WorldWideScience

Sample records for avian influenza outbreak

  1. Avian Influenza Outbreaks in Chickens, Bangladesh

    OpenAIRE

    Paritosh K Biswas; Christensen, Jens P.; Ahmed, Syed S.U.; Barua, Himel; Das, Ashutosh; Rahman, Mohammed H.; Giasuddin, Mohammad; Hannan, Abu S. M. A.; Habib, Mohammad A.; Ahad, Abdul; Rahman, Abu S.M.S.; Faruque, Rayhan; Nitish C Debnath

    2008-01-01

    To determine the epidemiology of outbreaks of avian influenza A virus (subtypes H5N1, H9N2) in chickens in Bangladesh, we conducted surveys and examined virus isolates. The outbreak began in backyard chickens. Probable sources of infection included egg trays and vehicles from local live bird markets and larger live bird markets.

  2. Avian influenza

    Science.gov (United States)

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  3. An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza?

    OpenAIRE

    Morens, David M.; Taubenberger, Jeffery K.

    2010-01-01

    Please cite this paper as: Morens and Taubenberger (2010) An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza? Influenza and Other Respiratory Viruses 4(6), 373–377. Background  An explosive fatal epizootic in poultry, prairie chickens, turkeys, ducks and geese, occurred over much of the populated United States between 15 November and 15 December 1872. To our knowledge the scientific literature contains no mention of the ...

  4. Avian Influenza

    OpenAIRE

    Tsung-Zu Wu; Li-Min Huang

    2005-01-01

    Influenza is an old disease but remains vital nowadays. Three types of influenza viruses,namely A, B, C, have been identified; among them influenza A virus has pandemic potential.The first outbreak of human illness due to avian influenza virus (H5N1) occurred in1997 in Hong Kong with a mortality of 30%. The most recent outbreak of the avian influenzaepidemic has been going on in Asian countries since 2003. As of March 2005, 44 incidentalhuman infections and 32 deaths have been documented. Hum...

  5. Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Wild Birds and Poultry, South Korea

    OpenAIRE

    Kim, Hye-Ryoung; Lee, Youn-Jeong; Park, Choi-Kyu; Oem, Jae-Ku; Lee, O-Soo; Kang, Hyun-Mi; Choi, Jun-Gu; Bae, You-Chan

    2012-01-01

    Highly pathogenic avian influenza (H5N1) among wild birds emerged simultaneously with outbreaks in domestic poultry in South Korea during November 2010–May 2011. Phylogenetic analysis showed that these viruses belonged to clade 2.3.2, as did viruses found in Mongolia, the People’s Republic of China, and Russia in 2009 and 2010.

  6. Outbreak Patterns of the Novel Avian Influenza (H7N9)

    CERN Document Server

    Pan, Ya-Nan; Han, Xiao-Pu

    2013-01-01

    The outbreak of novel avian influenza (H7N9) in east China attracted much attention in the spring of 2013. The detection and estimation of spreading situations of H7N9 faces some difficulties since the birds' symptom of H7N9 usually is inapparent. In this paper, we empirically analyze the statistical outbreak patterns of the novel avian influenza and observed several spatial and temporal properties that are similar to the infective diseases. More deeply, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges two-section-power-law edge-length distribution, indicating the picture that several islands with higher and heterogeneous risk straggle in east China. The proposed method is applicable to the analysis on the spreading situation in early stage of disease outbreak using quite limited dataset.

  7. Avian influenza outbreak in Turkey through health personnel's views: a qualitative study

    Directory of Open Access Journals (Sweden)

    Erbaydar Tugrul

    2007-11-01

    Full Text Available Abstract Background Avian influenza threatens public health worldwide because it is usually associated with severe illness and, consequently, a higher risk of death. During the first months of 2006, Turkey experienced its first human avian influenza epidemic. A total of 21 human cases were identified, 12 of which were confirmed by the National Institute for Medical Research. Nine of the cases, including the four fatal ones, were from the Dogubeyazit-Van region. This study aims to evaluate the efforts at the avian influenza outbreak control in the Van-Dogubeyazit region in 2006 through the experiences of health personnel. Methods We conducted in-depth interviews with seventeen key informants who took active roles during the avian influenza outbreak in East Turkey during the first months of 2006. We gathered information about the initial responses, the progress and management of the outbreak control, and the reactions of the health professionals and the public. The findings of the study are reported according to the topics that appeared through thematic analysis of the interview transcripts. Results Following the first suspected avian influenza cases, a Van Crisis Coordination Committee was formed as the coordinating and decision-making body and played an important role in the appropriate timing of decisions. The health and agriculture services could not be well coordinated owing to the lack of integrated planning in preparation for outbreak and of integrated surveillance programs. Traditional poultry practice together with the low socio-economic status of the people and the lack of health care access in the region seemed to be a major risk for animal to animal and animal to human transmission. The strengths and weaknesses of the present health system – primary health care services, national surveillance and notification systems, human resource and management – affected the inter organizational coordination during the outbreak. Open

  8. Outbreak Patterns of the Novel Avian Influenza (H7N9)

    OpenAIRE

    Pan, Ya-Nan; Lou, Jing-Jing; Han, Xiao-Pu

    2013-01-01

    The attack of novel avian influenza (H7N9) in east China caused a serious health crisis and public panic. In this paper, we empirically analyze the onset patterns of human cases of the novel avian influenza and observe several spatial and temporal properties that are similar to other infective diseases. More deeply, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges tw...

  9. Financial effects of the highly pathogenic avian influenza outbreaks on the Turkish broiler producers.

    Science.gov (United States)

    Aral, Y; Yalcin, C; Cevger, Y; Sipahi, C; Sariozkan, S

    2010-05-01

    This research aimed at assessing the financial effects of the 2005 to 2006 highly pathogenic avian influenza outbreaks on Turkish broiler enterprises. The data were obtained from an interview survey carried out in 499 enterprises randomly selected from 14 provinces that accounted for 79% of the national broiler production. The research revealed that the contracted broiler producers lost on average 1.38 cycles of production and their management fee reduced by 14.7% in 8 mo after the outbreaks. As a result, the broiler production and the enterprise income declined by 34.8 and 44.3%, respectively. The bank loan of the producers rose by 161%. A total of 93% of the producers did not do any other supplementary work during the idle production period in spite of the fact that broiler production was the only business of 36% of them. Furthermore, more than half of the producers (56%) stated that they were considering expanding their business, but suspended this idea due to the outbreak. Approximately 87% of the producers increased the biosecurity measures after the outbreaks. The nationwide effects of the avian influenza outbreaks on the contracted broilers farms were estimated to be US$100.8 million (US$7,967/broiler house). The futures of the contracted broiler producers are fully dependent upon those of the integrated firms. Any negative effects on the latter appeared to be transferred directly to the former. However, the government neglected the integrated firms in the avian influenza compensation programs. PMID:20371863

  10. Potential Economic Impacts of a Highly Pathogenic Avian Influenza Outbreak on Upper Midwestern United States Table-Egg Laying Operations

    OpenAIRE

    Thompson, Jada; Pendell, Dustin; Weaver, Todd; Patyk, Kelly; Malladi, Sasidhar

    2015-01-01

    Using a partial equilibrium model, we estimate the impact of allowing for movement of poultry products from non-infected and monitored premises during an outbreak of highly pathogenic avian influenza.

  11. Scale-Free Distribution of Avian Influenza Outbreaks

    Science.gov (United States)

    Small, Michael; Walker, David M.; Tse, Chi Kong

    2007-11-01

    Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.

  12. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh.

    OpenAIRE

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M; Xiao, Xiangming

    2010-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease s...

  13. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

    OpenAIRE

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M; Xiao, Xiangming

    2010-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease s...

  14. Outbreak patterns of the novel avian influenza (H7N9)

    Science.gov (United States)

    Pan, Ya-Nan; Lou, Jing-Jing; Han, Xiao-Pu

    2014-05-01

    The attack of novel avian influenza (H7N9) in East China caused a serious health crisis and public panic. In this paper, we empirically analyze the onset patterns of human cases of the novel avian influenza and observe several spatial and temporal properties that are similar to other infectious diseases. More specifically, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges two-regime-power-law edge-length distribution, indicating the picture that several islands with higher and heterogeneous risk straggle in East China. The proposed method is applicable to the analysis of the spreading situation in the early stage of disease outbreak using quite limited dataset.

  15. Establishing a laboratory network of influenza diagnosis in Indonesia: an experience from the avian flu (H5N1) outbreak

    OpenAIRE

    Setiawaty V; Pangesti KN; Sampurno OD

    2012-01-01

    Vivi Setiawaty, Krisna NA Pangesti, Ondri D SampurnoNational Institute of Health Research and Development, Ministry of Health, the Republic of Indonesia, Jakarta, IndonesiaAbstract: Indonesia has been part of the global influenza surveillance since the establishment of a National Influenza Center (NIC) at the National Institute of Health Research and Development (NIHRD) by the Indonesian Ministry of Health in 1975. When the outbreak of avian influenza A (H5N1) occurred, the NIC and US Naval M...

  16. Avian influenza

    Science.gov (United States)

    ... of avian influenza A in Asia, Africa, Europe, Indonesia, Vietnam, the Pacific, and the near East. Hundreds ... to detect abnormal breath sounds) Chest x-ray Culture from the nose or throat A method or ...

  17. Poultry raising systems and highly pathogenic avian influenza outbreaks in Thailand: the situation, associations, and impacts.

    Science.gov (United States)

    Chantong, Wasan; Kaneene, John B

    2011-05-01

    Highly pathogenic avian influenza (HPAI), caused by the virus strain H5N1, currently occurs worldwide with the greatest burden in Southeast Asia where the disease was first reported. In Thailand where the disease was first confirmed in January 2004, the virus had been persistent as a major threat to the poultry industry and human health over the past several years. It was generally hypothesized that the main reason for the disease to circulate in Thailand was the existence of traditional backyard chickens and free-range ducks raising systems. Consequently, this study reviewed the structure of poultry raising systems, the recent outbreaks of HPAI H5N1, the disease association to the backyard and free-grazing poultry production, and consequences of the outbreaks in Thailand. Although the major outbreaks in the country had declined, the sustaining disease surveillance and prevention are still strongly recommended. PMID:21706938

  18. The performance of poultry egg farms after the 2006 avian influenza outbreak in north central, Nigeria

    Directory of Open Access Journals (Sweden)

    H.Y. Ibrahim

    2011-01-01

    Full Text Available The study assessed the performance of the poultry egg farms after the outbreak of avian influenza in 2006 in the north central part of Nigeria. Seventeen poultry (17 farms were purposefully sampled for the study. The net farm income model, simple descriptive statistics and data envelopment analysis were used as analytical tools. The result shows that the poultry farms are making profits after the losses obtained due to the outbreak of avian influenza (AVI. The revenue from eggs and spent layers constitutes 52.3 % and 47.7 % of the total revenue respectively. The medium size farms are however making higher profits and are more technically efficient than the small size poultry farms. The technical efficiency scores for the small scale farms range from 0.23-1 with a mean of 0.51, while that for the medium size farms range from 0.38-1 with a mean of 0.73. The major constraints affecting poultry egg production include; fluctuations in egg production and high cost of feeds as well as vaccines. The study concluded that the performance of poultry egg farms in Nigeria can be enhanced through improvements in technical efficiency or an increase in scale of operation. The provision of subsidies to poultry farmers by the government was however recommended to ease the high production cost.

  19. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015.

    Science.gov (United States)

    Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A; Ip, Hon S; Vandalen, Kaci K; Minicucci, Larissa A

    2016-07-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9-June 4, 2015. HPAIV was isolated from a Cooper's hawk but not from waterfowl fecal samples. PMID:27064759

  20. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    Science.gov (United States)

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  1. Impact of Avian Influenza Outbreaks on Stakeholders in the Poultry Industry in Jos, Plateau State, Nigeria

    Directory of Open Access Journals (Sweden)

    A.G. Balami

    2015-01-01

    Full Text Available Avian influenza devastated the poultry industry and economy of Plateau State during the 2006 epidemic. A survey was conducted among some targeted stakeholders in the poultry industry in Jos north and Jos south local government areas of Plateau state using structured questionnaire to assess the impact of 2006 highly pathogenic avian influenza outbreak on their businesses. A total of 84 questionnaires were administered among the stake holders in the poultry industry out of which 76 (90.5% were returned and analyzed. The 76 stakeholders that returned their questionnaires included 8 (10.5% veterinary drug sellers, 6 (7.9% toll millers, 10 (13.2% commercial feeds distributors, 8 (10.5% feed raw material and 12(15.8% poultry equipment sellers, 15 (19.7% fowl and 17 (22.4% egg sellers. There was a sharp decline to complete loss of income by egg and bird traders and more than 50% decline in the sale of poultry drugs and vaccines, toll milled and commercial feeds, poultry raw materials and equipment. The epidemic had a significant negative impact (loss on toll millers (70% and commercial feed distributors (74%, fowl (60% and egg sellers (35%; poultry drug (50%, feed raw material (50% and poultry equipment sellers (55% and was more severe on commercial feed distributors. Poultry input providers should also be compensated as was done poultry farmers to minimize the effect of their losses.

  2. BIRD FLU (AVIAN INFLUENZA)

    OpenAIRE

    Acar, Ali; Bulent BESIRBELLIOÐLU

    2005-01-01

    Avian influenza (bird flu) is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, ...

  3. Description of an outbreak of highly pathogenic avian influenza in domestic ostriches (Struthio camelus) in South Africa in 2011.

    Science.gov (United States)

    van Helden, L S; Sinclair, M; Koen, P; Grewar, J D

    2016-06-01

    In 2011, the commercial ostrich production industry of South Africa experienced an outbreak of highly pathogenic avian influenza (HPAI), subtype H5N2. Surveillance using antibody and antigen detection revealed 42 infected farms with a between-farm prevalence in the affected area of 16%. The outbreak was controlled using depopulation of infected farms, resulting in the direct loss of 10% of the country's domestic ostrich population. Various factors in the ostrich production system were observed that could have contributed to the spread of the virus between farms, including the large number of legal movements of ostriches between farms, access of wild birds to ostrich camps and delays in depopulation of infected farms. Negative effects on the ostrich industry and the local economy of the ostrich-producing area were observed as a result of the outbreak and the disease control measures applied. Prevention and control measures applied as a result of avian influenza in South Africa were informed by this large outbreak and the insights into epidemiology of avian influenza in ostriches that it provided, resulting in stricter biosecurity measures required on every registered ostrich farm in the country. PMID:27237385

  4. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  5. Ecological determinants of highly pathogenic avian influenza (H5N1 outbreaks in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Syed S U Ahmed

    Full Text Available BACKGROUND: The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1 outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. METHODOLOGY/PRINCIPAL FINDINGS: An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007-2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1 an intrinsic conditional autoregressive (ICAR model at subdistrict level considering their first order neighbors, and 2 a multilevel (ML model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. CONCLUSIONS/SIGNIFICANCE: The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free

  6. Avian Influenza

    OpenAIRE

    Tjandra Y. Aditama

    2008-01-01

    Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%). Indonesia has 27 cases, 20 were dead (74.07%). AI cases...

  7. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza.

    Science.gov (United States)

    Killian, Mary Lea; Kim-Torchetti, Mia; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  8. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza

    Science.gov (United States)

    Killian, Mary Lea; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  9. Tracking socioeconomic vulnerability using network analysis: insights from an avian influenza outbreak in an ostrich production network.

    Directory of Open Access Journals (Sweden)

    Christine Moore

    Full Text Available BACKGROUND: The focus of management in many complex systems is shifting towards facilitation, adaptation, building resilience, and reducing vulnerability. Resilience management requires the development and application of general heuristics and methods for tracking changes in both resilience and vulnerability. We explored the emergence of vulnerability in the South African domestic ostrich industry, an animal production system which typically involves 3-4 movements of each bird during its lifetime. This system has experienced several disease outbreaks, and the aim of this study was to investigate whether these movements have contributed to the vulnerability of this system to large disease outbreaks. METHODOLOGY/PRINCIPAL FINDINGS: The ostrich production system requires numerous movements of birds between different farm types associated with growth (i.e. Hatchery to juvenile rearing farm to adult rearing farm. We used 5 years of movement records between 2005 and 2011 prior to an outbreak of Highly Pathogenic Avian Influenza (H5N2. These data were analyzed using a network analysis in which the farms were represented as nodes and the movements of birds as links. We tested the hypothesis that increasing economic efficiency in the domestic ostrich industry in South Africa made the system more vulnerable to outbreak of Highly Pathogenic Avian Influenza (H5N2. Our results indicated that as time progressed, the network became increasingly vulnerable to pathogen outbreaks. The farms that became infected during the outbreak displayed network qualities, such as significantly higher connectivity and centrality, which predisposed them to be more vulnerable to disease outbreak. CONCLUSIONS/SIGNIFICANCE: Taken in the context of previous research, our results provide strong support for the application of network analysis to track vulnerability, while also providing useful practical implications for system monitoring and management.

  10. Avian Influenza in Birds

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza in Birds Language: English Español Recommend on ...

  11. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... this? Submit Button Past Newsletters Information on Avian Influenza Language: English Español Recommend on Facebook Tweet ...

  12. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    Directory of Open Access Journals (Sweden)

    Marcel Jonges

    Full Text Available Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4 genome copies/m(3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  13. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    Science.gov (United States)

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance. PMID:25946115

  14. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds.

