WorldWideScience

Sample records for avian olfactory receptor

  1. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  2. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions a...

  3. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  4. Considerations on the role of olfactory input in avian navigation.

    Science.gov (United States)

    Wiltschko, Roswitha; Wiltschko, Wolfgang

    2017-12-01

    A large amount of data documents an important role of olfactory input in pigeon navigation, but the nature of this role is not entirely clear. The olfactory navigation hypothesis assumes that odors are carrying essential navigational information, yet some recent experiments support an activating role of odors. This led to an ongoing controversy. An important, often-neglected aspect of the findings on olfaction is that olfactory deprivation affects avian navigation only at unfamiliar sites. The orientation of anosmic birds at familiar sites remains an enigma; earlier assumptions that they would rely on familiar landmarks have been disproven by the home-oriented behavior of anosmic pigeons additionally deprived of object vision, which clearly indicated the use by the birds of non-visual, non-olfactory cues. However, if odors activate the establishing and enlarging of the navigational 'map' and promote the integration of local values of navigational factors into this map, it seems possible that such a process needs to occur only once at a given site, when the birds are visiting this site for the first time. If that were the case, the birds could interpret the local factors correctly at any later visit and orient by them. This hypothesis could explain the oriented behavior of birds at familiar sites, and it could also help to reconcile some of the seemingly controversial findings reported in the literature, where the effect of olfactory deprivation was reported to differ considerably between the various pigeon lofts, possibly because of different training procedures. © 2017. Published by The Company of Biologists Ltd.

  5. Olfactory receptors in non-chemosensory tissues

    Directory of Open Access Journals (Sweden)

    NaNa Kang & JaeHyung Koo*

    2012-11-01

    Full Text Available Olfactory receptors (ORs detect volatile chemicals that lead tothe initial perception of smell in the brain. The olfactory receptor(OR is the first protein that recognizes odorants in theolfactory signal pathway and it is present in over 1,000 genesin mice. It is also the largest member of the G protein-coupledreceptors (GPCRs. Most ORs are extensively expressed in thenasal olfactory epithelium where they perform the appropriatephysiological functions that fit their location. However, recentwhole-genome sequencing shows that ORs have been foundoutside of the olfactory system, suggesting that ORs may playan important role in the ectopic expression of non-chemosensorytissues. The ectopic expressions of ORs and their physiologicalfunctions have attracted more attention recently sinceMOR23 and testicular hOR17-4 have been found to be involvedin skeletal muscle development, regeneration, and humansperm chemotaxis, respectively. When identifying additionalexpression profiles and functions of ORs in non-olfactorytissues, there are limitations posed by the small number ofantibodies available for similar OR genes. This review presentsthe results of a research series that identifies ectopic expressionsand functions of ORs in non-chemosensory tissues toprovide insight into future research directions.

  6. Genetic diversity of canine olfactory receptors

    Directory of Open Access Journals (Sweden)

    Hitte Christophe

    2009-01-01

    Full Text Available Abstract Background Evolution has resulted in large repertoires of olfactory receptor (OR genes, forming the largest gene families in mammalian genomes. Knowledge of the genetic diversity of olfactory receptors is essential if we are to understand the differences in olfactory sensory capability between individuals. Canine breeds constitute an attractive model system for such investigations. Results We sequenced 109 OR genes considered representative of the whole OR canine repertoire, which consists of more than 800 genes, in a cohort of 48 dogs of six different breeds. SNP frequency showed the overall level of polymorphism to be high. However, the distribution of SNP was highly heterogeneous among OR genes. More than 50% of OR genes were found to harbour a large number of SNP, whereas the rest were devoid of SNP or only slightly polymorphic. Heterogeneity was also observed across breeds, with 25% of the SNP breed-specific. Linkage disequilibrium within OR genes and OR clusters suggested a gene conversion process, consistent with a mean level of polymorphism higher than that observed for introns and intergenic sequences. A large proportion (47% of SNP induced amino-acid changes and the Ka/Ks ratio calculated for all alleles with a complete ORF indicated a low selective constraint with respect to the high level of redundancy of the olfactory combinatory code and an ongoing pseudogenisation process, which affects dog breeds differently. Conclusion Our demonstration of a high overall level of polymorphism, likely to modify the ligand-binding capacity of receptors distributed differently within the six breeds tested, is the first step towards understanding why Labrador Retrievers and German Shepherd Dogs have a much greater potential for use as sniffer dogs than Pekingese dogs or Greyhounds. Furthermore, the heterogeneity in OR polymorphism observed raises questions as to why, in a context in which most OR genes are highly polymorphic, a subset of

  7. Designing exons for human olfactory receptor gene subfamilies ...

    Indian Academy of Sciences (India)

    Prakash

    The loci of olfactory receptors (ORs) in the human genome occur in clusters ranging ... [Hassan Sk S, Choudhury P P, Pal A, Brahmachary R L and Goswami A 2010 Designing exons for human olfactory receptor gene subfamilies using a mathematical .... Acknowledgements. This work was supported by the Department of.

  8. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    International Nuclear Information System (INIS)

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F.

    1991-01-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa

  9. Olfactory deprivation increases dopamine D2 receptor density in the rat olfactory bulb

    International Nuclear Information System (INIS)

    Guthrie, K.M.; Pullara, J.M.; Marshall, J.F.; Leon, M.

    1991-01-01

    Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. The authors describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function

  10. Olfactory deprivation increases dopamine D2 receptor density in the rat olfactory bulb

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, K.M.; Pullara, J.M.; Marshall, J.F.; Leon, M. (University of California, Irvine (USA))

    1991-05-01

    Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. The authors describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.

  11. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.

    Science.gov (United States)

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.

  12. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  13. Olfactory Receptor Response to the Cockroach Sexual Attractant.

    Science.gov (United States)

    Boeckh, J; Priesner, E; Schneider, D; Jacobson, M

    1963-08-23

    The recently isolated sex attractant of the female American cockroach elicits an electical response in the antennae of males, females, and mymphs of this species. These electroantennograms are known to be summated receptor (generator) potentials of many olfactory sensillae stimulated simultaneously. Many other odorous substances also elicit such responses in the cockroach antenna.

  14. SNP genotypes of olfactory receptor genes associated with olfactory ability in German Shepherd dogs.

    Science.gov (United States)

    Yang, M; Geng, G-J; Zhang, W; Cui, L; Zhang, H-X; Zheng, J-L

    2016-04-01

    To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR2K2-like:c.518G>A, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A loci had a statistically significant effect on the scenting abilities (P odor influenced the performances of the dogs (P odor at the following loci: OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A (P dogs with genotype CC at the OR10H1-like:c.632C>T, genotype AA at the OR10H1-like:c.770A>T, genotype TT at the OR4C11-like:c.511T>G and genotype GG at the OR4C11-like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential. © 2015 Stichting International Foundation for Animal Genetics.

  15. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  16. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    Directory of Open Access Journals (Sweden)

    Depan Cao

    Full Text Available The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs and ionotropic receptors (IRs, which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  17. Immobilization of olfactory receptors onto gold electrodes for electrical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, Ignacio [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: icasuso@pcb.ub.es; Pla-Roca, Mateu [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Gomila, Gabriel [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: ggomila@pcb.ub.es; Samitier, Josep [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Minic, Jasmina; Persuy, Marie A.; Salesse, Roland; Pajot-Augy, Edith [INRA, Neurobiologie de l' Olfaction et de la Prise Alimentaire, Equipe Recepteurs et Communication Chimique, Domaine de Vilvert, Jouy en Josas Cedex (France)

    2008-07-01

    We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 nm to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

  18. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    Directory of Open Access Journals (Sweden)

    Yu-Feng Shao

    Full Text Available Neuropeptide S (NPS is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR. High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v. injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir neurons that also bear NPSR. NPS (0.1-1 nmol i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON, piriform cortex (Pir, ventral tenia tecta (VTT, the anterior cortical amygdaloid nucleus (ACo and lateral entorhinal cortex (LEnt. The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.

  19. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    Directory of Open Access Journals (Sweden)

    Peter C Lai

    2012-05-01

    Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  20. Update on the olfactory receptor (OR gene superfamily

    Directory of Open Access Journals (Sweden)

    Olender Tsviya

    2008-09-01

    Full Text Available Abstract The olfactory receptor gene (OR superfamily is the largest in the human genome. The superfamily contains 390 putatively functional genes and 465 pseudogenes arranged into 18 gene families and 300 subfamilies. Even members within the same subfamily are often located on different chromosomes. OR genes are located on all autosomes except chromosome 20, plus the X chromosome but not the Y chromosome. The gene:pseudogene ratio is lowest in human, higher in chimpanzee and highest in rat and mouse -- most likely reflecting the greater need of olfaction for survival in the rodent than in the human. The OR genes undergo allelic exclusion, each sensory neurone expressing usually only one odourant receptor allele; the mechanism by which this phenomenon is regulated is not yet understood. The nomenclature system (based on evolutionary divergence of genes into families and subfamilies of the OR gene superfamily has been designed similarly to that originally used for the CYP gene superfamily.

  1. The mannose receptor is expressed by olfactory ensheathing cells in the rat olfactory bulb.

    Science.gov (United States)

    Carvalho, Litia A; Nobrega, Alberto F; Soares, Igor D P; Carvalho, Sergio L; Allodi, Silvana; Baetas-da-Cruz, Wagner; Cavalcante, Leny A

    2013-12-01

    Complex carbohydrate structures are essential molecules of infectious bacteria, parasites, and host cells and are involved in cell signaling associated with immune responses, glycoprotein homeostasis, and cell migration. The uptake of mannose-tailed glycans is usually carried out by professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation or, alternatively, to end inflammation. We have detected the mannose receptor (MR) in cultured olfactory ensheathing cells (OECs), so we investigated by flow cytometry whether recently dissociated cells of the olfactory bulb (OB) nerve fiber layer (ONL) could bind a mannosylated ligand (fluorescein conjugate of mannosyl bovine serum albumin; Man/BSA-FITC) in a specific manner. In addition, we estimated the relative proportion of ONL OECs, microglia, and astrocytes, tagged by 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), by the B4 isolectin of Griffonia simplicifonia (IB4), and by glial fibrillary acidic protein (GFAP), respectively, that were Man/BSA-FITC(+) . We also determined by histochemistry and/or immunohistochemistry whether Man/BSA-FITC or an anti-MR antibody (anti-C-terminal MR peptide; anti-cMR) labeled OECs and/or parenchymal microglia. In addition, we confirmed by Western blot with the K1K2 (against the entire MR molecule) antibody that a band of about 180 kDA is expressed in the OB. Our findings are compatible with a prospective sentinel role of OECs against pathogens of the upper airways and/or damage-associated glycidic patterns as well as with homeostasis of OB mannosylated glycoproteins. Copyright © 2013 Wiley Periodicals, Inc.

  2. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    Directory of Open Access Journals (Sweden)

    Rebecca Lethbridge

    Full Text Available Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A receptor agonist. A glomerular GABA(A receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  3. Scents and sense: in silico perspectives on olfactory receptors.

    Science.gov (United States)

    Don, Charleen G; Riniker, Sereina

    2014-12-15

    Olfactory receptors (ORs) represent the largest subfamily of the superfamily G protein-coupled receptors (GPCRs). This family of membrane receptors functions as essential gateway for activation of many cellular signaling pathways. Finding universal principles underlying GPCR activation by studying ORs is important for the design of new therapeutics that target olfaction-related and other GPCR-malfunctioning diseases. In addition, gaining knowledge regarding the interactions between ORs and their cognate ligands (odorants) may contribute to solve the puzzle of how odor perception is encoded in humans. As no crystal structure of an OR is available yet, homology modeling can be applied to generate a three-dimensional OR model. Molecular docking, molecular dynamics simulations and qualitative structure-activity-relationship can further guide experimental research by investigating interactions at the atomic level. This article will review these computational techniques as well as present databases and popular software suites, which can support researchers in the OR research field. © 2014 Wiley Periodicals, Inc.

  4. Analysis of the goldfish Carassius auratus olfactory epithelium transcriptome reveals the presence of numerous non-olfactory GPCR and putative receptors for progestin pheromones

    Directory of Open Access Journals (Sweden)

    Reinhardt Richard

    2008-09-01

    Full Text Available Abstract Background The goldfish (Carassius auratus uses steroids and prostaglandins as pheromone cues at different stages of the reproductive cycle to facilitate spawning synchronization. Steroid progestin pheromone binding has been detected in goldfish olfactory membranes but the receptors responsible for this specific binding remain unknown. In order to shed some light on the olfactory epithelium transcriptome and search for possible receptor candidates a large set of EST from this tissue were analysed and compared to and combined with a similar zebrafish (Danio rerio resource. Results We generated 4,797 high quality sequences from a normalized cDNA library of the goldfish olfactory epithelium, which were clustered in 3,879 unique sequences, grouped in 668 contigs and 3,211 singletons. BLASTX searches produced 3,243 significant (E-value -10 hits and Gene Ontology (GO analysis annotated a further 1,223 of these genes (37.7%. Comparative analysis with zebrafish olfactory epithelium ESTs revealed 1,088 identical unigenes. The transcriptome size of both species was estimated at about 16,400 unigenes, based on the proportion of genes identified involved in Glucose Metabolic Process. Of 124 G-protein coupled receptors identified in the olfactory epithelium of both species, 56 were olfactory receptors. Beta and gamma membrane progestin receptors were also isolated by subcloning of RT-PCR products from both species and an olfactory epithelium specific splice form identified. Conclusion The high similarity between the goldfish and zebrafish olfactory systems allowed the creation of a 'cyprinid' olfactory epithelium library estimated to represent circa 70% of the transcriptome. These results are an important resource for the identification of components of signalling pathways involved in olfaction as well as putative targets for pharmacological and histochemical studies. The possible function of the receptors identified in the olfactory system is

  5. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  6. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  7. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  8. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening.

    Science.gov (United States)

    Harini, K; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors.

  9. Amino acid- vs. peptide-odorants: responses of individual olfactory receptor neurons in an aquatic species.

    Directory of Open Access Journals (Sweden)

    Thomas Hassenklöver

    Full Text Available Amino acids are widely used waterborne olfactory stimuli proposed to serve as cues in the search for food. In natural waters the main source of amino acids is the decomposition of proteins. But this process also produces a variety of small peptides as intermediate cleavage products. In the present study we tested whether amino acids actually are the natural and adequate stimuli for the olfactory receptors they bind to. Alternatively, these olfactory receptors could be peptide receptors which also bind amino acids though at lower affinity. Employing calcium imaging in acute slices of the main olfactory epithelium of the fully aquatic larvae of Xenopus laevis we show that amino acids, and not peptides, are more effective waterborne odorants.

  10. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    Directory of Open Access Journals (Sweden)

    Karolina Corin

    Full Text Available A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  11. Semaphorins and their receptors in olfactory axon guidance

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Ruitenberg, Marc J; Verhaagen, J

    The mammalian olfactory system is capable of discriminating among a large variety of odor molecules and is therefore essential for the identification of food, enemies and mating partners. The assembly and maintenance of olfactory connectivity have been shown to depend on the combinatorial actions of

  12. CHARACTERIZATION OF THE OLFACTORY RECEPTORS EXPRESSED IN HUMAN SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Caroline eFlegel

    2016-01-01

    Full Text Available The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicated that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa and demonstrates that ORs are involved in the physiological processes.

  13. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    Science.gov (United States)

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  14. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen......]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  15. Functional characteristics of a tiny but specialized olfactory system: olfactory receptor neurons of carrot psyllids (Homoptera: Triozidae).

    Science.gov (United States)

    Kristoffersen, Lina; Larsson, Mattias C; Anderbrant, Olle

    2008-11-01

    With only approximately 50 olfactory receptor neurons (ORNs), the carrot psyllid Trioza apicalis (Homoptera: Psylloidea) may have the smallest olfactory system described in adult Neopteran insects. Using single sensillum recordings (SSR) and gas chromatograph-linked SSR, we characterized 4 olfactory sensilla forming a distinct morphological type, which together house approximately 25% of all ORNs. We recorded responses to extracts and single constituents from Daucus carota ssp. sativus, from the conifers Picea abies, Pinus sylvestris, and Juniperus communis, as well as from male and female T. apicalis. Receptor neurons were highly selective; only 9 compounds in total elicited repeatable responses, and each neuron responded to at most 3 individual compounds. Chemical profiles of carrot and conifers showed significant overlap, with 4 out of 9 electrophysiologically active compounds occurring in more than one type of extract, but a carrot-specific compound elicited the most repeated responses. We identified 4 tentative neuron classes and found a rather high degree of neuronal redundancy, with 1 neuron class present in 3 and another present in all 4 of the sensilla, respectively.

  16. Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production

    OpenAIRE

    Li, Jing Jing; Tay, Hock L.; Plank, Maximilian; Essilfie, Ama-Tawiah; Hansbro, Philip M.; Foster, Paul S.; Yang, Ming

    2013-01-01

    BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs), however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ) and lipopolysaccharide (LPS) drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activat...

  17. Expression and localization of histamine H1, H2, and H3receptors in rat olfactory epithelium.

    Science.gov (United States)

    Yu, Chao; Li, Li; Xia, Qingjie; Tang, Yuedi

    2017-10-01

    Histamine is an important chemical mediator in the development of allergic rhinitis and plays a key role in eliciting the nasal symptoms of the disorder. Histamine may also affect smell as a neurotransmitter. However, whether histamine receptors are present in the mammalian olfactory epithelium has not yet been examined. The aim of this study was to investigate the expression and distribution of histamine H 1 , H 2 , and H 3 receptors in rat olfactory epithelium. Real-time quantitative PCR and immunohistochemical staining were performed to examine the mRNA level and protein expression and localization of histamine receptors (H 1 , H 2 , and H 3 ) in rat olfactory epithelium. We demonstrated that mRNAs encoding histamine H 1 , H 2 , and H 3 receptors were detected in rat olfactory epithelium. Immunohistochemistry also showed strong positive staining for these receptors. Co-localization of histamine H 1 , H 2 , and H 3 receptors with olfactory mature protein revealed that these three histamine receptors were mainly localized in olfactory receptor neurons. These findings indicate that histamine H 1 , H 2 , and H 3 receptors are present in rat olfactory epithelium and may play a physiological role in olfactory transmission. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications

    International Nuclear Information System (INIS)

    Nowotny, Thomas; De Bruyne, Marien; Warr, Coral G; Berna, Amalia Z; Trowell, Stephen C

    2014-01-01

    Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals’ sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine (‘wine set’) and an ecologically irrelevant set of 35 chemicals related to chemical hazards (‘industrial set’), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used. (paper)

  19. The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids

    Directory of Open Access Journals (Sweden)

    Ngai John

    2006-12-01

    Full Text Available Abstract Background Vertebrate odorant receptors comprise at least three types of G protein-coupled receptors (GPCRs: the OR, V1R, and V2R/V2R-like receptors, the latter group belonging to the C family of GPCRs. These receptor families are thought to receive chemosensory information from a wide spectrum of odorant and pheromonal cues that influence critical animal behaviors such as feeding, reproduction and other social interactions. Results Using genome database mining and other informatics approaches, we identified and characterized the repertoire of 54 intact "V2R-like" olfactory C family GPCRs in the zebrafish. Phylogenetic analysis – which also included a set of 34 C family GPCRs from fugu – places the fish olfactory receptors in three major groups, which are related to but clearly distinct from other C family GPCRs, including the calcium sensing receptor, metabotropic glutamate receptors, GABA-B receptor, T1R taste receptors, and the major group of V2R vomeronasal receptor families. Interestingly, an analysis of sequence conservation and selective pressure in the zebrafish receptors revealed the retention of a conserved sequence motif previously shown to be required for ligand binding in other amino acid receptors. Conclusion Based on our findings, we propose that the repertoire of zebrafish olfactory C family GPCRs has evolved to allow the detection and discrimination of a spectrum of amino acid and/or amino acid-based compounds, which are potent olfactory cues in fish. Furthermore, as the major groups of fish receptors and mammalian V2R receptors appear to have diverged significantly from a common ancestral gene(s, these receptors likely mediate chemosensation of different classes of chemical structures by their respective organisms.

  20. Induction of an Olfactory Memory by the Activation of a Metabotropic Glutamate Receptor

    Science.gov (United States)

    Kaba, Hideto; Hayashi, Yasunori; Higuchi, Takashi; Nakanishi, Shigetada

    1994-07-01

    Female mice form an olfactory memory of male pheromones at mating; exposure to the pheromones of a strange male after that mating will block pregnancy. The formation of this memory is mediated by the accessory olfactory system, in which an increase in norepinephrine after mating reduces inhibitory transmission of γ-aminobutyric acid from the granule cells to the mitral cells. This study shows that the activation of mGluR2, a metabotropic glutamate receptor that suppresses the γ-aminobutyric acid inhibition of the mitral cells, permits the formation of a specific olfactory memory without the occurrence of mating by infusion of mGluR2 agonists into the female's accessory olfactory bulb. This memory faithfully reflects the memory formed at mating.

  1. Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs.

    Science.gov (United States)

    Lesniak, Anna; Walczak, Marta; Jezierski, Tadeusz; Sacharczuk, Mariusz; Gawkowski, Maciej; Jaszczak, Kazimierz

    2008-01-01

    The outstanding sensitivity of the canine olfactory system has been acknowledged by using sniffer dogs in military and civilian service for detection of a variety of odors. It is hypothesized that the canine olfactory ability is determined by polymorphisms in olfactory receptor (OR) genes. We investigated 5 OR genes for polymorphic sites which might affect the olfactory ability of service dogs in different fields of specific substance detection. All investigated OR DNA sequences proved to have allelic variants, the majority of which lead to protein sequence alteration. Homozygous individuals at 2 gene loci significantly differed in their detection skills from other genotypes. This suggests a role of specific alleles in odor detection and a linkage between single-nucleotide polymorphism and odor recognition efficiency.

  2. Oligomerisation of C. elegans Olfactory Receptors, ODR-10 and STR-112, in Yeast

    KAUST Repository

    Tehseen, Muhammad

    2014-09-25

    It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.

  3. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals.

    Science.gov (United States)

    Lin, Weihong; Margolskee, Robert; Donnert, Gerald; Hell, Stefan W; Restrepo, Diego

    2007-02-13

    Olfactory sensory neurons (OSNs) in the main olfactory epithelium respond to environmental odorants. Recent studies reveal that these OSNs also respond to semiochemicals such as pheromones and that main olfactory input modulates animal reproduction, but the transduction mechanism for these chemosignals is not fully understood. Previously, we determined that responses to putative pheromones in the main olfactory system were reduced but not eliminated in mice defective for the canonical cAMP transduction pathway, and we suggested, on the basis of pharmacology, an involvement of phospholipase C. In the present study, we find that a downstream signaling component of the phospholipase C pathway, the transient receptor potential channel M5 (TRPM5), is coexpressed with the cyclic nucleotide-gated channel subunit A2 in a subset of mature OSNs. These neurons project axons primarily to the ventral olfactory bulb, where information from urine and other socially relevant signals is processed. We find that these chemosignals activate a subset of glomeruli targeted by TRPM5-expressing OSNs. Our data indicate that TRPM5-expressing OSNs that project axons to glomeruli in the ventral area of the main olfactory bulb are involved in processing of information from semiochemicals.

  4. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation.

    Science.gov (United States)

    Zhao, Fuqiang; Wang, Xiaohai; Zariwala, Hatim A; Uslaner, Jason M; Houghton, Andrea K; Evelhoch, Jeffrey L; Hostetler, Eric; Winkelmann, Christopher T; Hines, Catherine D G

    2017-04-01

    Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic

  5. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    International Nuclear Information System (INIS)

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-01-01

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the α subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single β subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the α subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub sα/ relative to G/sub ichemical bond/ and G/sub ochemical bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with [ 125 I]protein. Immunohistochemical studies using an antiserum against the β subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the α subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium

  6. Receptor heterogeneity and its effect on sensitivity and coding range in olfactory sensory neurons

    Czech Academy of Sciences Publication Activity Database

    Lánský, Petr; Getz, W. M.

    2001-01-01

    Roč. 63, č. 5 (2001), s. 885-908 ISSN 0092-8240 R&D Projects: GA AV ČR IAA7011712 Grant - others:NSF(US) IBN9807938 Institutional research plan: CEZ:AV0Z5011922 Keywords : olfactory system * odorant-receptor Subject RIV: ED - Physiology Impact factor: 1.316, year: 2001

  7. Positive selection moments identify potential functional residues in human olfactory receptors

    Science.gov (United States)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  8. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q, both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic" among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  9. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    Science.gov (United States)

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  10. Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster.

    Science.gov (United States)

    Johnson, O; Becnel, J; Nichols, C D

    2011-09-29

    Learning and memory in the fruit fly, Drosophila melanogaster, is a complex behavior with many parallels to mammalian learning and memory. Although many neurotransmitters including acetylcholine, dopamine, glutamate, and GABA have previously been demonstrated to be involved in aversive olfactory learning and memory, the role of serotonin has not been well defined. Here, we present the first evidence of the involvement of individual serotonin receptors in olfactory learning and memory in the fly. We initially followed a pharmacological approach, utilizing serotonin receptor agonists and antagonists to demonstrate that all serotonin receptor families present in the fly are necessary for short-term learning and memory. Isobolographic analysis utilizing combinations of drugs revealed functional interactions are occurring between 5-HT(1A)-like and 5-HT(2), and 5-HT(2) and 5-HT(7) receptor circuits in mediating short-term learning and memory. Examination of long-term memory suggests that 5-HT(1A)-like receptors are necessary for consolidation and important for recall, 5-HT(2) receptors are important for consolidation and recall, and 5-HT(7) receptors are involved in all three phases. Importantly, we have validated our pharmacological results with genetic experiments and showed that hypomorph strains for 5-HT(2)Dro and 5-HT(1B)Dro receptors, as well as knockdown of 5-HT(7)Dro mRNA, significantly impair performance in short-term memory. Our data highlight the importance of the serotonin system and individual serotonin receptors to influence olfactory learning and memory in the fly, and position the fly as a model system to study the role of serotonin in cognitive processes relevant to mammalian CNS function. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Katrin Christine Groh-Lunow

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  12. Oxygen control of breathing by an olfactory receptor activated by lactate

    OpenAIRE

    Chang, Andy J.; Ortega, Fabian E.; Riegler, Johannes; Madison, Daniel V.; Krasnow, Mark A.

    2015-01-01

    Summary Animals have evolved homeostatic responses to changes in oxygen availability that act on different time scales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that controls long term responses to low oxygen (hypoxia) has been established 1 , the pathway that mediates acute responses to hypoxia in mammals is not well understood. Here we show that the olfactory receptor Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of the carotid body, ...

  13. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats.

    Science.gov (United States)

    Wu, Chunyan; Hwang, Su Hyeon; Jia, Yaoyao; Choi, Joobong; Kim, Yeon-Ji; Choi, Dahee; Pathiraja, Duleepa; Choi, In-Geol; Koo, Seung-Hoi; Lee, Sung-Joon

    2017-11-01

    Olfactory receptors (ORs) are present in tissues outside the olfactory system; however, the function of these receptors remains relatively unknown. Here, we determined that olfactory receptor 544 (Olfr544) is highly expressed in the liver and adipose tissue of mice and regulates cellular energy metabolism and obesity. Azelaic acid (AzA), an Olfr544 ligand, specifically induced PKA-dependent lipolysis in adipocytes and promoted fatty acid oxidation (FAO) and ketogenesis in liver, thus shifting the fuel preference to fats. After 6 weeks of administration, mice fed a high-fat diet (HFD) exhibited a marked reduction in adiposity. AzA treatment induced expression of PPAR-α and genes required for FAO in the liver and induced the expression of PPAR-γ coactivator 1-α (Ppargc1a) and uncoupling protein-1 (Ucp1) genes in brown adipose tissue (BAT). Moreover, treatment with AzA increased insulin sensitivity and ketone body levels. This led to a reduction in the respiratory quotient and an increase in the FAO rate, as indicated by indirect calorimetry. AzA treatment had similar antiobesogenic effects in HFD-fed ob/ob mice. Importantly, AzA-associated metabolic changes were completely abrogated in HFD-fed Olfr544-/- mice. To our knowledge, this is the first report to show that Olfr544 orchestrates the metabolic interplay between the liver and adipose tissue, mobilizing stored fats from adipose tissue and shifting the fuel preference to fats in the liver and BAT.

  14. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced...

  15. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef; Hejnar, Jiří

    2013-01-01

    Roč. 87, č. 15 (2013), s. 8399-8407 ISSN 0022-538X R&D Projects: GA ČR GAP502/10/1651 Institutional support: RVO:68378050 Keywords : avian leukosis virus * ALV-J * NHE1 * host resistance * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.648, year: 2013

  16. Identification and Knockdown of the Olfactory Receptor (OrCo) in Gypsy Moth, Lymantria dispar

    OpenAIRE

    Lin, Wei; Yu, Yanxue; Zhou, Ping; Zhang, Junhua; Dou, Liduo; Hao, Qin; Chen, Hongjun; Zhu, Shuifang

    2015-01-01

    The gypsy moth, Lymantria dispar, is an important economic pest that causes large-scale damage to forests worldwide. Because of its important role in initiating and controlling insect behavior, olfaction?and olfaction-based pest management?has drawn increasing attention from entomologists. In this study, we identified the gene that encodes the olfactory receptor co-receptor (OrCo). Through amino acid sequence alignment, we found that LdisOrCo shares high identity with other OrCo proteins from...

  17. [The origin and possible role of microvesicles in olfactory receptor cells].

    Science.gov (United States)

    Bakhtin, E K

    1975-08-01

    Microvesicles and spherical particles have been described in the bulbs of receptor olfactory cells of Acipenser ruthenus. Two pathways of the origin of the above vesicles have been followed. These structures derive at the stage of differentiation from non-ciliary to ciliary cell type. The first of the pathways involves the autolysis of microfibril bundles produced during the regression of microvilli. The other one includes micropinocytosis induced on the basis of regressing microvilli. Taking into account the genesis of the microvesicles of the receptor cell bulb, it is concluded that they cannot contain a mediator able to modify membrane ion permeability in response to the specific stimulus of the odorant.

  18. Sarsasapogenin reverses depressive-like behaviors and nicotinic acetylcholine receptors induced by olfactory bulbectomy.

    Science.gov (United States)

    Feng, Bo; Zhao, Xiao-Yang; Song, Yi-Zhou; Liang, Wen-Na; Liu, Ji-Liang

    2017-02-03

    Cholinergic signalling in the hippocampus may contribute to the aetiology of mood regulation. Antidepressants can reverse the increase in acetylcholinesterase (AChE) activity induced by olfactory bulbectomy. The activation of nicotinic acetylcholine receptors (nAChRs) also alleviates the symptoms of depression. This study advances the development of sarsasapogenin, which interacts with cholinergic signalling and has a favourable antidepressant profile in olfactory bulbectomised (OB) rats. We examined OB-induced changes in cholinergic signalling, as well as AChE, α4-nAChR, and α7-nAChR expression in the hippocampus. The results indicate that abnormal cholinergic signalling in the hippocampus contributes to the development of depression in the OB rat model. This depression may be alleviated following treatment with sarsasapogenin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Molecular determinants of the olfactory receptor Olfr544 activation by azelaic acid.

    Science.gov (United States)

    Thach, Trung Thanh; Hong, Yu-Jung; Lee, Sangho; Lee, Sung-Joon

    2017-04-01

    The mouse olfactory receptor Olfr544 is expressed in several non-olfactory tissues and has been suggested as a functional receptor regulating different signaling pathways. However, the molecular interaction between Olfr544 and its natural ligand, azelaic acid (AzA), remains poorly characterized, primarily due to difficulties in the heterologous expression of the receptor protein on the cell membrane and lack of entire protein structure. In this report, we describe the molecular determinants of Olfr544 activation by AzA. N-terminal lucy-flag-rho tag ensured the heterologous expression of Olfr544 on the Hana3A cell surface. Molecular modeling and docking combined with mutational analysis identified amino acid residues in the Olfr544 for the interaction with AzA. Our data demonstrated that the Y109 residue in transmembrane helix 3 forms a hydrogen bond with AzA, which is crucial for the receptor-ligand interaction and activation. Y109 is required for the Olfr544 activation by AzA which, in turn, stimulates the Olfr544-dependent CREB-PGC-1α signaling axis and is followed by the induction of mitochondrial biogenesis in Olfr544 wild-type transfected Hana3A cells, but not in mock or Y109A mutant transfected cells. Collectively, these data indicated that a hydrogen bond between Y109 residue and AzA is a major determinant of the Olfr544-AzA interaction and activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Residue conservation and dimer-interface analysis of olfactory receptor molecular models

    Directory of Open Access Journals (Sweden)

    Ramanathan Sowdhamini

    2012-10-01

    Full Text Available Olfactory Receptors (ORs are members of the Class A rhodopsin like G-protein coupled receptors (GPCRs which are the initial players in the signal transduction cascade, leading to the generation of nerve impulses transmitted to the brain and resulting in the detection of odorant molecules. Despite the accumulation of thousands of olfactory receptor sequences, no crystal structures of ORs are known tο date. However, the recent availability of crystallographic models of a few GPCRs allows us to generate homology models of ORs and analyze their amino acid patterns, as there is a huge diversity in OR sequences. In this study, we have generated three-dimensional models of 100 representative ORs from Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Sacharomyces cerevisiae which were selected on the basis of a composite classification scheme and phylogenetic analysis. The crystal structure of bovine rhodopsin was used as a template and it was found that the full-length models have more than 90% of their residues in allowed regions of the Ramachandran plot. The structures were further used for analysis of conserved residues in the transmembrane and extracellular loop regions in order to identify functionally important residues. Several ORs are known to be functional as dimers and hence dimer interfaces were predicted for OR models to analyse their oligomeric functional state.

  1. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Shin-Ichiro Tachibana

    Full Text Available A male-specific component, 11-cis-vaccenyl acetate (cVA works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment.

  2. How does your kidney smell? Emerging roles for olfactory receptors in renal function.

    Science.gov (United States)

    Shepard, Blythe D; Pluznick, Jennifer L

    2016-05-01

    Olfactory receptors (ORs) are chemosensors that are responsible for one's sense of smell. In addition to this specialized role in the nose, recent evidence suggests that ORs are also found in a variety of additional tissues including the kidney. As this list of renal ORs continues to expand, it is becoming clear that they play important roles in renal and whole-body physiology, including a novel role in blood pressure regulation. In this review, we highlight important considerations that are crucial when studying ORs and present the current literature on renal ORs and their emerging relevance in maintaining renal function.

  3. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  4. Olfactory Plasticity: Variation in the Expression of Chemosensory Receptors in Bactrocera dorsalis in Different Physiological States

    Directory of Open Access Journals (Sweden)

    Sha Jin

    2017-09-01

    Full Text Available Changes in physiological conditions could influence the perception of external odors, which is important for the reproduction and survival of insect. With the alteration of physiological conditions, such as, age, feeding state, circadian rhythm, and mating status, insect can modulate their olfactory systems accordingly. Ionotropic, gustatory, and odorant receptors (IR, GR, and ORs are important elements of the insect chemosensory system, which enable insects to detect various external stimuli. In this study, we investigated the changes in these receptors at the mRNA level in Bactrocera dorsalis in different physiological states. We performed transcriptome analysis to identify chemosensory receptors: 21 IRs, 12 GRs, and 43 ORs were identified from B. dorsalis antennae, including almost all previously known chemoreceptors in B. dorsalis and a few more. Quantitative real-time polymerase chain reaction analysis revealed the effects of feeding state, mating status and time of day on the expression of IR, GR, and OR genes. The results showed that expression of chemosensory receptors changed in response to different physiological states, and these changes were completely different for different types of receptors and between male and female flies. Our study suggests that the expressions of chemosensory receptors change to adapt to different physiological states, which may indicate the significant role of these receptors in such physiological processes.

  5. Minute Impurities Contribute Significantly to Olfactory Receptor Ligand Studies: Tales from Testing the Vibration Theory.

    Science.gov (United States)

    Paoli, M; Münch, D; Haase, A; Skoulakis, E; Turin, L; Galizia, C G

    2017-01-01

    Several studies have attempted to test the vibrational hypothesis of odorant receptor activation in behavioral and physiological studies using deuterated compounds as odorants. The results have been mixed. Here, we attempted to test how deuterated compounds activate odorant receptors using calcium imaging of the fruit fly antennal lobe. We found specific activation of one area of the antennal lobe corresponding to inputs from a specific receptor. However, upon more detailed analysis, we discovered that an impurity of 0.0006% ethyl acetate in a chemical sample of benzaldehyde-d 5 was entirely responsible for a sizable odorant-evoked response in Drosophila melanogaster olfactory receptor cells expressing dOr42b. Without gas chromatographic purification within the experimental setup, this impurity would have created a difference in the responses of deuterated and nondeuterated benzaldehyde, suggesting that dOr42b be a vibration sensitive receptor, which we show here not to be the case. Our results point to a broad problem in the literature on use of non-GC-pure compounds to test receptor selectivity, and we suggest how the limitations can be overcome in future studies.

  6. Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex.

    Directory of Open Access Journals (Sweden)

    Tatsuro Nakagawa

    Full Text Available Olfactory receptors (Ors convert chemical signals--the binding of odors and pheromones--to electrical signals through the depolarization of olfactory sensory neurons. Vertebrates Ors are G-protein-coupled receptors, stimulated by odors to produce intracellular second messengers that gate ion channels. Insect Ors are a heteromultimeric complex of unknown stoichiometry of two seven transmembrane domain proteins with no sequence similarity to and the opposite membrane topology of G-protein-coupled receptors. The functional insect Or comprises an odor- or pheromone-specific Or subunit and the Orco co-receptor, which is highly conserved in all insect species. The insect Or-Orco complex has been proposed to function as a novel type of ligand-gated nonselective cation channel possibly modulated by G-proteins. However, the Or-Orco proteins lack homology to any known family of ion channel and lack known functional domains. Therefore, the mechanisms by which odors activate the Or-Orco complex and how ions permeate this complex remain unknown. To begin to address the relationship between Or-Orco structure and function, we performed site-directed mutagenesis of all 83 conserved Glu, Asp, or Tyr residues in the silkmoth BmOr-1-Orco pheromone receptor complex and measured functional properties of mutant channels expressed in Xenopus oocytes. 13 of 83 mutations in BmOr-1 and BmOrco altered the reversal potential and rectification index of the BmOr-1-Orco complex. Three of the 13 amino acids (D299 and E356 in BmOr-1 and Y464 in BmOrco altered both current-voltage relationships and K(+ selectivity. We introduced the homologous Orco Y464 residue into Drosophila Orco in vivo, and observed variable effects on spontaneous and evoked action potentials in olfactory neurons that depended on the particular Or-Orco complex examined. Our results provide evidence that a subset of conserved Glu, Asp and Tyr residues in both subunits are essential for channel activity of the

  7. Haloferax volcanii, as a Novel Tool for Producing Mammalian Olfactory Receptors Embedded in Archaeal Lipid Bilayer

    Directory of Open Access Journals (Sweden)

    Simona Lobasso

    2015-03-01

    Full Text Available The aim of this study was to explore the possibility of using an archaeal microorganism as a host system for expressing mammalian olfactory receptors (ORs. We have selected the archaeon Haloferax volcanii as a cell host system and one of the most extensively investigated OR, namely I7-OR, whose preferred ligands are short-chain aldehydes, such as octanal, heptanal, nonanal. A novel plasmid has been constructed to express the rat I7-OR, fused with a hexahistidine-tag for protein immunodetection. The presence of the recombinant receptor at a membrane level was demonstrated by immunoblot of the membranes isolated from the transgenic archaeal strain. In addition, the lipid composition of archaeonanosomes containing ORs has been characterized in detail by High-Performance Thin-Layer Chromatography (HPTLC in combination with Matrix-Assisted Laser Desorption Ionization—Time-Of-Flight/Mass Spectrometry (MALDI-TOF/MS analysis.

  8. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    Science.gov (United States)

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Characterization and Comparative Analysis of Olfactory Receptor Co-Receptor Orco Orthologs Among Five Mirid Bug Species

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2018-03-01

    Full Text Available The phytophagous mirid bugs of Apolygus lucorum, Lygus pratensis as well as three Adelphocoris spp., including Adelphocoris lineolatus, A. suturalis, and A. fasciaticollis are major pests of multiple agricultural crops in China, which have distinct geographical distribution and occurrence ranges. Like many insect species, these bugs heavily rely on olfactory cues to search preferred host plants, thereby investigation on functional co-evolution and divergence of olfactory genes seems to be necessary and is of great interest. In the odorant detection pathway, olfactory receptor co-receptor (Orco plays critical role in the perception of odors. In this study, we identified the full-length cDNA sequences encoding three putative Orcos (AsutOrco, AfasOrco, and LpraOrco in bug species of A. suturalis, A. fasciaticollis, and L. pratensis based on homology cloning method. Next, sequence alignment, membrane topology and gene structure analysis showed that these three Orco orthologs together with previously reported AlinOrco and AlucOrco shared high amino acid identities and similar topology structure, but had different gene structure especially at the length and insertion sites of introns. Furthermore, the evolutional estimation on the ratios of non-synonymous to synonymous (Ka/Ks revealed that Orco genes were under strong purifying selection, but the degrees of variation were significant different between genera. The results of quantitative real-time PCR experiments showed that these five Orco genes had a similar antennae-biased tissue expression pattern. Taking these data together, it is thought that Orco genes in the mirid species could share conserved olfaction roles but had different evolution rates. These findings would lay a foundation to further investigate the molecular mechanisms of evolutionary interactions between mirid bugs and their host plants, which might in turn contribute to the development of pest management strategy for mirid bugs.

