)

    Carol Louie

    2005-01-01

    Full Text Available The purpose of the present article was to determine whether avian influenza (AI is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  13. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  14. Aerosolized avian influenza virus by laboratory manipulations.

    Science.gov (United States)

    Li, Zhiping; Li, Jinsong; Zhang, Yandong; Li, Lin; Ma, Limin; Li, Dan; Gao, Feng; Xia, Zhiping

    2012-08-06

    Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  15. Avian influenza in Chile: a successful experience.

    Science.gov (United States)

    Max, Vanessa; Herrera, José; Moreira, Rubén; Rojas, Hernán

    2007-03-01

    Avian influenza (AI) was diagnosed in May 2002 for the first time in Chile and South America. The epidemic was caused by the highly pathogenic AI (HPAI) virus subtype H7N3 that emerged from a low pathogenic virus. The index farm was a broiler breeder, located in San Antonio, V Region, which at the time was a densely populated poultry area. Stamping of 465,000 breeders, in 27 sheds, was immediately conducted. Surveillance activities detected a second outbreak, 1 wk later, at a turkey breeding farm from the same company. The second farm was located 4 km from the index case. Only 25% of the sheds were infected, and 18,500 turkeys were destroyed. In both outbreaks, surveillance zones and across-country control measures were established: prediagnosis quarantine, depopulation, intensive surveillance, movement control, and increased biosecurity. Other measures included cleaning, disinfection, and controlling the farms with sentinels to detect the potential presence of the virus. Zoning procedures were implemented to allow the international trade of poultry products from unaffected areas. Positive serologic results to H5N2 virus also were detected in other poultry farms, but there was no evidence of clinical signs or virus isolation. Epidemiological investigation and laboratory confirmation determined that positive serology was related to a contaminated imported batch of vaccine against inclusion body hepatitis. All actions taken allowed the control of the epidemic, and within 7 mo, Chile was free of AI. Epidemic and control measures that prevented further spread are described in this article, which illustrates the importance of a combination of control measures during and after an outbreak of AI. This study is a good example of how veterinary services need to respond if their country is affected by HPAI.

  16. Avian Pox in Native Captive Psittacines, Brazil, 2015.

    Science.gov (United States)

    Esteves, Felipe C B; Marín, Sandra Y; Resende, Maurício; Silva, Aila S G; Coelho, Hannah L G; Barbosa, Mayara B; D'Aparecida, Natália S; de Resende, José S; Torres, Ana C D; Martins, Nelson R S

    2017-01-01

    To investigate an outbreak of avian pox in psittacines in a conservation facility, we examined 94 birds of 10 psittacine species, including sick and healthy birds. We found psittacine pox virus in 23 of 27 sick birds and 4 of 67 healthy birds. Further characterization is needed for these isolates.

  17. A nine - year retrospective study of avian neoplastic diseases in ...

    African Journals Online (AJOL)

    Avian neoplastic diseases have been identified as one of the leading causes of mortality and production losses in commercial chickens in Nigeria. Although available reports described the trend of Marek's disease in Zaria, Kaduna state, they did not take cognizance of other neoplastic diseases of poultry hence the need for ...

  18. Serological and Virological Study of Newcastle Disease and Avian ...

    African Journals Online (AJOL)

    Serological survey on the prevalence of Newcastle disease (NCD) virus antibodies using haemagglutination inhibition test (HI) and virological detection by RT-PCR of highly pathogenic avian influenza (HPAI) H5N1, were carried out in 6 regions of Senegal from June to November 2008. Rural chickens were raised in free ...

  19. Perspectives on avian and bovine leukemia virus immunological studies

    International Nuclear Information System (INIS)

    Higuchi, T.; Souza, J.M.M. de; Nogueira, Z.M.; Ogata, H.

    1984-01-01

    The avian and bovine RNA virus are studied. The mechanism of replication, the genome, the ultrastructural composition, the immunogens reactivity, the class of determinants and affinity are presented. Purification techniques of viral proteins and immunoassay proceeding are reported. (M.A.C.) [pt

  20. Free-grazing ducks and highly pathogenic avian influenza, Thailand

    NARCIS (Netherlands)

    Gilbert, Marius; Chaitaweesup, P.; Parakamawongsa, T.; Premashthira, S.; Tiensin, T.; Kalpravidh, W.; Wagner, H.; Slingenbergh, J.

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI

  1. Investigating maternal hormones in avian eggs : Measurement, manipulation, and interpretation

    NARCIS (Netherlands)

    Groothuis, TGG; Von Engelhardt, N; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    The last decade has witnessed a surge in studies on steroid hormones of maternal origin present in avian eggs and affecting offspring development. The value of such studies for the understanding of maternal effects and individual differentiation is endorsed and a series of methodological and

  2. Developmental imaging: the avian embryo hatches to the challenge.

    Science.gov (United States)

    Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca

    2013-06-01

    The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.

  3. Avian Influenza in wild birds from Chile, 2007-2009.

    Science.gov (United States)

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-02

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Evaluation of antibody response in mice against avian influenza A

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 39; Issue 3. Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris. Murugan Subathra Ponsekaran Santhakumar Mangamoori Lakshmi Narasu Syed Sultan Beevi Sunil K Lal. Articles Volume 39 ...

  5. Molecular diversity of avian schistosomes in Danish freshwater snails

    DEFF Research Database (Denmark)

    Christiansen, Anne Ø.; Olsen, Annette; Buchmann, Kurt

    2016-01-01

    Avian schistosomes are widespread parasites of snails and waterfowl and may cause cercarial dermatitis (swimmer's itch) in humans, a disease that is frequently reported in European countries. These parasites are known to occur in Denmark, but here, we applied a new approach using molecular tools ...

  6. Avian Bornavirus in Free-Ranging Psittacine Birds, Brazil

    Science.gov (United States)

    Encinas-Nagel, Nuri; Enderlein, Dirk; Piepenbring, Anne; Herden, Christiane; Heffels-Redmann, Ursula; Felippe, Paulo A.N.; Arns, Clarice; Hafez, Hafez M.

    2014-01-01

    Avian bornavirus (ABV) has been identified as the cause of proventricular dilatation disease in birds, but the virus is also found in healthy birds. Most studies of ABV have focused on captive birds. We investigated 86 free-ranging psittacine birds in Brazil and found evidence for natural, long-term ABV infection. PMID:25417715

  7. Optimizing factors influencing DNA extraction from fresh whole avian ...

    African Journals Online (AJOL)

    A study was conducted to optimize the efficient combination of lysis buffer, proteinase K, incubation time, phenol-chloroform-isoamyl alcohol (PCI) volume, spinning rate (rpm), and precipitation agent on quantity and quality of DNA extracted from various volumes of avian blood. Blood samples were collected in EDTA and ...

  8. Classical Swine Fever and Avian Influenza epidemcis: Lessons learned

    NARCIS (Netherlands)

    Elbers, A.R.; Loeffen, W.L.A.; Koch, G.

    2012-01-01

    This publication is based on a talk which was held in the course of the spring symposium „Impfen statt Keulen“ of the Akademie für Tiergesundheit (AfT) 2011 in Wiesbaden-Naurod. Experience with recent large-scale epidemics of Classical Swine Fever and Avian Influenza – among others in the

  9. Seroprevalence of Selected Avian Pathogens of Backyard Poultry in ...

    African Journals Online (AJOL)

    A serological survey for Newcastle (ND), avian influenza (AI), Gumboro (IBD) and Infectious bronchitis (IB) viruses was conducted in 310 serum samples in village chickens in Sinar State, Sudan. The studied chickens had no history of previous vaccination and showed no clinical signs. Results of indirect enzyme-linked ...

  10. Review of highly pathogenic avian influenza outbreaks in poultry in ...

    African Journals Online (AJOL)

    All the confirmed highly pathogenic avian influenza cases that were diagnosed in Zaria at the Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria, were reviewed in this study. The outbreaks occurred between the months of December, 2006 and March, 2007. The clinical signs and postmortem lesions ...

  11. The epizootiology of the highly pathogenic avian influenza prior to ...

    African Journals Online (AJOL)

    The epizootiology of the highly pathogenic avian influenza prior to the anticipated pandemic of the early twenty first century. ... Transmission of highly pathogenic H5N1 from domestic fowls back to migratory waterfowl in western China has increased the geographic spread. This has grave consequences for the poultry ...

  12. Avian Influenza in Migratory Birds : Regional Surveillance and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Outbreaks may only occur after transmission from migratory species to domestic flocks through local amplification and secondary spread through the movement of poultry or people, as well as equipment or vehicles contaminated by sick birds. The Asia Partnership for Avian Influenza Research (APAIR) brings together ...

  13. Asian Partnership for Avian Influenza Research : Effectiveness of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Indonesia, Thailand and Viet Nam for collaboration on research and research capacity building in avian influenza prevention and control. This grant will allow APAIR to investigate the effectiveness of the measures employed by China, Thailand and Viet Nam and evaluate the factors contributing to their success or failure.

  14. Antimicrobial susceptibilities of avian Escherichia coli isolates in ...

    African Journals Online (AJOL)

    Colibacillosis is a poultry disease of economic importance in Iran and all around the world. The aim of this study is to test the antibiotic sensitivity of Escherichia coli strains which were isolated in Tabriz. A total of 100 E. coli strains isolated from avian colibacillosis of 50 farms from 2008 to 2009 in Tabriz, were investigated for ...

  15. Cell culture based production of avian influenza vaccines

    NARCIS (Netherlands)

    Wielink, van R.

    2012-01-01

    Vaccination of poultry can be used as a tool to control outbreaks of avian influenza, including that of highly pathogenic H5 and H7 strains. Influenza vaccines are traditionally produced in embryonated chicken eggs. Continuous cell lines have been suggested as an alternative substrate to produce

  16. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  17. Avian Mobbing of the Puerto Rican Boa (Epicrates inornatus)

    Science.gov (United States)

    JAVIER E. MERCADO; ESTEBAN TERRANOVA; JR. WUNDERLE

    2002-01-01

    Mobbing, defined as an intense collective behavior in which birds of one or more species scold or even physically attack a predator, is known from a variety of bird species (Campbell and Lack, 1985; Gill, 1995). Targets commonly include hawks, owls, and snakes. In the West Indies, observations have documented avian mobbing towards various hawk species (e.g., Jeffrey-...

  18. Low frequency of paleoviral infiltration across the avian phylogeny

    DEFF Research Database (Denmark)

    Cui, Jie; Zhao, Wei; Huang, Zhiyong

    2014-01-01

    Background: Mammalian genomes commonly harbor endogenous viral elements. Due to a lack of comparable genome-scale sequence data, far less is known about endogenous viral elements in avian species, even though their small genomes may enable important insights into the patterns and processes of end...

  19. Detection of antibodies to avian influenza, infectious bronchitis and ...

    African Journals Online (AJOL)

    Detection of antibodies to avian influenza, infectious bronchitis and Newcastle disease viruses in wild birds in three states of Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  20. H9N2 avian influenza transmission and antigenicity

    Science.gov (United States)

    Low pathogenic H9N2 avian influenza has become endemic in parts of Asia, the Middle East and North Africa causing respiratory disease with occasional mortality. The use of vaccination has become common to try and control the clinical disease, but vaccination has not been shown to be an effective er...

  1. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  2. Transmission of highly pathogenic avian influenza H7 virus

    NARCIS (Netherlands)

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The

  3. First characterization of avian influenza viruses from Greenland 2014

    DEFF Research Database (Denmark)

    Hartby, Christina Marie; Krog, Jesper Schak; Ravn Merkel, Flemming

    2016-01-01

    In late February 2014, unusually high numbers of wild birds, thick-billed murre (Uria lomvia), were found dead at the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examinations in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2...

  4. Avian Metapneumovirus Molecular Biology and Development of Genetically Engineered Vaccines

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important pathogen of turkeys with a worldwide distribution. aMPV is a member of the genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae. The genome of aMPV is a non-segmented, single-stranded, negative-sense RNA of 1...

  5. The evaluation of domestic ducks as potential reservoir of avian ...

    African Journals Online (AJOL)

    The evaluation of domestic ducks as potential reservoir of avian influenza virus in post HPAI H5N1 outbreak area, Sunyani Municipality, Brong Ahafo Region of Ghana. Vitus Burimuah, W.K. Ampofo, B Awumbila, N Yebuah, B.O. Emikpe, W Tasiame, R.D. Folitse ...

  6. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... August 7, 2017 Increase in Human Infections with Avian Influenza A(H7N9) Virus During the Fifth Epidemic — China, October 2016–February 2017 Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for ...

  7. Surveillance of wild birds for avian influenza virus

    NARCIS (Netherlands)

    Hoye, B.J.; Munster, V.J.; Nishiura, H.; Klaassen, M.R.J.; Fouchier, R.A.M

    2010-01-01

    Recent demand for increased understanding of avian infl uenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations

  8. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  9. Avian Influenza Risk : Characterization and Dynamics of Backyard ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The highly pathogenic avian influenza (HPAI) virus H5N1 produces severe disease and high mortality in domestic poultry, waterfowl and other bird species. Public health authorities are concerned that this strain may mutate to became contagious between people. Throughout Southeast Asia and China, farmers raise poultry ...

  10. Comparative genomic data of the Avian Phylogenomics Project.

    Science.gov (United States)

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of

  11. Molecular characterization, isolation, pathology and pathotyping of peafowl (Pavo cristatus) origin Newcastle disease virus isolates recovered from disease outbreaks in three states of India.

    Science.gov (United States)

    Desingu, Perumal Arumugam; Singh, Shambhu Dayal; Dhama, Kuldeep; Vinodhkumar, Obli Rajendran; Barathidasan, Rajamani; Malik, Yashpal Singh; Singh, Rajendra; Singh, Raj Kumar

    2016-12-01

    Disease outbreak investigations were carried out in three states of Northern India namely Haryana (Rewari), Uttar Pradesh (Noida) and Delhi, where a total of 110 Indian peafowls (Pavo cristatus) showed sudden onset of nervous signs and died within a period of two weeks during June, 2012. The F (fusion) gene-based RT-PCR detection of Newcastle disease virus (NDV) in affected tissues confirmed the presence of the virus. Three NDV isolates were selected (one from each area under investigation) and further characterized. They were found to be of virulent pathotype (velogenic NDV) based on both pathogenicity assays (MDT, ICPI and IVPI) and partial F gene sequence analysis. Additionally, the phylogenetic analysis revealed that the isolates belonged to the genotype VIIi and XIII of class II avian Paramyxovirus serotype1 (APMV-1) and related closely to new emerging sub-genotypes. This is the first report regarding the presence of the fifth panzootic vNDV genotype VIIi from India. In this scenario, extensive epidemiological studies are suggested for surveillance of NDV genotypes in wild birds and poultry flocks of the country along with adopting suitable prevention and control measures.

  12. Characterization of Newcastle disease virus isolates obtained from Eurasian collared doves (Streptopelia decaocto) in Italy.

    Science.gov (United States)

    Terregino, Calogero; Cattoli, Giovanni; Grossele, Barbara; Bertoli, Elena; Tisato, Ernesto; Capua, Ilaria

    2003-02-01

    Eurasian collared doves (Streptopelia decaocto) are thought to originate from India and they have colonized, throughout the centuries, the Middle East and, more recently, Mediterranean countries such as Italy and Spain. In the present paper we report of the isolation and characterization of Newcastle disease viruses (NDV) obtained from Eurasian collared doves during 2000-2001, and compare them to isolates obtained from feral pigeons (Columba livia) during the same period. All isolates could be classified as avian paramyxovirus type 1 (APMV1) and belonged to the pigeon variant group (PPMV1), as their haemagglutinating activity was inhibited by mAb 161/617 which is specific for PPMV1. The intracerebral pathogenicity indices ranged from 0.68 to 1.38 and all isolates contained multiple basic amino acids at the deduced cleavage site of the fusion protein, which is a typical feature of virulent viruses. Phylogenetic analysis of the isolates indicate that 18/20 of these form a separate cluster from the isolates obtained from pigeons in the same period. These findings suggest that different lineages are circulating in feral pigeon populations, and that a separate lineage affects Eurasian collared doves.

  13. Newcastle disease virus infection in sparrows (Passer domesticus, Linneaus, 1758 captured in poultry farms of the agreste region of the State of Pernambuco

    Directory of Open Access Journals (Sweden)

    JSA Silva

    2006-06-01

    Full Text Available Reservoir competence for the Newcastle Disease virus (NDV was evaluated in sparrows (Passer domesticus, Linnaeus 1758 captured on a commercial poultry farm and a chicken hatchery in the State of Pernambuco, Northeastern Brazil. A total number of 103 birds collected from a poultry farm (24/103 and a chicken hatchery (79/103 were examined. Hemagglutination inhibition tests, isolation, and viral characterization were performed in all samples collected from each bird. Titers ranging from 1:2 to 1:64 were detectable in 10.68% of sparrows, but positive serology and viral isolation were obtained only from sparrows captured at the hatchery. Hemagglutination activity was inhibited by anti-avian paramyxovirus serotype 1 (APMV-1 serum, and this sample showed an intracerebral pathogenicity index (ICOI of 0.21, which is similar to the B1 stock vaccine (0.20 used for vaccination in those farms. Therefore, it was concluded that the sparrows were infected by stock vaccine virus, and that these birds could be a reservoir for NDV. However, additional studies involving sequencing of the virus genome of stock vaccine must be carried out.

  14. Phylogenetic assessment reveals continuous evolution and circulation of pigeon-derived virulent avian avulaviruses 1 in Eastern Europe, Asia, and Africa.

    Science.gov (United States)

    Sabra, Mahmoud; Dimitrov, Kiril M; Goraichuk, Iryna V; Wajid, Abdul; Sharma, Poonam; Williams-Coplin, Dawn; Basharat, Asma; Rehmani, Shafqat F; Muzyka, Denys V; Miller, Patti J; Afonso, Claudio L

    2017-09-26

    The remarkable diversity and mobility of Newcastle disease viruses (NDV) includes virulent viruses of genotype VI. These viruses are often referred to as pigeon paramyxoviruses 1 because they are normally isolated and cause clinical disease in birds from the Columbidae family. Genotype VI viruses occasionally infect, and may also cause clinical disease in poultry. Thus, the evolution, current spread and detection of these viruses are relevant to avian health. Here, we describe the isolation and genomic characterization of six Egyptian (2015), four Pakistani (2015), and two Ukrainian (2007, 2013) recent pigeon-derived NDV isolates of sub-genotype VIg. These viruses are closely related to isolates from Kazakhstan, Nigeria and Russia. In addition, eight genetically related NDV isolates from Pakistan (2014-2016) that define a new sub-genotype (VIm) are described. All of these viruses, and the ancestral Bulgarian (n = 2) and South Korean (n = 2) viruses described here, have predicted virulent cleavage sites of the fusion protein, and those selected for further characterization have intracerebral pathogenicity index assay values characteristic of NDV of genotype VI (1.31 to 1.48). A validated matrix gene real-time RT-PCR (rRT-PCR) NDV test detect all tested isolates. However, the validated rRT-PCR test that is normally used to identify the virulent fusion gene fails to detect the Egyptian and Ukrainian viruses due to mismatches in primers and probe. A new rapid rRT-PCR test to determine the presence of virulent cleavage sites for viruses from sub-genotypes VIg was developed and evaluated on these and other viruses. We describe the almost simultaneous circulation and continuous evolution of genotype VI Newcastle disease viruses in distant locations, suggesting epidemiological connections among three continents. As pigeons are not migratory, this study suggests the need to understand the possible role of human activity in the dispersal of these viruses. Complete

  15. Avian influenza survey in migrating waterfowl in Sonora, Mexico.

    Science.gov (United States)

    Montalvo-Corral, M; López-Robles, G; Hernández, J

    2011-02-01

    A two-year survey was carried out on the occurrence of avian influenza in migrating birds in two estuaries of the Mexican state of Sonora, which is located within the Pacific flyway. Cloacal and oropharyngeal swabs were collected from 1262 birds, including 20 aquatic bird species from the Moroncarit and Tobari estuaries in Sonora, Mexico. Samples were tested for type A influenza (M), H5 Eurasian and North American subtypes (H5EA and H5NA respectively) and the H7 North American subtype (H7NA). Gene detection was determined by one-step real-time reverse transcription polymerase chain reaction (RRT-PCR). The results revealed that neither the highly pathogenic avian influenza virus H5 of Eurasian lineage nor H7NA were detected. The overall prevalence of avian influenza type A (M-positive) in the sampled birds was 3.6% with the vast majority in dabbling ducks (Anas species). Samples from two birds, one from a Redhead (Aythya americana) and another from a Northern Shoveler (Anas clypeata), were positive for the low-pathogenic H5 avian influenza virus of North American lineage. These findings represented documented evidence of the occurrence of avian influenza in wintering birds in the Mexican wetlands. This type of study contributes to the understanding of how viruses spread to new regions of North America and highlights the importance of surveillance for the early detection and control of potentially pathogenic strains, which could affect animal and human health. © 2010 Blackwell Verlag GmbH.