    Science.gov (United States)

    Si, Yali; de Boer, Willem F; Gong, Peng

    2013-01-01

    A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating. However, previous studies found no difference between these two outbreak types when only the effect of physical environmental factors was analysed. The influence of physical and anthropogenic environmental variables and interactions between the two has only been investigated for wild bird outbreaks. We therefore tested the effect of these environmental factors on HPAI H5N1 outbreaks in poultry, and the potential spread mechanism, and discussed how these differ from those observed in wild birds. Logistic regression analyses were used to quantify the relationship between HPAI H5N1 outbreaks in poultry and environmental factors. Poultry outbreaks increased with an increasing human population density combined with close proximity to lakes or wetlands, increased temperatures and reduced precipitation during the cold season. A risk map was generated based on the identified key factors. In wild birds, outbreaks were strongly associated with an increased Normalized Difference Vegetation Index (NDVI) and lower elevation, though they were similarly affected by climatic conditions as poultry outbreaks. This is the first study that analyses the differences in environmental drivers and spread mechanisms between poultry and wild bird outbreaks. Outbreaks in poultry mostly occurred in areas where the location of farms or trade areas overlapped with habitats for wild birds, whereas outbreaks in wild birds were mainly found in areas where food and shelters are available. The different environmental drivers suggest that different spread mechanisms might be involved: HPAI H5N1 spread to poultry via both poultry and wild birds, whereas contact with wild birds alone seems to drive the outbreaks

  15. Molecular characterization of Indonesia avian influenza virus

    Directory of Open Access Journals (Sweden)

    N.L.P.I. Dharmayanti

    2005-06-01

    Full Text Available Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1. Molecular basis of pathogenicity in HA cleavage site indicated that the isolates of avian influenza virus have multiple basic amino acid (B-X-B-R indicating that all of the isolates representing virulent avian influenza virus (highly pathogenic avian influenza virus.

  16. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Paritosh K Biswas

    Full Text Available The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1 is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA and multiplicative seasonal autoregressive integrated moving average (SARIMA to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s as inputs did not improve the performance of any multivariable models, but relative humidity (RH was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA order at lag 1 month is considered.

  17. Avian Influenza infection in Human

    OpenAIRE

    Mohan M; Trevor Francis Fernandez and Feroz Mohammed.M.S.

    2008-01-01

    Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe dise...

  18. Establishing a laboratory network of influenza diagnosis in Indonesia: an experience from the avian flu (H5N1 outbreak

    Directory of Open Access Journals (Sweden)

    Setiawaty V

    2012-08-01

    Full Text Available Vivi Setiawaty, Krisna NA Pangesti, Ondri D SampurnoNational Institute of Health Research and Development, Ministry of Health, the Republic of Indonesia, Jakarta, IndonesiaAbstract: Indonesia has been part of the global influenza surveillance since the establishment of a National Influenza Center (NIC at the National Institute of Health Research and Development (NIHRD by the Indonesian Ministry of Health in 1975. When the outbreak of avian influenza A (H5N1 occurred, the NIC and US Naval Medical Research Unit 2 were the only diagnostic laboratories equipped for etiology confirmation. The large geographical area of the Republic of Indonesia poses a real challenge to provide prompt and accurate diagnosis nationally. This was the main reason to establish a laboratory network for H5N1 diagnosis in Indonesia. Currently, 44 laboratories have been included in the network capable of performing polymerase chain reaction testing for influenza A. Diagnostic equipment and standard procedures of biosafety and biosecurity of handling specimens have been adopted largely from World Health Organization recommendations.Keywords: influenza, laboratory, networking

  19. Assessment of Poultry Products Supply and Market Prices During Avian Influenza Outbreak in Nigeria Evidence from Osun State

    Directory of Open Access Journals (Sweden)

    B.A. Shittu

    2012-01-01

    Full Text Available Avian Influenza outbreak was reported among Nigerian poultry farmers in 2006. The epidemic had serious implication for poultry farming development because several birds were destroyed and those that did not get infected lost market values due to reduction in demand. This study analyzed the impact of the epidemic on market prices of poultry products using survey data obtained from poultry product suppliers and consumers. The data were analyzed with simple descriptive statistics. Results show that 90% of the marketers reported drastic reduction in sale while 95% of the consumers reduced or totally abandon consumption of poultry products. Prices of poultry products also decline with turkey recording the highest reduction (5,000.00 per bird. It was recommended that stakeholders in the poultry industry should design consumer education and risk mitigation media programs for the public before any future outbreak in order to minimize future losses.

  20. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  1. Molecular characterization of Indonesia avian influenza virus

    OpenAIRE

    N.L.P.I Dharmayanti; R Damayanti; R Indriani; A Wiyono; R.M.A Adjid

    2005-01-01

    Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1). Mo...

  2. BIRD FLU (AVIAN INFLUENZA

    Directory of Open Access Journals (Sweden)

    Ali ACAR

    2005-12-01

    Full Text Available Avian influenza (bird flu is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, severe respiratory diseases and other severe and life-threatening complications. In such situation, people should avoid contact with infected birds or contaminated surface, and should be careful when handling and cooking poultry. [TAF Prev Med Bull 2005; 4(6.000: 345-353

  3. Outbreaks of avian influenza A (H5N1) in Asia and interim recommendations for evaluation and reporting of suspected cases--United States, 2004.

    Science.gov (United States)

    2004-02-13

    During December 2003-February 2004, outbreaks of highly pathogenic avian influenza A (H5N1) among poultry were reported in Cambodia, China, Indonesia, Japan, Laos, South Korea, Thailand, and Vietnam. As of February 9, 2004, a total of 23 cases of laboratory-confirmed influenza A (H5N1) virus infections in humans, resulting in 18 deaths, had been reported in Thailand and Vietnam. In addition, approximately 100 suspected cases in humans are under investigation by national health authorities in Thailand and Vietnam. CDC, the World Health Organization (WHO), and national health authorities in Asian countries are working to assess and monitor the situation, provide epidemiologic and laboratory support, and assist with control efforts. This report summarizes information about the human infections and avian outbreaks in Asia and provides recommendations to guide influenza A (H5N1) surveillance, diagnosis, and testing in the United States. PMID:14961001

  4. Avian Influenza

    Science.gov (United States)

    ... effect on poultry populations, their potential to cause serious disease in people, and their pandemic potential. Reports of ... domestic poultry and cause large-scale outbreaks of serious disease. Some of these AI viruses have also been ...

  5. Avian influenza virus in pregnancy.

    Science.gov (United States)

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  6. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    Directory of Open Access Journals (Sweden)

    Scott H Newman

    Full Text Available Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1 requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp. has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer and in habitats (areas of natural vegetation where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks at or near their breeding grounds.

  7. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    Science.gov (United States)

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  8. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    Science.gov (United States)

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  9. Economic effects of avian influenza on egg producers in Turkey

    OpenAIRE

    V Demircan; Yilmaz, H.; Z Dernek; T Bal; Gül, M; H Koknaroglu

    2009-01-01

    This study determined the economic effects of avian influenza on the egg-production sector of Afyon Province, Turkey. Economic indicators were compared before and during the avian influenza outbreak. A questionnaire was conducted with 75 poultry farmers. Farms were divided into three groups according to their size. The profitability of the three farm size groups was compared during two study periods: before and during the avian influenza outbreak. The results indicate that, as compared to pre...

  10. Avian influenza: an emerging pandemic threat.

    Science.gov (United States)

    Jin, Xian Wen; Mossad, Sherif B

    2005-12-01

    While we are facing the threat of an emerging pandemic from the current avian flu outbreak in Asia, we have learned important traits of the virus responsible for the 1918 Spanish influenza pandemic that made it so deadly. By using stockpiled antiviral drugs effectively and developing an effective vaccine, we can be in a better position than ever to mitigate the global impact of an avian influenza pandemic. PMID:16392727

  11. Avian influenza – Review

    OpenAIRE

    Öner, Ahmet Faik

    2007-01-01

    Recent spread of avian influenza A H5N1 virus to poultry and wild birds has increased the threat of human infections with H5N1 virus worldwide In this review the epidemiology virolgy clinical and laboratory characteristics and management of avian influenza is described The virus has demonsrated considerable pandemic potential and is the most likely candidate of next pandemic threat For pandemic preparedness stockpiling antiviral agents and vaccination are the most important intervention measu...

  12. Understanding the 2013 H7N9 avian influenza outbreak in poultry: field epidemiology and experimental pathogenesis studies

    Science.gov (United States)

    The influenza A (H7N9) virus is of avian origin and is responsible for infections in human in large urban areas of China in spring 2013. The original source of the virus from poultry farms is unknown but the live poultry market (LPM) system has served as an amplifier of the virus, especially in whol...

  13. Avian Influenza Infection Dynamics in Minor Avian Species

    OpenAIRE

    Bertran Dols, Kateri

    2013-01-01

    Avian influenza (AI) has become one of the most important challenges that ever emerged from animal reservoirs. The constant outbreaks detected worldwide in domestic and wild bird species are of concern to the economics of the poultry industry, wildlife conservation, and animal and public health. Susceptibility to AI viruses (AIVs) varies deeply among avian species, as well as their possible role as sentinels, intermediate hosts or reservoirs. To date, several experimental studies and natural ...

  14. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  15. Husbandry Practices and Outbreak Features of Natural Highly Pathogenic Avian Influenza H5N1 in Turkey Flocks in Nigeria 2006-2008

    OpenAIRE

    Olatunde Babatunde Akanbi; Victor Olusegun Taiwo

    2015-01-01

    The Highly Pathogenic Avian Influenza (HPAI) outbreaks in Nigeria that occurred during 2006-2008, affected 80 farms that kept subsistence indigenous chicken, duck, turkey, guinea fowl and geese in 15 states of the country including the capital, Abuja resulting in a total loss of more than 14,000 birds in backyard, semi-intensive or free-ranged flocks. The rearing of rural poultry in free-range, multispecies, multiage holdings that have low biosecurity levels have shown to expose them to many ...

  16. Oseltamivir in human avian influenza infection

    OpenAIRE

    Smith, James R.

    2010-01-01

    Avian influenza A viruses continue to cause disease outbreaks in humans, and extrapulmonary infection is characteristic. In vitro studies demonstrate the activity of oseltamivir against avian viruses of the H5, H7 and H9 subtypes. In animal models of lethal infection, oseltamivir treatment and prophylaxis limit viral replication and improve survival. Outcomes are influenced by the virulence of the viral strain, dosage regimen and treatment delay; it is also critical for the compound to act sy...

  17. Ecological determinants of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Ersbøll, Annette Kjær; Biswas, Paritosh K.;

    2012-01-01

    determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with...... subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were...

  18. Avian influenza (fowl plague)

    Science.gov (United States)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  19. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend on Facebook Tweet ... A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses usually do not ...

  20. Avian influenza: The tip of the iceberg

    OpenAIRE

    Balkhy Hanan

    2008-01-01

    For some years now, we have been living with the fear of an impending pandemic of avian influenza (AI). Despite the recognition, in 1996, of the global threat posed by the highly pathogenic H5N1 influenza virus found in farmed geese in Guangdong Province, China, planning for the anticipated epidemic remains woefully inadequate; this is especially true in developing countries such as Saudi Arabia. These deficiencies became obvious in 1997, with the outbreak of AI in the live animal markets in...

  1. Avian influenza viruses in humans.

    OpenAIRE

    Malik Peiris, J S

    2009-01-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to...

  2. SEKILAS TENTANG AVIAN INFLUENZA (AI)

    OpenAIRE

    Fauziah Elytha

    2011-01-01

    Fluburung atau Avian Influenza (AI) adalah penyakit zoonosis fatal dan menular serta dapat menginfeksi semua jenis burung, manusia, babi, kuda dan anjing, Virus Avian Influenza tipe A (hewan) dari keluarga Drthomyxoviridae telah menyerang manusia dan menyebabkan banyak korban meninggal dunia. Saat ini avian Influenza telah menjadi masalah kesehatan global yang sangat serius, termasuk di Indonesia. Sejak Juli 2005 Sampai 12 April 2006 telah ditemukan 479 kasus kumulatif dan dicurigai flu burun...

  3. Influenza vaccines for avian species.

    Science.gov (United States)

    Kapczynski, Darrell R; Swayne, David E

    2009-01-01

    Beginning in Southeast Asia in 2003, a multinational epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity and mortality in many bird species, was responsible for considerable economic losses via trade restrictions, and crossed species barriers (including its recovery from human cases). To date, these H5N1 HPAI viruses have been isolated in European, Middle Eastern, and African countries, and are considered endemic in many areas where regulatory control and different production sectors face substantial hurdles in controlling the spread of this disease. While control of avian influenza (AI) virus infections in wild bird populations may not be feasible at this point, control and eradiation of AI from commercial, semicommercial, zoo, pet, and village/backyard birds will be critical to preventing events that could lead to the emergence of epizootic influenza virus. Efficacious vaccines can help reduce disease, viral shedding, and transmission to susceptible cohorts. However, only when vaccines are used in a comprehensive program including biosecurity, education, culling, diagnostics and surveillance can control and eradication be considered achievable goals. In humans, protection against influenza is provided by vaccines that are chosen based on molecular, epidemiologic, and antigenic data. In poultry and other birds, AI vaccines are produced against a specific hemagglutinin subtype of AI, and use is decided by government and state agricultural authorities based on risk and economic considerations, including the potential for trade restrictions. In the current H5N1 HPAI epizootic, vaccines have been used in a variety of avian species as a part of an overall control program to aid in disease management and control. PMID:19768403

  4. Human Illness from Avian Influenza H7N3, British Columbia

    OpenAIRE

    Tweed, S. Aleina; Skowronski, Danuta M.; David, Samara T; Larder, Andrew; Petric, Martin; Lees, Wayne; Li, Yan; Katz, Jacqueline; Krajden, Mel; Tellier, Raymond; Halpert, Christine; Hirst, Martin; Astell, Caroline; Lawrence, David; Mak, Annie

    2004-01-01

    Avian influenza that infects poultry in close proximity to humans is a concern because of its pandemic potential. In 2004, an outbreak of highly pathogenic avian influenza H7N3 occurred in poultry in British Columbia, Canada. Surveillance identified two persons with confirmed avian influenza infection. Symptoms included conjunctivitis and mild influenzalike illness.

  5. 75 FR 10645 - Low Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity

    Science.gov (United States)

    2010-03-09

    ... Pathogenic Avian Influenza; Voluntary Control Program and Payment of Indemnity AGENCY: Animal and Plant... avian influenza in commercial poultry. As amended by this document, the rule provides that the amount of... agencies with respect to H5/H7 low pathogenic avian influenza outbreaks, provides that consistency...

  6. Composting for Avian Influenza Virus Elimination

    OpenAIRE

    Elving, Josefine; Emmoth, Eva; Albihn, Ann; Vinnerås, Björn; Ottoson, Jakob

    2012-01-01

    Effective sanitization is important in viral epizootic outbreaks to avoid further spread of the pathogen. This study examined thermal inactivation as a sanitizing treatment for manure inoculated with highly pathogenic avian influenza virus H7N1 and bacteriophages MS2 and ϕ6. Rapid inactivation of highly pathogenic avian influenza virus H7N1 was achieved at both mesophilic (35°C) and thermophilic (45 and 55°C) temperatures. Similar inactivation rates were observed for bacteriophage ϕ6, while b...

  7. Influenza pandemics and avian flu

    OpenAIRE

    2005-01-01

    Douglas Fleming is general practitioner in a large suburban practice in Birmingham. In this article he seeks to clarify clinical issues relating to potential pandemics of influenza, including avian influenza

  8. Pathogenicity of highly pathogenic avian influenza virus in mammals

    OpenAIRE

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno; Fouchier, Ron

    2008-01-01

    textabstractIn recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the current knowledge of the determinants of pathogenicity of HPAI viruses in mammals is summarized. It is becoming apparent that common mechanisms exist across influenza A virus strains and...

  9. Avian influenza: Vaccination and control

    Science.gov (United States)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  10. H5N1 influenza viruses: outbreaks and biological properties

    OpenAIRE

    Neumann, Gabriele; Chen, Hualan; Gao, George F.; Shu, Yuelong; Kawaoka, Yoshihiro

    2009-01-01

    All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1...

  11. Sequence analysis of recent H7 avian influenza viruses associated with three different outbreaks in commercial poultry in the United States.

    Science.gov (United States)

    Spackman, Erica; Senne, Dennis A; Davison, Sherrill; Suarez, David L

    2003-12-01

    The hemagglutinin (HA) and neuraminidase (NA) genes of H7 avian influenza virus (AIV) isolated between 1994 and 2002 from live-bird markets (LBMs) in the northeastern United States and from three outbreaks in commercial poultry have been characterized. Phylogenetic analysis of the HA and NA genes demonstrates that the isolates from commercial poultry were closely related to the viruses circulating in the LBMs. Also, since 1994, two distinguishing genetic features have appeared in this AIV lineage: a deletion of 17 amino acids in the NA protein stalk region and a deletion of 8 amino acids in the HA1 protein which is putatively in part of the receptor binding site. Furthermore, analysis of the HA cleavage site amino acid sequence, a marker for pathogenicity in chickens and turkeys, shows a progression toward a cleavage site sequence that fulfills the molecular criteria for highly pathogenic AIV. PMID:14645595

  12. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    Directory of Open Access Journals (Sweden)

    Ying-Hen Hsieh

    Full Text Available From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  13. Low-pathogenic avian influenza viruses in wild house mice.

    Directory of Open Access Journals (Sweden)

    Susan A Shriner

    Full Text Available BACKGROUND: Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. METHODOLOGY/PRINCIPAL FINDINGS: We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50 equivalents/mL across all lung samples from seven days of sampling (three mice/day ranged from 10(3.89 (H3N6 to 10(5.06 (H4N6 for the wild bird viruses and 10(2.08 (H6N2 to 10(2.85 (H4N8 for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05 higher concentrations of avian influenza RNA found in females compared with males. CONCLUSIONS/SIGNIFICANCE: Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.

  14. Leveraging social networking sites for disease surveillance and public sensing: the case of the 2013 avian influenza A(H7N9 outbreak in China

    Directory of Open Access Journals (Sweden)

    Emma Xuxiao Zhang

    2015-05-01

    Full Text Available We conducted in-depth analysis on the use of a popular Chinese social networking and microblogging site, Sina Weibo, to monitor an avian influenza A(H7N9 outbreak in China and to assess the value of social networking sites in the surveillance of disease outbreaks that occur overseas. Two data sets were employed for our analysis: a line listing of confirmed cases obtained from conventional public health information channels and case information from Weibo posts. Our findings showed that the level of activity on Weibo corresponded with the number of new cases reported. In addition, the reporting of new cases on Weibo was significantly faster than those of conventional reporting sites and non-local news media. A qualitative review of the functions of Weibo also revealed that Weibo enabled timely monitoring of other outbreak-relevant information, provided access to additional crowd-sourced epidemiological information and was leveraged by the local government as an interactive platform for risk communication and monitoring public sentiment on the policy response. Our analysis demonstrated the potential for social networking sites to be used by public health agencies to enhance traditional communicable disease surveillance systems for the global surveillance of overseas public health threats. Social networking sites also can be used by governments for calibration of response policies and measures and for risk communication.