  10. Dynamical modeling of the moth pheromone-sensitive olfactory receptor neuron within its sensillar environment.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In insects, olfactory receptor neurons (ORNs, surrounded with auxiliary cells and protected by a cuticular wall, form small discrete sensory organs--the sensilla. The moth pheromone-sensitive sensillum is a well studied example of hair-like sensillum that is favorable to both experimental and modeling investigations. The model presented takes into account both the molecular processes of ORNs, i.e. the biochemical reactions and ionic currents giving rise to the receptor potential, and the cellular organization and compartmentalization of the organ represented by an electrical circuit. The number of isopotential compartments needed to describe the long dendrite bearing pheromone receptors was determined. The transduction parameters that must be modified when the number of compartments is increased were identified. This model reproduces the amplitude and time course of the experimentally recorded receptor potential. A first complete version of the model was analyzed in response to pheromone pulses of various strengths. It provided a quantitative description of the spatial and temporal evolution of the pheromone-dependent conductances, currents and potentials along the outer dendrite and served to determine the contribution of the various steps in the cascade to its global sensitivity. A second simplified version of the model, utilizing a single depolarizing conductance and leak conductances for repolarizing the ORN, was derived from the first version. It served to analyze the effects on the sensory properties of varying the electrical parameters and the size of the main sensillum parts. The consequences of the results obtained on the still uncertain mechanisms of olfactory transduction in moth ORNs--involvement or not of G-proteins, role of chloride and potassium currents--are discussed as well as the optimality of the sensillum organization, the dependence of biochemical parameters on the neuron spatial extension and the respective contributions

  11. Olfaction in the Queensland fruit fly, Bactrocera tryoni. I: Identification of olfactory receptor neuron types responding to environmental odors.

    Science.gov (United States)

    Hull, C D; Cribb, B W

    2001-05-01

    The electroantennogram method was used to investigate the number of distinct olfactory receptor neuron types responding to a range of behaviorally active volatile chemicals in gravid Queensland fruit flies, Bactrocera tryoni. Three receptor neuron types were identified. One type responds to methyl butyrate, 2-butanone, farnesene, and carbon dioxide; a second to ethanol; and a third to n-butyric acid and ammonia. The receptor neuron type responding to methyl butyrate, 2-butanone, farnesene, and carbon dioxide consists of three subtypes. The presence of a limited number of receptor neuron types responding to a diverse set of chemicals and the reception of carbon dioxide by a receptor neuron type that responds to other odorants are novel aspects of the peripheral olfactory discrimination process.

  12. Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles.

    Science.gov (United States)

    Sanmartí-Espinal, Marta; Galve, Roger; Iavicoli, Patrizia; Persuy, Marie-Annick; Pajot-Augy, Edith; Marco, M-Pilar; Samitier, Josep

    2016-03-01

    Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution.

    Directory of Open Access Journals (Sweden)

    Yehudit Hasin

    2008-11-01

    Full Text Available Olfactory receptors (ORs, which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction ( approximately 55% of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs, we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that approximately 50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used

  14. Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in α-cells of mouse pancreatic islets.

    Science.gov (United States)

    Kang, NaNa; Bahk, Young Yil; Lee, NaHye; Jae, YoonGyu; Cho, Yoon Hee; Ku, Cheol Ryong; Byun, Youngjoo; Lee, Eun Jig; Kim, Min-Soo; Koo, JaeHyung

    2015-05-08

    Olfactory receptors (ORs) are extensively expressed in olfactory as well as non-olfactory tissues. Although many OR transcripts are expressed in non-olfactory tissues, only a few studies demonstrate the functional role of ORs. Here, we verified that mouse pancreatic α-cells express potential OR-mediated downstream effectors. Moreover, high levels of mRNA for the olfactory receptors Olfr543, Olfr544, Olfr545, and Olfr1349 were expressed in α-cells as assessed using RNA-sequencing, microarray, and quantitative real-time RT-PCR analyses. Treatment with dicarboxylic acids (azelaic acid and sebacic acid) increased intracellular Ca(2+) mobilization in pancreatic α-cells. The azelaic acid-induced Ca(2+) response as well as glucagon secretion was concentration- and time-dependent manner. Olfr544 was expressed in α-cells, and the EC50 value of azelaic acid to Olfr544 was 19.97 μM, whereas Olfr545 did not respond to azelaic acid. Our findings demonstrate that Olfr544 responds to azelaic acid to regulate glucagon secretion through Ca(2+) mobilization in α-cells of the mouse pancreatic islets, suggesting that Olfr544 may be an important therapeutic target for metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals

    Czech Academy of Sciences Publication Activity Database

    Duchamp-Viret, P.; Košťál, Lubomír; Chaput, M.; Lánský, Petr; Rospars, J. P.

    2005-01-01

    Roč. 65, č. 2 (2005), s. 97-114 ISSN 0022-3034 R&D Projects: GA AV ČR(CZ) 1ET400110401 Grant - others:Barrande(FR) 9146 QL Institutional research plan: CEZ:AV0Z50110509 Keywords : olfactory neurons * unit activity * receptors Subject RIV: ED - Physiology Impact factor: 4.170, year: 2005

  16. Effect of lavender oil on motor function and dopamine receptor expression in the olfactory bulb of mice.

    Science.gov (United States)

    Kim, Younghee; Kim, Minjeong; Kim, Hyunji; Kim, Kisok

    2009-08-17

    Although treatment with the essential oil of lavender induces neuroemotional changes, there is a lack of data regarding its specific effects on neurotransduction, especially dopaminergic neurotransduction. We investigated the relationship between altered motor activity and changes in the expression of dopamine receptors (DR), particularly the receptor subtypes D2 and D3, in lavender oil-treated mice. After the administration of lavender oil (intraperitoneal injections of 10-1000 mg/kg lavender oil once per day for 5 days), motor coordination and dopamine receptor expression were examined in the olfactory bulb and the striatum of the mouse brain. After 5 days, mice treated with 1000 mg/kg lavender oil showed significantly increased rotarod activity when compared to controls. Although DRD2 expression showed no change in the olfactory bulb or striatum of lavender-treated mice, DRD3 expression increased significantly in the olfactory bulb; this increase was dose-dependent and was observed at both the mRNA and protein levels. These data indicate that altered dopamine D3 receptor subtype homeostasis in the olfactory bulb may contribute to lavender oil-induced behavioral change.

  17. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  18. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  19. Differences in selection drive olfactory receptor genes in different directions in dogs and wolf.

    Science.gov (United States)

    Chen, Rui; Irwin, David M; Zhang, Ya-Ping

    2012-11-01

    The olfactory receptor (OR) gene family is the largest gene family found in mammalian genomes. It is known to evolve through a birth-and-death process. Here, we characterized the sequences of 16 segregating OR pseudogenes in the samples of the wolf and the Chinese village dog (CVD) and compared them with the sequences from dogs of different breeds. Our results show that the segregating OR pseudogenes in breed dogs are under strong purifying selection, while evolving neutrally in the CVD, and show a more complicated pattern in the wolf. In the wolf, we found a trend to remove deleterious polymorphisms and accumulate nondeleterious polymorphisms. On the basis of protein structure of the ORs, we found that the distribution of different types of polymorphisms (synonymous, nonsynonymous, tolerated, and untolerated) varied greatly between the wolf and the breed dogs. In summary, our results suggest that different forms of selection have acted on the segregating OR pseudogenes in the CVD since domestication, breed dogs after breed formation, and ancestral wolf population, which has driven the evolution of these genes in different directions.

  20. Oxygen control of breathing by an olfactory receptor activated by lactate

    Science.gov (United States)

    Chang, Andy J.; Ortega, Fabian E.; Riegler, Johannes; Madison, Daniel V.; Krasnow, Mark A.

    2015-01-01

    Summary Animals have evolved homeostatic responses to changes in oxygen availability that act on different time scales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that controls long term responses to low oxygen (hypoxia) has been established1, the pathway that mediates acute responses to hypoxia in mammals is not well understood. Here we show that the olfactory receptor Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of the carotid body, a chemosensory organ at the carotid artery bifurcation that monitors blood oxygen and stimulates breathing within seconds when oxygen declines2. Olfr78 mutants fail to increase ventilation in hypoxia but respond normally to hypercapnia. Glomus cells are present in normal numbers and appear structurally intact, but hypoxia-induced carotid body activity is diminished. Lactate, a metabolite that rapidly accumulates in hypoxia and induces hyperventilation3–6, activates Olfr78 in heterologous expression experiments, induces calcium transients in glomus cells, and stimulates carotid sinus nerve activity through Olfr78. We propose that in addition to its role in olfaction, Olfr78 acts as a hypoxia sensor in the breathing circuit by sensing lactate produced when oxygen levels decline. PMID:26560302

  1. A General Odorant Background Affects the Coding of Pheromone Stimulus Intermittency in Specialist Olfactory Receptor Neurones

    Science.gov (United States)

    Rouyar, Angela; Party, Virginie; Prešern, Janez; Blejec, Andrej; Renou, Michel

    2011-01-01

    In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal. PMID:22028879

  2. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    Science.gov (United States)

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production.

    Directory of Open Access Journals (Sweden)

    Jing Jing Li

    Full Text Available BACKGROUND: Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs, however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ and lipopolysaccharide (LPS drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS stimulation, and further explored the effect of odorant stimulation on macrophage function. METHODOLOGY/PRINCIPAL FINDINGS: OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622 on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro. CONCLUSIONS/SIGNIFICANCE: Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1

  4. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.

    Science.gov (United States)

    Persuy, Marie-Annick; Sanz, Guenhaël; Tromelin, Anne; Thomas-Danguin, Thierry; Gibrat, Jean-François; Pajot-Augy, Edith

    2015-01-01

    This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance. © 2015 Elsevier Inc. All rights reserved.

  5. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system.

    Science.gov (United States)

    Gibson, Nicholas J; Tolbert, Leslie P; Oland, Lynne A

    2009-09-29

    Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-beta-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.

  6. Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis

    NARCIS (Netherlands)

    Ambepitiya Wickramasinghe, I.N.; Vries, R.P. de; Weerts, E.A.; Beurden, S.J. van; Peng, W.; McBride, R.; Ducatez, M.; Guy, J.; Brown, P.; Eterradossi, N.; Grone, A.; Paulson, J.C.; Verheije, M.H.

    2015-01-01

    Viruses exploit molecules on the target membrane as receptors for attachment and entry into host cells. Thus, receptor expression patterns can define viral tissue tropism and might to some extent predict the susceptibility of a host to a particular virus. Previously, others and we have shown that

  7. Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis

    NARCIS (Netherlands)

    Ambepitiya Wickramasinghe, I N; de Vries, R P; Weerts, E A W S; van Beurden, S J; Peng, W; McBride, R; Ducatez, M; Guy, J; Brown, P; Eterradossi, N; Gröne, A; Paulson, J C; Verheije, M H

    2015-01-01

    UNLABELLED: Viruses exploit molecules on the target membrane as receptors for attachment and entry into host cells. Thus, receptor expression patterns can define viral tissue tropism and might to some extent predict the susceptibility of a host to a particular virus. Previously, others and we have

  8. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.

    Science.gov (United States)

    Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong

    2015-08-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Receptor specificity and erythrocyte binding preferences of avian influenza viruses isolated from India

    Directory of Open Access Journals (Sweden)

    Pawar Shailesh D

    2012-10-01

    Full Text Available Abstract Introduction Hemagglutination (HA and hemagglutination inhibition (HI assays are conventionally used for detection and identification of influenza viruses. HI assay is also used for detection of antibodies against influenza viruses. Primarily turkey or chicken erythrocytes [red blood cells (RBCs] are used in these assays, as they are large, nucleated, and sediment fast, which makes it easy to determine the titer. Human influenza viruses agglutinate RBCs from chicken, human, and guinea pig, but not from horse. Human influenza viruses bind preferentially to sialic acid (SA linked to galactose (Gal by α 2, 6 linkage (SA α 2, 6-Gal, whereas avian influenza (AI viruses bind preferentially to SA α 2, 3-Gal linkages. With this background, the present study was undertaken to study erythrocyte binding preferences and receptor specificities of AI viruses isolated from India. Materials and methods A total of nine AI virus isolates (four subtypes from India and three reference AI strains (three subtypes were tested in HA and HI assays against mammalian and avian erythrocytes. The erythrocytes from turkey, chicken, goose, guinea pig and horse were used in the study. The receptor specificity determination assays were performed using goose and turkey RBCs. The amino acids present at 190 helix, 130 and 220 loops of the receptor-binding domain of the hemagglutinin protein were analyzed to correlate amino acid changes with the receptor specificity. Results All tested highly pathogenic avian influenza (HPAI H5N1 viruses reacted with all five types of RBCs in the HA assay; AI H9N2 and H5N2 viruses did not react with horse RBCs. For H5N1 viruses guinea pig and goose RBCs were best for both HA and HI assays. For H9N2 viruses, guinea pig, fowl and turkey RBCs were suitable. For other tested AI subtypes, avian and guinea pig RBCs were better. Eight isolates of H5N1, one H4N6 and one H7N1 virus showed preference to avian sialic acid receptors. Importantly

  10. Rapid estimation of binding activity of influenza virus hemagglutinin to human and avian receptors.

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2011-04-01

    Full Text Available A critical step for avian influenza viruses to infect human hosts and cause epidemics or pandemics is acquisition of the ability of the viral hemagglutinin (HA to bind to human receptors. However, current global influenza surveillance does not monitor HA binding specificity due to a lack of rapid and reliable assays. Here we report a computational method that uses an effective scoring function to quantify HA-receptor binding activities with high accuracy and speed. Application of this method reveals receptor specificity changes and its temporal relationship with antigenicity changes during the evolution of human H3N2 viruses. The method predicts that two amino acid differences at 222 and 225 between HAs of A/Fujian/411/02 and A/Panama/2007/99 viruses account for their differences in binding to both avian and human receptors; this prediction was verified experimentally. The new computational method could provide an urgently needed tool for rapid and large-scale analysis of HA receptor specificities for global influenza surveillance.

  11. Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons.

    Science.gov (United States)

    Oshimoto, Arisa; Wakabayashi, Yoshihiro; Garske, Anna; Lopez, Roberto; Rolen, Shane; Flowers, Michael; Arevalo, Nicole; Restrepo, Diego

    2013-01-01

    Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.

  12. Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons.

    Directory of Open Access Journals (Sweden)

    Arisa Oshimoto

    Full Text Available Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5 knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs. Yet, in the same study an electroolfactogram (EOG in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.

  13. Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species

    Directory of Open Access Journals (Sweden)

    Costa Taiana

    2012-04-01

    Full Text Available Abstract This study assessed the presence of sialic acid α-2,3 and α-2,6 linked glycan receptors in seven avian species. The respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant, ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin II and Sambucus nigra agglutinin, which show affinity for α-2,3 and α-2,6 receptors, respectively. Additionally, the pattern of virus attachment (PVA was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a human-origin seasonal H1N1 virus. There was a great variation of receptor distribution among the tissues and avian species studied. Both α-2,3 and α-2,6 receptors were present in the respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts and in mallards the α-2,6 receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general, in agreement with the PVA. The differential expression and distribution of α-2,3 and α-2,6 receptors among various avian species might reflect a potentially decisive factor in the emergence of new viral strains.

  14. Nonselective Suppression of Voltage-gated Currents by Odorants in the Newt Olfactory Receptor Cells

    Science.gov (United States)

    Kawai, Fusao; Kurahashi, Takashi; Kaneko, Akimichi

    1997-01-01

    Effects of odorants on voltage-gated ionic channels were investigated in isolated newt olfactory receptor cells by using the whole cell version of the patch–clamp technique. Under voltage clamp, membrane depolarization to voltages between −90 mV and +40 mV from a holding potential (Vh) of −100 mV generated time- and voltage-dependent current responses; a rapidly (amyl acetate, 1 mM acetophenone, and 1 mM limonene) were applied to the recorded cell, the voltage-gated currents were significantly reduced. The dose-suppression relations of amyl acetate for individual current components (Na+ current: INa, T-type Ca2+ current: ICa,T, L-type Ca2+ current: ICa,L, delayed rectifier K+ current: IKv and Ca2+-activated K+ current: IK(Ca)) could be fitted by the Hill equation. Half-blocking concentrations for each current were 0.11 mM (INa), 0.15 mM (ICa,T), 0.14 mM (ICa,L), 1.7 mM (IKv), and 0.17 mM (IK(Ca)), and Hill coefficient was 1.4 (INa), 1.0 (ICa,T), 1.1 (ICa,L), 1.0 (IKv), and 1.1 (IK(Ca)), suggesting that the inward current is affected more strongly than the outward current. The activation curve of INa was not changed significantly by amyl acetate, while the inactivation curve was shifted to negative voltages; half-activation voltages were −53 mV at control, −66 mV at 0.01 mM, and −84 mV at 0.1 mM. These phenomena are similar to the suppressive effects of local anesthetics (lidocaine and benzocaine) on INa in various preparations, suggesting that both types of suppression are caused by the same mechanism. The nonselective blockage of ionic channels observed here is consistent with the previous notion that the suppression of the transduction current by odorants is due to the direst blockage of transduction channels. PMID:9041454

  15. Hierarchical axon targeting of Drosophila olfactory receptor neurons specified by the proneural transcription factors Atonal and Amos.

    Science.gov (United States)

    Okumura, Misako; Kato, Tomoko; Miura, Masayuki; Chihara, Takahiro

    2016-01-01

    Sensory information is spatially represented in the brain to form a neural map. It has been suggested that axon-axon interactions are important for neural map formation; however, the underlying mechanisms are not fully understood. We used the Drosophila antennal lobe, the first olfactory center in the brain, as a model for studying neural map formation. Olfactory receptor neurons (ORNs) expressing the same odorant receptor target their axons to a single glomerulus out of approximately 50 glomeruli in the antennal lobe. Previous studies have showed that the axons of Atonal ORNs, specified by Atonal, a basic helix-loop-helix (bHLH) transcription factor, pioneer antennal lobe formation; however, the details remain to be elucidated. Here, we show that genetic ablation of Atonal ORNs affects antennal lobe structure and axon targeting of Amos ORNs, another type of ORN specified by the bHLH transcription factor Amos. During development, Atonal ORNs reach the antennal lobe and form the axon commissure before Amos ORNs. We also found that N-cadherin knockdown specifically in Atonal ORNs disrupts the glomerular boundary in the whole antennal lobe. Our results suggest that Atonal ORNs function as pioneer axons. Thus, correct axon targeting of Atonal ORNs is essential for formation of the whole antennal lobe. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  16. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits.

    Directory of Open Access Journals (Sweden)

    Bryna Erblich

    Full Text Available The brain contains numerous mononuclear phagocytes called microglia. These cells express the transmembrane tyrosine kinase receptor for the macrophage growth factor colony stimulating factor-1 (CSF-1R. Using a CSF-1R-GFP reporter mouse strain combined with lineage defining antibody staining we show in the postnatal mouse brain that CSF-1R is expressed only in microglia and not neurons, astrocytes or glial cells. To study CSF-1R function we used mice homozygous for a null mutation in the Csflr gene. In these mice microglia are >99% depleted at embryonic day 16 and day 1 post-partum brain. At three weeks of age this microglial depletion continues in most regions of the brain although some contain clusters of rounded microglia. Despite the loss of microglia, embryonic brain development appears normal but during the post-natal period the brain architecture becomes perturbed with enlarged ventricles and regionally compressed parenchyma, phenotypes most prominent in the olfactory bulb and cortex. In the cortex there is increased neuronal density, elevated numbers of astrocytes but reduced numbers of oligodendrocytes. Csf1r nulls rarely survive to adulthood and therefore to study the role of CSF-1R in olfaction we used the viable null mutants in the Csf1 (Csf1(op gene that encodes one of the two known CSF-1R ligands. Food-finding experiments indicate that olfactory capacity is significantly impaired in the absence of CSF-1. CSF-1R is therefore required for the development of microglia, for a fully functional olfactory system and the maintenance of normal brain structure.

  17. Reading out olfactory receptors: Feedforward circuits detect odors in mixtures without demixing

    Science.gov (United States)

    Mathis, Alexander; Rokni, Dan; Kapoor, Vikrant; Bethge, Matthias; Murthy, Venkatesh N.

    2016-01-01

    The olfactory system, like other sensory systems, can detect specific stimuli of interest amidst complex, varying backgrounds. To gain insight into the neural mechanisms underlying this ability, we imaged responses of mouse olfactory bulb glomeruli to mixtures. We used this data to build a model of mixture responses that incorporated nonlinear interactions and trial-to-trial variability and explored potential decoding mechanisms that can mimic mouse performance when given glomerular responses as input. We find that a linear decoder with sparse weights could match mouse performance using just a small subset of the glomeruli (~15). However, when such a decoder is trained only with single odors, it generalizes poorly to mixture stimuli due to nonlinear mixture responses. We show that mice similarly fail to generalize, suggesting that they learn this segregation task discriminatively by adjusting task-specific decision boundaries without taking advantage of a demixed representation of odors. PMID:27593177

  18. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Heider, Alla; Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-05-01

    Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3'SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLe(c)) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3'SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLe(x)), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical "poultry-like" receptor, 3'SLN, is provided by substitutions in the receptor

  19. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    Science.gov (United States)

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by

  20. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.

    Science.gov (United States)

    Shao, Yu-Feng; Wang, Can; Xie, Jun-Fan; Kong, Xiang-Pan; Xin, Le; Dong, Chao-Yu; Li, Jing; Ren, Wen-Ting; Hou, Yi-Ping

    2016-07-01

    Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice.

  1. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species....

  2. Glutamate receptor antagonist infusions into the basolateral and medial amygdala reveal differential contributions to olfactory vs. context fear conditioning and expression

    OpenAIRE

    Walker, David L.; Paschall, Gayla Y.; Davis, Michael

    2005-01-01

    The basolateral amygdala's involvement in fear acquisition and expression to visual and auditory stimuli is well known. The involvement of the basolateral and other amygdala areas in fear acquisition and expression to stimuli of other modalities is less certain. We evaluated the contribution of the basolateral and medial amygdala to olfactory and to context fear and fear conditioning by infusing into these areas the NMDA receptor antagonist AP5, the AMPA/kainate receptor antagonist NBQX, or v...

  3. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    Harbison Carole E

    2007-02-01

    Full Text Available Abstract Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS, and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV. Feline aminopeptidase N (fAPN serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV, canine coronavirus, transmissible gastroenteritis virus (TGEV, and human coronavirus 229E (HCoV-229E. A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41, but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 ( Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.

  4. Deep sequencing of the olfactory epithelium reveals specific chemosensory receptors are expressed at sexual maturity in the European eel Anguilla anguilla.

    Science.gov (United States)

    Churcher, Allison M; Hubbard, Peter C; Marques, João Pedro; Canário, Adelino V M; Huertas, Mar

    2015-02-01

    Vertebrate genomes encode a diversity of G protein-coupled receptor (GPCR) that belong to large gene families and are used by olfactory systems to detect chemical cues found in the environment. It is not clear however, if individual receptors from these large gene families have evolved roles that are specific to certain life stages. Here, we used deep sequencing to identify differentially expressed receptor transcripts in the olfactory epithelia (OE) of freshwater, seawater and sexually mature male eels (Anguilla anguilla). This species is particularly intriguing because of its complex life cycle, extreme long-distance migrations and early-branching position within the teleost phylogeny. In the A. anguillaOE, we identified full-length transcripts for 13, 112, 6 and 38 trace amine-associated receptors, odorant receptors (OR) and type I and type II vomeronasal receptors (V1R and V2R). Most of these receptors were expressed at similar levels at different life stages and a subset of OR and V2R-like transcripts was more abundant in sexually mature males suggesting that ORs and V2R-like genes are important for reproduction. We also identified a set of GPCR signal transduction genes that were differentially expressed indicating that eels make use of different GPCR signal transduction genes at different life stages. The finding that a diversity of chemosensory receptors is expressed in the olfactory epithelium and that a subset is differentially expressed suggests that most receptors belonging to large chemosensory gene families have functions that are important at multiple life stages, while a subset has evolved specific functions at different life stages. © 2015 John Wiley & Sons Ltd.

  5. Molecular Characterization and Differential Expression of an Olfactory Receptor Gene Family in the White-Backed Planthopper Sogatella furcifera Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Ming He

    Full Text Available The white-backed planthopper, Sogatella furcifera, a notorious rice pest in Asia, employs host plant volatiles as cues for host location. In insects, odor detection is mediated by two types of olfactory receptors: odorant receptors (ORs and ionotropic receptors (IRs. In this study, we identified 63 SfurORs and 14 SfurIRs in S. furcifera based on sequences obtained from the head transcriptome and bioinformatics analysis. The motif-pattern of 130 hemiptera ORs indicated an apparent differentiation in this order. Phylogenetic trees of the ORs and IRs were constructed using neighbor-joining estimates. Most of the ORs had orthologous genes, but a specific OR clade was identified in S. furcifera, which suggests that these ORs may have specific olfactory functions in this species. Our results provide a basis for further investigations of how S. furcifera coordinates its olfactory receptor genes with its plant hosts, thereby providing a foundation for novel pest management approaches based on these genes.

  6. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol.

    Directory of Open Access Journals (Sweden)

    Meredith J Ezak

    Full Text Available We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of G alpha signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn, but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol.

  7. Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1

    Science.gov (United States)

    Kim, Soo-Kyung; Goddard, William A.

    2014-12-01

    Olfactory receptors (ORs) are responsible for mediating the sense of smell; they allow humans to recognize an enormous number of odors but the connection between binding and perception is not known. We predict the ensemble of low energy structures for the human OR1G1 (hOR1G1) and also for six other diverse ORs, using the G protein-coupled receptor Ensemble of Structures in Membrane BiLayer Environment complete sampling method that samples 13 trillion different rotations and tilts using four different templates to predict the 24 structures likely to be important in binding and activation. Our predicted most stable structures of hOR1G1 have a salt-bridge between the conserved D3.49 and K6.30 in the D(E)RY region, that we expect to be associated with an inactive form. The hOR1G1 structure also has specific interaction in transmembrane domains (TMD) 3-6 (E3.39 and H6.40), which is likely an important conformational feature for all hORs because of the 94 to 98 % conservation among all hOR sequences. Of the five ligands studied (nonanal, 9-decen-1-ol, 1-nonanol, camphor, and n-butanal), we find that the 4 expected to bind lead to similar binding energies with nonanol the strongest.

  8. Minute Impurities Contribute Significantly to Olfactory Receptor Ligand Studies: Tales from Testing the Vibration Theory

    OpenAIRE

    Paoli, M.; M?nch, D.; Haase, A.; Skoulakis, E.; Turin, L.; Galizia, C. G.

    2017-01-01

    Several studies have attempted to test the vibrational hypothesis of odorant receptor activation in behavioral and physiological studies using deuterated compounds as odorants. The results have been mixed. Here, we attempted to test how deuterated compounds activate odorant receptors using calcium imaging of the fruit fly antennal lobe. We found specific activation of one area of the antennal lobe corresponding to inputs from a specific receptor. However, upon more detailed analysis, we disco...

  9. Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes.

    Science.gov (United States)

    Grueber, Catherine E; Wallis, Graham P; Jamieson, Ian G

    2014-01-01

    Toll-like receptors (TLRs) are a family of conserved pattern-recognition molecules responsible for initiating innate and acquired immune responses. Because they play a key role in host defence, these genes have received increasing interest in the evolutionary and population genetics literature, as their variation represents a potential target of adaptive evolution. However, the role of pathogen-mediated selection (i.e. episodic positive selection) in the evolution of these genes remains poorly known and has not been examined outside of mammals. A recent increase in the number of bird species for which TLR sequences are available has enabled us to examine the selective processes that have influenced evolution of the 10 known avian TLR genes. Specifically, we tested for episodic positive selection to identify codons that experience purifying selection for the majority of their evolution, interspersed with bursts of positive selection that may occur only in restricted lineages. We included up to 23 species per gene (mean = 16.0) and observed that, although purifying selection was evident, an average of 4.5% of codons experienced episodic positive selection across all loci. For four genes in which sequence coverage traversed both the extracellular leucine-rich repeat region (LRR) and transmembrane/intracellular domains of the proteins, increased positive selection was observed at the extracellular domain, consistent with theoretical predictions. Our results provide evidence that episodic positive selection has played an important role in the evolution of most avian TLRs, consistent with the role of these loci in pathogen recognition and a mechanism of host-pathogen coevolution.

  10. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  11. Unveiling the participation of avian kinin ornithokinin and its receptors in the chicken inflammatory response.

    Science.gov (United States)

    Guabiraba, Rodrigo; Garrido, Damien; Bailleul, Geoffrey; Trotereau, Angélina; Pinaud, Mélanie; Lalmanach, Anne-Christine; Chanteloup, Nathalie K; Schouler, Catherine

    2017-06-01

    Vasoactive peptides are key early mediators of inflammation released through activation of different enzymatic systems. The mammalian kinin-kallikrein (K-KLK) system produces bradykinin (BK) through proteolytic cleavage of a kininogen precursor by enzymes named kallikreins. BK acts through specific ubiquitous G-protein coupled receptors (B1R and B2R) to participate in physiological processes and inflammatory responses, such as activation of mononuclear phagocytes. In chickens, the BK-like nonapeptide ornithokinin (OK) has been shown to promote intracellular calcium increase in embryonic fibroblasts and to be vasodilatory in vivo. Also, one of its receptors (B2R) was already cloned. However, the participation of chicken K-KLK system components in the inflammatory response remains unknown and was therefore investigated. We first showed that B1R, B2R and kininogen 1 (KNG1) are expressed in unstimulated chicken tissues and macrophages. We next showed that chicken B1R and B2R are expressed at transcript and protein levels in chicken macrophages and are upregulated by E. coli LPS or avian pathogenic E. coli (APEC) infection. Interestingly, exogenous OK induced internalization and degradation of OK receptors protein, notably B2R. Also, OK induced intracellular calcium increase and potentiated zymosan-induced ROS production and Dextran-FITC endocytosis by chicken macrophages. Exogenous OK itself did not promote APEC killing and had no pro-inflammatory effect. However, when combined with LPS or APEC, OK upregulated cytokine/chemokine gene expression and NO production by chicken macrophages. This effect was not blocked by canonical non-peptide B1R or B2R receptor antagonists but was GPCR- and PI3K/Akt-dependent. In vivo, pulmonary colibacillosis led to upregulation of OK receptors expression in chicken lungs and liver. Also, colibacillosis led to significant upregulation of OK precursor KNG1 expression in liver and in cultured hepatocytes (LMH). We therefore provide hitherto

  12. Carbachol-evoked suppression of excitatory neurotransmission in guinea-pig olfactory cortex slices is unlikely to involve an M4-muscarinic receptor subtype.

    OpenAIRE

    Das, B.; Libri, V.; Constanti, A.

    1992-01-01

    Depression of the electrically-evoked surface-negative field potential (N-Wave) by bath-superfusion of carbachol was measured in guinea-pig olfactory cortex slices maintained in vitro. The possibility that this response, previously proposed to be mediated via a presynaptic M1: muscarinic receptor, might in fact be due to M4 receptor activation, was investigated by testing the effectiveness of himbacine (a proposed M4-selective antagonist) on our cortical preparation. Himbacine (100 nM-1 micro...

  13. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Gui, Shun-Hua; Jiang, Hong-Bo; Xu, Li; Pei, Yu-Xia; Liu, Xiao-Qiang; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC 50 ) at the nanomolar range when expressed in Chinese hamster ovary cells. Consistent with its role as a neuromodulator, expression of BdTRP was detected in the central nervous system (CNS) of B. dorsalis, specifically in the local interneurons with cell bodies lateral to the antennal lobe. BdTRPR was found in the CNS, midgut and hindgut, but interestingly also in the antennae. To investigate the role of BdTRP and BdTRPR in olfaction behavior, adult flies were subjected to RNA interference, which led to a reduction in the antennal electrophysiological response and sensitivity to ethyl acetate in the Y-tube assay. Taken together, we demonstrate the impact of TRP/TRPR signaling on the modulation of the olfactory sensitivity in B. dorsalis. The result improve our understanding of olfactory processing in this agriculturally important pest insect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Neuromodulation of Olfactory Sensitivity in the Peripheral Olfactory Organs of the American Cockroach, Periplaneta americana

    Science.gov (United States)

    Jung, Je Won; Kim, Jin-Hee; Pfeiffer, Rita; Ahn, Young-Joon; Page, Terry L.; Kwon, Hyung Wook

    2013-01-01

    Olfactory sensitivity exhibits daily fluctuations. Several studies have suggested that the olfactory system in insects is modulated by both biogenic amines and neuropeptides. However, molecular and neural mechanisms underlying olfactory modulation in the periphery remain unclear since neuronal circuits regulating olfactory sensitivity have not been identified. Here, we investigated the structure and function of these signaling pathways in the peripheral olfactory system of the American cockroach, Periplaneta americana, utilizing in situ hybridization, qRT-PCR, and electrophysiological approaches. We showed that tachykinin was co-localized with the octopamine receptor in antennal neurons located near the antennal nerves. In addition, the tachykinin receptor was found to be expressed in most of the olfactory receptor neurons in antennae. Functionally, the effects of direct injection of tachykinin peptides, dsRNAs of tachykinin, tachykinin receptors, and octopamine receptors provided further support for the view that both octopamine and tachykinin modulate olfactory sensitivity. Taken together, these findings demonstrated that octopamine and tachykinin in antennal neurons are olfactory regulators in the periphery. We propose here the hypothesis that octopamine released from neurons in the brain regulates the release of tachykinin from the octopamine receptor neurons in antennae, which in turn modulates the olfactory sensitivity of olfactory receptor neurons, which house tachykinin receptors. PMID:24244739

  15. Neuromodulation of olfactory sensitivity in the peripheral olfactory organs of the American cockroach, Periplaneta americana.

    Directory of Open Access Journals (Sweden)

    Je Won Jung

    Full Text Available Olfactory sensitivity exhibits daily fluctuations. Several studies have suggested that the olfactory system in insects is modulated by both biogenic amines and neuropeptides. However, molecular and neural mechanisms underlying olfactory modulation in the periphery remain unclear since neuronal circuits regulating olfactory sensitivity have not been identified. Here, we investigated the structure and function of these signaling pathways in the peripheral olfactory system of the American cockroach, Periplaneta americana, utilizing in situ hybridization, qRT-PCR, and electrophysiological approaches. We showed that tachykinin was co-localized with the octopamine receptor in antennal neurons located near the antennal nerves. In addition, the tachykinin receptor was found to be expressed in most of the olfactory receptor neurons in antennae. Functionally, the effects of direct injection of tachykinin peptides, dsRNAs of tachykinin, tachykinin receptors, and octopamine receptors provided further support for the view that both octopamine and tachykinin modulate olfactory sensitivity. Taken together, these findings demonstrated that octopamine and tachykinin in antennal neurons are olfactory regulators in the periphery. We propose here the hypothesis that octopamine released from neurons in the brain regulates the release of tachykinin from the octopamine receptor neurons in antennae, which in turn modulates the olfactory sensitivity of olfactory receptor neurons, which house tachykinin receptors.

  16. Cannabinoid Receptor Type 1 Expression in the Developing Avian Retina: Morphological and Functional Correlation With the Dopaminergic System

    Directory of Open Access Journals (Sweden)

    Luzia da Silva Sampaio

    2018-03-01

    Full Text Available The avian retina has been used as a model to study signaling by different neuro- and gliotransmitters. It is unclear how dopaminergic and cannabinoid systems are related in the retina. Here we studied the expression of type 1 and 2 cannabinoid receptors (CB1 and CB2, as well as monoacylglycerol lipase (MAGL, the enzyme that degrades 2-arachidonoylglycerol (2-AG, during retina development. Our data show that CB1 receptor is highly expressed from embryonic day 5 (E5 until post hatched day 7 (PE7, decreasing its levels throughout development. CB1 is densely found in the ganglion cell layer (GCL and inner plexiform layer (IPL. CB2 receptor was also found from E5 until PE7 with a decrease in its contents from E9 afterwards. CB2 was mainly present in the lamination of the IPL at PE7. MAGL is expressed in all retinal layers, mainly in the IPL and OPL from E9 to PE7 retina. CB1 and CB2 were found both in neurons and glia cells, but MAGL was only expressed in Müller glia. Older retinas (PE7 show CB1 positive cells mainly in the INL and co-expression of CB1 and tyrosine hydroxylase (TH are shown in a few cells when both systems are mature. CB1 co-localized with TH and was heavily associated to D1 receptor labeling in primary cell cultures. Finally, cyclic AMP (cAMP was activated by the selective D1 agonist SKF38393, and inhibited when cultures were treated with WIN55, 212–2 (WIN in a CB1 dependent manner. The results suggest a correlation between the endocannabinoid and dopaminergic systems (DSs during the avian retina development. Activation of CB1 limits cAMP accumulation via D1 receptor activation and may influence embryological parameters during avian retina differentiation.

  17. Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity

    Science.gov (United States)

    Xu, Sen; Menken, Steph B. J.

    2007-01-01

    In lepidopterous larvae the maxillary palps contain a large portion of the sensory equipment of the insect. Yet, knowledge about the sensitivity of these cells is limited. In this paper a morphological, behavioral, and electrophysiological investigation of the maxillary palps of Yponomeuta cagnagellus (Lepidoptera: Yponomeutidae) is presented. In addition to thermoreceptors, CO2 receptors, and gustatory receptors, evidence is reported for the existence of two groups of receptor cells sensitive to plant volatiles. Cells that are mainly sensitive to (E)-2-hexenal and hexanal or to (Z)-3-hexen-1-ol and 1-hexanol were found. Interestingly, a high sensitivity for benzaldehyde was also found. This compound is not known to be present in Euonymus europaeus, the host plant of the monophagous Yponomeuta cagnagellus, but it is a prominent compound in Rosaceae, the presumed hosts of the ancestors of Y. cagnagellus. To elucidate the evolutionary history of this sensitivity, and its possible role in host shifts, feeding responses of three Yponomeuta species to benzaldehyde were investigated. The results confirm the hypothesis that the sensitivity to benzaldehyde evolved during the ancestral shift from Celastraceae to Rosaceae and can be considered an evolutionary relict, retained in the recently backshifted Celastraceae-specialist Y. cagnagellus. PMID:17372741

  18. Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Lánský, Petr; Rospars, J. P.

    2008-01-01

    Roč. 4, č. 4 (2008), s. 1-11 ISSN 1553-734X R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401; GA AV ČR(CZ) KJB100110701 Grant - others:-(FR) ECO-NET 12644PF; -(XE) HPMT-CT-2001-00244 Institutional research plan: CEZ:AV0Z50110509 Keywords : efficient coding * pheromone * receptor Subject RIV: FH - Neurology Impact factor: 5.895, year: 2008

  19. Tracking of unfamiliar odors is facilitated by signal amplification through anoctamin 2 chloride channels in mouse olfactory receptor neurons

    OpenAIRE

    Neureither, Franziska; Stowasser, Nadine; Frings, Stephan; M?hrlen, Frank

    2017-01-01

    Abstract Many animals follow odor trails to find food, nesting sites, or mates, and they require only faint olfactory cues to do so. The performance of a tracking dog, for instance, poses the question on how the animal is able to distinguish a target odor from the complex chemical background around the trail. Current concepts of odor perception suggest that animals memorize each odor as an olfactory object, a percept that enables fast recognition of the odor and the interpretation of its vale...

  20. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  1. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus.

    Directory of Open Access Journals (Sweden)

    Alan Soffan

    Full Text Available The red palm weevil (RPW, Rhynchophorus ferrugineus, one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus, which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco from R. ferrugineus (RferOrco and R. vulneratus (RvulOrco and examine the effects of RferOrco silencing (RNAi on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies.

  2. Olfactory receptors for a smell sensor: a comparative study of the electrical responses of rat I7 and human 17-40

    International Nuclear Information System (INIS)

    Alfinito, E; Millithaler, J-F; Reggiani, L

    2011-01-01

    In this paper, we explore the relevant electrical properties of two olfactory receptors (ORs), one from rat, OR I7, and the other from human, OR 17-40, which are of interest for the realization of smell nanobiosensors. The investigation compares existing experiments, coming from electrochemical impedance spectroscopy, with the theoretical expectations obtained from an impedance network protein analogue, recently developed. The changes in the response due to the sensing action of the proteins are correlated with the conformational change undergone by the single protein. The satisfactory agreement between theory and experiments points to a promising development of a new class of nanobiosensors based on the electrical properties of sensing proteins

  3. Olfactory dreams, olfactory interest, and imagery : Relationships to olfactory memory

    OpenAIRE

    Arshamian, Artin

    2007-01-01

    Existing evidence for olfactory imagery is mixed and mainly based on reports from hallucinations and volitional imagery. Using a questionnaire, Stevenson and Case (2005) showed that olfactory dreams provided a good source for olfactory imagery studies. This study applied an extended version of the same questionnaire and examined olfactory dreams and their relation to real-life experienced odors, volitional imagery, and olfactory interest. Results showed that olfactory dreams were similar to r...

  4. The chemosensory basis for behavioral divergence involved in sympatric host shifts. I. Characterizing olfactory receptor neuron classes responding to key host volatiles.

    Science.gov (United States)

    Olsson, Shannon B; Linn, Charles E; Roelofs, Wendell L

    2006-03-01

    The recent shift of Rhagoletis pomonella from its native host hawthorn to introduced, domestic apple has been implicated as an example of sympatric speciation. Recent studies suggest that host volatile preference might play a fundamental role in host shifts and subsequent speciation in this group. Single sensillum electrophysiology was used to test a proposed hypothesis that differences in R. pomonella olfactory preference are due to changes in the number or odor specificity of olfactory receptor neurons. Individuals were analyzed from apple, hawthorn, and flowering dogwood-origin populations, as well as from the blueberry maggot, Rhagoletis mendax Curran (an outgroup). Eleven compounds were selected as biologically relevant stimuli from previous electroantennographic/behavioral studies of the three R. pomonella populations to host fruit volatiles. Cluster analysis of 99 neuron responses showed that cells from all tested populations could be grouped into the same five classes, ranging from those responding to one or two volatiles to those responding to several host volatiles. Topographical mapping also indicated that antennal neuron locations did not differ by class or fly taxa. Our results do not support the hypothesis that differences in host preference among Rhagoletis populations are a result of alterations in the number or class of receptor neurons responding to host volatiles.