  16. A national survey of emergency nurses and avian influenza threat.

    Science.gov (United States)

    Bell, Mary Ann; Dake, Joseph A; Price, James H; Jordan, Timothy R; Rega, Paul

    2014-05-01

    The purpose of this study was to determine the perceived likelihood of emergency nurses reporting to work during an avian influenza outbreak, to consider options if nurses decided not to report work, and to explore Protection Motivation Theory constructs as predictors of reporting to work. A descriptive, nonexperimental, cross-sectional survey of emergency nurses within the United States. A total of 332 nurses (46%) responded. Most emergency nurses (84%) reported they would report to work (1 in 6 would not). The likelihood of reporting to work differed by education level, nurses' avian influenza information sources, and nurses who had family living with them. Of the nurses who decided not to report to work, the majority were willing to provide health information (90%), administer vaccinations (82%), and triage (74%) neighbors/friends from home. One third of nurses had not attended a disaster-preparedness drill within the past year. Only 20% identified formal training while on the job as a source of avian influenza information. A third of emergency nurses would be worried about getting an avian influenza vaccination because of potential adverse effects. Protection Motivation Theory accounted for almost 40% of the variance of likelihood to report to work, with response costs being the largest predictor. Disaster drills, avian influenza job training, and vaccination education are necessary to prepare emergency nurses for an outbreak. The findings support emergency nurses' willingness to work from home if they are unable to report to work. This finding is new and may have implications for disaster planning, staffing, and ED operations. Copyright © 2014 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.

  17. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    Science.gov (United States)

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  18. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef; Hejnar, Jiří

    2013-01-01

    Roč. 87, č. 15 (2013), s. 8399-8407 ISSN 0022-538X R&D Projects: GA ČR GAP502/10/1651 Institutional support: RVO:68378050 Keywords : avian leukosis virus * ALV-J * NHE1 * host resistance * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.648, year: 2013

  19. Molecular diagnostics of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2006-01-01

    direct sequencing of the PCR product. The possibility of typization using molecular methods is based on the big difference at the amino acid and nucleotide levels between different HA subtypes (from 20- 74%, while the differences between strains of the same HA subtype are relatively small (0- 9%. The basic advantage in the detection and typization of influenza viruses using the RTPCR method is that it saves time. Namely, it can be performed directly from the samples taken in the field, and the result can be obtained within the same day, contrary to conventional methods that take 7 to 10 days. The obtained PCR product can also be sequenced immediately, which can provide an answer to the possible virulent potential of the isolate and its further spreading. The establishment of changes in the HA gene sequence can provide us with the information about the direction of the development of the genetic drift. The paper will describe in detail the possibilities for the implementation of molecular methods in diagnostics and typization, in fact, in the molecular epizootiology of avian influenza.

  20. Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Wallace P.; Johnson, Gregory D.; Strickland, Dale M.; Young, Jr., David P.; Sernka, Karyn J.; Good, Rhett E.

    2001-08-01

    It has been estimated that from 100 million to well over 1 billion birds are killed annually in the United States due to collisions with human-made structures, including vehicles, buildings and windows, powerlines, communication towers, and wind turbines. Although wind energy is generally considered environmentally friendly (because it generates electricity without emitting air pollutants or greenhouse gases), the potential for avian fatalities has delayed and even significantly contributed to blocking the development of some windplants in the U.S. Given the importance of developing a viable renewable source of energy, the objective of this paper is to put the issue of avian mortality associated with windpower into perspective with other sources of avian collision mortality across the U.S. The purpose of this paper is to provide a detailed summary of the mortality data collected at windplants and put avian collision mortality associated with windpower development into perspective with other significant sources of avian collision mortality across the United States. We provide a summary of data collected at many of the U.S. windplants and provide annual bird fatality estimates and projections for all wind turbines in the U.S. For comparison, we also review studies of avian collision mortality from other major human-made structures and report annual bird fatality estimates for these sources. Other sources also significantly contribute to overall avian mortality. For example, the National Audubon Society estimates avian mortality due to house cats at 100 million birds per year. Pesticide use, oil spills, disease, etc., are other significant sources of unintended avian mortality. Due to funding constraints, the scope of this paper is limited to examining only avian mortality resulting from collisions with human-made obstacles.

  1. Pathobiology of avian influenza virus infection in minor gallinaceous species: a review.

    Science.gov (United States)

    Bertran, Kateri; Dolz, Roser; Majó, Natàlia

    2014-01-01

    Susceptibility to avian influenza viruses (AIVs) can vary greatly among bird species. Chickens and turkeys are major avian species that, like ducks, have been extensively studied for avian influenza. To a lesser extent, minor avian species such as quail, partridges, and pheasants have also been investigated for avian influenza. Usually, such game fowl species are highly susceptible to highly pathogenic AIVs and may consistently spread both highly pathogenic AIVs and low-pathogenic AIVs. These findings, together with the fact that game birds are considered bridge species in the poultry-wildlife interface, highlight their interest from the transmission and biosecurity points of view. Here, the general pathobiological features of low-pathogenic AIV and highly pathogenic AIV infections in this group of avian species have been covered.

  2. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens.

    Science.gov (United States)

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R S; Pierson, F William; Huang, Yao-Wei; Dryman, Barbara A; Meng, Xiang-Jin

    2011-01-27

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Studies on the serological relationships between avian pox, sheep pox, goat pox and vaccinia viruses

    Science.gov (United States)

    Uppal, P. K.; Nilakantan, P. R.

    1970-01-01

    By using neutralization, complement fixation and immunogel-diffusion tests, it has been demonstrated that cross-reactions occur between various avian pox viruses and between sheep pox and goat pox viruses. No such reactions were demonstrated between avian pox viruses and vaccinia virus or between avian pox and sheep pox and goat pox viruses. Furthermore, no serological relationship was demonstrable between vaccinia virus and sheep pox and goat pox viruses. PMID:4989854

  4. Outbreak of avian influenza H7N3 on a turkey farm in the Netherlands

    OpenAIRE

    Velkers, F.C.; Bouma, A.; Matthijs, M.G.R.; Koch, G.; Westendorp, S.T.; Stegeman, J.A.

    2006-01-01

    This case report describes the course of an outbreak of avian influenza on a Dutch turkey farm. When clinical signs were observed their cause remained unclear. However, serum samples taken for the monitoring campaign launched during the epidemic of highly pathogenic avian influenza in 2003, showed that all the remaining turkeys were seropositive against an H7 strain of avian influenza virus, and the virus was subsequently isolated from stored carcases. The results of a reverse-transcriptase P...

  5. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays

    Science.gov (United States)

    2009-04-01

    Recent outbreaks of Nipah virus , severe acute respiratory syndrome virus , and avian influenza virus reiterate the impor- tance of zoonotic microbes as...Society for Microbiology. All Rights Reserved. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays...been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the

  6. Access to health information may improve behavior in preventing Avian influenza among women

    Directory of Open Access Journals (Sweden)

    Ajeng T. Endarti

    2011-02-01

    Full Text Available Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian influenza. The heads of household as the sample unit were chosen by multi-stage sampling.Results: Among 387 subjects, 29.5% of them was had good behavior toward Avian influenza. The final model revealed that gender and access to health information were two dominant factors for good behavior in preventing Avian influenza. Compared with men, women had 67% higher risk to have good behavior [adjusted relative risk (RRa = 1.67; 95% confidence interval (CI = 0.92-3.04; P = 0.092]. Compared to those with no access to health information, subjects with access to health information had 3.4 fold increase to good behavior (RRa = 3.40; 95% CI =  0.84-13.76; P = 0.087.Conclusion: Acces to health information concerning Avian influenza was more effective among women in promoting good behavior toward preventing Avian influenza. (Med J Indones 2011; 20:56-61Keywords: avian influenza, behavior, gender, health promotion

  7. Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns

    Directory of Open Access Journals (Sweden)

    S. M. Lutful Kabir

    2010-01-01

    Full Text Available Avian colibacillosis and salmonellosis are considered to be the major bacterial diseases in the poultry industry world-wide. Colibacillosis and salmonellosis are the most common avian diseases that are communicable to humans. This article provides the vital information on the epidemiology, pathogenesis, diagnosis, control and public health concerns of avian colibacillosis and salmonellosis. A better understanding of the information addressed in this review article will assist the poultry researchers and the poultry industry in continuing to make progress in reducing and eliminating avian colibacillosis and salmonellosis from the poultry flocks, thereby reducing potential hazards to the public health posed by these bacterial diseases.

  8. Emergence of a Novel Avian Pox Disease in British Tit Species

    OpenAIRE

    Lawson, Becki; Lachish, Shelly; Colvile, Katie M.; Durrant, Chris; Peck, Kirsi M.; Toms, Mike P.; Sheldon, Ben C.; Cunningham, Andrew A.

    2012-01-01

    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Br...

  9. Session: Avoiding, minimizing, and mitigating avian and bat impacts

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, Carl; Kerlinger, Paul

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger.

  10. Session: Avoiding, minimizing, and mitigating avian and bat impacts

    International Nuclear Information System (INIS)

    Thelander, Carl; Kerlinger, Paul

    2004-01-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger

  11. Secondarily flightless birds or Cretaceous non-avian theropods?

    Science.gov (United States)

    Kavanau, J Lee

    2010-02-01

    Recent studies by Varricchio et al. reveal that males cared for the eggs of troodontids and oviraptorids, so-called "non-avian theropods" of the Cretaceous, just as do those of most Paleognathic birds (ratites and tinamous) today. Further, the clutches of both groups have large relative volumes, and consist of many eggs of relatively large size. By comparison, clutch care by most extant birds is biparental and the clutches are of small relative volume, and consist of but few small eggs. Varricchio et al. propose that troodontids and oviraptorids were pre-avian and that paternal egg care preceded the origin of birds. On the contrary, unmentioned by them is that abundant paleontological evidence has led several workers to conclude that troodontids and oviraptorids were secondary flightless birds. This evidence ranges from bird-like bodies and bone designs, adapted for climbing, perching, gliding, and ultimately flight, to relatively large, highly developed brains, poor sense of smell, and their feeding habits. Because ratites also are secondarily flightless and tinamous are reluctant, clumsy fliers, the new evidence strengthens the view that troodontids and oviraptorids were secondarily flightless. Although secondary flightlessness apparently favors paternal care of clutches of large, abundant eggs, such care is not likely to have been primitive. There are a suite of previously unknown independent findings that point to the evolution of, first, maternal, followed by biparental egg care in earliest ancestors of birds. This follows from the discovery of remarkable relict avian reproductive behaviors preserved by virtue of the highly conservative nature of vertebrate brain evolution. These behaviors can be elicited readily by exposing breeding birds to appropriate conditions, both environmental and with respect to their eggs and chicks. They give significant new clues for a coherent theory of avian origin and early evolution.

  12. Mimicry and masquerade from the avian visual perspective

    Directory of Open Access Journals (Sweden)

    Mary Caswell STODDARD

    2012-08-01

    Full Text Available Several of the most celebrated examples of visual mimicry, like mimetic eggs laid by avian brood parasites and pala­table insects mimicking distasteful ones, involve signals directed at the eyes of birds. Despite this, studies of mimicry from the avian visual perspective have been rare, particularly with regard to defensive mimicry and masquerade. Defensive visual mimicry, which includes Batesian and Müllerian mimicry, occurs when organisms share a visual signal that functions to deter predators. Masquerade occurs when an organism mimics an inedible or uninteresting object, such as a leaf, stick, or pebble. In this paper, I present five case studies covering diverse examples of defensive mimicry and masquerade as seen by birds. The best-known cases of defensive visual mimicry typically come from insect prey, but birds themselves can exhibit defensive visual mimicry in an attempt to escape mobbing or dissuade avian predators. Using examples of defensive visual mimicry by both insects and birds, I show how quantitative models of avian color, luminance, and pattern vision can be used to enhance our understanding of mimicry in many systems and produce new hypotheses about the evolution and diversity of signals. Overall, I investigate examples of Batesian mimicry (1 and 2, Müllerian mimicry (3 and 4, and masquerade (5 as follows: 1 Polymorphic mimicry in African mocker swallowtail butterflies; 2 Cuckoos mimicking sparrowhawks; 3 Mimicry rings in Neotropical butterflies; 4 Plumage mimicry in toxic pitohuis; and 5 Dead leaf-mimicking butterflies and mantids [Current Zoology 58 (4: 630–648, 2012].

  13. Ecological factors affect the level and scaling of avian BMR.

    Science.gov (United States)

    McNab, Brian Keith

    2009-01-01

    The basal rate of metabolism (BMR) in 533 species of birds, when examined with ANCOVA, principally correlates with body mass, most of the residual variation correlating with food habits, climate, habitat, a volant or flightless condition, use or not of torpor, and a highland or lowland distribution. Avian BMR also correlates with migratory habits, if climate and a montane distribution is excluded from the analysis, and with an occurrence on small islands if a flightless condition and migration are excluded. Residual variation correlates with membership in avian orders and families principally because these groups are behaviorally and ecologically distinctive. However, the distinction between passerines and other birds remains a significant correlate of avian BMR, even after six ecological factors are included, with other birds having BMRs that averaged 74% of the passerine mean. This combination of factors accounts for 97.7% of the variation in avian BMR. Yet, migratory species that belong to Anseriformes, Charadriiformes, Pelecaniformes, and Procellariiformes and breed in temperate or polar environments have mass-independent basal rates equal to those found in passerines. In contrast, penguins belong to an order of polar, aquatic birds that have basal rates lower than passerines because their flightless condition depresses basal rate. Passerines dominate temperate, terrestrial environments and the four orders of aquatic birds dominate temperate and polar aquatic environments because their high BMRs facilitate reproduction and migration. The low BMRs of tropical passerines may reflect a sedentary lifestyle as much as a life in a tropical climate. Birds have BMRs that are 30-40% greater than mammals because of the commitment of birds to an expensive and expansive form of flight.

  14. Insights into neural crest development from studies of avian embryos

    OpenAIRE

    Gandhi, Shashank; Bronner, Marianne E.

    2018-01-01

    The neural crest is a multipotent and highly migratory cell type that contributes to many of the defining features of vertebrates, including the skeleton of the head and most of the peripheral nervous system. 150 years after the discovery of the neural crest, avian embryos remain one of the most important model organisms for studying neural crest development. In this review, we describe aspects of neural crest induction, migration and axial level differences, highlighting what is known about ...

  15. Avian influenza (bird flu) outbreak news scare and its economic ...

    African Journals Online (AJOL)

    Avian influenza (bird flu) outbreak news scare and its economic implication on poultry enterprises in Adamawa state, Nigeria. MR Ja'afar-Furo, HG Balla, B Yakubu. Abstract. No Abstract. Global Journal of Agricultural Sciences Vol. 6 (1) 2007: pp. 61-68. http://dx.doi.org/10.4314/gjass.v6i1.2302 · AJOL African Journals ...

  16. The cuticle modulates ultraviolet reflectance of avian eggshells

    Directory of Open Access Journals (Sweden)

    Daphne C. Fecheyr-Lippens

    2015-07-01

    Full Text Available Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

  17. Protective roles of free avian respiratory macrophages in captive birds

    Directory of Open Access Journals (Sweden)

    Mbuvi P. Mutua

    Full Text Available In the mammalian lung, respiratory macrophages provide front line defense against invading pathogens and particulate matter. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM and a dearth of the cells in the avian lung has been purported to foreordain a weak first line of pulmonary defense, a condition associated with high mortality of domestic birds occasioned by respiratory inflictions. Avian pulmonary mechanisms including a three tiered aerodynamic filtration system, tight epithelial junctions and an efficient mucociliary escalator system have been known to supplement FARM protective roles. Current studies, however, report FARM to exhibit an exceptionally efficient phagocytic capacity and are effective in elimination of invading pathogens. In this review, we also report on effects of selective synthetic peroxisome proliferator activated receptor gamma (PPAR γ agonists on non phlogistic phagocytic properties in the FARM. To develop effective therapeutic interventions targeting FARM in treatment and management of respiratory disease conditions in the poultry, further studies are required to fully understand the role of FARM in innate and adaptive immune responses.

  18. A Qualitative Stakeholder Analysis of Avian Influenza Policy in Bangladesh.

    Science.gov (United States)

    Chattopadhyay, Kaushik; Fournié, Guillaume; Abul Kalam, Md; Biswas, Paritosh K; Hoque, Ahasanul; Debnath, Nitish C; Rahman, Mahmudur; Pfeiffer, Dirk U; Harper, David; Heymann, David L

    2017-11-13

    Avian influenza is a major animal and public health concern in Bangladesh. A decade after development and implementation of the first national avian influenza and human pandemic influenza preparedness and response plan in Bangladesh, a two-stage qualitative stakeholder analysis was performed in relation to the policy development process and the actual policy. This study specifically aimed to identify the future policy options to prevent and control avian influenza and other poultry-related zoonotic diseases in Bangladesh. It was recommended that the policy should be based on the One Health concept, be evidence-based, sustainable, reviewed and updated as necessary. The future policy environment that is suitable for developing and implementing these policies should take into account the following points: the need to formally engage multiple sectors, the need for clear and acceptable leadership, roles and responsibilities and the need for a common pool of resources and provision for transferring resources. Most of these recommendations are directed towards the Government of Bangladesh. However, other sectors, including research and poultry production stakeholders, also have a major role to play to inform policy making and actively participate in the multi-sectoral approach.