  15. Control of Avian Influenza in Poultry

    OpenAIRE

    Capua, Ilaria; Marangon, Stefano

    2006-01-01

    Avian influenza, listed by the World Organization for Animal Health (OIE), has become a disease of great importance for animal and human health. Several aspects of the disease lack scientific information, which has hampered the management of some recent crises. Millions of animals have died, and concern is growing over the loss of human lives and management of the pandemic potential. On the basis of data generated in recent outbreaks and in light of new OIE regulations and maintenance of anim...

  16. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    OpenAIRE

    Sanhong Liu; Liuyong Pang; Shigui Ruan; Xinan Zhang

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward...

  17. Performance of clinical signs in poultry for the detection of outbreaks during the avian influenza A (H7N7) epidemic in The Netherlands in 2003.

    Science.gov (United States)

    Elbers, Armin R W; Koch, Guus; Bouma, Annemarie

    2005-06-01

    The aim of this study was to make an inventory of the clinical signs of high-pathogenicity avian influenza (HPAI), to facilitate the development of an operational syndrome-reporting system (SRS) in The Netherlands as an early warning system for HPAI outbreaks. A total of 537 poultry flocks (240 infected and 297 non-infected) with a clinical suspicion of an infection with HPAI virus were investigated with respect to the clinical signs observed. Standardized reports were analysed with respect to observed clinical signs in the flocks. Various poultry types were distinguished. In infected commercial flocks with egg-producing chickens, the presence of increased mortality, apathy, coughing, reduction in normal vocalization, or pale eggs appeared to be overall the most sensitive indicators to detect a HPAI outbreak, matching a sensitivity of 99% with a specificity of 23%. In infected turkey flocks, the presence of apathy, decreased growth performance, reduction of normal vocalization, swollen sinuses, yawning, huddling, mucosal production from the beak, or lying down with an extended neck appeared to be overall the most sensitive indicators to detect a HPAI outbreak, matching a sensitivity of 100% with a specificity of 79%. In infected backyard/hobby flocks, increased mortality or swollen head appeared to be overall the most sensitive indicators of a HPAI outbreak, matching a sensitivity of 100% with a specificity of 26%. These results indicate that there is a solid basis for the choice of using increased mortality in the operational SRS in The Netherlands as an early warning system for HPAI outbreaks. The presence of apathy, specifically for turkeys, should be added to the SRS as an indicator. PMID:16191700

  18. Avian influenza : a review article

    OpenAIRE

    A. Yalda; EMADI H; M. Haji Abdolbaghi

    2006-01-01

    The purpose of this paper is to provides general information about avian influenza (bird flu) and specific information about one type of bird flu, called avian influenza A (H5N1), that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO) , world organization for animal health (OIE) , food and agriculture organization of the united nations (FAO) information and recommendations and review of th...

  19. Outbreak of H5N2 highly pathogenic avian Influenza A virus infection in two commercial layer facilities: lesions and viral antigen distribution.

    Science.gov (United States)

    Arruda, Paulo H E; Stevenson, Gregory W; Killian, Mary L; Burrough, Eric R; Gauger, Phillip C; Harmon, Karen M; Magstadt, Drew R; Yoon, Kyoung-Jin; Zhang, Jianqiang; Madson, Darin M; Piñeyro, Pablo; Derscheid, Rachel J; Schwartz, Kent J; Cooper, Vickie L; Halbur, Patrick G; Main, Rodger G; Sato, Yuko; Arruda, Bailey L

    2016-09-01

    The largest outbreak of highly pathogenic avian Influenza A virus (HPAIV) infection in U.S. history began in December 2014 resulting in the euthanasia of millions of birds and collateral economic consequences to the U.S. poultry industry. We describe 2 cases of H5N2 HPAIV infection in laying hens in Iowa. Following a sharp increase in mortality with minimal clinical signs, 15 dead birds, from 2 unrelated farms, were submitted to the Iowa State University Veterinary Diagnostic Laboratory. Common lesions included diffuse edema and multifocal hemorrhage of the comb, catarrhal exudate in the oropharynx, and multifocal tracheal hemorrhage. Less common lesions included epicardial petechiae, splenic hemorrhage, and pancreatic necrosis. Influenza A virus nucleoprotein was detected by immunohistochemistry in multiple cell types including ependymal cells, the choroid plexus, neurons, respiratory epithelium and macrophages in the lung, cardiac myocytes, endothelial cells, necrotic foci in the spleen, Kupffer cells in the liver, and necrotic acinar cells in the pancreas. Real-time polymerase chain reaction and sequencing confirmed H5N2 HPAIV with molecular characteristics similar to other contemporary U.S. H5N2 HPAIVs in both cases. PMID:27423731

  20. Quantitative Estimation of the Number of Contaminated Hatching Eggs Released from an Infected, Undetected Turkey Breeder Hen Flock During a Highly Pathogenic Avian Influenza Outbreak.

    Science.gov (United States)

    Malladi, Sasidhar; Weaver, J Todd; Alexander, Catherine Y; Middleton, Jamie L; Goldsmith, Timothy J; Snider, Timothy; Tilley, Becky J; Gonder, Eric; Hermes, David R; Halvorson, David A

    2015-09-01

    The regulatory response to an outbreak of highly pathogenic avian influenza (HPAI) in the United States may involve quarantine and stop movement orders that have the potential to disrupt continuity of operations in the U.S. turkey industry--particularly in the event that an uninfected breeder flock is located within an HPAI Control Area. A group of government-academic-industry leaders developed an approach to minimize the unintended consequences associated with outbreak response, which incorporates HPAI control measures to be implemented prior to moving hatching eggs off of the farm. Quantitative simulation models were used to evaluate the movement of potentially contaminated hatching eggs from a breeder henhouse located in an HPAI Control Area, given that active surveillance testing, elevated biosecurity, and a 2-day on-farm holding period were employed. The risk analysis included scenarios of HPAI viruses differing in characteristics as well as scenarios in which infection resulted from artificial insemination. The mean model-predicted number of internally contaminated hatching eggs released per movement from an HPAI-infected turkey breeder henhouse ranged from 0 to 0.008 under the four scenarios evaluated. The results indicate a 95% chance of no internally contaminated eggs being present per movement from an infected house before detection. Sensitivity analysis indicates that these results are robust to variation in key transmission model parameters within the range of their estimates from available literature. Infectious birds at the time of egg collection are a potential pathway of external contamination for eggs stored and then moved off of the farm; the predicted number of such infectious birds was estimated to be low. To date, there has been no evidence of vertical transmission of HPAI virus or low pathogenic avian influenza virus to day-old poults from hatching eggs originating from infected breeders. The application of risk analysis methods was beneficial

  1. An overview on avian influenza

    OpenAIRE

    Nelson Rodrigo da Silva Martins

    2012-01-01

    Avian influenza (AI) is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA), with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS) for health control. Poultry health standards are adopted for the confo...

  2. Epidemiological and Evolutionary Inference of the Transmission Network of the 2014 Highly Pathogenic Avian Influenza H5N2 Outbreak in British Columbia, Canada

    Science.gov (United States)

    Xu, Wanhong; Berhane, Yohannes; Dubé, Caroline; Liang, Binhua; Pasick, John; VanDomselaar, Gary; Alexandersen, Soren

    2016-01-01

    The first North American outbreak of highly pathogenic avian influenza (HPAI) involving a virus of Eurasian A/goose/Guangdong/1/1996 (H5N1) lineage began in the Fraser Valley of British Columbia, Canada in late November 2014. A total of 11 commercial and 1 non-commercial (backyard) operations were infected before the outbreak was terminated. Control measures included movement restrictions that were placed on a total of 404 individual premises, 150 of which were located within a 3 km radius of an infected premise(s) (IP). A complete epidemiological investigation revealed that the source of this HPAI H5N2 virus for 4 of the commercial IPs and the single non-commercial IP likely involved indirect contact with wild birds. Three IPs were associated with the movement of birds or service providers and localized/environmental spread was suspected as the source of infection for the remaining 4 IPs. Viral phylogenies, as determined by Bayesian Inference and Maximum Likelihood methods, were used to validate the epidemiologically inferred transmission network. The phylogenetic clustering of concatenated viral genomes and the median-joining phylogenetic network of the viruses supported, for the most part, the transmission network that was inferred by the epidemiologic analysis. PMID:27489095

  3. Evaluating the Impact of Environmental Temperature on Global Highly Pathogenic Avian Influenza (HPAI H5N1 Outbreaks in Domestic Poultry

    Directory of Open Access Journals (Sweden)

    Zhijie Zhang

    2014-06-01

    Full Text Available The emergence and spread of highly pathogenic avian influenza (HPAI A virus subtype H5N1 in Asia, Europe and Africa has had an enormously socioeconomic impact and presents an important threat to human health because of its efficient animal-to-human transmission. Many factors contribute to the occurrence and transmission of HPAI H5N1 virus, but the role of environmental temperature remains poorly understood. Based on an approach of integrating a Bayesian Cox proportional hazards model and a Besag-York-Mollié (BYM model, we examined the specific impact of environmental temperature on HPAI H5N1 outbreaks in domestic poultry around the globe during the period from 1 December 2003 to 31 December 2009. The results showed that higher environmental temperature was a significant risk factor for earlier occurrence of HPAI H5N1 outbreaks in domestic poultry, especially for a temperature of 25 °C. Its impact varied with epidemic waves (EWs, and the magnitude of the impact tended to increase over EWs.

  4. Cell culture based production of avian influenza vaccines

    OpenAIRE

    Wielink, van, P.

    2012-01-01

    Vaccination of poultry can be used as a tool to control outbreaks of avian influenza, including that of highly pathogenic H5 and H7 strains. Influenza vaccines are traditionally produced in embryonated chicken eggs. Continuous cell lines have been suggested as an alternative substrate to produce influenza vaccines, as they are more robust and lack the long lead times associated with the production of large quantities of embryonated eggs. In the study that is described in this thesis, the prod...

  5. Husbandry Practices and Outbreak Features of Natural Highly Pathogenic Avian Influenza H5N1 in Turkey Flocks in Nigeria 2006-2008

    Directory of Open Access Journals (Sweden)

    Olatunde Babatunde Akanbi

    2015-12-01

    Full Text Available The Highly Pathogenic Avian Influenza (HPAI outbreaks in Nigeria that occurred during 2006-2008, affected 80 farms that kept subsistence indigenous chicken, duck, turkey, guinea fowl and geese in 15 states of the country including the capital, Abuja resulting in a total loss of more than 14,000 birds in backyard, semi-intensive or free-ranged flocks. The rearing of rural poultry in free-range, multispecies, multiage holdings that have low biosecurity levels have shown to expose them to many contact risks. In order to sustain turkey production in the country in view of the ongoing resurgent HPAI outbreaks, it is necessary to assess the impact of HPAI on this species and to evaluate the husbandry and outbreak features of affected flocks. Spatial data confirmed the presence of HPAI virus in both domestic and commercial poultry farms from 25 States and the Federal Capital Territory (FCT in Nigeria were added to a Geographical Information System (GIS using ESRI ArcGIS 10.3 (ESRI®, USA and QGIS 2.8.2 Desktop (OSGeo and visualized using QGIS. Post mortem examinations of submitted carcasses were carried out and swabs and tissues were analyzed by virus isolation (VI and reverse transcriptase polymerase chain reaction (RT-PCR. HPAI in turkey flocks were mostly in northern part of the country where most poultry mainly subsistence are domiciled and are more in the densely cities of the north. The poultry management systems employed by the subsistence turkey farmers were mainly semi-intensive backyard and free-ranged system of poultry. HPAI introduction sources vary from the introduction of new poultry species (geese and turkey from LBM, to the death of neighborhood poultry and extension to turkey flocks and/or contact with free-ranging local chickens. It is obvious that the husbandry and the management system had influenced on the introduction of the virus and the course of the disease.

  6. Avian Influenza: a global threat needing a global solution

    OpenAIRE

    Koh GCH; Wong TY; Cheong SK; Koh DSQ

    2008-01-01

    Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI) is endemic in Asia as a result of unre...

  7. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    Directory of Open Access Journals (Sweden)

    Sanhong Liu

    2015-01-01

    Full Text Available Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  8. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    Science.gov (United States)

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-01-01

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels. PMID:25879698

  9. The financial cost implications of the highly pathogenic notifiable avian influenza H5N1 in Nigeria

    OpenAIRE

    Fasina, F.O.; M.M. Sirdar; S.P.R. Bisschop

    2008-01-01

    Nigeria and several other nations have recently been affected by outbreaks of the Asian H5N1 strain of highly pathogenic notifiable avian influenza (HPNAI) virus, which affects the poultry sector most heavily. This study analysed previous methods of assessing losses due to avian influenza, and used a revised economic model to calculate costs associated with the current avian influenza outbreaks. The evaluation used epidemiological data, production figures and other input parameters to d...

  10. OFFLU Network on Avian Influenza

    OpenAIRE

    Edwards, Steven

    2006-01-01

    OFFLU is the name of the network of avian influenza expertise inaugurated jointly in 2005 by the Food and Agriculture Organization of the United Nations and the World Organisation for Animal Health. Achievements and constraints to date and plans for the future are described.

  11. Avian Influenza: Our current understanding

    Science.gov (United States)

    Avian influenza virus (AIV) has become one of the most important diseases of the poultry industry around the world. The virus has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infection. T...

  12. Avian influenza virus RNA extraction

    Science.gov (United States)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  13. Prevention and control of avian influenza in Asia

    Science.gov (United States)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  14. Avian influenza: the political economy of disease control in Cambodia.

    Science.gov (United States)

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations. PMID:22702421

  15. Spatio-temporal magnitude and direction of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Ersbøll, Annette Kjær; Biswas, Paritosh K.; Christensen, Jens Peter; Toft, Nils

    2011-01-01

    The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over spac...

  16. Tingkat Pengetahuan Mahasiswa Semester V dan VII Tahun 2010/2011 Fakultas Kedokteran Universitas Sumatera Utara Mengenai Avian Influenza.

    OpenAIRE

    Rajoodorai, Prakash

    2011-01-01

    Avian influenza is an infectious disease caused by type A strains of influenza virus. Since January 2004, Thailand and several other Southeast Asian countries have experienced outbreaks of avian influenza in poultry, and more than 100 million poultry have been culled or have died. Experts fear that the avian influenza virus now circulating in Asia will mutate into a highly infectious strain and pass not only from animals to humans, but also among humans, which would lead to a p...

  17. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  18. Emergence of Fatal Avian Influenza in New England Harbor Seals

    OpenAIRE

    Anthony, S. J.; St. Leger, J. A.; Pugliares, K.; Ip, H S; Chan, J. M.; Carpenter, Z. W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J T; Pedersen, J; Karesh, W; Daszak, P; Rabadan, R.; Rowles, T.; Lipkin, W. I.

    2012-01-01

    ABSTRACT From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. L...

  19. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  20. Will Wallace's Line Save Australia from Avian Influenza?

    Directory of Open Access Journals (Sweden)

    Leo Joseph

    2008-12-01

    Full Text Available Australia is separated from the Asian faunal realm by Wallace's Line, across which there is relatively little avian migration. Although this does diminish the risk of high pathogenicity avian influenza of Asian origin arriving with migratory birds, the barrier is not complete. Migratory shorebirds, as well as a few landbirds, move through the region on annual migrations to and from Southeast Asia and destinations further north, although the frequency of infection of avian influenza in these groups is low. Nonetheless, high pathogenicity H5N1 has recently been recorded on the island of New Guinea in West Papua in domestic poultry. This event increases interest in the movements of birds between Wallacea in eastern Indonesia, New Guinea, and Australia, particularly by waterbirds. There are frequent but irregular movements of ducks, geese, and other waterbirds across Torres Strait between New Guinea and Australia, including movements to regions in which H5N1 has occurred in the recent past. Although the likelihood of avian influenza entering Australia via an avian vector is presumed to be low, the nature and extent of bird movements in this region is poorly known. There have been five recorded outbreaks of high pathogenicity avian influenza in Australian poultry flocks, all of the H7 subtype. To date, Australia is the only inhabited continent not to have recorded high pathogenicity avian influenza since 1997, and H5N1 has never been recorded. The ability to map risk from high pathogenicity avian influenza to Australia is hampered by the lack of quantitative data on the extent of bird movements between Australia and its northern neighbors. Recently developed techniques offer the promise to fill this knowledge gap.

  1. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  2. Avian influenza and the poultry trade

    OpenAIRE

    Nicita, Alessandro

    2008-01-01

    Because of high mortality rates, high rates of contagion, and the possibility of cross-species infection to mammals including humans, high pathogenic avian influenza is a major concern both to consumers and producers of poultry. The implications of the avian influenza for international poultry markets are large and include the loss of consumer confidence, loss of competitiveness, loss of m...

  3. Atypical Avian Influenza (H5N1)

    OpenAIRE

    Apisarnthanarak, Anucha; Kitphati, Rungrueng; Thongphubeth, Kanokporn; Patoomanunt, Prisana; Anthanont, Pimjai; Auwanit, Wattana; Thawatsupha, Pranee; Chittaganpitch, Malinee; Saeng-Aroon, Siriphan; Waicharoen, Sunthareeya; Apisarnthanarak, Piyaporn; Storch, Gregory A.; Mundy, Linda M.; Fraser, Victoria J.

    2004-01-01

    We report the first case of avian influenza in a patient with fever and diarrhea but no respiratory symptoms. Avian influenza should be included in the differential diagnosis for patients with predominantly gastrointestinal symptoms, particularly if they have a history of exposure to poultry.

  4. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... (76 FR 4046-4056, Docket No. APHIS-2006-0074) an interim rule that amended the regulations governing... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist....

  5. A brief introduction to avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high pathogenicity AIV in poultry were reported in Italy in the 1870’s and avian influenza been recognized in domestic poultry through the modern era of ...