  5. The Biogenic Amine Tyramine and its Receptor (AmTyr1 in Olfactory Neuropils in the Honey Bee (Apis mellifera Brain

    Directory of Open Access Journals (Sweden)

    Irina T. Sinakevitch

    2017-10-01

    Full Text Available This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1 in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes, tritocerebrum and subesophageal ganglion (SEG. Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs. In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release.

  6. Expression and evolutionary divergence of the non-conventional olfactory receptor in four species of fig wasp associated with one species of fig

    Directory of Open Access Journals (Sweden)

    Xiao Jinhua

    2009-02-01

    Full Text Available Abstract Background The interactions of fig wasps and their host figs provide a model for investigating co-evolution. Fig wasps have specialized morphological characters and lifestyles thought to be adaptations to living in the fig's syconium. Although these aspects of natural history are well documented, the genetic mechanism(s underlying these changes remain(s unknown. Fig wasp olfaction is the key to host-specificity. The Or83b gene class, an unusual member of olfactory receptor family, plays a critical role in enabling the function of conventional olfactory receptors. Four Or83b orthologous genes from one pollinator (PFW (Ceratosolen solmsi and three non-pollinator fig wasps (NPFWs (Apocrypta bakeri, Philotrypesis pilosa and Philotrypesis sp. associated with one species of fig (Ficus hispida can be used to better understand the molecular mechanism underlying the fig wasp's adaptation to its host. We made a comparison of spatial tissue-specific expression patterns and substitution rates of one orthologous gene in these fig wasps and sought evidence for selection pressures. Results A newly identified Or83b orthologous gene was named Or2. Expressions of Or2 were restricted to the heads of all wingless male fig wasps, which usually live in the dark cavity of a fig throughout their life cycle. However, expressions were widely detected in the antennae, legs and abdomens of all female fig wasps that fly from one fig to another for oviposition, and secondarily pollination. Weak expression was also observed in the thorax of PFWs. Compared with NPFWs, the Or2 gene in C. solmsi had an elevated rate of substitutions and lower codon usage. Analyses using Tajima's D, Fu and Li's D* and F* tests indicated a non-neutral pattern of nucleotide variation in all fig wasps. Unlike in NPFWs, this non-neutral pattern was also observed for synonymous sites of Or2 within PFWs. Conclusion The sex- and species-specific expression patterns of Or2 genes detected beyond

  7. Avian sarcoma and leukosis virus-receptor interactions: From classical genetics to novel insights into virus-cell membrane fusion

    International Nuclear Information System (INIS)

    Barnard, R.J.O.; Elleder, D.; Young, J.A.T.

    2006-01-01

    For over 40 years, avian sarcoma and leukosis virus (ASLV)-receptor interactions have been employed as a useful model system to study the mechanism of retroviral entry into cells. Pioneering studies on this system focused upon the genetic basis of the differential susceptibilities of different lines of chickens to infection by distinct subgroups of ASLV. These studies led to the definition of three distinct autosomal recessive genes that were predicted to encode cellular receptors for different viral subgroups. They also led to the concept of viral interference, i.e. the mechanism by which infection by one virus can render cells resistant to reinfection by other viruses that use the same cellular receptor. Here, we review the contributions that analyses of the ASLV-receptor system have made in unraveling the mechanisms of retroviral entry into cells and focus on key findings such as identification and characterization of the ASLV receptor genes and the subsequent elucidation of an unprecedented mechanism of virus-cell fusion. Since many of the initial findings on this system were published in the early volumes of Virology, this subject is especially well suited to this special anniversary issue of the journal

  8. Carbachol-evoked suppression of excitatory neurotransmission in guinea-pig olfactory cortex slices is unlikely to involve an M4-muscarinic receptor subtype.

    Science.gov (United States)

    Das, B; Libri, V; Constanti, A

    1992-01-01

    Depression of the electrically-evoked surface-negative field potential (N-Wave) by bath-superfusion of carbachol was measured in guinea-pig olfactory cortex slices maintained in vitro. The possibility that this response, previously proposed to be mediated via a presynaptic M1: muscarinic receptor, might in fact be due to M4 receptor activation, was investigated by testing the effectiveness of himbacine (a proposed M4-selective antagonist) on our cortical preparation. Himbacine (100 nM-1 microM) had no effect on the N-wave potential alone, but it induced a clear competitive-type inhibition of carbachol effects. Schild plot analysis (regression slope constrained to unity) of pooled data yielded a pA2 value of 7.2 for this antagonist (n = 7 slices). This value accords more with that expected for the interaction of himbacine with M1 receptors (approximately 7.2) than with functionally expressed M4 receptors (approximately 8.5-8.5). We therefore conclude that M4-type muscarinic receptors are unlikely to be involved in mediating this presynaptic carbachol response.

  9. Naturally occurred frame-shift mutations in the tvb receptor gene are responsible for decreased susceptibility to subgroups B, D, and E avian leukosis virus infection in chicken

    Science.gov (United States)

    The group of highly related avian leukosis viruses (ALVs) in chickens were thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells...

  10. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  11. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses.

    Directory of Open Access Journals (Sweden)

    Xuyong Li

    2014-11-01

    Full Text Available H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific "internal-gene-combination" predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as "vehicles" to deliver different subtypes of influenza viruses from avian species to humans.

  12. Involvement of glutamatergic N-methyl-d-aspartate receptors in the expression of increased head-dipping behaviors in the hole-board tests of olfactory bulbectomized mice.

    Science.gov (United States)

    Hirose, Noritaka; Saitoh, Akiyoshi; Kamei, Junzo

    2016-10-01

    Olfactory bulbectomized (OB) mice produce agitated anxiety-like behaviors in the hole-board test, which was expressed by an increase in head-dipping counts and a decrease in head-dipping latencies. However, the associated mechanisms remain unclear. In the present study, MK-801 (10, 100μg/kg), a selective N-methyl-d-aspartate (NMDA) receptor antagonist, significantly and dose-dependently suppressed the increased head-dipping behaviors in OB mice, without affecting sham mice. Similar results were obtained with another selective NMDA receptor antagonist D-AP5 treatment in OB mice. On the other hand, muscimol, a selective aminobutyric acid type A (GABAA) receptor agonist produced no effects on these hyperemotional behaviors in OB mice at a dose (100μg/kg) that produced anxiolytic-like effects in sham mice. Interestingly, glutamine contents and glutamine/glutamate ratios were significantly increased in the amygdala and frontal cortex of OB mice compared to sham mice. Based on these results, we concluded that the glutamatergic NMDA receptors are involved in the expression of increased head-dipping behaviors in the hole-board tests of OB mice. Accordingly, the changes in glutamatergic transmission in frontal cortex and amygdala may play important roles in the expression of these abnormal behaviors in OB mice. Copyright © 2016. Published by Elsevier B.V.

  13. Expression of transient receptor potential channel vanilloid (TRPV) 1–4, melastin (TRPM) 5 and 8, and ankyrin (TRPA1) in the normal and methimazole-treated mouse olfactory epithelium.

    Science.gov (United States)

    Nakashimo, Yousuke; Takumida, Masaya; Fukuiri, Takashi; Anniko, Matti; Hirakawa, Katsuhiro

    2010-11-01

    It is suggested that TRPV1, 2, 3, and 4, TRPM5 and 8, and TRPA1 may play several roles in the olfactory epithelium (OE), contributing to olfactory chemosensation, olfactory adaptation, olfactory–trigeminal interaction, and OE fluid homeostasis. In patients with olfactory disturbance, TRPV1 and TRPM8 may be closely related to a high rate of recognition of curry and menthol odors, while TRPV2 may also play a crucial role in the regeneration of olfactory receptor neurons. Expression of TRPV1–4, TRPM5 and 8, and TRPA1 in the normal and methimazole-treated mouse OE was analyzed. The localization of TRPV1–4, TRPM5 and 8, and TRPA1 in the OE of normal and methimazole-treated CBA/J mice was investigated by immunohistochemistry. Normal OE showed a positive immunofluorescent reaction to TRPV1–4, TRPM5 and 8, and TRPA1. In lamina propria, the nerve fibers displayed TRPV 1, 2, and 3, TRPM8 and TRPA1. In the pathological condition, the expression of TRPV3, TRPV4, TRPM5, and TRPA1 was markedly reduced and took a long time to recover. In contrast, expression of TRPM8 was scarcely affected, even in the pathological condition, while TRPV1 and TRPV2 showed early recovery following methimazole treatment.

  14. Olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Rashid, D.; Ahmed, B.; Malik, S.M.; Khan, M.

    2000-01-01

    Olfactory neuroblastoma/esthesioneuroblastoma in a rare malignant tumour of the olfactory neuroepithelium. This is a report of 5 cases managed over the last 10 years at Combined Military Hospital, Rawalpindi. Age of the patients at presentation ranged from 27 to 70 years. The main symptoms were unilateral nasal obstruction and intermittent epistaxis. The mean duration of symptoms at presentation was 11 months. Two patients were staged as B and 3 as C at presentation. The stage of the disease correlated with the duration of symptoms. All the cases were diagnosed on histopathology. Three were offered combination of surgery and radiotherapy. One patient received only surgical treatment and one patient received radiotherapy and chemotherapy. Combination of surgery and radiotherapy showed best results. (author)

  15. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: Effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Fang; Fang, Cheng [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States); Schnittke, Nikolai [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Schwob, James E. [Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Ding, Xinxin, E-mail: xding@wadsworth.org [Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); School of Public Health, State University of New York at Albany, NY 12201 (United States)

    2013-11-01

    We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24 h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasal cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr{sup T2}::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence. - Highlights: • The herbicide dichlobenil (DCBN) can damage olfactory epithelium stem cells. • Another olfactory toxicant, methimazole, leaves the olfactory stem cells intact. • DCBN, but not methimazole, induces a prolonged increase in nasal IL-6 levels. • Dexamethasone

  16. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily

    Czech Academy of Sciences Publication Activity Database

    Elleder, Daniel; Stepanets, Volodymyr; Melder, D. C.; Šenigl, Filip; Geryk, Josef; Pajer, Petr; Plachý, Jiří; Hejnar, Jiří; Federspiel, M. J.

    2005-01-01

    Roč. 79, č. 16 (2005), s. 10408-10419 ISSN 0022-538X R&D Projects: GA ČR(CZ) GA523/04/0489 Grant - others:National Institutes of Health(US) AI48682 Institutional research plan: CEZ:AV0Z50520514 Keywords : retrovirus receptor * avian sarcoma and leukosis viruses * butyrophilin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.178, year: 2005

  17. Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning.

    Science.gov (United States)

    Matsunaga, Eiji; Suzuki, Kenta; Kobayashi, Tetsuya; Okanoya, Kazuo

    2011-12-01

    Mineralocorticoid receptor is the receptor for corticosteroids such as corticosterone or aldosterone. Previously, we found that mineralocorticoid receptor was highly expressed in song nuclei of a songbird, Bengalese finch (Lonchura striata var. domestica). Here, to examine the relationship between mineralocorticoid receptor expression and avian vocal learning, we analyzed mineralocorticoid receptor expression in the developing brain of another vocal learner, budgerigar (Melopsittacus undulatus) and non-vocal learners, quail (Coturnix japonica) and ring dove (Streptopelia capicola). Mineralocorticoid receptor showed vocal control area-related expressions in budgerigars as Bengalese finches, whereas no such mineralocorticoid receptor expressions were seen in the telencephalon of non-vocal learners. Thus, these results suggest the possibility that mineralocorticoid receptor plays a role in vocal development of parrots as songbirds and that the acquisition of mineralocorticoid receptor expression is involved in the evolution of avian vocal learning. © 2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.

  18. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice.

    Directory of Open Access Journals (Sweden)

    Shigeki Moriguchi

    Full Text Available Dehydroepiandrosterone (DHEA is the most abundant neurosteroid synthesized de novo in the central nervous system. We previously reported that stimulation of the sigma-1 receptor by DHEA improves cognitive function by activating calcium/calmodulin-dependent protein kinase II (CaMKII, protein kinase C and extracellular signal-regulated kinase in the hippocampus in olfactory bulbectomized (OBX mice. Here, we asked whether DHEA enhances neurogenesis in the subgranular zone of the hippocampal dentate gyrus (DG and improves depressive-like behaviors observed in OBX mice. Chronic treatment with DHEA at 30 or 60 mg/kg p.o. for 14 days significantly improved hippocampal LTP impaired in OBX mice concomitant with increased CaMKII autophosphorylation and GluR1 (Ser-831 phosphorylation in the DG. Chronic DHEA treatment also ameliorated depressive-like behaviors in OBX mice, as assessed by tail suspension and forced swim tests, while a single DHEA treatment had no affect. DHEA treatment also significantly increased the number of BrdU-positive neurons in the subgranular zone of the DG of OBX mice, an increase inhibited by treatment with NE-100, a sigma-1 receptor antagonist. DHEA treatment also significantly increased phosphorylation of Akt (Ser-473, Akt (Ser-308 and ERK in the DG. Furthermore, GSK-3β (Ser-9 phosphorylation increased in the DG of OBX mice possibly accounting for increased neurogenesis through Akt activation. Finally, we confirmed that DHEA treatment of OBX mice increases the number of BrdU-positive neurons co-expressing β-catenin, a downstream GSK-3βtarget. Overall, we conclude that sigma-1 receptor stimulation by DHEA ameliorates OBX-induced depressive-like behaviors by increasing neurogenesis in the DG through activation of the Akt/GSK-3β/β-catenin pathway.

  19. Assessment of Olfactory Memory in Olfactory Dysfunction.

    Science.gov (United States)

    Kollndorfer, Kathrin; Reichert, Johanna; Braunsteiner, Josephine; Schöpf, Veronika

    2017-01-01

    To assess all clinically relevant components of olfactory perception, examinations for olfactory sensitivity, discrimination, and identification are performed. Besides the standard perceptual test battery, episodic olfactory memory might offer additional information about olfactory abilities relative to these standard clinical tests. As both olfactory deficits and memory deficits are early symptoms in neurodegenerative disorders, olfactory memory may be of particular interest. However, to date little is known about episodic olfactory memory performance in patients with decreased olfactory function. This study includes the investigation of olfactory memory performance in 14 hyposmic patients (8 female, mean age 52.6 years) completing two episodic odor memory tests (Sniffin' Test of Odor Memory and Odor Memory Test). To control for a general impairment in memory function, a verbal and a figural memory test were carried out. A regression model with multiple predictors was calculated for both odor memory tests separately. Odor identification was identified as the only significant predictor for both odor memory tasks. From our results, we conclude that currently available olfactory memory tests are highly influenced by odor identification abilities, implying the need for the development and validation of additional tests in this field which could serve as additional olfactory perception variables for clinical assessment.

  20. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues

    Science.gov (United States)

    Gonzalez, Francisco; Witzgall, Peter; Walker, William B.

    2017-01-01

    Insects use chemical signals to find mates, food and oviposition sites. The main chemoreceptor gene families comprise odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). Understanding the evolution of these receptors as well as their function will assist in advancing our knowledge of how chemical stimuli are perceived and may consequently lead to the development of new insect management strategies. Tortricid moths are important pests in horticulture, forestry and agriculture around the globe. Here, we characterize chemoreceptors from the three main gene families of three economically important tortricids, based on male antennal transcriptomes using an RNA-Seq approach. We identified 49 ORs, 11 GRs and 23 IRs in the green budworm moth, Hedya nubiferana; 49 ORs, 12 GRs and 19 IRs in the beech moth, Cydia fagiglandana; and 48 ORs, 11 GRs and 19 IRs in the pea moth, Cydia nigricana. Transcript abundance estimation, phylogenetic relationships and molecular evolution rate comparisons with deorphanized receptors of Cydia pomonella allow us to hypothesize conserved functions and therefore candidate receptors for pheromones and kairomones. PMID:28150741

  1. Differential modulation of avian β-defensin and Toll-like receptor expression in chickens infected with infectious bronchitis virus.

    Science.gov (United States)

    Xu, Yang; Zhang, Tingting; Xu, Qianqian; Han, Zongxi; Liang, Shuling; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2015-11-01

    The host innate immune response either clears invading viruses or allows the adaptive immune system to establish an effective antiviral response. In this study, both pathogenic (passage 3, P3) and attenuated (P110) infectious bronchitis virus (IBV) strains were used to study the immune responses of chicken to IBV infection. Expression of avian β-defensins (AvBDs) and Toll-like receptors (TLRs) in 16 tissues of chicken were compared at 7 days PI. The results showed that P3 infection upregulated the expression of AvBDs, including AvBD2, 4, 5, 6, 9, and 12, while P110 infection downregulated the expression of AvBDs, including AvBD3, 4, 5, 6, and 9 in most tissues. Meanwhile, the expression level of several TLRs showed a general trend of upregulation in the tissues of P3-infected chickens, while they were downregulated in the tissues of P110-infected chickens. The result suggested that compared with the P110 strain, the P3 strain induced a more pronounced host innate immune response. Furthermore, we observed that recombinant AvBDs (including 2, 6, and 12) demonstrated obvious anti-viral activity against IBV in vitro. Our findings contribute to the proposal that IBV infection induces an increase in the messenger RNA (mRNA) expression of some AvBDs and TLRs, which suggests that AvBDs may play significant roles in the resistance of chickens to IBV replication.

  2. Heat and oxidative stress alter the expression of orexin and its related receptors in avian liver cells.

    Science.gov (United States)

    Greene, Elizabeth; Khaldi, Stephanie; Ishola, Peter; Bottje, Walter; Ohkubo, Takeshi; Anthony, Nicholas; Dridi, Sami

    2016-01-01

    Orexins (A and B) or hypocretins (1 and 2) are hypothalamic orexigenic neuropeptides that are involved in the regulation of several physiological processes in mammals. Recently, orexin has been shown to activate the hypothalamic-pituitary-adrenal (HPA) stress axis and emerging evidences identify it as a stress modulator in mammals. However, the regulation of orexin system by stress itself remains unclear. Here, we investigate the effects of heat, 4-Hydroxynonenal (4-HNE) and hydrogen peroxide (H2O2) stress on the hepatic expression of orexin (ORX) and its related receptors (ORXR1/2) in avian species. Using in vivo and in vitro models, we found that heat stress significantly down-regulated ORX and ORXR1/2 mRNA and protein abundances in quail liver and LMH cells. H2O2, however, decreased ORX protein and increased ORX mRNA levels in a dose dependent manner (Porexin mRNA and protein levels suggests that H2O2 treatment modulates post-transcriptional mechanisms. 4-HNE had a biphasic effect on orexin system expression, with a significant up-regulation at low doses (10 and 20μM) and a significant down-regulation at a high dose (30μM). Taken together, our data indicated that hepatic orexin system could be a molecular signature in the heat and oxidative stress response. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Physical Variables in the Olfactory Stimulation Process

    Science.gov (United States)

    Tucker, Don

    1963-01-01

    Electrical recording from small twigs of nerve in a tortoise showed that olfactory, vomeronasal, and trigeminal receptors in the nose are responsive to various odorants. No one kind of receptor was most sensitive to all odorants. For controlled stimulation, odorant was caused to appear in a stream of gas already flowing through the nose. Of the parameters definable at the naris, temperature, relative humidity, and nature of inert gas had little effect on olfactory responses to amyl acetate, whereas odorant species, odorant concentration, and volume flow rate effectively determined the responses of all nasal chemoreceptors. An intrinsic variable of accessibility to the receptors, particularly olfactory, was demonstrated. Flow dependence of chemoreceptor responses is thought to reflect the necessity for delivery of odorant molecules to receptor sites. Since the olfactory receptors are relatively exposed, plateauing of the response with flow rate for slightly soluble odorants suggests an approach to concentration equilibrium in the overlying mucus with that in the air entering the naris. Accordingly, data for responses to amyl acetate were fitted with Beidler's (1954) taste equation for two kinds of sites being active. The requirement for finite aqueous solubility, if true, suggests substitution of aqueous solutions for gaseous solutions. A suitable medium was found and results conformed to expectations. Olfactory receptors were insensitive to variation of ionic strength, pH, and osmotic pressure. PMID:13994681

  4. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    2015-04-01

    Full Text Available Although modern baleen whales (Mysticeti retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals.

  5. Odorants suppress T- and L-type Ca2+ currents in olfactory receptor cells by shifting their inactivation curves to a negative voltage.

    Science.gov (United States)

    Kawai, F

    1999-12-30

    Mechanisms underlying suppression of T- and L-type Ca2+ currents (I(Ca,T) and I(Ca,L)) by odorants were investigated in newt olfactory receptor cells (ORCs) using the whole-cell version of the patch-clamp technique. Under voltage clamp, odorants (amyl acetate, limonene and acetophenone) reversibly suppressed I(Ca,T) and I(Ca, L). These currents disappeared completely within 150 ms following amyl acetate puffs, and recovered in approximately 1 s after the washout. Hyperpolarization of the membrane greatly relieved the odorant block of I(Ca,T) and I(Ca,L). The activation curves of both currents were not changed significantly by odorants, while their inactivation curves were shifted to negative voltages. Half-inactivation voltages of I(Ca,T) were - 66 mV (control), - 102 mV (amyl acetate), - 101 mV (limonene) and - 105 mV (acetophenone) (all 0.3 mM); those of I(Ca,L) were -33 mV (control), - 61 mV (amyl acetate), - 59 mV (limonene), and - 63 mV (acetophenone) (all 0.3 mM). These phenomena are similar to the effects of local anesthetics on I(Ca) in various preparations and also similar to the effects of odorants on I(Na) in ORCs, suggesting that these types of suppression are caused by the same mechanism.

  6. Evidence of a correlation of estrogen receptor level and avian osteoclast estrogen responsiveness.

    Science.gov (United States)

    Pederson, L; Kremer, M; Foged, N T; Winding, B; Ritchie, C; Fitzpatrick, L A; Oursler, M J

    1997-05-01

    Isolated osteoclasts from 5-week-old chickens respond to estradiol treatment in vitro with decreased resorption activity, increased nuclear proto-oncogene expression, and decreased lysosomal enzyme secretion. This study examines osteoclasts from embryonic chickens and egg-laying hens for evidence of estrogen responsiveness. Although osteoclasts from both of these sources express estrogen receptor mRNA and protein, estradiol treatment had no effect on resorption activity. In contrast to the lack of effect on resorption, estradiol treatment for 30 minutes resulted in steady-state mRNA levels of c-fos and c-jun increasing in osteoclasts from embryonic chickens and decreasing in osteoclasts from egg-laying hens. These data suggest that a nuclear proto-oncogene response may not be involved in estradiol-mediated decreased osteoclast resorption activity. To examine the influence of circulating estrogen on osteoclast estrogen responsiveness, 5-week-old chickens were injected with estrogen for 4 days prior to sacrifice. Estradiol treatment of osteoclasts from these chickens did not decrease resorption activity in vitro. Transfection of an estrogen receptor expression vector into osteoclasts from the estradiol-injected chickens and egg-laying hens restored estrogen responsiveness. Osteoclasts from 5-week-old chickens and estradiol treated 5-week-old chickens transfected with the estrogen receptor expression vector contained significantly higher levels of estrogen receptor protein and responded to estradiol treatment by decreasing secretion of cathepsins B and L and tartrate-resistant acid phosphatase. In contrast, osteoclasts from embryonic chickens, egg-laying hens, and estradiol-treated 5-week-old chickens either untransfected or transfected with an empty expression vector did not respond similarly. These data suggest that modulation of osteoclast estrogen responsiveness may be controlled by changes in the osteoclast estrogen receptor levels.

  7. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    OpenAIRE

    Wilson, Rachel I.

    2013-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  8. NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning.

    Science.gov (United States)

    Gao, Meng; Lengersdorf, Daniel; Stüttgen, Maik C; Güntürkün, Onur

    2018-05-02

    Extinction learning is an essential mechanism that enables constant adaptation to ever-changing environmental conditions. The underlying neural circuit is mostly studied with rodent models using auditory cued fear conditioning. In order to uncover the variant and the invariant neural properties of extinction learning, we adopted pigeons as an animal model in an appetitive sign-tracking paradigm. The animals firstly learned to respond to two conditioned stimuli in two different contexts (CS-1 in context A and CS-2 in context B), before conditioned responses to the stimuli were extinguished in the opposite contexts (CS-1 in context B and CS-2 in context A). Subsequently, responding to both stimuli was tested in both contexts. Prior to extinction training, we locally injected the N-methyl-d-aspartate receptor (NMDAR) antagonist 2-Amino-5-phosphonovaleric acid (APV) in either the amygdala or the (pre)motor arcopallium to investigate their involvement in extinction learning. Our findings suggest that the encoding of extinction memory required the activation of amygdala, as visible by an impairment of extinction acquisition by concurrent inactivation of local NMDARs. In contrast, consolidation and subsequent retrieval of extinction memory recruited the (pre)motor arcopallium. Also, the inactivation of arcopallial NMDARs induced a general motoric slowing during extinction training. Thus, our results reveal a double dissociation between arcopallium and amygdala with respect to acquisition and consolidation of extinction, respectively. Our study therefore provides new insights on the two key components of the avian extinction network and their resemblance to the data obtained from mammals, possibly indicating a shared neural mechanism underlying extinction learning shaped by evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells.

    Science.gov (United States)

    Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J

    2007-04-25

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.

  10. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  11. Evolution of olfaction in non-avian theropod dinosaurs and birds.

    Science.gov (United States)

    Zelenitsky, Darla K; Therrien, François; Ridgely, Ryan C; McGee, Amanda R; Witmer, Lawrence M

    2011-12-22

    Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction.

  12. Quality coding by neural populations in the early olfactory pathway: analysis using information theory and lessons for artificial olfactory systems.

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    Full Text Available In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.

  13. Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task.

    Science.gov (United States)

    Souza, Rimenez R; Dal Bó, Silvia; de Kloet, E Ronald; Oitzl, Melly S; Carobrez, Antonio P

    2014-04-01

    There is general agreement that the substantial modification in memory and motivational states exerted by corticosteroids after a traumatic experience is mediated in complementary manner by the mineralocorticoid (MR) and glucocorticoid (GR) receptors. Here we tested the hypothesis that pharmacological manipulation of MR activity would affect behavioral strategy and information storage in an olfactory fear conditioning (OFC) task. Male Wistar rats were submitted to the OFC with different training intensities. We observed that following high intensity OFC acquisition, a set of defensive coping strategies, which includes avoidance and risk assessment behaviors, was elicited when subjects were exposed to the conditioned stimulus (CS) 48 h later. In addition, following either OFC acquisition or retrieval (CS-I test) a profound corticosterone secretion was also detected. Systemic administration of the MR antagonist spironolactone altered the behavioral coping style irrespective the antagonist was administered 60 min prior to the acquisition or before the retrieval session. Surprisingly, the MR agonist fludrocortisone given 60 min prior to acquisition or retrieval of OFC had similar effects as the antagonist. In addition, post-training administration of fludrocortisone, following a weak training procedure, facilitated the consolidation of OFC. Fludrocortisone rather than spironolactone reduced serum corticosterone levels, suggesting that, at least in part, the effects of the MR agonist may derive from additional GR-mediated HPA-axis suppression. In conclusion, the present study suggests the involvement of the MR in the fine-tuning of behavioral adaptation necessary for optimal information storage and expression, as revealed by the marked alterations in the risk assessment behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Accumulation of [35S]taurine in peripheral layers of the olfactory bulb

    International Nuclear Information System (INIS)

    Quinn, M.R.; Wysocki, C.J.; Sturman, J.A.; Wen, G.Y.

    1981-01-01

    Accumulation of [ 35 S]taurine in the laminae of the olfactory bulb of the adult cat, rat, mouse and rabbit was examined autoradiographically. [ 35 S]Taurine was administered either i.p. or i.v. and olfactory bulbs were excised 24 h post-injection. High concentrations of [ 35 S]taurine were restricted to the olfactory nerve and glomerular layers of the olfactory bulb in all species examined. Olfactory neurons are continuously renewed and the results obtained suggest that taurine may have an important role in olfactory receptor axons. (Auth.)

  15. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  16. Avian and mammalian receptors for 1,25-dihydroxyvitamin D/sub 3/: in vitro translation to characterize size and hormone-dependent regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsdorf, D.J.; Pike, J.W.; Haussler, M.R.

    1987-01-01

    In vitro translation of cellular poly(A)/sup +/ RNA coupled with immunoprecipitation was developed as a technique for characterizing 1,25-dihydroxyvitamin D/sub 3/ (1,25-(OH)/sub 2/D/sub 3/) receptors and assessing receptor mRNA activity. Cell-free translation of poly(A)/sup +/ RNA isolated from chicken intestine revealed two immunoprecipitable forms of avian receptor at 60 kDa and 58 kDa. 1,25-(OH)/sub 2/D/sub 3/ receptors were also synthesized in vitro employing poly(A)/sup +/ RNA obtained from several cultured mammalian cell lines. Selective immunoprecipitation revealed a single form of receptor at 54 kDa in mouse fibroblasts (3T6) and pig kidney cells (LLC-PK/sub 1/) and a 52-kDa species in human breast carcinoma (T47D). Each of these in vitro translated mammalian 1,25-(OH)/sub 2/D/sub 3/ receptors migrated identically with its cellular counterpart that was synthesized in vivo employing metabolic labeling of cell protein with (/sup 35/S)methionine. These results are consistent with the conclusions that 1,25-(OH)/sub 2/D/sub 3/ receptors are protein species ranging from 52 to 60 kDa and that, though their functional and immunological domains have been evolutionarily conserved, an inverse relationship apparently exists between phylogenetic status and receptor mass. The data also support the hypothesis that the presence of 1,25-(OH)/sub 2/D/sub 3/ leads to a significant increase in receptor mRNA activity in 3T6 cells, indicative of receptor autoregulation.

  17. Avian anemia's

    Directory of Open Access Journals (Sweden)

    Raukar Jelena

    2005-01-01

    Full Text Available This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematological parameters for every single avian species.

  18. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae

    NARCIS (Netherlands)

    Qiu, Y.T.; Loon, van J.J.A.; Takken, W.; Meijerink, J.; Smid, H.M.

    2006-01-01

    Olfactory receptor neurons (ORNs) in the antenna of insects serve to encode odors in action potential activity conducted to the olfactory lobe of the deuterocerebrum. We performed an analysis of the electrophysiological responses of olfactory neurons in the antennae of the female malaria mosquito

  19. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets.

    Science.gov (United States)

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2016-07-15

    Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Phylogenic aspects of the amphibian dual olfactory system.

    Science.gov (United States)

    Taniguchi, Kazumi; Saito, Shouichiro; Oikawa, Toshihiro; Taniguchi, Kazuyuki

    2008-01-01

    The phylogenic significance of the subdivision of dual olfactory system is reviewed mainly on the basis of our findings by electron microscopy and lectin histochemistry in the three amphibian species. The dual olfactory system is present in common in these species and consists of the projection from the olfactory epithelium (OE) to the main olfactory bulb (MOB) and that from the vomeronasal epithelium (VNE) to the accessory olfactory bulb (AOB). The phylogenic significance of subdivisions in the dual olfactory system in the amphibian must differently be interpreted. The subdivision of the MOB into its dorsal region (D-MOB) and ventral region (V-MOB) in Xenopus laevis must be attributed to the primitive features in their olfactory receptors. The middle cavity epithelium lining the middle cavity of this frog possesses both ciliated sensory cells and microvillous sensory cells, reminding the OE in fish. The subdivision of the AOB into the rostral (R-AOB) and caudal part (C-AOB) in Bufo japonicus formosus must be regarded as an advanced characteristic. The lack of subdivisions in both MOB and AOB in Cynops pyrrhogaster may reflect their phylogenic primitiveness. Since our lectin histochemistry to detect glycoconjugates expressed in the olfactory pathway reveals the subdivisions in the dual olfactory system in the amphibian, the glycoconjugates may deeply participate in the organization and function of olfactory pathways in phylogeny.

  1. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  2. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Plachý, Jiří; Kučerová, Dana; Šenigl, Filip; Vinkler, M.; Hejnar, Jiří

    2016-01-01

    Roč. 11, č. 3 (2016), e0150589-e0150589 E-ISSN 1932-6203 R&D Projects: GA MŠk LO1419; GA ČR GA13-30983S Institutional support: RVO:68378050 Keywords : avian leukosis virus * NHE1 * Genetic Diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  3. Glutamate Receptor Antagonist Infusions into the Basolateral and Medial Amygdala Reveal Differential Contributions to Olfactory vs. Context Fear Conditioning and Expression

    Science.gov (United States)

    Walker, David L.; Paschall, Gayla Y.; Davis, Michael

    2005-01-01

    The basolateral amygdala's involvement in fear acquisition and expression to visual and auditory stimuli is well known. The involvement of the basolateral and other amygdala areas in fear acquisition and expression to stimuli of other modalities is less certain. We evaluated the contribution of the basolateral and medial amygdala to olfactory and…

  4. Identification of the western tarnished plant bug (lygus hesperus) olfactory co-receptor orco: expression profile and confirmation of atypical membrane topology

    Science.gov (United States)

    Lygus hesperus (western tarnished plant bug) is an agronomically important pest species of numerous cropping systems. Similar to other insects, a critical component underlying behaviors is the perception and discrimination of olfactory cues. Consequently, the molecular basis of olfaction in this spe...

  5. Avian anemia's

    OpenAIRE

    Raukar Jelena

    2005-01-01

    This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematologica...

  6. Inhibitory neurotransmission and olfactory memory in honeybees.

    Science.gov (United States)

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  7. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model.

    Science.gov (United States)

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T; Howland, John G; Wang, Yu Tian; McLean, John H; Harley, Carolyn W

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in the neonate rat. Rat pups were given a single pairing of peppermint and 2 mg/kg isoproterenol, which produces a 24-h, but not a 48-h, peppermint preference in the 7-d-old rat pup. GluA1 PKA-dependent phosphorylation peaked 10 min after the 10-min training trial and returned to baseline within 90 min. At 24 h, GluA1 subunits did not change overall but were significantly increased in synaptoneurosomes, consistent with increased membrane insertion. Immunohistochemistry revealed a significant increase in GluA1 subunits in olfactory bulb glomeruli, the targets of olfactory nerve axons. Glomerular increases were seen at 3 and 24 h after odor exposure in trained pups, but not in control pups. GluA1 increases were not seen as early as 10 min after training and were no longer observed 48 h after training when odor preference is no longer expressed behaviorally. Thus, the pattern of increased GluA1 membrane expression closely follows the memory timeline. Further, blocking GluA1 insertion using an interference peptide derived from the carboxyl tail of the GluA1 subunit inhibited 24 h odor preference memory providing causative support for our hypothesis. PKA-mediated GluA1 phosphorylation and later GluA1 insertion could, conjointly, provide increased AMPA function to support both short-term and long-term appetitive memory.

  8. Avian Metapneumoviruses

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important virus that is the primary causal agent of turkey rhinotracheitis (TRT), also known as avian rhinotracheitis (ART). The virus causes an acute highly contagious infection of the upper respiratory tract in turkeys and was first isolated from tur...

  9. Ancestral amphibian v2rs are expressed in the main olfactory epithelium

    Science.gov (United States)

    Syed, Adnan S.; Sansone, Alfredo; Nadler, Walter; Manzini, Ivan; Korsching, Sigrun I.

    2013-01-01

    Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas “ancestral” v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates. PMID:23613591

  10. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  11. CD36 is involved in oleic acid detection by the murine olfactory system.

    Directory of Open Access Journals (Sweden)

    Sonja eOberland

    2015-09-01

    Full Text Available Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system.

  12. Olfactory Reference Syndrome

    Directory of Open Access Journals (Sweden)

    Alper Evrensel

    2015-12-01

    Full Text Available Olfactory reference syndrome is a delusional disorder in which the patient persistently and falsely believes that his or her body emits a foul odor. The disease is considered a variant of somatic type of delusional disorder under the diagnostic systems. Similarities between olfactory reference syndrome and obsessive compulsive disorder have also been noted. The etiopathogenesis of the disorder has not yet been clarified. Antidepressants, antipsychotics and psychotherapy are used in the treatment of this disorder. The aim of this article was to review clinical features, neurobiology, differantial diagnosis, classification problems and treatment of olfactory reference syndrome.

  13. Expression of olfactory signaling genes in the eye.

    Directory of Open Access Journals (Sweden)

    Alexey Pronin

    Full Text Available To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors.Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy.We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles.Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.

  14. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Chase R.; Gallagher, Evan P., E-mail: evang3@u.washington.edu

    2013-09-15

    Highlights: •Low Cd exposures elicited significant olfactory mediated behavioral changes independent of histological injury. •The olfactory behavioral deficits persisted following a 16-day depuration. •Olfactory molecular biomarkers expression was strongly linked to injury to the olfactory epithelium. •Cd induced a strong antioxidant response in the coho salmon olfactory system. •Results suggest a sensitivity of salmonids to waterborne Cd. -- Abstract: The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8–168 h) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 h exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes

  15. Avian influenza

    Science.gov (United States)

    ... develop flu-like symptoms within 10 days of handling infected birds or being in an area with ... your provider if you become sick after you return from your trip. Current information regarding avian flu ...

  16. Avian Flu

    International Nuclear Information System (INIS)

    Eckburg, Paul

    2006-01-01

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  17. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms.

    Science.gov (United States)

    Yamamoto, A; Takahashi, K; Saito, S; Tominaga, M; Ohta, T

    2016-12-01

    Sensing the ambient temperature is an important function for survival in animals. Some TRP channels play important roles as detectors of temperature and irritating chemicals. There are functional differences of TRP channels among species. TRPM8 in mammals is activated by cooling compounds and cold temperature, but less information is available on the functional role of TRPM8 in avian species. Here we investigated the pharmacological properties and thermal sensitivities of chicken TRPM8 (cTRPM8) and cold-sensitive mechanisms in avian sensory neurons. In heterologously expressed cTRPM8, menthol and its derivative, WS-12 elicited [Ca 2+ ] i increases, but icilin did not. In chicken sensory neurons, icilin increased [Ca 2+ ] i, in a TRPA1-dependent manner. Icilin selectively stimulated heterologously expressed chicken TRPA1 (cTRPA1). Similar to mammalian orthologue, cTRPM8 was activated by cold. Both heterologous and endogenous expressed cTRPM8 were sensitive to mammalian TRPM8 antagonists. There are two types of cold-sensitive cells regarding menthol sensitivity in chicken sensory neurons. The temperature threshold of menthol-insensitive neurons was significantly lower than that of menthol-sensitive ones. The population of menthol-insensitive neurons was large in chicken but almost little in mammals. The cold-induced [Ca 2+ ] i increases were not abolished by the external Ca 2+ removal or by blockades of PLC-IP 3 pathways and ryanodine channels. The cold stimulation failed to evoke [Ca 2+ ] i increases after intracellular Ca 2+ store-depletion. These results indicate that cTRPM8 acts as a cold-sensor similar to mammals. It is noteworthy that TRPM8-independent cold-sensitive neurons are abundant in chicken sensory neurons. Our results suggest that most of the cold-induced [Ca 2+ ] i increases are mediated via Ca 2+ release from intracellular stores and that these mechanisms may be specific to avian species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Olfactory coding in the turbulent realm.

    Directory of Open Access Journals (Sweden)

    Vincent Jacob

    2017-12-01

    Full Text Available Long-distance olfactory search behaviors depend on odor detection dynamics. Due to turbulence, olfactory signals travel as bursts of variable concentration and spacing and are characterized by long-tail distributions of odor/no-odor events, challenging the computing capacities of olfactory systems. How animals encode complex olfactory scenes to track the plume far from the source remains unclear. Here we focus on the coding of the plume temporal dynamics in moths. We compare responses of olfactory receptor neurons (ORNs and antennal lobe projection neurons (PNs to sequences of pheromone stimuli either with white-noise patterns or with realistic turbulent temporal structures simulating a large range of distances (8 to 64 m from the odor source. For the first time, we analyze what information is extracted by the olfactory system at large distances from the source. Neuronal responses are analyzed using linear-nonlinear models fitted with white-noise stimuli and used for predicting responses to turbulent stimuli. We found that neuronal firing rate is less correlated with the dynamic odor time course when distance to the source increases because of improper coding during long odor and no-odor events that characterize large distances. Rapid adaptation during long puffs does not preclude however the detection of puff transitions in PNs. Individual PNs but not individual ORNs encode the onset and offset of odor puffs for any temporal structure of stimuli. A higher spontaneous firing rate coupled to an inhibition phase at the end of PN responses contributes to this coding property. This allows PNs to decode the temporal structure of the odor plume at any distance to the source, an essential piece of information moths can use in their tracking behavior.

  19. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become...... infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non...

  20. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  1. Genetic Control of Wiring Specificity in the Fly Olfactory System

    Science.gov (United States)

    Hong, Weizhe; Luo, Liqun

    2014-01-01

    Precise connections established between pre- and postsynaptic partners during development are essential for the proper function of the nervous system. The olfactory system detects a wide variety of odorants and processes the information in a precisely connected neural circuit. A common feature of the olfactory systems from insects to mammals is that the olfactory receptor neurons (ORNs) expressing the same odorant receptor make one-to-one connections with a single class of second-order olfactory projection neurons (PNs). This represents one of the most striking examples of targeting specificity in developmental neurobiology. Recent studies have uncovered central roles of transmembrane and secreted proteins in organizing this one-to-one connection specificity in the olfactory system. Here, we review recent advances in the understanding of how this wiring specificity is genetically controlled and focus on the mechanisms by which transmembrane and secreted proteins regulate different stages of the Drosophila olfactory circuit assembly in a coordinated manner. We also discuss how combinatorial coding, redundancy, and error-correcting ability could contribute to constructing a complex neural circuit in general. PMID:24395823

  2. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  3. Electrophysiological characterization of olfactory cell types in the antennae and palps of the housefly

    NARCIS (Netherlands)

    Kelling, FJ; Biancaniello, G; den Otter, CJ

    2002-01-01

    A set of odours was presented to the housefly Musca domestica and the electrophysiological responses of single olfactory receptor cells in the antennae and palps were recorded. The olfactory cells in the antennae of the housefly showed a large variability of response profiles, but multidimensional

  4. Olfactory threshold in Parkinson's disease.

    Science.gov (United States)

    Quinn, N P; Rossor, M N; Marsden, C D

    1987-01-01

    Olfactory threshold to differing concentrations of amyl acetate was determined in 78 subjects with idiopathic Parkinson's disease and 40 age-matched controls. Impaired olfactory threshold (previously reported by others) was confirmed in Parkinsonian subjects compared with controls. There was no significant correlation between olfactory threshold and age, sex, duration of disease, or current therapy with levodopa or anticholinergic drugs. In a sub-group of 14 levodopa-treated patients with severe "on-off" fluctuations, no change in olfactory threshold between the two states was demonstrable. Olfactory impairment in Parkinson's disease may involve mechanisms that are not influenced by pharmacologic manipulation of dopaminergic or cholinergic status. PMID:3819760

  5. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab.

