WorldWideScience

Sample records for avian origin detection

  1. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Science.gov (United States)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  2. Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke

    Science.gov (United States)

    Dececchi, T. Alexander; Larsson, Hans C. E.

    2011-01-01

    The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918

  3. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke.

    Directory of Open Access Journals (Sweden)

    T Alexander Dececchi

    Full Text Available The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.

  4. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA

    DEFF Research Database (Denmark)

    Munch, M.; Nielsen, L.P.; Handberg, Kurt

    2001-01-01

    A. A panel of reference influenza strains from various hosts including avian species, human, swine and horse were evaluated in a one tube RT-PCR using primers designed for the amplification of a 218 bp fragment of the NP gene. The PCR products were detected by PCR-ELISA by use of an internal......Avian influenza virus infections are a major cause of morbidity and rapid identification of the virus has important clinical, economical and epidemiological implications. We have developed a one-tube Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for the rapid diagnosis of avian influenza...... catching probe confirming the NP influenza A origin. The PCR-ELISA was about 100 times more sensitive than detection of PCR products by agarose gel electrophoresis. RT-PCR and detection by PCR-ELISA is comparable in sensitivity to virus propagation in eggs. We also designed primers for the detection...

  5. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    International Nuclear Information System (INIS)

    Vázquez-Iglesias, Lorena; Lostalé-Seijo, Irene; Martínez-Costas, José; Benavente, Javier

    2012-01-01

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  6. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  7. Engineering of avian influenza virus detection system in a patient's body

    International Nuclear Information System (INIS)

    Budi Santoso; Romadhon; Sukandar, Istofa

    2010-01-01

    The avian influenza virus detection equipment in a patient's body has been made. Currently, detection of avian influenza virus carried out by expensive laboratory equipment's, so only certain hospitals can perform this detection. This developing equipment is expected to be cheaper than existing equipment and the diagnosis can be known immediately. The sensing device is made using the principle of nuclear radiation detection. Radiation comes from a drunk labelled tamiflu (oseltamivir) which is drunk to the patient. Tamiflu is a drug to catch H5N1 viruses in a patient's body. A labelled tamiflu is tamiflu which is labelled by 1-131 radioisotopes. The presence of virus in the body is proportional to the amount of radiation captured by the detector. The equipment is composed of a Geiger-Mueller (GM) pancake detector type, a signal processor, a counter, and a data processor (computer). The GM detector converts the radiation that comes into electrical signals. Electrical signal is then converted into TTL level pulses by the signal processor. Pulse counting results are processed by data processor. The total count is proportional to the amount of virus captured by labelled tamiflu. The measurement threshold can be set by medical officer through software. At a certain threshold can be inferred identified patients infected with avian influenza virus. If the measurement below the threshold means that the patient is still within safe limits. This equipment is expected to create avian influenza virus detection system that cheaply and quickly so that more and more hospitals are using to detect the avian influenza virus. (author)

  8. Rapid and sensitive detection of novel avian-origin influenza A (H7N9 virus by reverse transcription loop-mediated isothermal amplification combined with a lateral-flow device.

    Directory of Open Access Journals (Sweden)

    Yiyue Ge

    Full Text Available A severe disease in humans caused by a novel avian-origin influenza A (H7N9 virus emerged in China recently, which has caused at least 128 cases and 26 deaths. Rapid detection of the novel H7N9 virus is urgently needed to differentiate the disease from other infections, and to facilitate infection control as well as epidemiologic investigations. In this study, a reverse transcription loop-mediated isothermal amplification combined with a lateral flow device (RT-LAMP-LFD assay to rapidly detect H7N9 virus was developed and evaluated. The RT-LAMP primers were designed to target the haemagglutinin (HA and neuraminidase (NA genes of H7N9 virus. Results of 10-fold dilution series assays showed that analysis of RT-LAMP products by the LFD method was as sensitive as real-time turbidity detection, and that the analytic sensitivities of the HA and NA RT-LAMP assays were both 10 copies of synthetic RNA. Furthermore, both the assays showed 100% clinical specificity for identification of H7N9 virus. The performance characteristics of the RT-LAMP-LFD assay were evaluated with 80 clinical specimens collected from suspected H7N9 patients. The NA RT-LAMP-LFD assay was more sensitive than real time RT-PCR assay. Compared with a combination of virus culture and real-time RT-PCR, the sensitivity, specificity, positive predictive value, and negative predictive value of the RT-LAMP-LFD assay were all 100%. Overall, The RT-LAMP-LFD assay established in this study can be used as a reliable method for early diagnosis of the avian-origin influenza A (H7N9 virus infection.

  9. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  10. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  11. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays

    Science.gov (United States)

    2009-04-01

    Recent outbreaks of Nipah virus , severe acute respiratory syndrome virus , and avian influenza virus reiterate the impor- tance of zoonotic microbes as...Society for Microbiology. All Rights Reserved. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays...been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the

  12. Engineering development of avian influenza virus detection system in a patient's body

    International Nuclear Information System (INIS)

    Budi Santoso; Romadhon; Sukandar; Istofa

    2010-01-01

    The avian influenza virus detection equipment in a patient's body has been made. Currently, detection of avian influenza virus carried out by expensive laboratory equipment's, so only certain hospitals can perform this detection. This developing equipment is expected to be cheaper than existing equipment and the diagnosis can be known immediately. The sensing device is made using the principle of nuclear radiation detection. Radiation comes from a drunk labelled tamiflu (oseltamivir) which is drunk to the patient. Tamiflu is a drug to catch, H5N1 viruses in a patient's body. A labelled tamiflu is tamiflu which is labelled by I-131 radioisotopes. The presence of virus in the body is proportional to the amount of radiation captured by the detector. The equipment is composed of a Geiger-Mueller (GM) pancake detector type, a signal processor, a counter, and a data processor (computer). The GM detector converts the radiation that comes into electrical signals. Electrical signal is then converted into TTL level pulses by the signal processor. Pulse counting results are processed by data processor. The total count is proportional to the amount of virus captured by labelled tamiflu. The measurement threshold can be set by medical officer through software. At a certain threshold can be inferred identified patients infected with avian influenza virus. If the measurement below the threshold means that the patient is still within safe limits. This equipment is expected to create avian influenza virus detection system that cheaply and quickly so that more and more hospitals are using to detect the avian influenza virus. (author)

  13. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    Science.gov (United States)

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  14. Detection of antibodies to avian influenza, infectious bronchitis and ...

    African Journals Online (AJOL)

    Detection of antibodies to avian influenza, infectious bronchitis and Newcastle disease viruses in wild birds in three states of Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  15. Detection and subtyping avian metapneumovirus from turkeys in Iran.

    Science.gov (United States)

    Mayahi, Mansour; Momtaz, Hassan; Jafari, Ramezan Ali; Zamani, Pejman

    2017-01-01

    Avian metapneumovirus (aMPV) causes diseases like rhinotracheitis in turkeys, swollen head syndrome in chickens and avian rhinotracheitis in other birds. Causing respiratory problems, aMPV adversely affects production and inflicts immense economic losses and mortalities, especially in turkey flocks. In recent years, several serological and molecular studies have been conducted on this virus, especially in poultry in Asia and Iran. The purpose of the present study was detecting and subtyping aMPV by reverse transcriptase polymerase chain reaction (RT-PCR) from non-vaccinated, commercial turkey flocks in Iran for the first time. Sixty three meat-type unvaccinated turkey flocks from several provinces of Iran were sampled in major turkey abattoirs. Samples were tested by RT-PCR for detecting and subtyping aMPV. The results showed that 26 samples from three flocks (4.10%) were positive for viral RNA and all of the viruses were found to be subtype B of aMPV. As a result, vaccination especially against subtype B of aMPV should be considered in turkey flocks in Iran to control aMPV infections.

  16. In vitro detection and quantification of botulinum neurotoxin type E activity in avian blood

    Science.gov (United States)

    Piazza, Timothy M.; Blehert, David S.; Dunning, F. Mark; Berlowski-Zier, Brenda M.; Zeytin, Fusun N.; Samuel, Michael D.; Tucker, Ward C.

    2011-01-01

    Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by Förster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity.

  17. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly Pathogenic H5 Avian Influenza Viruses

    OpenAIRE

    Dybing, Jody K.; Schultz-Cherry, Stacey; Swayne, David E.; Suarez, David L.; Perdue, Michael L.

    2000-01-01

    In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian in...

  18. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    Science.gov (United States)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  19. Application and evaluation of RT-PCR-ELISA for the nucleoprotein and RT-PCR for detection of low-pathogenic H5 and H7 subtypes of avian influenza virus

    DEFF Research Database (Denmark)

    Dybkær, Karen; Munch, Mette; Handberg, Kurt J.

    2004-01-01

    Three 1-tube Reverse Transcriptase Polymerase Chain Reactions (RT-PCR) directed against the genes encoding the nucleoprotein (NP) and the H5 and H7 hemagglutinin (HA) gene, respectively, were used for detection of avian influenza virus (AIV) in various specimens. A total of 1,040 samples...... originating from chickens experimentally infected with 2 different low pathogenic avian influenza viruses, from domestic ducks and from wild aquatic birds were examined. The outcome of 1) the universal AIV RT-PCR including a PCR-enzyme-linked immunosorbent assay (ELISA) procedure directed against NP (NP RT...

  20. Investigation of avian influenza virus in poultry and wild birds due to novel avian-origin influenza A(H10N8) in Nanchang City, China.

    Science.gov (United States)

    Ni, Xiansheng; He, Fenglan; Hu, Maohong; Zhou, Xianfeng; Wang, Bin; Feng, Changhua; Wu, Yumei; Li, Youxing; Tu, Junling; Li, Hui; Liu, Mingbin; Chen, Haiying; Chen, Shengen

    2015-01-01

    Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl

    Science.gov (United States)

    Dusek, Robert J.; Hall, Jeffrey S.; Nashold, Sean W.; Teslaa, Joshua L.; Ip, Hon S.

    2011-01-01

    The utility of using Nobuto paper strips for the detection of avian influenza antibodies was examined in mallards (Anas platyrhynchos) experimentally infected with low pathogenic avian influenza viruses. Blood was collected 2 wk after infection and was preserved either as serum or whole blood absorbed onto Nobuto strips. Analysis of samples using a commercially available blocking enzyme-linked immunosorbent assay revealed comparable results (???96% sensitivity for all methods) between sera stored at -30 C and the Nobuto strip preservation method even when the Nobuto strips were stored up to 3 mo at room temperature (RT). Significant differences were detected in the ratio of sample absorbance to negative control absorbance for Nobuto strips stored at RT compared with sera stored at -30 C, although these differences did not affect the ability of the test to reliably detect positive and negative samples. Nobuto strips are a convenient and sensitive alternative to the collection of serum samples when maintaining appropriate storage temperatures is difficult. ?? 2011 American Association of Avian Pathologists.

  2. Avian influenza surveillance and diagnosis

    Science.gov (United States)

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  3. Appearance of reassortant European avian-origin H1 influenza A viruses of swine in Vietnam.

    Science.gov (United States)

    Takemae, N; Nguyen, P T; Le, V T; Nguyen, T N; To, T L; Nguyen, T D; Pham, V P; Vo, H V; Le, Q V T; Do, H T; Nguyen, D T; Uchida, Y; Saito, T

    2018-03-06

    Three subtypes-H1N1, H1N2 and H3N2-of influenza A viruses of swine (IAVs-S) are currently endemic in swine worldwide, but there is considerable genotypic diversity among each subtype and limited geographical distribution. Through IAVs-S monitoring in Vietnam, two H1N2 influenza A viruses were isolated from healthy pigs in Ba Ria-Vung Tau Province, Southern Vietnam, on 2 December 2016. BLAST and phylogenetic analyses revealed that their HA and NA genes were derived from those of European avian-like H1N2 IAVs-S that contained avian-origin H1 and human-like N2 genes, and were particularly closely related to those of IAVs-S circulating in the Netherlands, Germany or Denmark. In addition, the internal genes of these Vietnamese isolates were derived from human A(H1N1)pdm09 viruses, suggesting that the Vietnamese H1N2 IAVs-S are reassortants between European H1N2 IAVs-S and human A(H1N1)pdm09v. The appearance of European avian-like H1N2 IAVs-S in Vietnam marks their first transmission outside Europe. Our results and statistical analyses of the number of live pigs imported into Vietnam suggest that the European avian-like H1N2 IAVs-S may have been introduced into Vietnam with their hosts through international trade. These findings highlight the importance of quarantining imported pigs to impede the introduction of new IAVs-S. © 2018 Blackwell Verlag GmbH.

  4. Origin of evolutionary change in avian clutch size.

    Science.gov (United States)

    Haywood, Sacha

    2013-11-01

    Why different bird species lay different numbers of eggs is a question that has long been associated with factors external to the organism, that is, factors which operate on inherited variation in clutch size through the action of natural selection. Yet, while external factors are important, the extent of what is evolutionarily possible rests with the mechanisms developed by birds for clutch-size control. Hitherto neglected, these mechanisms generate factors internal to the organism that are central to the origin of evolutionary change. They are related to the fact that a species-specific range of clutch size arises from the differential survival of pre-ovulatory follicles undergoing growth when the signal causing egg laying to end reaches the ovary. Herein, I examine three internal factors that, together with external factors, could impact the evolution of avian clutch size. Each factor acts by changing either the number of pre-ovulatory follicles present in the ovary at the time of follicular disruption or the timing of this event. These changes to clutch size can be explained by the concept of heterochrony. In light of this, the role of phenotypic plasticity and genes determining clutch size is discussed. Finally, to account for the origin of evolutionary change in clutch size, I detail an hypothesis involving a process similar to Waddington's theory of genetic assimilation. © 2013 The Author. Biological Reviews © 2013 Cambridge Philosophical Society.

  5. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    Science.gov (United States)

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  6. Avian endogenous provirus (ev-3) env gene sequencing: implication for pathogenic retrovirus origination.

    Science.gov (United States)

    Tikhonenko, A T; Lomovskaya, O L

    1990-02-01

    The avian endogenous env gene product blocks the surface receptor and, as a result, cells become immune to related exogenous retroviruses. On the other hand, the same sequence can be included in the pathogenic retrovirus genome, as shown by oligonucleotide mapping. However, since the complete env gene sequence was not known, the comparison of genomic nucleotide sequences was not possible. Therefore an avian endogenous provirus with an intact env gene was cloned from a chicken gene bank and the regions coding for the C terminus of the gp85 and gp37 proteins were sequenced. Comparison of this sequence with those of other retroviruses proved that one of the pathogenic viruses associated with osteopetrosis is a cross between avian endogenous virus and Rous sarcoma virus. Retroviruses and, especially, endogenous retroviruses are traditionally of the most developed models of viral carcinogenesis. Many endogenous retroviruses are implicated in neoplastic transformation of the cell. For instance, endogenous mouse mammary tumor virus of some inbred lines appears to be the only causative agent in these mammary cancers. Other even nonpathogenic murine endogenous retroviruses are involved in the origination of MCF-type recombinant acute leukosis viruses. Some endogenous retroviruses are implicated in the transduction or activation of cellular protooncogenes. Our interest in endogenous viruses is based on their ability to make cells resistant to exogenous retroviruses. Expression of their major envelope glycoprotein leads to cellular surface receptor blockage and imparts immunity to infection by the related leukemia retroviruses. This problem is quite elaborated for chicken endogenous virus RAV-O (7-9).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig...

  8. Short communication: isolation and phylogenetic analysis of an avian-origin H3N2 canine influenza virus in dog shelter, China.

    Science.gov (United States)

    Su, Shuo; Yuan, Ziguo; Chen, Jidang; Xie, Jiexiong; Li, Huatao; Huang, Zhen; Zhang, Minze; Du, Guohao; Chen, Zhongming; Tu, Liqing; Zou, Yufei; Miao, Junhao; Wang, Hui; Jia, Kun; Li, Shoujun

    2013-06-01

    A H3N2 canine influenza virus, A/canine/Guangdong/3/2011 (H3N2), was isolated from roaming dogs in rural China. Sequence and phylogenetic analysis of eight gene segments revealed that the A/canine/Guangdong/3/2011 (H3N2) was most similar to a recent H3N2 canine influenza virus isolated in cats from South Korea, which originated from an avian strain. To our knowledge, this is the first report of an avian-origin H3N2 CIV which was isolated from roaming dogs in China. The epidemiologic information provided herein suggests that continued study is required to determine if this virus could be established in the roaming dog population in rural China and pose potential threats to public health.

  9. Using Inuit traditional ecological knowledge for detecting and monitoring avian cholera among Common Eiders in the eastern Canadian Arctic

    Directory of Open Access Journals (Sweden)

    Dominique A. Henri

    2018-03-01

    Full Text Available In recent decades, traditional ecological knowledge (TEK has played an increasing role in wildlife management and biodiversity conservation in Canada and elsewhere. This study examined the potential contribution that Inuit TEK (which is one aspect of Inuit Qaujimajatuqangit or Inuit traditional knowledge could offer to detect and monitor avian cholera and other disease-related mortality among Northern Common Eiders (Somateria mollissima borealis breeding in the eastern Canadian Arctic. Avian cholera is an infectious disease (Pasteurella multocida that has been a major conservation issue because of its potential to cause high rates of disease and mortality in several bird species in repeating epizootics; it has spread geographically in North America since the 1940s. In 2004, Inuit hunters from Ivujivik, Nunavik, Québec, were the first to detect avian disease outbreaks among Northern Common Eiders nesting in northeastern Hudson Bay and western Hudson Strait. Laboratory analysis of bird tissues confirmed avian cholera in that region. From 2007 to 2009, we collected Inuit TEK about mortality among Common Eiders and other bird species north and west of where the outbreaks were first detected. During interviews in the communities of Kimmirut, Cape Dorset, Coral Harbour, and Igloolik, Nunavut, Canada (n = 40, Inuit participants reported seeing a total of 8 Common Eiders and 41 specimens of other bird species either sick or dead in northern Hudson Strait, Hudson Bay, and Foxe Basin. Most of the observed disease and mortality events were at sea, on sea ice, or on small nesting islands. Such events probably would have gone undetected by biologists, who were mainly monitoring avian cholera outbreaks on large nesting islands in that region. Inuit participants readily recalled details about the timing, location, and numbers of sick and dead birds that they observed. Some reported signs of disease that were consistent with avian cholera. Inuit also revealed

  10. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    Science.gov (United States)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  11. Global phylogeographic limits of Hawaii's avian malaria

    Science.gov (United States)

    Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; Rahmani, A.R.; Fonseca, D.M.; Fleischer, R.C.

    2006-01-01

    The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13 000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species. ?? 2006 The Royal Society.

  12. 2 original article non-attenuation of highly pathogenic avian

    African Journals Online (AJOL)

    Dr Oboro VO

    AFRICAN JOURNAL OF CLINICAL AND EXPERIMENTAL MICROBIOLOGY JANUARY 2010. ISBN 1595-689X ... NON-ATTENUATION OF HIGHLY PATHOGENIC AVIAN INFLUENZA. H5N1 BY .... Diagnostic PCR was conducted to determine ...

  13. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model

    Science.gov (United States)

    Zanin, Mark; Koçer, Zeynep A.; Poulson, Rebecca L.; Gabbard, Jon D.; Howerth, Elizabeth W.; Jones, Cheryl A.; Friedman, Kimberly; Seiler, Jon; Danner, Angela; Kercher, Lisa; McBride, Ryan; Paulson, James C.; Wentworth, David E.; Krauss, Scott; Tompkins, Stephen M.; Stallknecht, David E.

    2016-01-01

    ABSTRACT H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. IMPORTANCE Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild

  14. Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators

    Science.gov (United States)

    Stevens, Martin

    2014-01-01

    Visual signals are often under conflicting selection to be hidden from predators while being conspicuous to mates and rivals. Here, we investigated whether 3 different island populations of Aegean wall lizards (Podarcis erhardii) with variable coloration among diverse island habitats exhibit simultaneous camouflage and sexual signals. We examined whether signals appear better tuned to conspecific vision as opposed to that of avian predators, and whether background-matching camouflage and sexual signals are partitioned to specific body regions. This could facilitate both covert sexual signaling and camouflage according to the viewing perspectives of predators and conspecifics. We found that lizards typically appeared twice as conspicuous to conspecifics than to avian predators against the same visual background, largely due to lizards’ enhanced sensitivity to ultraviolet, suggesting that P. erhardii signals are tuned to conspecific vision to reduce detection by predators. Males were more conspicuous than females to both predators and conspecifics. In 2 populations, male backs were relatively more camouflaged to predators compared to signaling flanks, whereas in females, exposed and concealed surfaces were camouflaged to predators and generally did not differ in background matching. These findings indicate that lizard coloration evolves under the competing demands of natural and sexual selection to promote signals that are visible to conspecifics while being less perceptible to avian predators. They also elucidate how interactions between natural and sexual selection influence signal detectability and partitioning to different body regions, highlighting the importance of considering receiver vision, viewing perspectives, and signaling environments in studies of signal evolution. PMID:25419083

  15. Comparison of three media for transport and storage of the samples collected for detection of avian influenza virus.

    Science.gov (United States)

    Zhang, Xiao-Chun; Liu, Shuo; Hou, Guang-Yu; Zhuang, Qing-Ye; Wang, Kai-Cheng; Jiang, Wen-Ming; Wang, Su-Chun; Li, Jin-Ping; Yu, Jian-Min; Du, Xiang; Huang, Bao-Xu; Chen, Ji-Ming

    2015-09-15

    Detection of avian influenza viruses (AIVs) is important for diagnosis, surveillance and control of avian influenza which is of great economic and public health significance. Proper transport and storage of samples is critical for the detection when the samples cannot be detected immediately. As recommended by some international or national authoritative entities and some publications, phosphate buffered saline (PBS), PBS-glycerol and brain heart infusion broth (BHIB) are frequently used for transport and storage of the samples collected for detection of AIVs worldwide. In this study, we compared these three media for transport and storage of simulated and authentic swab and feces samples collected for detection of AIVs using virus isolation and reverse transcription-PCR. The results suggest that PBS-glycerol is superior to PBS and BHIB as the sample transport and storage media. The results also suggest that the samples collected for detection of AIVs should be detected as soon as possible because the virus concentration of the samples may decline rapidly during storage within days at 4 or -20°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Molecular detection and isolation of avian metapneumovirus in Mexico.

    Science.gov (United States)

    Rivera-Benitez, José Francisco; Martínez-Bautista, Rebeca; Ríos-Cambre, Francisco; Ramírez-Mendoza, Humberto

    2014-01-01

    We conducted a longitudinal study to detect and isolate avian metapneumovirus (aMPV) in two highly productive poultry areas in Mexico. A total of 968 breeder hens and pullets from 2 to 73 weeks of age were analysed. Serology was performed to detect aMPV antibodies and 105 samples of tracheal tissue were collected, pooled by age, and used for attempted virus isolation and aMPV nested reverse transcriptase-polymerase chain reaction (nRT-PCR). The serological analysis indicated that 100% of the sampled chickens showed aMPV antibodies by 12 weeks of age. Five pools of pullet samples collected at 3 to 8 weeks of age were positive by nRT-PCR and the sequences obtained indicated 98 to 99% similarity with the reported sequences for aMPV subtype A. Virus isolation of nRT-PCR-positive samples was successfully attempted using chicken embryo lung and trachea mixed cultures with subsequent adaptation to Vero cells. This is the first report of detection and isolation of aMPV in Mexico.

  17. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  18. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    Science.gov (United States)

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  19. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  20. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, van R.M.; Koopmans, M.; Du Ry Beest Holle, van M.; Meijer, A.; Klinkenberg, D.; Donnelly, C.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  1. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7.

    Science.gov (United States)

    Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan

    2012-01-01

    A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  3. Influenza A viruses of avian origin circulating in pigs and other mammals.

    Science.gov (United States)

    Urbaniak, Kinga; Kowalczyk, Andrzej; Markowska-Daniel, Iwona

    2014-01-01

    Influenza A viruses (IAVs) are zoonotic agents, capable of crossing the species barriers. Nowadays, they still constitute a great challenge worldwide. The natural reservoir of all influenza A viruses are wild aquatic birds, despite the fact they have been isolated from a number of avian and mammalian species, including humans. Even when influenza A viruses are able to get into another than waterfowl population, they are often unable to efficiently adapt and transmit between individuals. Only in rare cases, these viruses are capable of establishing a new lineage. To succeed a complete adaptation and further transmission between species, influenza A virus must overcome a species barrier, including adaptation to the receptors of a new host, which would allow the virus-cell binding, virus replication and, then, animal-to-animal transmission. For many years, pigs were thought to be intermediate host for adaptation of avian influenza viruses to humans, because of their susceptibility to infection with both, avian and human influenza viruses, which supported hypothesis of pigs as a 'mixing vessel'. In this review, the molecular factors necessary for interspecies transmission are described, with special emphasis on adaptation of avian influenza viruses to the pig population. In addition, this review gives the information about swine influenza viruses circulating around the world with special emphasis on Polish strains.

  4. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods: This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA) I...... and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig...

  5. Genomic analysis of avian influenza viruses from waterfowl in Western Alaska, USA

    Science.gov (United States)

    Reeves, A.B.; Pearce, J.M.; Ramey, A.M.; Ely, Craig R.; Schmutz, J.A.; Flint, Paul L.; Derksen, D.V.; Ip, Hon S.; Trust, K.A.

    2013-01-01

    The Yukon-Kuskokwim Delta (Y-K Delta) in western Alaska is an immense and important breeding ground for waterfowl. Migratory birds from the Pacific Americas, Central Pacific, and East Asian-Australasian flyways converge in this region, providing opportunities for intermixing of North American- and Eurasian-origin hosts and infectious agents, such as avian influenza virus (AIV). We characterized the genomes of 90 low pathogenic (LP) AIV isolates from 11 species of waterfowl sampled on the Y-K Delta between 2006 and 2009 as part of an interagency surveillance program for the detection of the H5N1 highly pathogenic (HP) strain of AIV. We found evidence for subtype and genetic differences between viruses from swans and geese, dabbling ducks, and sea ducks. At least one gene segment in 39% of all isolates was Eurasian in origin. Target species (those ranked as having a relatively high potential to introduce HP H5N1 AIV to North America) were no more likely than nontarget species to carry viruses with genes of Eurasian origin. These findings provide evidence that the frequency at which viral gene segments of Eurasian origin are detected does not result from a strong species effect, but rather we suspect it is linked to the geographic location of the Y-K Delta in western Alaska where flyways from different continents overlap. This study provides support for retaining the Y-K Delta as a high priority region for the surveillance of Asian avian pathogens such as HP H5N1 AIV.

  6. Avian Influenza Virus A (H5N1), Detected through Routine Surveillance, in Child, Bangladesh

    Science.gov (United States)

    Alamgir, A.S.M.; Sultana, Rebecca; Islam, M. Saiful; Rahman, Mustafizur; Fry, Alicia M.; Shu, Bo; Lindstrom, Stephen; Nahar, Kamrun; Goswami, Doli; Haider, M. Sabbir; Nahar, Sharifun; Butler, Ebonee; Hancock, Kathy; Donis, Ruben O.; Davis, Charles T.; Zaman, Rashid Uz; Luby, Stephen P.; Uyeki, Timothy M.; Rahman, Mahmudur

    2009-01-01

    We identified avian influenza virus A (H5N1) infection in a child in Bangladesh in 2008 by routine influenza surveillance. The virus was of the same clade and phylogenetic subgroup as that circulating among poultry during the period. This case illustrates the value of routine surveillance for detection of novel influenza virus. PMID:19751601

  7. Utility of Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents.

    Science.gov (United States)

    Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S

    2016-01-01

    Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus.

    Science.gov (United States)

    Xu, Lili; Bao, Linlin; Deng, Wei; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Yong, Weidong; Wei, Qiang; Zhang, Lianfeng; Qin, Chuan

    2013-08-08

    The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus. A/Anhui/1/2013 (H7N9) virus was administered by intranasal instillation to groups of mice and ferrets, and animals developed typical clinical signs including body weight loss (mice and ferrets), ruffled fur (mice), sneezing (ferrets), and death (mice). Peak virus shedding from respiratory tract was observed on 2 days post inoculation (d.p.i.) for mice and 3-5 d.p.i. for ferrets. Virus could also be detected in brain, liver, spleen, kidney, and intestine from inoculated mice, and in heart, liver, and olfactory bulb from inoculated ferrets. The inoculation of H7N9 could elicit seroconversion titers up to 1280 in ferrets and 160 in mice. Leukopenia, significantly reduced lymphocytes but increased neutrophils were also observed in mouse and ferret models. The mouse and ferret model enables detailed studies of the pathogenesis of this illness and lay the foundation for drug or vaccine evaluation.

  9. Mechanical design for positioning of GM detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  10. Movements of Birds and Avian Influenza from Asia into Alaska

    OpenAIRE

    Winker, Kevin; McCracken, Kevin G.; Gibson, Daniel D.; Pruett, Christin L.; Meier, Rose; Huettmann, Falk; Wege, Michael; Kulikova, Irina V.; Zhuravlev, Yuri N.; Perdue, Michael L.; Spackman, Erica; Suarez, David L.; Swayne, David E.

    2007-01-01

    Asian-origin avian influenza (AI) viruses are spread in part by migratory birds. In Alaska, diverse avian hosts from Asia and the Americas overlap in a region of intercontinental avifaunal mixing. This region is hypothesized to be a zone of Asia-to-America virus transfer because birds there can mingle in waters contaminated by wild-bird?origin AI viruses. Our 7 years of AI virus surveillance among waterfowl and shorebirds in this region (1998?2004; 8,254 samples) showed remarkably low infecti...

  11. Detection of H5 Avian Influenza Viruses by Antigen-Capture Enzyme-Linked Immunosorbent Assay Using H5-Specific Monoclonal Antibody▿

    OpenAIRE

    He, Qigai; Velumani, Sumathy; Du, Qingyun; Lim, Chee Wee; Ng, Fook Kheong; Donis, Ruben; Kwang, Jimmy

    2007-01-01

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Asia and Europe is threatening animals and public health systems. Effective diagnosis and control management are needed to control the disease. To this end, we developed a panel of monoclonal antibodies (MAbs) against the H5N1 avian influenza virus (AIV) and implemented an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) to detect the H5 viral antigen. Mice immunized with denatured hemagglutinin (H...

  12. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico.

    Science.gov (United States)

    Lu, Lu; Lycett, Samantha J; Leigh Brown, Andrew J

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.

  13. Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.

    Science.gov (United States)

    Zhu, Henan; Hughes, Joseph; Murcia, Pablo R

    2015-05-01

    Influenza A viruses (IAVs) are maintained mainly in wild birds, and despite frequent spillover infections of avian IAVs into mammals, only a small number of viruses have become established in mammalian hosts. A new H3N2 canine influenza virus (CIV) of avian origin emerged in Asia in the mid-2000s and is now circulating in dog populations of China and South Korea, and possibly in Thailand. The emergence of CIV provides new opportunities for zoonotic infections and interspecies transmission. We examined 14,764 complete IAV genomes together with all CIV genomes publicly available since its first isolation until 2013. We show that CIV may have originated as early as 1999 as a result of segment reassortment among Eurasian and North American avian IAV lineages. We also identified amino acid changes that might have played a role in CIV emergence, some of which have not been previously identified in other cross-species jumps. CIV evolves at a lower rate than H3N2 human influenza viruses do, and viral phylogenies exhibit geographical structure compatible with high levels of local transmission. We detected multiple intrasubtypic and heterosubtypic reassortment events, including the acquisition of the NS segment of an H5N1 avian influenza virus that had previously been overlooked. In sum, our results provide insight into the adaptive changes required by avian viruses to establish themselves in mammals and also highlight the potential role of dogs to act as intermediate hosts in which viruses with zoonotic and/or pandemic potential could originate, particularly with an estimated dog population of ∼ 700 million. Influenza A viruses circulate in humans and animals. This multihost ecology has important implications, as past pandemics were caused by IAVs carrying gene segments of both human and animal origin. Adaptive evolution is central to cross-species jumps, and this is why understanding the evolutionary processes that shape influenza A virus genomes is key to elucidating

  14. To report or not to report: a psychosocial investigation aimed at improving early detection of Avian Influenza outbreaks

    NARCIS (Netherlands)

    A.R.W. Elbers; M.J. Gorgievski-Duijvesteijn (Marjan); K. Zarafshani (Kiumars); G. Koch (Guus)

    2010-01-01

    textabstractSummary: The aim of this study was to identify difficulties and barriers to reporting clinically suspect situations, possibly caused by avian influenza (AI), and to explore possible incentives to reporting such situations, with the ultimate aim of facilitating early detection of AI

  15. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    Science.gov (United States)

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  16. Detection of distribution of avian influenza H5N1 virus by immunohistochemistry, chromogenic in situ hybridization and real-time PCR techniques in experimentally infected chickens.

    Science.gov (United States)

    Chamnanpood, Chanpen; Sanguansermsri, Donruedee; Pongcharoen, Sutatip; Sanguansermsri, Phanchana

    2011-03-01

    Ten specific pathogen free (SPF) chickens were inoculated intranasally with avian influenza virus subtype H5N1. Evaluation revealed distribution of the virus in twelve organs: liver, intestine, bursa, lung, trachea, thymus, heart, pancreas, brain, spleen, kidney, and esophagus. Immunohistochemistry (IHC), chromogenic in situ hybridization (CISH), and real-time polymerase chain reaction (PCR) were developed and compared for detection of the virus from the organs. The distribution of avian influenza H5N1 in chickens varied by animal and detecting technique. The heart, kidneys, intestines, lungs, and pancreas were positive with all three techniques, while the others varied by techique. The three techniques can be used to detect avian influenza effectively, but the pros and cons of each technique need to be determined. The decision of which technique to use depends on the objective of the examination, budget, type and quality of samples, laboratory facilities and technician skills.

  17. Detection of Avian Influenza Virus by Fluorescent DNA Barcode-based Immunoassay with Sensitivity Comparable to PCR

    DEFF Research Database (Denmark)

    Cao, Cuong; Dhumpa, Raghuram; Bang, Dang Duong

    2010-01-01

    involves the sandwiching of the target AIV between magnetic immunoprobes and barcode-carrying immunoprobes. Because each barcode-carrying immunoprobe is functionalized with a multitude of fluorophore-DNA barcode strands, many DNA barcodes are released for each positive binding event resulting......In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection...

  18. A mechanical design for positioning of gm detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  19. USGS role and response to highly pathogenic avian influenza

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  20. To report or not to report: a psychosocial investigation aimed at improving early detection of avian influenza outbreaks

    NARCIS (Netherlands)

    Elbers, A.R.W.; Gorgievski, M.J.; Zarafshani, K.; Koch, G.

    2010-01-01

    The aim of this study was to identify limitations - and solutions for those limitations – with respect to reporting clinically suspect situations on poultry farms, possibly caused by Avian Influenza (AI) with the ultimate aim to facilitate early detection of AI-outbreaks. Focus group sessions were

  1. Laboratory evaluation of a quantitative real-time reverse transcription PCR assay for the detection and identification of the four subgroups of avian metapneumovirus.

    Science.gov (United States)

    Guionie, O; Toquin, D; Sellal, E; Bouley, S; Zwingelstein, F; Allée, C; Bougeard, S; Lemière, S; Eterradossi, N

    2007-02-01

    Avian metapneumovirus (AMPV) is an important pathogen causing respiratory diseases and egg drops in several avian species. Four AMPV subgroups have been identified. The laboratory diagnosis of AMPV infections relies on serological methods, on labour-intensive virus isolation procedures, and on recently developed subgroup specific reverse transcription PCR (RT-PCR) protocols. In the present study, both the specificity and sensitivity of a commercial real-time reverse transcription PCR (RRT-PCR) for the detection and identification of the four AMPV subgroups were evaluated. Fifteen non-AMPV avian viruses belonging to 7 genera and 32 AMPV belonging to the 4 subgroups were tested. No non-AMPV virus was detected, whereas all AMPV viruses were identified in agreement with their previous molecular and antigenic subgroup assignment. The sensitivity and quantitating ability of the RRT-PCR assay were determined using serial dilutions of RNA derived either from AMPV virus stocks or from runoff transcripts. In all cases, linear dose/responses were observed. The detection limits of the different subgroups ranged from 500 to 5000 RNA copies and from 0.03 to 3.16TCID50/ml. The results were reproducible under laboratory conditions, thus showing that quantitative RRT-PCR is a new and powerful tool for the rapid and sensitive detection, identification and quantitation of AMPVs.

  2. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France.

    Science.gov (United States)

    Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie

    2018-01-01

    In southwestern France, during the winter of 2016-2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50-110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log 10 RNA copies per m 3 , and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  3. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France

    Directory of Open Access Journals (Sweden)

    Axelle Scoizec

    2018-02-01

    Full Text Available In southwestern France, during the winter of 2016–2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50–110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log10 RNA copies per m3, and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  4. Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase–polymerase chain reaction assay

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram; Handberg, Kurt; Jørgensen, Poul Henrik

    2011-01-01

    Avian influenza virus (AIV) causes great economic losses for the poultry industry worldwide and threatens the human population with a pandemic. The conventional detection method for AIV involves sample preparation of viral RNA extraction and purification from raw sample such as bird droppings...

  5. Detection of avian metapneumovirus subtypes in turkeys using RT-PCR.

    Science.gov (United States)

    Ongor, H; Karahan, M; Kalin, R; Bulut, H; Cetinkaya, B

    2010-03-20

    This study investigated the prevalence of avian metapneumovirus (aMPV) and the detection of molecular subtypes of field strains of the virus using RT-PCR in clinically healthy turkeys and those showing signs of respiratory disease. In the RT-PCR examination of 624 tracheal tissue samples collected from a local turkey abattoir, 2.9 per cent (18/624) of samples tested positive. In the examination of tracheal swab samples collected from flocks with respiratory problems, 18 of 20 samples tested positive. When the results were assessed at flock level, aMPV infection was detected in only one of the 23 clinically healthy turkey flocks, whereas all four flocks with respiratory problems were infected. Molecular typing using primers specific to the attachment glycoprotein (G) gene showed that all 36 positive samples belonged to subtype B. Partial sequence analysis of DNA samples showed 95 per cent homology between the field types and the reference strain aMPV subtype B. Whereas clinically healthy turkeys had been vaccinated with a subtype A virus vaccine, the flocks with respiratory problems had been vaccinated with a subtype B virus vaccine. Despite four blind passages of RT-PCR-positive samples on Vero and chicken embryo fibroblast cells, no cytopathic effect was detected by microscopic examination.

  6. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  7. Avian Influenza in wild birds from Chile, 2007-2009.

    Science.gov (United States)

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-02

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Little evidence of subclinical avian influenza virus infections among rural villagers in Cambodia.

    Directory of Open Access Journals (Sweden)

    Gregory C Gray

    Full Text Available In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI. Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI virus infection and withdrew from the study. Ninety-seven ILI cases (22.1% were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0% had detectable antibody titers (≥ 1:10 against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6, 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1, 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up against an avian-like A/Hong Kong/1073/1999(H9N2, 6 (1 detected at both 12- and 24-month follow-up against an avian-like A/Duck/Memphis/546/74(H11N9, and 2 against an avian-like A/Duck/Alberta/60/76(H12N5. With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  9. Measuring steroid hormones in avian eggs

    NARCIS (Netherlands)

    Von Engelhardt, Nikolaus; Groothuis, Ton G. G.; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  10. Measuring Steroid Hormones in Avian Eggs

    NARCIS (Netherlands)

    Engelhardt, Nikolaus von; Groothuis, Ton G.G.

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  11. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds.

    Science.gov (United States)

    Lloyd, G T; Bapst, D W; Friedman, M; Davis, K E

    2016-11-01

    Branch lengths-measured in character changes-are an essential requirement of clock-based divergence estimation, regardless of whether the fossil calibrations used represent nodes or tips. However, a separate set of divergence time approaches are typically used to date palaeontological trees, which may lack such branch lengths. Among these methods, sophisticated probabilistic approaches have recently emerged, in contrast with simpler algorithms relying on minimum node ages. Here, using a novel phylogenetic hypothesis for Mesozoic dinosaurs, we apply two such approaches to estimate divergence times for: (i) Dinosauria, (ii) Avialae (the earliest birds) and (iii) Neornithes (crown birds). We find: (i) the plausibility of a Permian origin for dinosaurs to be dependent on whether Nyasasaurus is the oldest dinosaur, (ii) a Middle to Late Jurassic origin of avian flight regardless of whether Archaeopteryx or Aurornis is considered the first bird and (iii) a Late Cretaceous origin for Neornithes that is broadly congruent with other node- and tip-dating estimates. Demonstrating the feasibility of probabilistic time-scaling further opens up divergence estimation to the rich histories of extinct biodiversity in the fossil record, even in the absence of detailed character data. © 2016 The Authors.

  12. Rapid sample preparation for detection and identification of avian influenza virus from chicken faecal samples using magnetic bead microsystem

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram; Bu, Minqiang; Handberg, Kurt

    2010-01-01

    Avian influenza virus (AIV) is an infectious agent of birds and mammals. AIV is causing huge economic loss and can be a threat to human health. Reverse transcriptase polymerase chain reaction (RT-PCR) has been used as a method for the detection and identification of AIV virus. Although RT...

  13. Hydrogel based QCM aptasensor for detection of avian influenza virus.

    Science.gov (United States)

    Wang, Ronghui; Li, Yanbin

    2013-04-15

    The objective of this study was to develop a quartz crystal microbalance (QCM) aptasensor based on ssDNA crosslinked polymeric hydrogel for rapid, sensitive and specific detection of avian influenza virus (AIV) H5N1. A selected aptamer with high affinity and specificity against AIV H5N1 surface protein was used, and hybridization between the aptamer and ssDNA formed the crosslinker in the polymer hydrogel. The aptamer hydrogel was immobilized on the gold surface of QCM sensor using a self-assembled monolayer method. The hydrogel remained in the state of shrink if no H5N1 virus was present in the sample because of the crosslinking between the aptamer and ssDNA in the polymer network. When it exposed to target virus, the binding reaction between the aptamer and H5N1 virus caused the dissolution of the linkage between the aptamer and ssDNA, resulting in the abrupt swelling of the hydrogel. The swollen hydrogel was monitored by the QCM sensor in terms of decreased frequency. Three polymeric hydrogels with different ratio (100:1 hydrogel I, 10:1 hydrogel II, 1:1 hydrogel III) of acrylamide and the aptamer monomer were synthesized, respectively, and then were used as the QCM sensor coating material. The results showed that the developed hydrogel QCM aptasensor was capable of detecting target H5N1 virus, and among the three developed aptamer hydrogels, hydrogel III coated QCM aptasensor achieved the highest sensitivity with the detection limit of 0.0128 HAU (HA unit). The total detection time from sampling to detection was only 30 min. In comparison with the anti-H5 antibody coated QCM immunosensor, the hydrogel QCM aptasensor lowered the detection limit and reduced the detection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Avian influenza A virus subtype H5N2 in a red-lored Amazon parrot.

    Science.gov (United States)

    Hawkins, Michelle G; Crossley, Beate M; Osofsky, Anna; Webby, Richard J; Lee, Chang-Won; Suarez, David L; Hietala, Sharon K

    2006-01-15

    A 3-month-old red-lored Amazon parrot (Amazona autumnalis autumnalis) was evaluated for severe lethargy. Avian influenza virus hemagglutinin subtype H5N2 with low pathogenicity was characterized by virus isolation, real-time reverse transcriptase PCR assay, chicken intravenous pathogenicity index, and reference sera. The virus was also determined to be closely related to a virus lineage that had been reported only in Mexico and Central America. The chick was admitted to the hospital and placed in quarantine. Supportive care treatment was administered. Although detection of H5 avian influenza virus in birds in the United States typically results in euthanasia of infected birds, an alternative strategy with strict quarantine measures and repeated diagnostic testing was used. The chick recovered from the initial clinical signs after 4 days and was released from quarantine 9 weeks after initial evaluation after 2 consecutive negative virus isolation and real-time reverse transcriptase PCR assay results. To the authors' knowledge, this is the first report of H5N2 avian influenza A virus isolated from a psittacine bird and represents the first introduction of this virus into the United States, most likely by illegal importation of psittacine birds. Avian influenza A virus should be considered as a differential diagnosis for clinical signs of gastrointestinal tract disease in psittacine birds, especially in birds with an unknown history of origin. Although infection with avian influenza virus subtype H5 is reportable, destruction of birds is not always required.