  6. The global nature of avian influenza

    Science.gov (United States)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  7. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    Science.gov (United States)

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  8. Molecular patterns of avian influenza A viruses

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; LEI FuMin; WANG ShengYue; ZHOU YanHong; LI TianXian

    2008-01-01

    Avian influenza A viruses could get across the species barrier and be fatal to humans. Highly patho-genic avian influenza H5N1 virus was an example. The mechanism of interspecies transmission is not clear as yet. In this research, the protein sequences of 237 influenza A viruses with different subtypes were transformed into pseudo-signals. The energy features were extracted by the method of wavelet packet decomposition and used for virus classification by the method of hierarchical clustering. The clustering results showed that five patterns existed in avian influenza A viruses, which associated with the phenotype of interspecies transmission, and that avian viruses with patterns C and E could across species barrier and those with patterns A, B and D might not have the abilities. The results could be used to construct an early warning system to predict the transmissibility of avian influenza A viruses to humans.

  9. Avian influenza: an osteopathic component to treatment

    OpenAIRE

    Hruby, Raymond J; Hoffman, Keasha N

    2007-01-01

    Avian influenza is an infection caused by the H5N1 virus. The infection is highly contagious among birds, and only a few known cases of human avian influenza have been documented. However, healthcare experts around the world are concerned that mutation or genetic exchange with more commonly transmitted human influenza viruses could result in a pandemic of avian influenza. Their concern remains in spite of the fact that the first United States vaccine against the H5N1 virus was recently approv...

  10. Avian influenza H5N1: an update on molecular pathogenesis

    Institute of Scientific and Technical Information of China (English)

    WANG HongLiang; JIANG ChengYu

    2009-01-01

    Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly patho-genic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effec-tive therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.

  11. Avian influenza H5N1: an update on molecular pathogenesis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly pathogenic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effective therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.

  12. Free-grazing ducks and highly pathogenic avian influenza, Thailand

    OpenAIRE

    Gilbert, Marius; Chaitaweesup, P.; Parakamawongsa, T.; Premashthira, S.; Tiensin, T.; Kalpravidh, W.; Wagner, H.; Slingenbergh, J.

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 viru...

  13. Avian influenza diagnosis in the Russian Federation: Achievements and perspectives

    International Nuclear Information System (INIS)

    According to the Rosselkhoznadzor data, during 2005-2006, the avian influenza H5N1 outbreaks were reported in the Russian Federation in the Siberian, Ural, Central and South Federal Okrugs. In 2007, the RF officials notified the IOE about HPAI/H5N1 outbreaks in the territories of the Krasnodarsky Krai, Republic of Adygea, Moskovskaya and Kaluzhskaya Oblast. In 2008 there was one report about HPAI/H5N1 outbreak in Primorskii Krai (Far Eastern Okrug). To detect and characterize the avian influenza virus the following diagnostic scheme was used in ARRIAH: suspected cases (poultry, wild birds) and for monitoring purposes. 392 samples were positive in PCR to avian influenza virus type A. The most part of them were HPAI H5N1. In 2005 it was discovered 618 samples (223 - from poultry and 395 are from wild birds). Avian influenza type A virus genome was detected in 174 samples (85 - from poultry and 89 are from wild birds). 84 poultry samples and 36 wild birds samples were positive to subtype H5N1 (HPAI). 44 AI virus isolates were recovered (28 - from poultry and 16 are from wild birds). In 2006 it was discovered 1014 samples (159 - from poultry and 855 are from wild birds). Avian influenza type A virus genome was detected in 144 samples (84 - from poultry and 60 are from wild birds). Most part of these samples were positive to subtype H5N1. 67 AI virus isolates were recovered (50 - from poultry and 17 are from wild birds). In 2007 there were analyzed 833 samples (233 - from poultry and 600 are from wild birds). Avian influenza type A virus genome was detected in 55 poultry samples. All are positive to H5N1 subtype. Avian Influenza type A virus genome was detected in 7 samples from 1 region. Avian Influenza subtype H5N1 virus was not found. In 2008 we analyzed approximately 1400 samples. Most of them are from wild birds. Only 30 samples are from poultry. Avian influenza type A virus genome was detected in 1 poultry sample (HPAI H5N1). Avian Influenza type A virus genome

  14. Highly Pathogenic Avian Influenza Virus A (H7N3) in Domestic Poultry, Saskatchewan, Canada, 2007

    OpenAIRE

    Berhane, Yohannes; Hisanaga, Tamiko; Kehler, Helen; Neufeld, James; Manning, Lisa; Argue, Connie; Handel, Katherine; Hooper-McGrevy, Kathleen; Jonas, Marilyn; Robinson, John; Webster, Robert G.; Pasick, John

    2009-01-01

    Epidemiologic, serologic, and molecular phylogenetic methods were used to investigate an outbreak of highly pathogenic avian influenza on a broiler breeding farm in Saskatchewan, Canada. Results, coupled with data from influenza A virus surveillance of migratory waterfowl in Canada, implicated wild birds as the most probable source of the low pathogenicity precursor virus.

  15. Avian Influenza Virus: The Threat of A Pandemic

    OpenAIRE

    Shih-Cheng Chang; Yi-Ying Cheng; Shin-Ru Shih

    2006-01-01

    The 1918 influenza A virus pandemic caused a death toll of 40~50 million. Currently,because of the widespread dissemination of the avian influenza virus (H5N1), there is a highrisk of another pandemic. Avian species are the natural hosts for numerous subtypes ofinfluenza A viruses; however, the highly pathogenic avian influenza virus (HPAI) is not onlyextremely lethal to domestic avian species but also can infect humans and cause death. Thisreview discusses why the avian influenza virus is co...

  16. Agro-Environmental Determinants of Avian Influenza Circulation: A Multisite Study in Thailand, Vietnam and Madagascar

    OpenAIRE

    Paul, Mathilde; Gilbert, Marius; Desvaux, Stephanie; Andriamanivo, Harena Rasamoelina; Peyre, Marisa; Nguyen Viet Khong; Thanapongtharm, Weerapong; Chevalier, Veronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lowe...

  17. A Simulation-Based Evaluation of Premovement Active Surveillance Protocol Options for the Managed Movement of Turkeys to Slaughter During an Outbreak of Highly Pathogenic Avian Influenza in the United States.

    Science.gov (United States)

    Todd Weaver, J; Malladi, Sasidhar; Bonney, Peter J; Patyk, Kelly A; Bergeron, Justin G; Middleton, Jamie L; Alexander, Catherine Y; Goldsmith, Timothy J; Halvorson, David A

    2016-05-01

    Risk management decisions associated with live poultry movement during a highly pathogenic avian influenza (HPAI) outbreak should be carefully considered. Live turkey movements may pose a risk for disease spread. On the other hand, interruptions in scheduled movements can disrupt business continuity. The Secure Turkey Supply (STS) Plan was developed through an industry-government-academic collaboration to address business continuity concerns that might arise during a HPAI outbreak. STS stakeholders proposed outbreak response measure options that were evaluated through risk assessment. The developed approach relies on 1) diagnostic testing of two pooled samples of swabs taken from dead turkeys immediately before movement via the influenza A matrix gene real-time reverse transcriptase polymerase chain reaction (rRT-PCR) test; 2) enhanced biosecurity measures in combination with a premovement isolation period (PMIP), restricting movement onto the premises for a few days before movement to slaughter; and 3) incorporation of a distance factor from known infected flocks such that exposure via local area spread is unlikely. Daily exposure likelihood estimates from spatial kernels from past HPAI outbreaks were coupled with simulation models of disease spread and active surveillance to evaluate active surveillance protocol options that differ with respect to the number of swabs per pooled sample and the timing of the tests in relation to movement. Simulation model results indicate that active surveillance testing, in combination with strict biosecurity, substantially increased HPAI virus detection probability. When distance from a known infected flock was considered, the overall combined likelihood of moving an infected, undetected turkey flock to slaughter was predicted to be lower at 3 and 5 km. The analysis of different active surveillance protocol options is designed to incorporate flexibility into HPAI emergency response plans. PMID:27309049

  18. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056... Register on May 3, 2011 (76 FR 24793, Docket No. APHIS-2006-0074), we reopened the comment period for...

  19. Clipping the wings of avian influenza

    OpenAIRE

    2012-01-01

    Up to now, the threat of avian influenza has been lessened by effective animal husbandry methods. However, the public health community is trying to ensure enough measures are in place to prevent a possible pandemic. Jane Parry reports.

  20. Montana 2006 Avian Influenza Surveillance Project Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the summer of 2006, the U.S. Department of Agriculture (USDA) and the U.S. Fish and Wildlife Service (USFWS) initiated a nationwide avian influenza...

  1. Immunology of avian influenza virus: a review.

    Science.gov (United States)

    Suarez, D L; Schultz-Cherry, S

    2000-01-01

    Avian influenza virus can cause serious disease in a wide variety of birds and mammals, but its natural host range is in wild ducks, gulls, and shorebirds. Infections in poultry can be inapparent or cause respiratory disease, decreases in production, or a rapidly fatal systemic disease known as highly pathogenic avian influenza (HPAI). For the protection of poultry, neutralizing antibody to the hemagglutinin and neuraminidase proteins provide the primary protection against disease. A variety of vaccines elicit neutralizing antibody, including killed whole virus vaccines and fowl-pox recombinant vaccines. Antigenic drift of influenza viruses appears to be less important in causing vaccine failures in poultry as compared to humans. The cytotoxic T lymphocyte response can reduce viral shedding in mildly pathogenic avian influenza viruses, but provides questionable protection against HPAI. Influenza viruses can directly affect the immune response of infected birds, and the role of the Mx gene, interferons, and other cytokines in protection from disease remains unknown. PMID:10717293

  2. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques.

    Science.gov (United States)

    Shichinohe, Shintaro; Itoh, Yasushi; Nakayama, Misako; Ozaki, Hiroichi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-06-01

    The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans. PMID:26994587

  3. Detection of avian H7N9 influenza A viruses at the Yangtze Delta Region of China during early H7N9 outbreaks

    Science.gov (United States)

    Li, Yin; Huang, Xin-mei; Zhao, Dong-min; Liu, Yu-zhuo; He, Kong-wang; Liu, Yao-xing; Chen, Chang-hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-xing; Han, Kai-kai; Liu, Xiao-yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta Region. A total of 22 isolates were recovered, and 6 were subtyped as H7N9, 9 as H9N2, 4 as H7N9/H9N2, and 3 un-subtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates as well as other avian origin H7N9 isolates in the region but the PB1, PA, NP, and MP genes of the sequenced viruses were, however, more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM whereas the other one from the ducks at one BPF, which were H7N9 negative in serological analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that a better biosecurity and more effective vaccination should be implemented in backyard farms besides biosecurity management in LPMs. PMID:27309047

  4. Detection of Avian H7N9 Influenza A Viruses in the Yangtze Delta Region of China During Early H7N9 Outbreaks.

    Science.gov (United States)

    Li, Yin; Huang, Xin-Mei; Zhao, Dong-Min; Liu, Yu-Zhuo; He, Kong-Wang; Liu, Yao-Xing; Chen, Chang-Hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-Xing; Han, Kai-Kai; Liu, Xiao-Yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-05-01

    Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, some 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta region. In total 22 isolates were recovered, and six were subtyped as H7N9, nine as H9N2, four as H7N9/H9N2, and three unsubtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates, as well as other avian-origin H7N9 isolates in the region, but the PB1, PA, NP, and MP genes of the sequenced viruses were more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM, whereas the other one was from the ducks at one BPF, which were H7N9 negative in serologic analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that better biosecurity and more effective vaccination should be implemented in backyard farms, in addition to biosecurity management in LPMs. PMID:27309047

  5. Public Health and Epidemiological Considerations For Avian Influenza Risk Mapping and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Joseph P. Dudley

    2008-12-01

    Full Text Available Avian influenza viruses are now widely recognized as important threats to agricultural biosecurity and public health, and as the potential source for pandemic human influenza viruses. Human infections with avian influenza viruses have been reported from Asia (H5N1, H5N2, H9N2, Africa (H5N1, H10N7, Europe (H7N7, H7N3, H7N2, and North America (H7N3, H7N2, H11N9. Direct and indirect public health risks from avian influenzas are not restricted to the highly pathogenic H5N1 "bird flu" virus, and include low pathogenic as well as high pathogenic strains of other avian influenza virus subtypes, e.g., H1N1, H7N2, H7N3, H7N7, and H9N2. Research has shown that the 1918 Spanish Flu pandemic was caused by an H1N1 influenza virus of avian origins, and during the past decade, fatal human disease and human-to-human transmission has been confirmed among persons infected with H5N1 and H7N7 avian influenza viruses. Our ability to accurately assess and map the potential economic and public health risks associated with avian influenza outbreaks is currently constrained by uncertainties regarding key aspects of the ecology and epidemiology of avian influenza viruses in birds and humans, and the mechanisms by which highly pathogenic avian influenza viruses are transmitted between and among wild birds, domestic poultry, mammals, and humans. Key factors needing further investigation from a risk management perspective include identification of the driving forces behind the emergence and persistence of highly pathogenic avian influenza viruses within poultry populations, and a comprehensive understanding of the mechanisms regulating transmission of highly pathogenic avian influenza viruses between industrial poultry farms and backyard poultry flocks. More information is needed regarding the extent to which migratory bird populations to contribute to the transnational and transcontinental spread of highly pathogenic avian influenza viruses, and the potential for wild bird

  6. Avian influenza: Myth or mass murder?

    OpenAIRE

    Carol Louie

    2005-01-01

    The purpose of the present article was to determine whether avian influenza (AI) is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A virus...

  7. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A (H7N9) Virus Language: English Español Recommend ...

  8. Avian influenza surveillance of wild birds

    Science.gov (United States)

    Slota, Paul

    2007-01-01

    The President's National Strategy for Pandemic Influenza directs federal agencies to expand the surveillance of United States domestic livestock and wildlife to ensure early warning of hightly pathogenic avian influenza (HPAI) in the U.S. The immediate concern is a potential introduction of HPAI H5N1 virus into the U.S. The presidential directive resulted in the U.S. Interagency Strategic Plan for Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (referred to as the Wild Bird Surveillance Plan or the Plan).

  9. Avian Influenza: Should China Be Alarmed?

    OpenAIRE

    Su, Zhaoliang; Xu, Huaxi; Chen, Jianguo

    2007-01-01

    Avian influenza has emerged as one of the primary public health concern of the 21st century. Influenza strain H5N1 is capable of incidentally infecting humans and other mammals. Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have been transmitted from poultry to humans (by direct or indirect contact with infected birds) in several provinces of Mainland China, which has resulted in 22 cases of human infection and has created repercussions for the Chinese ec...

  10. Avian Influenza: a global threat needing a global solution

    Directory of Open Access Journals (Sweden)

    Koh GCH

    2008-11-01

    Full Text Available Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical.

  11. Highly pathogenic avian influenza virus among wild birds in Mongolia.

    Directory of Open Access Journals (Sweden)

    Martin Gilbert

    Full Text Available Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005-2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured from 7,855 environmental fecal samples (primarily from ducks, or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans, while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2, or 2009 and 2010 (clade 2.3.2.1; all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.

  12. Avian influenza: genetic evolution under vaccination pressure

    OpenAIRE

    Nava Gerardo M; Lucio Eduardo; Rodríguez-Ropón Andrea; Méndez Sara T; Vázquez Lourdes; Escorcia Magdalena

    2008-01-01

    Abstract Antigenic drift of avian influenza viruses (AIVs) has been observed in chickens after extended vaccination program, similar to those observed with human influenza viruses. To evaluate the evolutionary properties of endemic AIV under high vaccination pressure (around 2 billion doses used in the last 12 years), we performed a pilot phylogenic analysis of the hemagglutinin (HA) gene of AIVs isolated from 1994 to 2006. This study demonstrates that Mexican low pathogenicity (LP) H5N2-AIVs...

  13. Emergence of fatal avian influenza in New England harbor seals

    Science.gov (United States)

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  14. Case Series of Turkey Farms from the H5N2 Highly Pathogenic Avian Influenza Outbreak in the United States During 2015.

    Science.gov (United States)

    Dargatz, David; Beam, Andrea; Wainwright, Sherri; McCluskey, Brian

    2016-06-01

    Between December 2014 and June 2015, an outbreak of H5N2 HPAI caused the largest and most expensive agriculture emergency in U.S. Department of Agriculture-Animal and Plant Health Inspection Service history. The outbreak affected 21 states; 232 poultry farms (211 commercial and 21 backyard) were affected, and approximately 49.6 million birds were depopulated on poultry farms. The majority of affected farms were commercial turkey operations (n = 160). This report is a case series describing 104 H5N2 HPAI-affected turkey farms in Iowa, Minnesota, Missouri, North Dakota, South Dakota, and Wisconsin that had H5N2 HPAI virus detected between March 5 and June 1, 2015. The farm manager or farm personnel voluntarily completed an epidemiologic questionnaire administered by state and federal animal health officials. Equipment and vehicle sharing with other farms was common, particularly for feed trucks (77% of farms shared feed trucks with other farms), live haul loaders (90.4%), poult trailers (72.0%), and preloaders (80.7%). Many farms had water bodies in proximity to the farm, such as a pond (42.6%) or stream (21.8%). About one-third of farms (33.7%) reported seeing wild birds inside the turkey barns. Only 44.2% of farms reported that third-party biosecurity audits or assessments had been conducted. Because the newly introduced Asian H5N8 HPAI and two new HPAI viruses, H5N2 and H5N1, are now circulating in U.S. wild birds, primarily migratory waterfowl, a greater potential for reoccurrence exists with the spring and fall migratory seasons, representing higher risk periods for outbreaks of HPAI in commercial poultry farms in the future. Eliminating exposure to wild birds, especially waterfowl or environments contaminated by wild waterfowl, will reduce risk of reintroduction of H5N2 HPAI virus, and ensuring good on-farm biosecurity will help the poultry industry avoid introduction of influenza and lateral spread between farms. PMID:27309289

  15. 75 FR 17368 - Notice of Availability of an Evaluation of the Highly Pathogenic Avian Influenza Status of Czech...

    Science.gov (United States)

    2010-04-06

    ... Pathogenic Avian Influenza Status of Czech Republic and Sweden AGENCY: Animal and Plant Health Inspection... health status of the Czech Republic and Sweden relative ] to the H5N1 subtype of highly pathogenic avian... eradication measures in place in the Czech Republic and Sweden following the outbreaks of HPAI in...

  16. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines

    OpenAIRE

    Tang, De-chu C.; Zhang, Jianfeng; Toro, Haroldo; Shi, Zhongkai; van Kampen, Kent R.