    Science.gov (United States)

    Polanska, Marta A; Tuchina, Oksana; Agricola, Hans; Hansson, Bill S; Harzsch, Steffen

    2012-09-11

    In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal's first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins) integrate into this system, a large family of neuropeptides that share the C-terminal motif -YXFGLamide. We used an antiserum that was raised against the A-type Diploptera punctata (Dip)-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae). Allatostatin A-like immunoreactivity (ASTir) was widely distributed in the animal's brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory glomeruli are also mostly distinct. We discuss our

  6. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab

    Directory of Open Access Journals (Sweden)

    Polanska Marta A

    2012-09-01

    Full Text Available Abstract Background In the olfactory system of malacostracan crustaceans, axonal input from olfactory receptor neurons associated with aesthetascs on the animal’s first pair of antennae target primary processing centers in the median brain, the olfactory lobes. The olfactory lobes are divided into cone-shaped synaptic areas, the olfactory glomeruli where afferents interact with local olfactory interneurons and olfactory projection neurons. The local olfactory interneurons display a large diversity of neurotransmitter phenotypes including biogenic amines and neuropeptides. Furthermore, the malacostracan olfactory glomeruli are regionalized into cap, subcap, and base regions and these compartments are defined by the projection patterns of the afferent olfactory receptor neurons, the local olfactory interneurons, and the olfactory projection neurons. We wanted to know how neurons expressing A-type allatostatins (A-ASTs; synonym dip-allatostatins integrate into this system, a large family of neuropeptides that share the C-terminal motif –YXFGLamide. Results We used an antiserum that was raised against the A-type Diploptera punctata (Dip-allatostatin I to analyse the distribution of this peptide in the brain of a terrestrial hermit crab, Coenobita clypeatus (Anomura, Coenobitidae. Allatostatin A-like immunoreactivity (ASTir was widely distributed in the animal’s brain, including the visual system, central complex and olfactory system. We focussed our analysis on the central olfactory pathway in which ASTir was abundant in the primary processing centers, the olfactory lobes, and also in the secondary centers, the hemiellipsoid bodies. In the olfactory lobes, we further explored the spatial relationship of olfactory interneurons with ASTir to interneurons that synthesize RFamide-like peptides. We found that these two peptides are present in distinct populations of local olfactory interneurons and that their synaptic fields within the olfactory

  7. Olfactory perception, cognition, and dysfunction in humans.

    Science.gov (United States)

    Stevenson, Richard J

    2013-05-01

    The main functions of olfaction relate to finding food, avoiding predators and disease, and social communication. Its role in detecting food has resulted in a unique dual mode sensory system. Environmental odorants are 'smelled' via the external nostrils, while volatile chemicals in food-detected by the same receptors-arrive via the nasopharynx, contributing to flavor. This arrangement allows the brain to link the consequences of eating with a food's odor, and then later to use this information in the search for food. Recognizing an odorant-a food, mate, or predator-requires the detection of complex chemical blends against a noisy chemical background. The brain solves this problem in two ways. First, by rapid adaptation to background odorants so that new odorants stand out. Second, by pattern matching the neural representation of an odorant to prior olfactory experiences. This account is consistent with olfactory sensory physiology, anatomy, and psychology. Odor perception, and its products, may be subject to further processing-olfactory cognition. While olfactory cognition has features in common with visual or auditory cognition, several aspects are unique, and even those that are common may be instantiated in different ways. These differences can be productively used to evaluate the generality of models of cognition and consciousness. Finally, the olfactory system can breakdown, and this may be predictive of the onset of neurodegenerative conditions such as Alzheimer's, as well as having prognostic value in other disorders such as schizophrenia. WIREs Cogn Sci 2013, 4:273-284. doi: 10.1002/wcs.1224 For further resources related to this article, please visit the WIREs website. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task

    NARCIS (Netherlands)

    Souza, R.R.; Dal Bó, S.; de Kloet, E.R.; Oitzl, M.S.; Carobrez, A.P.

    2014-01-01

    There is general agreement that the substantial modification in memory and motivational states exerted by corticosteroids after a traumatic experience is mediated in complementary manner by the mineralocorticoid (MR) and glucocorticoid (GR) receptors. Here we tested the hypothesis that

  9. Increased Regenerative Capacity of the Olfactory Epithelium in Niemann–Pick Disease Type C1

    Directory of Open Access Journals (Sweden)

    Anja Meyer

    2017-04-01

    Full Text Available Niemann–Pick disease type C1 (NPC1 is a fatal neurovisceral lysosomal lipid storage disorder. The mutation of the NPC1 protein affects the homeostasis and transport of cholesterol and glycosphingolipids from late endosomes/lysosomes to the endoplasmic reticulum resulting in progressive neurodegeneration. Since olfactory impairment is one of the earliest symptoms in many neurodegenerative disorders, we focused on alterations of the olfactory epithelium in an NPC1 mouse model. Previous findings revealed severe morphological and immunohistochemical alterations in the olfactory system of NPC1−/− mutant mice compared with healthy controls (NPC1+/+. Based on immunohistochemical evaluation of the olfactory epithelium, we analyzed the impact of neurodegeneration in the olfactory epithelium of NPC1−/− mice and observed considerable loss of mature olfactory receptor neurons as well as an increased number of proliferating and apoptotic cells. Additionally, after administration of two different therapy approaches using either a combination of miglustat, 2-hydroxypropyl-β-cyclodextrin (HPβCD and allopregnanolone or a monotherapy with HPβCD, we recorded a remarkable reduction of morphological damages in NPC1−/− mice and an up to four-fold increase of proliferating cells within the olfactory epithelium. Numbers of mature olfactory receptor neurons doubled after both therapy approaches. Interestingly, we also observed therapy-induced alterations in treated NPC1+/+ controls. Thus, olfactory testing may provide useful information to monitor pharmacologic treatment approaches in human NPC1.

  10. Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis

    Directory of Open Access Journals (Sweden)

    Hansen Anne

    2007-08-01

    Full Text Available Abstract Background The nasal cavity of all vertebrates houses multiple chemosensors, either innervated by the Ist (olfactory or the Vth (trigeminal cranial nerve. Various types of receptor cells are present, either segregated in different compartments (e.g. in rodents or mingled in one epithelium (e.g. fish. In addition, solitary chemosensory cells have been reported for several species. Alligators which seek their prey both above and under water have only one nasal compartment. Information about their olfactory epithelium is limited. Since alligators seem to detect both volatile and water-soluble odour cues, I tested whether different sensory cell types are present in the olfactory epithelium. Results Electron microscopy and immunocytochemistry were used to examine the sensory epithelium of the nasal cavity of the American alligator. Almost the entire nasal cavity is lined with olfactory (sensory epithelium. Two types of olfactory sensory neurons are present. Both types bear cilia as well as microvilli at their apical endings and express the typical markers for olfactory neurons. The density of these olfactory neurons varies along the nasal cavity. In addition, solitary chemosensory cells innervated by trigeminal nerve fibres, are intermingled with olfactory sensory neurons. Solitary chemosensory cells express components of the PLC-transduction cascade found in solitary chemosensory cells in rodents. Conclusion The nasal cavity of the American alligator contains two different chemosensory systems incorporated in the same sensory epithelium: the olfactory system proper and solitary chemosensory cells. The olfactory system contains two morphological distinct types of ciliated olfactory receptor neurons.

  11. Trpm5 expression in the olfactory epithelium.

    Science.gov (United States)

    Pyrski, Martina; Eckstein, Eugenia; Schmid, Andreas; Bufe, Bernd; Weiss, Jan; Chubanov, Vladimir; Boehm, Ulrich; Zufall, Frank

    2017-04-01

    The Ca 2+ -activated monovalent cation channel Trpm5 is a key element in chemotransduction of taste receptor cells of the tongue, but the extent to which Trpm5 channels are expressed in olfactory sensory neurons (OSNs) of the main olfactory epithelium (MOE) of adult mice as part of a specific pheromonal detection system is debated. Here, we used a novel Trpm5-IRES-Cre knockin strain to drive Cre recombinase expression, employed previously validated Trpm5 antibodies, performed in situ hybridization experiments to localize Trpm5 RNA, and searched extensively for Trpm5 splice variants in genetically-labeled, Trpm5-expressing MOE cells. In contrast to previous reports, we find no evidence for the existence in adult mouse OSNs of the classical Trpm5 channel known from taste cells. We show that Trpm5-expressing adult OSNs express a novel Trpm5 splice variant, Trpm5-9, that is unlikely to form a functional cation channel by itself. We also demonstrate that Trpm5 is transiently expressed in a subpopulation of mature OSNs in the embryonic olfactory epithelium, indicating that Trpm5 channels could play a specific role in utero during a narrow developmental time window. Ca 2+ imaging with GCaMP3 under the control of the Trpm5-IRES-Cre allele using a newly developed MOE wholemount preparation of the adult olfactory epithelium reveals that Trpm5-GCaMP3 OSNs comprise a heterogeneous group of sensory neurons many of which can detect general odorants. Together, these studies are essential for understanding the role of transient receptor potential channels in mammalian olfaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  13. Avian cholera

    Science.gov (United States)

    Friend, Milton

    1999-01-01

    Avian cholera is a contagious disease resulting from infection by the bacterium Pasteurella multocida. Several subspecies of bacteria have been proposed for P. multocida, and at least 16 different P. multocida serotypes or characteristics of antigens in bacterial cells that differentiate bacterial variants from each other have been recognized. The serotypes are further differentiated by other methods, including DNA fingerprinting. These evaluations are useful for studying the ecology of avian cholera (Fig. 7.1), because different serotypes are generally found in poultry and free-ranging migratory birds. These evaluations also show that different P. multocida serotypes are found in wild birds in the eastern United States than those that are found in the birds in the rest of the Nation (Fig. 7.2).

  14. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    Science.gov (United States)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  15. Atypical olfactory groove meningioma associated with uterine fibromatosis; case report

    Directory of Open Access Journals (Sweden)

    Toma I. Papacocea

    2016-11-01

    Full Text Available The concomitant presence of the olfactory groove meningioma with uterine fibrosis is very rare. Our report presents the case of a giant olfactory groove meningioma revealed after a uterine fibroma resection in a 44 years-old female, due to a generalized seizure 10 days after operation. Cranial CT-scan identified the tumor as an olfactory groove meningioma. The tumor was operated with a macroscopically complete resection; the endothermal coagulation of the dura attachment was performed (Simpson II with a good postoperative evolution. Laboratory results showed the presence of receptors for steroid hormones both in meningioma and uterine tumor, and the histopathological examination revealed an atypical meningioma with 17% proliferation markers. Our findings suggest that even though meningiomas are benign tumors and a complete resection usually indicates a good prognosis, the association with uterine fibromatosis and the presence of high percentage of steroid receptors creates a higher risk to relapse, imposing therefore a good monitoring.

  16. Tapak Perlekatan Reseptor Virus Flu Burung yang Diisolasi dari Berbagai Unggas Sejak tahun 2003 sampai 2008 (RECEPTOR BINDING SITE OF AVIAN INFLUENZA VIRUS H5N1 ISOLATED FROM VARIOUS POULTRIES SINCE 2003 TO 2008

    Directory of Open Access Journals (Sweden)

    Michael Haryadi Wibowo

    2014-08-01

    Full Text Available Avian Influenza (AI is an infectious disease in poultry, caused by type A of avian influenza virus(AIV, in the family of Orthomyxoviridae. Almost all birds’ species are sensitive to the AI. Beside theability to infect various species of poultry. AIV type A has a wide range of host including all bird species,mammals, dan human. Today some scientists reported that the cases of AI in mammals, including humansare increasing. This condition suggests that the AI virus circulated in the field may have some mutationsin the amino acid determinants responsible receptor binding site (RBS. A research was therefore designedto investigate the molecular level of HA gen fragment responsible for receptor binding site of AIV isolatedfrom various poultry since 2003 to 2008. Molecular characterization was based on the amplification ofreceptor binding site of HA gene by reverse transcriptase polymerase chain reaction (RT-PCR. All RTPCRof HA gene positive products were sequenced to determine the nucleotide composition at the targetedfragment. Sequences yielded were analyzed by program Mega 4.0 versions, including multiple alignment,deductive amino acid prediction, and establishment of phylogenetic tree. The results show that all AIVisolates could be determined of some conserved amino acids residues responsible for RBS which indicatethe binding preference of avian like receptor, sialic acid ? 2, 3 galactose except isolate A/Layer/Jabar/MHW-RBS-02/2008 which could be found a deletion of amino acid at position of 129 dan mutation of 151isoleucine into threonine. Phylogenetic study showed that clustering of AIV did not base on species of birdor geographic origin of AI viruses which were studied.

  17. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities.

    Science.gov (United States)

    Grimaud, Julien; Lledo, Pierre-Marie

    2016-06-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. © 2016 Grimaud and Lledo; Published by Cold Spring Harbor Laboratory Press.

  18. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    Science.gov (United States)

    Grimaud, Julien

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  19. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.

    Science.gov (United States)

    Gliem, Sebastian; Syed, Adnan S; Sansone, Alfredo; Kludt, Eugen; Tantalaki, Evangelia; Hassenklöver, Thomas; Korsching, Sigrun I; Manzini, Ivan

    2013-06-01

    In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.

  20. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses

    Directory of Open Access Journals (Sweden)

    Max L Fletcher

    2012-03-01

    Full Text Available The anatomical organization of receptor neuron input into the olfactory bulb (OB allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted cell glomerular activity at the upper level of the olfactory bulb. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within mitral/tufted cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2 in OB mitral/tufted cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the olfactory bulb by enhancing responses to the learned odor in some glomeruli.

  1. Hypnotic Olfactory Hallucinations.

    Science.gov (United States)

    Cox, Rochelle E; Langdon, Robyn A

    2016-01-01

    Olfactory hallucinations (smelling odors that are not present) are intrusive and disruptive yet challenging to investigate because they cannot be produced on demand. In this study, the authors attempted to model olfactory hallucinations using hypnotic suggestions. We gave some subjects a suggestion to smell an odor in the absence of a real odor (positive hallucination) and gave others a suggestion to smell nothing in the presence of a real odor (negative hallucination). High hypnotizable individuals who received the positive hallucination reported intense smells whereas those who received the negative hallucination reported a reduction in intensity. These suggestions also influenced later recall about frequency of odor presentation. Findings are discussed in terms of reality monitoring and differences between positive and negative hallucinations.

  2. Global Transcriptional Analysis of Olfactory Genes in the Head of Pine Shoot Beetle, Tomicus yunnanensis

    OpenAIRE

    Zhu, Jia-Ying; Zhao, Ning; Yang, Bin

    2012-01-01

    The most important proteins involved in olfaction include odorant binding protein (OBP), chemosensory protein (CSP), olfactory receptor (OR), and gustatory receptor (GR). Despite that the exhaustive genomic analysis has revealed a large number of olfactory genes in a number of model insects, it is still poorly understood for most nonmodel species. This is mostly due to the reason that the small antenna is challenging for collection. We can generally isolate one or few genes at a time by means...

  3. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  4. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    Science.gov (United States)

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  5. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae Based on Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Yinliang Wang

    Full Text Available The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs, 10 chemosensory proteins (CSPs, 34 odorant receptors (ORs, 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, Aqua

  6. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  7. The developmental stage of chicken embryos modulates the impact of in ovo olfactory stimulation on food preferences.

    Science.gov (United States)

    Bertin, Aline; Calandreau, Ludovic; Arnould, Cécile; Lévy, Frédéric

    2012-03-01

    Like mammals, bird embryos are capable of chemosensory learning, but the ontogeny of their feeding preferences has not been examined. We tested if the timing of stimulation in chicken embryos modulates the impact of in ovo olfactory stimulation on later food preferences. We exposed chicken embryos to an olfactory stimulus for a 4-day period in the middle or toward the end of the incubation period. The chicks were tested for their preference between foods with and without the olfactory stimulus in 3-min choice tests and on a 24-h time scale. Regardless of the type of food (familiar or novel) or the duration of the test, the control chicks not exposed to the olfactory stimulus consistently showed significant preferences for non-odorized foods. Chicks that were exposed in ovo to the olfactory stimulus did not show a preference for odorized or non-odorized foods. Only those chicks that were exposed to the olfactory stimulus toward the end of the incubation period differed from the controls and incorporated a higher proportion of odorized food into their diets on a 24-h time scale. This result indicates that olfactory stimulation at the end of embryonic development has a stronger impact on later feeding preferences. Our findings contribute to the growing pool of recent data appreciating the impact of olfactory signals on behavior regulation in avian species.

  8. Histological and lectin histochemical studies on the olfactory mucosae of the Korean roe deer, Capreolus pygargus.

    Science.gov (United States)

    Park, Changnam; Ahn, Meejung; Kim, Jeongtae; Kim, Seungjoon; Moon, Changjong; Shin, Taekyun

    2015-04-01

    The morphological features of the olfactory mucosae of Korean roe deer, Capreolus pygargus, were histologically studied using the ethmoid turbinates containing the olfactory mucosae from six roe deer (male, 2-3 years old). The ethmoid turbinates were embedded in paraffin, and histochemically evaluated in terms of the mucosal characteristics. Lectin histochemistry was performed to investigate the carbohydrate-binding specificity on the olfactory mucosa. Lectins, including Triticum vulgaris wheat germ agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), and soybean agglutinin (SBA) were used for the N-acetylglucosamine, fucose and N-acetylgalactosamine carbohydrate groups, respectively. Histologically, the olfactory mucosa, positioned mainly in the caudal roof of the nasal cavity, consisted of the olfactory epithelium and the lamina propria. The olfactory epithelium consisted of protein gene product (PGP) 9.5-positive olfactory receptor cells, galectin-3-positive supporting cells and basal cells. Bowman's glands in the lamina propria were stained by both the periodic acid Schiff reagent and alcian blue (pH 2.5). Two types of lectin, WGA and SBA, were labeled in free border, receptor cells, supporting cells and Bowman's glands, with the exception of basal cells, while UEA-I was labeled in free border, supporting cells and Bowman's glands, but not in receptor cells and basal cells, suggesting that carbohydrate terminals on the olfactory mucosae of roe deer vary depending on cell type. This is the first morphological study of the olfactory mucosa of the Korean roe deer to evaluate carbohydrate terminals in the olfactory mucosae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The absence of 5-HT4receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1Aautoreceptor.

    Science.gov (United States)

    Amigó, J; Díaz, A; Pilar-Cuéllar, F; Vidal, R; Martín, A; Compan, V; Pazos, A; Castro, E

    2016-12-01

    Preclinical studies support a critical role of 5-HT 4 receptors (5-HT 4 Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT 4 R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT 1A R. Moreover, the implication of 5-HT 4 Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT 4 R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT 1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT 4 R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT 4 R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT 4 R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT 4 Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT 4 Rs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit

    Directory of Open Access Journals (Sweden)

    Sara J. Hawkins

    2017-11-01

    Full Text Available Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.

  11. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... and equation-free techniques allow for a better reproduction and understanding of recent experimental findings. Talks: Olfaction as a Model System for Sensory-Processing Neural Networks (Jens Midtgaard, University of Copenhagen, Denmark) Nonlinear Effects of Signal Transduction in Olfactory Sensory Neurons...

  12. Nuclear architecture and gene silencing in olfactory sensory neurons.

    Science.gov (United States)

    Armelin-Correa, Lucia M; Nagai, Maíra H; Leme Silva, Artur G; Malnic, Bettina

    2014-01-01

    Odorants are discriminated by hundreds of odorant receptor (OR) genes, which are dispersed throughout the mammalian genome. The OR genes are expressed in a highly specialized type of cell, the olfactory sensory neuron. Each one of these neurons expresses one of the 2 alleles from one single OR gene type. The mechanisms underlying OR gene expression are unclear. Here we describe recent work demonstrating that the olfactory sensory neuron shows a particular nuclear architecture, and that the genomic OR loci are colocalized in silencing heterochromatin compartments within the nucleus. These discoveries highlight the important role played by epigenetic modifications and nuclear genome organization in the regulation of OR gene expression.

  13. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Plachý, Jiří; Trejbalová, Kateřina; Šenigl, Filip; Kučerová, Dana; Geryk, Josef; Svoboda, Jan; Hejnar, Jiří

    2012-01-01

    Roč. 86, č. 4 (2012), s. 2021-2030 ISSN 1098-5514 R&D Projects: GA ČR GAP502/10/1651 Institutional research plan: CEZ:AV0Z50520514 Keywords : avian sarcoma and leukosis virus * virus- host coevolution * resistance to retroviruses Subject RIV: EB - Genetics ; Molecular Biology

  14. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Plachý, Jiří; Trejbalová, Kateřina; Šenigl, Filip; Kučerová, Dana; Geryk, Josef; Svoboda, Jan; Hejnar, Jiří

    2012-01-01

    Roč. 86, č. 4 (2012), s. 2021-2030 ISSN 1098-5514 R&D Projects: GA ČR GAP502/10/1651 Institutional research plan: CEZ:AV0Z50520514 Keywords : avian sarcoma and leukosis virus * virus-host coevolution * resistance to retroviruses Subject RIV: EB - Genetics ; Molecular Biology

  15. Olfactory training with older people.

    Science.gov (United States)

    Birte-Antina, Wegener; Ilona, Croy; Antje, Hähner; Thomas, Hummel

    2018-01-01

    Loss of olfactory function is largely found with aging. Such a reduction in olfactory function affects quality of life and enhances likelihood of depressive symptoms. Furthermore, it has been shown that reduction in olfactory function is associated with cognitive impairment and several diseases such as major depression. Because several studies suggest that discontinuous exposure to odors may improve general olfactory function, the primary aim of this study was to investigate whether such "olfactory training" has positive effects on subjective well-being and cognitive function. We performed a controlled, unblinded, longitudinal study SETTING: The study took place at an outpatients' clinic of a Department of Otorhinolaryngology at a Medical University. A total of 91 participants (age 50 to 84 years) completed testing. They were randomly assigned to an olfactory training (OT) group (N = 60) and a control group (N = 31). The study included two appointments at the Smell and Taste Clinic. Olfactory and cognitive function as well as subjective well-being was tested using standardized tests. During the 5-month interval between sessions, the OT group completed daily olfactory exposure. During the same time, the control group completed daily Sudoku problems. Analyses show a significant improvement of olfactory function for participants in the OT group and improved verbal function and subjective well-being. In addition, results indicated a decrease of depressive symptoms. Based on the present results, OT may constitute an inexpensive, simple way to improve quality of life in older people. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Lectin cytochemical localisation of glycoconjugates in the olfactory system of the lizards Lacerta viridis and Podarcis sicula.

    Science.gov (United States)

    Franceschini, V; Lazzari, M; Ciani, F

    2000-07-01

    To investigate the presence of defined carbohydrate moieties on the cell surface of the olfactory and vomeronasal receptor cells and the projections of the latter into the olfactory bulbs, a lectin binding study was performed on the olfactory system of the lizards: Lacerta viridis and Podarcis sicula. Both lizards showed a high lectin binding for N-acetyl-glucosamine in the sensory neurons. The lectin binding patterns in Lacerta indicated that the main olfactory system possessed a moderate density of N-acetyl-galactosamine residues and detectable levels of galactose ones. The vomeronasal system on the other hand contained a high density of N-acetyl-galactosamine moieties and a moderate density of glucosamine ones. In Podarcis the main olfactory system and vomeronasal organ contained respectively detectable and moderate levels of galactose residues. The expression of specific glycoconjugates may be associated with outgrowth, guidance and fasciculation of olfactory and vomeronasal axons.

  17. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction.

    Science.gov (United States)

    Hutch, C R; Hillard, C J; Jia, C; Hegg, C C

    2015-08-06

    Endocannabinoids modulate a diverse array of functions including progenitor cell proliferation in the central nervous system, and odorant detection and food intake in the mammalian central olfactory system and larval Xenopus laevis peripheral olfactory system. However, the presence and role of endocannabinoids in the peripheral olfactory epithelium have not been examined in mammals. We found the presence of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptor protein and mRNA in the olfactory epithelium. Using either immunohistochemistry or calcium imaging we localized CB1 receptors on neurons, glia-like sustentacular cells, microvillous cells and progenitor-like basal cells. To examine the role of endocannabinoids, CB1- and CB2- receptor-deficient (CB1(-/-)/CB2(-/-)) mice were used. The endocannabinoid 2-arachidonylglycerol (2-AG) was present at high levels in both C57BL/6 wildtype and CB1(-/-)/CB2(-/-) mice. 2-AG synthetic and degradative enzymes are expressed in wildtype mice. A small but significant decrease in basal cell and olfactory sensory neuron numbers was observed in CB1(-/-)/CB2(-/-) mice compared to wildtype mice. The decrease in olfactory sensory neurons did not translate to impairment in olfactory-mediated behaviors assessed by the buried food test and habituation/dishabituation test. Collectively, these data indicate the presence of an endocannabinoid system in the mouse olfactory epithelium. However, unlike in tadpoles, endocannabinoids do not modulate olfaction. Further investigation on the role of endocannabinoids in progenitor cell function in the olfactory epithelium is warranted. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  19. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Subtypes Transmission of Avian Influenza A Viruses Between Animals and People Related Links Research Glossary of Influenza (Flu) Terms ...

  20. Dishevelled proteins are associated with olfactory sensory neuron presynaptic terminals.

    Directory of Open Access Journals (Sweden)

    Diego J Rodriguez-Gil

    Full Text Available Olfactory sensory neurons (OSNs project their axons from the olfactory epithelium toward the olfactory bulb (OB in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.

  1. Avian Influenza in Birds

    Science.gov (United States)

    ... However, some ducks can be infected without any signs of illness. Top of Page Avian Influenza in Wild Birds Avian influenza A viruses have ... hours. Some ducks can be infected without any signs of illness. Avian influenza outbreaks are of concern in domesticated birds for ...

  2. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  3. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    Directory of Open Access Journals (Sweden)

    Lanuza Enrique

    2007-11-01

    Full Text Available Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

  4. Understanding smell--the olfactory stimulus problem.

    Science.gov (United States)

    Auffarth, Benjamin

    2013-09-01

    The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Olfactory groove meningiomas.

    Science.gov (United States)

    Hentschel, Stephen J; DeMonte, Franco

    2003-06-15

    Olfactory groove meningiomas (OGMs) arise over the cribriform plate and may reach very large sizes prior to presentation. They can be differentiated from tuberculum sellae meningiomas because OGMs arise more anterior in the skull base and displace the optic nerve and chiasm inferiorly rather than superiorly. The authors searched the neurosurgery database at the M. D. Anderson Cancer Center for cases of OGM treated between 1993 and 2003. The records of these patients were then reviewed retrospectively for details regarding clinical presentation, imaging findings, surgical results and complications, and follow-up status. Thirteen patients, (12 women and one man, mean age 56 years) harbored OGMs (mean size 5.7 cm). All patients underwent bifrontal craniotomies and biorbital osteotomies. There were 11 complete resections (including the hyperostotic bone and dura of the cribriform plate and any extension into the ethmoid sinuses) and two subtotal resections with minimal residual tumor left in patients with recurrent lesions. No complication directly due to the surgery occurred in any patient. There were no recurrences in a mean follow-up period of 2 years (range 0-5 years). With current microsurgical techniques, the results of OGM resection are excellent, with a high rate of total resection and a low incidence of complications. All hyperostotic bone should be removed with the dura of the anterior skull base to minimize the risk of recurrence.

  6. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo.

    Science.gov (United States)

    Ferrando, Sara; Gallus, Lorenzo; Amaroli, Andrea; Gambardella, Chiara; Waryani, Baradi; Di Blasi, Davide; Vacchi, Marino

    2017-06-01

    Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Histomorphological and microanatomical characteristics of the olfactory organ of freshwater carp, Cirrhinus reba (Hamilton

    Directory of Open Access Journals (Sweden)

    Ghosh Saroj Kumar

    2016-12-01

    Full Text Available The morphoanatomy, cellular organization, and surface architecture of the olfactory apparatus in Cirrhinus reba (Hamilton is described using light and scanning electron microscopy. The oval shaped olfactory rosette contained 32 ± 2 primary lamellae on each side of the median raphe, and was lodged on the floor of the olfactory chamber. The olfactory lamellae were basically flat and compactly arranged in the rosette. The olfactory chamber communicated to the outside aquatic environment through inlet and outlet apertures with a conspicuous nasal flap in between. The mid dorsal portion of the olfactory lamellae was characterized by a linguiform process. Sensory and non-sensory regions were distributed separately on each lamella. The sensory epithelium occupied the apical part including the linguiform process, whereas the resting part of the lamella was covered with non-sensory epithelium. The sensory epithelium comprised both ciliated and microvillous receptor cells distinguished by the architecture on their apical part. The non-sensory epithelium possessed mucous cells, labyrinth cells, and stratified epithelial cells with distinctive microridges. The functional importance of the different cells lining the olfactory mucosa was correlated with the ecological habits of the fish examined.

  8. Odor memory stability after reinnervation of the olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Eduardo Blanco-Hernández

    Full Text Available The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP. Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.

  9. Refining the dual olfactory hypothesis: pheromone reward and odour experience.

    Science.gov (United States)

    Martínez-García, Fernando; Martínez-Ricós, Joana; Agustín-Pavón, Carmen; Martínez-Hernández, Jose; Novejarque, Amparo; Lanuza, Enrique

    2009-06-25

    In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are 'innately' attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation. We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose. In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.

  10. Sniffing and Oxytocin: Effects on Olfactory Memories.

    Science.gov (United States)

    Stoop, Ron

    2016-05-04

    In this issue of Neuron, Oettl et al. (2016) show how oxytocin can boost processing of olfactory information in female rats by a top-downregulation from the anterior olfactory nucleus onto the main olfactory bulb. As a result, interactions with juvenile conspecifics receive more attention and are longer memorized. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effects of urea on the olfactory reception in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Lorenzo Gallus

    2016-06-01

    Full Text Available The effects of uremia on human olfactory functions have been clinically evaluated in various studies, even if to date it is not completely clarified which uremic toxins mediate these processes. Surprisingly, the role of the main molecule involved in uremia, urea indeed, has not been adequately investigated as other possible molecules may also be involved in uremic anosmia. The effects of urea on the olfaction have been evaluated in some clinical studies, but this is the first attempt to determine a direct action of urea on the olfactory epithelium of a vertebrate. Danio rerio adults were exposed to urea in different experiments to assess the effects on olfactory sensitivity and signal transduction. The analysis of the swimming speed has been used to evaluate the response to hypoxanthine 3-N-oxide (H3NO, a molecule that is known to elicit an olfactory-mediated alarm reaction in D. rerio. The presence and distribution of the G protein alpha subunit coupled to the olfactory receptors (Gαolf has been immunohistochemically investigated in the olfactory epithelium of control and urea-exposed D. rerio. Our findings showed that urea alters the response to H3NO of D. rerio with a quite rapid and reversible effect that appears to be independent from a mere interference of urea on the receptor-ligand binding. The Gαolf protein resulted increases after urea treatment, suggesting an effect of urea on its expression or degradation.

  12. Morphometric analysis of olfactory organ and telencephalon in maturing and mature migrants of Caspian lamprey (Caspiomyzon wagneri, Kessler 1870

    Directory of Open Access Journals (Sweden)

    Ashraf Namdariyan Rad

    2017-02-01

    Full Text Available This study was conducted to provide a detailed information about changes of the olfactory organ and telencephalon morphology in spring and fall spawning run maturing and mature Caspian lamprey, Caspiomyzon wagneri, in the Shirud River, Sothern Caspian Sea basin, Iran. A total of 71 maturing and mature fish were collected during their spawning migration. The results showed that the thickness of the olfactory epithelium and the density of ciliated olfactory receptor cells (ORC were lower in mature migrants. In addition, the nasal cavity, relative weight of olfactory organ and relative telecephalon area in mature migrants were larger indicating its more sensitivity to external queues. Based on the results, the olfactory organ and telencephalon of maturing migrants of Caspian lamprey have not developed completely and needs a period of rest in the river to its full development for spawning.

  13. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  14. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans.

    Science.gov (United States)

    Springer, Mark S; Gatesy, John

    2017-04-01

    Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common

  15. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Šenigl, Filip; Yin, X.; Plachý, Jiří; Geryk, Josef; Elleder, Daniel; Svoboda, Jan; Federspiel, M. J.; Hejnar, Jiří

    2008-01-01

    Roč. 82, č. 5 (2008), s. 2097-2105 ISSN 0022-538X R&D Projects: GA ČR GA523/07/1171; GA ČR GA523/07/1282 Grant - others:NIH(US) AI48682 Institutional research plan: CEZ:AV0Z50520514 Keywords : retrovirus receptors * avian sarcoma and leukosis virus * resistance to retrovirus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.308, year: 2008

  16. Effects of Caffeine on Olfactory Learning in Crickets.

    Science.gov (United States)

    Sugimachi, Seigo; Matsumoto, Yukihisa; Mizunami, Makoto; Okada, Jiro

    2016-10-01

    Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1.6 µµg/kg to 39 mg/kg). We investigated the physiological mechanisms underlying this enhancement of olfactory learning performance pharmacologically, focusing on three major physiological roles of caffeine: 1) inhibition of phosphodiesterase (PDE), 2) agonism of ryanodine receptors, and 3) antagonism of adenosine receptors. Application of drugs relevant to these actions resulted in significant effects on LTM formation. These results suggest that externally applied caffeine enhances LTM formation in insect olfactory learning via multiple cellular mechanisms.

  17. An Olfactory Cinema: Smelling Perfume

    Directory of Open Access Journals (Sweden)

    Jiaying Sim

    2014-09-01

    Full Text Available While technological improvements from the era of silent movies to that of sound cinema have altered and continued to affect audience’s cinematic experiences, the question is not so much how technology has increased possibility of a sensory response to cinema, rather, it is one that exposes how such technological changes only underscore the participation of our senses and the body in one’s experience of watching film, highlighting the inherently sensorial nature of the cinematic experience. This paper aims to address the above question through an olfactory cinema, by close analysis of Perfume: The Story of a Murderer (2006 by Tom Tykwer. What is an olfactory cinema, and how can such an approach better our understanding of sensorial aspects found within a cinema that ostensibly favours audio-visual senses? What can we benefit from an olfactory cinema? Perhaps, it is through an olfactory cinema that one may begin to embrace the sensual quality of cinema that has been overshadowed by the naturalized ways of experiencing films solely with our eyes and ears, so much so that we desensitize ourselves to the role our senses play in cinematic experiences altogether

  18. Olfactory training in patients with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Antje Haehner

    Full Text Available OBJECTIVE: Decrease of olfactory function in Parkinson's disease (PD is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from "training" with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function. METHODS: We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training. Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves. Olfactory testing was performed before and after training using the "Sniffin' Sticks" (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification in addition to threshold tests for the odors used in the training process. RESULTS: Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training. CONCLUSION: The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.

  19. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  20. When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota

    OpenAIRE

    Eileen K. Jenkins; Mallory T. DeChant; Erin B. Perry

    2018-01-01

    The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic c...

  1. Transduction for Pheromones in the Main Olfactory Epithelium Is Mediated by the Ca2+-Activated Channel TRPM5

    OpenAIRE

    López, Fabián; Delgado, Ricardo; López, Roberto; Bacigalupo, Juan; Restrepo, Diego

    2014-01-01

    Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species...

  2. Odor Preference Learning and Memory Modify GluA1 Phosphorylation and GluA1 Distribution in the Neonate Rat Olfactory Bulb: Testing the AMPA Receptor Hypothesis in an Appetitive Learning Model

    Science.gov (United States)

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…

  3. Olfactory dysfunction in Iranian diabetic patients.

    Directory of Open Access Journals (Sweden)

    Jalal Mehdizadeh Seraj

    2015-04-01

    Full Text Available Olfactory dysfunction is a known complication of diabetes and, despite its importance in the quality of life, is usually neglected due to its gradual progression. In this study, we aim to determine the prevalence and severity of olfactory dysfunction in diabetics and its association with microangiopathic complications of the disease (neuropathy, nephropathy, and retinopathy. Excluding the confounding factors, a case-control study of 60 eligible subjects, divided into a group of 30 diabetic patients and a group of 30 control subjects was performed. We used "absorbent perfumer's paper strips" method to test the olfactory threshold. In our study, 60% of diabetics were found to have some degree of olfactory dysfunction and a significant difference (P<0.01 between the olfactory threshold of the case and control groups was observed. There were no significant associations between the olfactory dysfunction and age, sex, treatment duration and microangiopathic complications.

  4. Two different molecular defects in the Tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses

    Czech Academy of Sciences Publication Activity Database

    Elleder, Daniel; Melder, D. C.; Trejbalová, Kateřina; Svoboda, Jan; Federspiel, M.

    2004-01-01

    Roč. 78, č. 24 (2004), s. 13489-13500 ISSN 0022-538X R&D Projects: GA ČR GA523/04/0489; GA AV ČR KSK5011112 Institutional research plan: CEZ:AV0Z5052915 Keywords : ASLV * retrovirus receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.398, year: 2004

  5. Close linkage of genes encoding receptors for subgroups A and C of avian sarcoma/leucosis virus on chicken chromosome 28

    Czech Academy of Sciences Publication Activity Database

    Elleder, Daniel; Plachý, Jiří; Hejnar, Jiří; Geryk, Josef; Svoboda, Jan

    2004-01-01

    Roč. 35, č. 3 (2004), s. 176-181 ISSN 0268-9146 R&D Projects: GA ČR GA523/04/0489 Institutional research plan: CEZ:AV0Z5052915 Keywords : ASLV * retrovirus receptor * linkage analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.108, year: 2004

  6. The underestimated role of olfaction in avian reproduction ?

    Science.gov (United States)

    Balthazart, Jacques; Taziaux, Mélanie

    2009-01-01

    Until the second half of the 20th century, it was broadly accepted that most birds are microsmatic if not anosmic and unable to detect and use olfactory information. Exceptions were eventually conceded for species like procellariiforms, vultures or kiwis that detect their food at least in part based on olfactory signals. During the past 20–30 years, many publications have appeared indicating that this view is definitely erroneous. We briefly review here anatomical, electrophysiological and behavioral data demonstrating that birds in general possess a functional olfactory system and are able to use olfactory information in a variety of ethological contexts, including reproduction. Recent work also indicates that brain activation induced by sexual interactions with a female is significantly affected by olfactory deprivation in Japanese quail. Brain activation was measured via immunocytochemical detection of the protein product of the immediate early gene c-fos. Changes observed concerned two brain areas that play a key role in the control of male sexual behavior, the medial preoptic nucleus and the bed nucleus of the stria terminalis therefore suggesting a potential role of olfaction in the control of reproduction. The widespread idea that birds are anosmic or microsmatic is thus not supported by the available experimental data and presumably originates in our anthropomorphic view that leads us to think that birds do not smell because they have a rigid beak and nostrils and do not obviously sniff. Experimental analysis of this phenomenon is thus warranted and should lead to a significant change in our understanding of avian biology. PMID:18804490

  7. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    Science.gov (United States)

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  8. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  9. Water temperature and pH influence olfactory sensitivity to pre ...

    Indian Academy of Sciences (India)

    This shows that circulatory androgens exert an activational effect on olfactory receptors of male fish. Wild caught tubercular males and androgen implanted juvenile males exhibit a high responsiveness to steroid sulphate at the water temperature and pH which fish experience during the pre-spawning phase. The male's ...

  10. Short-term memory in olfactory network dynamics

    Science.gov (United States)

    Stopfer, Mark; Laurent, Gilles

    1999-12-01

    Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.

  11. Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa.

    Science.gov (United States)

    Guérout, Nicolas; Derambure, Céline; Drouot, Laurent; Bon-Mardion, Nicolas; Duclos, Célia; Boyer, Olivier; Marie, Jean-Paul

    2010-10-01

    Olfactory ensheathing cells (OEC) have the ability to promote regeneration in the nervous system. Hence, they hold promise for cell therapy. Most of the experimental studies have investigated the role of OECs taken from olfactory bulb (OB). However, for a clinical human application, olfactory mucosa (OM) seems to be the only acceptable source for OECs. Many studies have compared the distinct ability of OECs from OB and OM to improve functional nerve regeneration after lesion of the nervous system. Nevertheless, the two populations of OECs may differ in several points, which might affect all fate after transplantation in vivo. We report here the first study which compares gene expression profiling between these two populations of OECs. It appears that OB-OECs and OM-OECs display distinct gene expression pattern, which suggest that they may be implicated in different physiological processes. Notably, OM-OECs overexpress genes characteristic of wound healing and regulation of extra cellular matrix. In contrast, OB-OECs gene profile suggests a prominent role in nervous system development. Hence, OB-OECs and OM-OECs fundamentally differ in their gene expression pattern, which may represent a crucial point for future clinical application. (c) 2010 Wiley-Liss, Inc.