  19. Characterization of avian influenza H5N1 virosome

    Directory of Open Access Journals (Sweden)

    Chatchai Sarachai

    2014-04-01

    Full Text Available The purpose of this study was to prepare and characterize virosome containing envelope proteins of the avian influenza (H5N1 virus. The virosome was prepared by the solubilization of virus with octaethyleneglycol mono (n-dodecyl ether (C12E8 followed by detergent removal with SM2 Bio-Beads. Biochemical analysis by SDS-PAGE and western blotting, indicated that avian influenza H5N1 virosome had similar characteristics to the parent virus and contained both the hemagglutinin (HA, 60-75 kDa and neuraminidase (NA, 220 kDa protein, with preserved biological activity, such as hemagglutination activity. The virosome structure was analyzed by negative stained transmission electron microscope (TEM demonstrated that the spherical shapes of vesicles with surface glycoprotein spikes were harbored. In conclusion, the biophysical properties of the virosome were similar to the parent virus, and the use of octaethyleneglycol mono (n-dodecyl ether to solubilize viral membrane, followed by removal of detergent using polymer beads adsorption (Bio-Beads SM2 was the preferable method for obtaining avian influenza virosome. The outcome of this study might be useful for further development veterinary virus vaccines.

  20. Avian conservation practices strengthen ecosystem services in California vineyards.

    Science.gov (United States)

    Jedlicka, Julie A; Greenberg, Russell; Letourneau, Deborah K

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services.

  1. Avian conservation practices strengthen ecosystem services in California vineyards.

    Directory of Open Access Journals (Sweden)

    Julie A Jedlicka

    Full Text Available Insectivorous Western Bluebirds (Sialia mexicana occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services.

  2. Review of avian mortality studies at concentrating solar power plants

    Science.gov (United States)

    Ho, Clifford K.

    2016-05-01

    This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.

  3. Emergence of fatal avian influenza in New England harbor seals

    Science.gov (United States)

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, Hon S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  4. The avian egg exhibits general allometric invariances in mechanical design.

    Science.gov (United States)

    Juang, Jia-Yang; Chen, Pin-Yi; Yang, Da-Chang; Wu, Shang-Ping; Yen, An; Hsieh, Hsin-I

    2017-10-27

    The avian egg exhibits extraordinary diversity in size, shape and color, and has a key role in avian adaptive radiations. Despite extensive work, our understanding of the underlying principles that guide the "design" of the egg as a load-bearing structure remains incomplete, especially over broad taxonomic scales. Here we define a dimensionless number C, a function of egg weight, stiffness and dimensions, to quantify how stiff an egg is with respect to its weight after removing geometry-induced rigidity. We analyze eggs of 463 bird species in 36 orders across five orders of magnitude in body mass, and find that C number is nearly invariant for most species, including tiny hummingbirds and giant elephant birds. This invariance or "design guideline" dictates that evolutionary changes in shell thickness and Young's modulus, both contributing to shell stiffness, are constrained by changes in egg weight. Our analysis illuminates unique reproductive strategies of brood parasites, kiwis, and megapodes, and quantifies the loss of safety margin for contact incubation due to artificial selection and environmental toxins. Our approach provides a mechanistic framework for a better understanding of the mechanical design of the avian egg, and may provide clues to the evolutionary origin of contact incubation of amniote eggs.

  5. Avian foods, foraging and habitat conservation in world rice fields

    Science.gov (United States)

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.

    2010-01-01

    Worldwide, rice (Oryza sativa) agriculture typically involves seasonal flooding and soil tillage, which provides a variety of microhabitats and potential food for birds. Water management in rice fields creates conditions ranging from saturated mud flats to shallow (seed mass from North America ranging from 66672 kg/ha. Although initially abundant after harvest, waste rice availability can be temporally limited. Few abundance estimates for other foods, such as vertebrate prey or forage vegetation, exist for rice fields. Outside North America, Europe and Japan, little is known about abundance and importance of any avian food in rice fields. Currently, flooding rice fields after harvest is the best known management practice to attract and benefit birds. Studies from North America indicate specific agricultural practices (e.g. burning stubble) may increase use and improve access to food resources. Evaluating and implementing management practices that are ecologically sustainable, increase food for birds and are agronomically beneficial should be global priorities to integrate rice production and avian conservation. Finally, land area devoted to rice agriculture appears to be stable in the USA, declining in China, and largely unquantified in many regions. Monitoring trends in riceland area may provide information to guide avian conservation planning in rice-agriculture ecosystems.

  6. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  7. Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens

    NARCIS (Netherlands)

    Goot, van der A.J.; Koch, G.; Jong, de M.C.M.; Boven, van R.M.

    2005-01-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) viruses in poultry and their threatening zoonotic consequences emphasize the need for effective control measures. Although vaccination of poultry against avian influenza provides a potentially attractive control measure, little is known

  8. Orchitis in roosters with reduced fertility associated with avian infectious bronchitis virus and avian metapneumovirus infections.

    Science.gov (United States)

    Villarreal, L Y B; Brandão, P E; Chacón, J L; Assayag, M S; Maiorka, P C; Raffi, P; Saidenberg, A B S; Jones, R C; Ferreira, A J P

    2007-12-01

    The pathogenesis of infection involving both infectious bronchitis virus (IBV) and avian metapneumovirus (aMPV) causes reproductive damage in hens after viral replication in the epithelium of the oviduct, resulting in loss of cilia and degeneration and necrosis of the epithelial and glandular cells. Although IBV has been indicated as a possible cause of the formation of calcium stones in the epididymus of roosters, a definitive association has not been confirmed. This report describes the detection of IBV and aMPV in the testes of roosters from a Brazilian poultry broiler breeder's flock with epididymal stones and low fertility. Samples of testis, trachea, and lungs from breeder males aged 57 wk were positive for IBV by reverse transcriptase-polymerase chain reaction (RT-PCR), and virus isolation and testis samples were also positive for aMPV by RT-PCR. The inoculation of testis samples into embryonated chicken eggs via the allantoic cavity resulted in curled, hemorrhagic, and stunted embryos typical of IBV infection. The allantoic fluid was positive by RT-PCR aimed to amplify the region coding for the S1 subunit of the IBV S gene, but it was not positive for aMPV. Sequence analysis of the amplified fragment revealed a close relationship with European IBV genotype D274, previously unreported in Brazil. These results indicate that IBV and perhaps aMPV are likely to have played a role in the pathogenesis of the testicular disease described and should be regarded as factors that can influence male fertility disease in chickens.

  9. Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species.

    Directory of Open Access Journals (Sweden)

    Henning Petersen

    Full Text Available Transmission of avian influenza viruses (AIV between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.

  10. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    International Nuclear Information System (INIS)

    Vázquez-Iglesias, Lorena; Lostalé-Seijo, Irene; Martínez-Costas, José; Benavente, Javier

    2012-01-01

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  11. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  12. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    OpenAIRE

    Hadipour,MM

    2010-01-01

    Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known ab...

  13. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  14. Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture

    Science.gov (United States)

    Patrick D. Culbert; Volker C. Radeloff; Veronique St-Louis; Curtis H. Flather; Chadwick D. Rittenhouse; Thomas P. Albright; Anna M. Pidgeon

    2012-01-01

    Avian biodiversity is threatened, and in order to prioritize limited conservation resources and conduct effective conservation planning a better understanding of avian species richness patterns is needed. The use of image texture measures, as a proxy for the spatial structure of land cover and vegetation, has proven useful in explaining patterns of avian abundance and...

  15. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Science.gov (United States)

    2010-11-10

    ... Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and Sweden... status of the Czech Republic and Sweden relative to highly pathogenic avian influenza (HPAI) subtype H5N1...

  16. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  17. Current situation of avian influenza with emphasis on pathobiology, epidemiology and control

    Science.gov (United States)

    Avian influenza is one of the most important diseases affecting the poultry industry around the world. Avian Influenza virus (AIV) has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infectio...

  18. Serosurvey of antibody to highly pathogenic avian influenza (H5N1 ...

    African Journals Online (AJOL)

    Avian influenza is a disease of economic and public health importance that has been described in most domestic animals and humans. Highly pathogenic avian influenza H5N1 epidemic in Nigeria was observed in agro-ecological zones where pigs and chickens are raised in shared environment with chances of ...

  19. An econometric analysis of SARS and Avian flu on international tourist arrivals to Asia

    NARCIS (Netherlands)

    M.J. McAleer (Michael); B-W. Huang (Bing-Wen); H-I. Kuo (Hsiao-I); C-C. Chen (Chi-Chung); C-L. Chang (Chia-Lin)

    2008-01-01

    textabstractThis paper compares the impacts of SARS and human deaths arising from Avian Flu on international tourist arrivals to Asia. The effects of SARS and human deaths from Avian Flu will be compared directly according to human deaths. The nature of the short run and long run relationship is

  20. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli

    DEFF Research Database (Denmark)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production econo...

  1. Classification of Dutch and German avian reoviruses by sequencing the sigma-C protein.

    NARCIS (Netherlands)

    Kant, A.; Balk, F.R.M.; Born, L.; Roozelaar, van D.; Heijmans, J.; Gielkens, A.; Huurne, ter A.A.H.M.

    2003-01-01

    We have amplified, cloned and sequenced (part of) the open reading frame of the S1 segment encoding the ¿ C protein of avian reoviruses isolated from chickens with different disease conditions in Germany and The Netherlands during 1980 up to 2000. These avian reoviruses were analysed

  2. Outbreak of avian influenza H7N3 on a turkey farm in the Netherlands

    NARCIS (Netherlands)

    Velkers, F.C.; Bouma, A.; Matthijs, M.G.R.; Koch, G.; Westendorp, S.T.; Stegeman, J.A.

    2006-01-01

    This case report describes the course of an outbreak of avian influenza on a Dutch turkey farm. When clinical signs were observed their cause remained unclear. However, serum samples taken for the monitoring campaign launched during the epidemic of highly pathogenic avian influenza in 2003, showed

  3. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    NARCIS (Netherlands)

    Yin, Shenglai; Kleijn, David; Müskens, Gerard J.D.M.; Fouchier, Ron A.M.; Verhagen, Josanne H.; Glazov, Petr M.; Si, Yali; Prins, Herbert H.T.; Boer, de Fred

    2017-01-01

    Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over

  4. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    NARCIS (Netherlands)

    Yin, S. (Shenglai); D. Kleijn (David); Müskens, G.J.D.M. (Gerard J. D. M.); R.A.M. Fouchier (Ron); J.H. Verhagen (Josanne); Glazov, P.M. (Petr M.); Si, Y. (Yali); Prins, H.H.T. (Herbert H. T.); De Boer, W.F. (Willem Frederik)

    2017-01-01

    textabstractLow pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus

  5. Surveillance of low pathogenic avian influenza in layer chickens: risk factors, transmission and early detection

    NARCIS (Netherlands)

    Gonzales Rojas, J.L.

    2012-01-01

    Low pathogenic avian influenza virus (LPAIv) of H5 and H7 subtypes are able to mutate to highly pathogenic avian influenza virus (HPAIv), which are lethal for most poultry species, can cause large epidemics and are a serious threat to public health. Thus, circulation of these LPAIv in poultry is

  6. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  7. The scientific rationale for the World Organisation for Animal Health standards and recommendations on avian influenza.

    Science.gov (United States)

    Pasick, J; Kahn, S

    2014-12-01

    The World Organisation for Animal Health (OIE) prescribes standards for the diagnosis and control of avian influenza, as well as health measures for safe trade in birds and avian products, which are based on up-to-date scientific information and risk management principles, consistent with the role of the OIE as a reference standard-setting body for the World Trade Organization (WTO). These standards and recommendations continue to evolve, reflecting advances in technology and scientific understanding of this important zoonotic disease. The avian influenza viruses form part of the natural ecosystem by virtue of their ubiquitous presence in wild aquatic birds, a fact that human intervention cannot change. For the purposes of the Terrestrial Animal Health Code (Terrestrial Code), avian influenza is defined as an infection of poultry. However, the scope of the OIE standards and recommendations is not restricted to poultry, covering the diagnosis, early detection and management of avian influenza, including sanitary measures for trade in birds and avian products. The best way to manage avian influenza-associated risks to human and animal health is for countries to conduct surveillance using recommended methods, to report results in a consistent and transparent manner, and to applythe sanitary measures described in the Terrestrial Code. Surveillance for and timely reporting of avian influenza in accordance with OIE standards enable the distribution of relevant, up-to-date information to the global community.

  8. Cost Analysis of Various Low Pathogenic Avian Influenza Surveillance Systems in the Dutch Egg Layer Sector

    NARCIS (Netherlands)

    Rutten, N.; Gonzales, J.L.; Elbers, A.R.; Velthuis, A.G.J.

    2012-01-01

    Background As low pathogenic avian influenza viruses can mutate into high pathogenic viruses the Dutch poultry sector implemented a surveillance system for low pathogenic avian influenza (LPAI) based on blood samples. It has been suggested that egg yolk samples could be sampled instead of blood

  9. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... response operations Diseases Biorisk reduction Disease outbreak news Human infection with avian influenza A(H7N9) virus – China ... Region (SAR) notified WHO of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and ...

  10. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M.C.M.; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  11. The Pathology of Avian Influenza in Birds and Animals: An Analytical Review

    International Nuclear Information System (INIS)

    Ryabchikova, E. I.; Getmanova, T. N.

    2007-01-01

    Influenza virus remains enigmatic despite of long extensive studies. Avian influenza virus (H5N1) is able to infect a large spectrum of animal and bird species. Highly pathogenic avian influenza virus represents a serious problem both for a human and birds, particularly for chicks. Many studies have been performed in order to show differences between highly and low pathogenic avian influenza H5N1 viruses, and examine their biological properties. Many separate pathological and microscopic descriptions are interspersed in numerous published articles. The aim of our study was to analyze data published in international scientific journals, and to attempt a generalized view of avian influenza pathology in various animal and bird hosts. We summarized and systematized data describing pathological changes caused by both highly and low pathogenic types of avian influenza virus (H5N1) in animals and birds, and developed generalized descriptions with accent at the type of virus. We also tried to show up species specific features of pathological changes in birds and animals infected with avian influenza virus (H5N1). The results of this analytical work may be useful for pathological studies of a new avian influenza virus isolates, and for understanding of avian influenza pathogenesis in birds and animals. (author)

  12. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  13. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Science.gov (United States)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  14. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Cai Mingjin; Mai Weiwen; Xian Jianxing; Zhang Jiayun; Lin Wenjian; Wei Liping; Chen Jincheng

    2008-01-01

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  15. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    Science.gov (United States)

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  16. Planning for avian flu disruptions on global operations: a DMAIC case study.

    Science.gov (United States)

    Kumar, Sameer

    2012-01-01

    The author aims to assess the spread of avian flu, its impact on businesses operating in the USA and overseas, and the measures required for corporate preparedness. Six Sigma DMAIC process is used to analyze avian flu's impact and how an epidemic could affect large US business operations worldwide. Wal-Mart and Dell Computers were chosen as one specializes in retail and the other manufacturing. The study identifies avian flu pandemic risks including failure modes on Wal-Mart and Dell Computers global operations. It reveals the factors that reinforce avian-flu pandemic's negative impact on company global supply chains. It also uncovers factors that balance avian-flu pandemic's impact on their global supply chains. Avian flu and its irregularity affect the research outcomes because its spread could fluctuate based on so many factors that could come into play. Further, the potential cost to manufacturers and other supply chain partners is relatively unknown. As a relatively new phenomenon, quantitative data were not available to determine immediate costs. In this decade, the avian influenza H5N1 virus has killed millions of poultry in Asia, Europe and Africa. This flu strain can infect and kill humans who come into contact with this virus. An avian influenza H5N1 outbreak could lead to a devastating effect on global food supply, business services and business operations. The study provides guidance on what global business operation managers can do to prepare for such events, as well as how avian flu progression to a pandemic can disrupt such operations. This study raises awareness about avian flu's impact on businesses and humans and also highlights the need to create contingency plans for corporate preparedness to avoid incurring losses.

  17. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  18. Risky Zoographies: The Limits of Place in Avian Flu Management

    Directory of Open Access Journals (Sweden)

    Natalie Porter

    2012-11-01

    Full Text Available Global anxieties about avian influenza stem from a growing recognition that highly-virulent, highly-mobile disease vectors infiltrate human spaces in ways that are difficult to perceive, and even more difficult to manage. This article analyses a participatory health intervention in Việt Nam to explore how avian influenza threats challenge long-held understandings of animals’ place in the environment and society. In this intervention, poultry farmers collaborated with health workers to illustrate maps of avian flu risks in their communities. Participant-observation of the risk-mapping exercises shows that health workers treated poultry as commodities, and located these animals in environments that could be transformed and dominated by humans. However, these maps did not sufficiently represent the physical and social landscapes where humans and poultry coexist in Việt Nam. As such, farmers located poultry in environments dominated by risky nonhuman forces such as winds, waterways, and other organisms. I argue that these divergent risk maps demonstrate how ecological factors, interpersonal networks, and global market dynamics combine to engender a variety of interspecies relationships, which in turn shape the location of disease risks in space. I develop the term risky zoographies to signal the emergence of competing descriptions of animals and their habitats in zoonotic disease contexts. This concept suggests that as wild animals, livestock products, and microbial pathogens continue to globalise, place-based health interventions that limit animals to particular locales are proving inadequate. Risky zoographies signal the inextricability of nonhuman animals from human spaces, and reveal interspecies interactions that transect and transcend environments.

  19. Avian Influenza: a global threat needing a global solution

    Directory of Open Access Journals (Sweden)

    Koh GCH

    2008-11-01

    Full Text Available Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical.

  20. Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear.

    Science.gov (United States)

    Slattery, Eric L; Warchol, Mark E

    2010-03-03

    Cisplatin is a chemotherapeutic agent that is widely used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was also capable of regeneration after cisplatin ototoxicity. Using cell and organ cultures of the chick cochlea and utricle, we found that cisplatin treatment caused apoptosis of both auditory and vestibular hair cells. Hair cell death in the cochlea occurred in a unique pattern, progressing from the low-frequency (distal) region toward the high-frequency (proximal) region. We also found that cisplatin caused a dose-dependent reduction in the proliferation of cultured supporting cells as well as increased apoptosis in those cells. As a result, we observed no recovery of hair cells after ototoxic injury caused by cisplatin. Finally, we explored the potential for nonmitotic hair cell recovery via activation of Notch pathway signaling. Treatment with the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester failed to promote the direct transdifferentiation of supporting cells into hair cells in cisplatin-treated utricles. Taken together, our data show that cisplatin treatment causes maintained changes to inner ear supporting cells and severely impairs the ability of the avian ear to regenerate either via proliferation or by direct transdifferentiation.