    2009-01-01

    A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many o...

  17. Avian Influenza Risk Perception, Europe and Asia

    OpenAIRE

    de Zwart, Onno; Veldhuijzen, Irene K; Elam, Gillian; Aro, Arja R; Abraham, Thomas; Bishop, George D.; Richardus, Jan Hendrik; Brug, Johannes

    2007-01-01

    During autumn 2005, we conducted 3,436 interviews in European and Asian countries. We found risk perceptions of avian influenza to be at an intermediate level and beliefs of efficacy to be slightly lower. Risk perceptions were higher in Asia than Europe; efficacy beliefs were lower in Europe than Asia.

  18. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-01-24

    ... poultry caused by a paramyxovirus. END is one of most infectious diseases of poultry in the world. A death... avian influenza (HPAI) is an extremely infectious and potentially fatal form of the disease in birds and... birds' or poultry's freedom from END, HPAI subtype H5N1, and other communicable diseases,...

  19. Avian Influenza Biosecurity: Filling the Gaps with Non-Traditional Education

    Science.gov (United States)

    Madsen, Jennifer; Tablante, Nathaniel

    2013-01-01

    Outbreaks of highly pathogenic avian influenza have become endemic, crippling trade and livelihood for many, and in rare cases, resulting in human fatalities. It is imperative that up-to-date education and training in accessible and interactive formats be available to key target audiences like poultry producers, backyard flock owners, and…

  20. Environmental factors contributing to the spread of H5N1 avian influenza in mainland China

    NARCIS (Netherlands)

    L.Q. Fang; S.J. de Vlas (Sake); S. Liang (Song); C.W.N. Looman (Caspar); P. Gong (Peng); B. Xu (Bing); L. Yan (Lei); H. Yang (Honghui); J.H. Richardus (Jan Hendrik); W.C. Cao (Wu Chun)

    2008-01-01

    textabstractBackground: Since late 2003, highly pathogenic avian influenza (HPAI) outbreaks caused by infection with H5N1 virus has led to the deaths of millions of poultry and more than 10 thousands of wild birds, and as of 18-March 2008, at least 373 laboratory-confirmed human infections with 236

  1. Inactivation of avian influenza virus in chicken litter as a potential method to decontaminate poultry houses

    Science.gov (United States)

    Full cleaning and disinfection of a poultry house after an avian influenza virus (AIV) outbreak is expensive and labor intensive. An alternative to full house cleaning and disinfection is to inactivate the virus with high temperatures within the house. Litter in the house normally has a high virus...

  2. Knowledge of Avian Influenza (H5N1) among Poultry Workers, Hong Kong, China

    OpenAIRE

    Kim, Jean H; Lo, Fung Kuk; Cheuk, Ka Kin; Kwong, Ming Sum; Goggins, William B; Cai, Yan Shan; Lee, Shui Shan; Griffiths, Sian

    2011-01-01

    In 2009, a cross-sectional survey of 360 poultry workers in Hong Kong, China, showed that workers had inadequate levels of avian influenza (H5N1) risk knowledge, preventive behavior, and outbreak preparedness. The main barriers to preventive practices were low perceived benefits and interference with work. Poultry workers require occupation-specific health promotion.

  3. Validation of diagnostic tests for detection of avian influenza in vaccinated chickens using Bayesian analysis

    NARCIS (Netherlands)

    Goot, van der J.A.; Engel, B.; Water, van de S.G.P.; Buist, W.G.; Jong, de M.C.M.; Koch, G.; Boven, van M.; Stegeman, J.A.

    2010-01-01

    Vaccination is an attractive tool for the prevention of outbreaks of highly pathogenic avian influenza in domestic birds. It is known, however, that under certain circumstances vaccination may fail to prevent infection, and that the detection of infection in vaccinated birds can be problematic. Here

  4. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    OpenAIRE

    Huaiying Xu; Fang Meng; Dihai Huang; Xiaodan Sheng; Youling Wang; Wei Zhang; Weishan Chang; Leyi Wang; Zhuoming Qin

    2015-01-01

    Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses d...

  5. The Relationship of Avian Influenza and Waterbirds in Creating Genetic Diversity and the Role of Waterbirds as Reservoir for Avian Influenza

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-03-01

    Full Text Available Outbreaks of Avian Influenza (AI has enormous implications for poultry and human health.These outbreaks are caused by influenza A virus that belongS to the family of Orthomyxoviridae. These viruses are RNA viruses, negative polarity, and the envelope has segmented genom. Generally, Avian Influenza is a disease which originally occurred in birds with complex ecology including reassortment and transmission among different species of birds and mammals. The gene of AI virus can be transmitted among human and avian species as shown by the virus reasortantment that caused pandemic human influenza in 1957 and 1968. Pandemi in 1957 and 1968 were different from previously human viruses because the substitution of several genes are derived from avian viruses. Wild waterfowls especially Anseriformes (duck, muscovy duck and geese and Charadriiformes (gulls, seabirds, wild birds are the natural reservoirs for influenza type A viruses and play important role on the ecology and propagation of the virus. From this reservoir, influenza type A virus usually can be transmitted to other birds, mammals (including human and caused outbreak of lethal diseases. Waterfowl that is infected with influenza A virus usually does not show any clinical symptoms. However, several reports stated that HPAI viruses can cause severe disease with neurogical disorders led to death in waterfowl. Migration of birds including waterfowls have active role in transmitting and spreading the disease. Movement of wild birds and inappropriate poultry trade transportation play a greater role as vector in spreading HPAI to humans. Ecological change of environment has also a great effect in spreading AI viruses. The spreading pattern of AI viruses is usually influenced by seasons, where the prevalence of AI was reported to be in the fall, winter and rainy seasons. Finally, the effective control strategies against the spreading of AI viruses is required. Programs of monitoring, surveilence and

  6. THE MOLECULAR BIOLOGY OF AVIAN INFLUENZA VIRUS IN SHORT

    Science.gov (United States)

    Avian influenza virus (AIV) is an important pathogen of poultry as it can cause severe economic losses through disease, including respiratory signs and mortality, and effects on trade. Avian influenza virus is classified as type A influenza, which is a member of the orthomyxoviridae family. Charact...

  7. Early responses of chicken lungs and spleens to infection with highly pathogenic avian influenza virus using microarray analysis

    Science.gov (United States)

    Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) have originated in Asia and spread through several Middle Eastern, African and European countries, resulting in one of the most serious animal disease incident in recent history. These outbreaks were characterized by t...

  8. Fatal Avian Influenza A H5N1 in a Dog

    OpenAIRE

    Songserm, Thaweesak; Amonsin, Alongkorn; Jam-on, Rungroj; Sae-Heng, Namdee; Pariyothorn, Nuananong; Payungporn, Sunchai; Theamboonlers, Apiradee; Chutinimitkul, Salin; Thanawongnuwech, Roongroje; Poovorawan, Yong

    2006-01-01

    Avian influenza H5N1 virus is known to cross the species barrier and infect humans and felines. We report a fatal H5N1 infection in a dog following ingestion of an H5N1-infected duck during an outbreak in Thailand in 2004. With new reports of H5N1 virus continuing across Asia, Europe, and Africa, this finding highlights the need for monitoring of domestic animals during outbreaks.

  9. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity.

    Science.gov (United States)

    Machalaba, Catherine C; Elwood, Sarah E; Forcella, Simona; Smith, Kristine M; Hamilton, Keith; Jebara, Karim B; Swayne, David E; Webby, Richard J; Mumford, Elizabeth; Mazet, Jonna A K; Gaidet, Nicolas; Daszak, Peter; Karesh, William B

    2015-04-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community. PMID:25811221

  10. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  11. Avian influenza infections in birds – a moving target

    OpenAIRE

    Capua, Ilaria; Alexander, Dennis J.

    2006-01-01

    Avian influenza (AI) is a complex infection of birds, of which the ecology and epidemiology have undergone substantial changes over the last decade. Avian influenza viruses infecting poultry can be divided into two groups. The very virulent viruses cause highly pathogenic avian influenza (HPAI), with flock mortality as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all H5 and H7 viruses cause HPAI. All other viruses cause a milder, primarily respiratory, ...

  12. Avian influenza virus and free-ranging wild birds

    Science.gov (United States)

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  13. Transmission of Avian Influenza A Viruses Between Animals and People

    Science.gov (United States)

    ... Newsletters Transmission of Avian Influenza A Viruses Between Animals and People Language: English Español Recommend on ... Compartir Influenza A viruses have infected many different animals, including ducks, chickens, pigs, whales, horses, and seals. ...

  14. Avian influenza virus risk assessment in falconry

    OpenAIRE

    Lüschow Dörte; Lierz Peter; Jansen Andreas; Harder Timm; Hafez Hafez; Kohls Andrea; Schweiger Brunhilde; Lierz Michael

    2011-01-01

    Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV). In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks) as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds) seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their ...

  15. Avian Influenza H5N1 in Tigers and Leopards

    OpenAIRE

    Keawcharoen, Juthatip; Oraveerakul, Kanisak; Kuiken, Thijs; Fouchier, Ron A M; Amonsin, Alongkorn; Payungporn, Sunchai; Noppornpanth, Suwanna; Wattanodorn, Sumitra; Theamboonlers, Apiradee; Tantilertcharoen, Rachod; Pattanarangsan, Rattapan; Arya, Nlin; Ratanakorn, Parntep; Osterhaus, Albert D. M. E.; Poovorawan, Yong

    2004-01-01

    Influenza virus is not known to affect wild felids. We demonstrate that avian influenza A (H5N1) virus caused severe pneumonia in tigers and leopards that fed on infected poultry carcasses. This finding extends the host range of influenza virus and has implications for influenza virus epidemiology and wildlife conservation.

  16. Avian Flu School: A Training Approach to Prepare for H5N1 Highly Pathogenic Avian Influenza

    OpenAIRE

    Beltran-Alcrudo, Daniel; Bunn, David A.; Sandrock, Christian E.; Cardona, Carol J.

    2008-01-01

    Since the reemergence of highly pathogenic avian influenza (H5N1 HPAI) in 2003, a panzootic that is historically unprecedented in the number of infected flocks, geographic spread, and economic consequences for agriculture has developed. The epidemic has affected a wide range of birds and mammals, including humans. The ineffective management of outbreaks, mainly due to a lack of knowledge among those involved in detection, prevention, and response, points to the need for training on H5N1 HPAI....

  17. Avian influenza and poultry workers, Peru, 2006

    OpenAIRE

    Ortiz, Ernesto J.; Tadeusz J Kochel; Capuano, Ana W; Setterquist, Sharon F.; Gray, Gregory C.

    2007-01-01

    Background  Currently numerous countries in Asia, Africa and Europe are encountering highly pathogenic avian influenza (AI) infections in poultry and humans. In the Americas, home of the world’s largest poultry exporters, contingency plans are being developed and evaluated in preparation for the arrival of these viral strains. Objectives  With this cross‐sectional study, to our knowledge the first in its kind in Central or South America, we sought to learn whether Peruvian poultry workers had...

  18. Prevalence of avian influenza and host ecology

    OpenAIRE

    Garamszegi, László Zsolt; Møller, Anders Pape

    2007-01-01

    Waterfowl and shorebirds are common reservoirs of the low pathogenic subtypes of avian influenza (LPAI), which are easily transmitted to poultry and become highly pathogenic. As the risk of virus transmission depends on the prevalence of LPAI in host-reservoir systems, there is an urgent need for understanding how host ecology, life history and behaviour can affect virus prevalence in the wild. To test for the most important ecological correlates of LPAI virus prevalence at the interspecific ...

  19. Aerosolized avian influenza virus by laboratory manipulations

    OpenAIRE

    Li Zhiping; Li Jinsong; Zhang Yandong; Li Lin; Ma Limin; Li Dan; Gao Feng; Xia Zhiping

    2012-01-01

    Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used ...

  20. Evaluation of Antiviral Compounds Against Avian Influenza

    OpenAIRE

    Call, Evan W.

    1991-01-01

    Tests in vitro for antiviral activity against avian influenza viruses, A/Turkey/Sanpete/85 (H6N8) and A/Turkey/Sanpete/86 (H10N9), isolated in Sanpete County, Utah, utilized known antiviral agents, amantadine•HCl (adamantanamine hydrochloride) and ribavirin (1-β-D ribofuranosyl-1,2,4-triazole-3-carboxamide). The testing involved evaluation of seven drug concentrations. Maximum tolerated dose, minimum inhibitory concentration and therapeutic indexes were determined for each drug used. Both dru...

  1. Avian Influenza: Mixed Infections and Missing Viruses

    OpenAIRE

    Wentworth, David E.; Dugan, Vivien G.; Xudong Lin; Seth Schobel; Magdalena Plancarte; Kelly, Terra R.; Lindsay, LeAnn L.; Boyce, Walter M.

    2013-01-01

    A high prevalence and diversity of avian influenza (AI) viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA) gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined ...

  2. Avian influenza viruses - new causative a gents of human infections

    OpenAIRE

    Hrnjaković-Cvjetković Ivana; Cvjetković Dejan; Jerant-Patić Vera; Milošević Vesna; Tadić-Radovanov Jelena; Kovačević Gordana

    2006-01-01

    Introduction. Influenza A viruses can infect humans, some mammals and especially birds. Subtypes of human influenza A viruses: ACH1N1), ACH2N2) and A(H3N2) have caused pandemics. Avian influenza viruses vary owing to their 15 hemagglutinins (H) and 9 neuraminidases (N). Human cases of avian influenza A In the Netherlands in 2003, there were 83 human cases of influenza A (H7N7). In 1997, 18 cases of H5N1 influenza A, of whom 6 died, were found among residents of Hong Kong. In 2004, 34 human ca...

  3. Avian Influenza Viruses in Water Birds, Africa 1

    OpenAIRE

    Gaidet, Nicolas; Dodman, Tim; Caron, Alexandre; Balança, Gilles; Desvaux, Stephanie; Goutard, Flavie; Cattoli, Giovanni; Lamarque, François; Hagemeijer, Ward; Monicat, François

    2007-01-01

    We report the first large-scale surveillance of avian influenza viruses in water birds conducted in Africa. This study shows evidence of avian influenza viruses in wild birds, both Eurasian and Afro-tropical species, in several major wetlands of Africa.

  4. Practical aspects of vaccination of poultry against avian influenza virus

    Science.gov (United States)

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  5. 一起水禽H5N1疫情暴发后人群感染风险评估%Risk assessment of H5N1 human infection after an outbreak of avian influenza in water fowl

    Institute of Scientific and Technical Information of China (English)

    王玉林; 王鸣; 刘于飞; 蒋力云; 柳洋; 杨智聪; 郝爱华; 伍业健; 李海麟; 李铁钢

    2009-01-01

    目的 评估动物禽流感疫情暴发后人群感染的风险,探讨禽流感传播的可能性.方法 采用现场流行病学调查、分子流行病学、血清学研究及应急监测方法 ,对病、死禽的所有密切接触者进行医学观察;采用红细胞凝集抑制实验、实时荧光逆转录-聚合酶链式反应(RT-PCR)、基因测序方法 ,检测全部密切接触者的血清抗体,采集4个疫点环境标本检测禽流感H5核酸.结果 检测4个疫点环境标本22份,H5核酸阳性1份,序列分析与广州市2006年人禽流感病毒株A/China/GD01/2006(H5N1)的同源性为95.9%;检测疫区及周边2个农贸市场活禽交易场所环境标本62份,H5核酸均阴性;采集密切接触者的血样68份、咽拭子68份,禽流感H9抗体阳性6份,H5抗体、H5核酸均阴性,医学观察7 d,未发现禽流感感染者;应急监测区报告流感样患者337例,经排查未发现可疑禽流感患者.结论 此起水禽H5N1暴发未造成扩散,也未出现人感染病例,表明此次疫情的禽流感病毒H5N1对人的传播能力尚不强,引起人群感染的风险较低.%Objective To evaluate the risk of human infection after the outbreak of avian influenza H5N1 in animals.and probe the possibility for virus transmission.Methods By means of field epidemiological study,molecular epidemiology,serology and emergency surveillance,persons who had ever closely contacted with sick or dead poultry were observed.While,the RT-PCR and gene sequencing method were used to detect H5 nucleic acid from environmental swabs from 4 epidemic spots,and hemagglutination inhibition assay was also used to detect H5 antibody.Results of 22 environmental swabs detected from 4 epidemic spots,one was positive for H5 nucleic acid,and the homogeneity was 95.9% as compared with H5N1 virus A/China,/GD01/2006 (H5N1) found in Guangzhou in 2006 by gene sequence analysis.62 environmental swabs from live poultry stalls of food markets near epidemic spot were detected

  6. Multiple Control Strategies for Prevention of Avian Influenza Pandemic

    OpenAIRE

    Roman Ullah; Gul Zaman; Saeed Islam

    2014-01-01

    We present the prevention of avian influenza pandemic by adjusting multiple control functions in the human-to-human transmittable avian influenza model. First we show the existence of the optimal control problem; then by using both analytical and numerical techniques, we investigate the cost-effective control effects for the prevention of transmission of disease. To do this, we use three control functions, the effort to reduce the number of contacts with human infected with mutant avian influ...

  7. Avian influenza risk perception, Hong Kong

    OpenAIRE

    Fielding, Richard; Lam, Wendy W.T.; Ho, Ella Y.Y.; Lam, Tai Hing; Hedley, Anthony J.; Leung, Gabriel M

    2005-01-01

    A telephone survey of 986 Hong Kong households determined exposure and risk perception of avian influenza from live chicken sales. Householders bought 38,370,000 live chickens; 11% touched them when buying, generating 4,220,000 exposures annually; 36% (95% confidence interval [CI] 33%–39%) perceived this as risky, 9% (7%–11%) estimated >50% likelihood of resultant sickness, whereas 46% (43%–49%) said friends worried about such sickness. Recent China travel (adjusted odds ratio 0.35; CI 0.13–0...