  12. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    Directory of Open Access Journals (Sweden)

    Laís Soares Rodrigues

    2014-12-01

    Full Text Available Olfactory and rapid eye movement (REM sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD. Besides different studies reported declines in olfactory performances during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood although the impairment in the dopamine (DA neurotransmission in the olfactory bulb and in the nigrostriatal pathway may have important roles in olfactory as well as in REM sleep disturbances. Therefore, we have led to the hypothesis that a modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and after a short period of REM sleep deprivation (REMSD. We decided to investigate the olfactory, neurochemical and histological alterations generated by the administration of piribedil (a selective D2 agonist or raclopride (a selective D2 antagonist, within the glomerular layer of the olfactory bulb, in rats submitted to intranigral rotenone and REMSD. Our findings provided a remarkable evidence of the occurrence of a negative correlation (r = - 0.52, P = 0.04 between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham groups. A significant positive correlation (r = 0.34, P = 0.03 was observed between nigral DA and olfactory discrimination index (DI, for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc are associated to enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA induced by piribedil in the rotenone control and rotenone REMSD groups were consistent with reduced amounts of DI. The present evidence reinforce that DA produced by periglomerular neurons, and particularly the bulbar dopaminergic D2 receptors, are essential participants in the olfactory discrimination processes, as well as SNpc

  13. Functional evolution of the trace amine associated receptors in mammals and the loss of TAAR1 in dogs

    Directory of Open Access Journals (Sweden)

    Westmoreland Susan V

    2010-02-01

    Full Text Available Abstract Background The trace amine associated receptor family is a diverse array of GPCRs that arose before the first vertebrates walked on land. Trace amine associated receptor 1 (TAAR1 is a wide spectrum aminergic receptor that acts as a modulator in brain monoaminergic systems. Other trace amine associated receptors appear to relate to environmental perception and show a birth-and-death pattern in mammals similar to olfactory receptors. Results Across mammals, avians, and amphibians, the TAAR1 gene is intact and appears to be under strong purifying selection based on rates of amino acid fixation compared to neutral mutations. We have found that in dogs it has become a pseudogene. Our analyses using a comparative genetics approach revealed that the pseudogenization event predated the emergence of the Canini tribe rather than being coincident with canine domestication. By assessing the effects of the TAAR1 agonist β-phenylethylamine on [3H]dopamine uptake in canine striatal synaptosomes and comparing the degree and pattern of uptake inhibition to that seen in other mammals, including TAAR1 knockout mice, wild type mice and rhesus monkey, we found that the TAAR1 pseudogenization event resulted in an uncompensated loss of function. Conclusion The gene family has seen expansions among certain mammals, notably rodents, and reductions in others, including primates. By placing the trace amine associated receptors in an evolutionary context we can better understand their function and their potential associations with behavior and neurological disease.

  14. The Feasibility of Gelatin-Based Retronasal Stimuli to Assess Olfactory Perception

    Directory of Open Access Journals (Sweden)

    Daniel Shepherd

    2015-10-01

    Full Text Available Links between some psychological disorders and olfactory deficits are well documented, and screening tests have been developed to exploit these associations. Odors can take one of two routes to the olfactory receptors in the nasal epithelium, the orthonasal or retronasal route. This article discusses the potential use of the retronasal route to assess olfaction using gelatin-based stimuli delivered orally. Using a relatively new psychophysical method, the Single-Interval Adjustment Matrix task, we estimated vanillin thresholds for five healthy participants sampling small vanillin flavored gels. Our data demonstrate the feasibility of using solid-state gustatory stimuli to assess retronasal perception.

  15. Novel olfactory ligands via terpene synthases.

    Science.gov (United States)

    Touchet, Sabrina; Chamberlain, Keith; Woodcock, Christine M; Miller, David J; Birkett, Michael A; Pickett, John A; Allemann, Rudolf K

    2015-05-01

    A synthetic biology approach to the rational design of analogues of olfactory ligands by providing unnatural substrates for the enzyme synthesising (S)-germacrene D, an olfactory ligand acting as a plant derived insect repellent, to produce novel ligands is described as a viable alternative to largely unsuccessful ligand docking studies. (S)-14,15-Dimethylgermacrene D shows an unexpected reversal in behavioural activity.

  16. Duration and specificity of olfactory nonassociative memory.

    Science.gov (United States)

    Freedman, Kaitlin G; Radhakrishna, Sreya; Escanilla, Olga; Linster, Christiane

    2013-05-01

    Olfactory habituation is a simple form of nonassociative memory in which responsiveness to stable but behaviorally nonsignificant stimuli is decreased. Olfactory habituation has recently become a paradigm widely used to probe the neural substrate underlying olfactory perception and memory. This simple behavioral paradigm has been used successfully used to probe many aspects of olfactory processing, and it has recently become clear that the neural processes underlying olfactory habituation can depend on the task parameters used. We here further investigate memory specificity and duration using 2 variations in task parameters: the number of habituation trials and the time delay between habituation and cross-habituation testing. We find that memory specificity increases with the number of habituation trials but decreases with time after the last habituation trial.

  17. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... outbreaks in poultry have seriously impacted livelihoods, the economy and international trade in affected countries. Other avian influenza A( ... outbreaks in poultry have seriously impacted livelihoods, the economy and international trade in affected countries. Other avian influenza A( ...

  18. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit.

    Directory of Open Access Journals (Sweden)

    Shimaa A M Ebrahim

    2015-12-01

    Full Text Available Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.

  19. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit.

    Science.gov (United States)

    Ebrahim, Shimaa A M; Dweck, Hany K M; Stökl, Johannes; Hofferberth, John E; Trona, Federica; Weniger, Kerstin; Rybak, Jürgen; Seki, Yoichi; Stensmyr, Marcus C; Sachse, Silke; Hansson, Bill S; Knaden, Markus

    2015-12-01

    Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.

  20. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  1. The role of main olfactory and vomeronasal systems in animal ...

    African Journals Online (AJOL)

    In many terrestrial tetrapod, olfactory sensory communication is mediated by two anatomically and functionally distinct sensory systems; the main olfactory system and vomeronasal system (accessory olfactory system). Recent anatomical studies of the central pathways of the olfactory and vomeronasal systems showed that ...

  2. Dog and mouse: Towards a balanced view of the mammalian olfactory system

    Directory of Open Access Journals (Sweden)

    William Arthur Barrios Santos

    2014-09-01

    Full Text Available Although the most intensively studied mammalian olfactory system is that of the mouse, in which olfactory chemical cues of one kind or another are detected in four different nasal areas (the main olfactory epithelium, the septal organ, Grüneberg’s ganglion, and the sensory epithelium of the vomeronasal organ, the extraordinarily sensitive olfactory system of the dog is also an important model that is increasingly used, for example in genomic studies of species evolution. Here we describe the topography and extent of the main olfactory and vomeronasal sensory epithelia of the dog, and we report finding no structures equivalent to the Grüneberg ganglion and septal organ of the mouse. Since we examined adults, newborns and foetuses we conclude that these latter structures are absent in dogs, possibly as the result of regression or involution.The absence of a vomeronasal component based on VR2 receptors suggests that the vomeronasal organ may be undergoing a similar involutionary process.

  3. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    Science.gov (United States)

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  4. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning.

    Science.gov (United States)

    Munger, Steven D; Leinders-Zufall, Trese; McDougall, Lisa M; Cockerham, Renee E; Schmid, Andreas; Wandernoth, Petra; Wennemuth, Gunther; Biel, Martin; Zufall, Frank; Kelliher, Kevin R

    2010-08-24

    Olfactory signals influence social interactions in a variety of species. In mammals, pheromones and other social cues can promote mating or aggression behaviors; can communicate information about social hierarchies, genetic identity and health status; and can contribute to associative learning. However, the molecular, cellular, and neural mechanisms underlying many olfactory-mediated social interactions remain poorly understood. Here, we report that a specialized olfactory subsystem that includes olfactory sensory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated channel subunit CNGA3, and the carbonic anhydrase isoform CAII (GC-D(+) OSNs) is required for the acquisition of socially transmitted food preferences (STFPs) in mice. Using electrophysiological recordings from gene-targeted mice, we show that GC-D(+) OSNs are highly sensitive to the volatile semiochemical carbon disulfide (CS(2)), a component of rodent breath and a known social signal mediating the acquisition of STFPs. Olfactory responses to CS(2) are drastically reduced in mice lacking GC-D, CNGA3, or CAII. Disruption of this sensory transduction cascade also results in a failure to acquire STFPs from either live or surrogate demonstrator mice or to exhibit hippocampal correlates of STFP retrieval. Our findings indicate that GC-D(+) OSNs detect chemosignals that facilitate food-related social interactions. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  6. Olfactory dysfunction and its measurement in the clinic

    Directory of Open Access Journals (Sweden)

    Richard L. Doty

    2015-09-01

    Full Text Available The sense of smell is largely taken for granted by laypersons and medical professionals alike. Indeed, its role in determining the flavor of foods and beverages, as well as in warning of, or protecting against, environmental hazards, often goes unrecognized. This is exemplified, in part, by the fact that most patients presenting to medical clinics with “taste” problems are typically subjected to complex brain imaging and gastroenterological tests without the sense of smell even being tested or considered as a basis of the problem. Aside from frank deficiencies in sweet, sour, bitter, salty and savory (umami sensations, “taste” disorders most commonly reflect inadequate stimulation of the olfactory receptors via the retronasal route; i.e., from volatiles passing to the receptors from the oral cavity through the nasal pharynx. This article describes the two most common procedures for measuring the sense of smell in the clinic and provides examples of the application of these tests to diseases and other disorders frequently associated with smell loss. Basic issues related to olfactory testing and evaluation are addressed. It is pointed out that smell loss, particularly in later life, can be a harbinger for not only a range of neurodegenerative diseases, but can be a prognostic indicator of early mortality. Keywords: Allergy, Polyposis, Nasal disease, Rhinosinusitis, Smell, Psychophysics, Olfaction, Iatrogenesis

  7. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells.

    Science.gov (United States)

    Ogura, Tatsuya; Szebenyi, Steven A; Krosnowski, Kurt; Sathyanesan, Aaron; Jackson, Jacqueline; Lin, Weihong

    2011-09-01

    The mammalian olfactory epithelium is made up of ciliated olfactory sensory neurons (OSNs), supporting cells, basal cells, and microvillous cells. Previously, we reported that a population of nonneuronal microvillous cells expresses transient receptor potential channel M5 (TRPM5). Using transgenic mice and immunocytochemical labeling, we identify that these cells are cholinergic, expressing the signature markers of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. This result suggests that acetylcholine (ACh) can be synthesized and released locally to modulate activities of neighboring supporting cells and OSNs. In Ca(2+) imaging experiments, ACh induced increases in intracellular Ca(2+) levels in 78% of isolated supporting cells tested in a concentration-dependent manner. Atropine, a muscarinic ACh receptor (mAChR) antagonist suppressed the ACh responses. In contrast, ACh did not induce or potentiate Ca(2+) increases in OSNs. Instead ACh suppressed the Ca(2+) increases induced by the adenylyl cyclase activator forskolin in some OSNs. Supporting these results, we found differential expression of mAChR subtypes in supporting cells and OSNs using subtype-specific antibodies against M(1) through M(5) mAChRs. Furthermore, we found that various chemicals, bacterial lysate, and cold saline induced Ca(2+) increases in TRPM5/ChAT-expressing microvillous cells. Taken together, our data suggest that TRPM5/ChAT-expressing microvillous cells react to certain chemical or thermal stimuli and release ACh to modulate activities of neighboring supporting cells and OSNs via mAChRs. Our studies reveal an intrinsic and potentially potent mechanism linking external stimulation to cholinergic modulation of activities in the olfactory epithelium.

  8. [Odor sensing system and olfactory display].

    Science.gov (United States)

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.

  9. Olfactory bulb as an alternative in neurotransplantation

    Directory of Open Access Journals (Sweden)

    Руслан Романович Новиков

    2015-05-01

    Full Text Available The article examines the ethical and legal aspects of transplantation of embryonic neural tissue, structure of the rat olfactory bulb. It is given substantiation for its use as a possible alternative version of the embryonic neural tissue at damage in the cerebral hemispheres in the experiment.Materials and methods. Detailed description of the fault model of the cerebral hemispheres of the brain of rats, olfactory bulb biopsy procedure, cultivation of olfactory bulb suspension and fetal neural tissue, comparison of the functional aspects of transplantation of the olfactory bulb and the embryonic neural tissue.Results. The obtained data are similar to structure of olfactory bulb and fetal tissues during culturing. Recovery in the motor areas varies by the time factor and less intense in the group of the olfactory bulb and the group without tissue transplantation.Conclusions. Comparative analysis of the effectiveness of transplantation of embryonic neural tissue and olfactory bulb in the injured brain allows us to speak about the positive results of these groups to the difference in the duration of the recovery process

  10. Imaging the olfactory tract (Cranial Nerve no.1)

    International Nuclear Information System (INIS)

    Duprez, Thierry P.; Rombaux, Philippe

    2010-01-01

    This review paper browses pros and cons of the different radiological modalities for imaging the olfactory tract and highlights the potential benefits and limitation of more recent advances in MR and CT technology. A systematic pictorial overview of pathological conditions affecting olfactory sense is given. Techniques for collecting quantitative data on olfactory bulb volume and on olfactory sulcus depth are described. At last, insights into functional imaging of olfactory sense are shown.

  11. Neuronal organization of olfactory bulb circuits

    Directory of Open Access Journals (Sweden)

    Shin eNagayama

    2014-09-01

    Full Text Available Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.

  12. The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.

    Science.gov (United States)

    Courtiol, Emmanuelle; Wilson, Donald A

    2017-01-01

    Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.

  13. Identification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis.

    Directory of Open Access Journals (Sweden)

    Guangwei Li

    Full Text Available The oriental fruit moth, Grapholita molesta, is an extremely important oligophagous pest species of stone and pome fruits throughout the world. As a host-switching species, adult moths, especially females, depend on olfactory cues to a large extent in locating host plants, finding mates, and selecting oviposition sites. The identification of olfactory genes can facilitate investigation on mechanisms for chemical communications.We generated transcriptome of female antennae of G.molesta using the next-generation sequencing technique, and assembled transcripts from RNA-seq reads using Trinity, SOAPdenovo-trans and Abyss-trans assemblers. We identified 124 putative olfactory genes. Among the identified olfactory genes, 118 were novel to this species, including 28 transcripts encoding for odorant binding proteins, 17 chemosensory proteins, 48 odorant receptors, four gustatory receptors, 24 ionotropic receptors, two sensory neuron membrane proteins, and one odor degrading enzyme. The identified genes were further confirmed through semi-quantitative reverse transcription PCR for transcripts coding for 26 OBPs and 17 CSPs. OBP transcripts showed an obvious antenna bias, whereas CSP transcripts were detected in different tissues.Antennal transcriptome data derived from the oriental fruit moth constituted an abundant molecular resource for the identification of genes potentially involved in the olfaction process of the species. This study provides a foundation for future research on the molecules involved in olfactory recognition of this insect pest, and in particular, the feasibility of using semiochemicals to control this pest.

  14. Identification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis.

    Science.gov (United States)

    Li, Guangwei; Du, Juan; Li, Yiping; Wu, Junxiang

    2015-01-01

    The oriental fruit moth, Grapholita molesta, is an extremely important oligophagous pest species of stone and pome fruits throughout the world. As a host-switching species, adult moths, especially females, depend on olfactory cues to a large extent in locating host plants, finding mates, and selecting oviposition sites. The identification of olfactory genes can facilitate investigation on mechanisms for chemical communications. We generated transcriptome of female antennae of G.molesta using the next-generation sequencing technique, and assembled transcripts from RNA-seq reads using Trinity, SOAPdenovo-trans and Abyss-trans assemblers. We identified 124 putative olfactory genes. Among the identified olfactory genes, 118 were novel to this species, including 28 transcripts encoding for odorant binding proteins, 17 chemosensory proteins, 48 odorant receptors, four gustatory receptors, 24 ionotropic receptors, two sensory neuron membrane proteins, and one odor degrading enzyme. The identified genes were further confirmed through semi-quantitative reverse transcription PCR for transcripts coding for 26 OBPs and 17 CSPs. OBP transcripts showed an obvious antenna bias, whereas CSP transcripts were detected in different tissues. Antennal transcriptome data derived from the oriental fruit moth constituted an abundant molecular resource for the identification of genes potentially involved in the olfaction process of the species. This study provides a foundation for future research on the molecules involved in olfactory recognition of this insect pest, and in particular, the feasibility of using semiochemicals to control this pest.

  15. Identification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis

    Science.gov (United States)

    Li, Yiping; Wu, Junxiang

    2015-01-01

    Background The oriental fruit moth, Grapholita molesta, is an extremely important oligophagous pest species of stone and pome fruits throughout the world. As a host-switching species, adult moths, especially females, depend on olfactory cues to a large extent in locating host plants, finding mates, and selecting oviposition sites. The identification of olfactory genes can facilitate investigation on mechanisms for chemical communications. Methodology/Principal Finding We generated transcriptome of female antennae of G.molesta using the next-generation sequencing technique, and assembled transcripts from RNA-seq reads using Trinity, SOAPdenovo-trans and Abyss-trans assemblers. We identified 124 putative olfactory genes. Among the identified olfactory genes, 118 were novel to this species, including 28 transcripts encoding for odorant binding proteins, 17 chemosensory proteins, 48 odorant receptors, four gustatory receptors, 24 ionotropic receptors, two sensory neuron membrane proteins, and one odor degrading enzyme. The identified genes were further confirmed through semi-quantitative reverse transcription PCR for transcripts coding for 26 OBPs and 17 CSPs. OBP transcripts showed an obvious antenna bias, whereas CSP transcripts were detected in different tissues. Conclusion Antennal transcriptome data derived from the oriental fruit moth constituted an abundant molecular resource for the identification of genes potentially involved in the olfaction process of the species. This study provides a foundation for future research on the molecules involved in olfactory recognition of this insect pest, and in particular, the feasibility of using semiochemicals to control this pest. PMID:26540284

  16. Timberol® Inhibits TAAR5-Mediated Responses to Trimethylamine and Influences the Olfactory Threshold in Humans.

    Directory of Open Access Journals (Sweden)

    Ivonne Wallrabenstein

    Full Text Available In mice, trace amine-associated receptors (TAARs are interspersed in the olfactory epithelium and constitute a chemosensory subsystem that is highly specific for detecting volatile amines. Humans possess six putative functional TAAR genes. Human TAAR5 (hTAAR5 is highly expressed in the olfactory mucosa and was shown to be specifically activated by trimethylamine. In this study, we were challenged to uncover an effective blocker substance for trimethylamine-induced hTAAR5 activation. To monitor blocking effects, we recombinantly expressed hTAAR5 and employed a commonly used Cre-luciferase reporter gene assay. Among all tested potential blocker substances, Timberol®, an amber-woody fragrance, is able to inhibit the trimethylamine-induced hTAAR5 activation up to 96%. Moreover, human psychophysical data showed that the presence of Timberol® increases the olfactory detection threshold for the characteristic fishy odor of trimethylamine by almost one order of magnitude. In conclusion, our results show that among tested receptors Timberol® is a specific and potent antagonist for the hTAAR5-mediated response to trimethylamine in a heterologous system. Furthermore, our data concerning the observed shift of the olfactory detection threshold in vivo implicate that hTAAR5 or other receptors that may be inhibited by Timberol® could be involved in the high affinity olfactory perception of trimethylamine in humans.

  17. Clinical diagnosis and treatment of olfactory meningioma

    International Nuclear Information System (INIS)

    Li Xiangdong; Wang Zhong; Zhang Shiming; Zhu Fengqing; Zhou Dai; Hui Guozhen

    2005-01-01

    Objective: To analyze the clinical diagnosis and treatment of olfactory meningioma. Methods: In this group 17 olfactory meningiomas were operated, and the clinical presentations and the surgery results were obtained. Results: The symptoms of psychiatrical disorder, visual disturbances and eclipse at presentation was higher. In 16 cases the grade of resection was Simpson II, 1 case Simpson III, most of the cases had a good recovery. Conclusion: Attention should be paid to the early symptom at presentation such as psychiatrical disorder to obtain an early diagnosis. Microsurgery is useful in the treatment of olfactory meningioma. (authors)

  18. 17β-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice.

    Science.gov (United States)

    Dillon, T Samuel; Fox, Laura C; Han, Crystal; Linster, Christiane

    2013-12-01

    Rodents rely heavily on odor detection, discrimination, and memory to locate food, find mates, care for pups, and avoid predators. Estrogens have been shown to increase memory retention in rodents performing spatial memory and object placement tasks. Here we evaluate the extent to which 17β-estradiol modulates memory formation and duration in the olfactory system. Adult CD-1 mice were gonadectomized and given either systemic 17β-estradiol replacement, local 17β-estradiol in the main olfactory bulb, or no replacement. Before performing the behavioral task the mice were given saline or PHTPP (an estrogen receptor β [ER-β] antagonist) via bilateral infusion into the main olfactory bulb. As the beta-type estrogen receptor (ER-β) is more abundant than the alpha-type estrogen receptor in the murine main olfactory bulb, the current study focuses on 17β-estradiol and its interactions with ERβ. Habituation, a simple, nonassociative learning task in which an animal is exposed to the same odor over successive presentations, was used to evaluate the animals' ability to detect odors and form an olfactory memory. To evaluate memory duration, we added a final trial of intertrial interval time (30 or 60 min) in which we presented the habituated odor. Neither surgical nor drug manipulation affected the ability of mice to detect or habituate to an odor. After habituation, gonadectomized 17β-estradiol-treated mice retained memory of an odor for 30 min, whereas non-estradiol-treated, 17β-estradiol+ERβ antagonist (PHTPP), and untreated male mice did not remember an odor 30 min after habituation. The results show that both systemic and local bulbar infusions of 17β-estradiol enhance odor memory duration in mice.

  19. Methods to measure olfactory behavior in mice.

    Science.gov (United States)

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-02-02

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice, including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors, especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, with respect to both social and nonsocial odors. Copyright © 2015 John Wiley & Sons, Inc.

  20. Cladistic Analysis of Olfactory and Vomeronasal Systems

    Science.gov (United States)

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  1. Dimorphic olfactory lobes in the arthropoda.

    Science.gov (United States)

    Strausfeld, Nicholas; Reisenman, Carolina E

    2009-07-01

    Specialized olfactory lobe glomeruli relating to sexual or caste differences have been observed in at least five orders of insects, suggesting an early appearance of this trait in insect evolution. Dimorphism is not limited to nocturnal species, but occurs even in insects that are known to use vision for courtship. Other than a single description, there is no evidence for similar structures occurring in the Crustacea, suggesting that the evolution of dimorphic olfactory systems may typify terrestrial arthropods.

  2. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  3. Olfactory bulb encoding during learning under anesthesia

    Science.gov (United States)

    Nicol, Alister U.; Sanchez-Andrade, Gabriela; Collado, Paloma; Segonds-Pichon, Anne; Kendrick, Keith M.

    2014-01-01

    Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA

  4. Cladistic analysis of olfactory and vomeronasal systems

    Directory of Open Access Journals (Sweden)

    Alino eMartinez-Marcos

    2011-01-01

    Full Text Available Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical cortex. We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis, short-tailed opossums (Monodelphis domestica and rats (Rattus norvegicus by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines. In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  5. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  6. [Deficits in medical counseling in olfactory dysfunction].

    Science.gov (United States)

    Haxel, B R; Nisius, A; Fruth, K; Mann, W J; Muttray, A

    2012-05-01

    Olfactory dysfunctions are common with a prevalence of up to 20% in the population. An impaired sense of smell can lead to specific dangers, therefore, counseling and warning of hazardous situations to raise patient awareness is an important medical function. In this study 105 patients presenting to the University of Mainz Medical Centre with dysosmia were evaluated using a questionnaire. For quantification of the olfactory dysfunction a standardized olfactory test (Sniffin' Sticks) was used. Of the patients 46% were hyposmic and 40% were functionally anosmic. The median duration of the olfactory impairment was 10 months and the main causes of dysosmia were upper respiratory tract infections and idiopathic disorders. More than 90% of the patients consulted an otorhinolaryngologist and 60% a general practitioner before presenting to the University of Mainz Medical Center. More than two thirds of the patients conducted a professional activity, 95% of patients reported that they had not received any medical counseling and 6% of the subjects were forced to discontinue their profession because of olfactory dysfunction. In patients with olfactory dysfunctions appropriate diagnostics, including olfactometry should be performed. Furthermore, correct medical counseling concerning necessary additional arrangements (e.g. installation of smoke or gas detectors, precautions while cooking or for hygiene) has to be performed. For patients in a profession an analysis of the hazards at work is crucial.

  7. Olfactory Loss and Regain: Lessons for Neuroplasticity.

    Science.gov (United States)

    Reichert, Johanna L; Schöpf, Veronika

    2018-02-01

    For the visual and auditory senses, an array of studies has reported on neuronal reorganization processes after sensory loss. In contrast to this, neuroplasticity has been investigated only scarcely after loss of the olfactory sense. The present review focuses on the current extent of literature on structural and functional neuroplasticity effects after loss, with a focus on magnetic resonance imaging-based studies. We also include findings on the regain of the olfactory sense, for example after successful olfactory training. Existing studies indicate that widespread structural changes beyond the level of the olfactory bulb occur in the brain after loss of the olfactory sense. Moreover, on a functional level, loss of olfactory input not only entails changes in olfaction-related brain regions but also in the trigeminal system. Existing evidence should be strengthened by future longitudinal studies, a more thorough investigation of the neuronal consequences of congenital anosmia, and the application of state-of-the-art neuroimaging methods, such as connectivity analyses and joint analyses of brain structure and function.

  8. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  9. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  10. Olfactory systems and neural circuits that modulate predator odor fear.

    Science.gov (United States)

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  11. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    International Nuclear Information System (INIS)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-01-01

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L −1 . Densitometric values of cONS, immunostained with anti-G αolf , decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G αolf staining

  12. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  13. Olfactory proteins mediating chemical communication in the navel orangeworm moth, Amyelois transitella.

    Directory of Open Access Journals (Sweden)

    Walter S Leal

    2009-09-01

    Full Text Available The navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae, is the most serious insect pest of almonds and pistachios in California for which environmentally friendly alternative methods of control--like pheromone-based approaches--are highly desirable. Some constituents of the sex pheromone are unstable and could be replaced with parapheromones, which may be designed on the basis of molecular interaction of pheromones and pheromone-detecting olfactory proteins.By analyzing extracts from olfactory and non-olfactory tissues, we identified putative olfactory proteins, obtained their N-terminal amino acid sequences by Edman degradation, and used degenerate primers to clone the corresponding cDNAs by SMART RACE. Additionally, we used degenerate primers based on conserved sequences of known proteins to fish out other candidate olfactory genes. We expressed the gene encoding a newly identified pheromone-binding protein, which was analyzed by circular dichroism, fluorescence, and nuclear magnetic resonance, and used in a binding assay to assess affinity to pheromone components.We have cloned nine cDNAs encoding olfactory proteins from the navel orangeworm, including two pheromone-binding proteins, two general odorant-binding proteins, one chemosensory protein, one glutathione S-transferase, one antennal binding protein X, one sensory neuron membrane protein, and one odorant receptor. Of these, AtraPBP1 is highly enriched in male antennae. Fluorescence, CD and NMR studies suggest a dramatic pH-dependent conformational change, with high affinity to pheromone constituents at neutral pH and no binding at low pH.

  14. Molecular characterization and immunolocalization of the olfactory co-receptor Orco from two blood-feeding muscid flies, the stable fly (Stomoxys calcitrans, L.) and the horn fly (Haematobia irritans irritans, L.).

    Science.gov (United States)

    Olafson, P U

    2013-04-01

    Biting flies are economically important blood-feeding pests of medical and veterinary significance. Chemosensory-based biting fly behaviours, such as host/nutrient source localization and ovipositional site selection, are intriguing targets for the development of supplemental control strategies. In an effort to expand our understanding of biting fly chemosensory pathways, transcripts encoding the highly conserved insect odorant co-receptor (Orco) were isolated from two representative biting fly species, the stable fly (Scal\\Orco) and the horn fly (Hirr\\Orco). Orco forms a complex with an odour-specific odorant receptor to form an odour-gated ion channel. The biting fly transcripts were predicted to encode proteins with 87-94% amino acid similarity to published insect Orco sequences and were detected in various immature stages as well as in adult structures associated with olfaction, i.e. the antennae and maxillary palps, and gustation, i.e. the proboscis. Further, the relevant proteins were immunolocalized to specific antennal sensilla using anti-serum raised against a peptide sequence conserved between the two fly species. Results from the present study provide a basis for functional evaluation of repellent/attractant effects on as yet uncharacterized stable fly and horn fly conventional odorant receptors. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  15. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  16. Olfactory processing and odor specificity: a meta-analysis of menstrual cycle variation in olfactory sensitivity

    Directory of Open Access Journals (Sweden)

    Martinec Nováková Lenka

    2014-12-01

    Full Text Available Cycle-correlated variation in olfactory threshold, with women becoming more sensitive to odors mid-cycle, is somewhat supported by the literature but the evidence is not entirely consistent, with several studies finding no, or mixed, effects. It has been argued that cyclic shifts in olfactory threshold might be limited to odors relevant to the mating context.

  17. Effect of salinity changes on olfactory memory-related genes and hormones in adult chum salmon Oncorhynchus keta.

    Science.gov (United States)

    Kim, Na Na; Choi, Young Jae; Lim, Sang-Gu; Jeong, Minhwan; Jin, Deuk-Hee; Choi, Cheol Young

    2015-09-01

    Studies of memory formation have recently concentrated on the possible role of N-methyl-d-aspartate receptors (NRs). We examined changes in the expression of three NRs (NR1, NR2B, and NR2C), olfactory receptor (OR), and adrenocorticotropic hormone (ACTH) in chum salmon Oncorhynchus keta using quantitative polymerase chain reaction (QPCR) during salinity change (seawater→50% seawater→freshwater). NRs were significantly detected in the diencephalon and telencephalon and OR was significantly detected in the olfactory epithelium. The expression of NRs, OR, and ACTH increased after the transition to freshwater. We also determined that treatment with MK-801, an antagonist of NRs, decreased NRs in telencephalon cells. In addition, a reduction in salinity was associated with increased levels of dopamine, ACTH, and cortisol (in vivo). Reductions in salinity evidently caused NRs and OR to increase the expression of cortisol and dopamine. We concluded that memory capacity and olfactory imprinting of salmon is related to the salinity of the environment during the migration to spawning sites. Furthermore, salinity affects the memory/imprinting and olfactory abilities, and cortisol and dopamine is also related with olfactory-related memories during migration. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cellular Mechanisms of Action of Drug Abuse on Olfactory Neurons

    Directory of Open Access Journals (Sweden)

    Thomas Heinbockel

    2015-12-01

    Full Text Available Cannabinoids (Δ9-tetrahydrocannabinol are the active ingredient of marijuana (cannabis which is the most commonly abused illicit drug in the USA. In addition to being known and used as recreational drugs, cannabinoids are produced endogenously by neurons in the brain (endocannabinoids and serve as important signaling molecules in the nervous system and the rest of the body. Cannabinoids have been implicated in bodily processes both in health and disease. Recent pharmacological and physiological experiments have described novel aspects of classic brain signaling mechanisms or revealed unknown mechanisms of cellular communication involving the endocannabinoid system. While several forms of signaling have been described for endocannabinoids, the most distinguishing feature of endocannabinoids is their ability to act as retrograde messengers in neural circuits. Neurons in the main olfactory bulb express high levels of cannabinoid receptors. Here, we describe the cellular mechanisms and function of this novel brain signaling system in regulating neural activity at synapses in olfactory circuits. Results from basic research have the potential to provide the groundwork for translating the neurobiology of drug abuse to the realm of the pharmacotherapeutic treatment of addiction, specifically marijuana substance use disorder.

  19. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  20. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  1. Artificial Induction of Associative Olfactory Memory by Optogenetic and Thermogenetic Activation of Olfactory Sensory Neurons and Octopaminergic Neurons in Drosophila Larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2016-01-01

    The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain.

  2. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  3. Olfactory screening test in mild cognitive impairment.

    Science.gov (United States)

    Eibenstein, A; Fioretti, A B; Simaskou, M N; Sucapane, P; Mearelli, S; Mina, C; Amabile, G; Fusetti, M

    2005-07-01

    Mild cognitive impairment (MCI) is a transient status between physiologic ageing and dementia. Each year more than 12% of subjects with MCI develop Alzheimer's disease. This study evaluated the presence of an olfactory deficit in amnesic MCI (aMCI) patients. Twenty-nine patients diagnosed with aMCI and a homogeneous control group of 29 subjects were enrolled in the study. Olfactory function was assessed by the Sniffin' Sticks Screening Test (SSST) and the Mini Mental State Examination, the Clinical Dementia Rating, the Geriatric Depression Scale and the Mental Deterioration Battery were used to evaluate the neurocognitive status. aMCI patients showed a significant impairment of their olfactory identification compared to controls (SSST score: 8.3+/-2.1 vs. 10.8+/-0.9; p<0.001). These results suggest that olfactory tests should be part of the diagnostic armamentarium of pre-clinical dementia. A long-term follow up might confirm the olfactory identification function as an early and reliable marker in the diagnosis of pre-clinical dementia.

  4. Topical Dexamethasone Administration Impairs Protein Synthesis and Neuronal Regeneration in the Olfactory Epithelium

    Directory of Open Access Journals (Sweden)

    Umberto Crisafulli

    2018-03-01

    Full Text Available Chronic inflammatory process in the nasal mucosa is correlated with poor smell perception. Over-activation of immune cells in the olfactory epithelium (OE is generally associated with loss of olfactory function, and topical steroidal anti-inflammatory drugs have been largely used for treating such condition. Whether this therapeutic strategy could directly affect the regenerative process in the OE remains unclear. In this study, we show that nasal topical application of dexamethasone (DEX; 200 or 800 ng/nostril, a potent synthetic anti-inflammatory steroid, attenuates OE lesion caused by Gram-negative bacteria lipopolysaccharide (LPS intranasal infusion. In contrast, repeated DEX (400 ng/nostril local application after lesion establishment limited the regeneration of olfactory sensory neurons after injury promoted by LPS or methimazole. Remarkably, DEX effects were observed when the drug was infused as 3 consecutive days regimen. The anti-inflammatory drug does not induce OE progenitor cell death, however, disturbance in mammalian target of rapamycin downstream signaling pathway and impairment of protein synthesis were observed during the course of DEX treatment. In addition, in vitro studies conducted with OE neurospheres in the absence of an inflammatory environment showed that glucocorticoid receptor engagement directly reduces OE progenitor cells proliferation. Our results suggest that DEX can interfere with the intrinsic regenerative cellular mechanisms of the OE, raising concerns on the use of topical anti-inflammatory steroids as a risk factor for progressive olfactory function impairment.

  5. Investigation of breathing parameters during odor perception and olfactory imagery.

    Science.gov (United States)

    Kleemann, A M; Kopietz, R; Albrecht, J; Schöpf, V; Pollatos, O; Schreder, T; May, J; Linn, J; Brückmann, H; Wiesmann, M

    2009-01-01

    Compared with visual and auditory imagery, little is known about olfactory imagery. There is evidence that respiration may be altered by both olfactory perception and olfactory imagery. In order to investigate this relationship, breathing parameters (respiratory minute volume, respiratory amplitude, and breathing rate) in human subjects during olfactory perception and olfactory imagery were investigated. Fifty-six subjects having normal olfactory function were tested. Nasal respiration was measured using a respiratory pressure sensor. Using an experimental block design, we alternately presented odors or asked the subjects to imagine a given smell. Four different pleasant odors were used: banana, rose, coffee, and lemon odor. We detected a significant increase in respiratory minute volume between olfactory perception and the baseline condition as well as between olfactory imagery and baseline condition. Additionally we found significant differences in the respiratory amplitude between imagery and baseline condition and between odor and imagery condition. Differences in the breathing rate between olfactory perception, olfactory imagery, and baseline were not statistically significant. We conclude from our results that olfactory perception and olfactory imagery both have effects on the human respiratory profile and that these effects are based on a common underlying mechanism.

  6. Behavioral determination of olfactory thresholds to amyl acetate in dogs.

    Science.gov (United States)

    Krestel, D; Passe, D; Smith, J C; Jonsson, L

    1984-01-01

    By use of a modified conditioned suppression technique, olfactory thresholds to amyl acetate were determined for four beagle dogs. Using the same odorant and olfactometer and a similar breathing chamber, olfactory thresholds were obtained in eight human subjects. It was determined that the olfactory sensitivity of the dogs was about 2.5 log units better than that of the human subjects.

  7. Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation

    Science.gov (United States)

    Fletcher, Max L.; Chen, Wei R.

    2010-01-01

    The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…

  8. Avian influenza surveillance and diagnosis

    Science.gov (United States)

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  9. Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment.

    Science.gov (United States)

    Lemons, Kayla; Fu, Ziying; Aoudé, Imad; Ogura, Tatsuya; Sun, Julianna; Chang, Justin; Mbonu, Kenechukwu; Matsumoto, Ichiro; Arakawa, Hiroyuki; Lin, Weihong

    2017-01-01

    The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a -/- ) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a -/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a -/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a -/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE.

  10. Molecular characterization and differential expression of olfactory genes in the antennae of the black cutworm moth Agrotis ipsilon.

    Directory of Open Access Journals (Sweden)

    Shao-Hua Gu

    Full Text Available Insects use their sensitive and selective olfactory system to detect outside chemical odorants, such as female sex pheromones and host plant volatiles. Several groups of olfactory proteins participate in the odorant detection process, including odorant binding proteins (OBPs, chemosensory proteins (CSPs, odorant receptors (ORs, ionotropic receptors (IRs and sensory neuron membrane proteins (SNMPs. The identification and functional characterization of these olfactory proteins will enhance our knowledge of the molecular basis of insect chemoreception. In this study, we report the identification and differential expression profiles of these olfactory genes in the black cutworm moth Agrotis ipsilon. In total, 33 OBPs, 12 CSPs, 42 ORs, 24 IRs, 2 SNMPs and 1 gustatory receptor (GR were annotated from the A. ipsilon antennal transcriptomes, and further RT-PCR and RT-qPCR revealed that 22 OBPs, 3 CSPs, 35 ORs, 14 IRs and the 2 SNMPs are uniquely or primarily expressed in the male and female antennae. Furthermore, one OBP (AipsOBP6 and one CSP (AipsCSP2 were exclusively expressed in the female sex pheromone gland. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs were suggested to be responsible for pheromone and general odorant detection and thus could be meaningful target genes for us to study their biological functions in vivo and in vitro.

  11. Linking adult olfactory neurogenesis to social behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2012-11-01

    Full Text Available In the adult brain, new neurons are added to two brain areas: the olfactory bulb and the hippocampus. Newly-generated neurons integrate into the preexisting circuits, bringing a set of unique properties, such as increased plasticity and responsiveness to stimuli. However, the functional implications of the constant addition of these neurons remain unclear, although they are believed to be important for learning and memory. The levels of neurogenesis are regulated by a variety of environmental factors, as well as during learning, suggesting that new neurons could be important for coping with changing environmental demands. Notably, neurogenesis has been shown to be physiologically regulated in relation to reproductive behavior: neurogenesis increases in female mice upon exposure to cues of the mating partners, during pregnancy and lactation, and in male mice upon exposure to their offspring. In this scenario, and because of the key contribution of olfaction to maternal behavior, we sought to investigate the contribution of adult-generated neurons in the olfactory system to maternal behavior and offspring recognition. To do so, we selectively disrupted neurogenesis in the olfactory pathway of female mice using focal irradiation. Disruption of adult neurogenesis in the olfactory bulb did not affect maternal behavior, or the ability of female mice to discriminate familiar from unfamiliar pups. However, reduction of olfactory neurogenesis resulted in abnormal social interaction of female mice, specifically with male conspecifics. Because the olfactory system is crucial for sex recognition, we suggest that the abnormal interaction with males could result from the inability to detect or discriminate male-specific odors and could therefore have implications for the recognition of potential mating partners. Here, I review the results of this and other studies, and discuss their implications for our understanding of the function of adult neurogenesis.

  12. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell....... RESULTS: The scores of the two smell tests were significantly correlated. Both tests indicated that patients with frontal lesion performed significantly worse than patients with other types of lesion. Mood and injury severity were not associated with olfactory impairment when age was taken into account...

  13. Avian and human metapneumovirus.

    Science.gov (United States)

    Broor, Shobha; Bharaj, Preeti

    2007-04-01

    Pneumovirus infection remains a significant problem for both human and veterinary medicine. Both avian pneumovirus (aMPV, Turkey rhinotracheitis virus) and human metapneumovirus (hMPV) are pathogens of birds and humans, which are associated with respiratory tract infections. Based on their different genomic organization and low level of nucleotide (nt) and amino acid (aa) identity with paramyxoviruses in the genus Pneumovirus, aMPV and hMPV have been classified into a new genus referred to as Metapneumovirus. The advancement of our understanding of pneumovirus biology and pathogenesis of pneumovirus disease in specific natural hosts can provide us with strategies for vaccine formulations and combined antiviral and immunomodulatory therapies.

  14. Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice

    Directory of Open Access Journals (Sweden)

    Finger Thomas E

    2008-12-01

    Full Text Available Abstract Background In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells. Results We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers. Conclusion We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.

  15. Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice.

    Science.gov (United States)

    Hansen, Anne; Finger, Thomas E

    2008-12-04

    In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells. We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers. We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.

  16. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes.

    Science.gov (United States)

    Butler, Julie M; Field, Karen E; Maruska, Karen P

    2016-01-01

    Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future

  17. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes.

    Directory of Open Access Journals (Sweden)

    Julie M Butler

    Full Text Available Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of

  18. Adult neural stem cell dysfunction in the subventricular zone of the lateral ventricle leads to diabetic olfactory defects

    Directory of Open Access Journals (Sweden)

    Yu-hong Jing

    2017-01-01

    Full Text Available Sensitive smell discrimination is based on structural plasticity of the olfactory bulb, which depends on migration and integration of newborn neurons from the subventricular zone. In this study, we examined the relationship between neural stem cell status in the subventricular zone and olfactory function in rats with diabetes mellitus. Streptozotocin was injected through the femoral vein to induce type 1 diabetes mellitus in Sprague-Dawley rats. Two months after injection, olfactory sensitivity was decreased in diabetic rats. Meanwhile, the number of BrdU-positive and BrdU+/DCX+ double-labeled cells was lower in the subventricular zone of diabetic rats compared with age-matched normal rats. Western blot results revealed downregulated expression of insulin receptor β, phosphorylated glycogen synthase kinase 3β, and β-catenin in the subventricular zone of diabetic rats. Altogether, these results indicate that diabetes mellitus causes insulin deficiency, which negatively regulates glycogen synthase kinase 3β and enhances β-catenin degradation, with these changes inhibiting neural stem cell proliferation. Further, these signaling pathways affect proliferation and differentiation of neural stem cells in the subventricular zone. Dysfunction of subventricular zone neural stem cells causes a decline in olfactory bulb structural plasticity and impairs olfactory sensitivity in diabetic rats.