  1. Hair cell regeneration in the avian auditory epithelium.

    Science.gov (United States)

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  2. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    Science.gov (United States)

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Public Health and Epidemiological Considerations For Avian Influenza Risk Mapping and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Joseph P. Dudley

    2008-12-01

    Full Text Available Avian influenza viruses are now widely recognized as important threats to agricultural biosecurity and public health, and as the potential source for pandemic human influenza viruses. Human infections with avian influenza viruses have been reported from Asia (H5N1, H5N2, H9N2, Africa (H5N1, H10N7, Europe (H7N7, H7N3, H7N2, and North America (H7N3, H7N2, H11N9. Direct and indirect public health risks from avian influenzas are not restricted to the highly pathogenic H5N1 "bird flu" virus, and include low pathogenic as well as high pathogenic strains of other avian influenza virus subtypes, e.g., H1N1, H7N2, H7N3, H7N7, and H9N2. Research has shown that the 1918 Spanish Flu pandemic was caused by an H1N1 influenza virus of avian origins, and during the past decade, fatal human disease and human-to-human transmission has been confirmed among persons infected with H5N1 and H7N7 avian influenza viruses. Our ability to accurately assess and map the potential economic and public health risks associated with avian influenza outbreaks is currently constrained by uncertainties regarding key aspects of the ecology and epidemiology of avian influenza viruses in birds and humans, and the mechanisms by which highly pathogenic avian influenza viruses are transmitted between and among wild birds, domestic poultry, mammals, and humans. Key factors needing further investigation from a risk management perspective include identification of the driving forces behind the emergence and persistence of highly pathogenic avian influenza viruses within poultry populations, and a comprehensive understanding of the mechanisms regulating transmission of highly pathogenic avian influenza viruses between industrial poultry farms and backyard poultry flocks. More information is needed regarding the extent to which migratory bird populations to contribute to the transnational and transcontinental spread of highly pathogenic avian influenza viruses, and the potential for wild bird

  4. Context-Dependent Egr1 Expression in the Avian Hippocampus.

    Science.gov (United States)

    Grella, Stephanie L; Guigueno, Mélanie F; White, David J; Sherry, David F; Marrone, Diano F

    2016-01-01

    In mammals, episodic memory and spatial cognition involve context-specific recruitment of unique ensembles in the hippocampal formation (HF). Despite their capacity for sophisticated spatial (e.g., for migration) and episodic-like (e.g., for food-caching) memory, the mechanisms underlying contextual representation in birds is not well understood. Here we demonstrate environment-specific Egr1 expression as male brown-headed cowbirds (Molothrus ater) navigate environments for food reward, showing that the avian HF, like its mammalian counterpart, recruits distinct neuronal ensembles to represent different contexts.

  5. Avian radioecology on a nuclear power station site. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, C.K.; Maletskos, C.J.; Youngstrom, K.A.

    1975-01-01

    A summary of a six-year avian radioecology study at the site of a nuclear power plant in Massachusetts is reported. A completed historical summary is followed by a description of mathematical models developed to calculate the effects on bird body burdens of various changes in environmental radionuclide levels. Examples are presented. Radionuclide metabolism studies in which acute doses of /sup 131/I and /sup 137/Cs were administered to four species of wild birds are presented. Radionuclides were administered both intravenously and orally; no apparent differences in uptake or elimination rates were observed between the two methods.

  6. Signaling filopodia in avian embryogenesis: formation and function

    Directory of Open Access Journals (Sweden)

    Margarethe Draga

    2016-11-01

    Full Text Available In vertebrates and invertebrates specialized cellular protrusions, called signaling filopodia or cytonemes, play an important role in cell-cell communication by carrying receptors and ligands to distant cells to activate various signaling pathways. In the chicken embryo, signaling filopodia were described in limb bud mesenchyme and in somite epithelia. The formation of signaling filopodia depends on the activity of Rho GTPases and reorganization of the cytoskeleton. Here, we give a short overview on the present knowledge on avian signaling filopodia and discuss the molecular basis of cytoskeletal rearrangements leading to filopodia formation.

  7. Avian radioecology on a nuclear power station site. Final report

    International Nuclear Information System (INIS)

    Levy, C.K.; Maletskos, C.J.; Youngstrom, K.A.

    1975-01-01

    A summary of a six-year avian radioecology study at the site of a nuclear power plant in Massachusetts is reported. A completed historical summary is followed by a description of mathematical models developed to calculate the effects on bird body burdens of various changes in environmental radionuclide levels. Examples are presented. Radionuclide metabolism studies in which acute doses of 131 I and 137 Cs were administered to four species of wild birds are presented. Radionuclides were administered both intravenously and orally; no apparent differences in uptake or elimination rates were observed between the two methods

  8. Quantification of petroleum-type hydrocarbons in avian tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gay, M.L.; Belisle, A.A.; Patton, J.F.

    1980-01-04

    Methods were developed for the analysis of 16 hydrocarbons in avian tissue. Mechanical extraction with pentane was followed by clean-up on Florisil and Silicar. Residues were determined by gas-liquid chromatography and gas-liquid, chromatography-mass spectrometry. The method was applied to the analysis of liver, kidney, fat, and brain tissue of mallard ducks (Anas platyrhynchos) fed a mixture of hydrocarbons. Measurable concentrations of all compounds analyzed were present in all tissues except brain. Highest concentrations were in fat.

  9. USGS role and response to highly pathogenic avian influenza

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  10. Broadly reactive pan-paramyxovirus reverse transcription polymerase chain reaction and sequence analysis for the detection of Canine distemper virus in a case of canine meningoencephalitis of unknown etiology

    Science.gov (United States)

    Schatzberg, Scott J.; Li, Qiang; Porter, Brian F.; Barber, Renee M.; Claiborne, Mary Kate; Levine, Jonathan M.; Levine, Gwendolyn J.; Israel, Sarah K.; Young, Benjamin D.; Kiupel, Matti; Greene, Craig; Ruone, Susan; Anderson, Larry; Tong, Suxiang

    2016-01-01

    Despite the immunologic protection associated with routine vaccination protocols, Canine distemper virus (CDV) remains an important pathogen of dogs. Antemortem diagnosis of systemic CDV infection may be made by reverse transcription polymerase chain reaction (RT-PCR) and/or immunohistochemical testing for CDV antigen; central nervous system infection often requires postmortem confirmation via histopathology and immunohistochemistry. An 8-month-old intact male French Bulldog previously vaccinated for CDV presented with multifocal neurologic signs. Based on clinical and postmortem findings, the dog’s disease was categorized as a meningoencephalitis of unknown etiology. Broadly reactive, pan-paramyxovirus RT-PCR using consensus-degenerate hybrid oligonucleotide primers, combined with sequence analysis, identified CDV amplicons in the dog’s brain. Immunohistochemistry confirmed the presence of CDV antigens, and a specific CDV RT-PCR based on the phosphoprotein gene identified a wild-type versus vaccinal virus strain. This case illustrates the utility of broadly reactive PCR and sequence analysis for the identification of pathogens in diseases with unknown etiology. PMID:19901287

  11. Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses.

    Science.gov (United States)

    Hu, Xuming; Zhu, Wenqi; Chen, Shihao; Liu, Yangyang; Sun, Zhen; Geng, Tuoyu; Song, Chengyi; Gao, Bo; Wang, Xiaoyan; Qin, Aijian; Cui, Hengmi

    2017-01-01

    Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates and have been implicated in a variety of human diseases, including cancer. However, the characteristic expression patterns of ERVs, particularly in virus-induced tumours, is not fully clear. DNA methylation was analysed by bisulfite pyrosequencing, and gene expression was analysed by RT-qPCR. In this study, we first found that the endogenous avian retrovirus ALVE1 was highly expressed in some chicken tissues (including the heart, bursa, thymus, and spleen) at 2 days of age, but its expression was markedly decreased at 35 days of age. In contrast, the CpG methylation level of ALVE1 was significantly lower in heart and bursa at 2 days than at 35 days of age. Moreover, we found that the expression of ALVE1 was significantly inhibited in chicken embryo fibroblast cells (CEFs) and MSB1 cells infected with avian leukosis virus subgroup J (ALVJ) and reticuloendotheliosis virus (REV) at the early stages of infection. In contrast, the expression of the ALVE1 env gene was significantly induced in CEFs and MSB1 cells infected with Marek's disease virus (MDV). However, the methylation and expression levels of the ALVE1 long terminal repeat (LTR) did not show obvious alterations in response to viral infection. The present study revealed the expression patterns of ALVE1 in a variety of chicken organs and tissues and in chicken cells in response to avian tumour virus infection. These findings may be of significance for understanding the role and function of ERVs that are present in the host genome.

  12. Spreading Of Avian Flu On Duck And Its Impact On Social Economy: Lesson Learnt From Avian Flu Cases On Chicken

    OpenAIRE

    Nyak Ilham

    2013-01-01

    Bird flu disease that attacks duck dismissed the notion of duck immune to bird flu disease. Learning from the experience of bird flu disease that attacks poultry in the year of 2004-2005, necessary to measure the spread of disease prevention bird flu in ducks. This paper aims to describe the business and trade patterns of duck associated with the spread of avian influenza and predict the socio-economic impact of bird flu on duck farms in Indonesia. Duck rearing patterns mostly are in the e...

  13. Proceedings of national avian-wind power planning meeting II

    International Nuclear Information System (INIS)

    1998-02-01

    This meeting was the second in a series. The purposes of this meeting were to: (1) provide information on avian/wind power interactions that will help meet the needs of regulators, researchers, and other stakeholders concerned with responsible development and permitting of wind plants; (2) create dialogue among regulators, researchers and other stakeholders to help all parties understand the role that research can play in responsible development and permitting of wind plants, and allow researchers to understand the relevance of their research to the process; and (3) propose research projects and the appropriate sponsorship. The meeting began with oral presentations and discussions of nine White Papers on the theory and methods for studying and understanding impacts. The Proceedings include the written version of each of the nine White Papers, plus a summary of the oral discussion associated with each paper. The second part of the meeting consisted of four working group sessions: (1) site evaluation and pre-permit research and planning; (2) operational monitoring; (3) modeling and forecasting, including population dynamics models; and (4) avian behavior and mortality reduction. The Proceedings includes a summary of the discussions on these topics, including each working group's recommendations for future research or associated activities. A final plenary session drew together the main recommendations

  14. Economic epidemiology of avian influenza on smallholder poultry farms☆

    Science.gov (United States)

    Boni, Maciej F.; Galvani, Alison P.; Wickelgren, Abraham L.; Malani, Anup

    2013-01-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers. PMID:24161559

  15. EROD induction by environmental contaminants in avian embryo livers

    Energy Technology Data Exchange (ETDEWEB)

    Brunstroem, B.; Halldin, K. [Department of Environmental Toxicology, Uppsala University, Norbyvaegen 18A SE-752 36, Uppsala (Sweden)

    1998-11-01

    The CYP1A (EROD)-inducing potencies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3minutes or feet,4,4minutes or feet,5-pentachlorobiphenyl (PCB126) and benzo(k)fluoranthene (B(k)F) were studied in avian embryo livers. TCDD and PCB126 proved to be much more potent as inducers in the chicken than in the other species examined. This finding is consistent with a considerably higher sensitivity of the chicken compared with a number of other avian species to the embryotoxic effects of these compounds. Furthermore, the relative potencies of the tested Ah receptor agonists as CYP1A inducers differed substantially between species. B(k)F and PCB126 showed similar induction potencies in domestic duck embryos, whereas PCB126 is much more potent than B(k)F in the chicken. Also, the potency of PCB126,relative to that of TCDD, was much lower in quail embryo liver in vitro than in chicken embryo liver. Thus, there are large interspecific differences in birds in the sensitivity to CYP1A inducers and furthermore, the relative potencies of these compounds may differ substantially between species. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. EROD induction by environmental contaminants in avian embryo livers

    International Nuclear Information System (INIS)

    Brunstroem, B.; Halldin, K.

    1998-01-01

    The CYP1A (EROD)-inducing potencies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3minutes or feet,4,4minutes or feet,5-pentachlorobiphenyl (PCB126) and benzo(k)fluoranthene (B(k)F) were studied in avian embryo livers. TCDD and PCB126 proved to be much more potent as inducers in the chicken than in the other species examined. This finding is consistent with a considerably higher sensitivity of the chicken compared with a number of other avian species to the embryotoxic effects of these compounds. Furthermore, the relative potencies of the tested Ah receptor agonists as CYP1A inducers differed substantially between species. B(k)F and PCB126 showed similar induction potencies in domestic duck embryos, whereas PCB126 is much more potent than B(k)F in the chicken. Also, the potency of PCB126, relative to that of TCDD, was much lower in quail embryo liver in vitro than in chicken embryo liver. Thus, there are large interspecific differences in birds in the sensitivity to CYP1A inducers and furthermore, the relative potencies of these compounds may differ substantially between species. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Avian influenza infection alters fecal odor in mallards.

    Directory of Open Access Journals (Sweden)

    Bruce A Kimball

    Full Text Available Changes in body odor are known to be a consequence of many diseases. Much of the published work on disease-related and body odor changes has involved parasites and certain cancers. Much less studied have been viral diseases, possibly due to an absence of good animal model systems. Here we studied possible alteration of fecal odors in animals infected with avian influenza viruses (AIV. In a behavioral study, inbred C57BL/6 mice were trained in a standard Y-maze to discriminate odors emanating from feces collected from mallard ducks (Anas platyrhynchos infected with low-pathogenic avian influenza virus compared to fecal odors from non-infected controls. Mice could discriminate odors from non-infected compared to infected individual ducks on the basis of fecal odors when feces from post-infection periods were paired with feces from pre-infection periods. Prompted by this indication of odor change, fecal samples were subjected to dynamic headspace and solvent extraction analyses employing gas chromatography/mass spectrometry to identify chemical markers indicative of AIV infection. Chemical analyses indicated that AIV infection was associated with a marked increase of acetoin (3-hydroxy-2-butanone in feces. These experiments demonstrate that information regarding viral infection exists via volatile metabolites present in feces. Further, they suggest that odor changes following virus infection could play a role in regulating behavior of conspecifics exposed to infected individuals.

  18. Avian diversity in the Naliya Grassland, Abdasa Taluka, Kachchh, India

    Directory of Open Access Journals (Sweden)

    Sandeep B Munjpara

    2012-03-01

    Full Text Available Naliya Grassland is one of the significant grasslands of Gujarat. In this study the importance of the Naliya Grassland has been explored with special reference to avian diversity. Field work for the study was carried out throughout the year of 2007 on a monthly basis covering three distinct seasons to explore avian diversity. A total of 177 species belonging to 54 families were recorded wherein most species belonged to the family Accipitridae (20 species followed by Alaudidae (11 species. Of the total families, five were represented by more than seven species, 18 families by 3-7 species and 31 families by one or two species respectively. Among the species observed, 16 species ware globally threatened (three Critically Endangered, four Endangered and nine Near Threatened. Most of the species were chiefly terrestrial (68.2%, about 23.9% species were freshwater dependant and 7.9% utilized mixed habitats. Maximum species richness was recorded in the monsoons and minimum in summer. Constant turnover and fluctuation in species richness occurred because of seasonal immigration and emigration. Maximum emigration took place during February and March and maximum immigration occurred during June and July. Many water dependant birds attracted to the flooded grassland during the monsoons explained the high species richness during this season. In winter, the area was inhabited by resident species as well as many migratory species.

  19. Multicomponent T2 relaxation studies of the avian egg.

    Science.gov (United States)

    Mitsouras, Dimitris; Mulkern, Robert V; Maier, Stephan E

    2016-05-01

    To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a three-dimensional Carr-Purcell-Meiboom-Gill imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multicomponent signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. © 2015 Wiley Periodicals, Inc.

  20. Unexpected Diversity and Expression of Avian Endogenous Retroviruses

    Science.gov (United States)

    Bolisetty, Mohan; Blomberg, Jonas; Benachenhou, Farid; Sperber, Göran; Beemon, Karen

    2012-01-01

    ABSTRACT Endogenous retroviruses (ERVs) were identified and characterized in three avian genomes to gain insight into early retroviral evolution. Using the computer program RetroTector to detect relatively intact ERVs, we identified 500 ERVs in the chicken genome, 150 in the turkey genome, and 1,200 in the zebra finch genome. Previous studies suggested that endogenous alpharetroviruses were present in chicken genomes. In this analysis, a small number of alpharetroviruses were seen in the chicken and turkey genomes; however, these were greatly outnumbered by beta-like, gamma-like, and alphabeta proviruses. While the avian ERVs belonged to the same major groups as mammalian ERVs, they were more heterogeneous. In particular, the beta-like viruses revealed an evolutionary continuum with the gradual acquisition and loss of betaretroviral markers and a transition from beta to alphabeta and then to alpharetroviruses. Thus, it appears that birds may resemble a melting pot for early ERV evolution. Many of the ERVs were integrated in clusters on chromosomes, often near centromeres. About 25% of the chicken ERVs were in or near cellular transcription units; this is nearly random. The majority of these integrations were in the sense orientation in introns. A higher-than-random number of integrations were >100 kb from the nearest gene. Deep-sequencing studies of chicken embryo fibroblasts revealed that about 20% of the 500 ERVs were transcribed and translated. A subset of these were also transcribed in vivo in chickens, showing tissue-specific patterns of expression. PMID:23073767

  1. Nest predation risk explains variation in avian clutch size

    Science.gov (United States)

    Dillon, Kristen G.; Conway, Courtney J.

    2018-01-01

    Questions about the ecological drivers of, and mechanistic constraints on, productivity have driven research on life-history evolution for decades. Resource availability and offspring mortality are considered among the 2 most important influences on the number of offspring per reproductive attempt. We used a factorial experimental design to manipulate food abundance and perceived offspring predation risk in a wild avian population (red-faced warblers; Cardellina rubrifrons) to identify the mechanistic cause of variation in avian clutch size. Additionally, we tested whether female quality helped explain the extant variation in clutch size. We found no support for the Food Limitation or Female Quality Hypotheses, but we did find support for both predictions of the Nest Predation Risk Hypothesis. Females that experienced an experimentally heightened perception of offspring predation risk responded by laying a smaller clutch than females in the control group. Additionally, predation rates at artificial nests were highest where red-faced warbler clutch size was smallest (at high elevations). Life-history theory predicts that an individual should invest less in reproduction when high nest predation risk reduces the likely benefit from that nesting attempt and, indeed, we found that birds exhibit phenotypic plasticity in clutch size by laying fewer eggs in response to increasing nest predation risk.

  2. Avian response to bottomland hardwood reforestation: the first 10 years

    Science.gov (United States)

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Grosshuesch, D.A.

    2002-01-01

    Bttomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana using either predominantly Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2 - 3 m / yr) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower-growing oak species. Grassland birds (Spiza americana [Dickcissel], and Sturnella magna [Eastern Meadowlark]) were indicative of species breeding on oak-dominated reforestation # 10 years old. Agelaius phoeniceus (Red-winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation # 4 years old, whereas 14 species of shrub-scrub birds (e.g., Passerina cyanea [Indigo Bunting]) and early-successional forest birds (e.g., Vireo gilvus [Warbling Vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands, but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods include a high proportion of fast-growing, early successional species such as cottonwood.