  8. Avian influenza viruses - new causative a gents of human infections

    Directory of Open Access Journals (Sweden)

    Hrnjaković-Cvjetković Ivana

    2006-01-01

    Full Text Available Introduction. Influenza A viruses can infect humans, some mammals and especially birds. Subtypes of human influenza A viruses: ACH1N1, ACH2N2 and A(H3N2 have caused pandemics. Avian influenza viruses vary owing to their 15 hemagglutinins (H and 9 neuraminidases (N. Human cases of avian influenza A In the Netherlands in 2003, there were 83 human cases of influenza A (H7N7. In 1997, 18 cases of H5N1 influenza A, of whom 6 died, were found among residents of Hong Kong. In 2004, 34 human cases (23 deaths were reported in Viet Nam and Thailand. H5N1 virus-infected patients presented with fever and respiratory symptoms. Complications included respiratory distress syndrome, renal failure, liver dysfunction and hematologic disorders. Since 1999, 7 cases of human influenza H9N2 infection have been identified in China and Hong Kong. The importance of human infection with avian influenza viruses. H5N1 virus can directly infect humans. Genetic reassortment of human and avian influenza viruses may occur in humans co infected with current human A(HIN1 or A(H3N2 subtypes and avian influenza viruses. The result would be a new influenza virus with pandemic potential. All genes of H5Nl viruses isolated from humans are of avian origin. Prevention and control. The reassortant virus containing H and N from avian and the remaining proteins from human influenza viruses will probably be used as a vaccine strain. The most important control measures are rapid destruction of all infected or exposed birds and rigorous disinfection of farms. Individuals exposed to suspected animals should receive prophylactic treatment with antivirals and annual vaccination. .

  9. Environmental Factors Contributing to the Spread of H5N1 Avian Influenza in Mainland China

    OpenAIRE

    2008-01-01

    Background Since late 2003, highly pathogenic avian influenza (HPAI) outbreaks caused by infection with H5N1 virus has led to the deaths of millions of poultry and more than 10 thousands of wild birds, and as of 18-March 2008, at least 373 laboratory-confirmed human infections with 236 fatalities, have occurred. The unrestrained worldwide spread of this disease has caused great anxiety about the potential of another global pandemic. However, the effect of environmental factors influencing the...

  10. Environmental factors contributing to the spread of H5N1 avian influenza in mainland China

    OpenAIRE

    Fang, L.Q.; De Vlas, Sake,; Liang, Song; LOOMAN, Caspar; Gong, Peng; Xu, Bing; Yan, Lei; Yang, Honghui; Richardus, Jan Hendrik; Cao, Wu Chun

    2008-01-01

    textabstractBackground: Since late 2003, highly pathogenic avian influenza (HPAI) outbreaks caused by infection with H5N1 virus has led to the deaths of millions of poultry and more than 10 thousands of wild birds, and as of 18-March 2008, at least 373 laboratory-confirmed human infections with 236 fatalities, have occurred. The unrestrained worldwide spread of this disease has caused great anxiety about the potential of another global pandemic. However, the effect of environmental factors in...

  11. Isolation of avian influenza virus (H9N2) from emu in China

    OpenAIRE

    Kang Wenhua; Pang Wanyong; Hao Junfeng; Zhao Deming

    2006-01-01

    Abstract This is the first reported isolation of avian influenza virus (AIV) from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80 nm to 120 nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic ...

  12. Risk Mapping of Highly Pathogenic Avian Influenza Distribution and Spread

    Directory of Open Access Journals (Sweden)

    Richard A. J. Williams

    2008-12-01

    Full Text Available The rapid emergence and spread of highly pathogenic H5N1 avian influenza begs effective and accurate mapping of current knowledge and future risk of infection. Methods for such mapping, however, are rudimentary, and few good examples exist for use as templates for risk-mapping efforts. We review the transmission cycle of avian influenza viruses, and identify points on which risk-mapping can focus. We provide examples from the literature and from our work that illustrate mapping risk based on (1 avian influenza case occurrences, (2 poultry distributions and movements, and (3 migratory bird movements.

  13. Predicting the lay preventive strategies in response to avian influenza from perceptions of the threat.

    Directory of Open Access Journals (Sweden)

    Jocelyn Raude

    Full Text Available BACKGROUND: The identification of patterns of behaviors that lay people would engage in to protect themselves from the risk of infection in the case of avian influenza outbreak, as well as the lay perceptions of the threat that underlie these risk reduction strategies. METHODOLOGY/PRINCIPAL FINDINGS: A population-based survey (N = 1003 was conducted in 2008 to understand and describe how the French public might respond to a possible outbreak. Factor analyses highlighted three main categories of risk reduction strategies consisting of food quality assurance, food avoidance, and animal avoidance. In combination with the fear of contracting avian influenza, mental representations associated with the manifestation and/or transmission of the disease were found to significantly and systematically shape the behavioral responses to the perceived threat. CONCLUSIONS/SIGNIFICANCE: This survey provides insight into the nature and predictors of the protective patterns that might be expected from the general public during a novel domestic outbreak of avian influenza.

  14. Changing face of avian influenza ecology and its control: From wild birds to poultry and back again

    Science.gov (United States)

    Twenty-five epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since 1959. The largest of these outbreaks has been the H5N1 HPAI which has caused problems in poultry and some wild birds in over 57 countries of Asia, Europe and Africa since beginning in 1996. The H5N...

  15. Highly pathogenic avian influenza A (H5N1) virus in wildlife: diagnostics, epidemiology and molecular characteristics

    NARCIS (Netherlands)

    Keawcharoen, J.

    2010-01-01

    Since 2003, highly pathogenic avian influenza virus subtype H5N1 outbreaks have been reported in Southeast Asia causing high mortality in poultry and have also been found to cross the species barrier infecting human and other mammalian species. Thailand is one of the countries severely affected by t

  16. Genome Sequences of an H5N1 Highly Pathogenic Avian Influenza Virus Isolated from Vaccinated Layers in China in 2012

    OpenAIRE

    Liu, Hualei; Wang, Xiaoliang; Wang, Jingjing; Zhao, Yunling; Zheng, Dongxia; Chen, Jiming; Huang, Baoxu; Wang, Zhiliang

    2013-01-01

    An H5N1 virus was isolated from vaccinated layers during an outbreak of highly pathogenic avian influenza (HPAI) in Ningxia, China, in 2012. Phylogenetic analysis revealed that the virus is a novel variant in clade 7.2, and the outbreak likely resulted from mutations in the viral hemagglutinin (HA) gene.

  17. Evidence of previous avian influenza infection among US turkey workers.

    Science.gov (United States)

    Kayali, G; Ortiz, E J; Chorazy, M L; Gray, G C

    2010-06-01

    The threat of an influenza pandemic is looming, with new cases of sporadic avian influenza infections in man frequently reported. Exposure to diseased poultry is a leading risk factor for these infections. In this study, we used logistic regression to investigate serological evidence of previous infection with avian influenza subtypes H4, H5, H6, H7, H8, H9, H10, and H11 among 95 adults occupationally exposed to turkeys in the US Midwest and 82 unexposed controls. Our results indicate that farmers practising backyard, organic or free-ranging turkey production methods are at an increased risk of infection with avian influenza. Among these farmers, the adjusted odds ratios (ORs) for elevated microneutralization assay titres against avian H4, H5, H6, H9, and H10 influenza strains ranged between 3.9 (95% CI 1.2-12.8) and 15.3 (95% CI 2.0-115.2) when compared to non-exposed controls. The measured ORs were adjusted for antibody titres against human influenza viruses and other exposure variables. These data suggest that sometime in their lives, the workers had been exposed to low pathogenicity avian influenza viruses. These findings support calls for inclusion of agricultural workers in priority groups in pandemic influenza preparedness efforts. These data further support increasing surveillance and other preparedness efforts to include not only confinement poultry facilities, but more importantly, also small scale farms. PMID:19486492

  18. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Newsletters Prevention and Treatment of Avian Influenza A Viruses in ... Recommend on Facebook Tweet Share Compartir The Best Prevention is to Avoid Sources of Exposure Currently, the ...

  19. Avian influenza surveillance sample collection and shipment protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Instructions for mortality collection and shipment of avian influenza (AI) live bird surveillance sample collections. AI sample collections will include...

  20. Migratory Bird Avian Influenza Sampling; Yukon Kuskokwim Delta, Alaska, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data set containing avian influenza sampling information for spring and summer waterbirds on the Yukon Kuskokwim Delta, 2015. Data contains sample ID, species...

  1. Virulence of Avian Influenza A Viruses for Squirrel Monkeys

    Science.gov (United States)

    Murphy, Brian R.; Hinshaw, Virginia S.; Sly, D. Lewis; London, William T.; Hosier, Nanette T.; Wood, Frank T.; Webster, Robert G.; Chanock, Robert M.

    1982-01-01

    Ten serologically distinct avian influenza A viruses were administered to squirrel monkeys and hamsters to compare their replication and virulence with those of human influenza A virus, A/Udorn/307/72 (H3N2). In squirrel monkeys, the 10 avian influenza A viruses exhibited a spectrum of replication and virulence. The levels of virus replication and clinical response were closely correlated. Two viruses, A/Mallard/NY/6874/78 (H3N2) and A/Pintail/Alb/121/79 (H7N8), resembled the human virus in their level and duration of replication and in their virulence. At the other end of the spectrum, five avian viruses were restricted by 100- to 10,000-fold in replication in the upper and lower respiratory tract and were clearly attenuated compared with the human influenza virus. In hamsters, the 10 viruses exhibited a spectrum of replication in the nasal turbinates, ranging from viruses that replicated as efficiently as the human virus to those that were 8,000- fold restricted. Since several avian viruses were closely related serologically to human influenza viruses, studies were done to confirm the avian nature of these isolates. Each of the avian viruses plaqued efficiently at 42°C, a restrictive temperature for replication of human influenza A viruses. Avian strains that had replicated either very efficiently or very poorly in squirrel monkeys still grew to high titer in the intestinal tracts of ducks, a tropism characteristic of avian, but not mammalian, influenza viruses. These observations indicate that some avian influenza A viruses grow well and cause disease in a primate host, whereas other avian viruses are very restricted in this host. These findings also provide a basis for determining the gene or genes involved in the restriction of replication that is observed with the attenuated avian viruses. Application of such information may allow the preparation of reassortant viruses derived from a virulent human influenza virus and an attenuated avian virus for possible

  2. Detecting emerging transmissibility of avian influenza virus in human households

    OpenAIRE

    van Boven, M.; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C. A.; Heesterbeek, J A P

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i) the animal reservoir, (ii) humans who were infected b...

  3. H5N1 avian influenza in China

    Institute of Scientific and Technical Information of China (English)

    CHEN HuaLan

    2009-01-01

    H5N1 highly pathogenic avian influenza virus was first detected in a goose in Guangdong Province of China in 1996. Multiple genotypes of H5N1 viruses have been identified from apparently healthy wa-terfowl since 1999. In the years 2004-2008, over 100 outbreaks in domestic poultry occurred in 23 provinces and caused severe economic damage to the poultry industry in China. Beginning from 2004, a culling plus vaccination strategy has been implemented for the control of epidemics. Since then, over 35420000 poultry have been depopulated, and over 55 billion doses of the different vaccines have been used to control the outbreaks. Although it is logistically impossible to vaccinate every single bird in China due to the large poultry population and the complicated rearing styles, there is no doubt that the increased vaccination coverage has resulted in decreased disease epidemic and environmental virus loading. The experience in China suggests that vaccination has played an important role in the protec-tion of poultry from H5N1 virus infection, the reduction of virus load in the environment, and the pre-vention of H5N1 virus transmission from poultry to humans.

  4. H5N1 avian influenza in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    H5N1 highly pathogenic avian influenza virus was first detected in a goose in Guangdong Province of China in 1996. Multiple genotypes of H5N1 viruses have been identified from apparently healthy waterfowl since 1999. In the years 2004-2008, over 100 outbreaks in domestic poultry occurred in 23 provinces and caused severe economic damage to the poultry industry in China. Beginning from 2004, a culling plus vaccination strategy has been implemented for the control of epidemics. Since then, over 35420000 poultry have been depopulated, and over 55 billion doses of the different vaccines have been used to control the outbreaks. Although it is logistically impossible to vaccinate every single bird in China due to the large poultry population and the complicated rearing styles, there is no doubt that the increased vaccination coverage has resulted in decreased disease epidemic and environmental virus loading. The experience in China suggests that vaccination has played an important role in the protection of poultry from H5N1 virus infection, the reduction of virus load in the environment, and the prevention of H5N1 virus transmission from poultry to humans.

  5. Control strategies for highly pathogenic avian influenza: a global perspective.

    Science.gov (United States)

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade. PMID:18411931

  6. 人感染禽流感病毒的传播%The spread of human infection with avian influenza virus

    Institute of Scientific and Technical Information of China (English)

    陈帅帅; 郭潮潭

    2013-01-01

    Avian influenza virus belongs to type A influenza virus,its infection lead to infectious disease that spread among the avian.During 1997,some avian influenza viruses that present in poultry have across the species barrier,so that it can transmit from avian to humans directly.It has caused the death of many infections in Asia and the whole world,and became a potential pandemic factor.Therefore,the situation of avian influenza infection in humans from 1997 are aualyzed in this review,in order to provide science basis for the prevention and control about the outbreak of new avian influenza in the future.%禽流感病毒属于A型流感病毒,其感染导致的传染病一般只在禽类间传播,然而1997年以来,存在于家禽中的一些禽流感病毒已经突破了动物种间屏障,能够直接从禽类传播给人类,导致亚洲及全球范围内很多感染病例的死亡,存在潜在大流行的威胁.此文对1997年以来禽流感病毒感染人类的状况进行分析,为今后新型禽流感暴发的预防和控制提供参考.

  7. 禽流感病%Avian Influenza

    Institute of Scientific and Technical Information of China (English)

    周先志

    1999-01-01

    @@ 禽流感病(avian influenza)是由甲型流感病毒引起的一种禽类疾病综合征.1997年5月,我国香港特别行政区1例3岁儿童死于不明原因的多器官功能衰竭,同年8月经美国疾病预防和控制中心以及WHO荷兰鹿特丹国家流感中心鉴定为禽甲型流感病毒H5N1[A(H5N1)]引起的人类流感[1~3].这是世界上首次证实A(H5N1)感染人类,因而引起医学界的广泛关注.

  8. Serological diagnosis of avian influenza in poultry

    DEFF Research Database (Denmark)

    Comin, Arianna; Toft, Nils; Stegeman, Arjan;

    2013-01-01

    Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the gold standard' for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy...... Sp, the HI test may be effectively considered a gold standard. In the framework of LPAI surveillance, where large numbers of samples have to be processed, the blocking ELISA could be a valid alternative to the HI test, in that it is almost as sensitive and specific as the HI test yet quicker and...... has been evaluated in comparison with HI test results, whose performance for poultry has not been properly evaluated. Objective The objective of this study was to estimate the diagnostic sensitivity (Se) and specificity (Sp) of the HI test and six other diagnostic assays for the detection of AI...

  9. Avian Influenza spread and transmission dynamics

    Science.gov (United States)

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  10. Cloning and Expression of Highly Pathogenic Avian Influenza Virus Full-Length Nonstructural Gene in Pichia pastoris

    OpenAIRE

    Abubakar, M. B.; I. Aini; Omar, A. R.; Hair-Bejo, M

    2011-01-01

    Avian influenza (AI) is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1) was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA...

  11. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China

    OpenAIRE

    Zhijun Yu; Xiaolong Gao; Tiecheng Wang; Yanbing Li; Yongcheng Li; Yu Xu; Dong Chu; Heting Sun; Changjiang Wu; Shengnan Li; Haijun Wang; Yuanguo Li; Zhiping Xia; Weishi Lin; Jun Qian

    2015-01-01

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans ...

  12. Avian influenza virus risk assessment in falconry

    Directory of Open Access Journals (Sweden)

    Lüschow Dörte

    2011-04-01

    Full Text Available Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV. In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008 falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54 in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74 and 3.8% of ducks (n = 53 using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.

  13. Highly Pathogenic Avian Influenza Virus Infection in Feral Raccoons, Japan

    OpenAIRE

    Horimoto, Taisuke; Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; SASHIKA, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-01-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health.

  14. Homo- and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa.

    Directory of Open Access Journals (Sweden)

    Taiana P Costa

    Full Text Available Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin and heterosubtypic (heterologous hemagglutinin low pathogenic avian influenza (LPAI viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.

  15. Avian Influenza: Myth or Mass Murder?

    Directory of Open Access Journals (Sweden)

    Carol Louie

    2005-01-01

    Full Text Available The purpose of the present article was to determine whether avian influenza (AI is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  16. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  17. The challenges of avian influenza virus: mechanism, epidemiology and control

    Institute of Scientific and Technical Information of China (English)

    George F. GAO; Pang-Chui SHAW

    2009-01-01

    @@ Early 2009, eight human infection cases of H5N1 highly pathogenic avian influenza (HPAI) virus, with 5 death cases, were reported in China. This again made the world alert on a possible pandemic worldwide, probably caused by avian-origin influenza virus. Again H5N1 is in the spotlight of the world, not only for the scientists but also for the ordinary people. How much do we know about this virus? Where will this virus go and where did it come? Can we avoid a possible pandemic of influenza? Will the human beings conquer this devastating agent? Obviously we can list more questions than we know the answers.

  18. Virulence of Avian Influenza A Viruses for Squirrel Monkeys

    OpenAIRE

    Murphy, Brian R.; Hinshaw, Virginia S.; Sly, D. Lewis; London, William T.; Hosier, Nanette T.; Wood, Frank T.; Webster, Robert G.; Chanock, Robert M.

    1982-01-01

    Ten serologically distinct avian influenza A viruses were administered to squirrel monkeys and hamsters to compare their replication and virulence with those of human influenza A virus, A/Udorn/307/72 (H3N2). In squirrel monkeys, the 10 avian influenza A viruses exhibited a spectrum of replication and virulence. The levels of virus replication and clinical response were closely correlated. Two viruses, A/Mallard/NY/6874/78 (H3N2) and A/Pintail/Alb/121/79 (H7N8), resembled the human virus in t...

  19. Performance of Rapid Influenza Diagnostic Testing in Outbreak Settings

    OpenAIRE

    Peci, Adriana; Winter, Anne-Luise; King, Eddie-Chong; Blair, Joanne; Gubbay, Jonathan B.