  19. Olfactory disfunction and its relation olfactory bulb volume in Parkinson's disease.

    Science.gov (United States)

    Altinayar, S; Oner, S; Can, S; Kizilay, A; Kamisli, S; Sarac, K

    2014-01-01

    Olfactory dysfunction is the most frequently seen non-motor symptom of Idiopathic Parkinson's disease (IPD). The aim of this study is to analyze selective olfactory dysfunction, and olfactory bulb volume (OBV) in subtypes of IPD, and compare them with those of the healthy controls. Our study included 41 patients with IPD and age and gender matched 19 healthy controls. IPD patients were either tremor dominant (65.9%; TDPD) or non-tremor dominant (34.1%; NTDPD) type. All patients underwent neurological, ear, nose, and throat examinations, and orthonasal olfaction testing. Magnetic resonance imaging (MRI) technique was used to measure the volume of the olfactory bulb. A significant decrease in olfactory identification scores was found in the patient group. The patients had difficulty in discriminating between odors of mothballs, chocolate, Turkish coffee and soap. OBV did not differ between the patient, and the control groups. In the TDPD group, odor identification ability was decreased when compared to the control group. However, odor test results of NTDPD, control and TDPD groups were similar. OBV estimates of the TDPD group were not different from those of the control group, while in the NTDPD group OBVs were found to be decreased. In all patients with Parkinson's disease OBV values did not vary with age of the patients, duration of the disease, age at onset of the disease, and Unified Parkinson's Disease Rating Scale motor scores (UPDRS-m). Olfactory function is a complex process involving olfactory, and cortical structures as well. In Idiopathic Parkinson's disease, changes in OBV do not seem to be directly related to olfactory dysfunction.

  20. Identification and molecular regulation of neural stem cells in the olfactory epithelium

    International Nuclear Information System (INIS)

    Beites, Crestina L.; Kawauchi, Shimako; Crocker, Candice E.; Calof, Anne L.

    2005-01-01

    The sensory neurons that subserve olfaction, olfactory receptor neurons (ORNs), are regenerated throughout life, making the neuroepithelium in which they reside [the olfactory epithelium (OE)] an excellent model for studying how intrinsic and extrinsic factors regulate stem cell dynamics and neurogenesis during development and regeneration. Numerous studies indicate that transcription factors and signaling molecules together regulate generation of ORNs from stem and progenitor cells during development, and work on regenerative neurogenesis indicates that these same factors may operate at postnatal ages as well. This review describes our current knowledge of the identity of the OE neural stem cell; the different cell types that are thought to be the progeny (directly or indirectly) of this stem cell; and the factors that influence cell differentiation in the OE neuronal lineage. We review data suggesting that (1) the ORN lineage contains three distinct proliferating cell types-a stem cell and two populations of transit amplifying cells; (2) in established OE, these three cell types are present within the basal cell compartment of the epithelium; and (3) the stem cell that gives rise ultimately to ORNs may also generate two glial cell types of the primary olfactory pathway: sustentacular cells (SUS), which lie within OE proper; and olfactory ensheathing cells (OEC), which envelope the olfactory nerve. In addition, we describe factors that are both made by and found within the microenvironment of OE stem and progenitor cells, and which exert crucial growth regulatory effects on these cells. Thus, as with other regenerating tissues, the basis of regeneration in the OE appears be a population of stem cells, which resides within a microenvironment (niche) consisting of factors crucial for maintenance of its capacity for proliferation and differentiation

  1. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    Science.gov (United States)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  2. Avian Primordial Germ Cells.

    Science.gov (United States)

    Tagami, Takahiro; Miyahara, Daichi; Nakamura, Yoshiaki

    2017-01-01

    Germ cells transmit genetic information to the next generation through gametogenesis. Primordial germ cells (PGCs) are the first germ-cell population established during development, and are the common origins of both oocytes and spermatogonia. Unlike in other species, PGCs in birds undergo blood circulation to migrate toward the genital ridge, and are one of the major biological properties of avian PGCs. Germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. In chicken, gonadal sex differentiation occurs as early as embryonic day 6, but meiotic initiation of female germ cells starts from a relatively late stage (embryonic day 15.5). Retinoic acid controls meiotic entry in developing chicken gonads through the expressions of retinaldehyde dehydrogenase 2, a major retinoic acid synthesizing enzyme, and cytochrome P450 family 26, subfamily B member 1, a major retinoic acid-degrading enzyme. The other major biological property of avian PGCs is that they can be propagated in vitro for the long term, and this technique is useful for investigating proliferation mechanisms. The main factor involved in chicken PGC proliferation is fibroblast growth factor 2, which activates the signaling of MEK/ERK and thus promotes the cell cycle and anti-apoptosis. Furthermore, the activation of PI3K/Akt signaling is indispensable for the proliferation and survival of chicken PGCs.

  3. Self-ratings of olfactory function reflect odor annoyance rather than olfactory acuity.

    Science.gov (United States)

    Knaapila, Antti; Tuorila, Hely; Kyvik, Kirsten O; Wright, Margaret J; Keskitalo, Kaisu; Hansen, Jonathan; Kaprio, Jaakko; Perola, Markus; Silventoinen, Karri

    2008-12-01

    Self-ratings of olfactory function often correlates poorly with results of objective smell tests. We explored these ratings relative to self-rating of odor annoyance, to odor identification ability, and to mean perceived intensity of odors, and estimated relative genetic and environmental contributions to these traits. A total of 1,311 individual twins from the general population (62% females and 38% males, aged 10-83 years, mean age 29 years) including 191 monozygous and 343 dizygous complete twin pairs from Australia, Denmark, Finland, and the United Kingdom rated their sense of smell and annoyance caused by ambient smells (e.g., smells of foods) using seven categories, and performed odor identification and evaluation task for six scratch-and-sniff odor stimuli. The self-rating of olfactory function correlated with the self-rating of odor annoyance (r = 0.30) but neither correlated with the odor identification score. Quantitative genetic modeling revealed no unambiguously significant genetic contribution to variation in any of the studied traits. The results suggest that environmental rather than genetic factors modify the self-rating of olfactory function and support earlier findings of discrepancy between subjective and objective measures of olfactory function. In addition, the results imply that the self-rating of olfactory function arises from experienced odor annoyance rather than from actual olfactory acuity.

  4. Changes in Olfactory Sensory Neuron Physiology and Olfactory Perceptual Learning After Odorant Exposure in Adult Mice.

    Science.gov (United States)

    Kass, Marley D; Guang, Stephanie A; Moberly, Andrew H; McGann, John P

    2016-02-01

    The adult olfactory system undergoes experience-dependent plasticity to adapt to the olfactory environment. This plasticity may be accompanied by perceptual changes, including improved olfactory discrimination. Here, we assessed experience-dependent changes in the perception of a homologous aldehyde pair by testing mice in a cross-habituation/dishabituation behavioral paradigm before and after a week-long ester-odorant exposure protocol. In a parallel experiment, we used optical neurophysiology to observe neurotransmitter release from olfactory sensory neuron (OSN) terminals in vivo, and thus compared primary sensory representations of the aldehydes before and after the week-long ester-odorant exposure in individual animals. Mice could not discriminate between the aldehydes during pre-exposure testing, but ester-exposed subjects spontaneously discriminated between the homologous pair after exposure, whereas home cage control mice cross-habituated. Ester exposure did not alter the spatial pattern, peak magnitude, or odorant-selectivity of aldehyde-evoked OSN input to olfactory bulb glomeruli, but did alter the temporal dynamics of that input to make the time course of OSN input more dissimilar between odorants. Together, these findings demonstrate that odor exposure can induce both physiological and perceptual changes in odor processing, and suggest that changes in the temporal patterns of OSN input to olfactory bulb glomeruli could induce differences in odor quality. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.

    Science.gov (United States)

    Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng

    2017-07-05

    During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  7. Resistance to Interference of Olfactory Perceptual Learning

    Science.gov (United States)

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  8. Spotlight on olfactory dysfunction in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Rodríguez-Violante M

    2017-06-01

    Full Text Available Mayela Rodríguez-Violante,1,2 Natalia Ospina-García,1,2 Christian Pérez-Lohman,1,2 Amin Cervantes-Arriaga1,2 1Movement Disorders Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico; 2Clinical Neurodegenerative Research Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico Abstract: Olfactory dysfunction is frequent in Parkinson’s disease (PD. A correlation between olfactory dysfunction and the pathophysiological process of the disease has been confirmed. On the other hand, olfaction disturbances are also prevalent in other neurodegenerative diseases, and may be related to other factors such as gender, age, smoking, and trauma. Clinically, hyposmia is commonly assessed by smell identification testing. Good diagnostic accuracy has been widely reported, but differences in sensitivity and specificity due to sociocultural factors have also been reported. Since hyposmia may be present before the onset of motor symptoms, it has the potential to serve as a biomarker for the identification of subjects at risk of developing PD. Several studies have been conducted to assess the utility of smell testing as an isolated or combined biomarker for this end. Finally, severe olfactory dysfunction has been associated with faster disease progression and higher risk of cognitive decline in patients with PD. Olfactory dysfunction assessment in PD will continue to be relevant in research and clinical practice. Keywords: Parkinson’s disease, olfaction, smell identification test, biomarker 

  9. Emergence of fatal avian influenza in New England harbor seals.

    Science.gov (United States)

    Anthony, S J; St Leger, J A; Pugliares, K; Ip, H S; Chan, J M; Carpenter, Z W; Navarrete-Macias, I; Sanchez-Leon, M; Saliki, J T; Pedersen, J; Karesh, W; Daszak, P; Rabadan, R; Rowles, T; Lipkin, W I

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission. The emergence of new strains of influenza virus is always of great public concern, especially when the infection of a new mammalian host has the potential to result in a widespread outbreak of disease. Here we report the emergence of an avian influenza virus (H3N8) in New England harbor seals which caused an outbreak of pneumonia and contributed to a U.S. federally recognized unusual mortality event (UME). This outbreak is particularly significant, not only because of the disease it caused in seals but also because the virus has naturally acquired mutations that are known to increase transmissibility and virulence in mammals. Monitoring the spillover and adaptation of avian viruses in mammalian species is critically important if we are to understand the factors that lead to both epizootic and zoonotic emergence.

  10. Coding Odorant Concentration through Activation Timing between the Medial and Lateral Olfactory Bulb

    Directory of Open Access Journals (Sweden)

    Zhishang Zhou

    2012-11-01

    Full Text Available In mammals, each olfactory bulb (OB contains a pair of mirror-symmetric glomerular maps organized to reflect odorant receptor identity. The functional implication of maintaining these symmetric medial-lateral maps within each OB remains unclear. Here, using in vivo multielectrode recordings to simultaneously detect odorant-induced activity across the entire OB, we reveal a timing difference in the odorant-evoked onset latencies between the medial and lateral halves. Interestingly, the latencies in the medial and lateral OB decreased at different rates as odorant concentration increased, causing the timing difference between them to also diminish. As a result, output neurons in the medial and lateral OB fired with greater synchrony at higher odorant concentrations. Thus, we propose that temporal differences in activity between the medial and lateral OB can dynamically code odorant concentration, which is subsequently decoded in the olfactory cortex through the integration of synchronous action potentials.

  11. Intranasal location and immunohistochemical characterization of the equine olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Alexandra Kupke

    2016-10-01

    Full Text Available The olfactory epithelium (OE is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system (CNS. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g. Borna disease virus (BoDV, equine herpesvirus 1 (EHV-1, hendra virus, influenza virus, rabies virus, vesicular stomatitis virus (VSV can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g. horses would help to underscore transferability of rodent models. Analysis of the complete noses of 5 adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein (OMP and doublecortin (DCX expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen (PCNA and tropomyosin receptor kinase A (TrkA was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine type a and b were

  12. Differential localization of NT-3 and TrpM5 in glomeruli of the olfactory bulb of mice.

    Science.gov (United States)

    Rolen, S H; Salcedo, E; Restrepo, D; Finger, T E

    2014-06-01

    Olfactory sensory neurons that express transient receptor potential channel M5 (TrpM5) or neurotrophin-3 (NT-3) project to defined clusters of glomeruli situated ventrally in the main olfactory bulb. Using genetically labeled mice, we investigated whether expression of NT-3-driven βgal and TrpM5-driven GFP marked overlapping sets of glomeruli and whether expression of these markers was coordinated. Our results indicate that these markers largely characterize independent sets of olfactory sensory neuron axons and glomeruli. Further, in glomeruli in which both TrpM5-GFP and NT-3-βgal labeled axons occur, they are expressed independently. The nature of staining for these two markers also differs within glomeruli. Within each labeled TrpM5-positive glomerulus, the level of TrpM5-GFP expression was similar throughout the glomerular neuropil. In contrast, NT-3-driven βgal expression levels are heterogeneous even within heavily labeled glomeruli. In addition, a population of very small TrpM5-GFP positive glomeruli is apparent while no similar populations of NT-3-βgal glomeruli are evident. Taken together, these data suggest that TrpM5 and NT-3 characterize two largely independent receptor populations both conveying odorant information to the ventral olfactory bulb. Copyright © 2013 Wiley Periodicals, Inc.

  13. Differential Localization of NT-3- and TrpM5 in Glomeruli of the Olfactory Bulb of Mice

    Science.gov (United States)

    Rolen, S. H.; Salcedo, E.; Restrepo, D.; Finger, T. E.

    2014-01-01

    Olfactory sensory neurons that express transient receptor potential channel M5 (TrpM5) or neurotrophin-3 (NT-3) project to defined clusters of glomeruli situated ventrally in the main olfactory bulb. Using genetically labeled mice, we investigated whether expression of NT-3-driven βgal and TrpM5-driven GFP marked overlapping sets of glomeruli and whether expression of these markers was coordinated. Our results indicate that these markers largely characterize independent sets of olfactory sensory neuron axons and glomeruli. Further, in glomeruli in which both TrpM5-GFP and NT-3-βgal labeled axons occur, they are expressed independently. The nature of staining for these two markers also differs within glomeruli. Within each labeled TrpM5-positive glomerulus, the level of TrpM5-GFP expression was similar throughout the glomerular neuropil. In contrast, NT-3-driven βgal expression levels are heterogeneous even within heavily labeled glomeruli. In addition, a population of very small TrpM5-GFP positive glomeruli is apparent while no similar populations of NT-3-βgal glomeruli are evident. Taken together, these data suggest that TrpM5 and NT-3 characterize two largely independent receptor populations both conveying odorant information to the ventral olfactory bulb. PMID:24288162

  14. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... consultations Fact sheets Fact files Questions & answers Features Multimedia Contacts Influenza (Avian and other zoonotic) Fact sheet ... respiratory tract infection (fever and cough), early sputum production and rapid progression to severe pneumonia, sepsis with ...

  15. [Epidemics of conjunctivitis caused by avian influenza virus and molecular basis for its ocular tropism].

    Science.gov (United States)

    Yang, Chao; Jin, Ming

    2014-07-01

    Avian influenza virus (AIV) has caused several outbreaks in humans, leading to disasters to human beings. The outbreak of H7N9 avian influenza in China in 2003 re-attracted our close attention to this disease. More and more evidences demonstrated that eye is one of invasion portals of AIV, leading to conjunctivitis. The current studies showed that only subtypes H7 and H5 could cause severe systemic infections. Abundant distribution of α-2, 3 siliac acid receptor in conjunctiva and cornea as well as specific activiation of NF-κB signal transduction pathway by subtype H7 virus may contribute to the ocular tropism of the virus. These studies suggest that avian influenza conjunctivitis should be considered as a differential diagnosis during influenza epidemic seasons, and eyes should be well protected for disease control personnel when handling avian influenza epidemics. This review focused on AIV conjunctivitis and the molecular basis of ocular tropism.

  16. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.

    Science.gov (United States)

    Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto

    2017-03-06

    Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Subthreshold olfactory stimulation can enhance sweetness.

    Science.gov (United States)

    Labbe, D; Rytz, A; Morgenegg, C; Ali, S; Martin, N

    2007-03-01

    The impact of olfactory perception on sweetness was explored in a model solution using odorants at subthreshold concentrations. First, the impact of 6 odorants, previously described in the literature as congruent with sweetness, was investigated at suprathreshold level in a sucrose solution. Ethyl butyrate and maltol were selected as they had the highest and the lowest sweetness-enhancing properties, respectively. Second, the impact on sweetness of the 2 odorants was investigated at subthreshold concentrations. A system delivering a continuous liquid flow at the same sucrose level, but with varying odorant concentrations, was used. At a subthreshold level, ethyl butyrate but not maltol significantly enhanced the sweetness of the sucrose solution. This study highlights that olfactory perception induced by odorants at a subthreshold level can significantly modulate taste perception. Finally, contrary to results observed with ethyl butyrate at suprathreshold levels, at subthreshold levels, the intensity of sweetness enhancement was not proportional to ethyl butyrate concentration.

  18. Olfactory Stimuli Increase Presence in Virtual Environments.

    Directory of Open Access Journals (Sweden)

    Benson G Munyan

    Full Text Available Exposure therapy (EXP is the most empirically supported treatment for anxiety and trauma-related disorders. EXP consists of repeated exposure to a feared object or situation in the absence of the feared outcome in order to extinguish associated anxiety. Key to the success of EXP is the need to present the feared object/event/situation in as much detail and utilizing as many sensory modalities as possible, in order to augment the sense of presence during exposure sessions. Various technologies used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds. Studies have shown that scents can elicit emotionally charged memories, but no prior research has examined the effect of olfactory stimuli upon the patient's sense of presence during simulated exposure tasks.60 adult participants navigated a mildly anxiety-producing virtual environment (VE similar to those used in the treatment of anxiety disorders. Participants had no autobiographical memory associated with the VE. State anxiety, Presence ratings, and electrodermal (EDA activity were collected throughout the experiment.Utilizing a Bonferroni corrected Linear Mixed Model, our results showed statistically significant relationships between olfactory stimuli and presence as assessed by both the Igroup Presence Questionnaire (IPQ: R2 = 0.85, (F(3,52 = 6.625, p = 0.0007 and a single item visual-analogue scale (R2 = 0.85, (F(3,52 = 5.382, p = 0.0027. State anxiety was unaffected by the presence or absence of olfactory cues. EDA was unaffected by experimental condition.Olfactory stimuli increase presence in virtual environments that approximate those typical in exposure therapy, but did not increase EDA. Additionally, once administered, the removal of scents resulted in a disproportionate decrease in presence. Implications for incorporating the use of scents to increase the efficacy of exposure therapy is discussed.

  19. MRI of the olfactory bulbs and sulci in human fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, Robin; Grabar, Sophie; Kalifa, Gabriel; Adamsbaum, Catherine [Paris V, Faculte de Medecine, Department of Radiology, Hopital Saint Vincent de Paul, Paris Cedex 14 (France); Fallet-Bianco, Catherine [Hopital Sainte-Anne, Paris (France); Garel, Catherine [Hopital Robert Debre, Paris (France)

    2006-02-01

    There is limited knowledge of the MRI pattern of the development of fetal olfactory bulbs and sulci. To describe the MRI appearance of olfactory bulbs and sulci in normal in vivo fetuses according to gestational age. Olfactory bulbs and sulci were retrospectively assessed on brain MRI examinations of 88 normal fetuses between 24 and 39 weeks gestational age. Two reference centres were involved in the study and both used routine protocols that included axial and coronal T2- and T1-weighted sequences at 1.5 T. The results were compared both with the commonly used neuropathological data in the literature and with personal neuropathological data. Pearson's chi-squared test or Fisher's exact test were performed. One case of olfactory agenesis associated with CHARGE syndrome was identified. T2-weighted coronal sequences were the most sensitive for detecting olfactory bulbs and sulci. Olfactory sulci were significantly better detected from 30 weeks onwards (90.9-100%; P<0.001). MRI showed a posteroanterior development of these sulci. Olfactory bulbs were better detected from 30 to 34 weeks (80-90.9%; P<0.002). Comparison with neuropathological data confirmed the posteroanterior development of the sulci and showed an important delay in detection of the olfactory structures (bulbs and sulci). No difference was observed between the two centres involved. To date, fetal MRI can depict olfactory sulci from 30 weeks gestational age onwards and olfactory bulbs from 30 to 34 weeks gestational age. This preliminary reference standard is useful to assess the normality of the olfactory system and to diagnose olfactory agenesis. (orig.)

  20. Olfactory Information Processing in the Drosophila Antennal Lobe : Anything Goes?

    OpenAIRE

    Silbering, Ana F.; Okada, Ryuichi; Ito, Kei; Galizia, Cosmas Giovanni

    2008-01-01

    When an animal smells an odor, olfactory sensory neurons generate an activity pattern across olfactory glomeruli of the first sensory neuropil, the insect antennal lobe or the vertebrate olfactory bulb. Here, several networks of local neurons interact with sensory neurons and with output neurons-insect projection neurons, or vertebrate mitral/tufted cells. The extent and form of information processing taking place in these local networks has been subject of controversy. To investigate the ro...

  1. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  2. Functional neuroanatomy of Drosophila olfactory memory formation.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. © 2014 Guven-Ozkan and Davis; Published by Cold Spring Harbor Laboratory Press.

  3. Prenatal prochloraz treatment significantly increases pregnancy length and reduces offspring weight but does not affect social-olfactory memory in rats

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Klementiev, Boris; Berezin, Vladimir

    2013-01-01

    Metabolites of the commonly used imidazole fungicide prochloraz are androgen receptor antagonists. They have been shown to block androgen-driven development and compromise reproductive function. We tested the effect of prochloraz on cognitive behavior following exposure to this fungicide during t......40 but no effect of prenatal prochloraz exposure on social investigation or acquisition of social-olfactory memory....

  4. Avian mycoplasmosis update

    Directory of Open Access Journals (Sweden)

    ER Nascimento

    2005-03-01

    Full Text Available Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG, M. synoviae (MS, and M. meleagridis. Besides, M. iowe (MI is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorganisms, whereas all other mycoplasmas are considered facultative intracellular organisms. Their pathogenic mechanism for disease include adherence to host target cells, mediation of apoptosis, innocent bystander damage to host cell due to intimate membrane contact, molecular (antigen mimicry that may lead to tolerance, and mitotic effect for B and/or T lymphocytes, which could lead to suppressed T-cell function and/or production of cytotoxic T cell, besides mycoplasma by-products, such as hydrogen peroxide and superoxide radicals. Moreover, mycoplasma ability to stimulate macrophages, monocytes, T-helper cells and NK cells, results in the production of substances, such as tumor necrosing factor (TNF-alpha, interleukin (IL-1, 2, 6 and interferon (a, b, g. The major clinical signs seen in avian mycoplasmosis are coughing, sneezing, snicks, respiratory rales, ocular and nasal discharge, decreased feed intake and egg production, increased mortality, poor hatchability, and, primarily in turkeys, swelling of the infraorbital sinus(es. Nevertheless, chronic and unapparent infections are most common and more threatening. Mycoplasmas are transmitted horizontally, from bird to bird, and vertically, from dam to offspring through the eggs. Losses attributed to mycoplasmosis, mainly MG and MS infections, result from decreased egg production and egg quality, poor hatchability (high rate of embryonic mortality and culling of day-old birds, poor feed efficiency, increase in

  5. Higher Body Mass Index Is Associated with Subjective Olfactory Dysfunction

    Directory of Open Access Journals (Sweden)

    Z. M. Patel

    2015-01-01

    Full Text Available Background. Morbidly obese patients demonstrate altered olfactory acuity. There has been no study directly assessing Body Mass Index (BMI in patients with olfactory dysfunction. Our purpose was to compare BMI in a group of patients with subjective olfactory dysfunction to those without subjective olfactory complaints. Methods. Retrospective matched case-control study. Sixty patients who presented to a tertiary care otolaryngology center with subjective smell dysfunction over one year were identified. Neoplastic and obstructive etiologies were excluded. Demographics, BMI, and smoking status were reviewed. Sixty age, gender, and race matched control patients were selected for comparison. Chi-square testing was used. Results. 48 out of 60 patients (80% in the olfactory dysfunction group fell into the overweight or obese categories, compared to 36 out of 60 patients (60% in the control group. There was a statistically significant difference between the olfactory dysfunction and control groups for this stratified BMI (p= 0.0168.  Conclusion. This study suggests high BMI is associated with olfactory dysfunction. Prospective clinical research should examine this further to determine if increasing BMI may be a risk factor in olfactory loss and to elucidate what role olfactory loss may play in diet and feeding habits of obese patients.

  6. Chromatin modification of Notch targets in olfactory receptor neuron diversification

    Czech Academy of Sciences Publication Activity Database

    Endo, K.; Karim, M. R.; Taniguchi, H.; Krejčí, Alena; Kinameri, E.; Siebert, M.; Ito, K.; Bray, S. J.; Moore, A. W.

    2012-01-01

    Roč. 15, č. 2 (2012), s. 224-233 ISSN 1097-6256 Institutional research plan: CEZ:AV0Z50070508 Keywords : neuron diversification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 15.251, year: 2012

  7. Designing exons for human olfactory receptor gene subfamilies ...

    Indian Academy of Sciences (India)

    Sk Sarif Hassan1 2 Pabitra Pal Choudhury1 Amita Pal3 R L Brahmachary2 Arunava Goswami2. Applied Statistics Unit, Indian Statistical Institute, 203 B T Road, Calcutta 700 108, India; Biological Sciences Division, Indian Statistical Institute, 203 B T Road, Calcutta 700 108, India; Bayesian Interdisciplinary Research Unit ...

  8. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    Science.gov (United States)

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Retro- and orthonasal olfactory function in relation to olfactory bulb volume in patients with hypogonadotrophic hypogonadism.

    Science.gov (United States)

    Salihoglu, Murat; Kurt, Onuralp; Ay, Seyid Ahmet; Baskoy, Kamil; Altundag, Aytug; Saglam, Muzaffer; Deniz, Ferhat; Tekeli, Hakan; Yonem, Arif; Hummel, Thomas

    2017-08-24

    Idiopathic hypogonadotrophic hypogonadism (IHH) with an olfactory deficit is defined as Kallmann syndrome (KS) and is distinct from normosmic IHH. Because olfactory perception not only consists of orthonasally gained impressions but also involves retronasal olfactory function, in this study we decided to comprehensively evaluate both retronasal and orthonasal olfaction in patients with IHH. This case-control study included 31 controls and 45 IHH patients. All participants whose olfactory and taste functions were evaluated with orthonasal olfaction (discrimination, identification and threshold), retronasal olfaction, taste function and olfactory bulb volume (OBV) measurement. The patients were separated into three groups according to orthonasal olfaction: anosmic IHH (aIHH), hyposmic IHH (hIHH) and normosmic IHH (nIHH). Discrimination, identification and threshold scores of patients with KS were significantly lower than controls. Threshold scores of patients with nIHH were significantly lower than those of controls, but discrimination and identification scores were not significantly different. Retronasal olfaction was reduced only in the aIHH group compared to controls. Identification of bitter, sweet, sour, and salty tastes was not significantly different when compared between the anosmic, hyposmic, and normosmic IHH groups and controls. OBV was lower bilaterally in all patient groups when compared with controls. The OBV of both sides was found to be significantly correlated with TDI scores in IHH patients. 1) There were no significant differences in gustatory function between controls and IHH patients; 2) retronasal olfaction was reduced only in anosmic patients but not in orthonasally hyposmic participants, possibly indicating presence of effective compensatory mechanisms; 3) olfactory bulb volumes were highly correlated with olfaction scores in the HH group. The current results indicate a continuum from anosmia to normosmia in IHH patients. Copyright © 2017

  10. Involvement of hormones in olfactory imprinting and homing in chum salmon

    Science.gov (United States)

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-01-01

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker. PMID:26879952

  11. Olfactory coding from the periphery to higher brain centers in the Drosophila brain.

    Science.gov (United States)

    Seki, Yoichi; Dweck, Hany K M; Rybak, Jürgen; Wicher, Dieter; Sachse, Silke; Hansson, Bill S

    2017-06-30

    Odor information is processed through multiple receptor-glomerular channels in the first order olfactory center, the antennal lobe (AL), then reformatted into higher brain centers and eventually perceived by the fly. To reveal the logic of olfaction, it is fundamental to map odor representations from the glomerular channels into higher brain centers. We characterize odor response profiles of AL projection neurons (PNs) originating from 31 glomeruli using whole cell patch-clamp recordings in Drosophila melanogaster. We reveal that odor representation from olfactory sensory neurons to PNs is generally conserved, while transformation of odor tuning curves is glomerulus-dependent. Reconstructions of PNs reveal that attractive and aversive odors are represented in different clusters of glomeruli in the AL. These separate representations are preserved into higher brain centers, where attractive and aversive odors are segregated into two regions in the lateral horn and partly separated in the mushroom body calyx. Our study reveals spatial representation of odor valence coding from the AL to higher brain centers. These results provide a global picture of the olfactory circuit design underlying innate odor-guided behavior.

  12. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability.

    Science.gov (United States)

    Brochtrup, Anna; Hummel, Thomas

    2011-02-01

    The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Involvement of hormones in olfactory imprinting and homing in chum salmon.

    Science.gov (United States)

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-02-16

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.

  14. Avian influenza : a review article

    Directory of Open Access Journals (Sweden)

    A. Yalda

    2006-07-01

    Full Text Available The purpose of this paper is to provides general information about avian influenza (bird flu and specific information about one type of bird flu, called avian influenza A (H5N1, that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO , world organization for animal health (OIE , food and agriculture organization of the united nations (FAO information and recommendations and review of the published literature about avian influenza. Since December 2003, highly pathogenic H5N1 avian influenza viruses have swept through poultry populations across Asia and parts of Europe. The outbreaks are historically unprecedented in scale and geographical spread. Their economic impact on the agricultural sector of the affected countries has been large. Human cases, with an overall fatality rate around 50%, have also been reported and almost all human infections can be linked to contact with infected poultry. Influenza viruses are genetically unstable and their behaviour cannot be predicted so the risk of further human cases persists. The human health implications have now gained importance, both for illness and fatalities that have occurred following natural infection with avian viruses, and for the potential of generating a re-assortant virus that could give rise to the next human influenza pandemic.

  15. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  16. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  17. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype of...

  18. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury.

    Directory of Open Access Journals (Sweden)

    Long-Wa Zhang

    Full Text Available Hyphantria cunea (Drury (Lepidoptera: Arctiidae is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs, 17 chemosensory proteins (CSPs, 52 odorant receptors (ORs, 14 ionotropic receptors (IRs, nine gustatory receptors (GRs and two sensory neuron membrane proteins (SNMPs. We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest.

  19. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus.

    Directory of Open Access Journals (Sweden)

    James C Walton

    Full Text Available Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD and short day lengths (SD for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  20. Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity

    NARCIS (Netherlands)

    Peng, Wenjie; de Vries, Robert P; Grant, Oliver C; Thompson, Andrew J; McBride, Ryan; Tsogtbaatar, Buyankhishig; Lee, Peter S; Razi, Nahid; Wilson, Ian A; Woods, Robert J; Paulson, James C

    2017-01-01

    Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have

  1. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hayoz Sébastien

    2012-05-01

    Full Text Available Abstract Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP and a G protein-coupled P2Y receptor agonist (UTP. Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP

  2. Glomerular and mitral-granule cell microcircuits coordinate temporal and spatial information processing in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Francesco Cavarretta

    2016-07-01

    Full Text Available The olfactory bulb processes inputs from olfactory receptor neurons (ORNs through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D, with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.

  3. Evaluation of the effect of cigarette smoking on the olfactory neuroepithelium of New Zealand white rabbit, using scanning electron microscope.

    Science.gov (United States)

    Iskander, Nagi M; El-Hennawi, Diaa M; Yousef, Tarek F; El-Tabbakh, Mohammed T; Elnahriry, Tarek A

    2017-06-01

    To detect ultra-structural changes of Rabbit's olfactory neuro-epithelium using scanning electron microscope after exposure to cigarette smoking. Sixty six rabbits (Pathogen free New Zealand white rabbits weighing 1-1.5 kg included in the study were randomly assigned into one of three groups: control group did not expose to cigarette smoking, study group 1 was exposed to cigarette smoking for 3 months and study group 2 was exposed to cigarette smoking 3 months and then stopped for 2 months. Olfactory neuro-epithelium from all rabbits were dissected and examined under Philips XL-30 scanning electron microscope. Changes that were found in the rabbits of study group 1 in comparison to control group were loss of microvilli of sustentacular cells (p = 0.016) and decreases in distribution of specialized cilia of olfactory receptor cells (p = 0.046). Also respiratory metaplasia was detected. These changes were reversible in study group 2. Cigarette smoking causes ultra-structural changes in olfactory neuro-epithelium which may explain why smell was affected in cigarette smokers. Most of these changes were reversible after 45 days of cessation of cigarette smoking to the rabbits.

  4. Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs.

    Science.gov (United States)

    Gagliardo, Anna; Filannino, Caterina; Ioalè, Paolo; Pecchia, Tommaso; Wikelski, Martin; Vallortigara, Giorgio

    2011-02-15

    A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril, particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been documented only by observing the birds' vanishing bearings. In the present work we recorded the flight tracks of pigeons with previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information needed for the operation of the navigational map.

  5. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  6. A second look at the structure of human olfactory memory.

    Science.gov (United States)

    White, Theresa L

    2009-07-01

    How do we remember olfactory information? Is the architecture of human olfactory memory unique compared with that of memory for other types of stimuli? Ten years ago, a review article evaluated these questions, as well as the distinction between long- and short-term olfactory memory, with three lines of evidence: capacity differences, coding differences, and neuropsychological evidence, though serial position effects were also considered. From the data available at the time, the article preliminarily suggested that olfactory memory was a two-component system that was not qualitatively different from memory systems for other types of stimuli. The decade that has elapsed since then has ushered in considerable changes in theories of memory structure and provided huge advances in neuroscience capabilities. Not only have many studies exploring various aspects of olfactory memory been published, but a model of olfactory perception that includes an integral unitary memory system also has been presented. Consequently, the structure of olfactory memory is reevaluated in the light of further information currently available with the same theoretical lines of evidence previously considered. This evaluation finds that the preponderance of evidence suggests that, as in memory for other types of sensory stimuli, the short-term-long-term distinction remains a valuable dissociation for conceptualizing olfactory memory, though perhaps not as architecturally separate systems.

  7. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    Science.gov (United States)

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  8. Olfactory function after mild head injury in children.

    Science.gov (United States)

    Schriever, Valentin A; Studt, Friederike; Smitka, Martin; Grosser, Kay; Hummel, Thomas

    2014-05-01

    Olfactory impairment has been shown to be linked to head injury. In addition, it is believed that measurement of olfactory function after head trauma represents a sensitive tool for measuring frontal brain damage. Aim of the study was to evaluate the effect of mild head trauma in children on olfactory function over a time period of up to 1 year after head trauma. The olfactory function of 114 children who suffered mild head trauma according to the Glasgow Coma Scale was assessed 3 times with an interval of 4 months. In addition, healthy, age-matched controls were tested for comparison of olfactory function. Patients scored significantly lower on the odor threshold test compared to the control group-but still within normal range. Between the 2 groups, no difference was found for suprathreshold testing. Neither olfactory threshold scores nor olfactory discrimination scores changed significantly over the study period of 1 year. This data prove an impact of mild head trauma on olfactory function of children. It seems unlikely that children who suffered mild head trauma will become hyposmic or anosmic.

  9. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  10. Comparison between olfactory function of pregnant women and non ...

    African Journals Online (AJOL)

    A structured questionnaire was administered to obtain participants' information on socio-demographics, pregnancy history, and ability to perceive smell. They subjectively rated their olfactory function on a visual analogue scale of 0 – 100. Olfactory threshold (OT), discrimination (OD), identification (OI) scores and TDI of both ...

  11. [Microsurgical removal of olfactory groove meningiomas].

    Science.gov (United States)

    Liang, Ri-Sheng; Zhou, Liang-Fu; Mao, Ying; Zhang, Rong; Yang, Wei-Zhong

    2011-01-01

    To explore an effective method for further improving the surgical results of treatment of olfactory groove meningiomas. Sixty seven cases of olfactory groove meningiomas were treated by microneurosurgery, among which fifty seven were de novo cases, eight were recurrent tumors and the other two re-recurrent cases. Modified Derome approach was used in 12 cases, bilateral subfrontal approach in 28 cases, modified pterional approach in 21 cases and unilateral subfrontal approach in six cases. Tumors were resected microsurgically with radical removal of invaded dura, bone, and paranasal sinus mucosa. Reconstruction was performed in patients with skull base defect. Simpson grade I removal was accomplished in 59 cases, grade II in seven cases and grade IV in one case. Among 57 patients with de novo tumor, Simpson I resection was accomplished in 54 cases. Postoperative rhinorrhea and intracranial infection occurred in one case and was cured after temporal lumbar CSF drainage and antibiotic therapy. Two patients (2.9%) died within one month after operation, i.e.one aged patient of heart failure and the other of severe hypothalamus complication. Forty seven patients (72.3%) were followed up from one to ten years with an average of five years and four months. With the exception of two cases died, among the alive 45 patients, there were only three patients with tumor recurrence, which had undergone Simpson II or IV tumor resection. No recurrence was found in cases with Simpson I tumor removal. Previous blurred vision was not improved in three patients, hemiparalysis in two patients, and the other patients recovered well, resuming previous jobs or being able to take care themselves. Total tumor removal (Simpson I) should be the surgical goal for treatment of olfactory groove meningiomas, especially for de novo cases. An appropriate approach is fundamental in the effort to remove an OGM totally. Appropriate anterior skull base reconstruction with vascularized material is

  12. Effects of anti-depressants on olfactory sensitivity in mice.

    Science.gov (United States)

    Lombion, Sandrine; Morand-Villeneuve, Nadège; Millot, Jean-Louis

    2008-04-01

    Some studies have underlined a decrease in olfactory sensitivity in patients suffering from depression. The present study aims to evaluate the effects of current anti-depressant drugs on the olfactory sensitivity in mice. METHODS MICE: (N degrees =22) were tested in a Y-maze with a choice between an odorant (butanol) or distilled water before and during 3 weeks of daily intra-peritoneal injection of either citalopram or clomipramine. Their performance was compared with those of a control group (N degrees =11) injected with a saline solution. The results showed a significant decrease in olfactory sensitivity with both anti-depressants during the three weeks of treatment. The antidepressant induced alteration in serotonin and/or noradrenaline transmission in the olfactory bulb may account for the altered olfactory sensitivity observed in this study.

  13. Activation of Glial FGFRs Is Essential in Glial Migration, Proliferation, and Survival and in Glia-Neuron Signaling during Olfactory System Development

    Science.gov (United States)

    Gibson, Nicholas J.; Tolbert, Leslie P.; Oland, Lynne A.

    2012-01-01

    Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells. PMID:22493675

  14. Canine olfactory detection of malignant melanoma

    Science.gov (United States)

    Campbell, Leon Frederick; Farmery, Luke; George, Susannah Mary Creighton; Farrant, Paul B J

    2013-01-01

    Our patient is a 75-year-old man who presented after his pet dog licked persistently at an asymptomatic lesion behind his right ear. Examination revealed a nodular lesion in the postauricular sulcus. Histology confirmed malignant melanoma, which was subsequently excised. Canine olfactory detection of human malignancy is a well-documented phenomenon. Advanced olfaction is hypothesised to explain canine detection of bladder, breast, colorectal, lung, ovarian, prostate and skin cancers. Further research in this area may facilitate the development of a highly accurate aid to diagnosis for many malignancies, including melanoma. PMID:24127369

  15. An olfactory demography of a diverse metropolitan population.

    Science.gov (United States)

    Keller, Andreas; Hempstead, Margaret; Gomez, Iran A; Gilbert, Avery N; Vosshall, Leslie B

    2012-10-10

    Human perception of the odour environment is highly variable. People vary both in their general olfactory acuity as well as in if and how they perceive specific odours. In recent years, it has been shown that genetic differences contribute to variability in both general olfactory acuity and the perception of specific odours. Odour perception also depends on other factors such as age and gender. Here we investigate the influence of these factors on both general olfactory acuity and on the perception of 66 structurally and perceptually different odours in a diverse subject population. We carried out a large human olfactory psychophysics study of 391 adult subjects in metropolitan New York City, an ethnically and culturally diverse North American metropolis. 210 of the subjects were women and the median age was 34.6 years (range 19-75). We recorded ~2,300 data points per subject to obtain a comprehensive perceptual phenotype, comprising multiple perceptual measures of 66 diverse odours. We show that general olfactory acuity correlates with gender, age, race, smoking habits, and body type. Young, female, non-smoking subjects had the highest average olfactory acuity. Deviations from normal body type in either direction were associated with decreased olfactory acuity. Beyond these factors we also show that, surprisingly, there are many odour-specific influences of race, age, and gender on olfactory perception. We show over 100 instances in which the intensity or pleasantness perception of an odour is significantly different between two demographic groups. These data provide a comprehensive snapshot of the olfactory sense of a diverse population. Olfactory acuity in the population is most strongly influenced by age, followed by gender. We also show a large number of diverse correlations between demographic factors and the perception of individual odours that may reflect genetic differences as well as different prior experiences with these odours between demographic groups.