  3. Mercury exposure in a large subantarctic avian community

    International Nuclear Information System (INIS)

    Carravieri, Alice; Cherel, Yves; Blévin, Pierre; Brault-Favrou, Maud; Chastel, Olivier; Bustamante, Paco

    2014-01-01

    Mercury (Hg) contamination poses potential threats to ecosystems worldwide. In order to study Hg bioavailability in the poorly documented southern Indian Ocean, Hg exposure was investigated in the large avian community of Kerguelen Islands. Adults of 27 species (480 individuals) showed a wide range of feather Hg concentrations, from 0.4 ± 0.1 to 16.6 ± 3.8 μg g −1 dry weight in Wilson's storm petrels and wandering albatrosses, respectively. Hg concentrations increased roughly in the order crustacean- < fish- ≤ squid- ≤ carrion-consumers, confirming that diet, rather than taxonomy, is an important driver of avian Hg exposure. Adults presented higher Hg concentrations than chicks, due to a longer duration of exposure, with the only exception being the subantarctic skua, likely because of feeding habits' differences of the two age-classes in this species. High Hg concentrations were reported for three species of the poorly known gadfly petrels, which merit further investigation. - Highlights: • Feather Hg concentrations were measured in 27 sympatric subantarctic bird species. • Inter-specific variation in Hg exposure depends on feeding habits, not taxonomy. • Hg concentrations were higher in adults than chicks due to longer exposure duration. • Hg is highly bioavailable in the Southern Ocean, which merits further investigation. - Mercury concentrations in feathers of sympatric subantarctic birds (27 species) are driven mainly by feeding habits and exposure duration

  4. Proceedings of national avian-wind power planning meeting 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This meeting was the second in a series. The purposes of this meeting were to: (1) provide information on avian/wind power interactions that will help meet the needs of regulators, researchers, and other stakeholders concerned with responsible development and permitting of wind plants; (2) create dialogue among regulators, researchers and other stakeholders to help all parties understand the role that research can play in responsible development and permitting of wind plants, and allow researchers to understand the relevance of their research to the process; and (3) propose research projects and the appropriate sponsorship. The meeting began with oral presentations and discussions of nine White Papers on the theory and methods for studying and understanding impacts. The Proceedings include the written version of each of the nine White Papers, plus a summary of the oral discussion associated with each paper. The second part of the meeting consisted of four working group sessions: (1) site evaluation and pre-permit research and planning; (2) operational monitoring; (3) modeling and forecasting, including population dynamics models; and (4) avian behavior and mortality reduction. The Proceedings includes a summary of the discussions on these topics, including each working group`s recommendations for future research or associated activities. A final plenary session drew together the main recommendations.

  5. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  6. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    Science.gov (United States)

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  7. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  8. Detection and subtyping avian metapneumovirus from turkeys in Iran.

    Science.gov (United States)

    Mayahi, Mansour; Momtaz, Hassan; Jafari, Ramezan Ali; Zamani, Pejman

    2017-01-01

    Avian metapneumovirus (aMPV) causes diseases like rhinotracheitis in turkeys, swollen head syndrome in chickens and avian rhinotracheitis in other birds. Causing respiratory problems, aMPV adversely affects production and inflicts immense economic losses and mortalities, especially in turkey flocks. In recent years, several serological and molecular studies have been conducted on this virus, especially in poultry in Asia and Iran. The purpose of the present study was detecting and subtyping aMPV by reverse transcriptase polymerase chain reaction (RT-PCR) from non-vaccinated, commercial turkey flocks in Iran for the first time. Sixty three meat-type unvaccinated turkey flocks from several provinces of Iran were sampled in major turkey abattoirs. Samples were tested by RT-PCR for detecting and subtyping aMPV. The results showed that 26 samples from three flocks (4.10%) were positive for viral RNA and all of the viruses were found to be subtype B of aMPV. As a result, vaccination especially against subtype B of aMPV should be considered in turkey flocks in Iran to control aMPV infections.

  9. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Directory of Open Access Journals (Sweden)

    Haiming Zhang

    Full Text Available Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  10. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  11. New species of haematozoa from the avian families Campephagidae and Apodidae

    Directory of Open Access Journals (Sweden)

    Barraclough R.K.

    2008-06-01

    Full Text Available Leucocytozoon coracinae sp. nov. is described from the avian family Campephagidae and Hepatozoon apodis sp. nov. from the Apodidae. The distribution of these parasites within their respective families is discussed.

  12. Effects of immune supplementation and immune challenge on bacterial assemblages in the avian cloaca

    NARCIS (Netherlands)

    Matson, Kevin D.; Versteegh, Maaike A.; van der Velde, Marco; Tieleman, B. Irene

    Relationships between avian physiology and bacterial assemblages in the cloaca are poorly understood. We used molecular techniques to analyze cloacal swabs from pigeons that were subjected to two immunological manipulations: lysozyme supplementation and endotoxin challenge. From the swabs, we

  13. 75 FR 10645 - Low Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity

    Science.gov (United States)

    2010-03-09

    ... pathogenic avian influenza outbreaks, provides that consistency with humane euthanasia guidelines will be... markets. In the commenter's view, this action would not only provide for disease control but would benefit...

  14. Draft genome sequences of two virulent serotypes of avian Pasteurella multocida

    Science.gov (United States)

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent Pasteurella multocida strain Pm70....

  15. Guidance for Reviewing OCSPP 850.2100 Avian Oral Toxicity Studies Conducted with Passerine Birds

    Science.gov (United States)

    Guidance based on comparison of results from the TG223 validation studies to results from avian acute oral studies previously submitted to EPA for two test chemicals following EPA's 850.2100 (public draft) guidelines.

  16. species diversity of dry season avian fauna in kano, nigeria 418

    African Journals Online (AJOL)

    userpc

    encounter in the field changes as the dry season progresses. ... The general purpose of most avian field studies ... high diversity of exotic trees. There is ..... Field. Guide. ISBN. 9780691159201. Pyre A. R. (1995) Avifauna diversity and human.

  17. Classical Markov Chains: A Unifying Framework for Understanding Avian Reproductive Success

    Science.gov (United States)

    Traditional methods for monitoring and analysis of avian nesting success have several important shortcomings, including 1) inability to handle multiple classes of nest failure, and 2) inability to provide estimates of annual reproductive success (because birds can, and typically ...

  18. Rapid detection of the avian influenza virus H5N1 subtype in Egypt ...

    African Journals Online (AJOL)

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Egypt ... Effective diagnosis and control management are needed to control the disease. ... Reconstituted clinical samples consisting of H5 AIVs mixed with ...

  19. Transmission and reassortment of avian influenza viruses at the Asian-North American interface.

    Science.gov (United States)

    Ramey, Andrew M; Pearce, John M; Ely, Craig R; Guy, Lisa M Sheffield; Irons, David B; Derksen, Dirk V; Ip, Hon S

    2010-10-25

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian-North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted. Copyright © 2010. Published by Elsevier Inc.

  20. Role for migratory wild birds in the global spread of avian influenza H5N8

    Science.gov (United States)

    ,; Ip, Hon S.

    2016-01-01

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  1. Isolation strategy of a two-strain avian influenza model using optimal control

    Science.gov (United States)

    Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul

    2017-08-01

    Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.

  2. Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida

    OpenAIRE

    Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.; Briggs, Robert E.

    2013-01-01

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P.?multocida strain Pm70.

  3. Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida

    Science.gov (United States)

    Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.

    2013-01-01

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P. multocida strain Pm70. PMID:23405337

  4. Avian bornavirus in free-ranging waterfowl in North America and Europe

    DEFF Research Database (Denmark)

    Brinkmann, Jesper; Thomsen, Anders F.; Bertelsen, Mads Frost

    The first avian bornavirus (ABV) was identified in 2008 by researchers investigating the cause of proventricular dilation disease in psittacine birds 3,4. A distinctly separate genotype (ABV-CG) was discovered in 2009 in association with neurological disease in free-ranging Canada geese (Branta...... canadensis) and trumpeter swans (Cygnus buccinator) in Ontario, Canada 1. Since then this genotype, now identified as ABBV-1, has been identified from a variety of wild avian species 5, predominantly waterfowl, in North America at prevalences ranging from 10 to 50%, and in 2014 an additional genotype...... was identified in mallard ducks (Anas platyrhynchos) 2. In order to determine whether avian bornavirus was present in European waterfowl, the brains of 333 hunter killed geese in Denmark were examined by real time RT-PCR for the presence of avian bornavirus; seven birds (2.1%) were positive. Sequences were 98...

  5. Ecology and diagnosis of introduced avian malaria in Hawaiian forest birds

    Science.gov (United States)

    Atkinson, Carter T.

    2005-01-01

    Avian malaria is a disease caused by species of protozoan parasites (Plasmodium) that infect birds. Related species commonly infect reptiles, birds and mammals in tropical and temperate regions of the world. Transmitted by mosquitoes, the parasites spend part of their lives in the red blood cells of birds (Figure 1). Avian malaria is common in continental areas, but is absent from the most isolated island archipelagos where mosquitoes do not naturally occur. More than 40 different species of avian Plasmodium have been described, but only one, P. relictum, has been introduced to the Hawaiian Islands. Because they evolved without natural exposure to avian malaria, native Hawaiian honeycreepers are extremely susceptible to this disease. Malaria currently limits the geographic distribution of native species, has population level impacts on survivorship, and is limiting the recovery of threatened and endangered species of forest birds.

  6. Exo-erythrocytic development of avian malaria and related haemosporidian parasites.

    Science.gov (United States)

    Valkiūnas, Gediminas; Iezhova, Tatjana A

    2017-03-03

    Avian malaria parasites (Plasmodium spp.) and related haemosporidians (Haemosporida) are responsible for diseases which can be severe and even lethal in avian hosts. These parasites cause not only blood pathology, but also damage various organs due to extensive exo-erythrocytic development all over the body, which is not the case during Plasmodium infections in mammals. However, exo-erythrocytic development (tissue merogony or schizogony) remains the most poorly investigated part of life cycle in all groups of wildlife haemosporidian parasites. In spite of remarkable progress in studies of genetic diversity, ecology and evolutionary biology of avian haemosporidians during the past 20 years, there is not much progress in understanding patterns of exo-erythrocytic development in these parasites. The purpose of this review is to overview the main information on exo-erythrocytic development of avian Plasmodium species and related haemosporidian parasites as a baseline for assisting academic and veterinary medicine researchers in morphological identification of these parasites using tissue stages, and to define future research priorities in this field of avian malariology. The data were considered from peer-reviewed articles and histological material that was accessed in zoological collections in museums of Australia, Europe and the USA. Articles describing tissue stages of avian haemosporidians were included from 1908 to the present. Histological preparations of various organs infected with the exo-erythrocytic stages of different haemosporidian parasites were examined. In all, 229 published articles were included in this review. Exo-erythrocytic stages of avian Plasmodium, Fallisia, Haemoproteus, Leucocytozoon, and Akiba species were analysed, compared and illustrated. Morphological characters of tissue stages that can be used for diagnostic purposes were specified. Recent molecular studies combined with histological research show that avian haemosporidians are more

  7. Evaluation of Cytology for Diagnosing Avian Pox in Wild Turkeys ( Meleagris gallopavo).

    Science.gov (United States)

    Hydock, Kira; Brown, Holly; Nemeth, Nicole; Poulson, Rebecca; Casalena, Mary Jo; Johnson, Joshua B; Brown, Justin

    2018-03-01

    Avian pox virus is a common cause of proliferative skin disease in wild turkeys ( Meleagris gallopavo); however, other etiologies may produce grossly indistinguishable lesions. Common methods for diagnosing avian pox include histopathology, virus isolation, and PCR. While these methods are sufficient in most cases, each has their limitations. Cytology is a cost-effective and rapid approach that may be useful when traditional diagnostics are not feasible. The objective of this study was to evaluate the performance of cytology relative to histopathology and PCR for avian pox diagnosis in wild turkeys. Fifty wild turkeys were submitted for necropsy due to nodular skin lesions on unfeathered skin of the head. Of these, five had similar skin lesions on the unfeathered legs and 26 had plaques on the mucosa of the oropharynx or esophagus. Representative skin, oropharyngeal, and esophageal lesions from all birds were examined with cytology and histopathology. Skin lesions on the head of each bird were also tested for avian pox virus via PCR. Histopathology and PCR were equally sensitive in diagnosing avian pox from skin lesions on the head. There were no significant differences between cytologic and histopathologic diagnosis of avian pox from skin lesions on the head (sensitivity = 97.4%, specificity = 100.0%), legs (sensitivity = 75.0%, specificity = 100.0%), or from lesions in the oropharynx and esophagus (sensitivity of 62.5%). Similarly, there were no significant differences between PCR and cytology for diagnosis of pox viral skin lesions of the head. Relative to PCR detection of avian pox virus, cytology had a sensitivity of 90.0% and a specificity of 90.0%. These results suggest that cytology is a useful tool for diagnosis of avian pox in wild turkeys.

  8. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin.

    Science.gov (United States)

    Boyle, D B; Selleck, P; Heine, H G

    2000-01-01

    To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.

  9. Avian cholera causes marine bird mortality in the Bering Sea of Alaska

    Science.gov (United States)

    Bodenstein, Barbara L.; Kimberlee Beckmen,; Gay Sheffield,; Kathy Kuletz,; Van Hemert, Caroline R.; Berlowski-Zier, Brenda M.; Shearn-Bochsler, Valerie I.

    2015-01-01

    The first known avian cholera outbreak among wild birds in Alaska occurred during November 2013. Liver, intestinal, and splenic necrosis consistent with avian cholera was noted, and Pasteurella multocida serotype 1 was isolated from liver and lung or spleen in Crested Auklets (Aethia cristatella), Thick-billed Murres (Uria lomvia), Common Eider (Somateria mollissima), Northern Fulmars (Fulmarus glacialis), and Glaucous-winged Gulls (Larus glaucescens).

  10. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    Science.gov (United States)

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.

  11. Replication of avian influenza viruses in equine tracheal epithelium but not in horses

    OpenAIRE

    Chambers, Thomas M.; Balasuriya, Udeni B. R.; Reedy, Stephanie E.; Tiwari, Ashish

    2013-01-01

    We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exh...

  12. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  13. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground

    OpenAIRE

    Yin, Shenglai; Kleijn, David; M?skens, Gerard J. D. M.; Fouchier, Ron A. M.; Verhagen, Josanne H.; Glazov, Petr M.; Si, Yali; Prins, Herbert H. T.; de Boer, Willem Frederik

    2017-01-01

    textabstractLow pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over long-distances is still unclear. We collected throat and cloaca samples from three goose species, Bean goose (Anser fabalis), Barnacle goose (Branta leucopsis) and Greater white-fronted goose...

  14. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  15. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    Science.gov (United States)

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  16. Characterising the avian gut microbiota: membership, driving influences and potential function

    OpenAIRE

    David eWaite; Mike eTaylor

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbour diverse communities of microorganisms within their guts, which collectively fulfil important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-ba...

  17. Characterizing the avian gut microbiota: membership, driving influences, and potential function

    OpenAIRE

    Waite, David W.; Taylor, Michael W.

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-ba...

  18. Early Avian Research at the Savannah River Site: Historical Highlights and Possibilities for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, J.M.; Odum, E.P.

    2000-10-01

    Avian biology was a major component of early research and baseline surveys. The focus of research shifted and the SRS evolved from open fields to forest cover. In the early years avian species richness and abundance increased with successional age of the vegetation from old-field to forest. During the early years resident game birds increased. More recent studies will help to understand the role of habitat in local and regional extinctions. A variety of survey techniques is needed.

  19. Sparse evidence for equine or avian influenza virus infections among Mongolian adults with animal exposures

    OpenAIRE

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S.; Heil, Gary L.; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D.; Gray, Gregory C.

    2013-01-01

    In recent years, Mongolia has experienced recurrent epizootics of equine influenza virus (EIV) among its 2?1 million horses and multiple incursions of highly pathogenic avian influenza (HPAI) virus via migrating birds. No human EIV or HPAI infections have been reported. In 2009, 439 adults in Mongolia were enrolled in a population?based study of zoonotic influenza transmission. Enrollment sera were examined for serological evidence of infection with nine avian, three human, and one equine inf...

  20. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    Directory of Open Access Journals (Sweden)

    Odoom John

    2012-11-01

    Full Text Available Abstract Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65% showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen

  1. Spectrophotometric and Refractometric Determination of Total Protein in Avian Plasma

    Directory of Open Access Journals (Sweden)

    Rodica Căpriță

    2013-10-01

    Full Text Available The aim of this study was to compare the total protein values obtained in heparin plasma of chickens by a spectrophotometric technique (biuret method, and the values obtained on the same day in the same samples by refractometry. The results obtained by refractometry (average value 2.638±0.153g% were higher than those obtained by the spectrophotometric method (average value 2.441±0.181g%. There was a low correlation (r = 0.6709 between the total protein values, determined with both methods. Protein is the major determinant of plasma refractive index, but glucose contributes too. The refractometric method is not recommended in chickens for the determination of total protein, because avian blood glucose concentration averages about twice than in mammalian blood.

  2. Multiscale assessment of patterns of avian species richness

    DEFF Research Database (Denmark)

    Rahbek, C; Graves, G R

    2001-01-01

    at continental scales. We used a database of the geographic ranges of 2,869 species of birds breeding in South America (nearly a third of the world's living avian species) to explore the influence of climate, quadrat area, ecosystem diversity, and topography on species richness gradients at 10 spatial scales...... (quadrat area, approximately 12,300 to approximately 1,225,000 km(2)). Topography, precipitation, topography x latitude, ecosystem diversity, and cloud cover emerged as the most important predictors of regional variability of species richness in regression models incorporating 16 independent variables...... the hypothesis that terrestrial species richness from the equator to the poles is ultimately governed by a synergism between climate and coarse-scale topographic heterogeneity....

  3. Proper expression of metabolizable energy in avian energetics

    Science.gov (United States)

    Miller, M.R.; Reinecke, K.J.

    1984-01-01

    We review metabolizable energy (ME) concepts and present evidence suggesting that the form of ME used for analyses of avian energetics can affect interpretation of results. Apparent ME (AME) is the most widely used measure of food energy available to birds. True ME(TME) differs from AME in recognizing fecal and urinary energy of nonfood origin as metabolized energy. Only AME values obtained from test birds fed at maintenance levels should be used for energy analyses. A practical assay for TME has shown that TME estimates are less sensitive than AME to variation in food intake. The TME assay may be particularly useful in studies of natural foods that are difficult to obtain in quantities large enough to supply test birds with maintenance requirements. Energy budgets calculated from existence metabolism should be expressed as kJ of AME and converted to food requirements with estimates of metabolizability given in kJ AME/g.

  4. Science for avian conservation: Priorities for the new millennium

    Science.gov (United States)

    Ruth, J.M.; Petit, D.R.; Sauer, J.R.; Samuel, M.D.; Johnson, F.A.; Fornwall, M.D.; Korschgen, C.E.; Bennett, J.P.

    2003-01-01

    Over the past decade, bird conservation activities have become the preeminent natural resource conservation effort in North America. Maturation of the North American Waterfowl Management Plan (NAWMP), establishment of Partners in Flight (PIF), and creation of comprehensive colonial waterbird and shorebird conservation plans have stimulated unprecedented interest in, and funding for, bird conservation in the United States, Canada, Mexico, and other countries in the western hemisphere. Key to that success in the United States has been active collaboration among federal, state and local governments, conservation organizations, academia, and industry. The U.S. Department of the Interior (DOI), which has primary statutory responsibility for migratory bird conservation and management, has been a key partner.Despite the great strides that have been made in bird conservation science, historical approaches to research and monitoring have often failed to provide sufficient information and understanding to effectively manage bird populations at large spatial scales. That shortcoming, and the lack of an integrated strategy and comprehensive set of research priorities, is more evident in light of the goals established by the North American Bird Conservation Initiative (NABCI). The NABCI is a trinational, coalition-driven effort to provide an organizational umbrella for existing conservation initiatives. The expanded focus of NABCI and individual bird conservation initiatives is to work together in an integrated, holistic fashion to keep common birds common and to increase populations of declining, threatened, and endangered species.To assist bird conservation initiatives in defining goals and developing new approaches to effective research, the U.S. Geological Survey (USGS), the research agency of DOI, convened a workshop, “Science for Avian Conservation: Understanding, Modeling, and Applying Ecological Relationships,” on 31 October–2 November 2000, which brought together

  5. Avian infectious bronchitis virus in Africa: a review.

    Science.gov (United States)

    Khataby, Khadija; Fellahi, Siham; Loutfi, Chafiqa; Mustapha, Ennaji Moulay

    2016-06-01

    Infectious bronchitis virus (IBV) is worldwide in distribution, highly infectious, and extremely difficult to control because it has extensive genetic diversity, a short generation time, and a high mutation rate. IBV is a Gammacoronavirus, single-stranded, and positive-sense RNA virus. Avian infectious bronchitis is well studied in European countries with identification of a large number of IBV variants, whereas in African countries epidemiological and scientific data are poor and not updated. However, previous studies reported that an IBV variant continues to appear regularly in Africa, as currently described in Morocco. No cross-protection between IBV strains was reported, some being unique to a particular country, others having a more general distribution. This review aims to provide a general overview on IB disease distribution in African countries and an update on the available studies of IBV variants in each country.