  15. Unexpected infection outcomes of China-origin H7N9 low pathogenicity avian influenza virus in turkeys.

    Science.gov (United States)

    Slomka, Marek J; Seekings, Amanda H; Mahmood, Sahar; Thomas, Saumya; Puranik, Anita; Watson, Samantha; Byrne, Alexander M P; Hicks, Daniel; Nunez, Alejandro; Brown, Ian H; Brookes, Sharon M

    2018-05-09

    The China-origin H7N9 low pathogenicity avian influenza virus (LPAIV) emerged as a zoonotic threat in 2013 where it continues to circulate in live poultry markets. Absence of overt clinical signs in poultry is a typical LPAIV infection outcome, and has contributed to its insidious maintenance in China. This study is the first description of H7N9 LPAIV (A/Anhui/1/13) infection in turkeys, with efficient transmission to two additional rounds of introduced contact turkeys which all became infected during cohousing. Surprisingly, mortality was observed in six of eight (75%) second-round contact turkeys which is unusual for LPAIV infection, with unexpected systemic dissemination to many organs beyond the respiratory and enteric tracts, but interestingly no accompanying mutation to highly pathogenic AIV. The intravenous pathogenicity index score for a turkey-derived isolate (0.39) affirmed the LPAIV phenotype. However, the amino acid change L235Q in the haemagglutinin gene occurred in directly-infected turkeys and transmitted to the contacts, including those that died and the two which resolved infection to survive to the end of the study. This polymorphism was indicative of a reversion from mammalian to avian adaptation for the H7N9 virus. This study underlined a new risk to poultry in the event of H7N9 spread beyond China.

  16. Avian influenza survey in migrating waterfowl in Sonora, Mexico.

    Science.gov (United States)

    Montalvo-Corral, M; López-Robles, G; Hernández, J

    2011-02-01

    A two-year survey was carried out on the occurrence of avian influenza in migrating birds in two estuaries of the Mexican state of Sonora, which is located within the Pacific flyway. Cloacal and oropharyngeal swabs were collected from 1262 birds, including 20 aquatic bird species from the Moroncarit and Tobari estuaries in Sonora, Mexico. Samples were tested for type A influenza (M), H5 Eurasian and North American subtypes (H5EA and H5NA respectively) and the H7 North American subtype (H7NA). Gene detection was determined by one-step real-time reverse transcription polymerase chain reaction (RRT-PCR). The results revealed that neither the highly pathogenic avian influenza virus H5 of Eurasian lineage nor H7NA were detected. The overall prevalence of avian influenza type A (M-positive) in the sampled birds was 3.6% with the vast majority in dabbling ducks (Anas species). Samples from two birds, one from a Redhead (Aythya americana) and another from a Northern Shoveler (Anas clypeata), were positive for the low-pathogenic H5 avian influenza virus of North American lineage. These findings represented documented evidence of the occurrence of avian influenza in wintering birds in the Mexican wetlands. This type of study contributes to the understanding of how viruses spread to new regions of North America and highlights the importance of surveillance for the early detection and control of potentially pathogenic strains, which could affect animal and human health. © 2010 Blackwell Verlag GmbH.

  17. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen...

  18. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR) for detection of avian metapneumovirus subtype A

    OpenAIRE

    Ferreira, HL; Spilki, FR; dos Santos, MMAB; de Almeida, RS; Arns, CW

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  19. Rapid detection of the avian influenza virus H5N1 subtype in Egypt

    African Journals Online (AJOL)

    Dr

    highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and ... Key words: Avian influenza virus, H5N1, fluorescent antibody enzyme-linked immunosorbent assay (ELISA) ..... poultry and is potentially zoonotic.

  20. Avian influenza

    Science.gov (United States)

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  1. Use of FTA sampling cards for molecular detection of avian influenza virus in wild birds.

    Science.gov (United States)

    Keeler, Shamus P; Ferro, Pamela J; Brown, Justin D; Fang, Xingwang; El-Attrache, John; Poulson, Rebecca; Jackwood, Mark W; Stallknecht, David E

    2012-03-01

    Current avian influenza (AI) virus surveillance programs involving wild birds rely on sample collection methods that require refrigeration or low temperature freezing to maintain sample integrity for virus isolation and/or reverse-transcriptase (RT) PCR. Maintaining the cold chain is critical for the success of these diagnostic assays but is not always possible under field conditions. The aim of this study was to test the utility of Finders Technology Associates (FTA) cards for reliable detection of AI virus from cloacal and oropharyngeal swabs of wild birds. The minimum detectable titer was determined, and the effect of room temperature storage was evaluated experimentally using multiple egg-propagated stock viruses (n = 6). Using real time RT-PCR, we compared results from paired cloacal swab and samples collected on FTA cards from both experimentally infected mallards (Anasplatyrhynchos) and hunter-harvested waterfowl sampled along the Texas Gulf Coast. Based on the laboratory trials, the average minimal detectable viral titer was determined to be 1 x 10(4.7) median embryo infectious dose (EID50)/ml (range: 1 x 10(4.3) to 1 x 10(5.4) EID50/ml), and viral RNA was consistently detectable on the FTA cards for a minimum of 20 days and up to 30 days for most subtypes at room temperature (23 C) storage. Real-time RT-PCR of samples collected using the FTA cards showed fair to good agreement in live birds when compared with both real-time RT-PCR and virus isolation of swabs. AI virus detection rates in samples from several wild bird species were higher when samples were collected using the FTA cards compared with cloacal swabs. These results suggest that FTA cards can be used as an alternative sample collection method when traditional surveillance methods are not possible, especially in avian populations that have historically received limited testing or situations in which field conditions limit the ability to properly store or ship swab samples.

  2. Application of TMA (Tissue micro-array) in the observation of apoptotic cascade in postradiation damage in avian medicine

    International Nuclear Information System (INIS)

    Fridman, E.; Skarda, J.; Skardova, I.

    2006-01-01

    The study of apoptotic cascade by the use of relatively new technique in avian medicine: TMA may help in early detection and prevention of acquired immunodeficiency caused by the influence of a variety of pathogenic and non-pathogenic environmental factors, which may result in severe economical losses in conditions of intensive poultry farming. There has not been any report of applying this method in veterinary medicine. Tissue micro-array (TMA) technology allows rapid visualization of molecular targets in thousands of tissue specimens at a time, either at the DNA, RNA or protein level. The technique facilitates rapid translation of molecular discoveries to clinical applications. This technology has a number of advantages compared with conventional techniques: speed and high throughput, standardization and experimental uniformity, ease of use, all histochemical and molecular detection techniques can be used, decreased assay volume, preservation of original block, and conservation of valuable tissue etc. The aim of the present work were the study of immunosuppression and apoptotic cascade and possibilities of application of tissue micro-array in chicken in experimental condition and diagnostics in avian medicine in general. The selection of samples from avian primary immune organs: thymus and Bursa Fabric was done after gamma irradiation and infectious bursal virus infection (IBDV). (authors)

  3. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  4. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs

    Directory of Open Access Journals (Sweden)

    Viuff Birgitte M

    2011-09-01

    Full Text Available Abstract Background Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3 and swine/human (SA-alpha-2,6 influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA I, and II, and Sambucus Nigra (SNA. Furthermore, the predilection sites of swine influenza virus (SIV subtypes H1N1 and H1N2 as well as avian influenza virus (AIV subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods. Results SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0% at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas. Conclusions A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated

  5. Detection of avian nephritis virus and chicken astrovirus in Nigerian ...

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... Avian nephritis virus (ANV) and chicken astrovirus (CAstV) are widely distributed in poultry flocks ... sheep, cats, dogs, deer, mice, turkeys, guinea fowl and ..... complex: turkey astrovirus, turkey coronavirus, and turkey reovirus.

  6. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses.

    Science.gov (United States)

    Lemaitre, E; Allée, C; Vabret, A; Eterradossi, N; Brown, P A

    2018-01-01

    Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  8. Emergence of a novel avian pox disease in British tit species.

    Science.gov (United States)

    Lawson, Becki; Lachish, Shelly; Colvile, Katie M; Durrant, Chris; Peck, Kirsi M; Toms, Mike P; Sheldon, Ben C; Cunningham, Andrew A

    2012-01-01

    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006-2010. Reports of affected Paridae (211 incidents) outnumbered reports in non-Paridae (91 incidents). The majority (90%) of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3%) than were incidents in non-Paridae hosts (31.9%). Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.

  9. Emergence of a novel avian pox disease in British tit species.

    Directory of Open Access Journals (Sweden)

    Becki Lawson

    Full Text Available Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006-2010. Reports of affected Paridae (211 incidents outnumbered reports in non-Paridae (91 incidents. The majority (90% of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3% than were incidents in non-Paridae hosts (31.9%. Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.

  10. (Highly pathogenic) avian influenza as a zoonotic agent.

    Science.gov (United States)

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  12. Evaluation of a commercial competitive enzyme-linked immunosorbent assay for detection of avian influenza virus subtype H5 antibodies in zoo birds

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Andersen, Jannie Holmegaard; Hjulsager, Charlotte Kristiane

    2017-01-01

    The hemagglutination inhibition (HI) test is the current gold standard for detecting antibodies to avian influenza virus (AIV). Enzyme-linked immunosorbent assays (ELISAs) have been explored for use in poultry and certain wild bird species because of high efficiency and lower cost. This study com...

  13. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  14. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  15. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  16. Evaluation of Flinders Technology Associates cards for storage and molecular detection of avian metapneumoviruses.

    Science.gov (United States)

    Awad, Faez; Baylis, Matthew; Jones, Richard C; Ganapathy, Kannan

    2014-01-01

    The feasibility of using Flinders Technology Associates (FTA) cards for the molecular detection of avian metapneumovirus (aMPV) by reverse transcriptase-polymerase chain reaction (RT-PCR) was investigated. Findings showed that no virus isolation was possible from aMPV-inoculated FTA cards, confirming viral inactivation upon contact with the cards. The detection limits of aMPV from the FTA card and tracheal organ culture medium were 10(1.5) median ciliostatic doses/ml and 10(0.75) median ciliostatic doses/ml respectively. It was possible to perform molecular characterization of both subtypes A and B aMPV using inoculated FTA cards stored for up to 60 days at 4 to 6°C. Tissues of the turbinate, trachea and lung of aMPV-infected chicks sampled either by direct impression smears or by inoculation of the tissue homogenate supernatants onto the FTA cards were positive by RT-PCR. However, the latter yielded more detections. FTA cards are suitable for collecting and transporting aMPV-positive samples, providing a reliable and hazard-free source of RNA for molecular characterization.

  17. Comparison of avian and nonavian hyaluronic acid in osteoarthritis of the knee

    Directory of Open Access Journals (Sweden)

    Robert J Petrella

    2010-01-01

    Full Text Available Robert J Petrella, Anthony Cogliano, Joseph DecariaFaculties of Medicine and Health Sciences, University of Western Ontario, London, ON, CanadaBackground: Hyaluronic acid (HA in knee osteoarthritis (OA has been shown to be efficacious and safe, but long-term follow up and head-to-head comparison of products, in particular those of avian versus those of nonavian origin, are lacking.Objective: The objective was to compare the efficacy and safety of avian and nonavian origin HA in the treatment of knee OA during a long-term follow-up.Methods: Patients were enrolled on a consecutive basis from all referrals received from 1997 to 2007 at a large primary care referral center in London, Canada. Patients were allocated to commercially available avian and nonavian origin HA based on their own preference for product. Patients were not randomized to therapy nor did the referral center advocate one product versus another. During the period of investigation, three nonavian and two avian products were available in Canada. Injections were given once weekly over three weeks (one series using a lateral approach. Assessments included body mass index, numbers of medications, number of chronic diseases, duration of knee OA at presentation, visual analog scale (VAS score (0–10 cm for rest and weight-bearing pain, patient satisfaction with treatment (5-point categorical scale, numbers of HA series to the point of analysis, previous intra-articular treatment prior to first injection series, adverse events, serious adverse events, and self-payment versus third party payment. Following the first injection series, patients returned to the clinic of their own volition. Inclusion for a second and subsequent injection series was based on a patient request but also requirement of a resting VAS score > 4.5 cm. All patients had radiographic evidence of at least grade 1 OA. Patients who crossed over to alternate avian or nonavian product were not included in the analysis

  18. Fusariotoxins in Avian Species: Toxicokinetics, Metabolism and Persistence in Tissues

    Directory of Open Access Journals (Sweden)

    Philippe Guerre

    2015-06-01

    Full Text Available Fusariotoxins are mycotoxins produced by different species of the genus Fusarium whose occurrence and toxicity vary considerably. Despite the fact avian species are highly exposed to fusariotoxins, the avian species are considered as resistant to their toxic effects, partly because of low absorption and rapid elimination, thereby reducing the risk of persistence of residues in tissues destined for human consumption. This review focuses on the main fusariotoxins deoxynivalenol, T-2 and HT-2 toxins, zearalenone and fumonisin B1 and B2. The key parameters used in the toxicokinetic studies are presented along with the factors responsible for their variations. Then, each toxin is analyzed separately. Results of studies conducted with radiolabelled toxins are compared with the more recent data obtained with HPLC/MS-MS detection. The metabolic pathways of deoxynivalenol, T-2 toxin, and zearalenone are described, with attention paid to the differences among the avian species. Although no metabolite of fumonisins has been reported in avian species, some differences in toxicokinetics have been observed. All the data reviewed suggest that the toxicokinetics of fusariotoxins in avian species differs from those in mammals, and that variations among the avian species themselves should be assessed.

  19. Secondarily flightless birds or Cretaceous non-avian theropods?

    Science.gov (United States)

    Kavanau, J Lee

    2010-02-01

    Recent studies by Varricchio et al. reveal that males cared for the eggs of troodontids and oviraptorids, so-called "non-avian theropods" of the Cretaceous, just as do those of most Paleognathic birds (ratites and tinamous) today. Further, the clutches of both groups have large relative volumes, and consist of many eggs of relatively large size. By comparison, clutch care by most extant birds is biparental and the clutches are of small relative volume, and consist of but few small eggs. Varricchio et al. propose that troodontids and oviraptorids were pre-avian and that paternal egg care preceded the origin of birds. On the contrary, unmentioned by them is that abundant paleontological evidence has led several workers to conclude that troodontids and oviraptorids were secondary flightless birds. This evidence ranges from bird-like bodies and bone designs, adapted for climbing, perching, gliding, and ultimately flight, to relatively large, highly developed brains, poor sense of smell, and their feeding habits. Because ratites also are secondarily flightless and tinamous are reluctant, clumsy fliers, the new evidence strengthens the view that troodontids and oviraptorids were secondarily flightless. Although secondary flightlessness apparently favors paternal care of clutches of large, abundant eggs, such care is not likely to have been primitive. There are a suite of previously unknown independent findings that point to the evolution of, first, maternal, followed by biparental egg care in earliest ancestors of birds. This follows from the discovery of remarkable relict avian reproductive behaviors preserved by virtue of the highly conservative nature of vertebrate brain evolution. These behaviors can be elicited readily by exposing breeding birds to appropriate conditions, both environmental and with respect to their eggs and chicks. They give significant new clues for a coherent theory of avian origin and early evolution.

  20. Evaluation of Commercial Diagnostic Assays for the Specific Detection of Avian Influenza A (H7N9) Virus RNA Using a Quality-Control Panel and Clinical Specimens in China

    Science.gov (United States)

    Chen, Suhong; Wang, Dayan; Li, Changgui; Wu, Xing; Li, Lili; Bai, Dongting; Zhang, Chuntao; Wang, Junzhi

    2015-01-01

    A novel avian influenza A H7N9-subtype virus emerged in China in 2013 and threatened global public health. Commercial kits that specifically detect avian influenza A (H7N9) virus RNA are urgently required to prepare for the emergence and potential pandemic of this novel influenza virus. The safety and effectiveness of three commercial molecular diagnostic assays were evaluated using a quality-control panel and clinical specimens collected from over 90 patients with confirmed avian influenza A (H7N9) virus infections. The analytical performance evaluation showed that diverse influenza H7N9 viruses can be detected with high within- and between-lot reproducibility and without cross-reactivity to other influenza viruses (H1N1 pdm09, seasonal H1N1, H3N2, H5N1 and influenza B). The detection limit of all the commercial assays was 2.83 Log10 copies/μl [0.7 Log10TCID50/mL of avian influenza A (H7N9) virus strain A/Zhejiang/DTID-ZJU01/2013], which is comparable to the method recommended by the World Health Organization (WHO). In addition, using a WHO-Chinese National Influenza Center (CNIC) method as a reference for clinical evaluation, positive agreement of more than 98% was determined for all of the commercial kits, while negative agreement of more than 99% was observed. In conclusion, our findings provide comprehensive evidence for the high performance of three commercial diagnostic assays and suggest the application of these assays as rapid and effective diagnostic tools for avian influenza A (H7N9) virus in the routine clinical practice of medical laboratories. PMID:26361351

  1. Surveillance of low pathogenic avian influenza in layer chickens: risk factors, transmission and early detection

    NARCIS (Netherlands)

    Gonzales Rojas, J.L.

    2012-01-01

    Low pathogenic avian influenza virus (LPAIv) of H5 and H7 subtypes are able to mutate to highly pathogenic avian influenza virus (HPAIv), which are lethal for most poultry species, can cause large epidemics and are a serious threat to public health. Thus, circulation of these LPAIv in poultry is

  2. Free-grazing ducks and highly pathogenic avian influenza, Thailand

    NARCIS (Netherlands)

    Gilbert, Marius; Chaitaweesup, P.; Parakamawongsa, T.; Premashthira, S.; Tiensin, T.; Kalpravidh, W.; Wagner, H.; Slingenbergh, J.

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI

  3. Avian influenza overview September–November 2017

    DEFF Research Database (Denmark)

    Brown, Ian; Kuiken, Thijs; Mulatti, Paolo

    2017-01-01

    Between 1 September and 15 November 2017, 48 A(H5N8) highly pathogenic avian influenza (HPAI) outbreaks in poultry holdings and 9 H5 HPAI wild bird events were reported within Europe. A second epidemic HPAI A(H5N8) wave started in Italy on the third week of July and is still ongoing on 15November...... to focus in order to achieve the most effective testing of dead birds for detection of H5 HPAI viruses. Monitoring the avian influenza situation in other continents revealed the same risks as in the previous report (October 2016-August 2017): the recent human case of HPAI A(H5N6) in China underlines...... the continuing threat of this avian influenza virus to human health and possible introduction via migratory wild birds into Europe. Close monitoring is required of the situation in Africa with regards to HPAI of the subtypes A(H5N1) and A(H5N8), given the rapidity of the evolution and the uncertainty...

  4. Increased pathogenicity and shedding in chickens of a wild bird-origin low pathogenicity avian influenza virus of the H7N3 subtype following multiple in vivo passages in quail and turkey.

    Science.gov (United States)

    Cilloni, Filippo; Toffan, Anna; Giannecchini, Simone; Clausi, Valeria; Azzi, Alberta; Capua, Ilaria; Terregino, Calogero

    2010-03-01

    In order to investigate viral adaptation mechanisms to poultry, we performed serial in vivo passages of a wild bird low pathogenicity avian influenza isolate of the H7N3 subtype (A/mallard/Italy/33/01) in three different domestic species (chicken, turkey, and Japanese quail). The virus under study was administered via natural routes at the dose of 10(6) egg infective dose50/ 0.1 ml to chickens, turkeys, and quails in order to investigate the clinical susceptibility and the shedding levels after infection. Multiple in vivo passages of the virus were performed by serially infecting groups of five naive birds of each species, with samples collected from a previously infected group. Quails and turkeys were susceptible to infection for 10 serial passages, whereas chickens were susceptible to two cycles of infection only. Infection of chicken with the quail- and turkey-adapted viruses showed an increased pathogenicity and/or shedding, causing more severe clinical signs and/or higher levels of viral excretion compared to the original strain. The data obtained herein suggest that infection of selected avian species may facilitate the adaptation of avian influenza viruses originating from the wild bird reservoir to chicken. This is the first time turkey has been shown to act as a species in which a virus from the wild reservoir can increase its replication activity in other domestic species.

  5. Detection of H5N1 high-pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens.

    Science.gov (United States)

    Das, Amaresh; Spackman, Erica; Thomas, Colleen; Swayne, David E; Suarez, David L

    2008-03-01

    The Asian H5N1 highly pathogenic avian influenza (HPAI) virus causes a systemic disease with high mortality of poultry and is potentially zoonotic. In both chickens and ducks, the virus has been demonstrated to replicate in both cardiac and skeletal muscle cells. Experimentally, H5N1 HPAI virus has been transmitted to chickens through the consumption of raw infected meat. In this study, we investigated virus replication in cardiac and skeletal muscle and in the trachea of chickens after experimental intranasal inoculation with the H5N1 HPAI virus. The virus was detected in tissues by real-time reverse transcription-polymerase chain reaction (RRT-PCR) and virus isolation, and in the trachea by RRT-PCR and a commercial avian influenza (AI) viral antigen detection test. A modified RNA extraction protocol was developed for rapid detection of the virus in tissues by RRT-PCR. The H5N1 HPAI virus was sporadically detected in meat and the tracheas of infected birds without any clinical sign of disease as early as 6 hr postinfection (PI), and was detected in all samples tested at 24 hr PI and later. No differences in sensitivity were seen between virus isolation and RRT-PCR in meat samples. The AI viral antigen detection test on tracheal swabs was a useful method for identifying infected chickens when they were sick or dead, but was less sensitive in detecting infected birds when they were preclinical. This study provides data indicating that preslaughter tracheal swab testing can identify birds infected with HPAI among the daily mortality and prevent infected flocks from being sent to processing plants. In addition, the modified RNA extraction and RRT-PCR test on meat samples provide a rapid and sensitive method of identifying HPAI virus in illegal contraband or domestic meat samples.

  6. A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control

    Directory of Open Access Journals (Sweden)

    Delogu Mauro

    2006-05-01

    Full Text Available Abstract Background Avian influenza viruses (AIVs are endemic in wild birds and their introduction and conversion to highly pathogenic avian influenza virus in domestic poultry is a cause of serious economic losses as well as a risk for potential transmission to humans. The ability to rapidly recognise AIVs in biological specimens is critical for limiting further spread of the disease in poultry. The advent of molecular methods such as real time polymerase chain reaction has allowed improvement of detection methods currently used in laboratories, although not all of these methods include an Internal Positive Control (IPC to monitor for false negative results. Therefore we developed a one-step reverse transcription real time PCR (RRT-PCR with a Minor Groove Binder (MGB probe for the detection of different subtypes of AIVs. This technique also includes an IPC. Methods RRT-PCR was developed using an improved TaqMan technology with a MGB probe to detect AI from reference viruses. Primers and probe were designed based on the matrix gene sequences from most animal and human A influenza virus subtypes. The specificity of RRT-PCR was assessed by detecting influenza A virus isolates belonging to subtypes from H1–H13 isolated in avian, human, swine and equine hosts. The analytical sensitivity of the RRT-PCR assay was determined using serial dilutions of in vitro transcribed matrix gene RNA. The use of a rodent RNA as an IPC in order not to reduce the efficiency of the assay was adopted. Results The RRT-PCR assay is capable to detect all tested influenza A viruses. The detection limit of the assay was shown to be between 5 and 50 RNA copies per reaction and the standard curve demonstrated a linear range from 5 to 5 × 108 copies as well as excellent reproducibility. The analytical sensitivity of the assay is 10–100 times higher than conventional RT-PCR. Conclusion The high sensitivity, rapidity, reproducibility and specificity of the AIV RRT-PCR with

  7. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  8. Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa

    Science.gov (United States)

    Jarvi, S.I.; Farias, M.E.M.; Baker, H.; Freifeld, H.B.; Baker, P.E.; Van Gelder, E.; Massey, J.G.; Atkinson, C.T.

    2003-01-01

    This study documents the presence of Plasmodium spp. in landbirds of central Polynesia. Blood samples collected from eight native and introduced species from the island of Tutuila, American Samoa were evaluated for the presence of Plasmodium spp. by nested rDNA PCR, serology and/or microscopy. A total of 111/188 birds (59%) screened by nested PCR were positive. Detection of Plasmodium spp. was verified by nucleotide sequence comparisons of partial 18S ribosomal RNA and TRAP (thrombospondin-related anonymous protein) genes using phylogenetic analyses. All samples screened by immunoblot to detect antibodies that cross-react with Hawaiian isolates of Plasmodium relictum (153) were negative. Lack of cross-reactivity is probably due to antigenic differences between the Hawaiian and Samoan Plasmodium isolates. Similarly, all samples examined by microscopy (214) were negative. The fact that malaria is present, but not detectable by blood smear evaluation is consistent with low peripheral parasitemia characteristic of chronic infections. High prevalence of apparently chronic infections, the relative stability of the native land bird communities, and the presence of mosquito vectors which are considered endemic and capable of transmitting avian Plasmodia, suggest that these parasites are indigenous to Samoa and have a long coevolutionary history with their hosts.

  9. Prevalence of Avian Origin H5 and H7 Influenza Virus Antibodies in ...

    African Journals Online (AJOL)

    As part of ongoing influenza surveillance efforts in livestock and companion animals in Nigeria, a study was conducted to investigate the prevalence of avian H5 and H7 influenza virus antibodies in exotic and Nigerian village dogs in Ibadan and Sagamu, two cities in Oyo and Ogun states respectively. One hundred and ...

  10. Duplex PCR assay for the detection of avian adeno virus and chicken anemia virus prevalent in Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal Aqib

    2011-09-01

    Full Text Available Abstract Avian Adeno viruses and Chicken Anemia Viruses cause serious economic losses to the poultry industry of Pakistan each year. Timely and efficient diagnosis of the viruses is needed in order to practice prevention and control strategies. In the first part of this study, we investigated broilers, breeder and Layer stocks for morbidity and mortality rates due to AAV and CAV infections and any co-infections by examining signs and symptoms typical of their infestation or post mortem examination. In the second part of the study, we developed a duplex PCR assay for the detection of AAV and CAV which is capable to simultaneously detect both the viral types prevalent in Pakistan with high sensitivity and 100% specificity.

  11. Molecular detection of avian pox virus from nodular skin and mucosal fibrinonecrotic lesions of Iranian backyard poultry.

    Science.gov (United States)

    Gholami-Ahangaran, Majid; Zia-Jahromi, Noosha; Namjoo, Abdolrasul

    2014-02-01

    In recent years, some outbreaks of skin lesions suspected to be avian pox were observed in the backyard poultry in different parts of western areas in Iran. Consequently, 328 backyard poultries with suspected signs of avian pox virus infection were sampled. All birds showed nodular lesions on unfeathered head skin and/or fibronecrotic lesions on mucus membrane of the oral cavity and upper respiratory tract. For histopathological analysis, the sections of tissue samples from cutaneous lesions of examined birds were stained with H&E method. For PCR, after DNA extraction a 578-bp fragment of avian pox virus from 4b core protein gene was amplified. Results showed 217 and 265 out of 328 (66.1 and 80.7%, respectively) samples were positive for avian pox virus on histopathological and PCR examination, respectively. In this study, the samples that had intracytoplasmic inclusion bodies on pathologic examination were PCR positive. This study revealed that PCR is a valuable tool for identification of an avian pox virus and that the frequency of pox infection in backyard poultry in western areas of Iran is high.

  12. Avian Metapneumoviruses

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important virus that is the primary causal agent of turkey rhinotracheitis (TRT), also known as avian rhinotracheitis (ART). The virus causes an acute highly contagious infection of the upper respiratory tract in turkeys and was first isolated from tur...

  13. [Summary of Guangdong provincial seminar on avian influenza and influenza].

    Science.gov (United States)

    Yu, Shou-yi; Chen, Qing; Hu, Gui-fang

    2005-12-01

    On 8th November 2005, an academic seminar on avian influenza and influenza in Guangdong Province was held by Guangdong Society of Tropical Medicine and the Epidemiology Committee of the Guangdong Preventive Medicine Society in Southern Medical University, addressing the current problems in epidemics of avian influenza. The specialists attending the conference arrived at the common consideration that at present, the avian influenza virus H5N1 has not the capacity to trigger an pandemic in human population, but scattered cases had been reported to increase the suspicions of H5N1 virus transmission between humans. Due attention should be paid to the tendency of expansion of the host range and epidemic area, and the possibility of disastrous influenza pandemic among human populations persists, for which rational consideration is called for, and the role of specialists should be fully recognized who are endeavoring to examine the possible scale of influenza occurrence and devise strategy to deal with the epidemic in Guangdong province according to the practical situation in China. Increased funds and investment in scientific research on avian influenza is urged for influenza prediction and surveillance, rapid and early diagnostic assays, understanding of virus variation, mechanism of H5N1 virus adaptation to human hosts, effective medicines and vaccines for prevention and therapy of avian influenza. Laboratory bio-safety control should be enforced to prevent infections originated from laboratories. The specialists appeal that the media report the news objectively and issue the public warnings against avian influenza after consulting specialists, so as to avoid unnecessary social panic.

  14. Investigating maternal hormones in avian eggs : Measurement, manipulation, and interpretation

    NARCIS (Netherlands)

    Groothuis, TGG; Von Engelhardt, N; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    The last decade has witnessed a surge in studies on steroid hormones of maternal origin present in avian eggs and affecting offspring development. The value of such studies for the understanding of maternal effects and individual differentiation is endorsed and a series of methodological and

  15. Detection of Avian coronavirus infectious bronchitis virus type QX infection in Switzerland.

    Science.gov (United States)

    Sigrist, Brigitte; Tobler, Kurt; Schybli, Martina; Konrad, Leonie; Stöckli, René; Cattoli, Giovanni; Lüschow, Dörte; Hafez, Hafez M; Britton, Paul; Hoop, Richard K; Vögtlin, Andrea

    2012-11-01

    Infectious bronchitis, a disease of chickens caused by Avian coronavirus infectious bronchitis virus (IBV), leads to severe economic losses for the poultry industry worldwide. Various attempts to control the virus based on vaccination strategies are performed. However, due to the emergence of novel genotypes, an effective control of the virus is hindered. In 1996, a novel viral genotype named IBV-QX was reported for the first time in Qingdao, Shandong province, China. The first appearance of an IBV-QX isolate in Europe was reported between 2003 and 2004 in The Netherlands. Subsequently, infections with this genotype were found in several other European countries such as France, Italy, Germany, United Kingdom, Slovenia, and Sweden. The present report describes the use of a new set of degenerate primers that amplify a 636-bp fragment within the S1 gene by reverse transcription polymerase chain reaction to detect the occurrence of IBV-QX infection in Switzerland.

  16. On the origin of avian air sacs.

    Science.gov (United States)

    Farmer, C G

    2006-11-01

    For many vertebrates the lung is the largest and lightest organ in the body cavity and for these reasons can greatly affect an organism's shape, density, and its distribution of mass; characters that are important to locomotion. In this paper non-respiratory functions of the lung are considered along with data on the respiratory capacities and gas exchange abilities of birds and crocodilians to infer the evolutionary history of the respiratory systems of dinosaurs, including birds. From a quadrupedal ancestry theropod dinosaurs evolved a bipedal posture. Bipedalism is an impressive balancing act, especially for tall animals with massive heads. During this transition selection for good balance and agility may have helped shape pulmonary morphology. Respiratory adaptations arising for bipedalism are suggested to include a reduction in costal ventilation and the use of cuirassal ventilation with a caudad expansion of the lung into the dorsal abdominal cavity. The evolution of volant animals from bipeds required yet again a major reorganization in body form. With this transition avian air sacs may have been favored because they enhanced balance and agility in flight. Finally, I propose that these hypotheses can be tested by examining the importance of the air sacs to balance and agility in extant animals and that these data will enhance our understanding of the evolution of the respiratory system in archosaurs.

  17. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens.

    Science.gov (United States)

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R S; Pierson, F William; Huang, Yao-Wei; Dryman, Barbara A; Meng, Xiang-Jin

    2011-01-27

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... of Avian Influenza A(H5N1) Avian influenza: guidelines. recommendations, descriptions Global Influenza and Surveillance Response System (GISRS) Food safety authorities network OIE Avian Influenza ...

  19. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies.

    Science.gov (United States)

    Zhao, Xihong; Tsao, Yu-Chia; Lee, Fu-Jung; Tsai, Woo-Hu; Wang, Ching-Ho; Chuang, Tsung-Liang; Wu, Mu-Shiang; Lin, Chii-Wann

    2016-07-01

    A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40 nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14 × 10(5) EID50/0.1 mL, and the response time was 10 min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Detection of infectious bronchitis virus 793B, avian metapneumovirus, Mycoplasma gallisepticum and Mycoplasma synoviae in poultry in Ethiopia.

    Science.gov (United States)

    Hutton, S; Bettridge, J; Christley, R; Habte, T; Ganapathy, K

    2017-02-01

    A survey was conducted into respiratory infectious diseases of poultry on a chicken breeder farm run by the Ethiopian Institute of Agricultural Research (EIAR), located in Debre Zeit, Ethiopia. Oropharyngeal swabs were collected from 117 randomly selected birds, and blood was taken from a subset of 73 of these birds. A combination of serological and molecular methods was used for detection of pathogens. For the first time in Ethiopia, we report the detection of variant infectious bronchitis virus (793B genotype), avian metapneumovirus subtype B and Mycoplasma synoviae in poultry. Mycoplasma gallisepticum was also found to be present; however, infectious laryngotracheitis virus was not detected by PCR. Newcastle disease virus (NDV) was not detected by PCR, but variable levels of anti-NDV HI antibody titres shows possible exposure to virulent strains or poor vaccine take, or both. For the burgeoning-intensive industry in Ethiopia, this study highlights several circulating infectious respiratory pathogens that can impact on poultry welfare and productivity.

  1. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    Science.gov (United States)

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  2. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus.

    Science.gov (United States)

    Sun, Hailiang; Blackmon, Sherry; Yang, Guohua; Waters, Kaitlyn; Li, Tao; Tangwangvivat, Ratanaporn; Xu, Yifei; Shyu, Daniel; Wen, Feng; Cooley, Jim; Senter, Lucy; Lin, Xiaoxu; Jarman, Richard; Hanson, Larry; Webby, Richard; Wan, Xiu-Feng

    2017-11-01

    Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health. Using ferret-generated antiserum, we determined that CIV-H3N2 is antigenically distinct from contemporary human H3N2 IAVs, suggesting that there may be minimal herd immunity in humans. We assessed the public health risk of CIV-H3N2 × pandemic H1N1 (pdmH1N1) reassortants by characterizing their in vitro genetic compatibility and in vivo pathogenicity and transmissibility. Using a luciferase minigenome assay, we quantified the polymerase activity of all possible 16 ribonucleoprotein (RNP) complexes (PB2, PB1, PA, NP) between CIV-H3N2 and pdmH1N1, identifying some combinations that were more active than either parental virus complex. Using reverse genetics and fixing the CIV-H3N2 hemagglutinin (HA), we found that 51 of the 127 possible reassortant viruses were viable and able to be rescued. Nineteen of these reassortant viruses had high-growth phenotypes in vitro , and 13 of these replicated in mouse lungs. A single reassortant with the NP and HA gene segments from CIV-H3N2 was selected for characterization in ferrets. The reassortant was efficiently transmitted by contact but not by the airborne route and was pathogenic in ferrets. Our results suggest that CIV-H3N2 reassortants may pose a moderate risk to public health and that the canine host should be monitored for emerging IAVs. IMPORTANCE IAV pandemics are caused by the introduction of novel viruses that are capable of efficient and sustained transmission into a human population with limited herd immunity. Dogs are a a potential mixing vessel for avian

  3. Surveillance for early detection of low pathogenicity avian influenza in poultry

    NARCIS (Netherlands)

    Comin, A.

    2012-01-01

    Infection with low pathogenicity avian influenza (LPAI) virus is widespread and has led to outbreaks in domestic birds in many countries. Although infection does not pose a serious concern for animal heath, LPAI virus subtypes H5 and H7 can mutate into the highly pathogenic form (HPAI), which can

  4. Species-specific deletion of the viral attachment glycoprotein of avian metapneumovirus.

    Science.gov (United States)

    Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N

    2008-03-01

    The avian metapneumovirus (AMPV) genome encodes the fusion (F), small hydrophobic (SH), and attachment glycoprotein (G) as envelope glycoproteins. The F and G proteins mainly function to allow viral entry into host cells during the early steps of the virus life cycle. The highly variable AMPV G protein is a major determinant for distinguishing virus subtypes. Sequence analysis was used to determine if any differences between avian or mammalian cell propagated subtype C AMPV could be detected for the 1.8kb G gene. As a result, the complete 1.8kb G gene was found to be present when AMPV was propagated in our immortal turkey turbinate (TT-1) cell line regardless of passage number. Surprisingly, AMPV propagated for 15 or more passages in mammalian Vero cells revealed an essentially deleted G gene in the viral genome, resulting in no G gene mRNA expression. Although the Vero cell propagated AMPV genome contained a small 122 nucleotide fragment of the G gene, no other mRNA variants were detected from either mammalian or avian propagated AMPV. The G gene truncation might be caused by cellular molecular mechanisms that are species-specific. The lack of viral gene deletions suggests that avian cell propagated AMPV will provide a better alternative host for live recombinant vaccine development based on a reverse genetics system.

  5. Evaluating surveillance strategies for the early detection of low pathogenicity avian influenza infections.

    Science.gov (United States)

    Comin, Arianna; Stegeman, Arjan; Marangon, Stefano; Klinkenberg, Don

    2012-01-01

    In recent years, the early detection of low pathogenicity avian influenza (LPAI) viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms) was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (R(h)). The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas R(h) reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control). Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier), whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus introduction

  6. Evaluating surveillance strategies for the early detection of low pathogenicity avian influenza infections.

    Directory of Open Access Journals (Sweden)

    Arianna Comin

    Full Text Available In recent years, the early detection of low pathogenicity avian influenza (LPAI viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (R(h. The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas R(h reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control. Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier, whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus

  7. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Andersen, Sophie Susanna Strindberg; Nielsen, Tenna W; Ribeiro, Ângela M

    2015-01-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species...... to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber...

  8. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    Science.gov (United States)

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0–10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0–9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  9. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    Science.gov (United States)

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  10. Epidemiology of avian influenza in wild aquatic birds in a biosecurity hotspot, North Queensland, Australia.

    Science.gov (United States)

    Hoque, Md Ahasanul; Burgess, Graham William; Cheam, Ai Lee; Skerratt, Lee Francis

    2015-01-01

    Migratory birds may introduce highly pathogenic H5N1 avian influenza from Southeast Asia into Australia via North Queensland, a key stopover along the East Asian-Australasian Flyway, with severe consequences for trade and human health. A 3-year repeated cross sectional study on the epidemiology of avian influenza in Australian nomadic wild aquatic birds was conducted in this potential biosecurity hotspot using molecular and serological techniques. Avian influenza virus subtypes H6 and H9 were commonly present in the studied population. It is likely that one of the H6 viruses was newly introduced through migratory birds confirming the perceived biosecurity risk. The matrix gene of another H6 virus was similar to the Australian H7 subtypes, which suggests the reassortment of a previously introduced H6 and local viruses. Similarly, a H9 subtype had a matrix gene similar to that found in Asian H9 viruses suggesting reassortment of viruses originated from Australia and Asia. Whilst H5N1 was not found, the serological study demonstrated a constant circulation of the H5 subtype in the sampled birds. The odds of being reactive for avian influenza viral antibodies were 13.1(95% CI: 5.9-28.9) for Pacific Black Ducks over Plumed Whistling Ducks, highlighting that some species of waterfowl pose a greater biosecurity risk. Antibody titres were slightly higher during warm wet compared with warm dry weather. Routine surveillance programmes should be established to monitor the introduction of avian influenza viruses from Asia and the interactions of the introduced viruses with resident viruses in order to better detect emerging pathogens in aquatic birds of North Queensland. Surveillance should be targeted towards highly susceptible species such as the Pacific Black Duck and carried out during favourable environmental conditions for viral transmission such as the wet season in northern Australia. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. An overview of the recent outbreaks of the avian-origin influenza A (H7N9 virus in the human

    Directory of Open Access Journals (Sweden)

    Ren-Bin Tang

    2013-05-01

    Full Text Available Since the first human infection with influenza A (H7N9 viruses have been identified in Shanghai on March 31, 2013, the latest variant of the avian flu virus has spread across four Chinese provinces recently. Human infections with avian influenza are rare and this is the first time that human infection with a low pathogenic avian influenza A virus has been associated with fatal outcome. To date (May 5th, 2013, China had reported 128 confirmed H7N9 infections in human, among 27 died. Most reported cases have severe respiratory illness resulting in severe pneumonia and in some cases have died. No evidence of sustained human-to -humans at this time, however, there is one family cluster with two confirmed cases for which human-to-human transmission cannot be ruled out. Recent evidence showed that the gene sequences of this novel H7N9 virus is primarily zoonotic and may be better adapted than other avian influenza viruses to infect human. Effective global infection control is urgently needed, and further surveillance and analyses should be undertaken to identify the source and mode of transmission of these viruses.

  12. Common Avian Infection Plagued the Tyrant Dinosaurs

    Science.gov (United States)

    Wolff, Ewan D. S.; Salisbury, Steven W.; Horner, John R.; Varricchio, David J.

    2009-01-01

    Background Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name ‘Sue’) has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. Methodology/Principal Findings We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. Conclusions/Significance This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation. PMID:19789646

  13. Common avian infection plagued the tyrant dinosaurs.

    Directory of Open Access Journals (Sweden)

    Ewan D S Wolff

    Full Text Available BACKGROUND: Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name 'Sue' has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. CONCLUSIONS/SIGNIFICANCE: This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation.

  14. Mapping yeast origins of replication via single-stranded DNA detection.

    Science.gov (United States)

    Feng, Wenyi; Raghuraman, M K; Brewer, Bonita J

    2007-02-01

    Studies in th Saccharomyces cerevisiae have provided a framework for understanding how eukaryotic cells replicate their chromosomal DNA to ensure faithful transmission of genetic information to their daughter cells. In particular, S. cerevisiae is the first eukaryote to have its origins of replication mapped on a genomic scale, by three independent groups using three different microarray-based approaches. Here we describe a new technique of origin mapping via detection of single-stranded DNA in yeast. This method not only identified the majority of previously discovered origins, but also detected new ones. We have also shown that this technique can identify origins in Schizosaccharomyces pombe, illustrating the utility of this method for origin mapping in other eukaryotes.

  15. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... type="submit" value="Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Avian Influenza Language: English (US) Español Recommend on Facebook Tweet ...

  16. Avian disease at the Salton Sea

    Science.gov (United States)

    Friend, M.