  16. An olfactory demography of a diverse metropolitan population

    Directory of Open Access Journals (Sweden)

    Keller Andreas

    2012-10-01

    Full Text Available Abstract Background Human perception of the odour environment is highly variable. People vary both in their general olfactory acuity as well as in if and how they perceive specific odours. In recent years, it has been shown that genetic differences contribute to variability in both general olfactory acuity and the perception of specific odours. Odour perception also depends on other factors such as age and gender. Here we investigate the influence of these factors on both general olfactory acuity and on the perception of 66 structurally and perceptually different odours in a diverse subject population. Results We carried out a large human olfactory psychophysics study of 391 adult subjects in metropolitan New York City, an ethnically and culturally diverse North American metropolis. 210 of the subjects were women and the median age was 34.6 years (range 19–75. We recorded ~2,300 data points per subject to obtain a comprehensive perceptual phenotype, comprising multiple perceptual measures of 66 diverse odours. We show that general olfactory acuity correlates with gender, age, race, smoking habits, and body type. Young, female, non-smoking subjects had the highest average olfactory acuity. Deviations from normal body type in either direction were associated with decreased olfactory acuity. Beyond these factors we also show that, surprisingly, there are many odour-specific influences of race, age, and gender on olfactory perception. We show over 100 instances in which the intensity or pleasantness perception of an odour is significantly different between two demographic groups. Conclusions These data provide a comprehensive snapshot of the olfactory sense of a diverse population. Olfactory acuity in the population is most strongly influenced by age, followed by gender. We also show a large number of diverse correlations between demographic factors and the perception of individual odours that may reflect genetic differences as well as different

  17. Preservation of olfaction in surgery of olfactory groove meningiomas.

    Science.gov (United States)

    Jang, Woo-Youl; Jung, Shin; Jung, Tae-Young; Moon, Kyung-Sub; Kim, In-Young

    2013-08-01

    Olfaction is commonly considered as secondary among the sensory functions, perhaps reflecting a lack of interest in sparing olfaction after surgery for the olfactory groove meningiomas (OGM). However, considering the repercussions of olfaction for the quality of life, the assessment of post-operative olfaction should be necessary. We retrospectively reviewed the olfactory outcome in patients with OGM and investigated the factors associated with sparing the post-operative olfaction. Between 1993 and 2012, 40 patients with OGM underwent surgical resection and estimated the olfactory function using the Korean version of "Sniffin'Sticks" test (KVSS). Variable factors, such as tumor size, degree of preoperative edema, tumor consistency, preoperative olfactory function, surgical approaches, patient's age, and gender were analyzed with attention to the post-operative olfactory function. Anatomical and functional preservation of olfactory structures were achieved in 26 patients (65%) and 22 patients (55%), respectively. Among the variable factors, size of tumor was significant related to the preservation of post-operative olfaction. (78.6% in size4 cm, p=0.035). Sparing the olfaction was significantly better in patients without preoperative olfactory dysfunction (84.6%) compared with ones with preoperative olfactory dysfunction (40.7%, p=0.016). The frontolateral approach achieved much more excellent post-operative olfactory function (71.4%) than the bifrontal approach (36.8%, p=0.032). If the tumor was smaller than 4 cm and the patients did not present olfactory dysfunction preoperatively, the possibility of sparing the post-operative olfaction was high. Among the variable surgical approaches, frontolateral route may be preferable sparing the post-operative olfaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  19. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    Science.gov (United States)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  20. Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: a longitudinal, population-based study.

    Science.gov (United States)

    Stanciu, Ingrid; Larsson, Maria; Nordin, Steven; Adolfsson, Rolf; Nilsson, Lars-Göran; Olofsson, Jonas K

    2014-02-01

    We examined whether conversion to dementia can be predicted by self-reported olfactory impairment and/or by an inability to identify odors. Common forms of dementia involve an impaired sense of smell, and poor olfactory performance predicts cognitive decline among the elderly. We followed a sample of 1529 participants, who were within a normal range of overall cognitive function at baseline, over a 10-year period during which 159 were classified as having a dementia disorder. Dementia conversion was predicted from demographic variables, Mini-Mental State Examination score, and olfactory assessments. Self-reported olfactory impairment emerged as an independent predictor of dementia. After adjusting for effects of other predictors, individuals who rated their olfactory sensitivity as "worse than normal" were more likely to convert to dementia than those who reported normal olfactory sensitivity (odds ratio [OR] = 2.17; 95% confidence interval [CI] [1.40, 3.37]). Additionally, low scores on an odor identification test also predicted conversion to dementia (OR per 1 point increase = 0.89; 95% CI [0.81, 0.98]), but these two effects were additive. We suggest that assessing subjective olfactory complaints might supplement other assessments when evaluating the risk of conversion to dementia. Future studies should investigate which combination of olfactory assessments is most useful in predicting dementia conversion.

  1. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study

    International Nuclear Information System (INIS)

    Duchamp, A.; Moyse, E.; Delaleu, J.-C.; Coronas, V.; Duchamp-Viret, P.

    1997-01-01

    Dopamine content in the amphibian olfactory bulb is supplied by interneurons scattered among mitral cells in the external plexiform/mitral cell layer. In mammals, dopamine has been found to be involved in various aspects of bulbar information processing by influencing mitral cell odour responsiveness. Dopamine action in the bulb depends directly on the localization of its receptor targets, found to be mainly of the D 2 type in mammals. The present study assessed, in the frog, both the anatomical localization of D 2 -like, radioligand-labelled receptors of dopamine and the in vivo action of dopamine on unitary mitral cell activity in response to odours delivered over a wide range of concentrations. The [ 125 I]iodosulpride-labelled D 2 binding sites were visualized on frozen sagittal sections of frog brains by film radioautography. The sites were found to be restricted to the external plexiform/mitral cell layer; other layers of the olfactory bulb were devoid of specific labelling. Electrophysiological recordings of mitral unit activity revealed that dopamine or its agonist apomorphine induced a drastic reduction of spontaneous firing rate of mitral cells in most cases without altering odour intensity coding properties of these cells. Moreover, pre-treatment with the D 2 antagonist eticlopride blocked the dopamine-induced reduction of mitral cell spontaneous activity.In the frog olfactory bulb, both anatomical localization of D 2 -like receptors and functional data on dopamine involvement in information processing differ from those reported in mammals. This suggests a phylogenetic evolution of dopamine action in the olfactory bulb. In the frog, anatomical data perfectly corroborate electrophysiological results, together strongly suggesting a direct action of dopamine on mitral cells. In a physiologically operating system, such an action would result in a global improvement of signal-to-noise ratio. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights

  2. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  3. Control strategies against avian influenza

    Science.gov (United States)

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  4. Avian metapneumovirus in the USA

    Science.gov (United States)

    In the United States of America (USA), avian metapneumovirus (aMPV) causes an upper respiratory tract infection in turkeys; no outbreaks have been reported in commercial chicken flocks. Typical clinical signs of the disease in turkey poults include coughing, sneezing, nasal discharge, tracheal rale...

  5. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  6. Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells.

    Science.gov (United States)

    Dittrich, Anne; Scheibner, David; Salaheldin, Ahmed H; Veits, Jutta; Gischke, Marcel; Mettenleiter, Thomas C; Abdelwhab, Elsayed M

    2018-02-14

    Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host.

  7. Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in Avian and Human Cells

    Directory of Open Access Journals (Sweden)

    Anne Dittrich

    2018-02-01

    Full Text Available Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L to enhance replication in mammals and retained replication efficiency in the original avian host.

  8. Olfactory sex recognition investigated in Antarctic prions.

    Directory of Open Access Journals (Sweden)

    Francesco Bonadonna

    Full Text Available Chemical signals can yield information about an animal such as its identity, social status or sex. Such signals have rarely been considered in birds, but recent results have shown that chemical signals are actually used by different bird species to find food and to recognize their home and nest. This is particularly true in petrels whose olfactory anatomy is among the most developed in birds. Recently, we have demonstrated that Antarctic prions, Pachyptila desolata, are also able to recognize and follow the odour of their partner in a Y-maze.However, the experimental protocol left unclear whether this choice reflected an olfactory recognition of a particular individual (i.e. partner or a more general sex recognition mechanism. To test this second hypothesis, male and female birds' odours were presented simultaneously to 54 Antarctic prions in a Y-maze. Results showed random behaviour by the tested bird, independent of its sex or reproductive status. Present results do not support the possibility that Antarctic prions can distinguish the sex of a conspecific through its odour but indirectly support the hypothesis that they can distinguish individual odours.

  9. A model of olfactory associative learning

    Science.gov (United States)

    Tavoni, Gaia; Balasubramanian, Vijay

    We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.

  10. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  11. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats.

    Directory of Open Access Journals (Sweden)

    Pascaline Aimé

    Full Text Available Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB contains the highest level of insulin and insulin receptors (IRs in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.

  12. Protective roles of free avian respiratory macrophages in captive birds

    Directory of Open Access Journals (Sweden)

    Mbuvi P. Mutua

    Full Text Available In the mammalian lung, respiratory macrophages provide front line defense against invading pathogens and particulate matter. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM and a dearth of the cells in the avian lung has been purported to foreordain a weak first line of pulmonary defense, a condition associated with high mortality of domestic birds occasioned by respiratory inflictions. Avian pulmonary mechanisms including a three tiered aerodynamic filtration system, tight epithelial junctions and an efficient mucociliary escalator system have been known to supplement FARM protective roles. Current studies, however, report FARM to exhibit an exceptionally efficient phagocytic capacity and are effective in elimination of invading pathogens. In this review, we also report on effects of selective synthetic peroxisome proliferator activated receptor gamma (PPAR γ agonists on non phlogistic phagocytic properties in the FARM. To develop effective therapeutic interventions targeting FARM in treatment and management of respiratory disease conditions in the poultry, further studies are required to fully understand the role of FARM in innate and adaptive immune responses.

  13. Signaling filopodia in avian embryogenesis: formation and function

    Directory of Open Access Journals (Sweden)

    Margarethe Draga

    2016-11-01

    Full Text Available In vertebrates and invertebrates specialized cellular protrusions, called signaling filopodia or cytonemes, play an important role in cell-cell communication by carrying receptors and ligands to distant cells to activate various signaling pathways. In the chicken embryo, signaling filopodia were described in limb bud mesenchyme and in somite epithelia. The formation of signaling filopodia depends on the activity of Rho GTPases and reorganization of the cytoskeleton. Here, we give a short overview on the present knowledge on avian signaling filopodia and discuss the molecular basis of cytoskeletal rearrangements leading to filopodia formation.

  14. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.

    Science.gov (United States)

    Samuelsen, Chad L; Fontanini, Alfredo

    2017-01-11

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli

  15. Changes in emotional behavior of mice in the hole-board test after olfactory bulbectomy.

    Science.gov (United States)

    Saitoh, Akiyoshi; Hirose, Noritaka; Yamada, Mitsuhiko; Yamada, Misa; Nozaki, Chihiro; Oka, Takuma; Kamei, Junzo

    2006-12-01

    The most consistent behavioral change caused by olfactory bulbectomy (OBX) is a hyperemotional response to novel environmental stimuli. The aim of this study was to characterize the emotional behavior of OBX mice using the hole-board test. After the olfactory bulbs were lesioned, sham and OBX mice were housed in single cages for 14 days. The number of head-dips in the hole-board test in single-housed OBX mice was significantly greater than that in single-housed sham mice. The head-dipping behaviors in single-housed sham and OBX mice were reversed by treatment with diazepam, a typical benzodiazepine anxiolytic. (+/-)-8-Hydroxy-2-(di-n-propylamino) tetraline hydrobromide (8-OH-DPAT), a selective 5-HT(1A)-receptor agonist that has a non-benzodiazepine anxiolytic-like effect, and (+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl benzamide (SNC80), a delta-opioid-receptor agonist, also significantly reversed the number of head-dips in single-housed sham and OBX mice. In conclusion, we suggest that the single-housed OBX mice showed heightened emotional behavior (e.g., increase in head-dipping behavior) in the hole-board test. In addition, we suggest that the hyperemotional behavior characterized by head-dipping behavior in OBX mice was selectively reversed by benzodiazepine and non-benzodiazepine anxiolytics.

  16. The Evaluation of Olfactory Function in Patients With Schizophrenia.

    Science.gov (United States)

    Robabeh, Soleimani; Mohammad, Jalali Mir; Reza, Ahmadi; Mahan, Badri

    2015-04-23

    The aim of this study was to compare olfactory threshold, smell identification, intensity and pleasantness ratings between patients with schizophrenia and healthy controls, and (2) to evaluate correlations between ratings of olfactory probes and illness characteristics. Thirty one patients with schizophrenia and 31 control subjects were assessed with the olfactory n-butanol threshold test, the Iran smell identification test (Ir-SIT), and the suprathreshold amyl acetate odor intensity and odor pleasantness rating test. All olfactory tasks were performed unirhinally. Patients with schizophrenia showed disrupted olfaction in all four measures. Longer duration of schizophrenia was associated with a larger impairment of olfactory threshold or microsmic range on the Ir-SIT (P=0.04, P=0.05, respectively). In patients with schizophrenia, female subjects' ratings of pleasantness followed the same trend as control subjects, whereas male patients' ratings showed an opposite trend. Patients exhibiting high positive score on the positive and negative syndrome scale (PANSS) performed better on the olfactory threshold test (r=0.37, P=0.04). The higher odor pleasantness ratings of patients were associated with presence of positive symptoms. The results suggest that both male and female patients with schizophrenia had difficulties on the olfactory threshold and smell identification tests, but appraisal of odor pleasantness was more disrupted in male patients.

  17. Olfactory hallucination in childhood primary headaches: case series.

    Science.gov (United States)

    Ahmed, M A S; Donaldson, Sarah; Akor, Francis; Cahill, Denise; Akilani, Raed

    2015-03-01

    Although olfactory hallucination (OH) has been reported in patients with primary headaches, olfactory aura has not been recognised by the International Classification of Headache Disorders (ICHD-2). In this study, we examined the frequency and characteristics of OH among children and adolescents with primary headaches. 839 neurologically normal patients with primary headaches (537 migraine) were eligible for the assessment of olfactory hallucination. Headache diagnosis was based on the ICHD. Data were prospectively collected during clinic sessions and using headache diaries. Olfactory hallucination was reported exclusively during headache attacks by 21/839 (2.5%) patients, all of whom had migraine. The prevalence of olfactory hallucination was 3.9% among migraineurs (6.5% among those with migraine aura). Olfactory hallucination shortly followed the onset of headaches and lasted from 15 to 50 minutes. Of those with MA, 10 patients had visual aura; two had somatosensory aura; one had motor aura; and two had a combination of visual and somatosensory aura. Using the ICHD-2, both OH and migraine aura occurred in the same headache attacks. In 12/15 patients, OH occurred simultaneously with migraine aura, whereas in 3/12 patients, it preceded aura. Our findings show that olfactory hallucination occurs in migraine and it has similarities to migraine aura. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Cellular Architecture and Functional Aspects of the Olfactory Rosette of Wallago attu (Bleeker)

    OpenAIRE

    Ghosh, Saroj Kumar; Chakrabarti, Padmanabha

    2009-01-01

    The olfactory epithelium of Wallago attu has been studied with conventional histological techniques. The elongated olfactory rosette consists of 62 to 64 primary lamellae in each left and right rosette. The olfactory lamellae are arranged in two rows on either side of the long raphe. Each olfactory lamella consists of two layers of epithelium separated by central core. The olfactory epithelium in one side consists of mixed sensory and non-sensory epithelium while the other side is consists of...

  19. Neurobiology of mammalian olfactory learning that occurs during sensitive periods

    Directory of Open Access Journals (Sweden)

    Hideto KABA

    2010-12-01

    Full Text Available This review examines the organizational principles underlying olfactory learning in three specialized contexts that occur during sensitive periods of enhanced neural plasticity and emphasizes some of their common features. All three forms of olfactory learning are associated with neural changes in the olfactory bulb (OB at the first stage of sensory processing. These changes require the association of the olfactory and somatosensory signals in the OB. They all depend on somatosensory stimulation-induced release of noradrenaline that induces structural and functional changes at mitral-granule cell reciprocal synapses in the OB, resulting in increases in inhibitory transmission. In the accessory olfactory bulb, this represents the enhanced self-inhibition of mitral cells, which selectively disrupts the transmission of the mating male’s pregnancy-blocking signal at this level. In contrast, an extensive network of secondary dendrites of mitral cells in the main olfactory bulb probably results in a sharpening of the odor-induced pattern of activity, due to increases in lateral inhibition, leading to offspring recognition in sheep and neonatal learning in rats and rabbits. These findings show that inhibitory interneurons play a critical role in olfactory learning. Further work on how these neurons shape olfactory circuit function could provide important clues to understand memory functions of interneurons in other systems. Moreover, recent research has suggested that three forms of olfactory learning are controlled by synergistic, redundant, and distributed neural mechanisms. This has general implications regarding the mechanisms that may contribute to the robustness of memories [Current Zoology 56 (6: 819–833, 2010].

  20. Gender-typical olfactory regulation of sexual behavior in goldfish.

    Science.gov (United States)

    Kawaguchi, Yutaro; Nagaoka, Akira; Kitami, Asana; Mitsuhashi, Tomomi; Hayakawa, Youichi; Kobayashi, Makito

    2014-01-01

    It is known that olfaction is essential for the occurrence of sexual behavior in male goldfish. Sex pheromones from ovulatory females elicit male sexual behavior, chasing, and sperm releasing act. In female goldfish, ovarian prostaglandin F2α (PGF) elicits female sexual behavior, egg releasing act. It has been considered that olfaction does not affect sexual behavior in female goldfish. In the present study, we re-examined the involvement of olfaction in sexual behavior of female goldfish. Olfaction was blocked in male and female goldfish by two methods: nasal occlusion (NO) which blocks the reception of olfactants, and olfactory tract section (OTX) which blocks transmission of olfactory information from the olfactory bulb to the telencephalon. Sexual behavior of goldfish was induced by administration of PGF to females, an established method for inducing goldfish sexual behavior in both sexes. Sexual behavior in males was suppressed by NO and OTX as previously reported because of lack of pheromone stimulation. In females, NO suppressed sexual behavior but OTX did not affect the occurrence of sexual behavior. Females treated with both NO and OTX performed sexual behavior normally. These results indicate that olfaction is essential in female goldfish to perform sexual behavior as in males but in a different manner. The lack of olfaction in males causes lack of pheromonal stimulation, resulting in no behavior elicited. Whereas the results of female experiments suggest that lack of olfaction in females causes strong inhibition of sexual behavior mediated by the olfactory pathway. Olfactory tract section is considered to block the pathway and remove this inhibition, resulting in the resumption of the behavior. By subtract sectioning of the olfactory tract, it was found that this inhibition was mediated by the medial olfactory tracts, not the lateral olfactory tracts. Thus, it is concluded that goldfish has gender-typical olfactory regulation for sexual behavior.

  1. Gender-typical olfactory regulation of sexual behavior in goldfish

    Science.gov (United States)

    Kawaguchi, Yutaro; Nagaoka, Akira; Kitami, Asana; Mitsuhashi, Tomomi; Hayakawa, Youichi; Kobayashi, Makito

    2014-01-01

    It is known that olfaction is essential for the occurrence of sexual behavior in male goldfish. Sex pheromones from ovulatory females elicit male sexual behavior, chasing, and sperm releasing act. In female goldfish, ovarian prostaglandin F2α (PGF) elicits female sexual behavior, egg releasing act. It has been considered that olfaction does not affect sexual behavior in female goldfish. In the present study, we re-examined the involvement of olfaction in sexual behavior of female goldfish. Olfaction was blocked in male and female goldfish by two methods: nasal occlusion (NO) which blocks the reception of olfactants, and olfactory tract section (OTX) which blocks transmission of olfactory information from the olfactory bulb to the telencephalon. Sexual behavior of goldfish was induced by administration of PGF to females, an established method for inducing goldfish sexual behavior in both sexes. Sexual behavior in males was suppressed by NO and OTX as previously reported because of lack of pheromone stimulation. In females, NO suppressed sexual behavior but OTX did not affect the occurrence of sexual behavior. Females treated with both NO and OTX performed sexual behavior normally. These results indicate that olfaction is essential in female goldfish to perform sexual behavior as in males but in a different manner. The lack of olfaction in males causes lack of pheromonal stimulation, resulting in no behavior elicited. Whereas the results of female experiments suggest that lack of olfaction in females causes strong inhibition of sexual behavior mediated by the olfactory pathway. Olfactory tract section is considered to block the pathway and remove this inhibition, resulting in the resumption of the behavior. By subtract sectioning of the olfactory tract, it was found that this inhibition was mediated by the medial olfactory tracts, not the lateral olfactory tracts. Thus, it is concluded that goldfish has gender-typical olfactory regulation for sexual behavior. PMID

  2. Distinct amyloid precursor protein processing machineries of the olfactory system.

    Science.gov (United States)

    Kim, Jae Yeon; Rasheed, Ameer; Yoo, Seung-Jun; Kim, So Yeun; Cho, Bongki; Son, Gowoon; Yu, Seong-Woon; Chang, Keun-A; Suh, Yoo-Hun; Moon, Cheil

    2018-01-01

    Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by β-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of β-amyloid (Aβ) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex-which contains presenilin 1 or 2 as the catalytic core-could trigger marked Aβ accumulation. Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions. Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aβ*56 accumulates more quickly in the OE. Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species.

    Directory of Open Access Journals (Sweden)

    Henning Petersen

    Full Text Available Transmission of avian influenza viruses (AIV between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.

  4. Self-Ratings of Olfactory Function Reflect Odor Annoyance Rather than Olfactory Acuity

    DEFF Research Database (Denmark)

    Knaapila, Antti; Tuorila, Hely; Kyvik, Kirsten

    2008-01-01

    annoyance (r = 0.30) but neither correlated with the odor identification score.Quantitative genetic modeling revealed no unambiguously significant genetic contribution to variation in any of the studied traits. CONCLUSION:: The results suggest that environmental rather than genetic factors modify the self......OBJECTIVE/HYPOTHESIS:: Self-ratings of olfactory function correlates often poorly with results of objective smell tests. We explored them relative to self-rating of odor annoyance, to odor identification ability, and to mean perceived intensity of odors, and estimated relative genetic...... Kingdom rated their sense of smell and annoyance caused by ambient smells (e.g., smells of foods) using seven categories, and performed odor identification and evaluation task for six scratch-and-sniff odor stimuli. RESULTS:: The self-rating of olfactory function correlated with the self-rating of odor...

  5. Face detection for interactive tabletop viewscreen system using olfactory display

    Science.gov (United States)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2009-10-01

    An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  6. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in Caenorhabditis elegans.

    Science.gov (United States)

    Kitazono, Tomohiro; Hara-Kuge, Sayuri; Matsuda, Osamu; Inoue, Akitoshi; Fujiwara, Manabi; Ishihara, Takeshi

    2017-10-18

    Forgetting memories is important for animals to properly respond to continuously changing environments. To elucidate the mechanisms of forgetting, we used one of the behavioral plasticities of Caenorhabditis elegans hermaphrodite, olfactory adaptation to an attractive odorant, diacetyl, as a simple model of learning. In C. elegans, the TIR-1/JNK-1 pathway accelerates forgetting of olfactory adaptation by facilitating neural secretion from AWC sensory neurons. In this study, to identify the downstream effectors of the TIR-1/JNK-1 pathway, we conducted a genetic screen for suppressors of the gain-of-function mutant of tir-1 ( ok1052 ), which shows excessive forgetting. Our screening showed that three proteins-a membrane protein, MACO-1; a receptor tyrosine kinase, SCD-2; and its putative ligand, HEN-1-regulated forgetting downstream of the TIR-1/JNK-1 pathway. We further demonstrated that MACO-1 and SCD-2/HEN-1 functioned in parallel genetic pathways, and only MACO-1 regulated forgetting of olfactory adaptation to isoamyl alcohol, which is an attractive odorant sensed by different types of sensory neurons. In olfactory adaptation, odor-evoked Ca 2+ responses in olfactory neurons are attenuated by conditioning and recovered thereafter. A Ca 2+ imaging study revealed that this attenuation is sustained longer in maco-1 and scd-2 mutant animals than in wild-type animals like the TIR-1/JNK-1 pathway mutants. Furthermore, temporal silencing by histamine-gated chloride channels revealed that the neuronal activity of AWC neurons after conditioning is important for proper forgetting. We propose that distinct signaling pathways, each of which has a specific function, may coordinately and temporally regulate forgetting by controlling sensory responses. SIGNIFICANCE STATEMENT Active forgetting is an important process to understand the whole mechanisms of memories. Recent papers have reported that the noncell autonomous regulations are required for proper forgetting in

  7. Analyzing the effects of co-expression of chick (Gallus gallus) melanocortin receptors with either chick MRAP1 or MRAP2 in CHO cells on sensitivity to ACTH(1-24) or ACTH(1-13)NH2: Implications for the avian HPA axis and avian melanocortin circuits in the hypothalamus.

    Science.gov (United States)

    Thomas, Alexa L; Maekawa, Fumihiko; Kawashima, Takaharu; Sakamoto, Hirotaka; Sakamoto, Tatsuya; Davis, Perry; Dores, Robert M

    2018-01-15

    In order to better understand the roles that melanocortin receptors (cMCRs) and melanocortin-2 receptor accessory proteins (cMRAP1 and cMRAP2) play in the HPA axis and hypothalamus, adrenal gland and hypothalamus mRNA from 1day-old white leghorn chicks (Gallus gallus), were analyzed by real-time PCR. mRNA was also made for kidney, ovary, and liver. Mrap1 mRNA could be detected in adrenal tissue, but not in any of the other tissues, and mrap2 mRNA was also detected in the adrenal gland. Finally, all five melanocortin receptors mRNAs could be detected in the adrenal gland; mc2r and mc5r mRNAs were the most abundant. To evaluate any potential interactions between MRAP1 and the MCRs that may occur in adrenal cells, individual chick mcr cDNA constructs were transiently expressed in CHO cells either in the presence or absence of a chick mrap1 cDNA, and the transfected cells were stimulated with hACTH(1-24) at concentrations ranging from 10 -13 M to 10 -6 M. As expected, MC2R required co-expression with MRAP1 for functional expression; whereas, co-expression of cMC3R with cMRAP1 had no statistically significant effect on sensitivity to hACTH(1-24). However, co-expression of MC4R and MC5R with MRAP1, increased sensitivity for ACTH(1-24) by approximately 35 fold and 365 fold, respectively. However, co-expressing of cMRAP2 with these melanocortin receptors had no effect on sensitivity to hACTH(1-24). Since the real-time PCR analysis detected mrap2 mRNA and mc4r mRNA in the hypothalamus, the interaction between cMC4R and cMRAP2 with respect to sensitivity to ACTH(1-13)NH 2 stimulation was also evaluated. However, no effect, either positive or negative, was observed. Finally, the highest levels of mc5r mRNA were detected in liver cells. This observation raises the possibility that in one-day old chicks, activation of the HPA axis may also involve a physiological response from liver cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evidence-Based Advances in Avian Medicine.

    Science.gov (United States)

    Summa, Noémie M; Guzman, David Sanchez-Migallon

    2017-09-01

    This article presents relevant advances in avian medicine and surgery over the past 5 years. New information has been published to improve clinical diagnosis in avian diseases. This article also describes new pharmacokinetic studies. Advances in the understanding and treatment of common avian disorders are presented in this article, as well. Although important progress has been made over the past years, there is still much research that needs to be done regarding the etiology, pathophysiology, diagnosis, and treatment of avian diseases and evidence-based information is still sparse in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  10. The possibility of inventing new technologies in the detection of cancer by applying elements of the canine olfactory apparatus.

    Science.gov (United States)

    Pomerantz, Alan; Blachman-Braun, Ruben; Galnares-Olalde, Javier Andrés; Berebichez-Fridman, Roberto; Capurso-García, Marino

    2015-08-01

    In order to find better tools in the diagnosis of cancer in an earlier and more precise manner, researchers have explored the use of volatile organic compound (VOCs) as a way to detect this disease. Interestingly, the canine olfactory apparatus was observed to detect cancer in two anecdotal reports. After the description of these events, researchers began to study this phenomenon in a structured way in order to assess the ability of canines in detecting cancer-related VOCs. Due to the fact that some of these studies have shown that the canine olfactory apparatus is highly proficient in the detection of cancer-related VOCs, in this article we assess the possibility of constructing a bioelectronic-nose, based on canine olfactory receptors (ORs), for the purpose of diagnosing cancer in a more sensitive, specific, and cost effective manner than what is available nowadays. Furthermore, in order to prove the feasibility and the need of the proposed apparatus, we searched for the following type of articles: all of the studies that have examined, to our knowledge, the ability of dogs in detecting cancer; articles that assess the dog olfactory receptor (OR) gene repertoire, since a central part of the proposed bioelectronic nose is being able to recognize the odorant that emanates from the cancerous lesion, and for that purpose is necessary to express the canine ORs in heterologous cells; examples of articles that depict different devices that have been built for the purpose of detecting cancer-related VOCs, so as to assess if the construction of the proposed apparatus is needed; and articles that describe examples of already constructed bioelectronic noses, in order to demonstrate the existence of a technical precedent and thus the plausibility of the proposed device. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Artificial neural networks for classifying olfactory signals.

    Science.gov (United States)

    Linder, R; Pöppl, S J

    2000-01-01

    For practical applications, artificial neural networks have to meet several requirements: Mainly they should learn quick, classify accurate and behave robust. Programs should be user-friendly and should not need the presence of an expert for fine tuning diverse learning parameters. The present paper demonstrates an approach using an oversized network topology, adaptive propagation (APROP), a modified error function, and averaging outputs of four networks described for the first time. As an example, signals from different semiconductor gas sensors of an electronic nose were classified. The electronic nose smelt different types of edible oil with extremely different a-priori-probabilities. The fully-specified neural network classifier fulfilled the above mentioned demands. The new approach will be helpful not only for classifying olfactory signals automatically but also in many other fields in medicine, e.g. in data mining from medical databases.

  12. Olfactory groove meningiomas: approaches and complications.

    Science.gov (United States)

    Aguiar, Paulo Henrique Pires de; Tahara, Adriana; Almeida, Antonio Nogueira; Simm, Renata; Silva, Arnaldo Neves da; Maldaun, Marcos Vinicius Calfatt; Panagopoulos, Alexandros Theodoros; Zicarelli, Carlos Alexandre; Silva, Pedro Gabriel

    2009-09-01

    Olfactory groove meningiomas (OGM) account for 4.5% of all intracranial meningiomas. We report 21 patients with OGMs. Tumors were operated on using three surgical approaches: bifrontal (7 patients), fronto-pterional (11 patients) and fronto-orbital (3 patients). Total tumor removal (Simpson Grade 1) was achieved in 13 patients and Simpson II in 8 patients. Perioperative mortality was 4.76%. The average size of the OGM was 4.3+/-1.1cm. The overall recurrence rate was 19%. We preferred to use the pterional approach, which provides quick access to the tumor with less brain exposure. It also allows complete drainage of cisternal cerebrospinal fluid, providing a good level of brain relaxation during surgery. However, for long, thin tumors, hemostasis can be difficult using this approach.

  13. Fault tolerant architecture for artificial olfactory system

    International Nuclear Information System (INIS)

    Lotfivand, Nasser; Hamidon, Mohd Nizar; Abdolzadeh, Vida

    2015-01-01

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible. (paper)

  14. Using EGEE against avian flu

    CERN Multimedia

    2006-01-01

    During April 2006 avian flu was spreading across the world with the potential of turning into a pandemic, a drug to treat the deadly H5N1 strain was needed. Such a task required the huge processing power provided by EGEE, which analysed 300 000 possible drug components for their suitability. This map shows the network of computer centres and their activity during this time.

  15. Gender determination of avian embryo

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Keith A. (Idaho Falls, ID); Atkinson, David A. (Idaho Falls, ID)

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  16. A specialized odor memory buffer in primary olfactory cortex.

    Science.gov (United States)

    Zelano, Christina; Montag, Jessica; Khan, Rehan; Sobel, Noam

    2009-01-01

    The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes. We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociation whereby remembering nameable odorants was reflected in sustained activity in prefrontal language areas, and remembering unnameable odorants was reflected in sustained activity in primary olfactory cortex. These findings suggest a novel dedicated mechanism in primary olfactory cortex, where odor information is maintained in temporary storage to subserve ongoing tasks.

  17. AASERT: Hydrodynamic Interaction Between Olfactory Antennae and Odor Plumes

    National Research Council Canada - National Science Library

    Koehl, M

    2002-01-01

    We trained graduate and undergraduate students by involving them in research elucidating ways in which the structure and the motions of olfactory antennae affect how they encounter the concentration...

  18. Characterization and visualization of cholecystokinin receptors in rat brain using [3H]pentagastrin

    International Nuclear Information System (INIS)

    Gaudreau, P.; Quirion, R.; St Pierre, S.; Pert, C.B.

    1983-01-01

    [ 3 H]Pentagastrin binds specifically to an apparent single class of CCK receptors on slide-mounted sections of rat brain (KD . 5.6 nM; Bmax . 36.6 fmol/mg protein). This specific binding is temperature-dependent and regulated by ions and nucleotides. The relative potencies of C-terminal fragments of CCK-8(SO 3 H), benzotript and proglumide in inhibiting specific [ 3 H]pentagastrin binding to CCK brain receptors reinforce the concept of different brain and pancreas CCK receptors. CCK receptors were visualized by using tritium-sensitive LKB film analyzed by computerized densitometry. CCK receptors are highly concentrated in the cortex, dentate gyrus, granular and external plexiform layers of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle, claustrum, accumbens nucleus, some nuclei of the amygdala, thalamus and hypothalamus

  19. Olfactory ensheathing glia : their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord

    NARCIS (Netherlands)

    Franssen, Elske H P; de Bree, Freddy M; Verhaagen, J.

    2007-01-01

    Olfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive

  20. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    Science.gov (United States)

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  1. Assessment of olfactory nerve by SPECT-MRI image with nasal thallium-201 administration in patients with olfactory impairments in comparison to healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Hideaki Shiga

    Full Text Available PURPOSE: The aim of this study was to assess whether migration of thallium-201 ((201Tl to the olfactory bulb were reduced in patients with olfactory impairments in comparison to healthy volunteers after nasal administration of (201Tl. PROCEDURES: 10 healthy volunteers and 21 patients enrolled in the study (19 males and 12 females; 26-71 years old. The causes of olfactory dysfunction in the patients were head trauma (n = 7, upper respiratory tract infection (n = 7, and chronic rhinosinusitis (n = 7. (201TlCl was administered unilaterally to the olfactory cleft, and SPECT-CT was conducted 24 h later. Separate MRI images were merged with the SPECT images. (201Tl olfactory migration was also correlated with the volume of the olfactory bulb determined from MRI images, as well as with odor recognition thresholds measured by using T&T olfactometry. RESULTS: Nasal (201Tl migration to the olfactory bulb was significantly lower in the olfactory-impaired patients than in healthy volunteers. The migration of (201Tl to the olfactory bulb was significantly correlated with odor recognition thresholds obtained with T&T olfactometry and correlated with the volume of the olfactory bulb determined from MRI images when all subjects were included. CONCLUSIONS: Assessment of the (201Tl migration to the olfactory bulb was the new method for the evaluation of the olfactory nerve connectivity in patients with impaired olfaction.

  2. Transmission of Avian Influenza Virus (H3N2) to Dogs

    Science.gov (United States)

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAα 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus. PMID:18439355

  3. Identification of Molecular Markers Associated with Alteration of Receptor-Binding Specificity in a Novel Genotype of Highly Pathogenic Avian Influenza A(H5N1) Viruses Detected in Cambodia in 2013

    Science.gov (United States)

    Rith, Sareth; Davis, C. Todd; Duong, Veasna; Sar, Borann; Horm, Srey Viseth; Chin, Savuth; Ly, Sovann; Laurent, Denis; Richner, Beat; Oboho, Ikwo; Jang, Yunho; Davis, William; Thor, Sharmi; Balish, Amanda; Iuliano, A. Danielle; Sorn, San; Holl, Davun; Sok, Touch; Seng, Heng; Tarantola, Arnaud; Tsuyuoka, Reiko; Parry, Amy; Chea, Nora; Allal, Lotfi; Kitsutani, Paul; Warren, Dora; Prouty, Michael; Horwood, Paul; Widdowson, Marc-Alain; Lindstrom, Stephen; Villanueva, Julie; Donis, Ruben; Cox, Nancy

    2014-01-01

    Human infections with influenza A(H5N1) virus in Cambodia increased sharply during 2013. Molecular characterization of viruses detected in clinical specimens from human cases revealed the presence of mutations associated with the alteration of receptor-binding specificity (K189R, Q222L) and respiratory droplet transmission in ferrets (N220K with Q222L). Discovery of quasispecies at position 222 (Q/L), in addition to the absence of the mutations in poultry/environmental samples, suggested that the mutations occurred during human infection and did not transmit further. PMID:25210193

  4. Effect of strong fragrance on olfactory detection threshold.

    Science.gov (United States)

    Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin

    2014-09-01

    To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  5. Development of the olfactory pathways in platypus and echidna.

    Science.gov (United States)

    Ashwell, Ken W S

    2012-01-01

    The two groups of living monotremes (platypus and echidnas) have remarkably different olfactory structures in the adult. The layers of the main olfactory bulb of the short-beaked echidna are extensively folded, whereas those of the platypus are not. Similarly, the surface area of the piriform cortex of the echidna is large and its lamination complex, whereas in the platypus it is small and simple. It has been argued that the modern echidnas are derived from a platypus-like ancestor, in which case the extensive olfactory specializations of the modern echidnas would have developed relatively recently in monotreme evolution. In this study, the development of the constituent structures of the olfactory pathway was studied in sectioned platypus and echidna embryos and post-hatchlings at the Museum für Naturkunde, Berlin, Germany. The aim was to determine whether the olfactory structures follow a similar maturational path in the two monotremes during embryonic and early post-hatching ages or whether they show very different developmental paths from the outset. The findings indicate that anatomical differences in the central olfactory system between the short-beaked echidna and the platypus begin to develop immediately before hatching, although details of differences in nasal cavity architecture emerge progressively during late post-hatching life. These findings are most consistent with the proposition that the two modern monotreme lineages have followed independent evolutionary paths from a less olfaction-specialized ancestor. The monotreme olfactory pathway does not appear to be sufficiently structurally mature at birth to allow olfaction-mediated behaviour, because central components of both the main and accessory olfactory system have not differentiated at the time of hatching. Copyright © 2011 S. Karger AG, Basel.

  6. Time frequency analysis of olfactory induced EEG-power change.

    Directory of Open Access Journals (Sweden)

    Valentin Alexander Schriever

    Full Text Available The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function.A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects.Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%. In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III.Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.

  7. Determinants of human olfactory performance: a cross-cultural study.

    Science.gov (United States)

    Sorokowska, Agnieszka; Sorokowski, Piotr; Frackowiak, Tomasz

    2015-02-15

    Olfaction allows us to detect subtle changes in our environment, but sensitivity of the sense of smell varies among individuals. Although a significant number of research papers discuss the relationship between olfactory abilities and environmental factors, most studies have been conducted on Western populations or in developed Asian societies. The potential environmental and cultural determinants of olfactory acuity warrant further exploration. In the current study, we compared previously published data on olfaction in an industrialized, modern society (i.e., Europeans) and an indigenous society living in unpolluted, natural environmental conditions (i.e., Tsimane'), with novel data on the olfactory acuity of inhabitants of the Cook Islands. Like the European population (and contrary to the Tsimane'), the Cook Islands people form a modern society, and like the Tsimane' population (and contrary to the Europeans), they live in an unpolluted region. Thus, these comparisons enabled us to independently assess the importance of both air pollution and changes in lifestyle for olfactory abilities in modern societies. Our results indicate that people from the Cook Islands had significantly higher olfactory acuity (i.e., lower thresholds of odor detection) than did Europeans and Tsimane' people. Interestingly, the olfactory sensitivity of Europeans was significantly lower than the olfactory sensitivity of the remaining two groups. Our data suggest that air pollution is an important factor in the deterioration of the sense of smell. However, it is also possible that factors such as agricultural and/or cooking practices, alcohol consumption, and access to medical service may also influence olfactory acuity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. State and trait olfactory markers of major depression.

    Directory of Open Access Journals (Sweden)

    Marine Naudin

    Full Text Available Nowadays, depression is a major issue in public health. Because of the partial overlap between the brain structures involved in depression, olfaction and emotion, the study of olfactory function could be a relevant way to find specific cognitive markers of depression. This study aims at determining whether the olfactory impairments are state or trait markers of major depressive episode (MDE through the study of the olfactory parameters involving the central olfactory pathway. In a pilot study, we evaluated prospectively 18 depressed patients during acute episodes of depression and 6 weeks after antidepressant treatment (escitalopram against 54 healthy volunteers, matched by age, gender and smoking status. We investigated the participants' abilities to identify odors (single odors and in binary mixture, to evaluate and discriminate the odors' intensity, and determine the hedonic valence of odors. The results revealed an "olfactory anhedonia" expressed by decrease of hedonic score for high emotional odorant as potential state marker of MDE. Moreover, these patients experienced an "olfactory negative alliesthesia", during the odor intensity evaluation, and failed to identify correctly two odorants with opposite valences in a binary iso-mixture, which constitute potential trait markers of the disease. This study provides preliminary evidence for olfactory impairments associated with MDE (state marker that are persistent after the clinical improvement of depressive symptoms (trait marker. These results could be explained by the chronicity of depression and/or by the impact of therapeutic means used (antidepressant treatment. They need to be confirmed particularly the ones obtained in complex olfactory environment which corresponds a more objective daily life situation.

  9. State and trait olfactory markers of major depression.

    Science.gov (United States)

    Naudin, Marine; El-Hage, Wissam; Gomes, Marlène; Gaillard, Philippe; Belzung, Catherine; Atanasova, Boriana

    2012-01-01

    Nowadays, depression is a major issue in public health. Because of the partial overlap between the brain structures involved in depression, olfaction and emotion, the study of olfactory function could be a relevant way to find specific cognitive markers of depression. This study aims at determining whether the olfactory impairments are state or trait markers of major depressive episode (MDE) through the study of the olfactory parameters involving the central olfactory pathway. In a pilot study, we evaluated prospectively 18 depressed patients during acute episodes of depression and 6 weeks after antidepressant treatment (escitalopram) against 54 healthy volunteers, matched by age, gender and smoking status. We investigated the participants' abilities to identify odors (single odors and in binary mixture), to evaluate and discriminate the odors' intensity, and determine the hedonic valence of odors. The results revealed an "olfactory anhedonia" expressed by decrease of hedonic score for high emotional odorant as potential state marker of MDE. Moreover, these patients experienced an "olfactory negative alliesthesia", during the odor intensity evaluation, and failed to identify correctly two odorants with opposite valences in a binary iso-mixture, which constitute potential trait markers of the disease. This study provides preliminary evidence for olfactory impairments associated with MDE (state marker) that are persistent after the clinical improvement of depressive symptoms (trait marker). These results could be explained by the chronicity of depression and/or by the impact of therapeutic means used (antidepressant treatment). They need to be confirmed particularly the ones obtained in complex olfactory environment which corresponds a more objective daily life situation.