  6. Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.

    Science.gov (United States)

    Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H

    1997-07-01

    As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.

  7. Avian cooperative breeding: Old hypotheses and new directions.

    Science.gov (United States)

    Heinsohn, R G; Cockburn, A; Mulder, R A

    1990-12-01

    In cooperatively breeding birds, individuals that appear capable of reproducing on their own may instead assist others with their breeding efforts. Research into avian cooperative breeding has attempted to reconcile the apparent altruism of this behaviour with maximization of inclusive fitness. Most explanations of cooperative breeding have suggested that philopatry is enforced by ecological constraints, such as a shortage of resources critical to breeding. Non-dispersers may then benefit both directly and indirectly from contributing at the nest. Recent research has shown that such benefits may be sufficient to promote philopatry, without the need for ecological constraints, and emphasizes that consideration of both costs and benefits of philopatry is essential for a comprehensive approach to the problem. The growing body of data from long-term studies of different species should combine with an improved phylogenetic perspective on cooperative breeding, to provide a useful base for future comparative analyses and experimentation. Copyright © 1990. Published by Elsevier Ltd.

  8. Mercury exposure in a large subantarctic avian community.

    Science.gov (United States)

    Carravieri, Alice; Cherel, Yves; Blévin, Pierre; Brault-Favrou, Maud; Chastel, Olivier; Bustamante, Paco

    2014-07-01

    Mercury (Hg) contamination poses potential threats to ecosystems worldwide. In order to study Hg bioavailability in the poorly documented southern Indian Ocean, Hg exposure was investigated in the large avian community of Kerguelen Islands. Adults of 27 species (480 individuals) showed a wide range of feather Hg concentrations, from 0.4 ± 0.1 to 16.6 ± 3.8 μg g(-1) dry weight in Wilson's storm petrels and wandering albatrosses, respectively. Hg concentrations increased roughly in the order crustacean- feeding habits' differences of the two age-classes in this species. High Hg concentrations were reported for three species of the poorly known gadfly petrels, which merit further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Toxicological perspectives on perfluorinated compounds in avian species

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, J.; Jones, P. [Michigan State Univ., East Lansing, MI (United States)

    2004-09-15

    Perfluorinated chemicals have been widely used in commerce for the last few decades. Until recently little was known about their environmental fate and even less was known about their potential environmental effects. Since Giesy and co-workers first demonstrated the widespread occurrence of perfluorooctane sulfonic acid (PFOS) in wildlife there has been renewed interest in determining the biological and possible ecological effects of these compounds. The assessment of possible effects of these chemicals has been hampered by a limited understanding of their mode of action and by a lack of toxicological data for wildlife species. Here we summarize recently obtained toxicological studies available for perfluorinated compounds (PFCs) in two avian species and use this information and environmental concentration data to evaluate the potential for environmental risk that these compounds pose.

  10. Phylogenetic position of avian nocturnal and diurnal raptors.

    Science.gov (United States)

    Mahmood, Muhammad Tariq; McLenachan, Patricia A; Gibb, Gillian C; Penny, David

    2014-02-01

    We report three new avian mitochondrial genomes, two from widely separated groups of owls and a falcon relative (the Secretarybird). We then report additional progress in resolving Neoavian relationships in that the two groups of owls do come together (it is not just long-branch attraction), and the Secretarybird is the deepest divergence on the Accipitridae lineage. This is now agreed between mitochondrial and nuclear sequences. There is no evidence for the monophyly of the combined three groups of raptors (owls, eagles, and falcons), and again this is agreed by nuclear and mitochondrial sequences. All three groups (owls, accipitrids [eagles], and falcons) do appear to be members of the "higher land birds," and though there may not yet be full "consilience" between mitochondrial and nuclear sequences for the precise order of divergences of the eagles, falcons, and the owls, there is good progress on their relationships.

  11. Control of Avian Coccidiosis: Future and Present Natural Alternatives

    Directory of Open Access Journals (Sweden)

    Rosa Estela Quiroz-Castañeda

    2015-01-01

    Full Text Available Numerous efforts to date have been implemented in the control of avian coccidiosis caused by the Eimeria parasite. Since the appearance of anticoccidial chemical compounds, the search for new alternatives continues. Today, no product is available to cope with the disease; however, the number of products commercially available is constantly increasing. In this review, we focus on natural products and their anticoccidial activity. This group comprises fatty acids, antioxidants, fungal and herbal extracts, and immune response modulators with proven anticoccidial activity, many of which exist as dietary supplements. Additionally, we offer an overview of the poultry industry and the economic cost of coccidiosis as well as the classical strategies used to control the disease.

  12. Field avian metapneumovirus evolution avoiding vaccine induced immunity.

    Science.gov (United States)

    Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J

    2010-01-22

    Live avian metapneumovirus (AMPV) vaccines have largely brought turkey rhinotracheitis (TRT) under control in Europe but unexplained outbreaks still occur. Italian AMPV longitudinal farm studies showed that subtype B AMPVs were frequently detected in turkeys some considerable period after subtype B vaccination. Sequencing showed these to be unrelated to the previously applied vaccine. Sequencing of the entire genome of a typical later isolate showed numerous SH and G protein gene differences when compared to both a 1987 Italian field isolate and the vaccine in common use. Experimental challenge of vaccinated birds with recent virus showed that protection was inferior to that seen after challenge with the earlier 1987 isolate. Field virus had changed in key antigenic regions allowing replication and leading to disease in well vaccinated birds.

  13. Food restriction reduces neurogenesis in the avian hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Barbara-Anne Robertson

    Full Text Available The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7-12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the

  14. Avian survey and field guide for Osan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J.

    2006-12-05

    This report summarizes the results of the avian surveys conducted at Osan Air Base (AB). This ongoing survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Osan AB, and the 51st Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred ten bird species representing 35 families were identified and recorded. Seven species are designated as Natural Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Three species appear on the Korean Association for Conservation of Nature's (KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, ten different species are Republic of Korea (ROK)-protected. The primary objective of the avian survey at Osan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex J.14.c of the 51st Fighter BASH Plan 91-212 (51 FW OPLAN 91-212). The second objective was to initiate surveys to determine what bird species are present on Osan AB throughout the year and from the survey results, determine if threatened, endangered, or other Korean-listed bird species are present on Osan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Osan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a that are also favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  15. Androgens regulate gene expression in avian skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Matthew J Fuxjager

    Full Text Available Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus, zebra finch (Taenopygia guttata, and ochre-bellied flycatcher (Mionectes oleagieus. Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T up-regulated expression of parvalbumin (PV and insulin-like growth factor I (IGF-I, two genes whose products enhance cellular Ca(2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.

  16. Avian collision risk models for wind energy impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    Masden, E.A., E-mail: elizabeth.masden@uhi.ac.uk [Environmental Research Institute, North Highland College-UHI, University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE (United Kingdom); Cook, A.S.C.P. [British Trust for Ornithology, The Nunnery, Thetford IP24 2PU (United Kingdom)

    2016-01-15

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  17. Ultraviolet inactivation of avian sarcoma virus: biological and biochemical analysis

    International Nuclear Information System (INIS)

    Owada, M.; Ihara, S.; Toyoshima, K.; Kozai, Y.; Sugino, Y.

    1976-01-01

    The rate of inactivation by ultraviolet light of the focus-forming capacity of avian sarcoma virus was almost the same as that of the virus-producing capacity, measured as plaque formation. In addition, no significant difference was observed in inactivation of the transforming capacity assayed on C/BE chick embryo fibroblasts (CEF), which carry endogenous avian tumor virus DNA, and on duck embryo fibroblasts (DEF), which are known to be devoid of this DNA. All foci induced by nonirradiated virus produced infectious sarcoma virus, but some of the foci induced by uv-irradiated virus did not produce infectious virus of either transforming or transformation-defective type. The proportion of nonproducer foci was 3.4 times more in DEF than in gs - chf - CEF. RNAs extracted from uv-irradiated virions by sodium dodecyl sulfate (SDS) treatment were found to be composed of 60--70 S and 4 S RNAs by analysis in a sucrose gradient containing 0.5 percent SDS. The large RNA, however, became hydrophobic after irradiation and was sedimented with SDS by addition of one drop of saturated potassium chloride solution. This RNA was not dissociated into 30--40S components by heating at 100 0 for 45 sec, unlike 60--70 S RNA from uv-irradiated virions. After SDS--Pronase treatment, the 60--70 S RNA from uv-irradiated virions no longer had these altered characteristics. Reverse transcriptase activity with the endogenous template decreased in parallel with increase in the uv dose. The reduction rate was similar to that assayed with exogenous template or in the presence of actinomycin D. These data strongly suggest that RNA damage is not the only cause of virus inactivation by uv light

  18. EPIZOOTIOLOGICAL CHART OF AVIAN CHLAMYDIOSIS IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Edin Šatrović

    2013-03-01

    Full Text Available In the period from 2003 to 2008 we conducted a research on avian chlamydiosis in Bosnia and Herzegovina on a great number of domestic and wild birds from different localities. Diagnostic material from the wild birds was provided by the hunting societies during the hunting season while material from the domestic poultry was taken indiscriminately. Chicken samples are taken from the facilities for intensive production, namely parent flocks. Turkey samples are taken from the individual households keeping and breeding turkey on extensive basis (half – open type of breeding. Pigeon samples are provided from the central parts of Sarajevo where the pigeons live in a close contact with people. Also, pigeon samples are provided from around the town's bakery and a farm for intensive poultry breeding because the pigeons are considered a potential source of infection for other birds, primarily domestic ones, and also for the people. We also took samples of the breeding pheasants from a pheasant farm in Orašje, which is oriented toward breeding and releasing pheasants into their natural habitat, but also breeding for the needs of hunting industry. Samples from the wild/hunting birds (ducks and wild pheasants were provided in the proximity of watercourses as their residence, and where the hunting is of a greater extent. To obtain valid diagnostic results we have used multiple diagnostic methods and tests: bacteriological examination to exclude cross reactions, IIF (indirect immunofluorescence to confirm antibodies in the blood serum, ELISA (immunoesay and EIA (quick immunoessay to detect antigen, and conventional PCR and rRT – PCR to detect antigen as sensitive and sophisticated diagnostics methods.Key words: avian chlamydiosis, epizootiological chart, Bosnia and Herzegovina

  19. Avian collision risk models for wind energy impact assessments

    International Nuclear Information System (INIS)

    Masden, E.A.; Cook, A.S.C.P.

    2016-01-01

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  20. Systematic analysis of transcription start sites in avian development.

    Directory of Open Access Journals (Sweden)

    Marina Lizio

    2017-09-01

    Full Text Available Cap Analysis of Gene Expression (CAGE in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM] were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals. By facilitating promoter-based molecular analysis and genetic

  1. Estimates of Avian Mortality Attributed to Vehicle Collisions in Canada

    Directory of Open Access Journals (Sweden)

    Christine A. Bishop

    2013-12-01

    Full Text Available Although mortality of birds from collisions with vehicles is estimated to be in the millions in the USA, Europe, and the UK, to date, no estimates exist for Canada. To address this, we calculated an estimate of annual avian mortality attributed to vehicular collisions during the breeding and fledging season, in Canadian ecozones, by applying North American literature values for avian mortality to Canadian road networks. Because owls are particularly susceptible to collisions with vehicles, we also estimated the number of roadkilled Barn owls (Tyto alba in its last remaining range within Canada. (This species is on the IUCN red list and is also listed federally as threatened; Committee on the Status of Endangered Wildlife in Canada 2010, International Union for the Conservation of Nature 2012. Through seven Canadian studies in existence, 80 species and 2,834 specimens have been found dead on roads representing species from 14 orders of birds. On Canadian 1 and 2-lane paved roads outside of major urban centers, the unadjusted number of bird mortalities/yr during an estimated 4-mo (122-d breeding and fledging season for most birds in Canada was 4,650,137 on roads traversing through deciduous, coniferous, cropland, wetlands and nonagricultural landscapes with less than 10% treed area. On average, this represents 1,167 birds killed/100 km in Canada. Adjusted for scavenging, this estimate was 13,810,906 (3,462 dead birds/100 km. For barn owls, the unadjusted number of birds killed annually on 4-lane roads during the breeding and fledging season, within the species geographic range in southern British Columbia, was estimated as 244 owls and, when adjusted for scavenging and observer bias (3.6 factor, the total was 851 owls.

  2. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  3. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    Science.gov (United States)

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  4. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    Science.gov (United States)

    Varricchio, David J; Balanoff, Amy M; Norell, Mark A

    2015-01-01

    Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  5. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    Directory of Open Access Journals (Sweden)

    David J Varricchio

    Full Text Available Embryonic remains within a small (4.75 by 2.23 cm egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  6. Avian Field guide and checklist for Kunsan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J. B.; Environmental Assessment

    2005-11-15

    This report summarizes the results of the avian surveys conducted at Kunsan Air Base (AB). This on-going survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Kunsan AB, and the 8th Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred sixteen bird species representing 34 families were identified and recorded. Seven species are designated as Cultural Property Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Six species appear on the Korean Association for Conservation of Nature's(KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, only ten different species are Republic of Korea (ROK)-protected because the Eurasian Spoonbill, Peregrine Falcon, and Eurasian Oystercatcher are listed by both agencies. The primary objective of the avian survey at Kunsan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex C.4.a.(1-4) of the 8th Fighter Wing BASH Plan(8FWOPLAN 91-202). The second objective was to initiate surveys to determine what bird species are present on Kunsan AB throughout the year, and from the survey results determine if threatened, endangered, or other Korean-listed bird species are present on Kunsan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Kunsan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a and also that are favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  7. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  8. Baseline avian use and behavior at the CARES wind plant site, Klickitat County, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, W.P.; Johnson, G.D.; Strickland, M.D.; Kronner, K.; Becker, P.S.; Orloff, S.

    2000-01-03

    This report presents a literature review on avian-wind turbine interactions and the results of a one-year avian baseline study conducted in 1998 at the proposed Conservation and Renewable Energy System (CARES) wind development site in Klickitat County, Washington. Avian use of the site ranged from 1.11/survey in the winter to 5.69/survey in the spring. Average use by passerines in the study plots ranged from 1.15 minutes/survey in the winter to 40.98 minutes/survey in the spring. Raptors spent much less time within plots than other groups, ranging from 0.05 minutes/survey in the winter to 0.77 minutes/survey during the fall. Thirteen percent of all flying birds were within the rotor-swept height (25 to 75 m); 41.6% of all raptors were flying at this height. Raptors with the greatest potential turbine exposure are red-tailed hawks and golden eagles. Passerines with the highest turbine exposure are common ravens, American robins, and horned larks. Spatial use data for the site indicate that avian use tends to be concentrated near the rim, indicating that placing turbines away from the rim may reduce risk. Avian use data at the CARES site indicate that if a wind plant is constructed in the future, avian mortality would likely be relatively low.

  9. Baseline avian use and behavior at the CARES wind plant site, Klickitat County, Washington

    International Nuclear Information System (INIS)

    Erickson, W.P.; Johnson, G.D.; Strickland, M.D.; Kronner, K.; Becker, P.S.; Orloff, S.

    2000-01-01

    This report presents a literature review on avian-wind turbine interactions and the results of a one-year avian baseline study conducted in 1998 at the proposed Conservation and Renewable Energy System (CARES) wind development site in Klickitat County, Washington. Avian use of the site ranged from 1.11/survey in the winter to 5.69/survey in the spring. Average use by passerines in the study plots ranged from 1.15 minutes/survey in the winter to 40.98 minutes/survey in the spring. Raptors spent much less time within plots than other groups, ranging from 0.05 minutes/survey in the winter to 0.77 minutes/survey during the fall. Thirteen percent of all flying birds were within the rotor-swept height (25 to 75 m); 41.6% of all raptors were flying at this height. Raptors with the greatest potential turbine exposure are red-tailed hawks and golden eagles. Passerines with the highest turbine exposure are common ravens, American robins, and horned larks. Spatial use data for the site indicate that avian use tends to be concentrated near the rim, indicating that placing turbines away from the rim may reduce risk. Avian use data at the CARES site indicate that if a wind plant is constructed in the future, avian mortality would likely be relatively low

  10. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  11. Characterizing the avian gut microbiota: membership, driving influences, and potential function.

    Science.gov (United States)

    Waite, David W; Taylor, Michael W

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  12. Characterising the avian gut microbiota: membership, driving influences and potential function

    Directory of Open Access Journals (Sweden)

    David eWaite

    2014-05-01

    Full Text Available Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbour diverse communities of microorganisms within their guts, which collectively fulfil important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  13. Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia.

    Science.gov (United States)

    Blair, Patrick J; Putnam, Shannon D; Krueger, Whitney S; Chum, Channimol; Wierzba, Thomas F; Heil, Gary L; Yasuda, Chadwick Y; Williams, Maya; Kasper, Matthew R; Friary, John A; Capuano, Ana W; Saphonn, Vonthanak; Peiris, Malik; Shao, Hongxia; Perez, Daniel R; Gray, Gregory C

    2013-04-01

    Southeast Asia remains a critical region for the emergence of novel and/or zoonotic influenza, underscoring the importance of extensive sampling in rural areas where early transmission is most likely to occur. In 2008, 800 adult participants from eight sites were enrolled in a prospective population-based study of avian influenza (AI) virus transmission where highly pathogenic avian influenza (HPAI) H5N1 virus had been reported in humans and poultry from 2006 to 2008. From their enrollment sera and questionnaires, we report risk factor findings for serologic evidence of previous infection with 18 AI virus strains. Serologic assays revealed no evidence of previous infection with 13 different low-pathogenic AI viruses or with HPAI avian-like A/Cambodia/R0404050/2007(H5N1). However, 21 participants had elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2), validated with a monoclonal antibody blocking ELISA assay specific for avian H9. Although cross-reaction from antibodies against human influenza viruses cannot be completely excluded, the study data suggest that a number of participants were previously infected with the avian-like A/Hong Kong/1073/1999(H9N2) virus, likely due to as yet unidentified environmental exposures. Prospective data from this cohort will help us better understand the serology of zoonotic influenza infection in a rural cohort in SE Asia. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. All rights reserved.