    2002-01-01

    A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907a??1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated

  17. Avian Flu

    International Nuclear Information System (INIS)

    Eckburg, Paul

    2006-01-01

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  18. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  19. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    Science.gov (United States)

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-04-13

    Salmonella can play an important role as a disease agent in wildlife, which can then act as carriers and reservoirs of sanitary importance at the livestock-human interface. Transmission from livestock to avian scavengers can occur when these species consume contaminated carcasses and meat remains in supplementary feeding stations and rubbish dumps. We compared the performance of PCR-based detection with conventional culture-based methods to detect Salmonella in the faeces of red kites (Milvus milvus) and griffon vultures (Gyps fulvus) in central Spain. The occurrence of culturable Salmonella was intermediate in red kites (1.9%, n=52) and high in griffon vultures (26.3%, n=99). These proportions were clearly higher with PCR-based detection (13.5% and 40.4%, respectively). Confirmation cultures failed to grow Salmonella in all faecal samples positive by the molecular assay but negative by the initial conventional culture in both scavenger species, indicating the occurrence of false (non-culturable) positives by PCR-based detection. This suggests that the molecular assay is highly sensitive to detecting viable Salmonella in cultures, but also partial genomes and dead or unviable bacteria from past infections or contamination. Thus, the actual occurrence of Salmonella in a particular sampling time period can be underestimated when using only culture detection. The serovars found in the scavenger faeces were among the most frequently isolated in pigs from Spain and other EU countries, especially those generally recognized as swine-adapted monophasic variants of S. Typhimurium. Because the studied species obtain much of their food from pig carcasses, this livestock may be the primary source of Salmonella via direct ingestion of infected carcasses and indirectly via contamination due to the unsanitary conditions found in supplementary feeding stations established for scavenger conservation. Combining culture- and molecular-based detection is encouraged to understand the

  20. An overview of the recent outbreaks of the avian-origin influenza A (H7N9) virus in the human.

    Science.gov (United States)

    Tang, Ren-Bin; Chen, Hui-Lan

    2013-05-01

    Since the first human infection with influenza A (H7N9) viruses have been identified in Shanghai on March 31, 2013, the latest variant of the avian flu virus has spread across four Chinese provinces recently. Human infections with avian influenza are rare and this is the first time that human infection with a low pathogenic avian influenza A virus has been associated with fatal outcome. To date (May 5(th), 2013), China had reported 128 confirmed H7N9 infections in human, among 27 died. Most reported cases have severe respiratory illness resulting in severe pneumonia and in some cases have died. No evidence of sustained human-to -humans at this time, however, there is one family cluster with two confirmed cases for which human-to-human transmission cannot be ruled out. Recent evidence showed that the gene sequences of this novel H7N9 virus is primarily zoonotic and may be better adapted than other avian influenza viruses to infect human. Effective global infection control is urgently needed, and further surveillance and analyses should be undertaken to identify the source and mode of transmission of these viruses. Copyright © 2013. Published by Elsevier B.V.

  1. Diagnostic utility of egg yolk for the detection of avian metapneumovirus antibodies in laying hens.

    Science.gov (United States)

    Choi, Kang-Seuk; Lee, Eun-Kyoung; Jeon, Woo-Jin; Park, Mi-Ja; Yoo, Yae-Na; Kwon, Jun-Hun

    2010-12-01

    Surveillance and diagnosis of avian metapneumovirus (AMPV) infection typically involve measurement of serum antibodies. In the current study, eggs instead of serum samples were used for the detection of AMPV antibodies in egg-laying chicken hens by enzyme-linked immunosorbent assay (ELISA). AMPV-free commercial layer hens were experimentally challenged with AMPV strain SC1509 through intravenous or oculonasal administration. Antibody levels were determined by ELISA. AMPV antibodies were detected in egg yolks from challenged hens by 7 days postinoculation (dpi), with the peak titer at 16 dpi. Antibody levels in eggs laid at 28 dpi correlated well (r = 0.93) with sera taken 28 dpi from the same hens. In a field trial of the yolk ELISA, six broiler breeder farms were surveyed, and all tested positive for AMPV antibodies in hen eggs, although positivity varied from farm to farm. Abnormal discolored eggs collected from outbreak farms had significantly higher titers of AMPV yolk antibodies than normal eggs from the same farm, unlike clinically healthy farms, where normal and abnormal eggs had similar antibody titers. These results indicate that diagnosis of AMPV infection by yolk ELISA to detect anti-AMPV antibodies may be a suitable alternative to serologic testing.

  2. Replication of avian influenza viruses in equine tracheal epithelium but not in horses

    OpenAIRE

    Chambers, Thomas M.; Balasuriya, Udeni B. R.; Reedy, Stephanie E.; Tiwari, Ashish

    2013-01-01

    We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exh...

  3. The effect of various disinfectants on detection of avian influenza virus by real time RT-PCR.

    Science.gov (United States)

    Suarez, D L; Spackman, E; Senne, D A; Bulaga, L; Welsch, A C; Froberg, K

    2003-01-01

    An avian influenza (AI) real time reverse transcriptase-polymerase chain reaction (RRT-PCR) test was previously shown to be a rapid and sensitive method to identify AI virus-infected birds in live-bird markets (LBMs). The test can also be used to identify avian influenza virus (AIV) from environmental samples. Consequently, the use of RRT-PCR was being considered as a component of the influenza eradication program in the LBMs to assure that each market was properly cleaned and disinfected before allowing the markets to be restocked. However, the RRT-PCR test cannot differentiate between live and inactivated virus, particularly in environmental samples where the RRT-PCR test potentially could amplify virus that had been inactivated by commonly used disinfectants, resulting in a false positive test result. To determine whether this is a valid concern, a study was conducted in three New Jersey LBMs that were previously shown to be positive for the H7N2 AIV. Environmental samples were collected from all three markets following thorough cleaning and disinfection with a phenolic disinfectant. Influenza virus RNA was detected in at least one environmental sample from two of the three markets when tested by RRT-PCR; however, all samples were negative by virus isolation using the standard egg inoculation procedure. As a result of these findings, laboratory experiments were designed to evaluate several commonly used disinfectants for their ability to inactivate influenza as well as disrupt the RNA so that it could not be detected by the RRT-PCR test. Five disinfectants were tested: phenolic disinfectants (Tek-trol and one-stroke environ), a quaternary ammonia compound (Lysol no-rinse sanitizer), a peroxygen compound (Virkon-S), and sodium hypochlorite (household bleach). All five disinfectants were effective at inactivating AIV at the recommended concentrations, but AIV RNA in samples inactivated with phenolic and quaternary ammonia compounds could still be detected by RRT

  4. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  5. A Field Evaluation of the Time-of-Detection Method to Estimate Population Size and Density for Aural Avian Point Counts

    Directory of Open Access Journals (Sweden)

    Mathew W. Alldredge

    2007-12-01

    Full Text Available The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture-recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence, which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low homogenous rates per interval with those singing at (high and low heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant

  6. Ground squirrel shooting and potential lead exposure in breeding avian scavengers

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Wagner, Mason T.

    2016-01-01

    Recreational ground squirrel shooting is a popular activity throughout the western United States and serves as a tool for managing ground squirrel populations in agricultural regions. Belding’s ground squirrels (Spermophilus beldingi) are routinely shot in California, Nevada, and Oregon across habitats that overlap with breeding avian scavengers. Ground squirrels shot with lead (Pb)-based bullets may pose a risk to avian scavengers if they consume carcasses containing Pb fragments. To assess the potential risk to breeding avian scavengers we developed a model to estimate the number, mass, and distribution of Pb fragments in shot ground squirrels using radiographic images. Eighty percent of shot carcasses contained detectible Pb fragments with an average of 38.6 mg of Pb fragments. Seven percent of all carcasses contained Pb fragment masses exceeding a lethal dose for a model raptor nestling (e.g. American kestrel Falco sparverius). Bullet type did not influence the number of fragments in shot ground squirrels, but did influence the mass of fragments retained. Belding’s ground squirrels shot with .17 Super Mag and unknown ammunition types contained over 28 and 17 times more mass of Pb fragments than those shot with .22 solid and .22 hollow point bullets, respectively. Ground squirrel body mass was positively correlated with both the number and mass of Pb fragments in carcasses, increasing on average by 76% and 56% respectively across the range of carcass masses. Although the mass of Pb retained in ground squirrel carcasses was small relative to the original bullet mass, avian scavenger nestlings that frequently consume shot ground squirrels may be at risk for Pb-induced effects (e.g., physiology, growth, or survival). Using modeling efforts we found that if nestling golden eagles (Aquila chrysaetos), red-tailed hawks (Buteo jamaicensis), and Swainson’s hawks (B. swainsoni) consumed shot ground squirrels proportionately to the nestling’s mass, energy needs

  7. Ground Squirrel Shooting and Potential Lead Exposure in Breeding Avian Scavengers.

    Directory of Open Access Journals (Sweden)

    Garth Herring

    Full Text Available Recreational ground squirrel shooting is a popular activity throughout the western United States and serves as a tool for managing ground squirrel populations in agricultural regions. Belding's ground squirrels (Spermophilus beldingi are routinely shot in California, Nevada, and Oregon across habitats that overlap with breeding avian scavengers. Ground squirrels shot with lead (Pb-based bullets may pose a risk to avian scavengers if they consume carcasses containing Pb fragments. To assess the potential risk to breeding avian scavengers we developed a model to estimate the number, mass, and distribution of Pb fragments in shot ground squirrels using radiographic images. Eighty percent of shot carcasses contained detectible Pb fragments with an average of 38.6 mg of Pb fragments. Seven percent of all carcasses contained Pb fragment masses exceeding a lethal dose for a model raptor nestling (e.g. American kestrel Falco sparverius. Bullet type did not influence the number of fragments in shot ground squirrels, but did influence the mass of fragments retained. Belding's ground squirrels shot with .17 Super Mag and unknown ammunition types contained over 28 and 17 times more mass of Pb fragments than those shot with .22 solid and .22 hollow point bullets, respectively. Ground squirrel body mass was positively correlated with both the number and mass of Pb fragments in carcasses, increasing on average by 76% and 56% respectively across the range of carcass masses. Although the mass of Pb retained in ground squirrel carcasses was small relative to the original bullet mass, avian scavenger nestlings that frequently consume shot ground squirrels may be at risk for Pb-induced effects (e.g., physiology, growth, or survival. Using modeling efforts we found that if nestling golden eagles (Aquila chrysaetos, red-tailed hawks (Buteo jamaicensis, and Swainson's hawks (B. swainsoni consumed shot ground squirrels proportionately to the nestling's mass, energy

  8. Early warning: Avian flu and nuclear science

    International Nuclear Information System (INIS)

    Belak, S.

    2006-01-01

    Avian flu has spread to 51 countries, 36 this year alone, many of which are densely populated and deprived. The joint FAO/IAEA programme is working on the rapid detection of emerging diseases, including bird flu, and using nuclear and radiation techniques in the process. The problems are serious and challenging, but nuclear technologies may offer a solution. For most developing countries, TAD (transboundary animal diseases) detection is still vital. The bottleneck is their inability to rapidly detect the virus and to determine early enough whether it is H5N1 or another subtype, so that authorities can take appropriate control measures. Serious efforts are focused on the early detection of the agents. Timely recognition of such viral infections would prevent the spread of the diseases to large animal populations in huge geographic areas. Thus, the development of novel, powerful diagnostic nuclear and nuclear-related assays is a crucial issue today in veterinary research and animal health care. Molecular virology offers a range of new methods, which are able to accelerate and improve the diagnosis of infectious diseases in animals and in man. The molecular detection assays, like the polymerase chain reaction (PCR) technologies, provide possibilities for a very rapid diagnosis. The detection of viruses can be completed within hours or hopefully even within minutes with a sensitivity level of less than one pathogenic organism. Molecular approaches have contributed significantly to the rapid detection of well-established, as well as newly emerging, infectious agents such as Nipah and Hendra viruses or corona viruses in the SARS scenario and the detection and molecular characterisation of the highly pathogenic avian influenza H5N1 subtype that threatens the world today. The nucleic acid amplification assays, although they were at first expensive and cumbersome, have become relatively cheap and user-friendly tools in the diagnostic laboratories

  9. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    .... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...

  10. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Directory of Open Access Journals (Sweden)

    Haiming Zhang

    Full Text Available Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  11. Evaluation of Cytology for Diagnosing Avian Pox in Wild Turkeys ( Meleagris gallopavo).

    Science.gov (United States)

    Hydock, Kira; Brown, Holly; Nemeth, Nicole; Poulson, Rebecca; Casalena, Mary Jo; Johnson, Joshua B; Brown, Justin

    2018-03-01

    Avian pox virus is a common cause of proliferative skin disease in wild turkeys ( Meleagris gallopavo); however, other etiologies may produce grossly indistinguishable lesions. Common methods for diagnosing avian pox include histopathology, virus isolation, and PCR. While these methods are sufficient in most cases, each has their limitations. Cytology is a cost-effective and rapid approach that may be useful when traditional diagnostics are not feasible. The objective of this study was to evaluate the performance of cytology relative to histopathology and PCR for avian pox diagnosis in wild turkeys. Fifty wild turkeys were submitted for necropsy due to nodular skin lesions on unfeathered skin of the head. Of these, five had similar skin lesions on the unfeathered legs and 26 had plaques on the mucosa of the oropharynx or esophagus. Representative skin, oropharyngeal, and esophageal lesions from all birds were examined with cytology and histopathology. Skin lesions on the head of each bird were also tested for avian pox virus via PCR. Histopathology and PCR were equally sensitive in diagnosing avian pox from skin lesions on the head. There were no significant differences between cytologic and histopathologic diagnosis of avian pox from skin lesions on the head (sensitivity = 97.4%, specificity = 100.0%), legs (sensitivity = 75.0%, specificity = 100.0%), or from lesions in the oropharynx and esophagus (sensitivity of 62.5%). Similarly, there were no significant differences between PCR and cytology for diagnosis of pox viral skin lesions of the head. Relative to PCR detection of avian pox virus, cytology had a sensitivity of 90.0% and a specificity of 90.0%. These results suggest that cytology is a useful tool for diagnosis of avian pox in wild turkeys.

  12. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    Directory of Open Access Journals (Sweden)

    Odoom John

    2012-11-01

    Full Text Available Abstract Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65% showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen

  13. Avian metapneumovirus subtypes circulating in Brazilian vaccinated and nonvaccinated chicken and turkey farms.

    Science.gov (United States)

    Chacón, Jorge Luis; Mizuma, Matheus; Vejarano, Maria P; Toquín, Didier; Eterradossi, Nicolas; Patnayak, Devi P; Goyal, Sagar M; Ferreira, Antonio J Piantino

    2011-03-01

    Avian metapneumovirus (AMPV) causes turkey rhinotracheitis and is associated with swollen head syndrome in chickens, which is usually accompanied by secondary infections that increase mortality. AMPVs circulating in Brazilian vaccinated and nonvaccinated commercial chicken and turkey farms were detected using a universal reverse transcriptase (RT)-PCR assay that can detect the four recognized subtypes of AMPV. The AMPV status of 228 farms with respiratory and reproductive disturbances was investigated. AMPV was detected in broiler, hen, breeder, and turkey farms from six different geographic regions of Brazil. The detected viruses were subtyped using a nested RT-PCR assay and sequence analysis of the G gene. Only subtypes A and B were detected in both vaccinated and nonvaccinated farms. AMPV-A and AMPV-B were detected in 15 and 23 farms, respectively, while both subtypes were simultaneously found in one hen farm. Both vaccine and field viruses were detected in nonvaccinated farms. In five cases, the detected subtype was different than the vaccine subtype. Field subtype B virus was detected mainly during the final years of the survey period. These viruses showed high molecular similarity (more than 96% nucleotide similarity) among themselves and formed a unique phylogenetic group, suggesting that they may have originated from a common strain. These results demonstrate the cocirculation of subtypes A and B in Brazilian commercial farms.

  14. Seroprevalence survey of avian influenza A (H5) in wild migratory birds in Yunnan Province, Southwestern China.

    Science.gov (United States)

    Chang, Hua; Dai, Feiyan; Liu, Zili; Yuan, Feizhou; Zhao, Siyue; Xiang, Xun; Zou, Fengcai; Zeng, Bangquan; Fan, Yating; Duan, Gang

    2014-02-03

    Highly pathogenic avian influenza virus (HPAIV) is a highly contagious disease which is a zoonotic pathogen of significant economic and public health concern. The outbreaks caused by HPAIV H5N1 of Asian origin have caused animal and human disease and mortality in several countries of Southeast Asia, such as Bangladesh, Cambodia, China, India, Indonesia, Laos, Myanmar, Thailand and Viet Nam. For the first time since 1961, this HPAIV has also caused extensive mortality in wild birds and has sparked debate of the role wild birds have played in the spread of this virus. Other than confirmed mortality events, little is known of this virus in wild birds. There is no report on the seroprevalence of avian influenza H5 infection in wild migratory birds in Yunnan Province. In this study we examined live wild birds in Yunnan Province for H5 specific antibody to better understand the occurrence of this disease in free living birds. Sera from 440 wild birds were collected from in Kunming and Northern Ailaoshan of Yunnan Province, Southwestern China, and assayed for H5 antibodies using the hemagglutination inhibition (HI) assays. The investigation revealed that the seroprevalence of avian influenza H5 was as following: Ciconiiformes 2.6%, Strigiformes 13.04%, Passeriformes 20%, Cuculiformes 21.74%, Gruiformes 0%, Columbiformes 0%, Charadriiformes 0% and Coraciiformes 0%. Statistical analyses showed that there was a significant difference of prevalence between the orders (P avian influenza H5 antibodies were detected in 23 of 440 (5.23%) sera. Mean HI titer 23 positive sera against H5 were 5.4 log₂. The results of the present survey indicated that the proportion of wild birds had previously infected AIV H5 at other times of the year. To our knowledge, this is the first seroprevalence report of avian influenza H5 infection in wild migratory birds in China' s southwestern Yunnan Province. The results of the present survey have significant public health concerns.

  15. The cuticle modulates ultraviolet reflectance of avian eggshells

    Directory of Open Access Journals (Sweden)

    Daphne C. Fecheyr-Lippens

    2015-07-01

    Full Text Available Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

  16. Public Health and Epidemiological Considerations For Avian Influenza Risk Mapping and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Joseph P. Dudley

    2008-12-01

    Full Text Available Avian influenza viruses are now widely recognized as important threats to agricultural biosecurity and public health, and as the potential source for pandemic human influenza viruses. Human infections with avian influenza viruses have been reported from Asia (H5N1, H5N2, H9N2, Africa (H5N1, H10N7, Europe (H7N7, H7N3, H7N2, and North America (H7N3, H7N2, H11N9. Direct and indirect public health risks from avian influenzas are not restricted to the highly pathogenic H5N1 "bird flu" virus, and include low pathogenic as well as high pathogenic strains of other avian influenza virus subtypes, e.g., H1N1, H7N2, H7N3, H7N7, and H9N2. Research has shown that the 1918 Spanish Flu pandemic was caused by an H1N1 influenza virus of avian origins, and during the past decade, fatal human disease and human-to-human transmission has been confirmed among persons infected with H5N1 and H7N7 avian influenza viruses. Our ability to accurately assess and map the potential economic and public health risks associated with avian influenza outbreaks is currently constrained by uncertainties regarding key aspects of the ecology and epidemiology of avian influenza viruses in birds and humans, and the mechanisms by which highly pathogenic avian influenza viruses are transmitted between and among wild birds, domestic poultry, mammals, and humans. Key factors needing further investigation from a risk management perspective include identification of the driving forces behind the emergence and persistence of highly pathogenic avian influenza viruses within poultry populations, and a comprehensive understanding of the mechanisms regulating transmission of highly pathogenic avian influenza viruses between industrial poultry farms and backyard poultry flocks. More information is needed regarding the extent to which migratory bird populations to contribute to the transnational and transcontinental spread of highly pathogenic avian influenza viruses, and the potential for wild bird

  17. Nature's Palette: Characterization of Shared Pigments in Colorful Avian and Mollusk Shells.

    Science.gov (United States)

    Verdes, Aida; Cho, Wooyoung; Hossain, Marouf; Brennan, Patricia L R; Hanley, Daniel; Grim, Tomáš; Hauber, Mark E; Holford, Mandë

    2015-01-01

    Pigment-based coloration is a common trait found in a variety of organisms across the tree of life. For example, calcareous avian eggs are natural structures that vary greatly in color, yet just a handful of tetrapyrrole pigment compounds are responsible for generating this myriad of colors. To fully understand the diversity and constraints shaping nature's palette, it is imperative to characterize the similarities and differences in the types of compounds involved in color production across diverse lineages. Pigment composition was investigated in eggshells of eleven paleognath bird taxa, covering several extinct and extant lineages, and shells of four extant species of mollusks. Birds and mollusks are two distantly related, calcareous shell-building groups, thus characterization of pigments in their calcareous structures would provide insights to whether similar compounds are found in different phyla (Chordata and Mollusca). An ethylenediaminetetraacetic acid (EDTA) extraction protocol was used to analyze the presence and concentration of biliverdin and protoporphyrin, two known and ubiquitous tetrapyrrole avian eggshell pigments, in all avian and molluscan samples. Biliverdin was solely detected in birds, including the colorful eggshells of four tinamou species. In contrast, protoporphyrin was detected in both the eggshells of several avian species and in the shells of all mollusks. These findings support previous hypotheses about the ubiquitous deposition of tetrapyrroles in the eggshells of various bird lineages and provide evidence for its presence also across distantly related animal taxa.

  18. Nature's Palette: Characterization of Shared Pigments in Colorful Avian and Mollusk Shells.

    Directory of Open Access Journals (Sweden)

    Aida Verdes

    Full Text Available Pigment-based coloration is a common trait found in a variety of organisms across the tree of life. For example, calcareous avian eggs are natural structures that vary greatly in color, yet just a handful of tetrapyrrole pigment compounds are responsible for generating this myriad of colors. To fully understand the diversity and constraints shaping nature's palette, it is imperative to characterize the similarities and differences in the types of compounds involved in color production across diverse lineages. Pigment composition was investigated in eggshells of eleven paleognath bird taxa, covering several extinct and extant lineages, and shells of four extant species of mollusks. Birds and mollusks are two distantly related, calcareous shell-building groups, thus characterization of pigments in their calcareous structures would provide insights to whether similar compounds are found in different phyla (Chordata and Mollusca. An ethylenediaminetetraacetic acid (EDTA extraction protocol was used to analyze the presence and concentration of biliverdin and protoporphyrin, two known and ubiquitous tetrapyrrole avian eggshell pigments, in all avian and molluscan samples. Biliverdin was solely detected in birds, including the colorful eggshells of four tinamou species. In contrast, protoporphyrin was detected in both the eggshells of several avian species and in the shells of all mollusks. These findings support previous hypotheses about the ubiquitous deposition of tetrapyrroles in the eggshells of various bird lineages and provide evidence for its presence also across distantly related animal taxa.

  19. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  20. Avian dark cells

    Science.gov (United States)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  1. Bird Flu (Avian Influenza)

    Science.gov (United States)

    Bird flu (avian influenza) Overview Bird flu is caused by a type of influenza virus that rarely infects humans. More than a ... for Disease Control and Prevention estimates that seasonal influenza is responsible for ... heat destroys avian viruses, cooked poultry isn't a health threat. ...

  2. Detection of Salmonella enterica Serovar Typhimurium from Avians Using Multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Alireza Talebi

    2011-09-01

    Full Text Available Abstract Salmonella enterica serovar Typhimurium and S.enterica serovar Enteritidis are the most frequently isolated serovars from food-borne diseases throughout the world. According to their antigenic profiles, salmonella shows different disease syndromes and host specificities. It is necessary and important to discriminate salmonella serovars from each other in order to ensure that each pathogen and its epidemiology are correctly recognized. Many PCR-based methods have been developed to identify salmonella serovars. The objective of present study was to identify S. Typhimurium in avians from different regions including: North, Northwest and capital city (Tehran of Iran. Also in this research, the quality of CHROMagar™ Salmonella medium (CAS medium in veterinary medicine was evaluated. The results of present study showed that out of 1870 intestine samples, fifty two S. Typhimurium including broiler (n=13, layer (n=12, duck (n=5, goose (n=5, sparrow (n=8, canary (n=3, pigeon (n=5 and African grey parrot (n=1 were identified using serotyping as well as multiplex-PCR. In conclusion, important measures must be taken on prevention and propagation of S. Typhimurium among avians. CHROMagar™ Salmonella medium has high levels of sensitivity and specificity and reduced the time to final identification of salmonella spp. in comparison with biochemical tests.

  3. The scientific rationale for the World Organisation for Animal Health standards and recommendations on avian influenza.

    Science.gov (United States)

    Pasick, J; Kahn, S

    2014-12-01

    The World Organisation for Animal Health (OIE) prescribes standards for the diagnosis and control of avian influenza, as well as health measures for safe trade in birds and avian products, which are based on up-to-date scientific information and risk management principles, consistent with the role of the OIE as a reference standard-setting body for the World Trade Organization (WTO). These standards and recommendations continue to evolve, reflecting advances in technology and scientific understanding of this important zoonotic disease. The avian influenza viruses form part of the natural ecosystem by virtue of their ubiquitous presence in wild aquatic birds, a fact that human intervention cannot change. For the purposes of the Terrestrial Animal Health Code (Terrestrial Code), avian influenza is defined as an infection of poultry. However, the scope of the OIE standards and recommendations is not restricted to poultry, covering the diagnosis, early detection and management of avian influenza, including sanitary measures for trade in birds and avian products. The best way to manage avian influenza-associated risks to human and animal health is for countries to conduct surveillance using recommended methods, to report results in a consistent and transparent manner, and to applythe sanitary measures described in the Terrestrial Code. Surveillance for and timely reporting of avian influenza in accordance with OIE standards enable the distribution of relevant, up-to-date information to the global community.

  4. Screening for viral extraneous agents in live-attenuated avian vaccines by using a microbial microarray and sequencing

    DEFF Research Database (Denmark)

    Olesen, Majken Lindholm; Jørgensen, Lotte Leick; Blixenkrone-Møller, Merete

    2018-01-01

    The absence of extraneous agents (EA) in the raw material used for production and in finished products is one of the principal safety elements related to all medicinal products of biological origin, such as live-attenuated vaccines. The aim of this study was to investigate the applicability...... of the Lawrence Livermore Microbial detection array version 2 (LLMDAv2) combined with whole genome amplification and sequencing for screening for viral EAs in live-attenuated vaccines and specific pathogen-free (SPF) eggs.We detected positive microarray signals for avian endogenous retrovirus EAV-HP and several...... viruses belonging to the Alpharetrovirus genus in all analyzed vaccines and SPF eggs. We used a microarray probe mapping approach to evaluate the presence of intact retroviral genomes, which in addition to PCR analysis revealed that several of the positive microarray signals were most likely due to cross...

  5. Nonlinear dynamics of avian influenza epidemic models.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  7. Serological and Virological Study of Newcastle Disease and Avian ...

    African Journals Online (AJOL)

    Serological survey on the prevalence of Newcastle disease (NCD) virus antibodies using haemagglutination inhibition test (HI) and virological detection by RT-PCR of highly pathogenic avian influenza (HPAI) H5N1, were carried out in 6 regions of Senegal from June to November 2008. Rural chickens were raised in free ...

  8. AN EPIZOOTIC OF EMERGING NOVEL AVIAN POX IN CARRION CROWS (CORVUS CORONE) AND LARGE-BILLED CROWS (CORVUS MACRORHYNCHOS) IN JAPAN.

    Science.gov (United States)

    Fukui, Daisuke; Nakamura, Makiko; Yamaguchi, Tsuyoshi; Takenaka, Makiko; Murakami, Mami; Yanai, Tokuma; Fukushi, Hideto; Yanagida, Kazumi; Bando, Gen; Matsuno, Keita; Nagano, Masashi; Tsubota, Toshio

    2016-04-28

    In 2006-10, an epizootic of emerging avian pox occurred in Carrion Crows ( Corvus corone ) and Large-billed Crows ( Corvus macrorhynchos ), leading to mortality of juvenile crows in Hokkaido, the northernmost island of Japan. We diagnosed 27 crows with proliferative skin lesions (19 carcasses and eight biopsied cases [one in zoo captivity]) as avian pox clinically, histopathologically by detection of Avipoxvirus-specific 4b core protein (P4b) gene, and epidemiologically. The fatal cases demonstrated intensively severe infection and aggressive lesions with secondary bacterial infection. Since the first identification of avian pox in Sapporo, Japan, in 2006, the frequency of mortality events has increased, peaking in 2007-08. Mortalities have subsequently occurred in other areas, suggesting disease expansion. In Sapporo, prevalence of avian pox evaluated by field censuses during 2007-12 was 17.6% (6.6-27.2%), peaked during 2007-08 and 2008-09, and then decreased. All diseased crows were juveniles, except for one adult. The number of crows assembling in the winter roosts had been stable for >10 yr; however, it declined in 2007-08, decreased by about 50% in 2008-09, and recovered to the previous level in 2009-10, correlated with the avian pox outbreak. Thus, avian pox probably contributed to the unusual crow population decline. All P4b sequences detected in six specimens in Sapporo were identical and different from any previously reported sequences. The sequence detected in the zoo-kept crow was distinct from any reported clades, and interspecies transmission was suspected. This report demonstrates an emerging novel avian pox in the Japanese avifauna and in global populations of Carrion Crows and Large-billed Crows. Longitudinal monitoring is needed to evaluate its impact on the crow population.

  9. Detection of NP, N3 and N7 antibodies to avian influenza virus by indirect ELISA using yeast-expressed antigens

    Directory of Open Access Journals (Sweden)

    Ammayappan Arun

    2009-10-01

    Full Text Available Abstract Background Avian influenza viruses, belonging to the family Orthomyxoviridae, possess distinct combinations of hemagglutinin (H and the neuraminidase (N surface glycoproteins. Typing of both H and N antigens is essential for the epidemiological and surveillance studies. Therefore, it is important to find a rapid, sensitive, and specific method for their assay, and ELISA can be useful for this purpose, by using recombinant proteins. Results The nucleoprotein (NP and truncated neuraminidase subtype 3 and 7 of avian influenza virus (AIV were expressed in Saccharomyces cerevisiae and used to develop an indirect enzyme-linked immunosorbent assay for antibody detection. The developed assays were evaluated with a panel of 64 chicken serum samples. The performance of NP-ELISA was compared with the commercially available ProFlok® AIV ELISA kit. The results showed comparable agreement and sensitivity between the two tests, indicating that NP-ELISA assay can be used for screening the influenza type A antibody in AIV infected birds. The N3 and N7- ELISAs also reacted specifically to their type specific sera and did not exhibit any cross-reaction with heterologous neuraminidase subtype specific sera. Conclusion The study demonstrates the expression of the NP, N3, and N7 proteins of AIV in yeast (S. cerevisiae and their application in developing an indirect ELISA for detecting NP, N3 and N7 antibodies from AIV-infected chicken sera. The described indirect ELISAs are rapid, sensitive, specific and can be used as promising tests during serological surveillance.

  10. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  11. Evidence-Based Advances in Avian Medicine.

    Science.gov (United States)

    Summa, Noémie M; Guzman, David Sanchez-Migallon

    2017-09-01

    This article presents relevant advances in avian medicine and surgery over the past 5 years. New information has been published to improve clinical diagnosis in avian diseases. This article also describes new pharmacokinetic studies. Advances in the understanding and treatment of common avian disorders are presented in this article, as well. Although important progress has been made over the past years, there is still much research that needs to be done regarding the etiology, pathophysiology, diagnosis, and treatment of avian diseases and evidence-based information is still sparse in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawai'i to avian malaria, Plasmodium relictum

    Science.gov (United States)

    Lapointe, D.A.; Goff, M.L.; Atkinson, C.T.

    2005-01-01

    To identify potential vectors of avian malaria in Hawaiian native forests, the innate susceptibility of Aedes albopictus, Wyeomyia mitchellii, and Culex quinquefasciatus from 3 geographical sites along an altitudinal gradient was evaluated using local isolates of Plasmodium relictum. Mosquitoes were dissected 5-8 and 9-13 days postinfective blood meal and microscopically examined for oocysts and salivary-gland sporozoites. Sporogony was completed in all 3 species, but prevalence between species varied significantly. Oocysts were detected in 1-2% and sporozoites in 1-7% of Aedes albopictus that fed on infected ducklings. Wyeomyia mitchellii was slightly more susceptible, with 7-19% and 7% infected with oocysts and sporozoites, respectively. In both species, the median oocyst number was 5 or below. This is only the second Wyeomyia species reported to support development of a malarial parasite. Conversely, Culex quinquefasciatus from all 3 sites proved very susceptible. Prevalence of oocysts and sporozoites consistently exceeded 70%, regardless of gametocytemia or origin of the P. relictum isolate. In trials for which a maximum 200 oocysts were recorded, the median number of oocysts ranged from 144 to 200. It was concluded that Culex quinquefasciatus is the primary vector of avian malaria in Hawai'i. ?? American Society of Parasitologists 2005.

  13. High rates of detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 viruses in wild birds in the Pacific Northwest during the winter of 2014-2015

    Science.gov (United States)

    Ip, Hon S.; Dusek, Robert J.; Bodenstein, Barbara L.; Kim Torchetti, Mia; DeBruyn, Paul; Mansfield, Kristin G.; DeLiberto, Thomas; Sleeman, Jonathan M.

    2016-01-01

    In 2014, Clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in Western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8 of unrelated causes in Whatcom County, Washington, USA in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6 in the same area and died two days later, tested positive for the Eurasian origin HPAI H5N8. Subsequently, an Active Surveillance Program using hunter-harvest waterfowl in Washington and Oregon detected ten HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8 and three H5N1) with 4 segments in common (HA, PB2, NP and MA). In addition, a mortality-based Passive Surveillance Program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington and Wisconsin. Comparatively, mortality-based passive surveillance appears to be detecting these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the US.

  14. Rapid detection of the avian influenza virus H5N1 subtype in Egypt ...

    African Journals Online (AJOL)

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Egypt ... Effective diagnosis and control management are needed to control the disease. ... Reconstituted clinical samples consisting of H5 AIVs mixed with ...

  15. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Guo, Di; Zhuo, Ming; Zhang, Xiaoai; Xu, Cheng; Jiang, Jie; Gao, Fu; Wan, Qing; Li, Qiuhong; Wang, Taihong

    2013-01-01

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V T ) and field-effect mobility. The changes of I D –V G curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10 −9 g mL −1 to 5 × 10 −6 g mL −1 with a detection limit of 0.8 × 10 −10 g mL −1 . Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs can be promising candidates for the

  16. Markov Chain Estimation of Avian Seasonal Fecundity

    Science.gov (United States)

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  17. Widespread avian bornavirus infection in mute swans in the Northeast United States

    Directory of Open Access Journals (Sweden)

    Payne SL

    2012-07-01

    Full Text Available Jianhua Guo,1 Lina Covaleda,1 J Jill Heatley,1 John A Baroch,2 Ian Tizard1, Susan L Payne,11Texas A&M University, College Station, TX, USA; 2USDA/APHIS Wildlife Services, Fort Collins, CO, USAAbstract: Avian bornavirus (ABV matrix (M genes were detected by RT-PCR on brain tissue obtained from 192 mute swans harvested from several Northeastern states. A RT-PCR product was detected in 45 samples. Sequencing of the PCR products confirmed the presence of ABV belonging to the ‘goose’ genotype. The prevalence of positive samples ranged from 28% in Michigan to 0% in northern New York State. Two Rhode Island isolates were cultured. Their M, N, and X-P gene sequences closely matched recently published sequences from Canada geese.Keywords: avian bornavirus, proventricular dilatation disease, reverse transcription, polymerase chain reaction, mute swans

  18. Current situation on highly pathogenic avian influenza

    Science.gov (United States)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  19. The avian egg exhibits general allometric invariances in mechanical design.

    Science.gov (United States)

    Juang, Jia-Yang; Chen, Pin-Yi; Yang, Da-Chang; Wu, Shang-Ping; Yen, An; Hsieh, Hsin-I

    2017-10-27

    The avian egg exhibits extraordinary diversity in size, shape and color, and has a key role in avian adaptive radiations. Despite extensive work, our understanding of the underlying principles that guide the "design" of the egg as a load-bearing structure remains incomplete, especially over broad taxonomic scales. Here we define a dimensionless number C, a function of egg weight, stiffness and dimensions, to quantify how stiff an egg is with respect to its weight after removing geometry-induced rigidity. We analyze eggs of 463 bird species in 36 orders across five orders of magnitude in body mass, and find that C number is nearly invariant for most species, including tiny hummingbirds and giant elephant birds. This invariance or "design guideline" dictates that evolutionary changes in shell thickness and Young's modulus, both contributing to shell stiffness, are constrained by changes in egg weight. Our analysis illuminates unique reproductive strategies of brood parasites, kiwis, and megapodes, and quantifies the loss of safety margin for contact incubation due to artificial selection and environmental toxins. Our approach provides a mechanistic framework for a better understanding of the mechanical design of the avian egg, and may provide clues to the evolutionary origin of contact incubation of amniote eggs.

  20. The ecology and age structure of a highly pathogenic avian influenza virus outbreak in wild mute swans.

    Science.gov (United States)

    Pybus, O G; Perrins, C M; Choudhury, B; Manvell, R J; Nunez, A; Schulenburg, B; Sheldon, B C; Brown, I H

    2012-12-01

    The first UK epizootic of highly pathogenic (HP) H5N1 influenza in wild birds occurred in 2008, in a population of mute swans that had been the subject of ornithological study for decades. Here we use an innovative combination of ornithological, phylogenetic and immunological approaches to investigate the ecology and age structure of HP H5N1 in nature. We screened samples from swans and waterbirds using PCR and sequenced HP H5N1-positive samples. The outbreak's origin was investigated by linking bird count data with a molecular clock analysis of sampled virus sequences. We used ringing records to reconstruct the age-structure of outbreak mortality, and we estimated the age distribution of prior exposure to avian influenza. Outbreak mortality was low and all HP H5N1-positive mute swans in the affected population were <3 years old. Only the youngest age classes contained an appreciable number of individuals with no detectable antibody responses to viral nucleoprotein. Phylogenetic analysis indicated that the outbreak strain circulated locally for ~1 month before detection and arrived when the immigration rate of migrant waterbirds was highest. Our data are consistent with the hypothesis that HP H5N1 epizootics in wild swans exhibit limited mortality due to immune protection arising from previous exposure. Our study population may represent a valuable resource for investigating the natural ecology and epidemiology of avian influenza.

  1. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J.

    Science.gov (United States)

    Liu, Chao; Dong, Jing; Waterhouse, Geoffrey I N; Cheng, Ziqiang; Ai, Shiyun

    2018-03-15

    A sensitive sandwich-type electrochemical immunosensor was developed for the detection of avian leukosis virus subgroup J (ALV-J), which benefitted from multiple signal amplification involving graphene-perylene-3,4,9,10-tetracarboxylic acid nanocomposites (GR-PTCA), nanocellulose-Au NP composites (NC-Au) and the alkaline phosphatase (ALP) catalytic reaction. GR-PTCA nanocomposites on glassy carbon electrodes served as the immunosensor platform. Due to their excellent electrical conductivity and abundant polycarboxylic sites, the GR-PTCA nanocomposites allowed fast electron transfer and good immobilization of primary antibodies, thereby affording a strong immunosensor signal in the presence of ALV-J. The detected signal could be further amplified by the introduction of NC-Au composites as a carrier of secondary antibodies (Ab 2 ) and by harnessing the catalytic properties of Au and ALP. Under optimized testing conditions, the electrochemical immunosensor displayed excellent analytical performance for the detection of ALV-J, showing a linear current response from 10 2.08 to 10 4.0 TCID 50 /mL (TCID 50 : 50% tissue culture infective dose) with a low detection limit of 10 1.98 TCID 50 /mL (S/N = 3). In addition to high sensitivity, the immunosensor showed very good selectivity, reproducibility and operational stability, demonstrating potential application for the quantitative detection of ALV-J in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Screening method for the detection of a range of nitrofurans in avian eyes by optical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Colin S., E-mail: colin.thompson@afbini.gov.uk [Agri-Food and Biosciences Institute, Veterinary Sciences Division, Stormont, Belfast BT4 3SD, Northern Ireland (United Kingdom); Traynor, Imelda M.; Fodey, Terence L.; Crooks, Steven R.H.; Kennedy, D. Glenn [Agri-Food and Biosciences Institute, Veterinary Sciences Division, Stormont, Belfast BT4 3SD, Northern Ireland (United Kingdom)

    2011-08-26

    An immunobiosensor assay was developed for the multi-residue screening of a range of nitrofuran compounds in avian eyes. A polyclonal antibody which binds at least 5 of the major parent nitrofurans was raised in a rabbit after inoculation with a nitrofuran mimic-protein conjugate. Sample homogenates were extracted into 0.1 M hydrochloric acid and subjected to clean-up by solid phase extraction and micro-centrifugation prior to biosensor analysis. Validation data obtained from the analysis of 21 fortified samples has shown that the method has a detection capability (CC{beta}) of less than 1 ng eye{sup -1} for nitrofurazone (NFZ). In addition, cross-reactivity data and the analysis of a smaller number of fortified samples have shown that the method will also detect a range of other major parent nitrofurans including furazolidone (FZD), furaltadone (FTD), nitrofurantoin (NFA) and nifursol (NFS). Intra-assay variation (n = 10) was calculated at 12.9% and 10.1% at concentrations of 1 ng eye{sup -1} and 2 ng eye{sup -1} NFZ respectively. Inter-assay variation (n = 3) was determined to be 10.8% and 4.7% at the same NFZ concentrations respectively. The cross-reactivity profile and validation data for the detection of these nitrofurans are presented together with the results obtained following the analysis of a small number of incurred samples using the developed method.

  3. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  4. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Jacob Lum

    2015-07-01

    Full Text Available In this research a DNA aptamer, which was selected through SELEX (systematic evolution of ligands by exponential enrichment to be specific against the H5N1 subtype of the avian influenza virus (AIV, was used as an alternative reagent to monoclonal antibodies in an impedance biosensor utilizing a microfluidics flow cell and an interdigitated microelectrode for the specific detection of H5N1 AIV. The gold surface of the interdigitated microelectrode embedded in a microfluidics flow cell was modified using streptavidin. The biotinylated aptamer against H5N1 was then immobilized on the electrode surface using biotin–streptavidin binding. The target virus was captured on the microelectrode surface, causing an increase in impedance magnitude. The aptasensor had a detection time of 30 min with a detection limit of 0.0128 hemagglutinin units (HAU. Scanning electron microscopy confirmed the binding of the target virus onto the electrode surface. The DNA aptamer was specific to H5N1 and had no cross-reaction to other subtypes of AIV (e.g., H1N1, H2N2, H7N2. The newly developed aptasensor offers a portable, rapid, low-cost alternative to current methods with the same sensitivity and specificity.

  5. An enzyme-linked immunosorbent assay for detection of avian influenza virus subtypes H5 and H7 antibodies

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Ajjouri, Gitte; Handberg, Kurt

    2013-01-01

    subtypes H5 and H7. The ELISAs were evaluated with polyclonal chicken anti-AIV antibodies against AIV subtypes: H1N2, H5N2, H5N7, H7N1, H7N7, H9N9, H10N4 and H16N3. RESULTS: Both the H5 and H7 ELISA proved to have a high sensitivity and specificity and the ELISAs detected H5 and H7 antibodies earlier......BACKGROUND: Avian influenza virus (AIV) subtypes H5 and H7 attracts particular attention because of the risk of their potential pathogenicity in poultry. The haemagglutination inhibition (HI) test is widely used as subtype specific test for serological diagnostics despite the laborious nature...

  6. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... [Docket No. APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant... regions where any subtype of highly pathogenic avian influenza (HPAI) is considered to exist. The interim... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  7. Detection of American lineage low pathogenic avian influenza viruses in Uria lomvia in Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Hartby, Christina Marie; Krog, Jesper Schak

    of Denmark. Five birds were randomly selected for diagnostic investigation and samples were taken from the cadavers (pooled oropharyngeal swabs, cloacal swabs, lung/trachea/heart tissues and liver/spleen/kidney tissues, and separate preparation of stomach from a single bird). Avian influenza virus (AIV...

  8. Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds.