  10. Reference values of olfactory function for Mexico City inhabitants.

    Science.gov (United States)

    Guarneros, Marco; Hudson, Robyn; López-Palacios, Martha; Drucker-Colín, René

    2015-01-01

    Olfactory testing is useful in the differential diagnosis of age-related pathologies. To provide baseline reference values for clinical use in Mexico City we investigated the relation between olfactory capabilities and the principal population parameters of age, sex, and smoking habits in a large sample of healthy inhabitants. We applied the internationally recognized and commercially available Sniffin' Sticks test battery to 916 men and women from across the adult life span. The Sniffin' Sticks test evaluates three key aspects of olfactory function: 1) ability to detect an odor, 2) to discriminate between odors, and 3) to identify odors. We found a significant decline in olfactory function from the 5th decade of age, and that detection threshold was the most sensitive measure of this. We did not find a significant difference between men and women or between smokers and non-smokers. In confirmation of our previous studies of the negative effect of air pollution on olfactory function, Mexico City inhabitants had poorer overall performance than corresponding subjects previously tested in the neighboring but less polluted Mexican state of Tlaxcala. Although we basically confirm findings on general demographic patterns of olfactory performance from other countries, we also demonstrate the need to take into account local cultural, environmental and demographic factors in the clinical evaluation of olfactory performance of Mexico City inhabitants. The Sniffin' Sticks test battery, with some adjustment of stimuli to correspond to Mexican culture, provides an easily administered means of assessing olfactory health. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Recency and suffix effects with immediate recall of olfactory stimuli.

    Science.gov (United States)

    Miles, C; Jenkins, R

    2000-05-01

    In contrast to our understanding of the immediate recall of auditory and visual material, little is known about the corresponding characteristics of short-term olfactory memory. The current study investigated the pattern of immediate serial recall and the associated suffix effect using olfactory stimuli. Subjects were trained initially to identify and name correctly nine different odours. Experiment 1 established an immediate correct recall span of approximately six items. In Experiment 2 participants recalled serially span equivalent lists which were followed by a visual, auditory, or olfactory suffix. Primacy was evident in the recall curves for all three suffix conditions. Recency, in contrast, was evident in the auditory and visual suffix conditions only; there was a strong suffix effect in the olfactory suffix condition. Experiment 3 replicated this pattern of effects using seven-item lists, and demonstrated that the magnitude of the recency and suffix effects obtained in the olfactory modality can equate to that obtained in the auditory modality. It is concluded that the pattern of recency and suffix effects in the olfactory modality is reliable, and poses difficulties for those theories that rely on the presence of a primary linguistic code, sound, or changing state as determinants of these effects in serial recall.

  12. Avian-like attributes of a virtual brain model of the oviraptorid theropod Conchoraptor gracilis

    Science.gov (United States)

    Kundrát, Martin

    2007-06-01

    An almost complete adult endoneurocranium of Conchoraptor gracilis Barsbold 1986 (Oviraptoridae; ZPAL MgD-I/95), discovered at the Hermiin Tsav locality (the Upper Cretaceous) in Mongolia, is analyzed. A virtual model of the endoneurocranial cavity was derived from CT scans and represents the most complete maniraptoran endocast to date. It displays reduced olfactory bulbs, large cerebral hemispheres in contact with the expanded cerebellum, an epiphysial projection, optic lobes displaced latero-ventrally, presumptive cerebellar folia, enlarged cerebellar auricles, and a deep medulla oblongata with a prominent ventral flexure. Contrary to Archaeopteryx, the shortened olfactory tract and cerebellum overtopping cerebral hemispheres of Conchoraptor resemble conditions in modern birds. Calculating brain mass relative to body mass indicates that Conchoraptor falls within the range of extant birds, whereas Archaeopteryx occupies a marginal position. Most of the endoneurocranial attributes, however, have a less birdlike appearance in Conchoraptor than do corresponding structures in Archaeopteryx and modern birds in which 1) postero-laterally expanded hemispheral domains broadly overlap the optic lobes, 2) the epiphysis projects to the posterior cerebrum, 3) lateral extension of the optic lobes substantially decreases a brain length-to-width ratio, 4) optic lobe and anterior hindbrain are superposed in lateral view, and 5) cerebellar and midbrain compartments are in distinct superposition. The endoneurocranial characteristics of Conchoraptor, taken together, suggest that the animal had a keen sense of vision, balance, and coordination. The data presented in this study do not allow an unambiguous assessment whether the avian-like endoneurocranial characteristics of the flightless Conchoraptor evolved convergently to those of avian theropods, or indicate a derivation of oviraptorosaurs from volant ancestors.

  13. Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrea eBader

    2012-11-01

    Full Text Available Olfactory sensory neurons which express a member from the OR37 subfamily of odorant receptor genes are wired to the main olfactory bulb in a unique monoglomerular fashion; from these glomeruli an untypical connectivity into higher brain centers exists. In the present study we have investigated by DiI and transsynaptic tracing approaches how the connection pattern from these glomeruli into distinct hypothalamic nuclei is organized. The application of DiI onto the ventral domain of the bulb which harbors the OR37 glomeruli resulted in the labeling of fibers within the paraventricular and supraoptic nucleus of the hypothalamus; some of these fibers were covered with varicose-like structures. No DiI-labeled cell somata were detectable in these nuclei. The data indicate that projection neurons which originate in the OR37 region of the main olfactory bulb form direct connections into these nuclei. The cells that were labeled by the transsynaptic tracer WGA in these nuclei were further characterized. Their distribution pattern in the paraventricular nucleus was reminiscent of cells which produce distinct neuropeptides. Double labeling experiments confirmed that they contained vasopressin, but not the related neuropeptide oxytocin. Morphological analysis revealed that they comprise of magno- and parvocellular cells. A comparative investigation of the WGA-positive cells in the supraoptic nucleus demonstrated that these were vasopressin-positive, as well, whereas oxytocin-producing cells of this nucleus also contained no transsynaptic tracer. Together, the data demonstrate a connectivity from OR37 expressing sensory neurons to distinct hypothalamic neurons with the same neuropeptide content.

  14. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. Copyright © 2015 the authors 0270-6474/15/357833-17$15.00/0.

  15. Seasonality, distribution and taxonomic status of avian ...

    African Journals Online (AJOL)

    Description of a new species is based upon morphology of gametocyte development in the peripheral blood of the avian host. This does not distinguish between morphologically identical gametocytes from different avian host families, nor is species or family level a valid taxonomic character. Thus, Haemoproteus and ...

  16. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    The avian vocal organ, the syrinx, is a specialized structure located rather inaccessibly in an air sac close to the heart where the trachea bifurcates into the two primary bronchi. The syrinx of different avian taxa varies so much in position and morphology that it has been used for taxonomy. It...

  17. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  18. Avian Influenza Policy Analysis | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Governments in Southeast Asia have adopted a range of policies aimed at controlling the disease in animals, preventing its spread to humans and strengthening national preparedness for an avian influenza pandemic. The Asia Partnership for Avian Influenza Research (APAIR) brings together national research agencies ...

  19. MANAGING AVIAN FLU, CARCASS MANAGEMENT & BIOSOLIDS

    Science.gov (United States)

    The avian influenza virus is discussed with emphasis on the impact to poultry and possible movement of the highly pathogenic H5N 1 virus to humans. A review is made of the worldwide effects to date of the avian influenza viruses; methods for the viruses to enter recreational wate...

  20. A novel component of cannabis extract potentiates excitatory synaptic transmission in rat olfactory cortex in vitro.

    Science.gov (United States)

    Whalley, Benjamin J; Wilkinson, Jonathan D; Williamson, Elizabeth M; Constanti, Andrew

    2004-07-15

    Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta9-tetrahydrocannabinol (Delta9-THC), and even Delta9-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. The present work demonstrates that although Delta9-THC (1 microM) significantly depressed evoked depolarizing postsynaptic potentials (PSPs) in rat olfactory cortex neurones, both SCE and Delta9-THC-free SCE significantly potentiated evoked PSPs (all results were fully reversed by the CB1 receptor antagonist SR141716A, 1 microM); interestingly, the potentiation by Delta9-THC-free SCE was greater than that produced by SCE. On comparing the effects of Delta9-THC-free SCE upon evoked PSPs and artificial PSPs (aPSPs; evoked electrotonically following brief intracellular current injection), PSPs were enhanced, whereas aPSPs were unaffected, suggesting that the effect was not due to changes in background input resistance. Similar recordings made using CB1 receptor-deficient knockout mice (CB1-/-) and wild-type littermate controls revealed cannabinoid or extract-induced changes in membrane resistance, cell excitability and synaptic transmission in wild-type mice that were similar to those seen in rat neurones, but no effect on these properties were seen in CB1-/- cells. It appears that the unknown extract constituent(s) effects over-rode the suppressive effects of Delta9-THC on excitatory neurotransmitter release, which may explain some patients' preference for herbal cannabis rather than isolated Delta9-THC (due to attenuation of some of the central Delta9-THC side effects) and possibly account for the rare incidence of seizures in some individuals taking cannabis recreationally.

  1. System identification of Drosophila olfactory sensory neurons.

    Science.gov (United States)

    Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B

    2011-02-01

    The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron's response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be

  2. Induction of Associative Olfactory Memory by Targeted Activation of Single Olfactory Neurons in Drosophila Larvae

    OpenAIRE

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-01-01

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by C...

  3. A TAP1 null mutation leads to an enlarged olfactory bulb and supernumerary, ectopic olfactory glomeruli

    Science.gov (United States)

    Salcedo, Ernesto; Cruz, Nicole M.; Ly, Xuan; Welander, Beth A.; Hanson, Kyle; Kronberg, Eugene; Restrepo, Diego

    2013-01-01

    Major histocompatibility class I (MHCI) molecules are well known for their immunological role in mediating tissue graft rejection. Recently, these molecules were discovered to be expressed in distinct neuronal subclasses, dispelling the long-held tenet that the uninjured brain is immune-privileged. Here, we show that MHCI molecules are expressed in the main olfactory bulb (MOB) of adult animals. Furthermore, we find that mice with diminished levels of MHCI expression have enlarged MOBs containing an increased number of small, morphologically abnormal and ectopically located P2 glomeruli. These findings suggest that MHCI molecules may play an important role in the proper formation of glomeruli in the bulb. PMID:23697805

  4. Olfactory performance of rats after selective deafferentation of the olfactory bulb by 3-methyl indole.

    Science.gov (United States)

    Slotnick, Burton

    2007-02-01

    Rats trained to detect propyl acetate and valeric acid and to discriminate between propyl acetate and amyl acetate and between valeric acid and butyric acid were injected with a low dose of 3-methyl indole, a treatment that produces well-defined and selective deafferentation of the olfactory bulbs. Treatment completely deafferented most but not all bulbar loci for aliphatic acids and at least disrupted those for propyl and amyl acetate. In posttreatment tests, experimental rats performed somewhat but not significantly more poorly than controls and about as well on the acid detection and discrimination tasks as on the corresponding acetate tests.

  5. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory

    NARCIS (Netherlands)

    Erkens, M.; Bakker, B.; Duijn, L.M. van; Hendriks, W.J.A.J.; Zee, C.E.E.M. van der

    2014-01-01

    Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal

  6. Sequence conservation among orthologous vomeronasal type 1 receptor-like (ora) genes does not support the differential tuning hypothesis in Salmonidae.

    Science.gov (United States)

    Johnson, Marc A; Banks, Michael A

    2011-10-01

    Salmon utilize olfactory cues to guide natal stream homing during spawning migrations. Both inorganic and biogenic chemicals have been proposed as odorants that might be used by salmon during homing. In this study, we used genomic DNA sequence data from nine salmonid species to compare nucleotide identities for orthologous main olfactory receptor (mOR) genes with nucleotide identities for orthologous vomeronasal type 1-like (ora) receptor genes. We found that orthologs for both classes of olfactory receptor genes (mORs and Oras) appear to be highly conserved among species. Our findings do not support the differential tuning hypothesis in Salmonidae, which predicts higher sequence conservation for mORs than ora. We did, however, find convincing evidence for site-specific positive selection acting on paralogous main olfactory receptor genes. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    Science.gov (United States)

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  8. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila.

    Science.gov (United States)

    Qin, Hongtao; Cressy, Michael; Li, Wanhe; Coravos, Jonathan S; Izzi, Stephanie A; Dubnau, Joshua

    2012-04-10

    Mushroom body (MB)-dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimulus (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US), which for aversive learning is thought to rely on dopaminergic (DA) signaling to DopR, a D1-like dopamine receptor expressed in MBs. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the Rutabaga (Rut) adenylyl cyclase in γ neurons is sufficient to restore normal learning to rut mutants, whereas expression of Neurofibromatosis 1 (NF1) in α/β neurons is sufficient to rescue NF1 mutants. DopR mutations are the only case where memory performance is fully eliminated, consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short- and long-term memory. We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-10-01

    A mathematical model of the process of pattern recognition in the first olfactory sensory cortex of the rabbit is presented. It explains the formation and alteration of spatial patterns in neural activity observed experimentally during classical Pavlovian conditioning. On each inspiration of the animal, a surge of receptor input enters the olfactory bulb. EEG activity recorded at the surface of the bulb undergoes a transition from a low amplitude background state of temporal disorder to coherent oscillation. There is a distinctive spatial pattern of rms amplitude in this oscillation which changes reliably to a second pattern during each successful recognition by the animal of a conditioned stimulus odor. When a new odor is paired as conditioned stimulus, these patterns are replaced by new patterns that stabilize as the animal adapts to the new environment. I will argue that a unification of the theories of pattern formation and associative memory is required to account for these observations. This is achieved in a model of the bulb as a discrete excitable medium with spatially inhomogeneous coupling expressed by a connection matrix. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of competing unstable oscillatory modes. These may be created in the system by proper coupling and selectively evoked by specific classes of inputs. This allows a view of limit cycle attractors as “stored” fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  10. Transmission and immunopathology of the avian influenza virus A/Anhui/1/2013 (H7N9) human isolate in three commonly commercialized avian species.

    Science.gov (United States)

    Vidaña, B; Dolz, R; Busquets, N; Ramis, A; Sánchez, R; Rivas, R; Valle, R; Cordón, I; Solanes, D; Martínez, J; Majó, N

    2018-05-01

    H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 10 5 embryo infectious dose (EID) 50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL-6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection. © 2017 Blackwell Verlag GmbH.

  11. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs

    Science.gov (United States)

    Mohedano-Moriano, Alicia; de la Rosa-Prieto, Carlos; Saiz-Sanchez, Daniel; Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; de Moya-Pinilla, Miguel; Martinez-Marcos, Alino

    2012-01-01

    Parallel to the olfactory system, most mammals possess an accessory olfactory or vomeronasal system. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs, which in turn project to adjacent areas of the telencephalon, respectively. New data indicate that projections arising from the main and accessory olfactory bulbs partially converge in the rostral telencephalon and are non-overlapping at caudal telencephalic levels. Therefore, the basal telencephalon should be reclassified in olfactory, vomeronasal, and mixed areas. On the other hand, it has been demonstrated that virtually all olfactory- and vomeronasal-recipient structures send reciprocal projections to the main and accessory olfactory bulbs, respectively. Further, non-chemosensory recipient structures also projects centrifugally to the olfactory bulbs. These feed-back projections appear to be essential modulating processing of chemosensory information. The present work aims at characterizing centrifugal projections to the main and accessory olfactory bulbs arising from olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic areas. This issue has been addressed by using tracer injections in the rat and mouse brain. Tracer injections were delivered into the main and accessory olfactory bulbs as well as in olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic structures. The results confirm that olfactory- and vomeronasal-recipient structures project to the main and accessory olfactory bulbs, respectively. Interestingly, olfactory (e.g., piriform cortex), vomeronasal (e.g., posteromedial cortical amygdala), mixed (e.g., the anterior medial amygdaloid nucleus), and non-chemosensory-recipient (e.g., the nucleus of the diagonal band) structures project to the main and to the accessory olfactory bulbs thus providing the possibility of simultaneous modulation and interaction of both systems at different stages of chemosensory processing

  12. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    2015-05-01

    Full Text Available Olfactory receptor neurons (ORNs convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs. We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.

  13. Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies.

    Science.gov (United States)

    Knapek, Stephan; Kahsai, Lily; Winther, Asa M E; Tanimoto, Hiromu; Nässel, Dick R

    2013-03-20

    In insects, many complex behaviors, including olfactory memory, are controlled by a paired brain structure, the so-called mushroom bodies (MB). In Drosophila, the development, neuroanatomy, and function of intrinsic neurons of the MB, the Kenyon cells, have been well characterized. Until now, several potential neurotransmitters or neuromodulators of Kenyon cells have been anatomically identified. However, whether these neuroactive substances of the Kenyon cells are functional has not been clarified yet. Here we show that a neuropeptide precursor gene encoding four types of short neuropeptide F (sNPF) is required in the Kenyon cells for appetitive olfactory memory. We found that activation of Kenyon cells by expressing a thermosensitive cation channel (dTrpA1) leads to a decrease in sNPF immunoreactivity in the MB lobes. Targeted expression of RNA interference against the sNPF precursor in Kenyon cells results in a highly significant knockdown of sNPF levels. This knockdown of sNPF in the Kenyon cells impairs sugar-rewarded olfactory memory. This impairment is not due to a defect in the reflexive sugar preference or odor response. Consistently, knockdown of sNPF receptors outside the MB causes deficits in appetitive memory. Altogether, these results suggest that sNPF is a functional neuromodulator released by Kenyon cells.

  14. When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota

    Science.gov (United States)

    Jenkins, Eileen K.; DeChant, Mallory T.; Perry, Erin B.

    2018-01-01

    The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines. PMID:29651421

  15. When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota

    Directory of Open Access Journals (Sweden)

    Eileen K. Jenkins

    2018-03-01

    Full Text Available The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines.

  16. Constitutively expressed Protocadherin-α regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region

    Directory of Open Access Journals (Sweden)

    Sonoko eHasegawa

    2012-10-01

    Full Text Available Olfactory sensory neuron (OSN axons coalesce into specific glomeruli in the olfactory bulb (OB according to their odorant receptor (OR expression. Several guidance molecules enhance the coalescence of homotypic OSN projections, in an OR-specific- and neural-activity-dependent manner. However, the mechanism by which homotypic OSN axons are organized into glomeruli is unsolved. We previously reported that the clustered protocadherin-α (Pcdh-α family of diverse cadherin-related molecules plays roles in the coalescence and elimination of homotypic OSN axons throughout development. Here we showed that the elimination of small ectopic homotypic glomeruli required the constitutive expression of a Pcdh-α isoform and Pcdh-α’s cytoplasmic region, but not OR specificity or neural activity. These results suggest that Pcdh-α proteins provide a cytoplasmic signal to regulate repulsive activity for homotypic OSN axons independently of OR expression and neural activity. The counterbalancing effect of Pcdh-α proteins for the axonal coalescence mechanisms mediated by other olfactory guidance molecules indicate a possible mechanism for the organization of homotypic OSN axons into glomeruli during development.

  17. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target.

    Science.gov (United States)

    Taku, Alemji A; Marcaccio, Christina L; Ye, Wenda; Krause, Gregory J; Raper, Jonathan A

    2016-01-01

    Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target. © 2016. Published by The Company of Biologists Ltd.

  18. When the Nose Doesn't Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota.

    Science.gov (United States)

    Jenkins, Eileen K; DeChant, Mallory T; Perry, Erin B

    2018-01-01

    The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines.

  19. Second-order input to the medial amygdala from olfactory sensory neurons expressing the transduction channel TRPM5.

    Science.gov (United States)

    Thompson, John A; Salcedo, Ernesto; Restrepo, Diego; Finger, Thomas E

    2012-06-01

    Recent anatomical tracing experiments in rodents have established that a subset of mitral cells in the main olfactory bulb (MOB) projects directly to the medial amygdala (MeA), traditionally considered a target of the accessory olfactory bulb. Neurons that project from the MOB to the MeA also show activation in response to conspecific (opposite sex) volatile urine exposure, establishing a direct role of the MOB in semiochemical processing. In addition, olfactory sensory neurons (OSNs) that express the transient receptor potential M5 (TRPM5) channel innervate a subset of glomeruli that respond to putative semiochemical stimuli. In this study, we examined whether the subset of glomeruli targeted by TRPM5-expressing OSNs is innervated by the population of mitral cells that projects to the MeA. We injected the retrograde tracer cholera toxin B (CTB) into the MeA of mice in which the TRPM5 promoter drives green fluorescent protein (GFP). We found overlapping clusters of CTB-labeled mitral cell dendritic branches (CTB(+) ) in TRPM5-GFP(+) glomeruli at significantly greater frequency than expected by chance. Despite the significant degree of colocalization, some amygdalopetal mitral cells extended dendrites to non-TRPM5-GFP glomeruli and vice versa, suggesting that, although significant overlapping glomerular innervation is observed between these two features, it is not absolute. Copyright © 2011 Wiley Periodicals, Inc.

  20. SECOND ORDER INPUT TO THE MEDIAL AMYGDALA FROM OLFACTORY SENSORY NEURONS EXPRESSING THE TRANSDUCTION CHANNEL TRPM5

    Science.gov (United States)

    Thompson, John A.; Salcedo, Ernesto; Restrepo, Diego; Finger, Thomas E.

    2013-01-01

    Recent anatomical tracing experiments in rodents have established that a subset of mitral cells in the main olfactory bulb (MOB) project directly to the medial amygdala (MeA) traditionally considered a target of the accessory olfactory bulb. Importantly, neurons that project from the MOB to the MeA also show activation in response to conspecific (opposite sex) volatile urine exposure, establishing a direct role of the MOB in semiochemical processing. In addition, olfactory sensory neurons (OSN) that express the transient receptor potential M5 (TRPM5) channel innervate a subset of glomeruli that respond to putative semiochemical stimuli. In this study, we examined whether the subset of glomeruli targeted by TRPM5 expressing OSNs are innervated by the population of mitral cells that project to the MeA. We injected the retrograde tracer cholera toxin B (CTB) into the MeA of mice in which the TRPM5 promoter drives green fluorescent protein (GFP). We found overlapping clusters of CTB-labeled mitral cell dendritic branches (CTB (+)) in TRPM5-GFP positive (TRPM5-GFP (+)) glomeruli at significantly greater frequency than expected by chance. Despite the significant degree of co-localization, some amygdalopetal mitral cells extended dendrites to non-TRPM5-GFP glomeruli and vice versa, suggesting that although significant overlapping glomerular innervation is observed between these two features, it is not absolute. PMID:22120520

  1. Neural representations of novel objects associated with olfactory experience.

    Science.gov (United States)

    Ghio, Marta; Schulze, Patrick; Suchan, Boris; Bellebaum, Christian

    2016-07-15

    Object conceptual knowledge comprises information related to several motor and sensory modalities (e.g. for tools, how they look like, how to manipulate them). Whether and to which extent conceptual object knowledge is represented in the same sensory and motor systems recruited during object-specific learning experience is still a controversial question. A direct approach to assess the experience-dependence of conceptual object representations is based on training with novel objects. The present study extended previous research, which focused mainly on the role of manipulation experience for tool-like stimuli, by considering sensory experience only. Specifically, we examined the impact of experience in the non-dominant olfactory modality on the neural representation of novel objects. Sixteen healthy participants visually explored a set of novel objects during the training phase while for each object an odor (e.g., peppermint) was presented (olfactory-visual training). As control conditions, a second set of objects was only visually explored (visual-only training), and a third set was not part of the training. In a post-training fMRI session, participants performed an old/new task with pictures of objects associated with olfactory-visual and visual-only training (old) and no training objects (new). Although we did not find any evidence of activations in primary olfactory areas, the processing of olfactory-visual versus visual-only training objects elicited greater activation in the right anterior hippocampus, a region included in the extended olfactory network. This finding is discussed in terms of different functional roles of the hippocampus in olfactory processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Using insect electroantennogram sensors on autonomous robots for olfactory searches.

    Science.gov (United States)

    Martinez, Dominique; Arhidi, Lotfi; Demondion, Elodie; Masson, Jean-Baptiste; Lucas, Philippe

    2014-08-04

    Robots designed to track chemical leaks in hazardous industrial facilities or explosive traces in landmine fields face the same problem as insects foraging for food or searching for mates: the olfactory search is constrained by the physics of turbulent transport. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells or toxic and illicit substances. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration or using nanostructured gas sensors that mimic insect antennae.

  3. Active forgetting of olfactory memories in Drosophila.

    Science.gov (United States)

    Berry, Jacob A; Davis, Ronald L

    2014-01-01

    Failure to remember, or forgetting, is a phenomenon familiar to everyone and despite more than a century of scientific inquiry, why we forget what we once knew remains unclear. If the brain marshals significant resources to form and store memories, why is it that these memories become lost? In the last century, psychological studies have divided forgetting into decay theory, in which memory simply dissipates with time, and interference theory, in which additional learning or mental activity hinders memory by reducing its stability or retrieval (for review, Dewar et al., 2007; Wixted, 2004). Importantly, these psychological models of forgetting posit that forgetting is a passive property of the brain and thus a failure of the brain to retain memories. However, recent neuroscience research on olfactory memory in Drosophila has offered evidence for an alternative conclusion that forgetting is an "active" process, with specific, biologically regulated mechanisms that remove existing memories (Berry et al., 2012; Shuai et al., 2010). Similar to the bidirectional regulation of cell number by mitosis and apoptosis, protein concentration by translation and lysosomal or proteomal degradation, and protein phosphate modification by kinases and phosphatases, biologically regulated memory formation and removal would be yet another example in biological systems where distinct and separate pathways regulate the creation and destruction of biological substrates. © 2014 Elsevier B.V. All rights reserved.

  4. Olfactory instruction for fear: neural system analysis.

    Directory of Open Access Journals (Sweden)

    Newton Sabino Canteras

    2015-08-01

    Full Text Available Studies using cat odor have led to detailed mapping of neural sites engaged in innate and contextual fear responses. Here, we reviewed three lines of work examining the dynamics of the neural systems that organize innate and learned fear responses to cat odor. In the first, we explored the neural systems involved in innate fear responses and in the different stages of fear conditioning to cat odor (i.e., acquisition and expression, with a particular emphasis on the role of the dorsal premammillary nucleus (PMd and the dorsolateral periaqueductal gray (PAGdl as key sites that influence innate and contextual conditioning. In the second line of studies, we reviewed how chemical stimulation of these sites (i.e., the PMd and PAGdl may serve as a useful unconditioned stimulus in an olfactory fear conditioning paradigm; these experiments provide an interesting perspective for the understanding of learned fear to predator odor. Finally, in the third line of studies, we explored the fact that neutral odors that acquire an aversive valence in a shock-paired conditioning paradigm may mimic predator odor and mobilize elements of the hypothalamic predator-responsive circuit.

  5. Anterior Interhemispheric Approach for Olfactory Groove Meningioma

    Directory of Open Access Journals (Sweden)

    Imam Hidayat

    2016-09-01

    Full Text Available Objective: To evaluate the surgical technique with bifrontal interhemispheric approach for total removal of tumor in olfactory groove meningioma (OGM. Methods: This study described a case of a 38-year-old woman with bilateral blindness, anosmia, and behaviour changes. Imaging studies show a tumor mass in midfrontal base. Surgery using a bifrontal interhemispheric approach was performed and total removal was achieved and postoperative computed tomography (CT scan was performed to confirm the result. Histopathological findings established a diagnosis of meningioma. Results: A coronal skin incision behind the hairline was utilized. The scalp was elevated, taking care to reserve the vascularized pericranium medial to the linea temporalis of each side, and preserving the 2 supraorbital nerves. Eight burr holes were used, with the two initial holes made on each side of the orbitotemporal region, and the other four holes at the midline. A bifrontal craniotomy was performed. The tumor was first detached from its attachment with bipolar cautery and debulked. During this step, the main tumor feeder arteries from the anterior and posterior ethmoidal artery were interrupted, and the tumor devascularized. Total tumor removal through surgical intervention was achieved and confirmed by head CT-scan postoperatively. Conclusions: This case report supports the suitability of the bifrontal interhemispheric approach for OGM resection with additional radiation therapy.

  6. Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation.

    Science.gov (United States)

    Nam, Jeong-Hyun; Kim, Eun-Ha; Song, Daesub; Choi, Young Ki; Kim, Jeong-Ki; Poo, Haryoung

    2011-12-01

    The migratory waterfowl of the world are considered to be the natural reservoir of influenza A viruses. Of the 16 hemagglutinin subtypes of avian influenza viruses, the H6 subtype is commonly perpetuated in its natural hosts and is of concern due to its potential to be a precursor of highly pathogenic influenza viruses by reassortment. During routine influenza surveillance, we isolated an unconventional H6N5 subtype of avian influenza virus. Experimental infection of mice revealed that this isolate replicated efficiently in the lungs, subsequently spread systemically, and caused lethality. The isolate also productively infected ferrets, with direct evidence of contact transmission, but no disease or transmission was seen in pigs. Although the isolate possessed the conserved receptor-binding site sequences of avian influenza viruses, it exhibited relatively low replication efficiencies in ducks and chickens. Our genetic and molecular analyses of the isolate revealed that its PB1 sequence showed the highest evolutionary relationship to those of highly pathogenic H5N1 avian influenza viruses and that its PA protein had an isoleucine residue at position 97 (a representative virulence marker). Further studies will be required to examine why our isolate has the virologic characteristics of mammalian influenza viruses but the archetypal receptor binding profiles of avian influenza viruses, as well as to determine whether its potential virulence markers (PB1 analogous to those of H5N1 viruses or isoleucine residue at position 97 within PA) could render it highly pathogenic in mice.

  7. Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning

    Directory of Open Access Journals (Sweden)

    Matthew Valley

    2009-11-01

    Full Text Available Adult neurogenesis replenishes olfactory bulb (OB interneurons throughout the life of most mammals, yet during this constant fl ux it remains unclear how the OB maintains a constant structure and function. In the mouse OB, we investigated the dynamics of turnover and its impact on olfactory function by ablating adult neurogenesis with an x-ray lesion to the subventricular zone (SVZ. Regardless of the magnitude of the lesion to the SVZ, we found no change in the survival of young adult born granule cells (GCs born after the lesion, and a gradual decrease in the population of GCs born before the lesion. After a lesion producing a 96% reduction of incoming adult born GCs to the OB, we found a diminished behavioral fear response to conditioned odor cues but not to audio cues. Interestingly, despite this behavioral defi cit and gradual anatomical changes, we found no electrophysiological changes in the GC population assayed in vivo through dendro-dendritic synaptic plasticity and odor-evoked local fi eld potential oscillations. These data indicate that turnover in the granule cell layer is generally decoupled from the rate of adult neurogenesis, and that OB adult neurogenesis plays a role in a wide behavioral system extending beyond the OB.

  8. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    Science.gov (United States)

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. No evidence for visual context-dependency of olfactory learning in Drosophila

    Science.gov (United States)

    Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram

    2008-08-01

    How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.

  10. Volumetric study of the olfactory bulb in patients with chronic rhinonasal sinusitis using MRI

    Directory of Open Access Journals (Sweden)

    Reda A. Alarabawy

    2016-06-01

    Conclusions: MRI with volumetric analysis is a useful tool in assessment of the olfactory bulb volume in patients with olfactory loss and appears to be of help in assessment of the degree of recovery in patients after sinus surgery.

  11. Heightened Olfactory Sensitivity in Young Females with Recent-Onset Anorexia Nervosa and Recovered Individuals

    DEFF Research Database (Denmark)

    Bentz, Mette; Guldberg, Johanne; Vangkilde, Signe

    2017-01-01

    INTRODUCTION: Olfaction may be related to food restriction and weight loss. However, reports regarding olfactory function in individuals with anorexia nervosa (AN) have been inconclusive. OBJECTIVE: Characterize olfactory sensitivity and identification in female adolescents and young adults...

  12. Genetic applications in avian conservation

    Science.gov (United States)

    Haig, Susan M.; Bronaugh, Whitcomb M.; Crowhurst, Rachel S.; D'Elia, Jesse; Eagles-Smith, Collin A.; Epps, Clinton W.; Knaus, Brian; Miller, Mark P.; Moses, Michael L.; Oyler-McCance, Sara; Robinson, W. Douglas; Sidlauskas, Brian

    2011-01-01

    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond (Table 1; Ryder 1986, Moritz 1994, Mayden and Wood 1995, Haig and Avise 1996, Hazevoet 1996, Palumbi and Cipriano 1998, Hebert et al. 2004, Mace 2004, Wheeler et al. 2004, Armstrong and Ball 2005, Baker 2008, Ellis et al. 2010, Winker and Haig 2010). Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic information. Here, we outline conservation topics for which genetic information can be helpful, provide examples of where genetic techniques have been used best in avian conservation, and point to current technical bottlenecks that prevent better use of genomics to resolve conservation issues related to birds. We hope this review will provide geneticists and avian ecologists with a mutually beneficial dialogue on how this integrated field can solve current and future problems.

  13. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  14. Olfactory insights into sleep-dependent learning and memory.

    Science.gov (United States)

    Shanahan, Laura K; Gottfried, Jay A

    2014-01-01

    Sleep is pervasive throughout most of the animal kingdom-even jellyfish and honeybees do it. Although the precise function of sleep remains elusive, research increasingly suggests that sleep plays a key role in memory consolidation. Newly formed memories are highly labile and susceptible to interference, and the sleep period offers an optimal window in which memories can be strengthened or modified. Interestingly, a small but growing research area has begun to explore the ability of odors to modulate memories during sleep. The unique anatomical organization of the olfactory system, including its intimate overlap with limbic systems mediating emotion and memory, and the lack of a requisite thalamic intermediary between the nasal periphery and olfactory cortex, suggests that odors may have privileged access to the brain during sleep. Indeed, it has become clear that the long-held assumption that odors have no impact on the sleeping brain is no longer tenable. Here, we summarize recent studies in both animal and human models showing that odor stimuli experienced in the waking state modulate olfactory cortical responses in sleep-like states, that delivery of odor contextual cues during sleep can enhance declarative memory and extinguish fear memory, and that olfactory associative learning can even be achieved entirely within sleep. Data reviewed here spotlight the emergence of a new research area that should hold far-reaching implications for future neuroscientific investigations of sleep, learning and memory, and olfactory system function. © 2014 Elsevier B.V. All rights reserved.

  15. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    Science.gov (United States)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  16. Classical olfactory conditioning in the oriental fruit fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Jia Li Liu

    Full Text Available The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME, a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.

  17. Sad man's nose: Emotion induction and olfactory perception.

    Science.gov (United States)

    Flohr, Elena L R; Erwin, Elena; Croy, Ilona; Hummel, Thomas

    2017-03-01

    Emotional and olfactory processing is frequently shown to be closely linked both anatomically and functionally. Depression, a disease closely related to the emotional state of sadness, has been shown to be associated with a decrease in olfactory sensitivity. The present study focuses on the state of sadness in n = 31 healthy subjects in order to investigate the specific contribution of this affective state in the modulation of olfactory processing. A sad or indifferent affective state was induced using 2 movies that were presented on 2 separate days. Afterward, chemosensory-evoked potentials were recorded after stimulation with an unpleasant (hydrogen sulfide: "rotten eggs") or a pleasant (phenyl ethyl alcohol: "rose") odorant. Latencies of N1 and P2 peaks were longer after induction of the sad affective state. Additionally, amplitudes were lower in a sad affective state when being stimulated with the unpleasant odorant. Processing of olfactory input has thus been reduced under conditions of the sad affective state. We argue that the affective state per se could at least partially account for the reduced olfactory sensitivity in depressed patients. To our knowledge, the present study is the first to show influence of affective state on chemosensory event-related potentials. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Nutrient Sensing: Another Chemosensitivity of the Olfactory System

    Directory of Open Access Journals (Sweden)

    A-Karyn Julliard

    2017-07-01

    Full Text Available Olfaction is a major sensory modality involved in real time perception of the chemical composition of the external environment. Olfaction favors anticipation and rapid adaptation of behavioral responses necessary for animal survival. Furthermore, recent studies have demonstrated that there is a direct action of metabolic peptides on the olfactory network. Orexigenic peptides such as ghrelin and orexin increase olfactory sensitivity, which in turn, is decreased by anorexigenic hormones such as insulin and leptin. In addition to peptides, nutrients can play a key role on neuronal activity. Very little is known about nutrient sensing in olfactory areas. Nutrients, such as carbohydrates, amino acids, and lipids, could play a key role in modulating olfactory sensitivity to adjust feeding behavior according to metabolic need. Here we summarize recent findings on nutrient-sensing neurons in olfactory areas and delineate the limits of our knowledge on this topic. The present review opens new lines of investigations on the relationship between olfaction and food intake, which could contribute to determining the etiology of metabolic disorders.

  19. The influence of olfactory loss on dietary behaviors.

    Science.gov (United States)

    Aschenbrenner, Katja; Hummel, Cornelia; Teszmer, Katja; Krone, Franziska; Ishimaru, Tadashi; Seo, Han-Seok; Hummel, Thomas

    2008-01-01

    To assess dietary behavior and possible changes in food selection in patients with smell loss. A total of 176 patients (114 women and 62 men) age 17 to 86 years were classified into three diagnostic groups (normosmia, n = 12; hyposmia, n = 75; functional anosmia, n = 89) according to their olfactory test scores obtained with "Sniffin' Sticks." Group differences in food intake and dietary behaviors were investigated with a specifically designed questionnaire providing a dietary alterations score (DAS). Numerous dietary changes were reported, e.g., 29% of all patients reported that they eat less since the onset of olfactory dysfunction, 39% use more spices with their food, 47% go out to eat at restaurants less frequently, 37% eat less sweets, and 48% drink less sweet beverages. Subjects with weight gain or weight loss scored higher on the DAS scale than subjects who did not report changes in weight. Similarly, DAS scale changes were more pronounced in subjects with a gradual onset of olfactory loss compared to subjects with a sudden loss of olfaction. Finally, a change of taste preferences toward savory and salty foods was observed across all patients enrolled in the present study. Patients with olfactory loss report alterations of dietary behaviors. Numerous factors appear to impact the results of olfactory loss in terms of changes in diet.

  20. Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings.

    Science.gov (United States)

    Samy, Ahmed; Naguib, Mahmoud M

    2018-02-24

    The avian respiratory system hosts a wide range of commensal and potential pathogenic bacteria and/or viruses that interact with each other. Such interactions could be either synergistic or antagonistic, which subsequently determines the severity of the disease complex. The intensive rearing methods of poultry are responsible for the marked increase in avian respiratory diseases worldwide. The interaction between avian influenza with other pathogens can guarantee the continuous existence of other avian pathogens, which represents a global concern. A better understanding of the impact of the interaction between avian influenza virus and other avian respiratory pathogens provides a better insight into the respiratory disease complex in poultry and can lead to improved intervention strategies aimed at controlling virus spread.

  1. The Alzheimer's β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Rajapaksha Tharinda W

    2011-12-01

    Full Text Available Abstract Background The β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, is a prime therapeutic target for lowering cerebral β-amyloid (Aβ levels in Alzheimer's disease (AD. Clinical development of BACE1 inhibitors is being intensely pursued. However, little is known about the physiological functions of BACE1, and the possibility exists that BACE1 inhibition may cause mechanism-based side effects. Indeed, BACE1-/- mice exhibit a complex neurological phenotype. Interestingly, BACE1 co-localizes with presynaptic neuronal markers, indicating a role in axons and/or terminals. Moreover, recent studies suggest axon guidance molecules are potential BACE1 substrates. Here, we used a genetic approach to investigate the function of BACE1 in axon guidance of olfactory sensory neurons (OSNs, a well-studied model of axon targeting in vivo. Results We bred BACE1-/- mice with gene-targeted mice in which GFP is expressed from the loci of two odorant-receptors (ORs, MOR23 and M72, and olfactory marker protein (OMP to produce offspring that were heterozygous for MOR23-GFP, M72-GFP, or OMP-GFP and were either BACE1+/+ or BACE1-/-. BACE1-/- mice had olfactory bulbs (OBs that were smaller and weighed less than OBs of BACE1+/+ mice. In wild-type mice, BACE1 was present in OSN axon terminals in OB glomeruli. In whole-mount preparations and tissue sections, many OB glomeruli from OMP-GFP; BACE1-/- mice were malformed compared to wild-type glomeruli. MOR23-GFP; BACE1-/- mice had an irregular MOR23 glomerulus that was innervated by randomly oriented, poorly fasciculated OSN axons compared to BACE1+/+ mice. Most importantly, M72-GFP; BACE1-/- mice exhibited M72 OSN axons that were mis-targeted to ectopic glomeruli, indicating impaired axon guidance in BACE1-/- mice. Conclusions Our results demonstrate that BACE1 is required for the accurate targeting of OSN axons and the proper formation of glomeruli in the OB, suggesting a role for BACE1 in

  2. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  3. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    Directory of Open Access Journals (Sweden)

    Lane Robert P

    2007-09-01

    Full Text Available Abstract The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system.

  4. Radial glia phagocytose axonal debris from degenerating overextending axons in the developing olfactory bulb.

    Science.gov (United States)

    Amaya, Daniel A; Wegner, Michael; Stolt, C Claus; Chehrehasa, Fatemeh; Ekberg, Jenny A K; St John, James A

    2015-02-01

    Axon targeting during the development of the olfactory system is not always accurate, and numerous axons overextend past the target layer into the deeper layers of the <