  14. Refined avian risk assessment for chlorpyrifos in the United States.

    Science.gov (United States)

    Moore, Dwayne R J; Teed, R Scott; Greer, Colleen D; Solomon, Keith R; Giesy, John P

    2014-01-01

    Refined risk assessments for birds exposed to flowable and granular formulations ofCPY were conducted for a range of current use patterns in the United States. Overall,the collective evidence from the modeling and field study lines of evidence indicate that flowable and granular CPY do not pose significant risks to the bird communities foraging in agro-ecosystems in the United States. The available information indicates that avian incidents resulting from the legal, registered uses of CPY have been very infrequent since 2002 (see SI Appendix 3). The small number of recent incidents suggests that the current labels for CPY are generally protective of birds.However, incident data are uncertain because of the difficulties associated with finding dead birds in the field and linking any mortality observed to CPY.Plowable CPY is registered for a variety of crops in the United States including alfalfa, brassica vegetables, citrus, corn, cotton, grape, mint, onion, peanut, pome and stone fruits, soybean, sugar beet, sunflower, sweet potato, tree nuts, and wheat under the trade name Lorsban Advanced. The major routes of exposure for birds to flowable CPY were consumption of treated dietary items and drinking water. The Liquid Pesticide Avian Risk Assessment Model (Liquid PARAM) was used to simulate avian ingestion of CPY by these routes of exposure. For acute exposure,Liquid PARAM estimated the maximum retained dose in each of 20 birds on each of1,000 fields that were treated with CPY over the 60-d period following initial application.The model used a 1-h time step. For species lacking acceptable acute oral toxicity data (all focal species except northern bobwhite (C. virginianus) and redwinged blackbird (A. phoeniceus)), a species sensitivity distribution (SSD) approach was used to generate hypothetical dose-response curves assuming high, median and low sensitivity to CPY. For acute risk, risk curves were generated for each use pattern and exposure scenario. The risk

  15. Prevalence of Antibodies to H9N2 Avian Influenza Virus in Backyard Chickens around Maharlou Lake in Iran

    OpenAIRE

    Mohammad Mehdi Hadipour*, Gholamhossein Habibi and Amir Vosoughi

    2011-01-01

    Backyard chickens play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 500 backyard chickens from villages around Maharlou lake in Iran, using the ...

  16. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  17. Emergence of a novel avian pox disease in British tit species.

    Science.gov (United States)

    Lawson, Becki; Lachish, Shelly; Colvile, Katie M; Durrant, Chris; Peck, Kirsi M; Toms, Mike P; Sheldon, Ben C; Cunningham, Andrew A

    2012-01-01

    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006-2010. Reports of affected Paridae (211 incidents) outnumbered reports in non-Paridae (91 incidents). The majority (90%) of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3%) than were incidents in non-Paridae hosts (31.9%). Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.

  18. Emergence of a novel avian pox disease in British tit species.

    Directory of Open Access Journals (Sweden)

    Becki Lawson

    Full Text Available Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006-2010. Reports of affected Paridae (211 incidents outnumbered reports in non-Paridae (91 incidents. The majority (90% of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3% than were incidents in non-Paridae hosts (31.9%. Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.

  19. Low diversity, activity, and density of transposable elements in five avian genomes.

    Science.gov (United States)

    Gao, Bo; Wang, Saisai; Wang, Yali; Shen, Dan; Xue, Songlei; Chen, Cai; Cui, Hengmi; Song, Chengyi

    2017-07-01

    In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.

  20. Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia

    Directory of Open Access Journals (Sweden)

    Patrick J. Blair

    2013-04-01

    Full Text Available Summary: Background: Southeast Asia remains a critical region for the emergence of novel and/or zoonotic influenza, underscoring the importance of extensive sampling in rural areas where early transmission is most likely to occur. Methods: In 2008, 800 adult participants from eight sites were enrolled in a prospective population-based study of avian influenza (AI virus transmission where highly pathogenic avian influenza (HPAI H5N1 virus had been reported in humans and poultry from 2006 to 2008. From their enrollment sera and questionnaires, we report risk factor findings for serologic evidence of previous infection with 18 AI virus strains. Results: Serologic assays revealed no evidence of previous infection with 13 different low-pathogenic AI viruses or with HPAI avian-like A/Cambodia/R0404050/2007(H5N1. However, 21 participants had elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2, validated with a monoclonal antibody blocking ELISA assay specific for avian H9. Conclusions: Although cross-reaction from antibodies against human influenza viruses cannot be completely excluded, the study data suggest that a number of participants were previously infected with the avian-like A/Hong Kong/1073/1999(H9N2 virus, likely due to as yet unidentified environmental exposures. Prospective data from this cohort will help us better understand the serology of zoonotic influenza infection in a rural cohort in SE Asia. Keywords: Influenza A virus, Avian, Zoonoses, Occupational exposure, Communicable diseases, Emerging, Cohort studies

  1. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar

    Directory of Open Access Journals (Sweden)

    Laure Guerrini

    2014-05-01

    Full Text Available While the spatial pattern of the highly pathogenic avian influenza H5N1 virus has been studied throughout Southeast Asia, little is known on the spatial risk factors for avian influenza in Africa. In the present paper, we combined serological data from poultry and remotely sensed environmental factors in the Lake Alaotra region of Madagascar to explore for any association between avian influenza and landscape variables. Serological data from cross-sectional surveys carried out on poultry in 2008 and 2009 were examined together with a Landsat 7 satellite image analysed using supervised classification. The dominant landscape features in a 1-km buffer around farmhouses and distance to the closest water body were extracted. A total of 1,038 individual bird blood samples emanating from 241 flocks were analysed, and the association between avian influenza seroprevalence and these landcape variables was quantified using logistic regression models. No evidence of the presence of H5 or H7 avian influenza subtypes was found, suggesting that only low pathogenic avian influenza (LPAI circulated. Three predominant land cover classes were identified around the poultry farms: grassland savannah, rice paddy fields and wetlands. A significant negative relationship was found between LPAI seroprevalence and distance to the closest body of water. We also found that LPAI seroprevalence was higher in farms characterised by predominant wetlands or rice landscapes than in those surrounded by dry savannah. Results from this study suggest that if highly pathogenic avian influenza H5N1 virus were introduced in Madagascar, the environmental conditions that prevail in Lake Alaotra region may allow the virus to spread and persist.

  2. A mathematical model of avian influenza with half-saturated incidence.

    Science.gov (United States)

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.

  3. Mercury risk to avian piscivores across western United States and Canada

    Science.gov (United States)

    Jackson, Allyson K.; Evers, David C.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Willacker, James J.; Elliott, John E.; Lepak, Jesse M.; Vander Pol, Stacy S.; Bryan, Colleen E.

    2016-01-01

    The widespread distribution of mercury (Hg) threatens wildlife health, particularly piscivorous birds. Western North America is a diverse region that provides critical habitat to many piscivorous bird species, and also has a well-documented history of mercury contamination from legacy mining and atmospheric deposition. The diversity of landscapes in the west limits the distribution of avian piscivore species, complicating broad comparisons across the region. Mercury risk to avian piscivores was evaluated across the western United States and Canada using a suite of avian piscivore species representing a variety of foraging strategies that together occur broadly across the region. Prey fish Hg concentrations were size-adjusted to the preferred size class of the diet for each avian piscivore (Bald Eagle = 36 cm, Osprey = 30 cm, Common and Yellow-billed Loon = 15 cm, Western and Clark's Grebe = 6 cm, and Belted Kingfisher = 5 cm) across each species breeding range. Using a combination of field and lab-based studies on Hg effect in a variety of species, wet weight blood estimates were grouped into five relative risk categories including: background ( 3 μg/g). These risk categories were used to estimate potential mercury risk to avian piscivores across the west at a 1 degree-by-1 degree grid cell resolution. Avian piscivores foraging on larger-sized fish generally were at a higher relative risk to Hg. Habitats with a relatively high risk included wetland complexes (e.g., prairie pothole in Saskatchewan), river deltas (e.g., San Francisco Bay, Puget Sound, Columbia River), and arid lands (Great Basin and central Arizona). These results indicate that more intensive avian piscivore sampling is needed across Western North America to generate a more robust assessment of exposure risk.

  4. Transmission and immunopathology of the avian influenza virus A/Anhui/1/2013 (H7N9) human isolate in three commonly commercialized avian species.

    Science.gov (United States)

    Vidaña, B; Dolz, R; Busquets, N; Ramis, A; Sánchez, R; Rivas, R; Valle, R; Cordón, I; Solanes, D; Martínez, J; Majó, N

    2018-05-01

    H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 10 5 embryo infectious dose (EID) 50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL-6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection. © 2017 Blackwell Verlag GmbH.

  5. Investigation of avian influenza virus in poultry and wild birds due to novel avian-origin influenza A(H10N8) in Nanchang City, China.

    Science.gov (United States)

    Ni, Xiansheng; He, Fenglan; Hu, Maohong; Zhou, Xianfeng; Wang, Bin; Feng, Changhua; Wu, Yumei; Li, Youxing; Tu, Junling; Li, Hui; Liu, Mingbin; Chen, Haiying; Chen, Shengen

    2015-01-01

    Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Little evidence of subclinical avian influenza virus infections among rural villagers in Cambodia.

    Directory of Open Access Journals (Sweden)

    Gregory C Gray

    Full Text Available In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI. Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI virus infection and withdrew from the study. Ninety-seven ILI cases (22.1% were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0% had detectable antibody titers (≥ 1:10 against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6, 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1, 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up against an avian-like A/Hong Kong/1073/1999(H9N2, 6 (1 detected at both 12- and 24-month follow-up against an avian-like A/Duck/Memphis/546/74(H11N9, and 2 against an avian-like A/Duck/Alberta/60/76(H12N5. With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  7. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  8. Occurrence of avian Plasmodium and West Nile virus in culex species in Wisconsin

    Science.gov (United States)

    Hughes, T.; Irwin, P.; Hofmeister, E.; Paskewitz, S.M.

    2010-01-01

    The occurrence of multiple pathogens in mosquitoes and birds could affect the dynamics of disease transmission. We collected adult Culex pipiens and Cx. restuans (Cx. pipiens/restuans hereafter) from sites in Wisconsin and tested them for West Nile virus (WNV) and for avian malaria (Plasmodium). Gravid Cx. pipiens/restuans were tested for WNV using a commercial immunoassay, the RAMP?? WNV test, and positive results were verified by reverse transcriptasepolymerase chain reaction. There were 2 WNV-positive pools of Cx. pipiens/restuans in 2006 and 1 in 2007. Using a bias-corrected maximum likelihood estimation, the WNV infection rate for Cx. pipiens/restuans was 5.48/1,000 mosquitoes in 2006 and 1.08/1,000 mosquitoes in 2007. Gravid Cx. pipiens or Cx. restuans were tested individually for avian Plasmodium by a restriction enzymebased assay. Twelve mosquitoes were positive for avian Plasmodium (10.0), 2 were positive for Haemoproteus, and 3 were positive for Leucocytozoon. There were 4 mixed infections, with mosquitoes positive for >1 of the hemosporidian parasites. This work documents a high rate of hemosporidian infection in Culex spp. and illustrates the potential for co-infections with other arboviruses in bird-feeding mosquitoes and their avian hosts. In addition, hemosporidian infection rates may be a useful tool for investigating the ecological dynamics of Culex/avian interactions. ?? 2010 by The American Mosquito Control Association, Inc.

  9. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    Science.gov (United States)

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  10. New insight on the anatomy and architecture of the avian neurocranium.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Buscalioni, Angela D

    2009-03-01

    This study aims to disentangle the main features of the avian neurocranium at high taxonomic scales using geometric morphometric tools. When surveying the variation across 60% of avian orders (sampled among 72 individuals), our results verify that the central nervous system has an important influence upon the architecture of the avian neurocranium, as in other very encephalized vertebrates such as mammals. When the avian brain expands relative to the cranial base it causes more "reptilian-like" neurocranial configurations to shape into rounder ones. This rounder appearance is achieved because the cranial base becomes relatively shorter and turns its flexure from concave to convex, at the same time forcing the foramen magnum to reorient ventrally instead of caudally. However, our analyses have also revealed that an important morphological difference between birds resides between the occiput and the cranial roof. This variation was unexpected since it had not been reported thus far, and entertains two plausible interpretations. Although it could be due to a trade-off between the relative sizes of the supraoccipital and the parietal bones, the presence of an additional bone (the intra- or post-parietal) between the latter two bones could also explain the variation congruently. This descriptive insight stresses the need for further developmental studies focused in understanding the evolutionary disparity of the avian neurocranium. (c) 2009 Wiley-Liss, Inc.

  11. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  12. Evaluation of NDVI to assess avian abundance and richness along the upper San Pedro River

    Science.gov (United States)

    McFarland, T.M.; van Riper, Charles; Johnson, G.E.

    2012-01-01

    Remote-sensing models have become increasingly popular for identifying, characterizing, monitoring, and predicting avian habitat but have largely focused on single bird species. The Normalized Difference Vegetation Index (NDVI) has been shown to positively correlate with avian abundance and richness and has been successfully applied to southwestern riparian systems which are uniquely composed of narrow bands of vegetation in an otherwise dry landscape. Desert riparian ecosystems are important breeding and stopover sites for many bird species but have been degraded due to altered hydrology and land management practices. Here we investigated the use of NDVI, coupled with vegetation, to model the avian community structure along the San Pedro River, Arizona. We also investigated how vegetation and physical features measured locally compared to those data that can be gathered through remote-sensing. We found that NDVI has statistically significant relationships with both avian abundance and species richness, although is better applied at the individual species level. However, the amount of variation explained by even our best models was quite low, suggesting that NDVI habitat models may not presently be an accurate tool for extensive modeling of avian communities. We suggest additional studies in other watersheds to increase our understanding of these bird/NDVI relationships.

  13. Bibliography of Literature for Avian Issues in Solar and Wind Energy and Other Activities

    Energy Technology Data Exchange (ETDEWEB)

    Walston, Leroy J. [Argonne National Lab. (ANL), Argonne, IL (United States); White, Ellen M. [Argonne National Lab. (ANL), Argonne, IL (United States); Meyers, Stephanie A. [Argonne National Lab. (ANL), Argonne, IL (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics

    2015-04-01

    Utility-scale solar energy has been a rapidly expanding energy sector in the United States in recent years and is expected to continue to grow. In 2014, concerns were raised over the risk of avian fatalities associated with utility-scale solar plants. With funding from the U.S. Department of Energy SunShot Program, Argonne National Laboratory and the National Renewable Energy Laboratory studied the issue and released A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities (ANL/EVS-15/2, March 2015). A comprehensive literature review included peer-reviewed journal articles on avian fatalities from solar energy facilities and other sources (e.g., wind energy, building collisions, etc.), project-specific technical reports on avian monitoring and fatality at solar facilities, information on mitigation measures and best management practices, and literature pertaining to avian behavioral patterns and habitat use. The source citations are listed in this bibliography; they are current through December 2014.

  14. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  15. Avian cholera, a threat to the viability of an Arctic seabird colony?

    Directory of Open Access Journals (Sweden)

    Sébastien Descamps

    Full Text Available Evidence that infectious diseases cause wildlife population extirpation or extinction remains anecdotal and it is unclear whether the impacts of a pathogen at the individual level can scale up to population level so drastically. Here, we quantify the response of a Common eider colony to emerging epidemics of avian cholera, one of the most important infectious diseases affecting wild waterfowl. We show that avian cholera has the potential to drive colony extinction, even over a very short period. Extinction depends on disease severity (the impact of the disease on adult female survival and disease frequency (the number of annual epidemics per decade. In case of epidemics of high severity (i.e., causing >30% mortality of breeding females, more than one outbreak per decade will be unsustainable for the colony and will likely lead to extinction within the next century; more than four outbreaks per decade will drive extinction to within 20 years. Such severity and frequency of avian cholera are already observed, and avian cholera might thus represent a significant threat to viability of breeding populations. However, this will depend on the mechanisms underlying avian cholera transmission, maintenance, and spread, which are currently only poorly known.

  16. Avian influenza A virus subtype H5N2 in a red-lored Amazon parrot.

    Science.gov (United States)

    Hawkins, Michelle G; Crossley, Beate M; Osofsky, Anna; Webby, Richard J; Lee, Chang-Won; Suarez, David L; Hietala, Sharon K

    2006-01-15

    A 3-month-old red-lored Amazon parrot (Amazona autumnalis autumnalis) was evaluated for severe lethargy. Avian influenza virus hemagglutinin subtype H5N2 with low pathogenicity was characterized by virus isolation, real-time reverse transcriptase PCR assay, chicken intravenous pathogenicity index, and reference sera. The virus was also determined to be closely related to a virus lineage that had been reported only in Mexico and Central America. The chick was admitted to the hospital and placed in quarantine. Supportive care treatment was administered. Although detection of H5 avian influenza virus in birds in the United States typically results in euthanasia of infected birds, an alternative strategy with strict quarantine measures and repeated diagnostic testing was used. The chick recovered from the initial clinical signs after 4 days and was released from quarantine 9 weeks after initial evaluation after 2 consecutive negative virus isolation and real-time reverse transcriptase PCR assay results. To the authors' knowledge, this is the first report of H5N2 avian influenza A virus isolated from a psittacine bird and represents the first introduction of this virus into the United States, most likely by illegal importation of psittacine birds. Avian influenza A virus should be considered as a differential diagnosis for clinical signs of gastrointestinal tract disease in psittacine birds, especially in birds with an unknown history of origin. Although infection with avian influenza virus subtype H5 is reportable, destruction of birds is not always required.

  17. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; Kayed, Ahmed S; Elabd, Mona A; Zaki, Shaimaa A; Abu Zeid, Dina; El Rifay, Amira S; Mousa, Adel A; Farag, Mohamed M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  18. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    Science.gov (United States)

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  19. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    Directory of Open Access Journals (Sweden)

    Mokhtar R Gomaa

    Full Text Available Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80 among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  20. Associations between water quality, Pasteurella multocida, and avian cholera at Sacramento National Wildlife Refuge

    Science.gov (United States)

    Lehr, M.A.; Botzler, R.G.; Samuel, M.D.; Shadduck, D.J.

    2005-01-01

    We studied patterns in avian cholera mortality, the presence of Pasteurella multocida in the water or sediment, and water chemistry characteristics in 10 wetlands at the Sacramento National Wildlife Refuge Complex (California, USA), an area of recurrent avian cholera epizootics, during the winters of 1997 and 1998. Avian cholera outbreaks (a?Y50 dead birds) occurred on two wetlands during the winter of 1997, but no P. multocida were recovered from 390 water and 390 sediment samples from any of the 10 wetlands. No mortality events were observed on study wetlands during the winter of 1998; however, P. multocida was recovered from water and sediment samples in six of the 10 study wetlands. The pH levels were higher for wetlands experiencing outbreaks during the winter of 1997 than for nonoutbreak wetlands, and aluminum concentrations were higher in wetlands from which P. multocida were recovered during the winter of 1998. Water chemistry parameters (calcium, magnesium, sodium, and dissolved protein) previously linked with P. multocida and avian cholera mortality were not associated with the occurrence of avian cholera outbreaks or the presence of P. multocida in our study wetlands. Overall, we found no evidence to support the hypothesis that wetland characteristics facilitate the presence of P. multocida and, thereby, allow some wetlands to serve as long-term sources (reservoirs) for P. multocida.

  1. Failure to transmit avian vacuolar myelinopathy to mallard ducks

    Science.gov (United States)

    Larsen, R.S.; Nutter, F.B.; Augspurger, T.; Rocke, T.E.; Thomas, N.J.; Stoskopf, M.K.