    Science.gov (United States)

    Rohaim, M A; El Naggar, R F; Helal, A M; Hussein, H A; Munir, Muhammad

    2017-06-16

    Transmission of viruses from the commercial poultry to wild birds is an emerging paradigm of livestock-wildlife interface. Here, we report the identification and isolation of vaccine strains of avian paramyxovirus serotype 1 (APMV1) and avian coronaviruses (ACoV) from different wild bird species across eight Egyptian governorates between January 2014 and December 2015. Surveillance of avian respiratory viruses in free-ranging wild birds (n=297) identified three species that harboured or excreted APMV1 and ACoVs. Genetic characterization and phylogenetic analysis of recovered viruses revealed a close association with the most widely utilized vaccine strains in the country. These results highlight the potential spillover of vaccine-viruses probably due to extensive use of live-attenuated vaccines in the commercial poultry, and close interaction between domesticated and wild bird populations. Further exploring the full spectrum of vaccine-derived viral vaccine strains in wild birds might help to assess the emergence of future wild-birds origin viruses. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Avian influenza: a review.

    Science.gov (United States)

    Thomas, Jennifer K; Noppenberger, Jennifer

    2007-01-15

    A review of the avian influenza A/H5N1 virus, including human cases, viral transmission, clinical features, vaccines and antivirals, surveillance plans, infection control, and emergency response plans, is presented. The World Health Organization (WHO) considers the avian influenza A/H5N1 virus a public health risk with pandemic potential. The next human influenza pandemic, if caused by the avian influenza A/H5N1 virus, is estimated to have a potential mortality rate of more than a hundred million. Outbreaks in poultry have been associated with human transmission. WHO has documented 258 confirmed human infections with a mortality rate greater than 50%. Bird-to-human transmission of the avian influenza virus is likely by the oral-fecal route. The most effective defense against an influenza pandemic would be a directed vaccine to elicit a specific immune response toward the strain or strains of the influenza virus. However, until there is an influenza pandemic, there is no evidence that vaccines or antivirals used in the treatment or prevention of such an outbreak would decrease morbidity or mortality. Surveillance of the bird and human populations for the highly pathogenic H5N1 is being conducted. Infection-control measures and an emergency response plan are discussed. Avian influenza virus A/H5N1 is a public health threat that has the potential to cause serious illness and death in humans. Understanding its pathology, transmission, clinical features, and pharmacologic treatments and preparing for the prevention and management of its outbreak will help avoid its potentially devastating consequences.

  10. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  11. On avian influenza epidemic models with time delay.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  12. Sensitive and specific identification by polymerase chain reaction of Eimeria tenella and Eimeria maxima, important protozoan pathogens in laboratory avian facilities.

    Science.gov (United States)

    Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin

    2011-09-01

    Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.

  13. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  14. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus

    OpenAIRE

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A. Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines ha...

  15. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    Science.gov (United States)

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  16. A sensitive, reproducible, and economic real-time reverse transcription PCR detecting avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Franzo, G; Drigo, M; Lupini, C; Catelli, E; Laconi, A; Listorti, V; Bonci, M; Naylor, C J; Martini, M; Cecchinato, M

    2014-06-01

    Use of real-time PCR is increasing in the diagnosis of infectious disease due to its sensitivity, specificity, and speed of detection. These characteristics make it particularly suited for the diagnosis of viral infections, like avian metapneumovirus (AMPV), for which effective control benefits from continuously updated knowledge of the epidemiological situation. Other real-time reverse transcription (RT)-PCRs have been published based on highly specific fluorescent dye-labeled probes, but they have high initial cost, complex validation, and a marked susceptibility to the genetic variability of their target sequence. With this in mind, we developed and validated a SYBR Green I-based quantitative RT-PCR for the detection of the two most prevalent AMPV subtypes (i.e., subtypes A and B). The assay demonstrated an analytical sensitivity comparable with that of a previously published real-time RT-PCR and the ability to detect RNA equivalent to approximately 0.5 infectious doses for both A and B subtypes. The high efficiency and linearity between viral titer and crossing point displayed for both subtypes make it suited for viral quantification. Optimization of reaction conditions and the implementation of melting curve analysis guaranteed the high specificity of the assay. The stable melting temperature difference between the two subtypes indicated the possibility of subtyping through melting temperature analysis. These characteristics make our assay a sensitive, specific, and rapid tool, enabling contemporaneous detection, quantification, and discrimination of AMPV subtype A and B.

  17. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  18. The Relationship of Avian Influenza and Waterbirds in Creating Genetic Diversity and the Role of Waterbirds as Reservoir for Avian Influenza

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-03-01

    Full Text Available Outbreaks of Avian Influenza (AI has enormous implications for poultry and human health.These outbreaks are caused by influenza A virus that belongS to the family of Orthomyxoviridae. These viruses are RNA viruses, negative polarity, and the envelope has segmented genom. Generally, Avian Influenza is a disease which originally occurred in birds with complex ecology including reassortment and transmission among different species of birds and mammals. The gene of AI virus can be transmitted among human and avian species as shown by the virus reasortantment that caused pandemic human influenza in 1957 and 1968. Pandemi in 1957 and 1968 were different from previously human viruses because the substitution of several genes are derived from avian viruses. Wild waterfowls especially Anseriformes (duck, muscovy duck and geese and Charadriiformes (gulls, seabirds, wild birds are the natural reservoirs for influenza type A viruses and play important role on the ecology and propagation of the virus. From this reservoir, influenza type A virus usually can be transmitted to other birds, mammals (including human and caused outbreak of lethal diseases. Waterfowl that is infected with influenza A virus usually does not show any clinical symptoms. However, several reports stated that HPAI viruses can cause severe disease with neurogical disorders led to death in waterfowl. Migration of birds including waterfowls have active role in transmitting and spreading the disease. Movement of wild birds and inappropriate poultry trade transportation play a greater role as vector in spreading HPAI to humans. Ecological change of environment has also a great effect in spreading AI viruses. The spreading pattern of AI viruses is usually influenced by seasons, where the prevalence of AI was reported to be in the fall, winter and rainy seasons. Finally, the effective control strategies against the spreading of AI viruses is required. Programs of monitoring, surveilence and

  19. Avian cholera

    Science.gov (United States)

    Friend, Milton

    1999-01-01

    Avian cholera is a contagious disease resulting from infection by the bacterium Pasteurella multocida. Several subspecies of bacteria have been proposed for P. multocida, and at least 16 different P. multocida serotypes or characteristics of antigens in bacterial cells that differentiate bacterial variants from each other have been recognized. The serotypes are further differentiated by other methods, including DNA fingerprinting. These evaluations are useful for studying the ecology of avian cholera (Fig. 7.1), because different serotypes are generally found in poultry and free-ranging migratory birds. These evaluations also show that different P. multocida serotypes are found in wild birds in the eastern United States than those that are found in the birds in the rest of the Nation (Fig. 7.2).

  20. Carcass Management During Avian Influenza Outbreaks

    Science.gov (United States)

    This page on Avian Influenza (AI) describes carcass management during Avian Flu outbreaks, including who oversees carcass management, how they're managed, environmental concerns from carcass management, and disinfection. The page also describes what AI is.

  1. Avian-like breathing mechanics in maniraptoran dinosaurs

    Science.gov (United States)

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs. PMID:17986432

  2. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Di; Zhuo, Ming [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zhang, Xiaoai [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Xu, Cheng; Jiang, Jie [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Gao, Fu [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Wan, Qing, E-mail: wanqing7686@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Li, Qiuhong, E-mail: liqiuhong2004@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wang, Taihong, E-mail: thwang@hnu.cn [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2013-04-22

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V{sub T}) and field-effect mobility. The changes of I{sub D}–V{sub G} curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10{sup −9} g mL{sup −1} to 5 × 10{sup −6} g mL{sup −1} with a detection limit of 0.8 × 10{sup −10} g mL{sup −1}. Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs

  3. Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics.

    Directory of Open Access Journals (Sweden)

    Yoseph A Kram

    2010-02-01

    Full Text Available The avian retina possesses one of the most sophisticated cone photoreceptor systems among vertebrates. Birds have five types of cones including four single cones, which support tetrachromatic color vision and a double cone, which is thought to mediate achromatic motion perception. Despite this richness, very little is known about the spatial organization of avian cones and its adaptive significance. Here we show that the five cone types of the chicken independently tile the retina as highly ordered mosaics with a characteristic spacing between cones of the same type. Measures of topological order indicate that double cones are more highly ordered than single cones, possibly reflecting their posited role in motion detection. Although cones show spacing interactions that are cell type-specific, all cone types use the same density-dependent yardstick to measure intercone distance. We propose a simple developmental model that can account for these observations. We also show that a single parameter, the global regularity index, defines the regularity of all five cone mosaics. Lastly, we demonstrate similar cone distributions in three additional avian species, suggesting that these patterning principles are universal among birds. Since regular photoreceptor spacing is critical for uniform sampling of visual space, the cone mosaics of the avian retina represent an elegant example of the emergence of adaptive global patterning secondary to simple local interactions between individual photoreceptors. Our results indicate that the evolutionary pressures that gave rise to the avian retina's various adaptations for enhanced color discrimination also acted to fine-tune its spatial sampling of color and luminance.

  4. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential.

    Science.gov (United States)

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-03-02

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein - with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses - or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. This article is copyright of The Authors, 2017.

  5. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    Science.gov (United States)

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both

  6. Avian Influenza surveillance: on the usability of FTA cards to solve biosafety and transport issues

    NARCIS (Netherlands)

    Kraus, R.H.; Hooft, van W.F.; Waldenstrom, J.; Latorre-Margalef, N.; Ydenberg, R.C.; Prins, H.H.T.

    2011-01-01

    Avian Influenza Viruses (AIVs) infect many mammals, including humans1. These AIVs are diverse in their natural hosts, harboring almost all possible viral subtypes2. Human pandemics of flu originally stem from AIVs3. Many fatal human cases during the H5N1 outbreaks in recent years were reported.

  7. Avian metapneumovirus subgroup C infection in chickens, China.

    Science.gov (United States)

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-07-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  8. Avian Metapneumovirus Subgroup C Infection in Chickens, China

    OpenAIRE

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-01-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  9. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype......) and the human-fatal A/Netherlands/219/03 (H7N7), respectively. The basic polymerase 1 and 2 genes were phylogenetically equidistant to both A/Duck/Denmark/65047/04 (H5N2) and A/Chicken/Netherlands/1/03 (H7N7). The nucleoprotein and matrix gene had highest nucleotide sequence similarity to the H6 subtypes A....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  10. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    Science.gov (United States)

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  11. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  12. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  13. Pathogenesis of avian pneumovirus infection in turkeys.

    Science.gov (United States)

    Jirjis, F F; Noll, S L; Halvorson, D A; Nagaraja, K V; Shaw, D P

    2002-05-01

    Avian pneumovirus (APV) is the cause of a respiratory disease of turkeys characterized by coughing, ocular and nasal discharge, and swelling of the infraorbital sinuses. Sixty turkey poults were reared in isolation conditions. At 3 weeks of age, serum samples were collected and determined to be free of antibodies against APV, avian influenza, hemorrhagic enteritis, Newcastle disease, Mycoplasma gallisepticum, Mycoplasma synoviae, Mycoplasma meleagridis, Ornithobacterium rhinotracheale, and Bordetella avium. When the poults were 4 weeks old, they were inoculated with cell culture-propagated APV (APV/Minnesota/turkey/2a/97) via the conjunctival spaces and nostrils. After inoculation, four poults were euthanatized every 2 days for 14 days, and blood, swabs, and tissues were collected. Clinical signs consisting of nasal discharge, swelling of the infraorbital sinuses, and frothy ocular discharge were evident by 2 days postinoculation (PI) and persisted until day 12 PI. Mild inflammation of the mucosa of the nasal turbinates and infraorbital sinuses was present between days 2 and 10 PI. Mild inflammatory changes were seen in tracheas of poults euthanatized between days 4 and 10 PI. Antibody to APV was detected by day 7 PI. The virus was detected in tissue preparations and swabs of nasal turbinates and infraorbital sinuses by reverse transcription polymerase chain reaction, virus isolation, and immunohistochemical staining methods between days 2 and 10 PI. Virus was detected in tracheal tissue and swabs between days 2 and 6 PI using the same methods. In this experiment, turkey poults inoculated with tissue culture-propagated APV developed clinical signs similar to those seen in field cases associated with infection with this virus.

  14. Captive-bred neotropical birds diagnosed with Cryptosporidium Avian genotype III.

    Science.gov (United States)

    Silva Novaes, Ricardo; Pires, Marcus Sandes; Sudré, Adriana Pittella; Bergamo do Bomfim, Teresa Cristina

    2018-02-01

    Currently, there are only three valid species of Cryptosporidium infecting avian hosts, namely, Cryptosporidium meleagridis, Cryptosporidium baileyi, Cryptosporidium galli and Cryptosporidium avium in addition to 12 genotypes of unknown species status. The objectives of this study were to microscopically diagnose the presence of Cryptosporidium in birds from a commercial aviary located in Rio de Janeiro, Brazil; genotypically characterize species and/or genotypes of genus Cryptosporidum; and conduct sequencing and phylogenetic analyses to compare the obtained DNA sequences with those deposited in GenBank. A total of 85 fecal samples were collected from wild captive-bred birds: 48 of family Psittacidae and 37 of family Ramphastidae. Initially, a search for the presence of Cryptosporidium sp. oocysts was conducted using the centrifugal-flotation in saturated sugar solution technique, after that, the collected samples were analyzed microscopically. Cryptosporidium infections were only detected in 24.32% of samples belonging to the family Ramphastidae. DNA was extracted from positive samples and molecular diagnostics was applied targeting the 18S rRNA gene, followed by sequencing and phylogenetic analysis. The Cryptosporidium Avian genotype III was diagnosed in this study more closely related to the gastric species. This is the first record of Cryptosporidium Avian genotype III in order Piciformes and family Ramphastidae, where three host species (Ramphastus toco, Ramphastus tucanus, and Pteroglossus bailloni) were positive for the etiologic agent. Based on the molecular data obtained, these wild birds raised in captivity do not represent a source of human cryptosporidiosis, considering that Cryptosporidium Avian genotype III does not constitute a zoonosis. Copyright © 2017. Published by Elsevier B.V.

  15. Yersinia pseudotuberculosis in Eurasian Collared Doves (Streptopelia decaocto) and Retrospective Study of Avian Yersiniosis at the California Animal Health and Food Safety Laboratory System (1990-2015).

    Science.gov (United States)

    Stoute, Simone T; Cooper, George L; Bickford, Arthur A; Carnaccini, Silvia; Shivaprasad, H L; Sentíes-Cué, C Gabriel

    2016-03-01

    In February 2015, two Eurasian collared doves (Streptopelia decaocto) were submitted dead to the California Animal Health and Food Safety (CAHFS) Laboratory, Turlock branch, from a private aviary experiencing sudden, high mortality (4/9) in adult doves. In both doves, the gross and histologic lesions were indicative of acute, fatal septicemia. Grossly, there were numerous pale yellow foci, 1 to 2 mm in diameter, in the liver and spleen. Microscopically, these foci were composed of acute severe multifocal coagulative necrosis of hepatocytes and splenic pulp with infiltration of heterophils mixed with fibrin and dense colonies of gram-negative bacteria. Yersinia pseudotuberculosis was isolated from the lung, liver, spleen, heart, ovary, kidney, and trachea. The organism was susceptible to most antibiotics it was tested against, except erythromycin. Based on a retrospective study of necropsy submissions to CAHFS between 1990 and 2015, there were 77 avian case submissions of Y. pseudotuberculosis. There were 75/77 cases identified from a wide range of captive avian species from both zoo and private facilities and 2/77 cases from two backyard turkeys submitted from one premise. The largest number of cases originated from psittacine species (31/77). The lesions most commonly described were hepatitis (63/77), splenitis (49/77), pneumonia (30/77), nephritis (16/77), and enteritis (12/77). From 1990 to 2015, there was an average of three cases of avian pseudotuberculosis per year at CAHFS. Although there were no cases diagnosed in 1993 and 1994, in all other years, there were between one and eight cases of Y. pseudotuberculosis detected from avian diagnostic submissions.

  16. Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests

    Directory of Open Access Journals (Sweden)

    Rosario A. Marroquin-Flores

    2017-08-01

    Full Text Available Avian malaria and related haemosporidian parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150–2,460 m. We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%, the highest proportion of which were infected with Haemoproteus (20.9%, followed by Leucocytozoon (13.4%, then Plasmodium (8.0%. We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium. When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27 of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six, while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43–98]; thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the

  17. The public health impact of avian influenza viruses.

    Science.gov (United States)

    Katz, J M; Veguilla, V; Belser, J A; Maines, T R; Van Hoeven, N; Pappas, C; Hancock, K; Tumpey, T M

    2009-04-01

    Influenza viruses with novel hemagglutinin and 1 or more accompanying genes derived from avian influenza viruses sporadically emerge in humans and have the potential to result in a pandemic if the virus causes disease and spreads efficiently in a population that lacks immunity to the novel hemagglutinin. Since 1997, multiple avian influenza virus subtypes have been transmitted directly from domestic poultry to humans and have caused a spectrum of human disease, from asymptomatic to severe and fatal. To assess the pandemic risk that avian influenza viruses pose, we have used multiple strategies to better understand the capacity of avian viruses to infect, cause disease, and transmit among mammals, including humans. Seroepidemiologic studies that evaluate the frequency and risk of human infection with avian influenza viruses in populations with exposure to domestic or wild birds can provide a better understanding of the pandemic potential of avian influenza subtypes. Investigations conducted in Hong Kong following the first H5N1 outbreak in humans in 1997 determined that exposure to poultry in live bird markets was a key risk factor for human disease. Among poultry workers, butchering and exposure to sick poultry were risk factors for antibody to H5 virus, which provided evidence for infection. A second risk assessment tool, the ferret, can be used to evaluate the level of virulence and potential for host-to-host transmission of avian influenza viruses in this naturally susceptible host. Avian viruses isolated from humans exhibit a level of virulence and transmissibility in ferrets that generally reflects that seen in humans. The ferret model thus provides a means to monitor emerging avian influenza viruses for pandemic risk, as well as to evaluate laboratory-generated reassortants and mutants to better understand the molecular basis of influenza virus transmissibility. Taken together, such studies provide valuable information with which we can assess the public

  18. RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza

    DEFF Research Database (Denmark)

    Dybkaer, Karen; Munch, Mette; Handberg, Kurt Jensen

    2003-01-01

    A one-tube reverse transcriptase/polymerase chain reaction coupled with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) was developed for the rapid detection of avian influenza virus (AIV) in clinical specimens. A total of 419 swab pools were analyzed from chickens experimentally infected...

  19. Identification and characterization of avian retroviruses in chicken embryo-derived yellow fever vaccines: investigation of transmission to vaccine recipients.

    Science.gov (United States)

    Hussain, Althaf I; Johnson, Jeffrey A; Da Silva Freire, Marcos; Heneine, Walid

    2003-01-01

    All currently licensed yellow fever (YF) vaccines are propagated in chicken embryos. Recent studies of chick cell-derived measles and mumps vaccines show evidence of two types of retrovirus particles, the endogenous avian retrovirus (EAV) and the endogenous avian leukosis virus (ALV-E), which originate from the chicken embryonic fibroblast substrates. In this study, we investigated substrate-derived avian retrovirus contamination in YF vaccines currently produced by three manufacturers (YF-vax [Connaught Laboratories], Stamaril [Aventis], and YF-FIOCRUZ [FIOCRUZ-Bio-Manguinhos]). Testing for reverse transcriptase (RT) activity was not possible because of assay inhibition. However, Western blot analysis of virus pellets with anti-ALV RT antiserum detected three distinct RT proteins in all vaccines, indicating that more than one source is responsible for the RTs present in the vaccines. PCR analysis of both chicken substrate DNA and particle-associated RNA from the YF vaccines showed no evidence of the long terminal repeat sequences of exogenous ALV subgroups A to D in any of the vaccines. In contrast, both ALV-E and EAV particle-associated RNA were detected at equivalent titers in each vaccine by RT-PCR. Quantitative real-time RT-PCR revealed 61,600, 348,000, and 1,665,000 ALV-E RNA copies per dose of Stamaril, YF-FIOCRUZ, and YF-vax vaccines, respectively. ev locus-specific PCR testing of the vaccine-associated chicken substrate DNA was positive both for the nondefective ev-12 locus in two vaccines and for the defective ev-1 locus in all three vaccines. Both intact and ev-1 pol sequences were also identified in the particle-associated RNA. To investigate the risks of transmission, serum samples from 43 YF vaccine recipients were studied. None of the samples were seropositive by an ALV-E-based Western blot assay or had detectable EAV or ALV-E RNA sequences by RT-PCR. YF vaccines produced by the three manufacturers all have particles containing EAV genomes and

  20. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    Science.gov (United States)

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  1. Shedding and serologic responses following primary and secondary inoculation of house sparrows (Passer domesticus) and European starlings (Sturnus vulgaris) with low-pathogenicity avian influenza virus.

    Science.gov (United States)

    Nemeth, Nicole M; Thomas, Nicholas O; Orahood, Darcy S; Anderson, Theodore D; Oesterle, Paul T

    2010-10-01

    Waterfowl and shorebirds are well-recognized natural reservoirs of low-pathogenicity avian influenza viruses (LPAIV); however, little is known about the role of passerines in avian influenza virus ecology. Passerines are abundant, widespread, and commonly come into contact with free-ranging birds as well as captive game birds and poultry. We inoculated and subsequently challenged house sparrows (Passer domesticus) and European starlings (Sturnus vulgaris) with wild-bird origin LPAIV H3N8 to evaluate their potential role in transmission. Oropharyngeal shedding was short lived, and was detected in more starlings (97.2%) than sparrows (47.2%; n=36 of each). Cloacal shedding was rare in both species (8.3%; n=36 of each) and no cage-mate transmission occurred. Infectious LPAIV was cultured from oropharyngeal and cloacal swabs and gastrointestinal and respiratory tissues from both species. Seroconversion was detected as early as 3 days post inoculation (d.p.i.) (16.7% of sparrows and 0% of starlings; n=6 each); 50% of these individuals seroconverted by 5 d.p.i., and nearly all birds (97%; n=35) seroconverted by 28 d.p.i. In general, pre-existing homologous immunity led to reduced shedding and increased antibody levels within 7 days of challenge. Limited shedding and lack of cage-mate transmission suggest that passerines are not significant reservoirs of LPAIV, although species differences apparently exist. Passerines readily and consistently seroconverted to LPAIV, and therefore inclusion of passerines in epidemiological studies of influenza outbreaks in wildlife and domestic animals may provide further insight into the potential involvement of passerines in avian influenza virus transmission ecology.

  2. Avian models in teratology and developmental toxicology.

    Science.gov (United States)

    Smith, Susan M; Flentke, George R; Garic, Ana

    2012-01-01

    The avian embryo is a long-standing model for developmental biology research. It also has proven utility for toxicology research both in ovo and in explant culture. Like mammals, avian embryos have an allantois and their developmental pathways are highly conserved with those of mammals, thus avian models have biomedical relevance. Fertile eggs are inexpensive and the embryo develops rapidly, allowing for high-throughput. The chick genome is sequenced and significant molecular resources are available for study, including the ability for genetic manipulation. The absence of a placenta permits the direct study of an agent's embryotoxic effects. Here, we present protocols for using avian embryos in toxicology research, including egg husbandry and hatch, toxicant delivery, and assessment of proliferation, apoptosis, and cardiac structure and function.

  3. Avian conservation practices strengthen ecosystem services in California vineyards.

    Science.gov (United States)

    Jedlicka, Julie A; Greenberg, Russell; Letourneau, Deborah K

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services.

  4. Avian conservation practices strengthen ecosystem services in California vineyards.

    Directory of Open Access Journals (Sweden)

    Julie A Jedlicka

    Full Text Available Insectivorous Western Bluebirds (Sialia mexicana occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services.

  5. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    OpenAIRE

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-01-01

    Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same a...

  6. Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil.

    Science.gov (United States)

    Felippe, Paulo Anselmo; Silva, Luciana Helena Antoniassi da; Santos, Márcia Bianchi Dos; Sakata, Sonia Tatsumi; Arns, Clarice Weis

    2011-10-01

    The aim of the present study was to determine whether avian metapneumovirus (aMPV)-related viruses were present in wild and synanthropic birds in Brazil. Therefore, we analysed samples from wild birds, feral pigeons and domestic chickens in order to perform a phylogenetic comparison. To detect the presence of aMPV, a nested reverse transcriptase-polymerase chain reaction was performed with the aim of amplifying a fragment of 270 bases for subtype A and 330 bases for subtype B, comprising the gene coding the G glycoprotein. Positive samples for aMPV subtypes A and B were found in seven (13.2%) different asymptomatic wild birds and pigeons (50%) that had been received at the Bosque dos Jequitibás Zoo Triage Center, Brazil. Also analysed were positive samples from 15 (12.9%) domestic chickens with swollen head syndrome from several regions of Brazil. The positive samples from wild birds, pigeons and domestic chickens clustered in two major phylogenetic groups: some with aMPV subtype A and others with subtype B. The similarity of the G fragment nucleotide sequence of aMPV isolated from chickens and synanthropic and wild avian species ranged from 100 to 97.5% (from 100 to 92.5% for the amino acids). Some positive aMPV samples, which were obtained from wild birds classified in the Orders Psittaciformes, Anseriformes and Craciformes, clustered with subtype A, and others from the Anas and Dendrocygma genera (Anseriformes Order) with subtype B. The understanding of the epizootiology of aMPV is very important, especially if this involves the participation of non-domestic bird species, which would add complexity to their control on farms and to implementation of vaccination programmes for aMPV.

  7. Carotenoids from Foods of Plant, Animal and Marine Origin: An Efficient HPLC-DAD Separation Method

    Directory of Open Access Journals (Sweden)

    Irini F. Strati

    2012-12-01

    Full Text Available Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose egg yolks through the use of a modified gradient elution HPLC method with a C30 reversed-phase column for the efficient separation and analysis of carotenoids and their cis-isomers. Elution time was reduced from 60 to 45 min without affecting the separation efficiency. All-trans lycopene predominated in tomato waste, followed by all-trans-β-carotene, 13-cis-lutein and all-trans lutein, while minor amounts of 9-cis-lutein, 13-cis-β-carotene and 9-cis-β-carotene were also detected. Considering the above findings, tomato waste is confirmed to be an excellent source of recovering carotenoids, especially all-trans lycopene, for commercial use. Xanthophylls were the major carotenoids of avian egg yolks, all-trans lutein and all-trans zeaxanthin in duck and goose egg yolk, respectively. In the Penaeus kerathurus prawn, several carotenoids (zeaxanthin, all-trans-lutein, canthaxanthin, cryptoxanthin, optical and geometrical astaxanthin isomers were identified in considerable amounts by the same method. A major advantage of this HPLC method was the efficient separation of carotenoids and their cis-isomers, originating from a wide range of matrices.

  8. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals

    Science.gov (United States)

    Böhme, Ulrike; Otto, Thomas D.; Cotton, James A.; Steinbiss, Sascha; Sanders, Mandy; Oyola, Samuel O.; Nicot, Antoine; Gandon, Sylvain; Patra, Kailash P.; Herd, Colin; Bushell, Ellen; Modrzynska, Katarzyna K.; Billker, Oliver; Vinetz, Joseph M.; Rivero, Ana; Newbold, Chris I.; Berriman, Matthew

    2018-01-01

    Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum. We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum. PMID:29500236

  9. Dinosaur origin of egg color: oviraptors laid blue-green eggs.

    Science.gov (United States)

    Wiemann, Jasmina; Yang, Tzu-Ruei; Sander, Philipp N; Schneider, Marion; Engeser, Marianne; Kath-Schorr, Stephanie; Müller, Christa E; Sander, P Martin

    2017-01-01

    Protoporphyrin (PP) and biliverdin (BV) give rise to the enormous diversity in avian egg coloration. Egg color serves several ecological purposes, including post-mating signaling and camouflage. Egg camouflage represents a major character of open-nesting birds which accomplish protection of their unhatched offspring against visually oriented predators by cryptic egg coloration. Cryptic coloration evolved to match the predominant shades of color found in the nesting environment. Such a selection pressure for the evolution of colored or cryptic eggs should be present in all open nesting birds and relatives. Many birds are open-nesting, but protect their eggs by continuous brooding, and thus exhibit no or minimal eggshell pigmentation. Their closest extant relatives, crocodiles, protect their eggs by burial and have unpigmented eggs. This phylogenetic pattern led to the assumption that colored eggs evolved within crown birds. The mosaic evolution of supposedly avian traits in non-avian theropod dinosaurs, however, such as the supposed evolution of partially open nesting behavior in oviraptorids, argues against this long-established theory. Using a double-checking liquid chromatography ESI-Q-TOF mass spectrometry routine, we traced the origin of colored eggs to their non-avian dinosaur ancestors by providing the first record of the avian eggshell pigments protoporphyrin and biliverdin in the eggshells of Late Cretaceous oviraptorid dinosaurs. The eggshell parataxon Macroolithus yaotunensis can be assigned to the oviraptor Heyuannia huangi based on exceptionally preserved, late developmental stage embryo remains. The analyzed eggshells are from three Late Cretaceous fluvial deposits ranging from eastern to southernmost China. Reevaluation of these taphonomic settings, and a consideration of patterns in the porosity of completely preserved eggs support an at least partially open nesting behavior for oviraptorosaurs. Such a nest arrangement corresponds with our

  10. Dinosaur origin of egg color: oviraptors laid blue-green eggs

    Directory of Open Access Journals (Sweden)

    Jasmina Wiemann

    2017-08-01

    Full Text Available Protoporphyrin (PP and biliverdin (BV give rise to the enormous diversity in avian egg coloration. Egg color serves several ecological purposes, including post-mating signaling and camouflage. Egg camouflage represents a major character of open-nesting birds which accomplish protection of their unhatched offspring against visually oriented predators by cryptic egg coloration. Cryptic coloration evolved to match the predominant shades of color found in the nesting environment. Such a selection pressure for the evolution of colored or cryptic eggs should be present in all open nesting birds and relatives. Many birds are open-nesting, but protect their eggs by continuous brooding, and thus exhibit no or minimal eggshell pigmentation. Their closest extant relatives, crocodiles, protect their eggs by burial and have unpigmented eggs. This phylogenetic pattern led to the assumption that colored eggs evolved within crown birds. The mosaic evolution of supposedly avian traits in non-avian theropod dinosaurs, however, such as the supposed evolution of partially open nesting behavior in oviraptorids, argues against this long-established theory. Using a double-checking liquid chromatography ESI-Q-TOF mass spectrometry routine, we traced the origin of colored eggs to their non-avian dinosaur ancestors by providing the first record of the avian eggshell pigments protoporphyrin and biliverdin in the eggshells of Late Cretaceous oviraptorid dinosaurs. The eggshell parataxon Macroolithus yaotunensis can be assigned to the oviraptor Heyuannia huangi based on exceptionally preserved, late developmental stage embryo remains. The analyzed eggshells are from three Late Cretaceous fluvial deposits ranging from eastern to southernmost China. Reevaluation of these taphonomic settings, and a consideration of patterns in the porosity of completely preserved eggs support an at least partially open nesting behavior for oviraptorosaurs. Such a nest arrangement corresponds

  11. Observation of a ZZW female in a natural population: implications for avian sex determination.

    Science.gov (United States)

    Arit, D; Bensch, S; Hansson, B; Hasselquist, D; Westerdahl, H

    2004-01-01

    Avian sex determination is chromosomal; however, the underlying mechanisms are not yet understood. There is no conclusive evidence for either of two proposed mechanisms: a dominant genetic switch or a dosage mechanism. No dominant sex-determining gene on the female-specific W chromosome has been found. Birds lack inactivation of one of the Z chromosomes in males, but seem to compensate for a double dose of Z-linked genes by other mechanisms. Recent studies showing female-specific expression of two genes may support an active role of the W chromosome. To resolve the question of avian sex determination the investigation of birds with a 2A: ZZW or 2A: ZO genotype would be decisive. Here, we report the case of an apparent 2A: ZZW great reed warbler (Acrocephalus arundinaceus) female breeding in a natural population, which was detected using Z-linked microsatellites. Our data strongly suggest a role of W-linked genes in avian sex determination. PMID:15252998

  12. Avian paramyxovirus serotype 1 (Newcastle disease virus), avian influenza virus, and Salmonella spp. in mute swans (Cygnus olor) in the Great Lakes region and Atlantic Coast of the United States.

    Science.gov (United States)

    Pedersen, Kerri; Marks, David R; Arsnoe, Dustin M; Afonso, Claudio L; Bevins, Sarah N; Miller, Patti J; Randall, Adam R; DeLiberto, Thomas J

    2014-03-01

    Since their introduction to the United States in the late 19th century, mute swans (Cygnus olor) have become a nuisance species by causing damage to aquatic habitats, acting aggressively toward humans, competing with native waterfowl, and potentially transmitting or serving as a reservoir of infectious diseases to humans and poultry. In an effort to investigate their potential role as a disease reservoir and to establish avian health baselines for pathogens that threaten agricultural species or human health, we collected samples from 858 mute swans and tested them for avian paramyxovirus serotype 1 (APMV-1), avian influenza virus (AIV), and Salmonella spp. when possible. Our results indicate that exposure to APMV-1 and AIV is common (60%, n = 771, and 45%, n = 344, antibody prevalence, respectively) in mute swans, but detection of active viral shedding is less common (8.7%, n = 414, and 0.8%, n = 390, respectively). Salmonella was isolated from three mute swans (0.6%, n = 459), and although the serovars identified have been implicated in previous human outbreaks, it does not appear that Salmonella is commonly carried by mute swans.

  13. MANAGING AVIAN FLU, CARCASS MANAGEMENT & BIOSOLIDS

    Science.gov (United States)

    The avian influenza virus is discussed with emphasis on the impact to poultry and possible movement of the highly pathogenic H5N 1 virus to humans. A review is made of the worldwide effects to date of the avian influenza viruses; methods for the viruses to enter recreational wate...

  14. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    The avian vocal organ, the syrinx, is a specialized structure located rather inaccessibly in an air sac close to the heart where the trachea bifurcates into the two primary bronchi. The syrinx of different avian taxa varies so much in position and morphology that it has been used for taxonomy. It...

  15. Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Wallace P.; Johnson, Gregory D.; Strickland, Dale M.; Young, Jr., David P.; Sernka, Karyn J.; Good, Rhett E.

    2001-08-01

    It has been estimated that from 100 million to well over 1 billion birds are killed annually in the United States due to collisions with human-made structures, including vehicles, buildings and windows, powerlines, communication towers, and wind turbines. Although wind energy is generally considered environmentally friendly (because it generates electricity without emitting air pollutants or greenhouse gases), the potential for avian fatalities has delayed and even significantly contributed to blocking the development of some windplants in the U.S. Given the importance of developing a viable renewable source of energy, the objective of this paper is to put the issue of avian mortality associated with windpower into perspective with other sources of avian collision mortality across the U.S. The purpose of this paper is to provide a detailed summary of the mortality data collected at windplants and put avian collision mortality associated with windpower development into perspective with other significant sources of avian collision mortality across the United States. We provide a summary of data collected at many of the U.S. windplants and provide annual bird fatality estimates and projections for all wind turbines in the U.S. For comparison, we also review studies of avian collision mortality from other major human-made structures and report annual bird fatality estimates for these sources. Other sources also significantly contribute to overall avian mortality. For example, the National Audubon Society estimates avian mortality due to house cats at 100 million birds per year. Pesticide use, oil spills, disease, etc., are other significant sources of unintended avian mortality. Due to funding constraints, the scope of this paper is limited to examining only avian mortality resulting from collisions with human-made obstacles.

  16. A novel estrogen-regulated avian apolipoprotein☆

    Science.gov (United States)

    Nikolay, Birgit; Plieschnig, Julia A.; Šubik, Desiree; Schneider, Jeannine D.; Schneider, Wolfgang J.; Hermann, Marcela

    2013-01-01

    In search for yet uncharacterized proteins involved in lipid metabolism of the chicken, we have isolated a hitherto unknown protein from the serum lipoprotein fraction with a buoyant density of ≤1.063 g/ml. Data obtained by protein microsequencing and molecular cloning of cDNA defined a 537 bp cDNA encoding a precursor molecule of 178 residues. As determined by SDS-PAGE, the major circulating form of the protein, which we designate apolipoprotein-VLDL-IV (Apo-IV), has an apparent Mr of approximately 17 kDa. Northern Blot analysis of different tissues of laying hens revealed Apo-IV expression mainly in the liver and small intestine, compatible with an involvement of the protein in lipoprotein metabolism. To further investigate the biology of Apo-IV, we raised an antibody against a GST-Apo-IV fusion protein, which allowed the detection of the 17-kDa protein in rooster plasma, whereas in laying hens it was detectable only in the isolated ≤1.063 g/ml density lipoprotein fraction. Interestingly, estrogen treatment of roosters caused a reduction of Apo-IV in the liver and in the circulation to levels similar to those in mature hens. Furthermore, the antibody crossreacted with a 17-kDa protein in quail plasma, indicating conservation of Apo-IV in avian species. In search for mammalian counterparts of Apo-IV, alignment of the sequence of the novel chicken protein with those of different mammalian apolipoproteins revealed stretches with limited similarity to regions of ApoC-IV and possibly with ApoE from various mammalian species. These data suggest that Apo-IV is a newly identified avian apolipoprotein. PMID:24047540

  17. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    Science.gov (United States)

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  18. PRODUKSI KOLOSTRUM ANTIVIRUS AVIAN INFLUENZA DALAM RANGKA PENGENDALIAN INFEKSI VIRUS FLU BURUNG

    Directory of Open Access Journals (Sweden)

    A. Esfandari

    2008-08-01

    Full Text Available This experiment was conducted to study the prospect of bovine colostrum utilization to produce specific antibody as passive immunotherapy against avian influenza. Pregnant Frisian Holstein cows were injected with commercial killed Avian Influenza (AI vaccine given double doses subcutaneously three times every two weeks. Prior to vaccination, the cows were given immunomodulator 0.1 mg.kg-1 BW administered orally for three days. The animals then were injected by inactive H5N1 antigent without adjuvant intravenously to meet the dose of 104 HAU. Blood samples were collected to detect anti AI antibody using Enzyme Linked Jmmunosorbent Assay technique. Colostral samples were analysed to detect antibody against AI using Haemagglutination Inhibition technique. IgG stabilities were tested against enzyme, pH, and spray dried prosessing with inlet dan outlet temperature of 1400C and 520C.repectively. The colostral lgG efficacy on neutralizing H5N1 virus activity was determined in vitro (by using Serum Neutralization Test and protective titer measurement and in ovo (challenge test by using Embryonic Chicken Egg. The result indicated that serum antibody against H5N1 was detected one week after the second vaccination. Titer of colostral antibody against H5N1 was high (28 . Biological activity of colostral IgG remain stable at pH 5-7 and after spraying-drying prosessing, but decreased after treatment by trypsin and pepsin enzymes. The neutralization test showed that the fresh and spray dried colostral IgG against H5N1 were able to neutralize 107 EID50 AI virus H5N1 with neutralization index of 1.1 and 1.0, respectively. In conclusion, pregnant Frisian Holstein cows injected with commercial killed Avian Influenza (AI vaccine were able to produce colostral lgG against AI H5Nl

  19. Screening of Feral Pigeon (Colomba livia, Mallard (Anas platyrhynchos and Graylag Goose (Anser anser Populations for Campylobacter spp., Salmonella spp., Avian Influenza Virus and Avian Paramyxovirus

    Directory of Open Access Journals (Sweden)

    Nesse LL

    2005-12-01

    Full Text Available A total of 119 fresh faecal samples were collected from graylag geese migrating northwards in April. Also, cloacal swabs were taken from 100 carcasses of graylag geese shot during the hunting season in August. In addition, samples were taken from 200 feral pigeons and five mallards. The cultivation of bacteria detected Campylobacter jejuni jejuni in six of the pigeons, and in one of the mallards. Salmonella diarizona 14:k:z53 was detected in one graylag goose, while all pigeons and mallards were negative for salmonellae. No avian paramyxovirus was found in any of the samples tested. One mallard, from an Oslo river, was influenza A virus positive, confirmed by RT-PCR and by inoculation of embryonated eggs. The isolate termed A/Duck/Norway/1/03 was found to be of H3N8 type based on sequence analyses of the hemagglutinin and neuraminidase segments, and serological tests. This is the first time an avian influenza virus has been isolated in Norway. The study demonstrates that the wild bird species examined may constitute a reservoir for important bird pathogens and zoonotic agents in Norway.

  20. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  1. Molecular Detection of Avian Influenza Virus from Sediment Samples in Waterfowl Habitats on the Delmarva Peninsula, United States.

    Science.gov (United States)

    Densmore, C L; Iwanowicz, D D; Ottinger, C A; Hindman, L J; Bessler, A M; Iwanowicz, L R; Prosser, D J; Whitbeck, M; Driscoll, C P

    2017-12-01

    Avian influenza viruses (AIV) affect many species of birds including waterfowl and may persist in sediment in aquatic habitats. Sediment samples were collected from two areas representative of prime migration and overwintering waterfowl habitat in Dorchester County, Maryland in the fall and winter of 2013-2014. Samples were screened for the presence of AIV via reverse transcriptase-quantitative PCR targeting the matrix gene. Although 13.6% of sediment samples were positive for the AIV matrix gene across all collection dates and locations, differences in detection were noted with location and collection season. Percentage of AIV-positive sediment samples recovered corresponded to trends in waterfowl abundance at collection sites both temporally and spatially. These findings provide further support for the assertion that the presence of AIV in the aquatic environment is likely affected by the total number, site-specific density, and array of waterfowl species.

  2. Proceedings of National Avian-Wind Power Planning Meeting IV

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  3. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  4. assessment of the economic and social implications of the avian flu ...

    African Journals Online (AJOL)

    Admin

    2006-01-22

    Jan 22, 2006 ... KEYWORDS: Assessment, Economic, Social Implications, Avian Flu, Nigerian Poultry. INTRODUCTION. Avian flu is a highly infectious, contagious and zoonotic disease of man, poultry and other birds caused by the avian influenza type A virus, Emmanuel et.al. (2006). The avian influenza virus belongs to ...

  5. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors

    NARCIS (Netherlands)

    Zhang, Heng; de Vries, Robert P; Tzarum, Netanel; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-01-01

    Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8

  6. Mosquito blood-meal analysis for avian malaria study in wild bird communities: laboratory verification and application to Culex sasai (Diptera: Culicidae) collected in Tokyo, Japan.

    Science.gov (United States)

    Kim, Kyeong Soon; Tsuda, Yoshio; Sasaki, Toshinori; Kobayashi, Mutsuo; Hirota, Yoshikazu

    2009-10-01

    We conducted laboratory experiments to verify molecular techniques of avian malaria parasite detection distinguishing between an infected mosquito (oocysts on midgut wall) and infective mosquito (sporozoites in salivary glands) in parallel with blood-meal identification from individual blood-fed mosquitoes prior to application to field survey for avian malaria. Domestic fowl infected with Plasmodium gallinaceum was exposed to a vector and non-vector mosquito species, Aedes aegypti and Culex pipiens pallens, respectively, to compare the time course of polymerase chain reaction (PCR) detection for parasite between competent and refractory mosquitoes. DNA of the domestic fowl was detectable for at least 3 days after blood feeding. The PCR-based detection of P. gallinaceum from the abdomen and thorax of A. aegypti corresponded to the microscopic observation of oocysts and sporozoites. Therefore, this PCR-based method was considered useful as one of the criteria to assess developmental stages of Plasmodium spp. in mosquito species collected in the field. We applied the same PCR-based method to 21 blood-fed C. sasai mosquitoes collected in Rinshi-no-mori Park in urban Tokyo, Japan. Of 15 blood meals of C. sasai successfully identified, 86.7% were avian-derived, 13.3% were bovine-derived. Plasmodium DNA was amplified from the abdomen of three C. sasai specimens having an avian blood meal from the Great Tit (Parus major), Pale Thrush (Turdus pallidus), and Jungle Crow (Corvus macrorhynchos). This is the first field study on host-feeding habits of C. sasai in relation to the potential role as a vector for avian malaria parasites transmitted in the Japanese wild bird community.