    2014-01-01

    Rapid influenza diagnostic tests (RIDTs) may be useful during institutional respiratory disease outbreaks to identify influenza and enable antivirals to be rapidly administered to patients and for the prophylactic treatment of those exposed to the virus but not yet symptomatic. The performance of RIDTs at the outbreak level is not well documented in the literature. This study aimed to evaluate the performance of RIDTs in comparison with that of real-time reverse transcription (rRT)-PCR in the...

  20. Environmental and demographic determinants of avian influenza viruses in waterfowl across the contiguous United States.

    Directory of Open Access Journals (Sweden)

    Matthew L Farnsworth

    Full Text Available Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic

  1. Avian Influenza (H5N1) Expert System using Dempster-Shafer Theory

    OpenAIRE

    Maseleno, Andino; Hasan, Md. Mahmud

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built an Avian Influenza (H5N1) Expert System for identifying avian influenza disease and displaying the result of identification process. In this paper, we describe five symptoms as major symptoms which include depression, combs,...

  2. Seroepidemiological Evidence of Avian Influenza A Virus Transmission to Pigs in Southern China

    OpenAIRE

    Su, Shuo; Qi, Wenbao; Chen, Jidang; Zhu, Wanjun; Huang, Zhen; Xie, Jiexiong; Zhang, Guihong

    2013-01-01

    Recently, three novel avian-origin swine influenza viruses (SIVs) were first isolated from pigs in Guangdong Province, southern China, yet little is known about the seroprevalence of avian influenza viruses among pigs in southern China. Here, we report for the first time the seroprevalence of avian H3, H4, and H6 influenza viruses in swine populations and the lack of seroepidemiological evidence of avian H5 influenza virus transmission to pigs in China.

  3. Performance of rapid influenza diagnostic testing in outbreak settings.

    Science.gov (United States)

    Peci, Adriana; Winter, Anne-Luise; King, Eddie-Chong; Blair, Joanne; Gubbay, Jonathan B

    2014-12-01

    Rapid influenza diagnostic tests (RIDTs) may be useful during institutional respiratory disease outbreaks to identify influenza and enable antivirals to be rapidly administered to patients and for the prophylactic treatment of those exposed to the virus but not yet symptomatic. The performance of RIDTs at the outbreak level is not well documented in the literature. This study aimed to evaluate the performance of RIDTs in comparison with that of real-time reverse transcription (rRT)-PCR in the context of institutional respiratory disease outbreaks. This study included outbreak-related respiratory specimens tested for influenza virus at Public Health Ontario Laboratories by both RIDT and rRT-PCR, from 1 September 2010 to 30 April 2013. At the outbreak level, performance testing of RIDTs compared to rRT-PCR for the detection of any influenza virus type demonstrated an overall sensitivity of 76.5%, a specificity of 99.7%, a positive predictive value (PPV) of 99.5%, and a negative predictive value of 85.3%. Because of their high specificity and PPV, even outside of the influenza season, RIDTs can play a role in screening for influenza virus in outbreaks and instituting antiviral therapy in a timely manner when positive. RIDTs can also be useful in remote settings where molecular virology testing is not easily accessible. Suboptimal sensitivity of RIDTs can be addressed by the use of molecular testing. PMID:25320225

  4. Risk maps for the spread of highly pathogenic avian influenza in poultry.

    Directory of Open Access Journals (Sweden)

    Gert Jan Boender

    2007-04-01

    Full Text Available Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms.

  5. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015.

    Science.gov (United States)

    Bertran, Kateri; Swayne, David E; Pantin-Jackwood, Mary J; Kapczynski, Darrell R; Spackman, Erica; Suarez, David L

    2016-07-01

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics of representative Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses detected early in the North American outbreak were investigated in chickens. High mean chicken infectious doses and lack of seroconversion in survivors indicated the viruses were poorly chicken adapted. Pathobiological features were consistent with HPAI virus infection, although the delayed appearance of lesions, longer mean death times, and reduced replication in endothelial cells differed from features of most other Eurasian H5N1 HPAI viruses. Although these initial U.S. H5 HPAI viruses had reduced adaptation and transmissibility in chickens, multi-generational passage in poultry could generate poultry adapted viruses with higher infectivity and transmissibility. PMID:27110710

  6. Avian influenza in Croatia - Current status

    International Nuclear Information System (INIS)

    Full text: Wild birds can carry a wide range of viral and other zoonotic agents, which may be transmitted to humans. From October 2005 to March 2006 HPAI H5N1 virus was isolated from wild birds (mute swans, black-headed gulls and a mallard duck) in Croatia at five locations. After isolation of H5N1 virus at 2006 from mallard duck near City of Zagreb (capital of Croatia) Department of Poultry Diseases with Clinic at the Faculty of Veterinary Medicine, has conducted monitoring of avian viruses that could endanger human health. Samples (999 pharyngeal and cloacal swabs) from 23 wild bird species were taken. After year 2006 Croatia has regular monitoring for avian influenza in wild birds and poultry (especially in the backyard flocks). During 2007 (6,928 wild birds and 18,000 blood samples from poultry) and 2008 (2,486 wild birds; 20,000 blood samples and 1,500 cloacal swabs from poultry) were taken. Isolation was performed with classical virus detection method by inoculation of 10 day old chicken embryos, and molecular methods by conventional PCR and Real Time PCR (M gene, H5, H7 and N1 genes), and serological methods by antibody detection from blood samples (inhibition hemagglutination and ELISA). All samples were HPAI virus negative but investigators from the Poultry Centre of the Croatian Veterinary Institute isolated from wild birds LPAI viruses: H2N3, H3N8, H5N3 and H10N7. The results obtained by these investigations and monitoring revealed the need for permanent monitoring of wild bird's health status, especially the water birds species. Vaccination against AI is never practiced in Croatia. Quick and accurate detection of wild migratory birds infected with the H5N1 virus prevented the spread of the virus to the domestic poultry in Croatia which would have had enormous consequences. (author)

  7. Molecular diagnostics of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2006-01-01

    direct sequencing of the PCR product. The possibility of typization using molecular methods is based on the big difference at the amino acid and nucleotide levels between different HA subtypes (from 20- 74%, while the differences between strains of the same HA subtype are relatively small (0- 9%. The basic advantage in the detection and typization of influenza viruses using the RTPCR method is that it saves time. Namely, it can be performed directly from the samples taken in the field, and the result can be obtained within the same day, contrary to conventional methods that take 7 to 10 days. The obtained PCR product can also be sequenced immediately, which can provide an answer to the possible virulent potential of the isolate and its further spreading. The establishment of changes in the HA gene sequence can provide us with the information about the direction of the development of the genetic drift. The paper will describe in detail the possibilities for the implementation of molecular methods in diagnostics and typization, in fact, in the molecular epizootiology of avian influenza.

  8. Living with avian FLU⬝Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    Science.gov (United States)

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions. PMID:27066713

  9. Avian Influenza in wild birds from Chile, 2007-2009.

    Science.gov (United States)

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-01

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms. PMID:25602438

  10. Susceptibility and Status of Avian Influenza in Ostriches.

    Science.gov (United States)

    Abolnik, Celia; Olivier, Adriaan; Reynolds, Chevonne; Henry, Dominic; Cumming, Graeme; Rauff, Dionne; Romito, Marco; Petty, Deryn; Falch, Claudia

    2016-05-01

    The extensive nature of ostrich farming production systems bears the continual risk of point introductions of avian influenza virus (AIV) from wild birds, but immune status, management, population density, and other causes of stress in ostriches are the ultimate determinants of the severity of the disease in this species. From January 2012 to December 2014, more than 70 incidents of AIV in ostriches were reported in South Africa. These included H5N2 and H7N1 low pathogenicity avian influenza (LPAI) in 2012, H7N7 LPAI in 2013, and H5N2 LPAI in 2014. To resolve the molecular epidemiology in South Africa, the entire South African viral repository from ostriches and wild birds from 1991 to 2013 (n = 42) was resequenced by next-generation sequencing technology to obtain complete genomes for comparison. The phylogenetic results were supplemented with serological data for ostriches from 2012 to 2014, and AIV-detection data from surveillance of 17 762 wild birds sampled over the same period. Phylogenetic evidence pointed to wild birds, e.g., African sacred ibis (Threskiornis aethiopicus), in the dissemination of H7N1 LPAI to ostriches in the Eastern and Western Cape provinces during 2012, in separate incidents that could not be epidemiologically linked. In contrast, the H7N7 LPAI outbreaks in 2013 that were restricted to the Western Cape Province appear to have originated from a single-point introduction from wild birds. Two H5N2 viruses detected in ostriches in 2012 were determined to be LPAI strains that were new introductions, epidemiologically unrelated to the 2011 highly pathogenic avian influenza (HPAI) outbreaks. Seventeen of 27 (63%) ostrich viruses contained the polymerase basic 2 (PB2) E627K marker, and 2 of the ostrich isolates that lacked E627K contained the compensatory Q591K mutation, whereas a third virus had a D701N mutation. Ostriches maintain a low upper- to midtracheal temperature as part of their adaptive physiology for desert survival, which may

  11. Avian Influenza: Mixed Infections and Missing Viruses

    Directory of Open Access Journals (Sweden)

    David E. Wentworth

    2013-08-01

    Full Text Available A high prevalence and diversity of avian influenza (AI viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture.

  12. Cost-benefit analysis of avian influenza control in Nepal.

    Science.gov (United States)

    Karki, S; Lupiani, B; Budke, C M; Karki, N P S; Rushton, J; Ivanek, R

    2015-12-01

    Numerous outbreaks of highly pathogenic avian influenza A strain H5N1 have occurred in Nepal since 2009 despite implementation of a national programme to control the disease through surveillance and culling of infected poultry flocks. The objective of the study was to use cost-benefit analysis to compare the current control programme (CCP) with the possible alternatives of: i) no intervention (i.e., absence of control measures [ACM]) and ii) vaccinating 60% of the national poultry flock twice a year. In terms of the benefit-cost ratio, findings indicate a return of US $1.94 for every dollar spent in the CCP compared with ACM. The net present value of the CCP versus ACM, i.e., the amount of money saved by implementing the CCP rather than ACM, is US $861,507 (the benefits of CCP [prevented losses which would have occurred under ACM] minus the cost of CCP). The vaccination programme yields a return of US $2.32 for every dollar spent when compared with the CCR The net present value of vaccination versus the CCP is approximately US $12 million. Sensitivity analysis indicated thatthe findings were robust to different rates of discounting, whereas results were sensitive to the assumed market loss and the number of birds affected in the outbreaks under the ACM and vaccination options. Overall, the findings of the study indicate that the CCP is economically superior to ACM, but that vaccination could give greater economic returns and may be a better control strategy. Future research should be directed towards evaluating the financial feasibility and social acceptability of the CCP and of vaccination, with an emphasis on evaluating market reaction to the presence of H5N1 infection in the country. PMID:27044153

  13. A Humidity-Driven Prediction System for Influenza Outbreaks

    Science.gov (United States)

    Thrastarson, H. T.; Teixeira, J.

    2015-12-01

    Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.

  14. Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar.

    Directory of Open Access Journals (Sweden)

    Mathilde C Paul

    Full Text Available Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV in domestic poultry in four different environments: (1 lower-Northern Thailand, where H5N1 circulated in 2004-2005, (2 the Red River Delta in Vietnam, where H5N1 is circulating widely, (3 the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4 the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.

  15. Access to health information may improve behavior in preventing Avian influenza among women

    OpenAIRE

    Ajeng T. Endarti; Shamsul A. Shah

    2011-01-01

    Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian inf...

  16. The Irrationality of GOF Avian Influenza Virus Research

    OpenAIRE

    Wain-Hobson, Simon

    2014-01-01

    The last two and a half years have witnessed a curious debate in virology characterized by a remarkable lack of discussion. It goes by the misleading epithet “gain of function” (GOF) influenza virus research, or simply GOF. As will be seen, there is nothing good to be gained. The controversial experiments confer aerosol transmission on avian influenza virus strains that can infect humans, but which are not naturally transmitted between humans. Some of the newer strains are clearly highly path...

  17. Avian influenza: mini-review, European control measures and current situation in Asia.

    Science.gov (United States)

    Steensels, M; Van Borm, S; Van den Berg, T P

    2006-01-01

    Avian influenza (AI) is a highly contagious disease for birds, which can easily take epidemic proportions when appropriate and efficacious measures are not taken immediately. Influenza viruses can vary in pathogenicity from low to medium or highly pathogenic. A low pathogenic strain can become highly pathogenic by introduction of new mutations (insertions, deletions or substitutions) in the cleavage site of the haemagglutinin during circulation in chickens. Up till now only H5 and H7 strains gave rise to highly pathogenic strains in this manner. At present the avian H5N1 influenza virus is endemic in Southeast Asia (47) and is expanding westward. In addition, its virulence is extremely higher than other HPAI, like H7N7. Moreover, the avian host range is expanding, as species previously considered resistant, now get infected and can contribute to the dissemination of the virus. In the context of H5N1, all movements (trade, high international mobility, migration and smuggling) can become high risk factors of spreading the disease. In most European countries eradication measures are applied when an outbreak occurs. But such measures have great economical and social implications, and are no longer generally accepted. The combination of prophylactic measures (vaccination and medicines), hygienic measures and surveillance could offer an acceptable alternative. PMID:16800241

  18. Establishment of a Risk Assessment Framework for Analysis of the Spread of Highly Pathogenic Avian Influenza

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Jing-fei; WU Chun-yan; YANG Yan-tao; JI Zeng-tao; WANG Hong-bin

    2007-01-01

    To evaluate the risk of highly pathogenic avian influenza (HPAI) in mainland China, a risk assessment framework was built.Risk factors were determined by analyzing the epidemic data using the brainstorming method; the analytic hierarchy process was designed to weigh risk factors, and the integrated multicriteria analysis was used to evaluate the final result.The completed framework included the risk factor system, data standards for risk factors, weights of risk factors, and integrated assessment methods. This risk assessment framework can be used to quantitatively analyze the outbreak and spread of HPAI in mainland China.

  19. Slaughter of poultry during the epidemic of avian influenza in the Netherlands in 2003

    OpenAIRE

    Gerritzen, M.A.; Lambooij, E.; Stegeman, J.A.; Spruijt, B.M.

    2006-01-01

    During an outbreak of avian influenza in the Netherlands in spring 2003, the disease was controlled by destroying all the poultry on the infected farms and on all the farms within a radius of 3 km. In total, 30 million birds were killed on 1242 farms and in more than 8000 hobby flocks, by using mobile containers filled with carbon dioxide, mobile electrocution lines and by gassing whole poultry houses with carbon monoxide or carbon dioxide. Observations of these methods were used to compare t...

  20. Serological Survey for Avian Influenza in Turkeys in Three States of Southwest Nigeria

    OpenAIRE

    2015-01-01

    Since the first outbreak of avian influenza (AI) in Nigeria in 2006, there has been continuous monitoring of the disease in chickens with little attention given to turkeys. As part of on-going surveillance for AI in southwest Nigeria, we used a competitive ELISA to detect anti-AI virus antibodies in 520 turkey sera obtained from poultry farms in Oyo, Osun, and Ondo states while haemagglutination inhibiting antibodies against low pathogenic AI viruses (LPAIVs) were detected using H3N8 and H5N2...

  1. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R. G.; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  2. A generic model of contagious disease and its application to human-to-human transmission of avian influenza.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.

    2007-03-01

    Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

  3. Avian influenza (H5 subtype antibodies in village chickens in four local government areas of Kaduna state, Nigeria

    Directory of Open Access Journals (Sweden)

    Victor T. Gugong

    Full Text Available Aim: Biosecurity measures are rarely implemented in traditional farming systems especially in the villages. Given the importance of the village chickens as a source of income for rural families and its public health concern due to the frequent contact that exist between these birds and humans a study was conducted to assess the presence of antibodies to the H5 avian influenza virus subtype in village chickens in some Local Government Areas (LGAs in Kaduna State. Materials and Methods: A total of 480 sera samples were obtained from apparently healthy local chickens in five LGAs where the avian influenza outbreak has not been reported. The sera were subjected to the Haemagglutination inhibition (HI test using the H5N2 avian influenza antigen. Results: An overall prevalence of 2.9% with an individual seroprevalence of 10%, 0.8%, 4.1% and 3.3% in Jaba, Jemma'a, Kaura and Zango Kataf local government areas respectively. There was no association between presence of pigs and detection of avian influenza antibodies, p=0.8723, OR 0.9153 (95% CI: 0.3108–2.695, but there was an association between presence of water birds (Gesse and Ducks and detection of avian influenza antibodies, p= 0.0203, OR 3.488 (95% CI: 1.146–10.61. Conclusions: This result highlights the important role apparently healthy village chickens may play in virus perpetuation (reservoir and in the spread of avian influenza to other animals and humans. An enhanced and sustained virological surveillance for the virus in village chickens was recommended. [Vet World 2012; 5(12.000: 713-717

  4. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness.

    Science.gov (United States)

    Vemula, Sai V; Ahi, Yadvinder S; Swaim, Anne-Marie; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  5. Influenza A Outbreak in an Ambulatory Stem Cell Transplant Center

    OpenAIRE

    Apewokin, Senu; Vyas, Keyur; Lester, Laura K.; Grazzuitti, Monica; Haselow, Dirk T.; Wolfe, Frankie; Roberts, Michelle; Bellamy, William; Kumar, Naveen Sanath; Hunter, Dolris; Lee, Jeannette; Laudadio, Jennifer; Wheeler, J. Gary; Bradsher, Robert

    2014-01-01

    Background  In the era of cost-consciousness regarding healthcare , provision of medical services in an outpatient setting has become increasingly attractive. We report an influenza outbreak in an ambulatory stem cell transplant center in 2013 that highlights unique identification and infection control challenges in this setting. Methods  Nasopharyngeal swabs were performed on patients with suspected influenza-like illnesses (ILI), defined by subjective fever or measured temperature of ≥37.7°...