    2003-01-01

    Avian vacuolar myelinopathy (AVM) is a neurologic disease that has been diagnosed in free-ranging birds in the southeastern United States. Bald eagles (Haliaeetus leuocephalus), American coots (Fulica americana), and mallards (Anas platyrhynchos) have been affected. Previous investigations have not determined the etiology of this disease. In November and December 2002, we attempted to induce AVM in game-farmed mallards through four, 7-day exposure trials. Mallards were housed in six groups of eight, with two of these groups serving as controls. One group was housed with AVM-affected coots; one group was tube fed daily with water from the lake where affected coots were captured; one group was tube fed daily with aquatic vegetation (Hydrilla verticillata) from the same lake; and another group was tube fed daily with sediment from the lake. No ducks exhibited clinical neurologic abnormalities consistent with AVM and no evidence of AVM was present at histopathologic examination of brain tissue. Although limitations in sample size, quantity of individual doses, frequency of dose administration, duration of exposure, and timing of these trials restrict the interpretation of the findings, AVM was not readily transmitted by direct contact, water, hydrilla, or sediment in this investigation.

  2. The consequences of climate change at an avian influenza 'hotspot'.

    Science.gov (United States)

    Brown, V L; Rohani, Pejman

    2012-12-23

    Avian influenza viruses (AIVs) pose significant danger to human health. A key step in managing this threat is understanding the maintenance of AIVs in wild birds, their natural reservoir. Ruddy turnstones (Arenaria interpres) are an atypical bird species in this regard, annually experiencing high AIV prevalence in only one location-Delaware Bay, USA, during their spring migration. While there, they congregate on beaches, attracted by the super-abundance of horseshoe crab eggs. A relationship between ruddy turnstone and horseshoe crab (Limulus polyphemus) population sizes has been established, with a declining horseshoe crab population linked to a corresponding drop in ruddy turnstone population sizes. The effect of this interaction on AIV prevalence in ruddy turnstones has also been addressed. Here, we employ a transmission model to investigate how the interaction between these two species is likely to be altered by climate change. We explore the consequences of this modified interaction on both ruddy turnstone population size and AIV prevalence and show that, if climate change leads to a large enough mismatch in species phenology, AIV prevalence in ruddy turnstones will increase even as their population size decreases.

  3. Palestine Saw-scaled Vipers hunt disadvantaged avian migrants.

    Science.gov (United States)

    Yosef, Reuven; Zduniak, Piotr

    2015-11-01

    The selection of an ambush-cum-foraging site and proper prey are indispensable for maintaining an adequate energy intake by sit-and-wait predators to optimize survival and future fitness. This is important for snakes, where an ambush site has suitable ambience. We studied the foraging strategy of the Palestine Saw-scaled Viper (Echis coloratus) at an avian migratory stopover site. Following initial observations, we hypothesized that vipers are able to discern the body mass of a perched bird and hunt accordingly. We implemented an experiment where vipers chose between four groups of migratory Blackcaps with different body mass. Prey choice by vipers of both age classes was not random and adults focused on Blackcaps with the lightest body mass. Juveniles displayed a variability of prey choice but selected mainly birds from the lightest categories. We concluded that Saw-scaled Vipers hunt prey based on thermal cues; juveniles practice on different prey groups prior to perfecting their foraging techniques i.e., hunting is a learned process; and that they prefer birds with the lowest body mass. The last because Blackcaps, when on migration, save energy by entering a state of deep torpor in which they sacrifice their vigilance capabilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Outbreak of highly pathogenic avian influenza in Minnesota in 2015.

    Science.gov (United States)

    Fitzpatrick, Ann; Mor, Sunil K; Thurn, Mary; Wiedenman, Elizabeth; Otterson, Tracy; Porter, Robert E; Patnayak, Devi P; Lauer, Dale C; Voss, Shauna; Rossow, Stephanie; Collins, James E; Goyal, Sagar M

    2017-03-01

    The incursion of highly pathogenic avian influenza (HPAI) into the United States during 2014 resulted in an unprecedented foreign animal disease (FAD) event; 232 outbreaks were reported from 21 states. The disease affected 49.6 million birds and resulted in economic losses of $950 million. Minnesota is the largest turkey-producing state, accounting for 18% of U.S. turkey production. Areas with concentrated numbers of turkeys in Minnesota were the epicenter of the outbreak. The first case was presumptively diagnosed in the last week of February 2015 at the Minnesota Veterinary Diagnostic Laboratory (MVDL) and confirmed as HPAI H5N2 at the National Veterinary Services Laboratories on March 4, 2015. A total of 110 farms were affected in Minnesota, and the MVDL tested >17,000 samples from March to July 2015. Normal service was maintained to other clients of the laboratory during this major FAD event, but challenges were encountered with communications, staff burnout and fatigue, training requirements of volunteer technical staff, test kit validation, and management of specific pathogen-free egg requirements.

  5. Origin of evolutionary change in avian clutch size.

    Science.gov (United States)

    Haywood, Sacha

    2013-11-01

    Why different bird species lay different numbers of eggs is a question that has long been associated with factors external to the organism, that is, factors which operate on inherited variation in clutch size through the action of natural selection. Yet, while external factors are important, the extent of what is evolutionarily possible rests with the mechanisms developed by birds for clutch-size control. Hitherto neglected, these mechanisms generate factors internal to the organism that are central to the origin of evolutionary change. They are related to the fact that a species-specific range of clutch size arises from the differential survival of pre-ovulatory follicles undergoing growth when the signal causing egg laying to end reaches the ovary. Herein, I examine three internal factors that, together with external factors, could impact the evolution of avian clutch size. Each factor acts by changing either the number of pre-ovulatory follicles present in the ovary at the time of follicular disruption or the timing of this event. These changes to clutch size can be explained by the concept of heterochrony. In light of this, the role of phenotypic plasticity and genes determining clutch size is discussed. Finally, to account for the origin of evolutionary change in clutch size, I detail an hypothesis involving a process similar to Waddington's theory of genetic assimilation. © 2013 The Author. Biological Reviews © 2013 Cambridge Philosophical Society.

  6. Avian magnetic compass: Its functional properties and physical basis

    Directory of Open Access Journals (Sweden)

    Roswitha WILTSCHKO, Wolfgang WILTSCHKO

    2010-06-01

    Full Text Available The avian magnetic compass was analyzed in bird species of three different orders – Passeriforms, Columbiforms and Galliforms – and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity; it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range [Current Zoology 56 (3: 265–276, 2010].

  7. Modelling avian biodiversity using raw, unclassified satellite imagery.

    Science.gov (United States)

    St-Louis, Véronique; Pidgeon, Anna M; Kuemmerle, Tobias; Sonnenschein, Ruth; Radeloff, Volker C; Clayton, Murray K; Locke, Brian A; Bash, Dallas; Hostert, Patrick

    2014-01-01

    Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.

  8. Diversity of avian haemosporidians in arid zones of northern Venezuela.

    Science.gov (United States)

    Belo, Nayara O; Rodríguez-Ferraro, Adriana; Braga, Erika M; Ricklefs, Robert E

    2012-07-01

    Arid zones of northern Venezuela are represented by isolated areas, important from an ornithological and ecological perspective due to the occurrence of restricted-range species of birds. We analysed the prevalence and molecular diversity of haemosporidian parasites of wild birds in this region by screening 527 individuals (11 families and 20 species) for parasite mitochondrial DNA. The overall prevalence of parasites was 41%, representing 17 mitochondrial lineages: 7 of Plasmodium and 10 of Haemoproteus. Two parasite lineages occurred in both the eastern and western regions infecting a single host species, Mimus gilvus. These lineages are also present throughout northern and central Venezuela in a variety of arid and mesic habitats. Some lineages found in this study in northern Venezuela have also been observed in different localities in the Americas, including the West Indies. In spite of the widespread distributions of some of the parasite lineages found in northern Venezuela, several, including some that are relatively common (e.g. Ven05 and Ven06), have not been reported from elsewhere. Additional studies are needed to characterize the host and geographical distribution of avian malaria parasite lineages, which will provide a better understanding of the influence of landscape, vector abundance and diversity, and host identity on haemosporidian parasite diversity and prevalence.

  9. [Clinical aspects of human infection by the avian influenza virus].

    Science.gov (United States)

    Goubau, P

    2009-01-01

    The species barrier is not perfect for Influenza A and numerous transmissions of the virus from pigs or poultry to humans have been described these years. Appearing in 1997 and becoming epidemic in 2003, influenza A/H5N1 provoked many deadly enzootics in poultry batteries (highly pathogenic avian influenza of HPAI). Starting in Asia, many countries throughout Africa and Europe were affected. Sporadic human cases were described in direct contact with diseased chicken or other poultry. Half of the cases are lethal, but human to human transmission occurs with difficulty. From January 2003 to August 11th 2009, 438 cases were declared worldwide with 262 deaths. Many countries declared cases, but recently most cases occurred in Egypt. Measures in hospital were taken which were copied from the measures for SARS (Severe Acute Respiratory Syndrome), but these were probably excessive in this case, considering the low rate of secondary cases with A/H5N1. In many human infections, signs of severe respiratory distress develop and multi organ failure. It was feared that this deadly virus could become easily transmitted between humans, leading to a new pandemic. This was not the case up to now. The strong pathogenicity of the virus is still not completely explained, but the deep location of infection in the lungs and the deregulation of cytokine production by the target cells, particularly macrophages, may be part of the explanation.

  10. Impact of Management on Avian Communities in the Scottish Highlands.

    Directory of Open Access Journals (Sweden)

    Scott Newey

    Full Text Available The protection of biodiversity is a key national and international policy objective. While protected areas provide one approach, a major challenge lies in understanding how the conservation of biodiversity can be achieved in the context of multiple land management objectives in the wider countryside. Here we analyse metrics of bird diversity in the Scottish uplands in relation to land management types and explore how bird species composition varies in relation to land managed for grazing, hunting and conservation. Birds were surveyed on the heather moorland areas of 26 different landholdings in Scotland. The results indicate that, in relation to dominant management type, the composition of bird species varies but measures of diversity and species richness do not. Intensive management for grouse shooting affects the occurrence, absolute and relative abundance of bird species. While less intensive forms of land management appear to only affect the relative abundance of species, though extensive sheep grazing appears to have little effect on avian community composition. Therefore enhanced biodiversity at the landscape level is likely to be achieved by maintaining heterogeneity in land management among land management units. This result should be taken into account when developing policies that consider how to achieve enhanced biodiversity outside protected areas, in the context of other legitimate land-uses.

  11. Generalized estimators of avian abundance from count survey data

    Directory of Open Access Journals (Sweden)

    Royle, J. A.

    2004-01-01

    Full Text Available I consider modeling avian abundance from spatially referenced bird count data collected according to common protocols such as capture-recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling spatially replicated data that regards local abundance as a random process, motivated by the view that the set of spatially referenced local populations (at the sample locations constitute a metapopulation. Under this view, attention can be focused on developing a model for the variation in local abundance independent of the sampling protocol being considered. The metapopulation model structure, when combined with the data generating model, define a simple hierarchical model that can be analyzed using conventional methods. The proposed modeling framework is completely general in the sense that broad classes of metapopulation models may be considered, site level covariates on detection and abundance may be considered, and estimates of abundance and related quantities may be obtained for sample locations, groups of locations, unsampled locations. Two brief examples are given, the first involving simple point counts, and the second based on temporary removal counts. Extension of these models to open systems is briefly discussed.

  12. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    Science.gov (United States)

    Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.

    2012-01-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.

  13. Experience in control of avian influenza in Asia.

    Science.gov (United States)

    Sims, L D

    2007-01-01

    Highly pathogenic H5N1 avian influenza viruses have been circulating in Asia for over ten years, providing considerable experience on which to base appropriate long-term strategies for their control. Experience in Hong Kong SAR demonstrates that existing production and marketing practices should be changed and a range of parallel measures used. It also shows the extent of surveillance required to ensure continuing freedom from infection. Certain high-risk practices should be changed or otherwise overcome in order to control and prevent disease, including intensive rearing of large numbers of poultry in premises without biosecurity commensurate with the level of risk for exposure; complex market chains involving many smallholders selling poultry through large numbers of transporters and middlemen in poorly regulated live poultry markets; and rearing of large numbers of ducks outdoors. These high-risk practices are compounded by weak veterinary services and poor reporting systems. In many parts of Asia, these methods of rearing and marketing are an integral way of life, support the poorest members of the community or cannot be changed quickly without severe socioeconomic consequences. The gains made so far will be ephemeral unless there is a shift from an emergency focus to one of consolidation in which these high-risk practices are identified and sustainable measures implemented to minimize the risks they pose, taking account of the socioeconomic effects of interventions. Vaccination will play a key role, as it currently does in China and Viet Nam.

  14. Avian LH and FSH: comparison of several radioimmunoassays

    International Nuclear Information System (INIS)

    Goldsmith, A.R.; Follett, B.K.

    1983-01-01

    Comparisons were made between various LH and FSH radioimmunoassays currently being used to measure avian hormones. The two LH assays were the homologous chicken system of Follett et al. (1972) and the turkey assay of Burke et al. (1979). These assays were also used in heterologous arrangement by interchanging the iodinated LH fractions and antisera. Five FSH assays were analyzed: two homologous chicken systems (Scanes et al., 1977; Sakai and Ishii, 1980) an assay based on mammalian materials (rat FSH and anti-ovine FSH antiserum, and one using labelled turkey FSH (Burke et al., 1979) with an anti-chicken FSH antiserum. The potencies of purified chicken and turkey gonadotrophin preparations and of a range of plasma samples from Japanese quail were measured in each assay. The two LH systems showed some degree of species specificity, such that chicken LH was more active than turkey LH in the chicken assay, whereas the reverse was true in the turkey LH assay. The potency estimates of the purified hormones in the various FSH assays were very consistent. The qualitative changes in plasma hormone levels were similar in all assays, although there were some differences in the magnitude of the responses

  15. Microhabitat choice in island lizards enhances camouflage against avian predators.

    Science.gov (United States)

    Marshall, Kate L A; Philpot, Kate E; Stevens, Martin

    2016-01-25

    Camouflage can often be enhanced by genetic adaptation to different local environments. However, it is less clear how individual behaviour improves camouflage effectiveness. We investigated whether individual Aegean wall lizards (Podarcis erhardii) inhabiting different islands rest on backgrounds that improve camouflage against avian predators. In free-ranging lizards, we found that dorsal regions were better matched against chosen backgrounds than against other backgrounds on the same island. This suggests that P. erhardii make background choices that heighten individual-specific concealment. In achromatic camouflage, this effect was more evident in females and was less distinct in an island population with lower predation risk. This suggests that behavioural enhancement of camouflage may be more important in females than in sexually competing males and related to predation risk. However, in an arena experiment, lizards did not choose the background that improved camouflage, most likely due to the artificial conditions. Overall, our results provide evidence that behavioural preferences for substrates can enhance individual camouflage of lizards in natural microhabitats, and that such adaptations may be sexually dimorphic and dependent on local environments. This research emphasizes the importance of considering links between ecology, behaviour, and appearance in studies of intraspecific colour variation and local adaptation.

  16. Preliminary crystallographic analysis of avian infectious bronchitis virus main protease

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Shen, Wei [Laboratory of Structural Biology, Tsinghua University, Beijing 100084 (China); Liao, Ming, E-mail: mliao@scau.edu.cn [Laboratory of Avian Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Bartlam, Mark, E-mail: mliao@scau.edu.cn [Laboratory of Structural Biology, Tsinghua University, Beijing 100084 (China); National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2007-01-01

    The avian infectious bronchitis virus main protease has been crystallized; crystals diffract to 2.7 Å resolution. Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV M{sup pro} was overexpressed in Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6{sub 1}22. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.

  17. Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores

    Science.gov (United States)

    Kennedy, Christina M.; Campbell Grant, Evan H.; Neel, Maile C.; Fagan, William F.; Marpa, Peter P.

    2011-01-01

    In addition to patch-level attributes (i.e., area and isolation), the nature of land cover between habitat patches (the matrix) may drive colonization and extinction dynamics in fragmented landscapes. Despite a long-standing recognition of matrix effects in fragmented systems, an understanding of the relative impacts of different types of land cover on patterns and dynamics of species occurrence remains limited. We employed multi-season occupancy models to determine the relative influence of patch area, patch isolation, within-patch vegetation structure, and landscape matrix on occupancy dynamics of nine Neotropical nsectivorous birds in 99 forest patches embedded in four matrix types (agriculture, suburban evelopment, bauxite mining, and forest) in central Jamaica. We found that within-patch vegetation structure and the matrix type between patches were more important than patch area and patch isolation in determining local colonization and local extinction probabilities, and that the effects of patch area, isolation, and vegetation structure on occupancy dynamics tended to be matrix and species dependent. Across the avian community, the landscape matrix influenced local extinction more than local colonization, indicating that extinction processes, rather than movement, likely drive interspecific differences in occupancy dynamics. These findings lend crucial empirical support to the hypothesis that species occupancy dynamics in fragmented systems may depend greatly upon the landscape context.

  18. Pyrodiversity promotes avian diversity over the decade following forest fire.

    Science.gov (United States)

    Tingley, Morgan W; Ruiz-Gutiérrez, Viviana; Wilkerson, Robert L; Howell, Christine A; Siegel, Rodney B

    2016-10-12

    An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity-defined as the standard deviation of fire severity-increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called 'mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes. © 2016 The Author(s).

  19. The smallest avian genomes are found in hummingbirds.

    Science.gov (United States)

    Gregory, T Ryan; Andrews, Chandler B; McGuire, Jimmy A; Witt, Christopher C

    2009-11-07

    It has often been suggested that the genome sizes of birds are constrained relative to other tetrapods owing to the high metabolic demands of powered flight and the link between nuclear DNA content and red blood cell size. This hypothesis predicts that hummingbirds, which engage in energy-intensive hovering flight, will display especially constrained genomes even relative to other birds. We report genome size measurements for 37 species of hummingbirds that confirm this prediction. Our results suggest that genome size was reduced before the divergence of extant hummingbird lineages, and that only minimal additional reduction occurred during hummingbird diversification. Unlike in some other avian taxa, the small amount of variation observed within hummingbirds is not explained by variation in respiratory and flight-related parameters. Unexpectedly, genome size appears to have increased in four unrelated hummingbird species whose distributions are centred on humid forests of the upper-tropical elevational zone on the eastern slope of the Andes. This suggests that the secondary expansion of the genome may have been mediated by biogeographical and demographic effects.

  20. Molecular detection and isolation of avian metapneumovirus in Mexico.

    Science.gov (United States)

    Rivera-Benitez, José Francisco; Martínez-Bautista, Rebeca; Ríos-Cambre, Francisco; Ramírez-Mendoza, Humberto

    2014-01-01

    We conducted a longitudinal study to detect and isolate avian metapneumovirus (aMPV) in two highly productive poultry areas in Mexico. A total of 968 breeder hens and pullets from 2 to 73 weeks of age were analysed. Serology was performed to detect aMPV antibodies and 105 samples of tracheal tissue were collected, pooled by age, and used for attempted virus isolation and aMPV nested reverse transcriptase-polymerase chain reaction (nRT-PCR). The serological analysis indicated that 100% of the sampled chickens showed aMPV antibodies by 12 weeks of age. Five pools of pullet samples collected at 3 to 8 weeks of age were positive by nRT-PCR and the sequences obtained indicated 98 to 99% similarity with the reported sequences for aMPV subtype A. Virus isolation of nRT-PCR-positive samples was successfully attempted using chicken embryo lung and trachea mixed cultures with subsequent adaptation to Vero cells. This is the first report of detection and isolation of aMPV in Mexico.