  7. Contesting Risk and Responsibility: European Debates on Food and Agricultural Governance of Avian Influenza

    NARCIS (Netherlands)

    Krom, de M.P.M.M.; Oosterveer, P.J.M.

    2010-01-01

    In August 2005, avian influenza entered European public arenas as the next food and agricultural risk. As the virus was detected close to Europe, questions arose whether measures were required to protect human health and secure European food supply. This article analyzes the public debates on the

  8. Avian influenza virus infection in apparently healthy domestic birds in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Innocent Okwundu Nwankwo

    2012-09-01

    Full Text Available The study was conducted among apparently healthy birds brought from different local government areas, neighbouring states and across international boundaries to the Sokoto central live bird market between October 2008 and March 2009. Tracheal and cloacal swabs were collected from 221 apparently healthy birds comprising 182 chickens, 3 turkeys, 11 guineafowl, 17 ducks and 8 pigeons. These samples were analysed using nested polymerase chain reaction (nPCR to check for the presence of avian influenza virus. An overall prevalence of 1.4% (3 positive cases was detected with two cases observed in chickens and one in a pigeon. The findings indicate the circulation of avian influenza in the study area. This raises concern for human and animal health due to zoonotic and economic implications of this virus.

  9. H9N2 avian influenza virus antibody titers in human population in fars province, Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-09-01

    Full Text Available Among the avian influenza A virus subtypes, H5N1 and H9N2 viruses have the potential to cause an influenza pandemic because they are widely prevalent in avian species in Asia and have demonstrated the ability to infect humans. This study was carried out to determined the seroprevalence of H9N2 avian influenza virus in different human populations in Fars province, which is situated in the south of Iran. Antibodies against H9N2 avian influenza virus were measured using hemagglutination-inhibition (HI test in sera from 300 individuals in five different population in Fars province, including poultry-farm workers, slaughter-house workers, veterinarians, patients with clinical signs of respiratory disease, and clinically normal individuals, who were not or rarely in contact with poultry. Mean antibody titers of 7.3, 6.8, 6.1, 4.5, and 2.9 and seroprevalences of 87%, 76.2%, 72.5%, 35.6%, and 23% were determined in those groups, respectively. Higher prevalences were detected in poultry-farm workers, slaughter-house workers, and veterinarians, possibly due to their close and frequent contact with poultry.

  10. Surveillance for avian influenza viruses in wild birds in Denmark and Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona

    Avian influenza (AI) is a disease of major threat to poultry production. Surveillance of AI in wild birds contributes to the control of AI. In Denmark (DK) and Greenland (GL), extensive surveillance of AI viruses in the wild bird population has been conducted. The surveillance aimed at detecting......7 subtypes were detected throughout the period together with several other LPAI subtypes. In GL, HPAI was not detected, but few samples were PCR positive for AI. The occurrence of AI subtypes in the wild bird population correlates with concurrent outbreaks of LPAI in Danish poultry, which may...

  11. Laboratory preparedness in EU/EEA countries for detection of novel avian influenza A(H7N9) virus, May 2013

    Science.gov (United States)

    Broberg, E; Pereyaslov, D; Struelens, M; Palm, D; Meijer, A; Ellis, J; Zambon, M; McCauley, J; Daniels, R

    2015-01-01

    Following human infections with novel avian influenza A(H7N9) viruses in China, the European Centre for Disease Prevention and Control, the World Health Organization (WHO) Regional Office for Europe and the European Reference Laboratory Network for Human Influenza (ERLI-Net) rapidly posted relevant information, including real-time RT-PCR protocols. An influenza RNA sequence-based computational assessment of detection capabilities for this virus was conducted in 32 national influenza reference laboratories in 29 countries, mostly WHO National Influenza Centres participating in the WHO Global Influenza Surveillance and Response System (GISRS). Twenty-seven countries considered their generic influenza A virus detection assay to be appropriate for the novel A(H7N9) viruses. Twenty-two countries reported having containment facilities suitable for its isolation and propagation. Laboratories in 27 countries had applied specific H7 real-time RT-PCR assays and 20 countries had N9 assays in place. Positive control virus RNA was provided by the WHO Collaborating Centre in London to 34 laboratories in 22 countries to allow evaluation of their assays. Performance of the generic influenza A virus detection and H7 and N9 subtyping assays was good in 24 laboratories in 19 countries. The survey showed that ERLI-Net laboratories had rapidly developed and verified good capability to detect the novel A(H7N9) influenza viruses. PMID:24507469

  12. Identifying avian sources of faecal contamination using sterol analysis.

    Science.gov (United States)

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  13. Does Eating Chicken Feet With Pickled Peppers Cause Avian Influenza? Observational Case Study on Chinese Social Media During the Avian Influenza A (H7N9) Outbreak.

    Science.gov (United States)

    Chen, Bin; Shao, Jian; Liu, Kui; Cai, Gaofeng; Jiang, Zhenggang; Huang, Yuru; Gu, Hua; Jiang, Jianmin

    2018-03-29

    A hot topic on the relationship between a popular avian-origin food and avian influenza occurred on social media during the outbreak of the emerging avian influenza A (H7N9). The misinformation generated from this topic had caused great confusion and public concern. Our goals were to analyze the trend and contents of the relevant posts during the outbreak. We also aimed to understand the characteristics of the misinformation and to provide suggestions to reduce public misconception on social media during the emerging disease outbreak. The original microblog posts were collected from China's Sina Weibo and Tencent Weibo using a combination of keywords between April 1, 2013 and June 2, 2013. We analyzed the weekly and daily trend of the relevant posts. Content analyses were applied to categorize the posts into 4 types with unified sorting criteria. The posts' characteristics and geographic locations were also analyzed in each category. We conducted further analysis on the top 5 most popular misleading posts. A total of 1680 original microblog posts on the topic were retrieved and 341 (20.30%) of these posts were categorized as misleading messages. The number of relevant posts had not increased much during the first 2 weeks but rose to a high level in the next 2 weeks after the sudden increase in number of reported cases at the beginning of week 3. The posts under "misleading messages" occurred and increased from the beginning of week 3, but their daily posting number decreased when the daily number of posts under "refuting messages" outnumbered them. The microbloggers of the misleading posts had the lowest mean rank of followers and previous posts, but their posts had a highest mean rank of posts. The proportion of "misleading messages" in places with no reported cases was significantly higher than that in the epidemic areas (23.6% vs 13.8%). The popular misleading posts appeared to be short and consisted of personal narratives, which were easily disseminated on

  14. Reproducibility of swollen sinuses in broilers by experimental infection with avian metapneumovirus subtypes A and B of turkey origin and their comparative pathogenesis.

    Science.gov (United States)

    Aung, Ye Htut; Liman, Martin; Neumann, Ulrich; Rautenschlein, Silke

    2008-02-01

    Swollen head syndrome (SHS) associated with avian metapneumovirus (aMPV) subtype A or subtype B in broilers and broiler breeders has been reported worldwide. Data about pathogenesis of aMPV subtypes A and B in broilers are scarce. It has been difficult to reproduce swollen sinuses in chickens with aMPV under experimental conditions. In the field, SHS in broilers is suspected to be induced by combined infections with different respiratory pathogens. The objectives of the present study were to compare the pathogenesis of subtypes A and B aMPV in commercial broilers and to investigate the reproducibility of clinical disease. In two repeat experiments, commercial broilers free of aMPV maternal antibodies were inoculated with aMPV subtypes A and B of turkey origin. The clinical signs such as depression, coughing, nasal exudates, and frothy eyes appeared at 4 days post inoculation, followed by swelling of periorbital sinuses at 5 days post inoculation. Higher numbers of broilers showed clinical signs in subtype-B-inoculated compared with subtype-A-inoculated groups. Seroconversion to aMPV was detectable from 10 to 11 days post inoculation. The appearance of serum aMPV enzyme-linked immunosorbent assay antibodies and the clearance of the aMPV genome coincided. Subtype B aMPV showed a broader tissue distribution and longer persistence than subtype A. Histopathological changes were observed in the respiratory tract tissues of aMPV-inoculated broilers, and also in paraocular glands, such as the Harderian and lachrymal glands. Overall, our study shows that representative strains of both aMPV turkey isolates induced lesions in the respiratory tract, accompanied by swelling of infraorbital sinuses, indicating the role of aMPV as a primary pathogen for broilers.

  15. Emerging and reemerging diseases of avian wildlife

    Science.gov (United States)

    Pello, Susan J.; Olsen, Glenn H.

    2013-01-01

    Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive.

  16. The infection of chicken tracheal epithelial cells with a H6N1 avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Ching-I Shen

    Full Text Available Sialic acids (SAs linked to galactose (Gal in α2,3- and α2,6-configurations are the receptors for avian and human influenza viruses, respectively. We demonstrate that chicken tracheal ciliated cells express α2,3-linked SA, while goblet cells mainly express α2,6-linked SA. In addition, the plant lectin MAL-II, but not MAA/MAL-I, is bound to the surface of goblet cells, suggesting that SA2,3-linked oligosaccharides with Galβ1-3GalNAc subterminal residues are specifically present on the goblet cells. Moreover, both α2,3- and α2,6-linked SAs are detected on single tracheal basal cells. At a low multiplicity of infection (MOI avian influenza virus H6N1 is exclusively detected in the ciliated cells, suggesting that the ciliated cell is the major target cell of the H6N1 virus. At a MOI of 1, ciliated, goblet and basal cells are all permissive to the AIV infection. This result clearly elucidates the receptor distribution for the avian influenza virus among chicken tracheal epithelial cells and illustrates a primary cell model for evaluating the cell tropisms of respiratory viruses in poultry.

  17. Assessment of different surveillance systems for avian influenza in commercial poultry in Catalonia (North-Eastern Spain).

    Science.gov (United States)

    Alba, A; Casal, J; Napp, S; Martin, P A J

    2010-11-01

    Compulsory surveillance programmes for avian influenza (AI) have been implemented in domestic poultry and wild birds in all the European Member States since 2005. The implementation of these programmes is complex and requires a close evaluation. A good indicator to assess their efficacy is the sensitivity (Se) of the surveillance system. In this study, the sensitivities for different sampling designs proposed by the Spanish authorities for the commercial poultry population of Catalonia were assessed, using the scenario tree model methodology. These samplings were stratified throughout the territory of Spain and took into account the species, the types of production and their specific risks. The probabilities of detecting infection at different prevalences at both individual and holding level were estimated. Furthermore, those subpopulations that contributed more to the Se of the system were identified. The model estimated that all the designs met the requirements of the European Commission. The probability of detecting AI circulating in Catalonian poultry did not change significantly when the within-holding design prevalence varied from 30% to 10%. In contrast, when the among-holding design prevalence decreased from 5% to 1%, the probability of detecting AI was drastically reduced. The sampling of duck and goose holdings, and to a lesser extent the sampling of turkey and game bird holdings, increased the Se substantially. The Se of passive surveillance in chickens for highly pathogenic avian influenza (HPAI) and low pathogenicity avian influenza (LPAI) were also assessed. The probability of the infected birds manifesting apparent clinical signs and the awareness of veterinarians and farmers had great influence on the probability of detecting AI. In order to increase the probability of an early detection of HPAI in chicken, the probability of performing AI specific tests when AI is suspected would need to be increased. Copyright © 2010 Elsevier B.V. All rights

  18. Seasonality, distribution and taxonomic status of avian ...

    African Journals Online (AJOL)

    Description of a new species is based upon morphology of gametocyte development in the peripheral blood of the avian host. This does not distinguish between morphologically identical gametocytes from different avian host families, nor is species or family level a valid taxonomic character. Thus, Haemoproteus and ...

  19. Avian pox in Magellanic Penguins (Spheniscus magellanicus).

    Science.gov (United States)

    Kane, Olivia J; Uhart, Marcela M; Rago, Virginia; Pereda, Ariel J; Smith, Jeffrey R; Van Buren, Amy; Clark, J Alan; Boersma, P Dee

    2012-07-01

    Avian pox is an enveloped double-stranded DNA virus that is mechanically transmitted via arthropod vectors or mucosal membrane contact with infectious particles or birds. Magellanic Penguins (Spheniscus magellanicus) from two colonies (Punta Tombo and Cabo Dos Bahías) in Argentina showed sporadic, nonepidemic signs of avian pox during five and two of 29 breeding seasons (1982-2010), respectively. In Magellanic Penguins, avian pox expresses externally as wart-like lesions around the beak, flippers, cloaca, feet, and eyes. Fleas (Parapsyllus longicornis) are the most likely arthropod vectors at these colonies. Three chicks with cutaneous pox-like lesions were positive for Avipoxvirus and revealed phylogenetic proximity with an Avipoxvirus found in Black-browed Albatross (Thalassarche melanophrys) from the Falkland Islands in 1987. This proximity suggests a long-term circulation of seabird Avipoxviruses in the southwest Atlantic. Avian pox outbreaks in these colonies primarily affected chicks, often resulted in death, and were not associated with handling, rainfall, or temperature.

  20. Detection by reverse transcriptase-polymerase chain reaction and molecular characterization of subtype B avian metapneumovirus isolated in Brazil.

    Science.gov (United States)

    Chacón, Jorge Luis; Brandão, Paulo E; Buim, Marcos; Villarreal, Laura; Ferreira, Antonio J Piantino

    2007-10-01

    Subtype B avian metapneumovirus (aMPV) was isolated and detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in Brazilian commercial laying chicken flocks with no history of vaccination against aMPV and presenting respiratory signs and decreased egg production. RT-PCR results from samples from three affected flocks revealed that the three isolates were subtype B. Partial sequence analysis of the G glycoprotein gene confirmed that the samples belonged to subtype B and were not of the vaccine type. Comparison of nucleotide and amino acid sequences of the G gene of the three Brazilian aMPV samples with subtype B isolates from other countries revealed 95.1% to 96.1% identity. Nucleotide sequences showed 100% identity among the Brazilian subtype B samples and 95.6% identity with the subtype B vaccine strain used in Brazil. This work describes the circulation of subtype B aMPV in Brazil and discusses its importance in terms of disease epidemiology.

  1. Interspecific exchange of avian influenza virus genes in Alaska: The influence of trans-hemispheric migratory tendency and breeding ground sympatry

    Science.gov (United States)

    Pearce, John M.; Reeves, A.B.; Ramey, A.M.; Hupp, J.W.; Ip, Hon S.; Bertram, M.; Petrula, M.J.; Scotton, B.D.; Trust, K.A.; Meixell, B.W.; Runstadler, J.A.

    2011-01-01

    The movement and transmission of avian influenza viral strains via wild migratory birds may vary by host species as a result of migratory tendency and sympatry with other infected individuals. To examine the roles of host migratory tendency and species sympatry on the movement of Eurasian low-pathogenic avian influenza (LPAI) genes into North America, we characterized migratory patterns and LPAI viral genomic variation in mallards (Anas platyrhynchos) of Alaska in comparison with LPAI diversity of northern pintails (Anas acuta). A 50-year band-recovery data set suggests that unlike northern pintails, mallards rarely make trans-hemispheric migrations between Alaska and Eurasia. Concordantly, fewer (14.5%) of 62 LPAI isolates from mallards contained Eurasian gene segments compared to those from 97 northern pintails (35%), a species with greater inter-continental migratory tendency. Aerial survey and banding data suggest that mallards and northern pintails are largely sympatric throughout Alaska during the breeding season, promoting opportunities for interspecific transmission. Comparisons of full-genome isolates confirmed near-complete genetic homology (>99.5%) of seven viruses between mallards and northern pintails. This study found viral segments of Eurasian lineage at a higher frequency in mallards than previous studies, suggesting transmission from other avian species migrating inter-hemispherically or the common occurrence of endemic Alaskan viruses containing segments of Eurasian origin. We conclude that mallards are unlikely to transfer Asian-origin viruses directly to North America via Alaska but that they are likely infected with Asian-origin viruses via interspecific transfer from species with regular migrations to the Eastern Hemisphere.

  2. Avian Plasmodium in Eastern Austrian mosquitoes.

    Science.gov (United States)

    Schoener, Ellen; Uebleis, Sarah Susanne; Butter, Julia; Nawratil, Michaela; Cuk, Claudia; Flechl, Eva; Kothmayer, Michael; Obwaller, Adelheid G; Zechmeister, Thomas; Rubel, Franz; Lebl, Karin; Zittra, Carina; Fuehrer, Hans-Peter

    2017-09-29

    Insect vectors, namely mosquitoes (Diptera: Culicidae), are compulsory for malaria parasites (Plasmodium spp.) to complete their life cycle. Despite this, little is known about vector competence of different mosquito species for the transmission of avian malaria parasites. In this study, nested PCR was used to determine Plasmodium spp. occurrence in pools of whole individuals, as well as the diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across Eastern Austria in 2013-2015. A total of 45,749 mosquitoes in 2628 pools were collected, of which 169 pools (6.43%) comprising 9 mosquito species were positive for avian Plasmodium, with the majority of positives in mosquitoes of Culex pipiens s.l./Culex torrentium. Six different avian Plasmodium lineages were found, the most common were Plasmodium vaughani SYAT05, Plasmodium sp. Linn1 and Plasmodium relictum SGS1. In 2014, mosquitoes of the Culex pipiens complex were genetically identified and Culex pipiens f. pipiens presented with the highest number of avian Plasmodium positives (n = 37; 16.74%). Despite this, the minimum infection rate (MIR) was highest in Culex torrentium (5.36%) and Culex pipiens f. pipiens/f. molestus hybrids (5.26%). During 2014 and 2015, seasonal and annual changes in Plasmodium lineage distribution were also observed. In both years P. vaughani SYAT05 dominated at the beginning of the sampling period to be replaced later in the year by P. relictum SGS1 (2014) and Plasmodium sp. Linn1 (2015). This is the first large-scale study of avian Plasmodium parasites in Austrian mosquitoes. These results are of special interest, because molecular identification of the taxa of the Cx. pipiens complex and Cx. torrentium enabled the determination of Plasmodium prevalence in the different mosquito taxa and hybrids of this complex. Since pools of whole insects were used, it is not possible to assert any vector competence in any of the examined mosquitoes, but the results

  3. Absence of Tangentially Migrating Glutamatergic Neurons in the Developing Avian Brain

    Directory of Open Access Journals (Sweden)

    Fernando García-Moreno

    2018-01-01

    Full Text Available Summary: Several neuronal populations orchestrate neocortical development during mammalian embryogenesis. These include the glutamatergic subplate-, Cajal-Retzius-, and ventral pallium-derived populations, which coordinate cortical wiring, migration, and proliferation, respectively. These transient populations are primarily derived from other non-cortical pallial sources that migrate to the dorsal pallium. Are these migrations to the dorsal pallium conserved in amniotes or are they specific to mammals? Using in ovo electroporation, we traced the entire lineage of defined chick telencephalic progenitors. We found that several pallial sources that produce tangential migratory neurons in mammals only produced radially migrating neurons in the avian brain. Moreover, ectopic expression of VP-specific mammalian Dbx1 in avian brains altered neurogenesis but did not convert the migration into a mammal-like tangential movement. Together, these data indicate that tangential cellular contributions of glutamatergic neurons originate from outside the dorsal pallium and that pallial Dbx1 expression may underlie the generation of the mammalian neocortex during evolution. : Neocortical formation crucially depends on the early tangential arrival of several transient glutamatergic neuronal populations. García-Moreno et al. find that these neuronal migrations are absent in the developing brain of chicks. The mammalian uniqueness of these developing migrations suggests a crucial role of these cells in the evolutionary origin of the neocortex. Keywords: neocortex, chick, pallium, ventral pallium, evo-devo, evolution, Dbx1, telencephalon

  4. Serological evidence of avian encephalomyelitis virus and Pasteurella multocida infections in free-range indigenous chickens in Southern Mozambique.

    Science.gov (United States)

    Taunde, Paula; Timbe, Palmira; Lucas, Ana Felicidade; Tchamo, Cesaltina; Chilundo, Abel; Dos Anjos, Filomena; Costa, Rosa; Bila, Custodio Gabriel

    2017-06-01

    A total of 398 serum samples from free-range indigenous chickens originating from four villages in Southern Mozambique were tested for the presence of avian encephalomyelitis virus (AEV) and Pasteurella multocida (PM) antibodies through commercial enzyme-linked immunosorbent assay (ELISA) kits. AEV and PM antibodies were detected in all villages surveyed. The proportion of positive samples was very high: 59.5% (95% confidence interval (CI) 51.7-67.7%) for AEV and 71.5% (95% CI 67.7-77.3%) for PM. Our findings revealed that these pathogens are widespread among free-range indigenous chickens in the studied villages and may represent a threat in the transmission of AEV and PM to wild, broiler or layer chickens in the region. Further research is warranted on epidemiology of circulating strains and impact of infection on the poultry industry.

  5. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  6. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    Science.gov (United States)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    H1N2 has an "avian-like" H1 and differs from most other reported H1N2 viruses in Europe and North America/Asia, which have H1-genes of human or "classical-swine" origin, respectively. The variant seems, however, also to be circulating in countries like Sweden and Italy. The infection dynamics of the reassorted "avian-like" H1N2 is similar to the older "avian-like" H1N1 subtype.

  7. Avian Influenza (H7N9) Virus Infection in Chinese Tourist in Malaysia, 2014

    OpenAIRE

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah; Yeo, Tsin Wen

    2015-01-01

    Of the ?400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally.

  8. Emerging and reemerging diseases of avian wildlife.

    Science.gov (United States)

    Pello, Susan J; Olsen, Glenn H

    2013-05-01

    Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Evidence for limited exchange of avian influenza viruses between seaducks and dabbling ducks at Alaska Peninsula coastal lagoons

    Science.gov (United States)

    Ramey, Andy M.; Pearce, John M.; Reeves, A.B.; Franson, J. Christian; Petersen, Margaret R.; Ip, Hon S.

    2011-01-01

    Avian influenza virus (AIV) prevalence and sequence data were analyzed for Steller's eiders (Polysticta stelleri) to assess the role of this species in transporting virus genes between continents and maintaining a regional viral reservoir with sympatric northern pintails (Anas acuta). AIV prevalence was 0.2% at Izembek Lagoon and 3.9% at Nelson Lagoon for Steller's eiders and 11.2% for northern pintails at Izembek Lagoon. Phylogenetic analysis of 13 AIVs from Steller's eiders revealed that 4.9% of genes were of Eurasian origin. Seven subtypes were detected, including two also observed in northern pintails. No AIV strains were highly similar (> 99%) at all gene segments between species; however, highly similar individual genes were detected. The proportion of highly similar genes was greater within rather than between species. Steller's eiders likely transport AIV genes between continents through long-distance migratory movements. Differences in AIV prevalence, subtype distribution, and the proportion of highly similar genes suggest limited AIV exchange between Steller's eiders and northern pintails at Alaska Peninsula coastal lagoons during autumn.

  10. Avian Influenza: A growing threat to Africa

    Science.gov (United States)

    The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...

  11. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R G; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  12. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    Science.gov (United States)

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Avian influenza virus risk assessment in falconry

    Directory of Open Access Journals (Sweden)

    Lüschow Dörte

    2011-04-01

    Full Text Available Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV. In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008 falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54 in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74 and 3.8% of ducks (n = 53 using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.

  14. Conservation of avian diversity in the Sierra Nevada: moving beyond a single-species management focus.

    Directory of Open Access Journals (Sweden)

    Angela M White

    Full Text Available As a result of past practices, many of the dry coniferous forests of the western United States contain dense, even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to reduce biomass through fuel reduction (i.e., thinning of trees are often opposed by public interest groups whose objectives include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk, Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers adequate conservation of avian forest diversity is unknown.We use a multi-species occurrence model to estimate the habitat associations of 47 avian species detected at 742 sampling locations within an 880-km(2 area in the Sierra Nevada. Our approach, which accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking species occurrence models into one hierarchical community model, thus improving inferences on all species, especially those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species distributions.Environmental parameters estimated through our approach emphasize the importance of within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of habitats across environmental gradients and minimizing urbanization may have a

  15. Conservation of avian diversity in the Sierra Nevada: moving beyond a single-species management focus

    Science.gov (United States)

    White, Angela M.; Zipkin, Elise F.; Manley, Patricia N.; Schlesinger, Matthew D.

    2013-01-01

    Background: As a result of past practices, many of the dry coniferous forests of the western United States contain dense, even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to reduce biomass through fuel reduction (i.e., thinning of trees) are often opposed by public interest groups whose objectives include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk, Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers adequate conservation of avian forest diversity is unknown. Methodology and Principal Findings: We use a multi-species occurrence model to estimate the habitat associations of 47 avian species detected at 742 sampling locations within an 880-km2 area in the Sierra Nevada. Our approach, which accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking species occurrence models into one hierarchical community model, thus improving inferences on all species, especially those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species distributions. Conclusions and Significance: Environmental parameters estimated through our approach emphasize the importance of within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of habitats across

  16. Exo-erythrocytic development of avian malaria and related haemosporidian parasites.

    Science.gov (United States)

    Valkiūnas, Gediminas; Iezhova, Tatjana A

    2017-03-03

    Avian malaria parasites (Plasmodium spp.) and related haemosporidians (Haemosporida) are responsible for diseases which can be severe and even lethal in avian hosts. These parasites cause not only blood pathology, but also damage various organs due to extensive exo-erythrocytic development all over the body, which is not the case during Plasmodium infections in mammals. However, exo-erythrocytic development (tissue merogony or schizogony) remains the most poorly investigated part of life cycle in all groups of wildlife haemosporidian parasites. In spite of remarkable progress in studies of genetic diversity, ecology and evolutionary biology of avian haemosporidians during the past 20 years, there is not much progress in understanding patterns of exo-erythrocytic development in these parasites. The purpose of this review is to overview the main information on exo-erythrocytic development of avian Plasmodium species and related haemosporidian parasites as a baseline for assisting academic and veterinary medicine researchers in morphological identification of these parasites using tissue stages, and to define future research priorities in this field of avian malariology. The data were considered from peer-reviewed articles and histological material that was accessed in zoological collections in museums of Australia, Europe and the USA. Articles describing tissue stages of avian haemosporidians were included from 1908 to the present. Histological preparations of various organs infected with the exo-erythrocytic stages of different haemosporidian parasites were examined. In all, 229 published articles were included in this review. Exo-erythrocytic stages of avian Plasmodium, Fallisia, Haemoproteus, Leucocytozoon, and Akiba species were analysed, compared and illustrated. Morphological characters of tissue stages that can be used for diagnostic purposes were specified. Recent molecular studies combined with histological research show that avian haemosporidians are more

  17. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    Science.gov (United States)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  18. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota.

    Science.gov (United States)

    van Veelen, H Pieter J; Salles, Joana Falcão; Tieleman, B Irene

    2018-05-01

    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.

  19. Avian influenza (H7N9) virus infection in Chinese tourist in Malaysia, 2014.

    Science.gov (United States)

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah; Yeo, Tsin Wen

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally.

  20. Immune Responses of Chickens Infected with Wild Bird-Origin H5N6 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Shimin Gao

    2017-06-01

    Full Text Available Since April 2014, new infections of H5N6 avian influenza virus (AIV in humans and domestic poultry have caused considerable economic losses in the poultry industry and posed an enormous threat to human health worldwide. In previous research using gene sequence and phylogenetic analysis, we reported that H5N6 AIV isolated in February 2015 (ZH283 in Pallas’s sandgrouse was highly similar to that isolated in a human in December 2015 (A/Guangdong/ZQ874/2015, whereas a virus (i.e., SW8 isolated in oriental magpie-robin in 2014 was highly similar to that of A/chicken/Dongguan/2690/2013 (H5N6. However, the pathogenicity, transmissibility, and host immune-related response of chickens infected by those wild bird-origin H5N6 AIVs remain unknown. In response, we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses. Results showed that the H5N6 AIVs were highly pathogenic to chickens and caused not only systemic infection in multiple tissues, but also 100% mortality within 3–5 days post-infection. Additionally, ZH283 efficiently replicated in all tested tissues and transmitted among chickens more rapidly than SW8. Moreover, quantitative real-time polymerase chain reaction analysis showed that following infection with H5N6, AIVs immune-related genes remained active in a tissue-dependent manner, as well as that ZH283 induced mRNA expression profiles such as TLR3, TLR7, IL-6, TNF-α, IL-1β, IL-10, IL-8, and MHC-II to a greater extent than SW8 in the tested tissues of infected chickens. Altogether, our findings help to illuminate the pathogenesis and immunologic mechanisms of H5N6 AIVs in chickens.

  1. Avian pox

    Science.gov (United States)

    Hansen, W.

    1999-01-01

    Avian pox is the common name for a mild-to-severe, slowdeveloping disease of birds that is caused by a large virus belonging to the avipoxvirus group, a subgroup of poxviruses. This group contains several similar virus strains; some strains have the ability to infect several groups or species of birds but others appear to be species-specific. Mosquitoes are common mechanical vectors or transmitters of this disease. Avian pox is transmitted when a mosquito feeds on an infected bird that has viremia or pox virus circulating in its blood, or when a mosquito feeds on virus-laden secretions seeping from a pox lesion and then feeds on another bird that is susceptible to that strain of virus. Contact with surfaces or exposure to air-borne particles contaminated with poxvirus can also result in infections when virus enters the body through abraded skin or the conjunctiva or the mucous membrane lining that covers the front part of the eyeball and inner surfaces of the eyelids of the eye.

  2. Low Pathogenic Avian Influenza (H7N1) Transmission Between Wild Ducks and Domestic Ducks

    DEFF Research Database (Denmark)

    Therkildsen, O. R.; Jensen, Trine Hammer; Handberg, Kurt

    2011-01-01

    This article describes a virological investigation in a mixed flock of ducks and geese following detection of avian influenza virus antibodies in domestic geese. Low pathogenic H7N1 was found in both domestic and wild birds, indicating that transmission of virus was likely to have taken place...

  3. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses.

    Science.gov (United States)

    Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2018-04-01

    During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.

  4. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Hongmei Bao

    2014-01-01

    Full Text Available A novel influenza A (H7N9 virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans. No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9 virus from different resource samples.

  5. Dual function of the hemagglutinin H5 fused to chicken CD154 in a potential strategy of DIVA against avian influenza disease: preliminary study

    Directory of Open Access Journals (Sweden)

    A.G. Pose

    2015-09-01

    Full Text Available In this study we demonstrated that the vaccine candidate against avian influenza virus H5N1 based on the hemagglutinin H5 (HA fused to the chicken CD154 (HACD can also be used for differentiating infected from vaccinated animals (DIVA. As the strategy of DIVA requires at least two proteins, we obtained a variant of the nucleoprotein (NP49-375 in E. coli. After its purification by IMAC, the competence of the proteins NP49-375 and HACD as coating antigens in indirect ELISA assays were tested by using the sera of chickens immunized with the proteins HA and HACD and the reference sera from several avian influenza subtypes. Together with these sera, the sera from different species of birds and the sera of chickens infected with other avian viral diseases were analyzed by competition ELISA assays coated with the proteins NP49-375 and HACD. The results showed that the segment CD154 in the chimeric protein HACD did not interfere with the recognition of the molecule HA by its specific antibodies. Also, we observed variable detection levels when the reference sera were analyzed in the ELISA plates coated with the protein NP49-375. Moreover, only the antibodies of the reference serum subtype H5 were detected in the ELISA plates coated with the protein HACD. The competition ELISA assays showed percentages of inhibition of 88-91% for the positives sera and less than 20% for the negative sera. We fixed the cut-off value of these assays at 25%. No antibody detection was observed in the sera from different species of birds or the sera of chickens infected with other avian viral diseases. This study supported the fact that the ELISA assays using the proteins NP49-375 and HACD could be valuable tools for avian influenza surveillance and as a strategy of DIVA for counteracting the highly pathogenic avian influenza virus H5N1 outbreaks.

  6. Dual function of the hemagglutinin H5 fused to chicken CD154 in a potential strategy of DIVA against avian influenza disease: preliminary study.

    Science.gov (United States)

    Pose, A G; Rodríguez, E S; Méndez, A C; Gómez, J N; Redondo, A V; Rodríguez, E R; Ramos, E M G; Gutiérrez, A Á; Moltó, M P R; Roche, D G; Ugalde, Y S; López, A M

    2015-01-01

    In this study we demonstrated that the vaccine candidate against avian influenza virus H5N1 based on the hemagglutinin H5 (HA) fused to the chicken CD154 (HACD) can also be used for differentiating infected from vaccinated animals (DIVA). As the strategy of DIVA requires at least two proteins, we obtained a variant of the nucleoprotein (NP49-375) in E. coli. After its purification by IMAC, the competence of the proteins NP49-375 and HACD as coating antigens in indirect ELISA assays were tested by using the sera of chickens immunized with the proteins HA and HACD and the reference sera from several avian influenza subtypes. Together with these sera, the sera from different species of birds and the sera of chickens infected with other avian viral diseases were analyzed by competition ELISA assays coated with the proteins NP49-375 and HACD. The results showed that the segment CD154 in the chimeric protein HACD did not interfere with the recognition of the molecule HA by its specific antibodies. Also, we observed variable detection levels when the reference sera were analyzed in the ELISA plates coated with the protein NP49-375. Moreover, only the antibodies of the reference serum subtype H5 were detected in the ELISA plates coated with the protein HACD. The competition ELISA assays showed percentages of inhibition of 88-91% for the positives sera and less than 20% for the negative sera. We fixed the cut-off value of these assays at 25%. No antibody detection was observed in the sera from different species of birds or the sera of chickens infected with other avian viral diseases. This study supported the fact that the ELISA assays using the proteins NP49-375 and HACD could be valuable tools for avian influenza surveillance and as a strategy of DIVA for counteracting the highly pathogenic avian influenza virus H5N1 outbreaks.

  7. 9 CFR 113.326 - Avian Pox Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... established as follows: (1) Fowl pox susceptible birds all of the same age and from the same source, shall be...

  8. Global spread and control of avian influenza

    Science.gov (United States)

    H5 and H7 high pathogenicity avian influenza (HPAI) viruses emerge from the mutation of H5 and H7 low pathogenicity avian influenza viruses (LPAI) after circulation in terrestrial poultry for a few weeks to years. There have been 42 distinct HPAI epizootics since 1959. The largest being the H5N1 A/G...

  9. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  10. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    Science.gov (United States)

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  11. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  12. [An overview of surveillance of avian influenza viruses in wild birds].

    Science.gov (United States)

    Zhu, Yun; Shi, Jing-Hong; Shu, Yue-Long

    2014-05-01

    Wild birds (mainly Anseriformes and Charadriiformes) are recognized as the natural reservoir of avian influenza viruses (AIVs). The long-term surveillance of AIVs in wild birds has been conducted in North America and Europe since 1970s. More and more surveillance data revealed that all the HA and NA subtypes of AIVs were identified in the wild ducks, shorebirds, and gulls, and the AIVs circulating in wild birds were implicated in the outbreaks of AIVs in poultry and humans. Therefore, the AIVs in wild birds pose huge threat to poultry industry and human health. To gain a better understanding of the ecology and epidemiology of AIVs in wild birds, we summarize the transmission of AIVs between wild birds, poultry, and humans, the main results of surveillance of AIVs in wild birds worldwide and methods for surveillance, and the types of samples and detection methods for AIVs in wild birds, which would be vital for the effective control of avian influenza and response to possible influenza pandemic.

  13. The avian fossil record in Insular Southeast Asia and its implications for avian biogeography and palaeoecology

    Directory of Open Access Journals (Sweden)

    Hanneke J.M. Meijer

    2014-03-01

    Full Text Available Excavations and studies of existing collections during the last decades have significantly increased the abundance as well as the diversity of the avian fossil record for Insular Southeast Asia. The avian fossil record covers the Eocene through the Holocene, with the majority of bird fossils Pleistocene in age. Fossil bird skeletal remains represent at least 63 species in 54 genera and 27 families, and two ichnospecies are represented by fossil footprints. Birds of prey, owls and swiftlets are common elements. Extinctions seem to have been few, suggesting continuity of avian lineages since at least the Late Pleistocene, although some shifts in species ranges have occurred in response to climatic change. Similarities between the Late Pleistocene avifaunas of Flores and Java suggest a dispersal route across southern Sundaland. Late Pleistocene assemblages of Niah Cave (Borneo and Liang Bua (Flores support the rainforest refugium hypothesis in Southeast Asia as they indicate the persistence of forest cover, at least locally, throughout the Late Pleistocene and Holocene.

  14. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    Science.gov (United States)

    Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.

    2012-01-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.

  15. An epidemiological study of avian influenza A (H5) virus in nomadic ducks and their raising practices in northeastern Bangladesh, 2011-2012.

    Science.gov (United States)

    Sarkar, Shamim; Khan, Salah Uddin; Mikolon, Andrea; Rahman, Mohammad Ziaur; Abedin, Jaynal; Zeidner, Nord; Sturm-Ramirez, Katherine; Luby, Stephen P

    2017-05-01

    In Bangladesh, nomadic duck flocks are groups of domestic ducks reared for egg production that are moved to access feeding sites beyond their owners' village boundaries and are housed overnight in portable enclosures in scavenging areas. The objectives of this study were to measure the prevalence of influenza A virus RNA and H5-specific antibodies in nomadic ducks and to characterize nomadic duck raising practices in northeastern Bangladesh. We tested duck egg yolk specimens by competitive ELISA to detect antibodies against avian influenza A (H5) and environmental fecal samples by real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect influenza A virus RNA and H5 subtype. The median age of the ducks was 24 months (range: 8-36 months) and the median flock size was 300 ducks (range: 105-1100). Of 1860 egg yolk samples, 556 (30%, 95% confidence interval (CI): 28-32) were positive for antibodies against H5 and 58 flocks (94%) had at least one egg with H5-specific antibodies. Of 496 fecal samples, 121 (24%, 95% CI: 22-29) had detectable influenza A RNA. Thirty-three flocks (53%) had at least one fecal sample positive for influenza A RNA. Nomadic ducks in Bangladesh are commonly infected with avian influenza A (H5) virus and may serve as a bridging host for transmission of avian influenza A (H5) virus or other avian influenza A viruses subtypes between wild waterfowl, backyard poultry, and humans in Bangladesh. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  16. Pathobiology of avian influenza virus infection in minor gallinaceous species: a review.

    Science.gov (United States)

    Bertran, Kateri; Dolz, Roser; Majó, Natàlia

    2014-01-01

    Susceptibility to avian influenza viruses (AIVs) can vary greatly among bird species. Chickens and turkeys are major avian species that, like ducks, have been extensively studied for avian influenza. To a lesser extent, minor avian species such as quail, partridges, and pheasants have also been investigated for avian influenza. Usually, such game fowl species are highly susceptible to highly pathogenic AIVs and may consistently spread both highly pathogenic AIVs and low-pathogenic AIVs. These findings, together with the fact that game birds are considered bridge species in the poultry-wildlife interface, highlight their interest from the transmission and biosecurity points of view. Here, the general pathobiological features of low-pathogenic AIV and highly pathogenic AIV infections in this group of avian species have been covered.

  17. Avian botulism type E in waterbirds of Lake Michigan, 2010–2013

    Science.gov (United States)

    Chipault, Jennifer G.; White, C. LeAnn; Blehert, David S.; Jennings, Susan K.; Strom, Sean M.

    2015-01-01

    During 2010 to 2013, waterbird mortality surveillance programs used a shared protocol for shoreline walking surveys performed June to November at three areas in northern Lake Michigan. In 2010 and 2012, 1244 total carcasses (0.8 dead bird/km walked) and 2399 total carcasses (1.2 dead birds/km walked), respectively, were detected. Fewer carcasses were detected in 2011 (353 total carcasses, 0.2 dead bird/km walked) and 2013 (451 total carcasses, 0.3 dead bird/km walked). During 3 years, peak detection of carcasses occurred in October and involved primarily migratory diving and fish-eating birds, including long-tailed ducks (Clangula hyemalis; 2010), common loons (Gavia immer; 2012), and red-breasted mergansers (Mergus serrator; 2013). In 2011, peak detection of carcasses occurred in August and consisted primarily of summer residents such as gulls (Larus spp.) and double-crested cormorants (Phalacrocorax auritus). A subset of fresh carcasses was collected throughout each year of the study and tested for botulinum neurotoxin type E (BoNT/E). Sixty-one percent of carcasses (57/94) and 10 of 11 species collected throughout the sampling season tested positive for BoNT/E, suggesting avian botulism type E was a major cause of death for both resident and migratory birds in Lake Michigan. The variety of avian species affected by botulism type E throughout the summer and fall during all 4 years of coordinated surveillance also suggests multiple routes for bird exposure to BoNT/E in Lake Michigan.

  18. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    Directory of Open Access Journals (Sweden)

    Sanhong Liu

    2015-01-01

    Full Text Available Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  19. Global dynamics of avian influenza epidemic models with psychological effect.

    Science.gov (United States)

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  20. Emergence of a Novel Avian Pox Disease in British Tit Species

    OpenAIRE

    Lawson, Becki; Lachish, Shelly; Colvile, Katie M.; Durrant, Chris; Peck, Kirsi M.; Toms, Mike P.; Sheldon, Ben C.; Cunningham, Andrew A.

    2012-01-01

    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Br...

  1. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    Science.gov (United States)

    Hall, Jeffrey S.; Franson, J. Christian; Gill, Robert E.; Meteyer, Carol U.; TeSlaa, Joshua L.; Nashold, Sean W.; Dusek, Robert J.; Ip, Hon S.

    2011-01-01

    Background Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds.

  2. Avian influenza, Newcastle and Gumboro disease antibodies and ...

    African Journals Online (AJOL)

    Studies on avian influenza and Newcastle disease focus on waterfowls, considered natural reservoirs of these viruses. This study surveyed avian influenza (AI), Gumboro and Newcastle disease antibodies and antigens in birds in live wild bird markets (LWBMs), live poultry markets (LPMs) and free flying in Kaduna State ...

  3. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    Science.gov (United States)

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  4. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    Science.gov (United States)

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Adaption of wild-bird origin H5Nx highly pathogenic avian influenza virus Clade 2.3.4.4 in vaccinated poultry

    Science.gov (United States)

    The 2014-2015 incursion of H5Nx clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in U.S. history and renewed interest in developing vaccines against these newly emergent viruses. Our previous research demonstrated several H5 vaccines with varyi...

  6. Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3.

    Directory of Open Access Journals (Sweden)

    Michael P Denyer

    Full Text Available The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs, which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus and the saker falcon (F. cherrug, there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals.

  7. A SIMPLE AND FAST EXTRACTION METHOD FOR ORGANOCHLORINE PESTICIDES AND POLYCHLORINATED BIPHENYLS IN SMALL VOLUMES OF AVIAN SERUM

    Science.gov (United States)

    A solid-phase extraction (SPE) method was developed using 8 M urea to desorb and extract organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) from avian serum for analysis by capillary gas chromatography with electron capture detection (GC-ECD). The analytes were ...

  8. Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: co-infections, viral interactions, and sources of variation.

    Science.gov (United States)

    Meixell, Brandt; Arnold, Todd W.; Lindberg, Mark S.; Smith, Matthew M.; Runstadler, Jonathan A.; Ramey, Andy M.

    2016-01-01

    Background: The epidemiology of avian hematozoa at high latitudes is still not well understood, particularly in sub-Arctic and Arctic habitats, where information is limited regarding seasonality and range of transmission, co-infection dynamics with parasitic and viral agents, and possible fitness consequences of infection. Such information is important as climate warming may lead to northward expansion of hematozoa with unknown consequences to northern-breeding avian taxa, particularly populations that may be previously unexposed to blood parasites.

  9. The Pathology of Avian Influenza in Birds and Animals: An Analytical Review

    International Nuclear Information System (INIS)

    Ryabchikova, E. I.; Getmanova, T. N.

    2007-01-01

    Influenza virus remains enigmatic despite of long extensive studies. Avian influenza virus (H5N1) is able to infect a large spectrum of animal and bird species. Highly pathogenic avian influenza virus represents a serious problem both for a human and birds, particularly for chicks. Many studies have been performed in order to show differences between highly and low pathogenic avian influenza H5N1 viruses, and examine their biological properties. Many separate pathological and microscopic descriptions are interspersed in numerous published articles. The aim of our study was to analyze data published in international scientific journals, and to attempt a generalized view of avian influenza pathology in various animal and bird hosts. We summarized and systematized data describing pathological changes caused by both highly and low pathogenic types of avian influenza virus (H5N1) in animals and birds, and developed generalized descriptions with accent at the type of virus. We also tried to show up species specific features of pathological changes in birds and animals infected with avian influenza virus (H5N1). The results of this analytical work may be useful for pathological studies of a new avian influenza virus isolates, and for understanding of avian influenza pathogenesis in birds and animals. (author)

  10. Avian zoonoses – a review

    Directory of Open Access Journals (Sweden)

    Kozdruń Wojciech

    2015-06-01

    Full Text Available Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other hazardous bacterial factors, Salmonella and Campylobacter are responsible for gastrointestinal diseases. Avian influenza is the most dangerous of the viral diseases. It should be noted, however, that avian influenza is a disease of birds, not humans. The recent threat which has appeared is infection with West Nile virus. The results of serological examinations of birds and humans indicate that the virus exists in our ecosystem. Allergic alveolitis connected with the pigeon tick and the Dermanyssus gallinae mite also merits mention. In any case, where people have contact with birds or their droppings and secretions, special precautions should be taken. This way the negative effects of birds on human health can be minimised or eliminated

  11. Development and implementation of the quality control panel of RT-PCR and real-time RT-PCR for avian influenza A (H5N1 surveillance network in mainland China

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2011-03-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR and real time RT-PCR (rRT-PCR have been indispensable methods for influenza surveillance, especially for determination of avian influenza. The movement of testing beyond reference lab introduced the need of quality control, including the implementation of an evaluation system for validating personal training and sample proficiency testing. Methods We developed a panel with lysates of seasonal influenza virus (H1N1, H3N2 and B, serials of diluted H5N1 virus lysates, and in-vitro transcribed H5 hemaglutinin (HA and an artificial gene RNAs for RT-PCR and rRT-PCR quality control assessment. The validations of stability and reproducibility were performed on the panel. Additionally, the panel was implemented to assess the detection capability of Chinese human avian influenza networks. Results The panel has relatively high stability and good reproducibility demonstrated by kappa's tests. In the implementation of panel on Chinese human avian influenza networks, the results suggested that there were a relatively low number of discrepancies for both concise and reproducibility in Chinese avian influenza virus net works. Conclusions A quality control panel of RT-PCR and real-time RT-PCR for avian influenza A (H5N1 surveillance network was developed. An availably statistical data, which are used to assess the detection capability of networks on avian influenza virus (H5N1, can be obtained relatively easily through implementation of the panel on networks.

  12. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy

    Directory of Open Access Journals (Sweden)

    Márcia B. dos Santos

    2012-12-01

    Full Text Available Avian metapneumovirus (aMPV is a respiratory pathogen associated with the swollen head syndrome (SHS in chickens. In Brazil, live aMPV vaccines are currently used, but subtypes A and, mainly subtype B (aMPV/A and aMPV/B are still circulating. This study was conducted to characterize two Brazilian aMPV isolates (A and B subtypes of chicken origin. A challenge trial to explore the replication ability of the Brazilian subtypes A and B in chickens was performed. Subsequently, virological protection provided from an aMPV/B vaccine against the same isolates was analyzed. Upon challenge experiment, it was shown by virus isolation and real time PCR that aMPV/B could be detected longer and in higher amounts than aMPV/A. For the protection study, 18 one-day-old chicks were vaccinated and challenged at 21 days of age. Using virus isolation and real time PCR, no aMPV/A was detected in the vaccinated chickens, whereas one vaccinated chicken challenged with the aMPV/B isolate was positive. The results showed that aMPV/B vaccine provided a complete heterologous virological protection, although homologous protection was not complete in one chicken. Although only one aMPV/B positive chicken was detected after homologous vaccination, replication in vaccinated animals might allow the emergence of escape mutants.

  13. Avian Influenza in Birds

    Science.gov (United States)

    ... the United States Department of Agriculture’s Animal and Plant Health Inspection Service . Surveillance for Avian Influenza CDC, ... maintained by: Office of the Associate Director for Communication, Digital Media Branch, Division of Public Affairs Email ...

  14. Socioeconomic Impacts of Avian Influenza on Small and Backyard ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant will allow APAIR to assess the socioeconomic impact of avian ... control measure to mitigate the negative effects of avian influenza and its control on ... New website will help record vital life events to improve access to services for all.

  15. An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed ...

    African Journals Online (AJOL)

    An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed Farm By The Introduction Of A Water Fowl. ... C A Meseko, A T Oladokun, B Shehu. Abstract. Avian influenza (AI) is caused by a range of Influenza type A viruses of high and low pathogenicity (Fauci, 2005). H5N1 Highly Pathogenic Avian Influenza (HPAI) ...

  16. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.

    Science.gov (United States)

    Nudds, Robert L; Dyke, Gareth J

    2009-04-01

    Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130 degrees , and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude (A), wing-beat frequency (f), and flight speed (U). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture-required for gliding and flapping flight-evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.

  17. A mathematical model of avian influenza with half-saturated incidence.

    Science.gov (United States)

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.

  18. Planning for avian flu disruptions on global operations: a DMAIC case study.

    Science.gov (United States)

    Kumar, Sameer

    2012-01-01

    The author aims to assess the spread of avian flu, its impact on businesses operating in the USA and overseas, and the measures required for corporate preparedness. Six Sigma DMAIC process is used to analyze avian flu's impact and how an epidemic could affect large US business operations worldwide. Wal-Mart and Dell Computers were chosen as one specializes in retail and the other manufacturing. The study identifies avian flu pandemic risks including failure modes on Wal-Mart and Dell Computers global operations. It reveals the factors that reinforce avian-flu pandemic's negative impact on company global supply chains. It also uncovers factors that balance avian-flu pandemic's impact on their global supply chains. Avian flu and its irregularity affect the research outcomes because its spread could fluctuate based on so many factors that could come into play. Further, the potential cost to manufacturers and other supply chain partners is relatively unknown. As a relatively new phenomenon, quantitative data were not available to determine immediate costs. In this decade, the avian influenza H5N1 virus has killed millions of poultry in Asia, Europe and Africa. This flu strain can infect and kill humans who come into contact with this virus. An avian influenza H5N1 outbreak could lead to a devastating effect on global food supply, business services and business operations. The study provides guidance on what global business operation managers can do to prepare for such events, as well as how avian flu progression to a pandemic can disrupt such operations. This study raises awareness about avian flu's impact on businesses and humans and also highlights the need to create contingency plans for corporate preparedness to avoid incurring losses.

  19. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    Science.gov (United States)

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.

  20. Isolation of herpesvirus and Newcastle disease virus from White Storks (Ciconia ciconia) maintained at four rehabilitation centres in northern Germany during 1983 to 2001 and failure to detect antibodies against avian influenza A viruses of subtypes H5 and H7 in these birds.

    Science.gov (United States)

    Kaleta, Erhard F; Kummerfeld, Norbert

    2012-01-01

    Herpesvirus isolations from peripheral white blood cells of 253 White Storks (Ciconia ciconia) were obtained during a long-term study (1983 to 2001). The storks lived for a few months to 20 years at four rehabilitation centres. Isolates were obtained from 83 of 253 storks. This herpesvirus is indigenous for storks and unrelated to any other avian herpesvirus. Significantly more herpesvirus isolates were obtained during spring than in autumn samplings. The intervals between the first and last virus isolation ranged from 1 to 15 years. Herpesvirus isolates were simultaneously obtained from white blood cells and from pharyngeal swabs of four of 34 storks but not from cloacal swabs. Neutralizing antibodies to stork herpesvirus were detected in 178 of 191 examined blood plasma samples. Neutralizing antibodies against stork herpesvirus did not correlate with herpesvirus viraemia. The results further substantiate the persistence of herpesvirus in White Storks and underline the previously unrecorded long periods of virus and antibody presence. Virulent avian paramyxovirus type 1 (APMV-1; Newcastle disease virus) was isolated from white blood cells during 1992 and 1993 from four healthy migrating storks, and possessed virulence markers on the cleavage site of the H and F genes. These properties resemble the NE type of APMV-1. Haemagglutination inhibition antibodies against APMV-1 were detected in 16 of 191 blood plasma samples. Avian influenza A virus was not isolated and antibodies against subtypes H5 and H7 were not detected.

  1. Avian Schistosomes and Outbreaks of Cercarial Dermatitis

    Science.gov (United States)

    Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226

  2. Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells

    Directory of Open Access Journals (Sweden)

    Anne Dittrich

    2018-02-01

    Full Text Available Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L to enhance replication in mammals and retained replication efficiency in the original avian host.

  3. Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells.

    Science.gov (United States)

    Dittrich, Anne; Scheibner, David; Salaheldin, Ahmed H; Veits, Jutta; Gischke, Marcel; Mettenleiter, Thomas C; Abdelwhab, Elsayed M

    2018-02-14

    Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host.

  4. Paul D. Sturkie: Avian cardiac physiologist.

    Science.gov (United States)

    Bello, Nicholas T; Cohick, Wendie S; McKeever, Kenneth H; Malinowski, Karyn

    2018-06-01

    Sturkie's Avian Physiology is a highly regarded textbook for the study of comparative poultry physiology. Less well known, however, is the contribution of Paul D. Sturkie (1909-2002) as a pioneer in the experimental physiology of avian species. His seminal research on the cardiovascular and hemodynamic controls of chickens and egg-laying hens had a notable impact on the poultry industry and breeding practices of farmers. The purpose of this article is to highlight the contributions and practical insights of Paul D. Sturkie to the field of poultry science.

  5. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian...

  6. Access to health information may improve behavior in preventing Avian influenza among women

    Directory of Open Access Journals (Sweden)

    Ajeng T. Endarti

    2011-02-01

    Full Text Available Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian influenza. The heads of household as the sample unit were chosen by multi-stage sampling.Results: Among 387 subjects, 29.5% of them was had good behavior toward Avian influenza. The final model revealed that gender and access to health information were two dominant factors for good behavior in preventing Avian influenza. Compared with men, women had 67% higher risk to have good behavior [adjusted relative risk (RRa = 1.67; 95% confidence interval (CI = 0.92-3.04; P = 0.092]. Compared to those with no access to health information, subjects with access to health information had 3.4 fold increase to good behavior (RRa = 3.40; 95% CI =  0.84-13.76; P = 0.087.Conclusion: Acces to health information concerning Avian influenza was more effective among women in promoting good behavior toward preventing Avian influenza. (Med J Indones 2011; 20:56-61Keywords: avian influenza, behavior, gender, health promotion

  7. Prospective study of avian influenza virus infections among rural Thai villagers.

    Directory of Open Access Journals (Sweden)

    Whitney S Krueger

    Full Text Available In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV infections with H9N2 and H5N1 viruses.After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI. Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses.Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38% were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14% reported ILIs, and 11 (92% of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2 virus: 21 subjects (2.7% at 12-months and 40 subjects (5.1% at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80. While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2 at the 24-month encounter. One subject had an elevated titer (1:20 against H5N1 during follow-up.From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in

  8. Prospective study of avian influenza virus infections among rural Thai villagers.

    Science.gov (United States)

    Krueger, Whitney S; Khuntirat, Benjawan; Yoon, In-Kyu; Blair, Patrick J; Chittagarnpitch, Malinee; Putnam, Shannon D; Supawat, Krongkaew; Gibbons, Robert V; Bhuddari, Darunee; Pattamadilok, Sirima; Sawanpanyalert, Pathom; Heil, Gary L; Gray, Gregory C

    2013-01-01

    In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV) infections with H9N2 and H5N1 viruses. After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI). Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses. Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38%) were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14%) reported ILIs, and 11 (92%) of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2) virus: 21 subjects (2.7%) at 12-months and 40 subjects (5.1%) at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80). While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2) at the 24-month encounter. One subject had an elevated titer (1:20) against H5N1 during follow-up. From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in humans.

  9. Data base on avian mortality on man-made structures

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, N. S.

    1978-01-01

    A computerized data base concerning avian mortality on man-made structures is available for searching at the Ecological Sciences Information Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory. This data base, which contains entries from the available literature, provides information on avian mortality from either collision into or electrocution on man-made structures. Primary emphasis has been placed on avian collision with obstacles such as television and radio towers, airport ceilometers, transmission lines, and cooling towers. Other structures included in the studies are fences, glass walls and windows, lighthouses, telegraph and telephone wires, buildings, monuments, smokestacks, and water towers.

  10. Habitat use and implications for avian species in Sambisa game ...

    African Journals Online (AJOL)

    Habitat use and implications for avian species in Sambisa game reserve, Borno state, Nigeria. ... avian species diversity and abundance in Sambisa Game Reserve in Borno State, Sudano-Sahelian vegetation. ... AJOL African Journals Online.

  11. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    Science.gov (United States)

    Driskell, Elizabeth A; Pickens, Jennifer A; Humberd-Smith, Jennifer; Gordy, James T; Bradley, Konrad C; Steinhauer, David A; Berghaus, Roy D; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  12. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    Science.gov (United States)

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  13. A comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza virus infection in experimentally infected chickens and ducks.

    Science.gov (United States)

    Nuradji, Harimurti; Bingham, John; Lowther, Sue; Wibawa, Hendra; Colling, Axel; Long, Ngo Thanh; Meers, Joanne

    2015-11-01

    Oropharyngeal and cloacal swabs have been widely used for the detection of H5N1 highly pathogenic avian Influenza A virus (HPAI virus) in birds. Previous studies have shown that the feather calamus is a site of H5N1 virus replication and therefore has potential for diagnosis of avian influenza. However, studies characterizing the value of feathers for this purpose are not available, to our knowledge; herein we present a study investigating feathers for detection of H5N1 virus. Ducks and chickens were experimentally infected with H5N1 HPAI virus belonging to 1 of 3 clades (Indonesian clades 2.1.1 and 2.1.3, Vietnamese clade 1). Different types of feathers and oropharyngeal and cloacal swab samples were compared by virus isolation. In chickens, virus was detected from all sample types: oral and cloacal swabs, and immature pectorosternal, flight, and tail feathers. During clinical disease, the viral titers were higher in feathers than swabs. In ducks, the proportion of virus-positive samples was variable depending on viral strain and time from challenge; cloacal swabs and mature pectorosternal feathers were clearly inferior to oral swabs and immature pectorosternal, tail, and flight feathers. In ducks infected with Indonesian strains, in which most birds did not develop clinical signs, all sampling methods gave intermittent positive results; 3-23% of immature pectorosternal feathers were positive during the acute infection period; oropharyngeal swabs had slightly higher positivity during early infection, while feathers performed better during late infection. Our results indicate that immature feathers are an alternative sample for the diagnosis of HPAI in chickens and ducks. © 2015 The Author(s).

  14. Flock-based surveillance for lowpathogenic avian influenza virus in ...

    African Journals Online (AJOL)

    Flock-based surveillance for lowpathogenic avian influenza virus in commercial breeders and layers, southwest Nigeria. ... African Journal of Infectious Diseases ... Background: Flock surveillance systems for avian influenza (AI) virus play a critical role in countries where vaccination is not practiced so as to establish the ...

  15. Avian research in the U.S. Forest Service

    Science.gov (United States)

    Beatrice Van Horne

    2005-01-01

    Avian research in the Federal Government is in a crisis. Yes, there is a strong interest in avian research, as evidenced by the size and level of interest in this conference. But political parties increasingly see wildlife research as expendable. At the same time, the reaction to environment-friendly legislation of the 1970s and 1980s has been strong from both sides....

  16. Production and Characterization of an Avian Ricin Antitoxin

    Science.gov (United States)

    1992-01-15

    naturally -occurring plant and/or bacterial toxins as biological threat agents, effective antitoxins are needed for either piophylactic or causal...system, an avian antitoxin against the potent phytotoxin , ricin. will be developed and evaluated. The production of therapeutic antibodies in avian...Dynatech). PolyacrylmIde gel electrophoresis (PAGE): Acrylamide gels were prepared according to methods described by Laemmli ( Nature . 227. 1970) and

  17. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  18. Laser use in avian and exotic animal medicine

    Science.gov (United States)

    Parrott, Terri

    2000-05-01

    The use of lasers in clinical avian and exotic animal practice has increased the types of surgical procedures available to the veterinarian. Tissue injury and blood loss can be minimized with both the CO2 and Diode laser. The physical properties of these lasers give them direct advantages over other types of lasers for small animal and avian surgical patients. Routine salpingohysterectomy, castration and mass removal can be accomplished with the CO2 laser. Power, pulse settings and tip diameters for the various tissues make the CO2 laser a versatile instrument in surgery. Endoscopic surgery in the avian patient has been revolutionized with the use of the Diode laser. The use of the flexible fiber system makes it amendable to both rigid and flexible scopes.

  19. Occurrence of Legacy and New Persistent Organic Pollutants in Avian Tissues from King George Island, Antarctica.

    Science.gov (United States)

    Kim, Jun-Tae; Son, Min-Hui; Kang, Jung-Ho; Kim, Jeong-Hoon; Jung, Jin-Woo; Chang, Yoon-Seok

    2015-11-17

    Legacy and new persistent organic pollutants (POPs), including polychlorinated naphthalenes (PCNs), Dechlorane Plus (DPs) and related compounds (Dechloranes), hexabromocyclododecanes (HBCDs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs), were analyzed in avian tissue samples from King George Island, Antarctica. The avian species consisted of the Gentoo penguin (Pygoscelis papua), the Adelie penguin (Pygoscelis adeliae), the South polar skua (Stercorarius maccormicki), and the Brown skua (Stercorarius antarcticus). HBCDs were detected in all samples and ranged from 1.67-713 pg/g-lipid. In the penguin samples, the concentrations of PCNs ranged from 0.69-2.07 ng/g-lipid, whereas those in the skua samples ranged from 7.41-175 ng/g-lipid. The levels of Dechloranes ranged from 0.60-1.30 ng/g-lipid in the penguin samples and from 6.57-47.4 ng/g-lipid in the skua samples. The concentrations and congener distributions of OCPs and PCBs were similar to the results of previous reports. The three new POPs were detected in all samples, and this study was one of the first reports on the occurrence of these pollutants in the Antarctic biota. Because Antarctica is one of the most pristine places on Earth, the detection of new POPs in the Antarctic birds, especially penguins, is direct evidence of the long-range transport of pollutants. Furthermore, the concentration ratios of the penguin to the skua samples (BMFs-p) were greater than 1 in most legacy and new POPs, and the BMFs-p values of the new POPs were comparable to those of some OCPs, suggesting a possibility of biomagnification. Despite the small sample size, the results of this study identified POP contamination of the Antarctic avian species and long-range transport and biomagnification of HBCDs, Dechloranes, and PCNs.

  20. First evidence of avian metapneumovirus subtype A infection in turkeys in Egypt.

    Science.gov (United States)

    Abdel-Azeem, Abdel-Azeem Sayed; Franzo, Giovanni; Dalle Zotte, Antonella; Drigo, Michele; Catelli, Elena; Lupini, Caterina; Martini, Marco; Cecchinato, Mattia

    2014-08-01

    Although avian metapneumovirus (aMPV) infection has been reported in most regions of the world, to date, only subtype B has been detected in Egypt. At the end of November 2013, dry oropharyngeal swabs were collected during an outbreak of respiratory diseases in a free-range, multi-age turkey dealer farm in Northern Upper Egypt. The clinical signs that appeared when turkeys were 3 weeks-old were characterized by ocular and nasal discharge and swelling of sinuses. aMPV of subtype A was detected by real-time reverse transcription-polymerase chain reaction. In order to confirm the results and obtain more information on the molecular characteristics of the virus, F and G protein genes were partially sequenced and compared with previously published sequences deposited in GenBank by using BLAST. Subtype of the strain was confirmed by sequencing of partial F and G protein genes. The highest percentages of identity were observed when G sequence of the Egyptian strain was compared with the sequence of an aMPV-A isolated in Nigeria (96.4 %) and when the F sequence was compared with strains isolated respectively in Italy and in UK (97.1 %). Moreover, the alignment of the sequences with commercial subtype A vaccine or vaccine-derived strains showed differences in the Egyptian strain that indicate its probable field origin. The detection of aMPV in the investigated turkey flock highlights some relevant epidemiological issues regarding the role that multi-age farms and dealers may play in perpetuating aMPV infection within and among farms. To our knowledge, this is the first report of aMPV subtype A in Egypt.

  1. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become ...... of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures....

  2. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.

    Science.gov (United States)

    Deeg, Christoph M; Hassan, Ebrahim; Mutz, Pascal; Rheinemann, Lara; Götz, Veronika; Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Haller, Otto; Schwemmle, Martin; Staeheli, Peter

    2017-05-01

    Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. © 2017 Deeg et al.

  3. Avian mycoplasmosis update

    Directory of Open Access Journals (Sweden)

    ER Nascimento

    2005-03-01

    Full Text Available Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG, M. synoviae (MS, and M. meleagridis. Besides, M. iowe (MI is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorganisms, whereas all other mycoplasmas are considered facultative intracellular organisms. Their pathogenic mechanism for disease include adherence to host target cells, mediation of apoptosis, innocent bystander damage to host cell due to intimate membrane contact, molecular (antigen mimicry that may lead to tolerance, and mitotic effect for B and/or T lymphocytes, which could lead to suppressed T-cell function and/or production of cytotoxic T cell, besides mycoplasma by-products, such as hydrogen peroxide and superoxide radicals. Moreover, mycoplasma ability to stimulate macrophages, monocytes, T-helper cells and NK cells, results in the production of substances, such as tumor necrosing factor (TNF-alpha, interleukin (IL-1, 2, 6 and interferon (a, b, g. The major clinical signs seen in avian mycoplasmosis are coughing, sneezing, snicks, respiratory rales, ocular and nasal discharge, decreased feed intake and egg production, increased mortality, poor hatchability, and, primarily in turkeys, swelling of the infraorbital sinus(es. Nevertheless, chronic and unapparent infections are most common and more threatening. Mycoplasmas are transmitted horizontally, from bird to bird, and vertically, from dam to offspring through the eggs. Losses attributed to mycoplasmosis, mainly MG and MS infections, result from decreased egg production and egg quality, poor hatchability (high rate of embryonic mortality and culling of day-old birds, poor feed efficiency, increase in

  4. Fowl plague virus replication in mammalian cell-avian erythrocyte heterokaryons: studies concerning the actinomycin D and ultra-violet lig sensitive phase in influenza virus replication

    International Nuclear Information System (INIS)

    Kelly, D.C.; Dimmock, N.J.

    1974-01-01

    The replication of fowl plague virus in BHK and L cells specifically blocked prior to infection with inhibitors of influenza virus replication (actinomycin D and ultraviolet light irradiation) has been studied by the introduction of a metabolically dormant avian erythrocyte nucleus. This permits the synthesis of just the influenza virus nucleoprotein in actinomycin D (but not ultraviolet light) blocked cells. The NP antigen is first detected in the avian erythrocyte nucleus and subsequently in the heterokaryon cytoplasm

  5. Avian nestling predation by endangered Mount Graham red squirrel

    Science.gov (United States)

    Claire A. Zugmeyer; John L. Koprowski

    2007-01-01

    Studies using artificial nests or remote cameras have documented avian predation by red squirrels (Tamiasciurus hudsonicus). Although several direct observations of avian predation events are known in the northern range of the red squirrel distribution, no accounts have been reported in the southern portion. We observed predation upon a hermit thrush...

  6. Isolation of avian influenza virus in Texas.

    Science.gov (United States)

    Glass, S E; Naqi, S A; Grumbles, L C

    1981-01-01

    An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.

  7. Influenza pandemics and avian flu

    OpenAIRE

    Fleming, Douglas

    2005-01-01

    Douglas Fleming is general practitioner in a large suburban practice in Birmingham. In this article he seeks to clarify clinical issues relating to potential pandemics of influenza, including avian influenza

  8. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    Science.gov (United States)

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  9. Targeting safety improvements through identification of incident origination and detection in a near-miss incident learning system

    International Nuclear Information System (INIS)

    Novak, Avrey; Nyflot, Matthew J.; Ermoian, Ralph P.; Jordan, Loucille E.; Sponseller, Patricia A.; Kane, Gabrielle M.; Ford, Eric C.; Zeng, Jing

    2016-01-01

    Purpose: Radiation treatment planning involves a complex workflow that has multiple potential points of vulnerability. This study utilizes an incident reporting system to identify the origination and detection points of near-miss errors, in order to guide their departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or applied a near-miss risk index (NMRI) to gauge severity. Methods: From 3/2012 to 3/2014, 1897 incidents were analyzed from a departmental incident learning system. All incidents were prospectively reviewed weekly by a multidisciplinary team and assigned a NMRI score ranging from 0 to 4 reflecting potential harm to the patient (no potential harm to potential critical harm). Incidents were classified by point of incident origination and detection based on a 103-step workflow. The individual steps were divided among nine broad workflow categories (patient assessment, imaging for radiation therapy (RT) planning, treatment planning, pretreatment plan review, treatment delivery, on-treatment quality management, post-treatment completion, equipment/software quality management, and other). The average NMRI scores of incidents originating or detected within each broad workflow area were calculated. Additionally, out of 103 individual process steps, 35 were classified as safety barriers, the process steps whose primary function is to catch errors. The safety barriers which most frequently detected incidents were identified and analyzed. Finally, the distance between event origination and detection was explored by grouping events by the number of broad workflow area events passed through before detection, and average NMRI scores were compared. Results: Near-miss incidents most commonly originated within treatment planning (33%). However, the incidents with the highest average NMRI scores originated during imaging for RT planning (NMRI = 2.0, average NMRI of all events = 1.5), specifically

  10. Targeting safety improvements through identification of incident origination and detection in a near-miss incident learning system

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Avrey; Nyflot, Matthew J.; Ermoian, Ralph P.; Jordan, Loucille E.; Sponseller, Patricia A.; Kane, Gabrielle M.; Ford, Eric C.; Zeng, Jing, E-mail: jzeng13@uw.edu [Department of Radiation Oncology, University of Washington Medical Center, 1959 NE Pacific Street, Campus Box 356043, Seattle, Washington 98195 (United States)

    2016-05-15

    Purpose: Radiation treatment planning involves a complex workflow that has multiple potential points of vulnerability. This study utilizes an incident reporting system to identify the origination and detection points of near-miss errors, in order to guide their departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or applied a near-miss risk index (NMRI) to gauge severity. Methods: From 3/2012 to 3/2014, 1897 incidents were analyzed from a departmental incident learning system. All incidents were prospectively reviewed weekly by a multidisciplinary team and assigned a NMRI score ranging from 0 to 4 reflecting potential harm to the patient (no potential harm to potential critical harm). Incidents were classified by point of incident origination and detection based on a 103-step workflow. The individual steps were divided among nine broad workflow categories (patient assessment, imaging for radiation therapy (RT) planning, treatment planning, pretreatment plan review, treatment delivery, on-treatment quality management, post-treatment completion, equipment/software quality management, and other). The average NMRI scores of incidents originating or detected within each broad workflow area were calculated. Additionally, out of 103 individual process steps, 35 were classified as safety barriers, the process steps whose primary function is to catch errors. The safety barriers which most frequently detected incidents were identified and analyzed. Finally, the distance between event origination and detection was explored by grouping events by the number of broad workflow area events passed through before detection, and average NMRI scores were compared. Results: Near-miss incidents most commonly originated within treatment planning (33%). However, the incidents with the highest average NMRI scores originated during imaging for RT planning (NMRI = 2.0, average NMRI of all events = 1.5), specifically

  11. Comparative genomic data of the Avian Phylogenomics Project.

    Science.gov (United States)

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of

  12. Salmonella expression of the avian influenza HA and M2e genes for protection of poultry from lethal challenge

    Science.gov (United States)

    Avian influenza (AI) is viral disease of poultry and detection in commercial flocks can result in trade embargos causing serious economic impact to the poultry industry. Vaccination is currently used to increase protection of birds against AI and limit transmission to susceptible cohorts. Because ...

  13. Bizarre tubercles on the vertebrae of Eocene fossil birds indicate an avian disease without modern counterpart

    Science.gov (United States)

    Mayr, Gerald

    2007-08-01

    Remains of fossil birds with numerous bony tubercles on the cervical vertebrae are reported from the Middle Eocene of Messel in Germany and the Late Eocene of the Quercy fissure fillings in France. These structures, which are unknown from extant birds and other vertebrates, were previously described for an avian skeleton from Messel but considered a singular feature of this specimen. The new fossils are from a different species of uncertain phylogenetic affinities and show that tuberculated vertebrae have a wider taxonomic, temporal, and geographic distribution. In contrast to previous assumptions, they are no ontogenetic feature and arise from the vertebral surface. It is concluded that they are most likely of pathologic origin and the first record of a Paleogene avian disease. Their regular and symmetrical arrangement over most of the external vertebral surface indicates a systemic disorder caused by factors that do not affect extant birds, such as especially high-dosed phytohormones or extinct pathogens.

  14. Phylogenomic analyses data of the avian phylogenomics project

    DEFF Research Database (Denmark)

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J

    2015-01-01

    BACKGROUND: Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae...... and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. FINDINGS: Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides......ML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. CONCLUSIONS: The Avian Phylogenomics Project is the largest...

  15. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007.

    Directory of Open Access Journals (Sweden)

    Xiu-Feng Wan

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA, continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.

  16. Molecular cloning and functional characterization of avian interleukin-19

    Science.gov (United States)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  17. Amino Acid Substitutions Associated with Avian H5N6 Influenza A Virus Adaptation to Mice

    Directory of Open Access Journals (Sweden)

    Chunmao Zhang

    2017-09-01

    Full Text Available At least 15 cases of human beings infected with H5N6 have been reported since 2014, of which at least nine were fatal. The highly pathogenic avian H5N6 influenza virus may pose a serious threat to both public health and the poultry industry. However, the molecular features promoting the adaptation of avian H5N6 influenza viruses to mammalian hosts is not well understood. Here, we sequentially passaged an avian H5N6 influenza A virus (A/Northern Shoveler/Ningxia/488-53/2015 10 times in mice to identify the adaptive amino acid substitutions that confer enhanced virulence to H5N6 in mammals. The 1st and 10th passages of the mouse-adapted H5N6 viruses were named P1 and P10, respectively. P1 and P10 displayed higher pathogenicity in mice than their parent strain. P10 showed significantly higher replication capability in vivo and could be detected in the brains of mice, whereas P1 displayed higher replication efficiency in their lungs but was not detectable in the brain. Similar to its parent strain, P10 remained no transmissible between guinea pigs. Using genome sequencing and alignment, multiple amino acid substitutions, including PB2 E627K, PB2 T23I, PA T97I, and HA R239H, were found in the adaptation of H5N6 to mice. In summary, we identified amino acid changes that are associated with H5N6 adaptation to mice.

  18. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion.

    Science.gov (United States)

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2016-02-01

    The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions-T492S, N722D, R752K, and S1132F-were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in the HA, which decreased

  19. Feather development genes and associated regulatory innovation predate the origin of Dinosauria.

    Science.gov (United States)

    Lowe, Craig B; Clarke, Julia A; Baker, Allan J; Haussler, David; Edwards, Scott V

    2015-01-01

    The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    Science.gov (United States)

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival. © 2016 Poultry Science Association Inc.

  1. Evaluation of the DTBird video-system at the Smoela wind-power plant. Detection capabilities for capturing near-turbine avian behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Roel, May; Hamre, Oeyvind; Vang, Roald; Nygaard, Torgeir

    2012-07-01

    Collisions between birds and wind turbines can be a problem at wind-power plants both onshore and offshore, and the presence of endangered bird species or proximity to key functional bird areas can have major impact on the choice of site or location wind turbines. There is international consensus that one of the mail challenges in the development of measures to reduce bird collisions is the lack of good methods for assessment of the efficacy of inventions. In order to be better abe to assess the efficacy of mortality-reducing measures Statkraft wishes to find a system that can be operated under Norwegian conditions and that renders objective and quantitative information on collisions and near-flying birds. DTbird developed by Liquen Consultoria Ambiental S.L. is such a system, which is based on video-recording bird flights near turbines during the daylight period (light levels>200 lux). DTBird is a self-working system developed to detect flying birds and to take programmed actions (i.e. warming, dissuasion, collision registration, and turbine stop control) linked to real-time bird detection. This report evaluates how well the DTBird system is able to detect birds in the vicinity of a wind turbine, and assess to which extent it can be utilized to study near-turbine bird flight behaviour and possible deterrence. The evaluation was based on the video sequence recorded with the DTBird systems installed at turbine 21 and turbine 42 at the Smoela wind-power plant between March 2 2012 and September 30 2012, together with GPS telemetry data on white-tailed eagles and avian radar data. The average number of falsely triggered video sequences (false positive rate) was 1.2 per day, and during daytime the DTBird system recorded between 76% and 96% of all bird flights in the vicinity of the turbines. Visually estimated distances of recorded bird flights in the video sequences were in general assessed to be farther from the turbines com pared to the distance settings used within

  2. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  3. Epidemiology of avian influenza H5N1 virus in Egypt and its zoonotic potential

    Directory of Open Access Journals (Sweden)

    Nahed Hamed Ghoneim

    2014-09-01

    Full Text Available Objective: To investigate the epidemiology of avian influenza H5N1 virus in domestic poultry and its zoonotic potential in Egypt. Methods: Tracheal swabs were collected from two hundred and forty three domestic poultry (chickens, ducks and geese from commercial farms and backyards, and thirty two blood samples from unvaccinated chickens. Fifty two throat swabs and twenty blood samples were collected from persons who are in contact with diseased and/or infected birds. Tracheal and throat swabs were examined for the presence of avian influenza virus H5N1 genome by real-time RT-PCR whereas blood samples were tested by competitive ELISA for the presence of avian influenza virus H5 antibodies. Results: The overall prevalence of H5N1 in the examined birds was 5.3% while the prevalence rates among different poultry species were 9%, 4.7% and 0% for ducks, chicken and geese respectively. Moreover, we detected H5 antibodies in 12.5% of the examined backyard chickens. All examined humans were negative for both viral RNA and antibodies. Conclusions: Our findings highlight the broad circulation of H5N1 virus among poultry in Egypt whereas it still has a limited zoonotic potential so far.

  4. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Sinclair, K.

    2001-01-01

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  5. Cranial joint histology in the mallard duck (Anas platyrhynchos): new insights on avian cranial kinesis.

    Science.gov (United States)

    Bailleul, Alida M; Witmer, Lawrence M; Holliday, Casey M

    2017-03-01

    ducklings and remains as such in the adult. The results of this study will serve as reference for documenting avian cranial kinesis from a microanatomical perspective. The formation of: (i) secondary articular cartilage on the membrane bones of extant birds; and (ii) their unique ability to form movable synovial joints within two or more membrane bones (i.e. within their dermatocranium) might have played a role in the origin and evolution of modern avian cranial kinesis during dinosaur evolution. © 2016 Anatomical Society.

  6. Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species.

    Directory of Open Access Journals (Sweden)

    Henning Petersen

    Full Text Available Transmission of avian influenza viruses (AIV between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.

  7. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    Science.gov (United States)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  8. Avian influenza virus antibodies in Pacific Coast Red Knots (Calidris canutus rufa)

    Science.gov (United States)

    Johnson, James A.; DeCicco, Lucas H.; Ruthrauff, Daniel R.; Krauss, Scott; Hall, Jeffrey S.

    2014-01-01

    Prevalence of avian influenza virus (AIV) antibodies in the western Atlantic subspecies of Red Knot (Calidris canutus rufa) is among the highest for any shorebird. To assess whether the frequency of detection of AIV antibodies is high for the species in general or restricted only to C. c. rufa, we sampled the northeastern Pacific Coast subspecies of Red Knot (Calidris canutus roselaari) breeding in northwestern Alaska. Antibodies were detected in 90% of adults and none of the chicks sampled. Viral shedding was not detected in adults or chicks. These results suggest a predisposition of Red Knots to AIV infection. High antibody titers to subtypes H3 and H4 were detected, whereas low to intermediate antibody levels were found for subtypes H10 and H11. These four subtypes have previously been detected in shorebirds at Delaware Bay (at the border of New Jersey and Delaware) and in waterfowl along the Pacific Coast of North America.

  9. Characterizing the avian gut microbiota: membership, driving influences, and potential function.

    Science.gov (United States)

    Waite, David W; Taylor, Michael W

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  10. Characterising the avian gut microbiota: membership, driving influences and potential function

    Directory of Open Access Journals (Sweden)

    David eWaite

    2014-05-01

    Full Text Available Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbour diverse communities of microorganisms within their guts, which collectively fulfil important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  11. Ontogeny of avian thermoregulation from a neural point of view

    NARCIS (Netherlands)

    Baarendse, P.J.J.; Debonne, M.; Decuypere, M.P.; Kemp, B.; Brand, van den H.

    2007-01-01

    The ontogeny of thermoregulation differs among (avian) species, but in all species both neural and endocrinological processes are involved. In this review the neural processes in ontogeny of thermoregulation during the prenatal and early postnatal phase are discussed. Only in a few avian species

  12. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  13. Disclosing respiratory co-infections: a broad-range panel assay for avian respiratory pathogens on a nanofluidic PCR platform.

    Science.gov (United States)

    Croville, Guillaume; Foret, Charlotte; Heuillard, Pauline; Senet, Alexis; Delpont, Mattias; Mouahid, Mohammed; Ducatez, Mariette F; Kichou, Faouzi; Guerin, Jean-Luc

    2018-06-01

    Respiratory syndromes (RS) are among the most significant pathological conditions in edible birds and are caused by complex coactions of pathogens and environmental factors. In poultry, low pathogenic avian influenza A viruses, metapneumoviruses, infectious bronchitis virus, infectious laryngotracheitis virus, Mycoplasma spp. Escherichia coli and/or Ornithobacterium rhinotracheale in turkeys are considered as key co-infectious agents of RS. Aspergillus sp., Pasteurella multocida, Avibacterium paragallinarum or Chlamydia psittaci may also be involved in respiratory outbreaks. An innovative quantitative PCR method, based on a nanofluidic technology, has the ability to screen up to 96 samples with 96 pathogen-specific PCR primers, at the same time, in one run of real-time quantitative PCR. This platform was used for the screening of avian respiratory pathogens: 15 respiratory agents, including viruses, bacteria and fungi potentially associated with respiratory infections of poultry, were targeted. Primers were designed and validated for SYBR green real-time quantitative PCR and subsequently validated on the Biomark high throughput PCR nanofluidic platform (Fluidigm©, San Francisco, CA, USA). As a clinical assessment, tracheal swabs were sampled from turkeys showing RS and submitted to this panel assay. Beside systematic detection of E. coli, avian metapneumovirus, Mycoplasma gallisepticum and Mycoplasma synoviae were frequently detected, with distinctive co-infection patterns between French and Moroccan flocks. This proof-of-concept study illustrates the potential of such panel assays for unveiling respiratory co-infection profiles in poultry.

  14. Possible evolutionary origins of cognitive brain lateralization.

    Science.gov (United States)

    Vallortigara, G; Rogers, L J; Bisazza, A

    1999-08-01

    Despite the substantial literature on the functional architecture of the asymmetries of the human brain, which has been accumulating for more than 130 years since Dax and Broca's early reports, the biological foundations of cerebral asymmetries are still poorly understood. Recent advances in comparative cognitive neurosciences have made available new animal models that have started to provide unexpected insights into the evolutionary origins and neuronal mechanisms of cerebral asymmetries. Animal model-systems, particularly those provided by the avian brain, highlight the interrelations of genetic, hormonal and environmental events to produce neural and behavioural asymmetries. Novel evidences showing that functional and structural lateralization of the brain is widespread among vertebrates (including fish, reptiles and amphibians) have accumulated rapidly. Perceptual asymmetries, in particular, seem to be ubiquitous in everyday behaviour of most species of animals with laterally placed eyes; in organisms with wider binocular overlap (e.g., amphibians), they appear to be retained for initial detection of stimuli in the extreme lateral fields. We speculate that adjustment of head position and eye movements may play a similar role in mammals with frontal vision as does the choice for right or left lateral visual fields in animals with laterally placed eyes. A first attempt to trace back the origins of brain asymmetry to early vertebrates is presented, based on the hypothesis that functional incompatibility between the logical demands associated with very basic cognitive functions is central to the phenomenon of cerebral lateralization.

  15. A pseudovirus-based hemagglutination-inhibition assay as a rapid, highly sensitive, and specific assay for detecting avian influenza A (H7N9 antibodies

    Directory of Open Access Journals (Sweden)

    Anli Zhang

    2015-06-01

    Full Text Available Background Increased surveillance of avian-origin influenza A (H7N9 virus infection is critical to assess the risk of new outbreaks in China. A high-throughput assay with a good safety profile, sensitivity, and specificity is urgently needed. Methods We used a hemagglutination-inhibition (HI assay based on an H7N9-enveloped pseudovirus to assess serum neutralization antibodies level in 40 H7N9 positive sera and 40 H7N9 negative sera and compared the efficacy of the assay with traditional HI test and micro-neutralization (MN test. Results Spearman’s rank correlation coefficient analysis showed pseudovirus HI (PHI titers correlated well with both HI titers and MN titers. Receiver operating characteristic (ROC curves test revealed using a PHI cut-off titer of 10, the sensitivity and specificity reached 1.0. Conclusions PHI can be used in H7N9-related serological studies. This assay is high-throughput, very sensitive and specific, and cost effective.

  16. SEROMONITORING OF AVIAN INFLUENZA H9 SUBTYPE IN BREEDERS AND COMMERCIAL LAYER FLOCKS

    Directory of Open Access Journals (Sweden)

    M. Numan, M. Siddique and M. S. Yousaf1

    2005-07-01

    Full Text Available A serological survey for detection of antibodies against avian influenza virus (AIV subtype H9 in vaccinated layer flocks was carried out. Serum samples were divided into age groups A, B, C, D (commercial layers and E, F, G, H (layer breeders. Haemagglutination inhibition (HI test was performed to determine serum antibodies against AIV-H9 subtype. Geometric mean titer (GMT values were calculated. Results showed the level of protection of vaccinated birds was satisfactory.

  17. Suspension culture process for H9N2 avian influenza virus (strain Re-2).

    Science.gov (United States)

    Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai

    2017-10-01

    H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.

  18. (Highly pathogenic) Avian Influenza as a zoonotic agent

    OpenAIRE

    Kalthoff , Donata; Globig , Anja; Beer , Martin

    2010-01-01

    Summary Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence b...

  19. Little evidence of avian or equine influenza virus infection among a cohort of Mongolian adults with animal exposures, 2010-2011.

    Science.gov (United States)

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S; Heil, Gary L; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D; Gray, Gregory C

    2014-01-01

    Avian (AIV) and equine influenza virus (EIV) have been repeatedly shown to circulate among Mongolia's migrating birds or domestic horses. In 2009, 439 Mongolian adults, many with occupational exposure to animals, were enrolled in a prospective cohort study of zoonotic influenza transmission. Sera were drawn upon enrollment and again at 12 and 24 months. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members confirmed to have acute influenza A infections, permitted respiratory swab collections which were studied with rRT-PCR for influenza A. Serologic assays were performed against equine, avian, and human influenza viruses. Over the 2 yrs of follow-up, 100 ILI investigations in the cohort were conducted. Thirty-six ILI cases (36%) were identified as influenza A infections by rRT-PCR; none yielded evidence for AIV or EIV. Serological examination of 12 mo and 24 mo annual sera revealed 37 participants had detectable antibody titers (≥1∶10) against studied viruses during the course of study follow-up: 21 against A/Equine/Mongolia/01/2008(H3N8); 4 against an avian A/Teal/Hong Kong/w3129(H6N1), 11 against an avian-like A/Hong Kong/1073/1999(H9N2), and 1 against an avian A/Migrating duck/Hong Kong/MPD268/2007(H10N4) virus. However, all such titers were avian or horse exposures. A number of subjects had evidence of seroconversion to zoonotic viruses, but the 4-fold titer changes were again not associated with avian or horse exposures. As elevated antibodies against seasonal influenza viruses were high during the study period, it seems likely that cross-reacting antibodies against seasonal human influenza viruses were a cause of the low-level seroreactivity against AIV or EIV. Despite the presence of AIV and EIV circulating among wild birds and horses in Mongolia, there was little evidence of AIV or EIV infection in this prospective study of Mongolians with animal exposures.

  20. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017.

    Science.gov (United States)

    Beerens, Nancy; Koch, Guus; Heutink, Rene; Harders, Frank; Vries, D P Edwin; Ho, Cynthia; Bossers, Alex; Elbers, Armin

    2018-04-17

    A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

  1. REAL-TIME PCR DETECTION OF LISTERIA MONOCYTOGENES IN FOOD SAMPLES OF ANIMAL ORIGIN

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-02-01

    Full Text Available The aim of this study was to follow the contamination of food with Listeria monocytogenes by using Step One real time polymerase chain reaction (PCR. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In 24 samples of food of animal origin without incubation were detected strains of Listeria monocytogenes in 15 samples (swabs. Nine samples were negative. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in food of animal origin without incubation. This could prevent infection caused by Listeria monocytogenes, and also could benefit food manufacturing companies by extending their product’s shelf-life as well as saving the cost of warehousing their food products while awaiting pathogen testing results. The rapid real-time PCR-based method performed very well compared to the conventional method. It is a fast, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future.

  2. The case for infrasound as the long-range map cue in avian navigation

    Science.gov (United States)

    Hagstrum, J.T.

    2007-01-01

    Of the various 'map' and 'compass' components of Kramer's avian navigational model, the long-range map component is the least well understood. In this paper atmospheric infrasounds are proposed as the elusive longrange cues constituting the avian navigational map. Although infrasounds were considered a viable candidate for the avian map in the 1970s, and pigeons in the laboratory were found to detect sounds at surprisingly low frequencies (0.05 Hz), other tests appeared to support either of the currently favored olfactory or magnetic maps. Neither of these hypotheses, however, is able to explain the full set of observations, and the field has been at an impasse for several decades. To begin, brief descriptions of infrasonic waves and their passage through the atmosphere are given, followed by accounts of previously unexplained release results. These examples include 'release-site biases' which are deviations of departing pigeons from the homeward bearing, an annual variation in homing performance observed only in Europe, difficulties orienting over lakes and above temperature inversions, and the mysterious disruption of several pigeon races. All of these irregularities can be consistently explained by the deflection or masking of infrasonic cues by atmospheric conditions or by other infrasonic sources (microbaroms, sonic booms), respectively. A source of continuous geographic infrasound generated by atmosphere-coupled microseisms is also proposed. In conclusion, several suggestions are made toward resolving some of the conflicting experimental data with the pigeons' possible use of infrasonic cues.

  3. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Cai Mingjin; Mai Weiwen; Xian Jianxing; Zhang Jiayun; Lin Wenjian; Wei Liping; Chen Jincheng

    2008-01-01

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  4. Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.

    Science.gov (United States)

    Goletić, Teufik; Gagić, Abdulah; Residbegović, Emina; Kustura, Aida; Kavazović, Aida; Savić, Vladimir; Harder, Timm; Starick, Elke; Prasović, Senad

    2010-03-01

    In order to determine the actual prevalence of avian influenza viruses (AIVs) in wild birds in Bosnia and Herzegovina, extensive surveillance was carried out between October 2005 and April 2006. A total of 394 samples representing 41 bird species were examined for the presence of influenza A virus using virus isolation in embryonated chicken eggs, PCR, and nucleotide sequencing. AIV subtype H5N1 was detected in two mute swans (Cygnus olor). The isolates were determined to be highly pathogenic avian influenza (HPAI) virus and the hemagglutinin sequence was closely similar to A/Cygnus olor/Astrakhan/ Ast05-2-10/2005 (H5N1). This is the first report of HPAI subtype H5N1 in Bosnia and Herzegovina.

  5. Bottomland hardwood establishment and avian colonization of reforested sites in the Mississippi Alluvial Valley

    Science.gov (United States)

    Wilson, R.R.; Twedt, D.J.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    Reforestation of bottomland hardwood sites in the Mississippi Alluvial Valley has markedly increased in recent years, primarily due to financial incentive programs such as the Wetland Reserve Program, Partners for Wildlife Program, and state and private conservation programs. An avian conservation plan for the Mississippi Alluvial Valley proposes returning a substantial area of cropland to forested wetlands. Understanding how birds colonize reforested sites is important to assess the effectiveness of avian conservation. We evaluated establishment of woody species and assessed bird colonization on 89 reforested sites. These reforested sites were primarily planted with heavy-seeded oaks (Quercus spp.) and pecans (Carya illinoensis). Natural invasion of light-seeded species was expected to diversify these forests for wildlife and sustainable timber harvest. Planted tree species averaged 397 + 36 stems/ha-1, whereas naturally invading trees averaged 1675 + 241 stems/ha. However, naturally invading trees were shorter than planted trees and most natural invasion occurred <100 m from an existing forested edge. Even so, planted trees were relatively slow to develop vertical structure, especially when compared with tree species planted and managed for pulpwood production. Slow development of vertical structure resulted in grassland bird species, particularly dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), being the dominant avian colonizers for the first 7 years post-planting. High priority bird species (as defined by Partners in Flight), such as prothonotary warbler (Protonotaria citrea) and wood thrush (Hylocichla mustelina), were not frequently detected until stands were 15 years old. Canonical correspondence analysis revealed tree height had the greatest influence on the bird communities colonizing reforested sites. Because colonization by forest birds is dependent on tree height, we recommend inclusion of at least one fast-growing tree

  6. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites

    Science.gov (United States)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny

    2010-02-01

    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  7. Avian influenza in birds and mammals.

    Science.gov (United States)

    Cardona, Carol J; Xing, Zheng; Sandrock, Christian E; Davis, Cristina E

    2009-07-01

    The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).

  8. Pelacakan Kasus Flu Burung pada Ayam dengan Reverse Transcriptase Polymerase Chain Reaction* (DETECTION OF AVIAN INFLUENZA IN CHICKENS BY REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    Gusti Ayu Yuniati Kencana

    2013-07-01

    Full Text Available Avian Influenza (AI or Bird Flu is a fatal zoonotic disease caused by highly pathogenic avian influenza(HPAI virus of H5N1 sub-type. The disease is still endemic in Indonesia. This study was conducted toinvestigate AI cases in chickens in Bali. Virus isolation was performed in 9 day-old embryonated chickeneggs, and then followed by serologic testing by haemaglutination (HA and Haemaglutination Inhibition(HI assay using standard microtiter procedure. All of the samples were further tested with reversetrancriptasepolymerase chain reaction (RT-PCR. All work has been done in the Biomedical and MolecularBiology Laboratory, Faculty of Veterinary Medicine, Udayana University, Denpasar, during the period2009-2011. A total of ten samples were examined A total of ten chicken samples consisting of 6 fieldsamples and 4 meat samples have been confirmed to be AIV H5N1. All field cases showed clinical signsand gross pathology that were typical to the infection of avian influenza. The result indicates that AI casesare still prevalent among chickens in Bali.

  9. Avian fossils from the Early Miocene Moghra Formation of Egypt ...

    African Journals Online (AJOL)

    Avian remains from the Early Miocene (~17 Ma) Moghra Formation of Egypt include new records of 'waterbirds' (storks, herons, pelicans and allies) and a ratite. Only a single avian fossil has been previously reported from Wadi Moghra and, thus, additional knowledge of the avifauna complements previously documented ...

  10. Unexpected Diversity and Expression of Avian Endogenous Retroviruses

    Science.gov (United States)

    Bolisetty, Mohan; Blomberg, Jonas; Benachenhou, Farid; Sperber, Göran; Beemon, Karen

    2012-01-01

    ABSTRACT Endogenous retroviruses (ERVs) were identified and characterized in three avian genomes to gain insight into early retroviral evolution. Using the computer program RetroTector to detect relatively intact ERVs, we identified 500 ERVs in the chicken genome, 150 in the turkey genome, and 1,200 in the zebra finch genome. Previous studies suggested that endogenous alpharetroviruses were present in chicken genomes. In this analysis, a small number of alpharetroviruses were seen in the chicken and turkey genomes; however, these were greatly outnumbered by beta-like, gamma-like, and alphabeta proviruses. While the avian ERVs belonged to the same major groups as mammalian ERVs, they were more heterogeneous. In particular, the beta-like viruses revealed an evolutionary continuum with the gradual acquisition and loss of betaretroviral markers and a transition from beta to alphabeta and then to alpharetroviruses. Thus, it appears that birds may resemble a melting pot for early ERV evolution. Many of the ERVs were integrated in clusters on chromosomes, often near centromeres. About 25% of the chicken ERVs were in or near cellular transcription units; this is nearly random. The majority of these integrations were in the sense orientation in introns. A higher-than-random number of integrations were >100 kb from the nearest gene. Deep-sequencing studies of chicken embryo fibroblasts revealed that about 20% of the 500 ERVs were transcribed and translated. A subset of these were also transcribed in vivo in chickens, showing tissue-specific patterns of expression. PMID:23073767

  11. Field avian metapneumovirus evolution avoiding vaccine induced immunity.

    Science.gov (United States)

    Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J

    2010-01-22

    Live avian metapneumovirus (AMPV) vaccines have largely brought turkey rhinotracheitis (TRT) under control in Europe but unexplained outbreaks still occur. Italian AMPV longitudinal farm studies showed that subtype B AMPVs were frequently detected in turkeys some considerable period after subtype B vaccination. Sequencing showed these to be unrelated to the previously applied vaccine. Sequencing of the entire genome of a typical later isolate showed numerous SH and G protein gene differences when compared to both a 1987 Italian field isolate and the vaccine in common use. Experimental challenge of vaccinated birds with recent virus showed that protection was inferior to that seen after challenge with the earlier 1987 isolate. Field virus had changed in key antigenic regions allowing replication and leading to disease in well vaccinated birds.

  12. Surveillance of wild birds for avian influenza virus.

    Science.gov (United States)

    Hoye, Bethany J; Munster, Vincent J; Nishiura, Hiroshi; Klaassen, Marcel; Fouchier, Ron A M

    2010-12-01

    Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host-pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.

  13. Molecular detection of infectious bronchitis and avian metapneumoviruses in Oman backyard poultry.

    Science.gov (United States)

    Al-Shekaili, Thunai; Baylis, Matthew; Ganapathy, Kannan

    2015-04-01

    Infectious bronchitis virus (IBV) and avian metapneumovirus (aMPV) are economically important viral pathogens infecting chickens globally. Identification of endemic IBV and aMPV strains promotes better control of both diseases and prevents production losses. Orophrayngeal swab samples were taken from 2317 birds within 243 different backyard flocks in Oman. Swabs from each flock were examined by RT-PCR using part-S1 and G gene primers for IBV and aMPV respectively. Thirty-nine chicken flocks were positive for IBV. Thirty two of these were genotyped and they were closely related to 793/B, M41, D274, IS/1494/06 and IS/885/00. 793/B-like IBV was also found in one turkey and one duck flock. Five flocks were positive for aMPV subtype B. Though no disease was witnessed at the time of sampling, identified viruses including variant IBV strains, may still pose a threat for both backyard and commercial poultry in Oman. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mercury risk to avian piscivores across western United States and Canada

    Science.gov (United States)

    Jackson, Allyson K.; Evers, David C.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Willacker, James J.; Elliott, John E.; Lepak, Jesse M.; Vander Pol, Stacy S.; Bryan, Colleen E.

    2016-01-01

    The widespread distribution of mercury (Hg) threatens wildlife health, particularly piscivorous birds. Western North America is a diverse region that provides critical habitat to many piscivorous bird species, and also has a well-documented history of mercury contamination from legacy mining and atmospheric deposition. The diversity of landscapes in the west limits the distribution of avian piscivore species, complicating broad comparisons across the region. Mercury risk to avian piscivores was evaluated across the western United States and Canada using a suite of avian piscivore species representing a variety of foraging strategies that together occur broadly across the region. Prey fish Hg concentrations were size-adjusted to the preferred size class of the diet for each avian piscivore (Bald Eagle = 36 cm, Osprey = 30 cm, Common and Yellow-billed Loon = 15 cm, Western and Clark's Grebe = 6 cm, and Belted Kingfisher = 5 cm) across each species breeding range. Using a combination of field and lab-based studies on Hg effect in a variety of species, wet weight blood estimates were grouped into five relative risk categories including: background ( 3 μg/g). These risk categories were used to estimate potential mercury risk to avian piscivores across the west at a 1 degree-by-1 degree grid cell resolution. Avian piscivores foraging on larger-sized fish generally were at a higher relative risk to Hg. Habitats with a relatively high risk included wetland complexes (e.g., prairie pothole in Saskatchewan), river deltas (e.g., San Francisco Bay, Puget Sound, Columbia River), and arid lands (Great Basin and central Arizona). These results indicate that more intensive avian piscivore sampling is needed across Western North America to generate a more robust assessment of exposure risk.

  15. Developmental imaging: the avian embryo hatches to the challenge.

    Science.gov (United States)

    Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca

    2013-06-01

    The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.

  16. Avian Egg and Egg Coat.

    Science.gov (United States)

    Okumura, Hiroki

    2017-01-01

    An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.

  17. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Directory of Open Access Journals (Sweden)

    Jenson A Bennett

    2002-07-01

    Full Text Available Abstract Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus. The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs papillomavirus (FPV reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution.

  18. EPIZOOTIOLOGICAL CHART OF AVIAN CHLAMYDIOSIS IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Edin Šatrović

    2013-03-01

    Full Text Available In the period from 2003 to 2008 we conducted a research on avian chlamydiosis in Bosnia and Herzegovina on a great number of domestic and wild birds from different localities. Diagnostic material from the wild birds was provided by the hunting societies during the hunting season while material from the domestic poultry was taken indiscriminately. Chicken samples are taken from the facilities for intensive production, namely parent flocks. Turkey samples are taken from the individual households keeping and breeding turkey on extensive basis (half – open type of breeding. Pigeon samples are provided from the central parts of Sarajevo where the pigeons live in a close contact with people. Also, pigeon samples are provided from around the town's bakery and a farm for intensive poultry breeding because the pigeons are considered a potential source of infection for other birds, primarily domestic ones, and also for the people. We also took samples of the breeding pheasants from a pheasant farm in Orašje, which is oriented toward breeding and releasing pheasants into their natural habitat, but also breeding for the needs of hunting industry. Samples from the wild/hunting birds (ducks and wild pheasants were provided in the proximity of watercourses as their residence, and where the hunting is of a greater extent. To obtain valid diagnostic results we have used multiple diagnostic methods and tests: bacteriological examination to exclude cross reactions, IIF (indirect immunofluorescence to confirm antibodies in the blood serum, ELISA (immunoesay and EIA (quick immunoessay to detect antigen, and conventional PCR and rRT – PCR to detect antigen as sensitive and sophisticated diagnostics methods.Key words: avian chlamydiosis, epizootiological chart, Bosnia and Herzegovina

  19. Ecology and diagnosis of introduced avian malaria in Hawaiian forest birds

    Science.gov (United States)

    Atkinson, Carter T.

    2005-01-01

    Avian malaria is a disease caused by species of protozoan parasites (Plasmodium) that infect birds. Related species commonly infect reptiles, birds and mammals in tropical and temperate regions of the world. Transmitted by mosquitoes, the parasites spend part of their lives in the red blood cells of birds (Figure 1). Avian malaria is common in continental areas, but is absent from the most isolated island archipelagos where mosquitoes do not naturally occur. More than 40 different species of avian Plasmodium have been described, but only one, P. relictum, has been introduced to the Hawaiian Islands. Because they evolved without natural exposure to avian malaria, native Hawaiian honeycreepers are extremely susceptible to this disease. Malaria currently limits the geographic distribution of native species, has population level impacts on survivorship, and is limiting the recovery of threatened and endangered species of forest birds.

  20. Avian bornavirus in free-ranging waterfowl in North America and Europe

    DEFF Research Database (Denmark)

    Brinkmann, Jesper; Thomsen, Anders F.; Bertelsen, Mads Frost

    The first avian bornavirus (ABV) was identified in 2008 by researchers investigating the cause of proventricular dilation disease in psittacine birds 3,4. A distinctly separate genotype (ABV-CG) was discovered in 2009 in association with neurological disease in free-ranging Canada geese (Branta...... canadensis) and trumpeter swans (Cygnus buccinator) in Ontario, Canada 1. Since then this genotype, now identified as ABBV-1, has been identified from a variety of wild avian species 5, predominantly waterfowl, in North America at prevalences ranging from 10 to 50%, and in 2014 an additional genotype...... was identified in mallard ducks (Anas platyrhynchos) 2. In order to determine whether avian bornavirus was present in European waterfowl, the brains of 333 hunter killed geese in Denmark were examined by real time RT-PCR for the presence of avian bornavirus; seven birds (2.1%) were positive. Sequences were 98...

  1. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  2. Low diversity, activity, and density of transposable elements in five avian genomes.

    Science.gov (United States)

    Gao, Bo; Wang, Saisai; Wang, Yali; Shen, Dan; Xue, Songlei; Chen, Cai; Cui, Hengmi; Song, Chengyi

    2017-07-01

    In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.

  3. Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    Science.gov (United States)

    2010-02-01

    peptide biomarker loci will increasingly fail, through false-positive and/or false-negative results. This will adversely impact critical decision...and field specimen isolates of avian influenza virus represented subtypes A/H10N7 (4), A/H7N7 (2), A/H11 (1) or A/ H13 (1). In marked contrast to

  4. Little Evidence of Avian or Equine Influenza Virus Infection among a Cohort of Mongolian Adults with Animal Exposures, 2010–2011

    Science.gov (United States)

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S.; Heil, Gary L.; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D.; Gray, Gregory C.

    2014-01-01

    Avian (AIV) and equine influenza virus (EIV) have been repeatedly shown to circulate among Mongolia’s migrating birds or domestic horses. In 2009, 439 Mongolian adults, many with occupational exposure to animals, were enrolled in a prospective cohort study of zoonotic influenza transmission. Sera were drawn upon enrollment and again at 12 and 24 months. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members confirmed to have acute influenza A infections, permitted respiratory swab collections which were studied with rRT-PCR for influenza A. Serologic assays were performed against equine, avian, and human influenza viruses. Over the 2 yrs of follow-up, 100 ILI investigations in the cohort were conducted. Thirty-six ILI cases (36%) were identified as influenza A infections by rRT-PCR; none yielded evidence for AIV or EIV. Serological examination of 12 mo and 24 mo annual sera revealed 37 participants had detectable antibody titers (≥1∶10) against studied viruses during the course of study follow-up: 21 against A/Equine/Mongolia/01/2008(H3N8); 4 against an avian A/Teal/Hong Kong/w3129(H6N1), 11 against an avian-like A/Hong Kong/1073/1999(H9N2), and 1 against an avian A/Migrating duck/Hong Kong/MPD268/2007(H10N4) virus. However, all such titers were avian or horse exposures. A number of subjects had evidence of seroconversion to zoonotic viruses, but the 4-fold titer changes were again not associated with avian or horse exposures. As elevated antibodies against seasonal influenza viruses were high during the study period, it seems likely that cross-reacting antibodies against seasonal human influenza viruses were a cause of the low-level seroreactivity against AIV or EIV. Despite the presence of AIV and EIV circulating among wild birds and horses in Mongolia, there was little evidence of AIV or EIV infection in this prospective study of Mongolians with animal exposures. PMID

  5. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.

    Science.gov (United States)

    Greenwold, Matthew J; Sawyer, Roger H

    2011-12-15

    Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  6. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  7. Experimental techniques for the detection of the high energy gamma rays of cosmic origin

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.; Angelescu, T.; Radu, A.A.

    2002-01-01

    The observation of high energy gamma rays of cosmic origin in the early 90 by Volcano Ranch experiment opened a new direction of study in astrophysics. The very high energy and the very low flux of these gamma rays, posed numerous detection problems which in turn were the object of a very intense research activity. The present article tries to review the detection techniques for the high energy gamma rays of cosmic origin. In the 'Introduction' we summarize the specific problems involved in the detection of this type of radiation. 'Chapter 1' presents the classic technique based on the use of scintillation detectors. 'Chapter 2' includes the imaging atmospheric Cherenkov technique (IACT) and the sampling wavefront technique. 'Chapter 3' is dedicated to the detection of the atmospheric nitrogen. 'Chapter 4' describes issues related to the calibration of the detectors, the cross checking of the experimental data, the use of the Monte Carlo simulations and the use of the density observed at a distance of 600 m S(600), in order to estimate the primary energy. The characteristics of some future developments of the above presented techniques are included in the last chapter. (authors)

  8. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs

    NARCIS (Netherlands)

    Verhagen, Josanne H.; Lexmond, Pascal; Vuong, Oanh; Schutten, Martin; Guldemeester, Judith; Osterhaus, Albert D.M.E.; Elbers, Armin R.W.; Slaterus, Roy; Hornman, Menno; Koch, Guus; Fouchier, Ron A.M.; Lierz, Michael

    2017-01-01

    Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and

  9. Avian Conservation Practices Strengthen Ecosystem Services in California Vineyards

    OpenAIRE

    Jedlicka, Julie A.; Greenberg, Russell; Letourneau, Deborah K.

    2011-01-01

    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without...

  10. Avian skull morphological evolution: exploring exo- and endocranial covariation with two-block partial least squares.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Buscalioni, Angela D

    2006-01-01

    While rostral variation has been the subject of detailed avian evolutionary research, avian skull organization, characterized by a flexed or extended appearance of the skull, has eventually become neglected by mainstream evolutionary inquiries. This study aims to recapture its significance, evaluating possible functional, phylogenetic and developmental factors that may be underlying it. In order to estimate which, and how, elements of the skull intervene in patterning the skull we tested the statistical interplay between a series of old mid-sagittal angular measurements (mostly endocranial) in combination with newly obtained skull metrics based on landmark superimposition methods (exclusively exocranial shape), by means of the statistic-morphometric technique of two-block partial least squares. As classic literature anticipated, we found that the external appearance of the skull corresponds to the way in which the plane of the caudal cranial base is oriented, in connection with the orientations of the plane of the foramen magnum and of the lateral semicircular canal. The pattern of covariation found between metrics conveys flexed or extended appearances of the skull implicitly within a single and statistically significant dimension of covariation. Marked shape changes with which angles covary concentrate at the supraoccipital bone, the cranial base and the antorbital window, whereas the plane measuring the orientation of the anterior portion of the rostrum does not intervene. Statistical covariance between elements of the caudal cranial base and the occiput inplies that morphological integration underlies avian skull macroevolutionary organization as a by-product of the regional concordance of such correlated elements within the early embryonic chordal domain of mesodermic origin.

  11. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity

    Science.gov (United States)

    Patrick D. Culbert; Volker C. Radeloff; Curtis H. Flather; Josef M. Kellndorfer; Chadwick D. Rittenhouse; Anna M. Pidgeon

    2013-01-01

    With limited resources for habitat conservation, the accurate identification of high-value avian habitat is crucial. Habitat structure affects avian biodiversity but is difficult to quantify over broad extents. Our goal was to identify which measures of vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity across the...

  12. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  13. Radical-pair based avian magnetoreception

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2014-03-01

    Behavioural experiments suggest that migratory birds possess a magnetic compass sensor able to detect the direction of the geomagnetic. One hypothesis for the basis of this remarkable sensory ability is that the coherent quantum spin dynamics of photoinduced radical pair reactions transduces directional magnetic information from the geomagnetic field into changes of reaction yields, possibly involving the photoreceptor cryptochrome in the birds retina. The suggested radical-pair based avian magnetoreception has attracted attention in the field of quantum biology as an example of a biological sensor which might exploit quantum coherences for its biological function. Investigations on such a spin-based sensor have focussed on uncovering the design features for the design of a biomimetic magnetic field sensor. We study the effects of slow fluctuations in the nuclear spin environment on the directional signal. We quantitatively evaluate the robustness of signals under fluctuations on a timescale longer than the lifetime of a radical pair, utilizing two models of radical pairs. Our results suggest design principles for building a radical-pair based compass sensor that is both robust and highly directional sensitive.

  14. Optimizing early detection of avian influenza H5N1 in backyard and free-range poultry production systems in Thailand.

    Science.gov (United States)

    Goutard, Flavie L; Paul, Mathilde; Tavornpanich, Saraya; Houisse, Ivan; Chanachai, Karoon; Thanapongtharm, Weerapong; Cameron, Angus; Stärk, Katharina D C; Roger, François

    2012-07-01

    For infectious diseases such as highly pathogenic avian influenza caused by the H5N1 virus (A/H5N1 HP), early warning system is essential. Evaluating the sensitivity of surveillance is a necessary step in ensuring an efficient and sustainable system. Stochastic scenario tree modeling was used here to assess the sensitivity of the A/H5N1 HP surveillance system in backyard and free-grazing duck farms in Thailand. The whole surveillance system for disease detection was modeled with all components and the sensitivity of each component and of the overall system was estimated. Scenarios were tested according to selection of high-risk areas, inclusion of components and sampling procedure, were tested. Nationwide passive surveillance (SSC1) and risk-based clinical X-ray (SSC2) showed a similar sensitivity level, with a median sensitivity ratio of 0.96 (95% CI 0.40-15.00). They both provide higher sensitivity than the X-ray laboratory component (SSC3). With the current surveillance design, the sensitivity of detection of the overall surveillance system when the three components are implemented, was equal to 100% for a farm level prevalence of 0.05% and 82% (95% CI 71-89%) for a level of infection of 3 farms. Findings from this study illustrate the usefulness of scenario-tree modeling to document freedom from diseases in developing countries. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system.

    Science.gov (United States)

    Lambertz, Markus; Bertozzo, Filippo; Sander, P Martin

    2018-01-01

    Air sacs are an important component of the avian respiratory system, and corresponding structures also were crucial for the evolution of sauropod dinosaur gigantism. Inferring the presence of air sacs in fossils so far is restricted to bones preserving internal pneumatic cavities and foramina as osteological correlates. We here present bone histological correlates for air sacs as a new potential identification tool for these elements of the respiratory system. The analysis of several avian and non-avian dinosaur samples revealed delicate fibres in secondary trabecular and secondary endosteal bone that in the former case (birds) is known or in the latter (non-avian dinosaurs) assumed to have been in contact with air sacs, respectively. The bone histology of this 'pneumosteal tissue' is markedly different from those regions where muscles attached presenting classical Sharpey's fibres. The pneumatized bones of several non-dinosaurian taxa do not exhibit the characteristics of this 'pneumosteum'. Our new histology-based approach thus can be instrumental in reconstructing the origin of air sacs among dinosaurs and hence for our understanding of this remarkable evolutionary novelty of the respiratory system. © 2018 The Author(s).

  16. Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples.

    Science.gov (United States)

    Hu, Hui; Jung, Kwonil; Wang, Qiuhong; Saif, Linda J; Vlasova, Anastasia N

    2018-06-01

    Coronaviruses (CoVs) are critical human and animal pathogens because of their potential to cause severe epidemics of respiratory or enteric diseases. In pigs, the newly emerged porcine deltacoronavirus (PDCoV) and re-emerged porcine epidemic diarrhea virus (PEDV) reported in the US and Asia, as well as the discovery of novel CoVs in wild bats or birds, has necessitated development of improved detection and control measures for these CoVs. Because the previous pancoronavirus (panCoV) RT-PCR established in our laboratory in 2007-2011 did not detect deltacoronaviruses (δ-CoVs) in swine fecal and serum samples, our goal was to develop a new panCoV RT-PCR assay to detect known human and animal CoVs, including δ-CoVs. In this study, we designed a new primer set to amplify a 668 bp-region within the RNA-dependent RNA polymerase (RdRP) gene that encodes the most conserved protein domain of α-, β-, γ-, and δ-CoVs. We established a one-step panCoV RT-PCR assay and standardized the assay conditions. The newly established panCoV RT-PCR assay was demonstrated to have a high sensitivity and specificity. Using a panel of 60 swine biological samples (feces, intestinal contents, and sera) characterized by PEDV, PDCoV and transmissible gastroenteritis virus-specific RT-PCR assays, we demonstrated that sensitivity and specificity of the newly established panCoV RT-PCR assay were 100%. 400 avian fecal (RNA) samples were further tested simultaneously for CoV by the new panCoV RT-PCR and a one-step RT-PCR assay with the δ-CoV nucleocapsid-specific universal primers. Four of 400 avian samples were positive for CoV, three of which were positive for δ-CoV by the conventional RT-PCR. PanCoV RT-PCR fragments for 3 of the 4 CoVs were sequenced. Phylogenetic analysis revealed the presence of one γ-CoV and two δ-CoV in the sequenced samples. The newly designed panCoV RT-PCR assay should be useful for the detection of currently known CoVs in animal biological samples. Copyright © 2018

  17. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    Science.gov (United States)

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  18. Automated Detection of Short Optical Transients of Astrophysical Origin in Real Time

    Directory of Open Access Journals (Sweden)

    Marcin Sokołowski

    2010-01-01

    Full Text Available The detection of short optical transients of astrophysical origin in real time is an important task for existing robotic telescopes. The faster a new optical transient is detected, the earlier follow-up observations can be started. The sooner the object is identified, the more data can be collected before the source fades away, particularly in the most interesting early period of the transient. In this the real-time pipeline designed for identification of optical flashes with the “Pi of the Sky” project will be presented in detail together with solutions used by other experiments.

  19. RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza

    DEFF Research Database (Denmark)

    Dybkaer, Karen; Munch, Mette; Handberg, Kurt Jensen

    2003-01-01

    A one-tube reverse transcriptase/polymerase chain reaction coupled with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) was developed for the rapid detection of avian influenza virus (AIV) in clinical specimens. A total of 419 swab pools were analyzed from chickens experimentally infected wit...... of the twenty-three VI-positive specimens were negative when tested by RT-PCR-ELISA. The diagnostic sensitivity and specificity of the RT-PCR-ELISA was 91% and 97%, respectively, using VI in SPF eggs as the gold reference standard....

  20. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin.

    Science.gov (United States)

    Boyle, D B; Selleck, P; Heine, H G

    2000-01-01

    To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.

  1. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M.C.M.; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  2. Instream cover and shade mediate avian predation on trout in semi-natural streams

    Science.gov (United States)

    Penaluna, Brooke E.; Dunham, Jason B.; Noakes, David L. G.

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in replicated semi-natural stream sections. These sections provided high (0.01 m2 of cover per m2 of stream) or low (0.002 m2 of cover per m2 of stream) levels of instream cover available to trout and were closed to emigration. Each fish was individually tagged, allowing us to track retention of individuals during the course of the 36-day experiment, which we attributed to survival from predators, because fish had no other way to leave the streams. Although other avian predators may have been active in our system and not detected, the only predator observed was the belted kingfisher Megaceryle alcyon, which is known to prey heavily on fish. In both treatments, trout >20.4 cm were not preyed upon indicating an increased ability to prey upon on smaller individuals. Increased availability of cover improved survival of trout by 12% in high relative to low cover stream sections. Trout also survived better in stream sections with greater shade, a factor we could not control in our system. Collectively, these findings indicate that instream cover and shade from avian predators can play an important role in driving survival of fish in small streams or during periods of low flow.

  3. Avian metapneumovirus in the USA

    Science.gov (United States)

    In the United States of America (USA), avian metapneumovirus (aMPV) causes an upper respiratory tract infection in turkeys; no outbreaks have been reported in commercial chicken flocks. Typical clinical signs of the disease in turkey poults include coughing, sneezing, nasal discharge, tracheal rale...

  4. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene.

    Directory of Open Access Journals (Sweden)

    Antoinette J Piaggio

    Full Text Available A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV. We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event, as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.

  5. Little evidence of avian or equine influenza virus infection among a cohort of Mongolian adults with animal exposures, 2010-2011.

    Directory of Open Access Journals (Sweden)

    Nyamdavaa Khurelbaatar

    Full Text Available Avian (AIV and equine influenza virus (EIV have been repeatedly shown to circulate among Mongolia's migrating birds or domestic horses. In 2009, 439 Mongolian adults, many with occupational exposure to animals, were enrolled in a prospective cohort study of zoonotic influenza transmission. Sera were drawn upon enrollment and again at 12 and 24 months. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI. Cohort members confirmed to have acute influenza A infections, permitted respiratory swab collections which were studied with rRT-PCR for influenza A. Serologic assays were performed against equine, avian, and human influenza viruses. Over the 2 yrs of follow-up, 100 ILI investigations in the cohort were conducted. Thirty-six ILI cases (36% were identified as influenza A infections by rRT-PCR; none yielded evidence for AIV or EIV. Serological examination of 12 mo and 24 mo annual sera revealed 37 participants had detectable antibody titers (≥1∶10 against studied viruses during the course of study follow-up: 21 against A/Equine/Mongolia/01/2008(H3N8; 4 against an avian A/Teal/Hong Kong/w3129(H6N1, 11 against an avian-like A/Hong Kong/1073/1999(H9N2, and 1 against an avian A/Migrating duck/Hong Kong/MPD268/2007(H10N4 virus. However, all such titers were <1∶80 and none were statistically associated with avian or horse exposures. A number of subjects had evidence of seroconversion to zoonotic viruses, but the 4-fold titer changes were again not associated with avian or horse exposures. As elevated antibodies against seasonal influenza viruses were high during the study period, it seems likely that cross-reacting antibodies against seasonal human influenza viruses were a cause of the low-level seroreactivity against AIV or EIV. Despite the presence of AIV and EIV circulating among wild birds and horses in Mongolia, there was little evidence of AIV or EIV infection in this

  6. The detectability of the origin of the inferior phrenic artery by paging method on multidetector-row CT angiography

    International Nuclear Information System (INIS)

    Terayama, Koshi

    2005-01-01

    We evaluated the ability to detect the origin of the inferior phrenic artery (IPA) by paging method on multidetector-row computed tomography (CT) angiography. In 104 patients who underwent multidetector-row CT, detectability of the origin of the IPA was assessed. In addition, in 30 patients in whom arteriographic study was performed, the IPA findings on multidetector-row CT were compared with those on arteriography. In 100 patients (96%) the origin of the right IPA was demonstrated with multidetector-row CT and in 93 patients (89%) the origin of the left IPA was demonstrated. CT angiographic findings concurred with arteriographic findings in all 30 patients (100%) who underwent arteriographic study. In conclusion, paging method on multidetector-row CT angiography provides valuable anatomical information regarding IPA. (author)

  7. Proper expression of metabolizable energy in avian energetics

    Science.gov (United States)

    Miller, M.R.; Reinecke, K.J.

    1984-01-01

    We review metabolizable energy (ME) concepts and present evidence suggesting that the form of ME used for analyses of avian energetics can affect interpretation of results. Apparent ME (AME) is the most widely used measure of food energy available to birds. True ME(TME) differs from AME in recognizing fecal and urinary energy of nonfood origin as metabolized energy. Only AME values obtained from test birds fed at maintenance levels should be used for energy analyses. A practical assay for TME has shown that TME estimates are less sensitive than AME to variation in food intake. The TME assay may be particularly useful in studies of natural foods that are difficult to obtain in quantities large enough to supply test birds with maintenance requirements. Energy budgets calculated from existence metabolism should be expressed as kJ of AME and converted to food requirements with estimates of metabolizability given in kJ AME/g.

  8. [Detection of Avian Influenza Virus in Environmental Samples Collected from Live Poultry Markets in China during 2009-2013].

    Science.gov (United States)

    Zhang, Ye; Li, Xiaodan; Zou, Shumei; Bo, Hong; Dong, Libo; Gao, Rongbao; Wang, Dayan; Shu, Yuelong

    2015-11-01

    Abstract: To investigate the distribution of avian influenza virus in environmental samples from live poultry markets (LPM) in China, samples were collected and tested by nucleic acid during 2009-2013 season. Each sample was tested by real-time RT PCR using flu A specific primers. If any real-time PCR was positive, the sample was inoculated into specific-pathogen-free (SPF) embryonated chicken eggs for viral isolation. The results indicated that the positive rate of nucleic acid in enviromental samples exhibited seasonality. The positive rate of nucleic acid was significantly higher in Winter and Spring. The positive rate of nucleic acid in LPM located in the south of China was higher than in northern China. Samples of Sewage for cleaning poultry and chopping board showed that higher positive rate of nucleic acid than other samples. The Subtype identification showed that H5 and H9 were main subtypes in the enviromental samples. Viral isolation indicated H5 subtypes was more than H9 subtypes between 2009 and 2013 while H9 subtypes increased in 2013. Our findings suggested the significance of public health based on LPM surveillance and provided the basis of prevention and early warning for avian flu infection human.

  9. 76 FR 66032 - Availability of an Environmental Assessment for Field Testing Avian Influenza-Marek's Disease...

    Science.gov (United States)

    2011-10-25

    ... Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector AGENCY... authorization to ship for the purpose of field testing, and then to field test, an unlicensed Avian Influenza... product: Requester: Biomune Company. Product: Avian Influenza-Marek's Disease Vaccine, H5 Subtype...

  10. Avian cholera, a threat to the viability of an Arctic seabird colony?

    Directory of Open Access Journals (Sweden)

    Sébastien Descamps

    Full Text Available Evidence that infectious diseases cause wildlife population extirpation or extinction remains anecdotal and it is unclear whether the impacts of a pathogen at the individual level can scale up to population level so drastically. Here, we quantify the response of a Common eider colony to emerging epidemics of avian cholera, one of the most important infectious diseases affecting wild waterfowl. We show that avian cholera has the potential to drive colony extinction, even over a very short period. Extinction depends on disease severity (the impact of the disease on adult female survival and disease frequency (the number of annual epidemics per decade. In case of epidemics of high severity (i.e., causing >30% mortality of breeding females, more than one outbreak per decade will be unsustainable for the colony and will likely lead to extinction within the next century; more than four outbreaks per decade will drive extinction to within 20 years. Such severity and frequency of avian cholera are already observed, and avian cholera might thus represent a significant threat to viability of breeding populations. However, this will depend on the mechanisms underlying avian cholera transmission, maintenance, and spread, which are currently only poorly known.

  11. Control strategies against avian influenza

    Science.gov (United States)

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  12. An Immunosensor Based on Antibody Binding Fragments Attached to Gold Nanoparticles for the Detection of Peptides Derived from Avian Influenza Hemagglutinin H5

    Directory of Open Access Journals (Sweden)

    Urszula Jarocka

    2014-08-01

    Full Text Available This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii immobilization of antibody-binding fragments (Fab’ of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab’ fragments and hemagglutinin (HA variants have been explored with electrochemical impedance spectroscopy (EIS in the presence of [Fe(CN6]3−/4− as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17–340 residues of A/swan/Poland/305-135V08/2006, the long HA (17–530 residues A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1–345 residues of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.

  13. New insight on the anatomy and architecture of the avian neurocranium.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Buscalioni, Angela D

    2009-03-01

    This study aims to disentangle the main features of the avian neurocranium at high taxonomic scales using geometric morphometric tools. When surveying the variation across 60% of avian orders (sampled among 72 individuals), our results verify that the central nervous system has an important influence upon the architecture of the avian neurocranium, as in other very encephalized vertebrates such as mammals. When the avian brain expands relative to the cranial base it causes more "reptilian-like" neurocranial configurations to shape into rounder ones. This rounder appearance is achieved because the cranial base becomes relatively shorter and turns its flexure from concave to convex, at the same time forcing the foramen magnum to reorient ventrally instead of caudally. However, our analyses have also revealed that an important morphological difference between birds resides between the occiput and the cranial roof. This variation was unexpected since it had not been reported thus far, and entertains two plausible interpretations. Although it could be due to a trade-off between the relative sizes of the supraoccipital and the parietal bones, the presence of an additional bone (the intra- or post-parietal) between the latter two bones could also explain the variation congruently. This descriptive insight stresses the need for further developmental studies focused in understanding the evolutionary disparity of the avian neurocranium. (c) 2009 Wiley-Liss, Inc.

  14. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... response operations Diseases Biorisk reduction Disease outbreak news Human infection with avian influenza A(H7N9) virus – China ... Region (SAR) notified WHO of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and ...

  15. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China.

    Science.gov (United States)

    Shi, Jinghong; Gao, Lidong; Zhu, Yun; Chen, Tao; Liu, Yunzhi; Dong, Libo; Liu, Fuqiang; Yang, Hao; Cai, Yahui; Yu, Mingdong; Yao, Yi; Xu, Cuilin; Xiao, Xiangming; Shu, Yuelong

    2014-01-01

    We investigated avian influenza infections in wild birds, poultry, and humans at Eastern Dongting Lake, China. We analyzed 6,621 environmental samples, including fresh fecal and water samples, from wild birds and domestic ducks that were collected from the Eastern Dongting Lake area from November 2011 to April 2012. We also conducted two cross-sectional serological studies in November 2011 and April 2012, with 1,050 serum samples collected from people exposed to wild birds and/or domestic ducks. Environmental samples were tested for the presence of avian influenza virus (AIV) using quantitative PCR assays and virus isolation techniques. Hemagglutination inhibition assays were used to detect antibodies against AIV H5N1, and microneutralization assays were used to confirm these results. Among the environmental samples from wild birds and domestic ducks, AIV prevalence was 5.19 and 5.32%, respectively. We isolated 39 and 5 AIVs from the fecal samples of wild birds and domestic ducks, respectively. Our analysis indicated 12 subtypes of AIV were present, suggesting that wild birds in the Eastern Dongting Lake area carried a diverse array of AIVs with low pathogenicity. We were unable to detect any antibodies against AIV H5N1 in humans, suggesting that human infection with H5N1 was rare in this region.

  16. Molecular epidemiology of Avian Rotaviruses Group A and D shed by different bird species in Nigeria.

    Science.gov (United States)

    Pauly, Maude; Oni, Oluwole O; Sausy, Aurélie; Owoade, Ademola A; Adeyefa, Christopher A O; Muller, Claude P; Hübschen, Judith M; Snoeck, Chantal J

    2017-06-12

    Avian rotaviruses (RVs) cause gastrointestinal diseases of birds worldwide. However, prevalence, diversity, epidemiology and phylogeny of RVs remain largely under-investigated in Africa. Fecal samples from 349 birds (158 symptomatic, 107 asymptomatic and 84 birds without recorded health status) were screened by reverse transcription PCR to detect RV groups A and D (RVA and RVD). Partial gene sequences of VP4, VP6, VP7 and NSP4 for RVA, and of VP6 and VP7 for RVD were obtained and analyzed to infer phylogenetic relationship. Fisher's exact test and logistic regression were applied to identify factors potentially influencing virus shedding in chickens. A high prevalence of RVA (36.1%; 126/349) and RVD (31.8%; 111/349) shedding was revealed in birds. In chickens, RV shedding was age-dependent and highest RVD shedding rates were found in commercial farms. No negative health effect could be shown, and RVA and RVD shedding was significantly more likely in asymptomatic chickens: RVA/RVD were detected in 51.9/48.1% of the asymptomatic chickens, compared to 18.9/29.7% of the symptomatic chickens (p epidemiology, diversity and classification of avian RVA and RVD in Nigeria. We show that cross-species transmission of host permissive RV strains occurs when different bird species are mixed.

  17. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    Science.gov (United States)

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  18. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    Science.gov (United States)

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  19. Mimicry and masquerade from the avian visual perspective

    Directory of Open Access Journals (Sweden)

    Mary Caswell STODDARD

    2012-08-01

    Full Text Available Several of the most celebrated examples of visual mimicry, like mimetic eggs laid by avian brood parasites and pala­table insects mimicking distasteful ones, involve signals directed at the eyes of birds. Despite this, studies of mimicry from the avian visual perspective have been rare, particularly with regard to defensive mimicry and masquerade. Defensive visual mimicry, which includes Batesian and Müllerian mimicry, occurs when organisms share a visual signal that functions to deter predators. Masquerade occurs when an organism mimics an inedible or uninteresting object, such as a leaf, stick, or pebble. In this paper, I present five case studies covering diverse examples of defensive mimicry and masquerade as seen by birds. The best-known cases of defensive visual mimicry typically come from insect prey, but birds themselves can exhibit defensive visual mimicry in an attempt to escape mobbing or dissuade avian predators. Using examples of defensive visual mimicry by both insects and birds, I show how quantitative models of avian color, luminance, and pattern vision can be used to enhance our understanding of mimicry in many systems and produce new hypotheses about the evolution and diversity of signals. Overall, I investigate examples of Batesian mimicry (1 and 2, Müllerian mimicry (3 and 4, and masquerade (5 as follows: 1 Polymorphic mimicry in African mocker swallowtail butterflies; 2 Cuckoos mimicking sparrowhawks; 3 Mimicry rings in Neotropical butterflies; 4 Plumage mimicry in toxic pitohuis; and 5 Dead leaf-mimicking butterflies and mantids [Current Zoology 58 (4: 630–648, 2012].

  20. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    International Nuclear Information System (INIS)

    Liu Xianggang; Cheng Ziqiang; Fan Hai; Ai Shiyun; Han Ruixia

    2011-01-01

    Highlights: → A sensitive electrochemical biosensor for the detection of gene sequence was developed. → The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. → The hybrid nanomaterials could provide a porous structure with good properties. → The biosensor has highly selectivity and sensitivity. → The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10 -12 to 1.0 x 10 -9 M (R = 0.9863) with a detection limit of 4.3 x 10 -13 M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  1. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianggang [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cheng Ziqiang, E-mail: czqsd@126.com [College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong (China); Fan Hai [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Han Ruixia [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-07-15

    Highlights: > A sensitive electrochemical biosensor for the detection of gene sequence was developed. > The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. > The hybrid nanomaterials could provide a porous structure with good properties. > The biosensor has highly selectivity and sensitivity. > The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10{sup -12} to 1.0 x 10{sup -9} M (R = 0.9863) with a detection limit of 4.3 x 10{sup -13} M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  2. Diagnosing avian influenza infection in vaccinated populations by systems for differentiating infected from vaccinated animals (DIVA).

    Science.gov (United States)

    Capua, I; Cattoli, G

    2007-01-01

    Vaccination against avian influenza is recommended as a tool to support control measures in countries affected by avian influenza. Vaccination is known to increase the resistance of susceptible birds to infection and also to reduce shedding; however, it does not always prevent infection. Vaccinated infected flocks can therefore be a source of infection and thus be responsible for the perpetuation of infection. To avoid the spread of infection in a vaccinated population, immunization strategies must allow differentiation of infected from vaccinated animals (DIVA), combined with an appropriate monitoring system. Vaccinated exposed flocks must be identified and managed by restriction policies that include controlled marketing and stamping-out. Several vaccines and diagnostic tests to detect infection in vaccinated populations are available, the tests having various properties and characteristics. In order to achieve eradication, the most appropriate DIVA vaccination strategy must be identified and an appropriate monitoring programme be designed, taking into account risk factors, the epidemiological situation and the socioeconomic implications of the policy.

  3. A bibliography of references to avian cholera

    Science.gov (United States)

    Wilson, Sonoma S.

    1979-01-01

    Mrs. Wilson has made a genuine effort to include in this bibliography every significant reference to avian cholera since Louis Pasteur's articles appeared in 1880, although she recognizes the likelihood that a few have been overlooked. New listings have been added throughout 1978, but comprehensive coverage of the literature cannot be claimed beyond June of that year.Textbook accounts, because they are generally summaries of work published elsewhere, are excluded. Papers dealing primarily with the biology of Pasteurella multocida, as opposed to the disease it induces in birds, are also excluded, unless they report information of diagnostic usefulness. Short abstracts are not included unless the journals in which they are published are more widely available than those in which the complete articles appear or they are English summaries of foreign language articles.In compiling this bibliography, Mrs. Wilson has made extensive use of Biological Abstracts, the Pesticide Documentation Bulletin, and printouts generated by Bibliographic Retrieval Services, Inc. The "Literature Cited" sections of textbooks and journal articles pertinent to the subject were sources of many additional references. Regardless of the origin of the citation, its accuracy was confirmed by comparison with the original publication, except in those few instances (marked with an asterisk) when the journal was not on the shelves of the libraries accessible to us.The author will be grateful to users of the bibliography who point out errors or omissions.Wayne I. JensenMicrobiologist In Charge

  4. Functionally heterogenous ryanodine receptors in avian cerebellum.

    Science.gov (United States)

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  5. Publication Rate of Avian Medicine Conference Abstracts and Influencing Factors: 2011-2015.

    Science.gov (United States)

    Doukaki, Christina; MedVet, Dr; Beaufrère, Hugues; Vet, Dr Med; Huynh, Minh

    2018-06-01

    International conferences on avian medicine and surgery aim to disseminate scientific and evidence-based information in the form of oral presentations and posters. Most manuscripts presented are printed in the conference proceedings as abstracts. Subsequent publication in a scientific peer-reviewed journal is the natural outcome of the research cycle, although studies have shown that the vast majority of conference abstracts are not published. The purpose of this study was to explore 1) the fate of abstracts presented in avian conferences (Association of Avian Veterinarians, European Association of Avian Veterinarians, International Conference on Avian Herpetological and Exotic Mammal Medicine) in the years 2011-2015, 2) assess the publication rate in peer-reviewed journals, 3) describe the time course of subsequent publication, and 4) identify factors associated with increased likelihood of publication. The results showed that 24% of conference abstracts were published within the next 2 years. Depending on the statistical model used, several factors were identified as associated with increased publication rate. North American papers seem to publish with more frequency (univariate model), while European papers had the opposite trend (multivariable model). Likewise, experimental studies were more prone to being published overall (univariate model), whereas retrospective observational studies had a lower rate of publication (multivariable model). Increasing the number of authors was also associated with increased publication rate. Most publications were published in the Journal of Avian Medicine and Surgery, which tends to suggest that this journal is the main journal of the specialty. Some parameters highlighted in this study may assist conference attendees to assess the likelihood of later publication.

  6. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  7. Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.

    Science.gov (United States)

    Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H

    1997-07-01

    As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.

  8. Reassortant clade 2.3.4.4 Avian Influenza A(H5N6) Virus in a wild Mandarin Duck, South Korea, 2016

    Science.gov (United States)

    Highly pathogenic avian influenza viruses (HPAIV) have caused significant economic losses in the poultry industries and represents a serious threat to public health. H5N1 HPAIV was first detected in 1996 from a domestic goose in Guangdong China (Gs/GD) and has subsequently evolved into 10 geneticall...

  9. Avian genomics lends insights into endocrine function in birds.

    Science.gov (United States)

    Mello, C V; Lovell, P V

    2018-01-15

    The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Infrasound and the avian navigational map.

    Science.gov (United States)

    Hagstrum, J T

    2000-04-01

    Birds can navigate accurately over hundreds to thousands of kilometres, and this ability of homing pigeons is the basis for a worldwide sport. Compass senses orient avian flight, but how birds determine their location in order to select the correct homeward bearing (map sense) remains a mystery. Also mysterious are rare disruptions of pigeon races in which most birds are substantially delayed and large numbers are lost. Here, it is shown that in four recent pigeon races in Europe and the northeastern USA the birds encountered infrasonic (low-frequency acoustic) shock waves from the Concorde supersonic transport. An acoustic avian map is proposed that consists of infrasonic cues radiated from steep-sided topographic features; the source of these signals is microseisms continuously generated by interfering oceanic waves. Atmospheric processes affecting these infrasonic map cues can explain perplexing experimental results from pigeon releases.

  11. Bibliography of Literature for Avian Issues in Solar and Wind Energy and Other Activities

    Energy Technology Data Exchange (ETDEWEB)

    Walston, Leroy J. [Argonne National Lab. (ANL), Argonne, IL (United States); White, Ellen M. [Argonne National Lab. (ANL), Argonne, IL (United States); Meyers, Stephanie A. [Argonne National Lab. (ANL), Argonne, IL (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics

    2015-04-01

    Utility-scale solar energy has been a rapidly expanding energy sector in the United States in recent years and is expected to continue to grow. In 2014, concerns were raised over the risk of avian fatalities associated with utility-scale solar plants. With funding from the U.S. Department of Energy SunShot Program, Argonne National Laboratory and the National Renewable Energy Laboratory studied the issue and released A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities (ANL/EVS-15/2, March 2015). A comprehensive literature review included peer-reviewed journal articles on avian fatalities from solar energy facilities and other sources (e.g., wind energy, building collisions, etc.), project-specific technical reports on avian monitoring and fatality at solar facilities, information on mitigation measures and best management practices, and literature pertaining to avian behavioral patterns and habitat use. The source citations are listed in this bibliography; they are current through December 2014.

  12. First human case of avian influenza A (H5N6 in Yunnan province, China

    Directory of Open Access Journals (Sweden)

    Jibo He

    2015-08-01

    Full Text Available Objective: To report clinical, virological, and epidemiological features of the first death caused by a H5N6 avian influenza virus in Yunnan Province, China. Method: The case was described in clinical expression, chest radiography, blood test and treatment. Real-time RT-PCR was used to detect H5N6 virus RNA in clinical and environment samples. Epidemiological investigation was performed including case exposure history determinant, close contacts follow up, and environment sample collection. Results: The patient initially developed sore throat and coughs on 27 January 2015. The disease progressed to severe pneumonia, multiple organ dysfunction syndrome, and acute respiratory distress syndrome. And the patient died on 6 February. A highly pathogenic avian influenza A H5N6 virus was isolated from the tracheal aspirate specimen of the patient. The viral genome analyses revealed that the H5 hemmagglutinin gene belongs to 2.3.4.4 clade. Epidemiological investigation showed that the patient had exposure to wild bird. All close contacts of the patient did not present the same disease in seven consecutive days. A high H5 positive rate was detected in environmental samples from local live poultry markets. Conclusion: The findings suggest that studies on the source of the virus, transmission models, serologic investigations, vaccines, and enhancing surveillance in both humans and birds are necessary.

  13. The mystery of the Gouldian birds: an ornithological detective story

    NARCIS (Netherlands)

    Güntert, M.; Steinheimer, F.D.; Gessner, S.

    2005-01-01

    While compiling a computer database of the avian specimens of the E.A. Goeldi collection a considerable number of skins with original labels from John Gould were discovered. In an earlier inventory they had been registered as part of the Goeldi collection, but as there was no apparent connection

  14. A new troodontid dinosaur from China with avian-like sleeping posture.

    Science.gov (United States)

    Xu, Xing; Norell, Mark A

    2004-10-14

    Discovering evidence of behaviour in fossilized vertebrates is rare. Even rarer is evidence of behaviour in non-avialan dinosaurs that directly relates to stereotypical behaviour seen in extant birds (avians) and not previously predicted in non-avialan dinosaurs. Here we report the discovery of a new troodontid taxon from the Early Cretaceous Yixian Formation of western Liaoning, China. Numerous other three-dimensionally preserved vertebrate fossils have been recovered recently at this locality, including some specimens preserving behavioural information. The new troodontid preserves several features that have been implicated in avialan origins. Notably, the specimen is preserved in the stereotypical sleeping or resting posture found in extant Aves. Evidence of this behaviour outside of the crown group Aves further demonstrates that many bird features occurred early in dinosaurian evolution.

  15. Origins of knowledge: Insights from precocial species

    Directory of Open Access Journals (Sweden)

    Elisabetta eVersace

    2015-12-01

    Full Text Available Behavioural responses are influenced by knowledge acquired during the lifetime of an individual and by predispositions transmitted across generations. Establishing the origin of knowledge and the role of the unlearned component is a challenging task, given that both learned and unlearned knowledge can orient perception, learning, and the encoding of environmental features since the first stages of life. Ethical and practical issues constrain the investigation of unlearned knowledge in altricial species, including human beings. On the contrary, precocial animals can be tested on a wide range of tasks and capabilities immediately after birth and in controlled rearing conditions. Insects and precocial avian species are very convenient models to dissect the knowledge systems that enable young individuals to cope with their environment in the absence of specific previous experience. We present the state of the art of research on the origins of knowledge that come from different models and disciplines. Insects have been mainly used to investigate unlearned sensory preferences and prepared learning mechanisms. The relative simplicity of the neural system and fast life cycle of insects make them ideal models to investigate the neural circuitry and evolutionary dynamics of unlearned traits. Among avian species, chicks of the domestic fowl have been the focus of many studies, and showed to possess unlearned knowledge in the sensory, physical, spatial, numerical and social domains. Solid evidence shows the existence of unlearned knowledge in different domains in several species, from sensory and social preferences to the left-right representation of the mental number line. We show how non-mammalian models of cognition, and in particular precocial species, can shed light into the adaptive value and evolutionary history of unlearned knowledge.

  16. Origins of Knowledge: Insights from Precocial Species.

    Science.gov (United States)

    Versace, Elisabetta; Vallortigara, Giorgio

    2015-01-01

    Behavioral responses are influenced by knowledge acquired during the lifetime of an individual and by predispositions transmitted across generations. Establishing the origin of knowledge and the role of the unlearned component is a challenging task, given that both learned and unlearned knowledge can orient perception, learning, and the encoding of environmental features since the first stages of life. Ethical and practical issues constrain the investigation of unlearned knowledge in altricial species, including human beings. On the contrary, precocial animals can be tested on a wide range of tasks and capabilities immediately after birth and in controlled rearing conditions. Insects and precocial avian species are very convenient models to dissect the knowledge systems that enable young individuals to cope with their environment in the absence of specific previous experience. We present the state of the art of research on the origins of knowledge that comes from different models and disciplines. Insects have been mainly used to investigate unlearned sensory preferences and prepared learning mechanisms. The relative simplicity of the neural system and fast life cycle of insects make them ideal models to investigate the neural circuitry and evolutionary dynamics of unlearned traits. Among avian species, chicks of the domestic fowl have been the focus of many studies, and showed to possess unlearned knowledge in the sensory, physical, spatial, numerical and social domains. Solid evidence shows the existence of unlearned knowledge in different domains in several species, from sensory and social preferences to the left-right representation of the mental number line. We show how non-mammalian models of cognition, and in particular precocial species, can shed light into the adaptive value and evolutionary history of unlearned knowledge.

  17. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  18. Analysis of immunoglobulin transcripts in the ostrich Struthio camelus, a primitive avian species.

    Directory of Open Access Journals (Sweden)

    Tian Huang

    Full Text Available Previous studies on the immunoglobulin (Ig genes in avian species are limited (mainly to galliformes and anseriformes but have revealed several interesting features, including the absence of the IgD and Igκ encoding genes, inversion of the IgA encoding gene and the use of gene conversion as the primary mechanism to generate an antibody repertoire. To better understand the Ig genes and their evolutionary development in birds, we analyzed the Ig genes in the ostrich (Struthio camelus, which is one of the most primitive birds. Similar to the chicken and duck, the ostrich expressed only three IgH chain isotypes (IgM, IgA and IgY and λ light chains. The IgM and IgY constant domains are similar to their counterparts described in other vertebrates. Although conventional IgM, IgA and IgY cDNAs were identified in the ostrich, we also detected a transcript encoding a short membrane-bound form of IgA (lacking the last two C(H exons that was undetectable at the protein level. No IgD or κ encoding genes were identified. The presence of a single leader peptide in the expressed heavy chain and light chain V regions indicates that gene conversion also plays a major role in the generation of antibody diversity in the ostrich. Because the ostrich is one of the most primitive living aves, this study suggests that the distinct features of the bird Ig genes appeared very early during the divergence of the avian species and are thus shared by most, if not all, avian species.

  19. Accumulation of a low pathogenic avian influenza virus in zebra mussels (Dreissena polymorpha).

    Science.gov (United States)

    Stumpf, Petra; Failing, Klaus; Papp, Tibor; Nazir, Jawad; Böhm, Reinhard; Marschang, Rachel E

    2010-12-01

    In order to investigate the potential role of mussels as a vector of influenza A viruses, we exposed zebra mussels (Dreissena polymorpha) to natural lake water containing a low pathogenic H5N1 avian influenza virus. Mussels were kept in water containing virus for 48 hr, then transferred into fresh water for another 14 days. Virus detection in mussels and water samples was performed by quantitative real-time reverse transcriptase-PCR (qRRT-PCR) and egg culture methods. Virus uptake was detected in all of the mussel groups that were exposed to virus. Even after 14 days in fresh water, virus could still be detected in shellfish material by both qRRT-PCR and egg culture methods. The present study demonstrates that zebra mussels are capable of accumulating influenza A viruses from the surrounding water and that these viruses remain in the mussels over an extended period of time.

  20. Progress in analytical methods for the detection of geographical origin and authenticity of tea (Camellia sinensis)

    International Nuclear Information System (INIS)

    Yuan Yuwei; Hu Guixian; Shao Shengzhi; Zhang Yongzhi; Zhang Yu; Zhu Jiahong; Yang Guiling; Zhang Zhiheng

    2013-01-01

    Tea (Camellia sinensis) is one of the important agricultural products with obvious regional characteristics. Analytical methods are very important for the protection of geographical origin and authenticity of tea. The developments of analytical methods including stable isotope determination, multi-elements determination, near infrared reflectance spectroscopy, chemical fingerprint and others were reviewed. Major problems on tea origin and authenticity detection were discussed in this study, and some suggestions were also proposed which would be useful for the protection of geographical origin of tea in China. (authors)

  1. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    Science.gov (United States)

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  2. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    Science.gov (United States)

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  3. The anatomy and physiology of the avian endocrine system.

    Science.gov (United States)

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  4. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    Science.gov (United States)

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  5. A national survey of emergency nurses and avian influenza threat.

    Science.gov (United States)

    Bell, Mary Ann; Dake, Joseph A; Price, James H; Jordan, Timothy R; Rega, Paul

    2014-05-01

    The purpose of this study was to determine the perceived likelihood of emergency nurses reporting to work during an avian influenza outbreak, to consider options if nurses decided not to report work, and to explore Protection Motivation Theory constructs as predictors of reporting to work. A descriptive, nonexperimental, cross-sectional survey of emergency nurses within the United States. A total of 332 nurses (46%) responded. Most emergency nurses (84%) reported they would report to work (1 in 6 would not). The likelihood of reporting to work differed by education level, nurses' avian influenza information sources, and nurses who had family living with them. Of the nurses who decided not to report to work, the majority were willing to provide health information (90%), administer vaccinations (82%), and triage (74%) neighbors/friends from home. One third of nurses had not attended a disaster-preparedness drill within the past year. Only 20% identified formal training while on the job as a source of avian influenza information. A third of emergency nurses would be worried about getting an avian influenza vaccination because of potential adverse effects. Protection Motivation Theory accounted for almost 40% of the variance of likelihood to report to work, with response costs being the largest predictor. Disaster drills, avian influenza job training, and vaccination education are necessary to prepare emergency nurses for an outbreak. The findings support emergency nurses' willingness to work from home if they are unable to report to work. This finding is new and may have implications for disaster planning, staffing, and ED operations. Copyright © 2014 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.

  6. Isolation strategy of a two-strain avian influenza model using optimal control

    Science.gov (United States)

    Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul

    2017-08-01

    Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.

  7. Current situation of avian influenza with emphasis on pathobiology, epidemiology and control

    Science.gov (United States)

    Avian influenza is one of the most important diseases affecting the poultry industry around the world. Avian Influenza virus (AIV) has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infectio...

  8. Transmission and reassortment of avian influenza viruses at the Asian-North American interface.

    Science.gov (United States)

    Ramey, Andrew M; Pearce, John M; Ely, Craig R; Guy, Lisa M Sheffield; Irons, David B; Derksen, Dirk V; Ip, Hon S

    2010-10-25

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian-North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted. Copyright © 2010. Published by Elsevier Inc.

  9. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J.; Bestebroer, Theo M.; Vuong, Oanh; Scheuer, Rachel D.; Jeugd, van der Henk P.; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; Brand, van den Judith M.A.; Begeman, Lineke; Vliet, van der Stefan; Müskens, Gerhard J.D.M.; Majoor, Frank A.; Koopmans, Marion P.G.; Kuiken, Thijs; Fouchier, Ron A.M.

    2018-01-01

    Introduction: Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in southeast Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  10. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J; Bestebroer, Theo M; Vuong, Oanh; Scheuer, Rachel D; van der Jeugd, Henk P; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; van den Brand, Judith M A; Begeman, Lineke; van der Vliet, Stefan; Müskens, Gerhard J D M; Majoor, Frank A; Koopmans, Marion P G; Kuiken, Thijs; Fouchier, Ron A M

    IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  11. Isolation and characterization of avian metapneumovirus from chickens in Korea.

    Science.gov (United States)

    Kwon, Ji-Sun; Lee, Hyun-Jeong; Jeong, Seung-Hwan; Park, Jeong-Yong; Hong, Young-Ho; Lee, Youn-Jeong; Youn, Ho-Sik; Lee, Dong-Woo; Do, Sun-Hee; Park, Seung-Yong; Choi, In-Soo; Lee, Joong-Bok; Song, Chang-Seon

    2010-03-01

    Avian metapneumovirus (aMPV) causes upper respiratory tract infections in chickens and turkeys. Although the swollen head syndrome (SHS) associated with aMPV in chickens has been reported in Korea since 1992, this is the study isolating aMPV from chickens in this country. We examined 780 oropharyngeal swab or nasal turbinate samples collected from 130 chicken flocks to investigate the prevalence of aMPV and to isolate aMPV from chickens from 2004-2008. Twelve aMPV subtype A and 13 subtype B strains were detected from clinical samples by the aMPV subtype A and B multiplex real-time reverse transcription polymerase chain reaction (RRT-PCR). Partial sequence analysis of the G glycoprotein gene confirmed that the detected aMPVs belonged to subtypes A and B. Two aMPVs subtype A out of the 25 detected aMPVs were isolated by Vero cell passage. In animal experiments with an aMPV isolate, viral RNA was detected in nasal discharge, although no clinical signs of SHS were observed in chickens. In contrast to chickens, turkeys showed severe nasal discharge and a relatively higher titer of viral excretion than chickens. Here, we reveal the co-circulation of aMPV subtypes A and B, and isolate aMPVs from chicken flocks in Korea.

  12. Origin and cross-century dynamics of an avian hybrid zone.

    Science.gov (United States)

    Morales-Rozo, Andrea; Tenorio, Elkin A; Carling, Matthew D; Cadena, Carlos Daniel

    2017-12-15

    Characterizations of the dynamics of hybrid zones in space and time can give insights about traits and processes important in population divergence and speciation. We characterized a hybrid zone between tanagers in the genus Ramphocelus (Aves, Thraupidae) located in southwestern Colombia. We evaluated whether this hybrid zone originated as a result of secondary contact or of primary differentiation, and described its dynamics across time using spatial analyses of molecular, morphological, and coloration data in combination with paleodistribution modeling. Models of potential historical distributions based on climatic data and genetic signatures of demographic expansion suggested that the hybrid zone likely originated following secondary contact between populations that expanded their ranges out of isolated areas in the Quaternary. Concordant patterns of variation in phenotypic characters across the hybrid zone and its narrow extent are suggestive of a tension zone, maintained by a balance between dispersal and selection against hybrids. Estimates of phenotypic cline parameters obtained using specimens collected over nearly a century revealed that, in recent decades, the zone appears to have moved to the east and to higher elevations, and may have become narrower. Genetic variation was not clearly structured along the hybrid zone, but comparisons between historical and contemporary specimens suggested that temporal changes in its genetic makeup may also have occurred. Our data suggest that the hybrid zone likey resulted from secondary contact between populations. The observed changes in the hybrid zone may be a result of sexual selection, asymmetric gene flow, or environmental change.

  13. [Highly pathogenic avian influenza--monitoring of migratory waterfowl].

    Science.gov (United States)

    Otsuki, Koichi; Ito, Toshihiro

    2006-10-01

    Since 1979, the group belonging to Departments of Veterinary Microbiology, Veterinary Public Health and the Avian Zoonoses Research Centre, Faculty of Agriculture, Tottori University is continuing isolation of avian influenza virus from such migratory waterfowls as whistling swan, pintail and tufted dugs flying from Siberia and/or northern China. They have already isolated many interesting influenza viruses. Serotype of the isolates is various; some H5 and H7 and human types of viruses were also isolated; and its pathogenicity for chickens is not high. It was interested that low pathogenic H5N3 virus isolated from whistling swan acquired severe pathogenicity during passage in chicks.

  14. The Development of a Novel qPCR Assay-Set for Identifying Fecal Contamination Originating from Domestic Fowls and Waterfowl in Israel

    Directory of Open Access Journals (Sweden)

    Shoshanit eOhad

    2016-02-01

    Full Text Available The emerging Microbial Source Tracking (MST methodologies aim to identify fecal contamination originating from domestic and wild animals, and from humans. Avian MST is especially challenging, primarily because the Aves class includes both domesticated and wild species with highly diverse habitats and dietary characteristics. The quest for specific fecal bacterial MST markers can be difficult with respect to attaining sufficient assay sensitivity and specificity. The present study utilizes High Throughput Sequencing (HTS to screen bacterial 16S rRNA genes from fecal samples collected from both domestic and wild avian species. Operational taxonomic unit (OTU analysis was then performed, from which sequences were retained for downstream qPCR marker development. Identification of unique avian host DNA sequences, absent in non-avian hosts, was then carried out using a dedicated database of bacterial 16S rRNA gene taken from the Ribosomal Database Project. Six qPCR assays were developed targeting the 16S rRNA gene of Lactobacillus, Gallibacterium, Firmicutes, Fusobacteriaceae and other bacteria. Two assays (Av4143 and Av163 identified most of the avian fecal samples and demonstrated sensitivity values of 91% and 70%, respectively. The Av43 assay only identified droppings from battery hens and poultry, whereas each of the other three assays (Av24, Av13, and Av216 identified waterfowl species with lower sensitivities values. The development of an MST assay-panel, which includes both domestic and wild avian species, expands the currently known MST analysis capabilities for decoding fecal contamination.

  15. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Spackman, Erica

    2012-06-01

    In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.

  16. Serosurvey of antibody to highly pathogenic avian influenza (H5N1 ...

    African Journals Online (AJOL)

    Avian influenza is a disease of economic and public health importance that has been described in most domestic animals and humans. Highly pathogenic avian influenza H5N1 epidemic in Nigeria was observed in agro-ecological zones where pigs and chickens are raised in shared environment with chances of ...

  17. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    DEFF Research Database (Denmark)

    Haider, Najmul; Sturm-Ramirez, K.; Khan, S. U.

    2017-01-01

    a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize...... and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5......Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify...

  18. Analysis of human infectious avian influenza virus: hemagglutinin genetic characteristics in Asia and Africa from 2004 to 2009.

    Science.gov (United States)

    Zhang, Jirong; Lei, Fumin

    2010-09-01

    In the present study, we used nucleotide and protein sequences of avian influenza virus H5N1, which were obtained in Asia and Africa, analyzed HA proteins using ClustalX1.83 and MEGA4.0, and built a genetic evolutionary tree of HA nucleotides. The analysis revealed that the receptor specificity amino acid of A/HK/213/2003, A/Turkey/65596/2006 and etc mutated into QNG, which could bind with á-2, 3 galactose and á-2, 6 galactose. A mutation might thus take place and lead to an outbreak of human infections of avian influenza virus. The mutations of HA protein amino acids from 2004 to 2009 coincided with human infections provided by the World Health Organization, indicating a "low-high-highest-high-low" pattern. We also found out that virus strains in Asia are from different origins: strains from Southeast Asia and East Asia are of the same origin, whereas those from West Asia, South Asia and Africa descend from one ancestor. The composition of the phylogenetic tree and mutations of key site amino acids in HA proteins reflected the fact that the majority of strains are regional and long term, and virus diffusions exist between China, Laos, Malaysia, Indonesia, Azerbaijan, Turkey and Iraq. We would advise that pertinent vaccines be developed and due attention be paid to the spread of viruses between neighboring countries and the dangers of virus mutation and evolution. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  19. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  20. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  1. Cisplatin Ototoxicity Blocks Sensory Regeneration in the Avian Inner Ear

    OpenAIRE

    Slattery, Eric L.; Warchol, Mark E.

    2010-01-01

    Cisplatin is a chemotherapeutic agent that is widely-used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy, and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was al...

  2. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States.

    Science.gov (United States)

    Bevins, S N; Dusek, R J; White, C L; Gidlewski, T; Bodenstein, B; Mansfield, K G; DeBruyn, P; Kraege, D; Rowan, E; Gillin, C; Thomas, B; Chandler, S; Baroch, J; Schmit, B; Grady, M J; Miller, R S; Drew, M L; Stopak, S; Zscheile, B; Bennett, J; Sengl, J; Brady, Caroline; Ip, H S; Spackman, E; Killian, M L; Torchetti, M K; Sleeman, J M; Deliberto, T J

    2016-07-06

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  3. Development of a Nucleoprotein-Based Enzyme-Linked Immunosorbent Assay Using a Synthetic Peptide Antigen for Detection of Avian Metapneumovirus Antibodies in Turkey Sera

    Science.gov (United States)

    Alvarez, Rene; Njenga, M. Kariuki; Scott, Melissa; Seal, Bruce S.

    2004-01-01

    Avian metapneumoviruses (aMPV) cause an upper respiratory tract disease with low mortality but high morbidity, primarily in commercial turkeys, that can be exacerbated by secondary infections. There are three types of aMPV, of which type C is found only in the United States. The aMPV nucleoprotein (N) amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. On the basis of the predicted antigenicity of consensus sequences, five aMPV-specific N peptides were synthesized for development of a peptide antigen enzyme-linked immunosorbent assay (aMPV N peptide-based ELISA) to detect aMPV-specific antibodies among turkeys. Sera from naturally and experimentally infected turkeys were used to demonstrate the presence of antibodies reactive to the chemically synthesized aMPV N peptides. Subsequently, aMPV N peptide 1, which had the sequence 10-DLSYKHAILKESQYTIKRDV-29, with variations at only three amino acids among aMPV serotypes, was evaluated as a universal aMPV ELISA antigen. Data obtained with the peptide-based ELISA correlated positively with total aMPV viral antigen-based ELISAs, and the peptide ELISA provided higher optical density readings. The results indicated that aMPV N peptide 1 can be used as a universal ELISA antigen to detect antibodies for all aMPV serotypes. PMID:15013970

  4. The highly pathogenic avian influenza A (H7N7) virus epidemic in the Netherlands in 2003 - lessons learned from the first five outbreaks

    NARCIS (Netherlands)

    Elbers, A.R.W.; Fabri, T.; Vries, T.S.; Wit, de J.J.; Pijpers, A.; Koch, G.

    2004-01-01

    Clinical signs and gross lesions observed in poultry submitted for postmortem examination (PME) from the first five infected poultry flocks preceding the detection of the primary outbreak of highly pathogenic avian influenza (HPAI) of subtype H7N7 during the 2003 epidemic in the Netherlands are

  5. Baseline avian use and behavior at the CARES wind plant site, Klickitat County, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, W.P.; Johnson, G.D.; Strickland, M.D.; Kronner, K.; Becker, P.S.; Orloff, S.

    2000-01-03

    This report presents a literature review on avian-wind turbine interactions and the results of a one-year avian baseline study conducted in 1998 at the proposed Conservation and Renewable Energy System (CARES) wind development site in Klickitat County, Washington. Avian use of the site ranged from 1.11/survey in the winter to 5.69/survey in the spring. Average use by passerines in the study plots ranged from 1.15 minutes/survey in the winter to 40.98 minutes/survey in the spring. Raptors spent much less time within plots than other groups, ranging from 0.05 minutes/survey in the winter to 0.77 minutes/survey during the fall. Thirteen percent of all flying birds were within the rotor-swept height (25 to 75 m); 41.6% of all raptors were flying at this height. Raptors with the greatest potential turbine exposure are red-tailed hawks and golden eagles. Passerines with the highest turbine exposure are common ravens, American robins, and horned larks. Spatial use data for the site indicate that avian use tends to be concentrated near the rim, indicating that placing turbines away from the rim may reduce risk. Avian use data at the CARES site indicate that if a wind plant is constructed in the future, avian mortality would likely be relatively low.

  6. Baseline avian use and behavior at the CARES wind plant site, Klickitat County, Washington

    International Nuclear Information System (INIS)

    Erickson, W.P.; Johnson, G.D.; Strickland, M.D.; Kronner, K.; Becker, P.S.; Orloff, S.

    2000-01-01

    This report presents a literature review on avian-wind turbine interactions and the results of a one-year avian baseline study conducted in 1998 at the proposed Conservation and Renewable Energy System (CARES) wind development site in Klickitat County, Washington. Avian use of the site ranged from 1.11/survey in the winter to 5.69/survey in the spring. Average use by passerines in the study plots ranged from 1.15 minutes/survey in the winter to 40.98 minutes/survey in the spring. Raptors spent much less time within plots than other groups, ranging from 0.05 minutes/survey in the winter to 0.77 minutes/survey during the fall. Thirteen percent of all flying birds were within the rotor-swept height (25 to 75 m); 41.6% of all raptors were flying at this height. Raptors with the greatest potential turbine exposure are red-tailed hawks and golden eagles. Passerines with the highest turbine exposure are common ravens, American robins, and horned larks. Spatial use data for the site indicate that avian use tends to be concentrated near the rim, indicating that placing turbines away from the rim may reduce risk. Avian use data at the CARES site indicate that if a wind plant is constructed in the future, avian mortality would likely be relatively low

  7. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  8. Evidence for subclinical avian influenza virus infections among rural Thai villagers.

    Science.gov (United States)

    Khuntirat, Benjawan P; Yoon, In-Kyu; Blair, Patrick J; Krueger, Whitney S; Chittaganpitch, Malinee; Putnam, Shannon D; Supawat, Krongkaew; Gibbons, Robert V; Pattamadilok, Sirima; Sawanpanyalert, Pathom; Heil, Gary L; Friary, John A; Capuano, Ana W; Gray, Gregory C

    2011-10-01

    Regions of Thailand reported sporadic outbreaks of A/H5N1 highly pathogenic avian influenza (HPAI) among poultry between 2004 and 2008. Kamphaeng Phet Province, in north-central Thailand had over 50 HPAI poultry outbreaks in 2004 alone, and 1 confirmed and 2 likely other human HPAI infections between 2004 and 2006. In 2008, we enrolled a cohort of 800 rural Thai adults living in 8 sites within Kamphaeng Phet Province in a prospective study of zoonotic influenza transmission. We studied participants' sera with serologic assays against 16 avian, 2 swine, and 8 human influenza viruses. Among participants (mean age 49.6 years and 58% female) 65% reported lifetime poultry exposure of at least 30 consecutive minutes. Enrollees had elevated antibodies by microneutralization assay against 3 avian viruses: A/Hong Kong/1073/1999(H9N2), A/Thailand/676/2005(H5N1), and A/Thailand/384/2006(H5N1). Bivariate risk factor modeling demonstrated that male gender, lack of an indoor water source, and tobacco use were associated with elevated titers against avian H9N2 virus. Multivariate modeling suggested that increasing age, lack of an indoor water source, and chronic breathing problems were associated with infection with 1 or both HPAI H5N1 strains. Poultry exposure was not associated with positive serologic findings. These data suggest that people in rural central Thailand may have experienced subclinical avian influenza infections as a result of yet unidentified environmental exposures. Lack of an indoor water source may play a role in transmission.

  9. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar

    Directory of Open Access Journals (Sweden)

    Laure Guerrini

    2014-05-01

    Full Text Available While the spatial pattern of the highly pathogenic avian influenza H5N1 virus has been studied throughout Southeast Asia, little is known on the spatial risk factors for avian influenza in Africa. In the present paper, we combined serological data from poultry and remotely sensed environmental factors in the Lake Alaotra region of Madagascar to explore for any association between avian influenza and landscape variables. Serological data from cross-sectional surveys carried out on poultry in 2008 and 2009 were examined together with a Landsat 7 satellite image analysed using supervised classification. The dominant landscape features in a 1-km buffer around farmhouses and distance to the closest water body were extracted. A total of 1,038 individual bird blood samples emanating from 241 flocks were analysed, and the association between avian influenza seroprevalence and these landcape variables was quantified using logistic regression models. No evidence of the presence of H5 or H7 avian influenza subtypes was found, suggesting that only low pathogenic avian influenza (LPAI circulated. Three predominant land cover classes were identified around the poultry farms: grassland savannah, rice paddy fields and wetlands. A significant negative relationship was found between LPAI seroprevalence and distance to the closest body of water. We also found that LPAI seroprevalence was higher in farms characterised by predominant wetlands or rice landscapes than in those surrounded by dry savannah. Results from this study suggest that if highly pathogenic avian influenza H5N1 virus were introduced in Madagascar, the environmental conditions that prevail in Lake Alaotra region may allow the virus to spread and persist.

  10. Evolution of highly pathogenic avian H5N1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Catherine A [Los Alamos National Laboratory; Green, Margaret A [Los Alamos National Laboratory

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging

  11. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  12. Comparative Evaluation Of Conventional Rt-pcr And Real-time Rt-pcr (rrt-pcr) For Detection Of Avian Metapneumovirus Subtype A [comparação Entre As Técnicas De Rt-pcr Convencional E Rt-pcr Em Tempo Real Para A Detecção Do Metapneumovírus Aviários Subtipo A

    OpenAIRE

    Ferreira H.L.; Spilki F.R.; dos Santos M.M.A.B.; de Almeida R.S.; Arns C.W.

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  13. Serotypes of E. coli isolated from avian species in Lombardia and Emilia Romagna (North Italy

    Directory of Open Access Journals (Sweden)

    Mario D'Incau

    Full Text Available In this paper we report the results of n.105 E. coli strains serotyping, isolated during the period 2000-2004 in Lombardia and Emilia Romagna (North Italy from avian species (poultry and turkeys, starting from cloacal swabs. The most frequently identified serogroup was O78 both in poultry and turkeys, with a large prevalence over the other detected serogroups. Remarkable was the non typeable percentage among the examined strains, datum which is in accordance with our and other authors’ previous studies.

  14. Detection and Identification of Arcobacter species in Poultry in Assiut Governorate, Upper Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed K. Hassan

    2017-04-01

    Full Text Available This work aimed to detect, identify and study the epidemiology of Arcobacter species in avian species in Upper Egypt. A total 600 samples, including cloacal swabs and intestinal samples were collected from chickens, turkeys and ducks in Assiut Governorate in Upper Egypt. Using conventional phenotypic methods for isolation and identification, Arcobacter species could be isolated and identified with percentage 25.5% in chickens, 9.5% in turkeys and 14% in ducks. Sixteen randomly selected phenotypically identified Arcobacter species isolates were confirmed using one step multiplex PCR assay. In conclusion, Arcobacter species could be detected and identified from various avian species with variable incidence. Conventional phenotypic methods for detection and differentiation of Arcobacter species are often hampered by many limitations, while molecular methods, and PCR, in particular can provide a sensitive and rapid alternative method for detection and identification of Arcobacter species in different domestic poultry species.

  15. Studies on the serological relationships between avian pox, sheep pox, goat pox and vaccinia viruses

    Science.gov (United States)

    Uppal, P. K.; Nilakantan, P. R.

    1970-01-01

    By using neutralization, complement fixation and immunogel-diffusion tests, it has been demonstrated that cross-reactions occur between various avian pox viruses and between sheep pox and goat pox viruses. No such reactions were demonstrated between avian pox viruses and vaccinia virus or between avian pox and sheep pox and goat pox viruses. Furthermore, no serological relationship was demonstrable between vaccinia virus and sheep pox and goat pox viruses. PMID:4989854

  16. Food plant diversity as broad-Scale Determinant of Avian Frugivore Richness

    DEFF Research Database (Denmark)

    Kissling, W. Daniel; Rahbek, Carsten; Böhning-Gaese, Katrin

    2007-01-01

    from niche assembly mechanisms (e.g. coevolutionary adaptations to fruit size, fruit colour or vertical stratification of fruit presentation) or, alternatively, from stochastic speciation-extinction processes. In any case, the close relationship between species richness of Ficus and avian frugivores......The causes of variation in animal species richness at large spatial scales are intensively debated. Here, we examine whether the diversity of food plants, contemporary climate and energy, or habitat heterogeneity determine species richness patterns of avian frugivores across sub-Saharan Africa....... Path models indicate that species richness of Ficus (their fruits being one of the major food resources for frugivores in the tropics) has the strongest direct effect on richness of avian frugivores, whereas the influences of variables related to water-energy and habitat heterogeneity are mainly...

  17. Evolution of an Eurasian avian-like influenza virus in naïve and vaccinated pigs.

    Directory of Open Access Journals (Sweden)

    Pablo R Murcia

    Full Text Available Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1 gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.

  18. Rice production systems and avian influenza: Interactions between mixed-farming systems, poultry and wild birds

    Science.gov (United States)

    Muzaffar, S.B.; Takekawa, John Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.

    2010-01-01

    Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.

  19. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    Science.gov (United States)

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. A 4-year study of avian influenza virus prevalence and subtype diversity in ducks of Newfoundland, Canada.

    Science.gov (United States)

    Huang, Yanyan; Wille, Michelle; Dobbin, Ashley; Robertson, Gregory J; Ryan, Pierre; Ojkic, Davor; Whitney, Hugh; Lang, Andrew S

    2013-10-01

    The island of Newfoundland, Canada, is at the eastern edge of North America and has migratory bird connections with the continental mainland as well as across the North Atlantic Ocean. Here, we report a 4-year avian influenza virus (AIV) epidemiological study in ducks in the St. John's region of Newfoundland. The overall prevalence of AIV detection in ducks during this study was 7.2%, with American Black Ducks contributing the vast majority of the collected samples and the AIV positives. The juvenile ducks showed a significantly higher AIV detection rate (10.6%) compared with adults (3.4%). Seasonally, AIV prevalence rates were higher in the autumn (8.4%), but positives were still detected in the winter (4.6%). Preliminary serology tests showed a high incidence of previous AIV infection (20/38, 52.6%). A total of 43 viruses were characterized for their HA-NA or HA subtypes, which revealed a large diversity of AIV subtypes and little recurrence of subtypes from year to year. Investigation of the movement patterns of ducks in this region showed that it is a largely non-migratory duck population, which may contribute to the observed pattern of high AIV subtype turnover. Phylogenetic analysis of 4 H1N1 and one H5N4 AIVs showed these viruses were highly similar to other low pathogenic AIV sequences from waterfowl in North America and assigned all gene segments into American-avian clades. Notably, the H1N1 viruses, which were identified in consecutive years, possessed homologous genomes. Such detection of homologous AIV genomes across years is rare, but indicates the role of the environmental reservoir in viral perpetuation.