  6. Effects of closing and reopening live poultry markets on the epidemic of human infection with avian influenza A virus

    Science.gov (United States)

    Lu, Jian; Liu, Wendong; Xia, Rui; Dai, Qigang; Bao, Changjun; Tang, Fenyang; Zhu, yefei; Wang, Qiao

    2016-01-01

    Abstract Live poultry markets (LPMs) are crucial places for human infection of influenza A (H7N9 virus). In Yangtze River Delta, LPMs were closed after the outbreak of human infection with avian influenza A (H7N9) virus, and then reopened when no case was found. Our purpose was to quantify the effect of LPMs’ operations in this region on the transmission of influenza A (H7N9) virus. We obtained information about dates of symptom onset and locations for all human influenza A (H7N9) cases reported from Shanghai, Jiangsu and Zhejiang provinces by May 31, 2014, and acquired dates of closures and reopening of LPMs from official media. A two-phase Bayesian model was fitted by Markov Chain Monte Carlo methods to process the spatial and temporal influence of human cases. A total of 235 cases of influenza A (H7N9) were confirmed in Shanghai, Jiangsu and Zhejiang by May 31, 2014. Using these data, our analysis showed that, after LPM closures, the influenza A (H7N9) outbreak disappeared within two weeks in Shanghai, one week in Jiangsu, and one week in Zhejiang, respectively. Local authorities reopened LPMs when there was no outbreak of influenza A (H7N9), which did not lead to reemergence of human influenza A (H7N9). LPM closures were effective in controlling the H7N9 outbreak. Reopening of LPM in summer did not increase the risk of human infection with H7N9. Our findings showed that LPMs should be closed immediately in areas where the H7N9 virus is confirmed in LPM. When there is no outbreak of H7N9 virus, LPMs can be reopened to satisfy the Chinese traditional culture of buying live poultry. In the long term, local authorities should take a cautious attitude in permanent LPM closure.

  7. Quantitative Risk Assessment of Avian Influenza Virus Infection via Water

    NARCIS (Netherlands)

    Schijven FJ; Teunis PFM; Roda Husman AM de; MGB

    2006-01-01

    Using literature data, daily infection risks of chickens and humans with H5N1 avian influenza virus (AIV) by drinking water consumption were estimated for the Netherlands. A highly infectious virus and less than 4 log10 drinking water treatment (reasonably inefficient) may lead to a high infection r

  8. DETECTION OF AVIAN INFLUENZA VIRUS USING AN INTERFEROMETRIC BIOSENSOR

    Science.gov (United States)

    An optical interferometric waveguide immunoassay for direct and label-less detection of avian influenza virus is described. The assay response is based on index of refraction changes that occur upon binding of virus particles to antigen (hemagglutinin) specific antibodies on the waveguide surface. ...

  9. Pathobiology of avian influenza virus infections in wild birds

    Science.gov (United States)

    Individual avian Influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological features in chickens, AI viruses (AIV) are categorized as low pathogenicity (LPAI) or high pathogenicity (HPAI) viruses, and can be of any of...

  10. Highly Pathogenic Avian Influenza: Intersecting Humans, Animals, and the Environment

    Science.gov (United States)

    The Eurasian-African H5N1 highly pathogenic avian influenza (HPAI) virus has caused an unprecedented epizootic affecting mainly poultry, but has crossed multiple species barriers to infect captive and wild birds, carnivorous mammals and humans. There is still great concern over the continued infecti...

  11. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Science.gov (United States)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  12. Immunohistochemical staining of avian influenza virus in tissues

    Science.gov (United States)

    Immunohistochemical methods are commonly used for studying the pathogenesis of avian influenza (AI) virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and metho...

  13. Comparison of molecular classification and experimental pathogenicity for classification of low and high pathogenicity H5 and H7 avian influenza viruses

    Science.gov (United States)

    Highly pathogenic avian influenza (HPAI) viruses, which have been restricted to H5 and H7 subtypes, have caused continuous outbreaks in the poultry industry with devastating economic losses and is a severe threat to public health. Genetic features and severity of the disease in poultry determine wh...

  14. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    Science.gov (United States)

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  15. Risk Mapping for Avian Influenza: a Social–Ecological Problem

    Directory of Open Access Journals (Sweden)

    Graeme S. Cumming

    2010-09-01

    Full Text Available Pathogen dynamics are inseparable from the broader environmental context in which pathogens occur. Although some pathogens of people are primarily limited to the human population, occurrences of zoonoses and vector-borne diseases are intimately linked to ecosystems. The emergence of these diseases is currently being driven by a variety of influences that include, among other things, changes in the human population, long-distance travel, high-intensity animal-production systems, and anthropogenic modification of ecosystems. Anthropogenic impacts on ecosystems have both direct and indirect (food-web mediated effects. Therefore, understanding disease risk for zoonoses is a social–ecological problem. The articles in this special feature focus on risk assessment for avian influenza. They include analyses of the history and epidemiological context of avian influenza; planning and policy issues relating to risk; the roles of biogeography and spatial and temporal variation in driving the movements of potential avian influenza carriers; approaches to quantifying risk; and an assessment of risk-related interactions among people and birds in Vietnamese markets. They differ from the majority of published studies of avian influenza in that they emphasize unknowns and uncertainties in risk mapping and societal responses to avian influenza, rather than concentrating on known or proven facts. From a systems perspective, the different aspects of social–ecological systems that are relevant to the problem of risk mapping can be summarized under the general categories of structural, spatial, and temporal components. I present some examples of relevant system properties, as suggested by this framework, and argue that, ultimately, risk mapping for infectious disease will need to develop a more holistic perspective that includes explicit consideration of the roles of policy, disease management, and feedbacks between ecosystems and societies.

  16. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    Science.gov (United States)

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies. PMID:26478162

  17. Avian influenza at both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America

    Science.gov (United States)

    Pearce, John M.; Ramey, Andrew M.; Flint, Paul L.; Koehler, Anson V.; Fleskes, Joseph P.; Franson, J. Christian; Hall, Jeffrey S.; Derksen, Dirk V.; Ip, Hon S.

    2009-01-01

    Although continental populations of avian influenza viruses are genetically distinct, transcontinental reassortment in low pathogenic avian influenza (LPAI) viruses has been detected in migratory birds. Thus, genomic analyses of LPAI viruses could serve as an approach to prioritize species and regions targeted by North American surveillance activities for foreign origin highly pathogenic avian influenza (HPAI). To assess the applicability of this approach, we conducted a phylogenetic and population genetic analysis of 68 viral genomes isolated from the northern pintail (Anas acuta) at opposite ends of the Pacific migratory flyway in North America. We found limited evidence for Asian LPAI lineages on wintering areas used by northern pintails in California in contrast to a higher frequency on breeding locales of Alaska. Our results indicate that the number of Asian LPAI lineages observed in Alaskan northern pintails, and the nucleotide composition of LPAI lineages, is not maintained through fall migration. Accordingly, our data indicate that surveillance of Pacific Flyway northern pintails to detect foreign avian influenza viruses would be most effective in Alaska. North American surveillance plans could be optimized through an analysis of LPAI genomics from species that demonstrate evolutionary linkages with European or Asian lineages and in regions that have overlapping migratory flyways with areas of HPAI outbreaks.

  18. Cloning and Expression of Highly Pathogenic Avian Influenza Virus Full-Length Nonstructural Gene in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    M. B. Abubakar

    2011-01-01

    Full Text Available Avian influenza (AI is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1 was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1 avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1.

  19. Vaccines for List A poultry diseases: emphasis on avian influenza.

    Science.gov (United States)

    Swayne, D E

    2003-01-01

    Various vaccine technologies have been shown experimentally to be effective for immunization against avian influenza (AI) virus and include conventional inactivated oil-based whole AI virus, vectored virus, subunit protein and DNA vaccines. Vaccine-induced protection is based upon antibodies produced against the surface glycoproteins, principally the haemagglutinin, but also the neuraminidase. This protection is specific only for individual subtypes of haemagglutinin (H1-15) and neuraminidase (N1-9) proteins. AI vaccines protect chickens and turkeys from clinical signs and death, and reduce respiratory and intestinal replication of a challenge virus containing homologous haemagglutinin protein. Many of the vaccines are effective if given as a single injection and provide protection for greater than 20 weeks. Protection has been demonstrated against both low and high doses of challenge virus. Furthermore, subtype H5 AI vaccine has been shown to provide protection against heterologous H5 strains with 89.4% or greater haemagglutinin deduced amino acid sequence similarity and isolated over 38 years. Currently, inactivated whole AI virus vaccines and a fowl pox-vectored vaccine with AI H5 haemagglutinin gene insert are used commercially in various countries of the world. These vaccines have some disadvantages associated with the labour requirements for parenteral administration. However, an experimental recombinant Newcastle disease virus vaccine with an AI haemagglutinin gene insert shows some promise as a low cost, mass administered aerosol vaccine. A critical issue for the use of vaccines in the field is the need to differentiate vaccinated birds from those infected with the field virus. Differentiation is necessary for outbreak surveillance and trade. The use of AI vaccines varies with individual countries and for different AI virus subtypes. PMID:14677690

  20. Using knowledge fusion to analyze avian influenza H5N1 in East and Southeast Asia.

    Directory of Open Access Journals (Sweden)

    Erjia Ge

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1, a disease associated with high rates of mortality in infected human populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a space-time phylogenetic tree to estimate and map the virus' ability to spread. Second, by integrating the results we are able to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for containing H5N1 outbreaks.

  1. EPIDEMIOLOGI TERPADU AVIAN INFLUENZA (FLU BURUNG BERBASIS TINDAKAN KESEHATAN MASYARAKAT DALAM RESPON PANDEMI INFLUENZA

    Directory of Open Access Journals (Sweden)

    Denas Symond

    2009-09-01

    Full Text Available The term surveillance is used in two rather different ways. First, surveillance can mean the continuous security of the factors that determine the occurrence and distribution of disease and other conditions of ill health The second use of the term refers to a special reporting system which is set u for a particularly important health problem or disease, for example the spread of communicable diseases in an epidemic like Avian Influenza (AI or ( H5N1 . Such a surveillance system like AI aim to provide quickly information which can be analyzed to determine frequency and to answer like questions: who, where and when.AI epidemiological surveillance has a number of major steps: (I to identify and confirm outbreaks to ensure that effective action to control the disease is being taken (2 to investigate diseases by clinics and laboratory (3 to investigate and confirm the cases (4 Data collection and public health consolidation (5 Data analysis (6 Feedback (7 Following step is taken . District health officer (DHO and District veterinary officer (DVO can use integrated AI surveillance epidemiological to collect such information to support the management and evaluation health activities to prevent community from AI disease. It can be concluded, DHO and DVO may participate together in and use local reporting and surveillance system to combat AI in community

  2. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    OpenAIRE

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. I...

  3. Economic issues in vaccination against highly pathogenic avian influenza in developing countries.

    Science.gov (United States)

    McLeod, A; Rushton, J; Riviere-Cinnamond, A; Brandenburg, B; Hinrichs, J; Loth, L

    2007-01-01

    We consider the use of vaccination against highly pathogenic avian influenza (HPAI) in three contexts: as part of a stamping-out programme, as a government-led action for disease prevention and as private insurance by farmers. Poultry systems in developing countries cover all four of the poultry sectors defined by FAO and the OIE, each with particular economic aspects that might motivate farmers to take part in vaccination programmes or to initiate and finance them. Outbreaks in flocks of different types have different potential impacts in terms of disease spread and economic effects, which influence the potential benefits of vaccination as a means to prevent or control outbreaks. We use data from three countries to illustrate the costs of vaccination and discuss measures of cost-effectiveness and ways to improve it. We also consider the question of funding sources and their impact on the sustainability of vaccination programmes. PMID:18411936

  4. Mapping the risk of avian influenza in wild birds in the US

    Directory of Open Access Journals (Sweden)

    Nott Mark P

    2010-06-01

    Full Text Available Abstract Background Avian influenza virus (AIV is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius and Swainson's Thrush (Catharus ustulatus. Methods We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. Results Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of

  5. Avian Influenza (H5N1) Warning System using Dempster-Shafer Theory and Web Mapping

    OpenAIRE

    Maseleno, Andino; Hasan, Md. Mahmud

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built a Web Mapping and Dempster-Shafer theory as early warning system of avian influenza. Early warning is the provision of timely and effective information, through identified institutions, that allows individuals exposed to a h...

  6. A Complete Molecular Diagnostic Procedure for Applications in Surveillance and Subtyping of Avian Influenza Virus

    OpenAIRE

    Chun-Hsien Tseng; Hsiang-Jung Tsai; Chung-Ming Chang

    2014-01-01

    Introduction. The following complete molecular diagnostic procedure we developed, based on real-time quantitative PCR and traditional PCR, is effective for avian influenza surveillance, virus subtyping, and viral genome sequencing. Method. This study provides a specific and sensitive step-by-step procedure for efficient avian influenza identification of 16 hemagglutinin and 9 neuraminidase avian influenza subtypes. Result and Conclusion. This diagnostic procedure may prove exceedingly useful ...

  7. Properties and Dissemination of H5N1 Viruses Isolated during an Influenza Outbreak in Migratory Waterfowl in Western China †

    OpenAIRE

    Chen, Hualan; Li, Yanbing; Li, Zejun; Shi, Jianzhong; Shinya, Kyoko; Deng, Guohua; Qi, Qiaoling; Tian, Guobin; Fan, Shufang; Zhao, Haidan; Sun, Yingxiang; Kawaoka, Yoshihiro

    2006-01-01

    H5N1 influenza A viruses are widely distributed among poultry in Asia, but until recently, only a limited number of wild birds were affected. During late April through June 2005, an outbreak of H5N1 virus infection occurred among wild birds at Qinghai Lake in China. Here, we describe the features of this outbreak. First identified in bar-headed geese, the disease soon spread to other avian species populating the lake. Sequence analysis of 15 viruses representing six avian species and collecte...

  8. Enhanced inactivation of avian influenza virus at −20°C by disinfectants supplemented with calcium chloride or other antifreeze agents

    OpenAIRE

    Guan, Jiewen; Chan, Maria; Brooks, Brian W.; Rohonczy, Elizabeth

    2015-01-01

    Avian influenza outbreaks have occurred during winter months, and effective disinfection of poultry premises at freezing temperatures is needed. The commercial disinfectants Virkon and Accel, supplemented with an antifreeze agent [propylene glycol (PG), methanol (MeOH), or calcium chloride (CaCl2)], were evaluated for their effectiveness in killing avian influenza virus (AIV) at −20°C or 21°C. An AIV suspension was applied to stainless steel disks, air-dried, and covered with a disinfectant o...

  9. Access to health information may improve behavior in preventing Avian influenza among women

    Directory of Open Access Journals (Sweden)

    Ajeng T. Endarti

    2011-02-01

    Full Text Available Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian influenza. The heads of household as the sample unit were chosen by multi-stage sampling.Results: Among 387 subjects, 29.5% of them was had good behavior toward Avian influenza. The final model revealed that gender and access to health information were two dominant factors for good behavior in preventing Avian influenza. Compared with men, women had 67% higher risk to have good behavior [adjusted relative risk (RRa = 1.67; 95% confidence interval (CI = 0.92-3.04; P = 0.092]. Compared to those with no access to health information, subjects with access to health information had 3.4 fold increase to good behavior (RRa = 3.40; 95% CI =  0.84-13.76; P = 0.087.Conclusion: Acces to health information concerning Avian influenza was more effective among women in promoting good behavior toward preventing Avian influenza. (Med J Indones 2011; 20:56-61Keywords: avian influenza, behavior, gender, health promotion

  10. Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages

    OpenAIRE

    Friesenhagen, Judith; Boergeling, Yvonne; Hrincius, Eike; Ludwig, Stephan; Roth, Johannes; Viemann, Dorothee

    2012-01-01

    Human blood-derived macrophages are non-permissive for influenza virus propagation, and fail to elicit inflammatory and antiviral responses upon infection with high pathogenic avian influenza viruses.

  11. Monitoring Avian Influenza A(H7N9) Virus through National Influenza-like Illness Surveillance, China

    OpenAIRE

    Xu, Cuiling; Havers, Fiona; Wang, Lijie; Tao CHEN; Shi, Jinghong; Wang, Dayan; YANG Jing; Lei YANG; Widdowson, Marc-Alain; Shu, Yuelong

    2013-01-01

    In China during March 4–April 28, 2013, avian influenza A(H7N9) virus testing was performed on 20,739 specimens from patients with influenza-like illness in 10 provinces with confirmed human cases: 6 (0.03%) were positive, and increased numbers of unsubtypeable influenza-positive specimens were not seen. Careful monitoring and rapid characterization of influenza A(H7N9) and other influenza viruses remain critical.

  12. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    OpenAIRE

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and ...

  13. Crossing the species barrier: the threat of an avian influenza pandemic

    OpenAIRE

    Riedel, Stefan

    2006-01-01

    Avian influenza (H5N1) has recently been recognized as a new emerging infectious disease that may pose a threat to international public health. Most recent developments lead to the belief that H5N1 could become the cause of the next influenza pandemic. This review discusses the characteristics of H5N1 avian influenza virus as an emerging infectious disease with the potential for pandemic development. In addition, the current pandemic influenza alert status and guidelines for pandemic prepared...

  14. Avian influenza vaccines against H5N1 'bird flu'.

    Science.gov (United States)

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI. PMID:24491922

  15. Emerging influenza

    OpenAIRE

    de Wit, Emmie; Fouchier, Ron

    2008-01-01

    textabstractIn 1918 the Spanish influenza pandemic, caused by an avian H1N1 virus, resulted in over 50 million deaths worldwide. Several outbreaks of H7 influenza A viruses have resulted in human cases, including one fatal case. Since 1997, the outbreaks of highly pathogenic avian influenza (HPAI) of the H5N1 subtype have affected a wide variety of mammals in addition to poultry and wild birds. Here, we give an overview of the current knowledge of the determinants of pathogenicity of these th...

  16. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Driskell

    Full Text Available Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA residues with α 2,3 linkage [Neu5Ac(α2,3Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  17. Is low pathogenic avian influenza virus virulent for wild waterbirds?

    OpenAIRE

    Kuiken, T

    2013-01-01

    Although low pathogenic avian influenza virus (LPAIV) is traditionally considered to have adapted to its wild waterbird host to become avirulent, recent studies have suggested that LPAIV infection might after all have clinical effects. Therefore, I reviewed the literature on LPAIV infections in wild waterbirds. The virulence of LPAIV was assessed in 17 studies on experimental infections and nine studies on natural infections. Reported evidence for virulence were reductions in return rate, fee...

  18. Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds

    OpenAIRE

    Gaidet, Nicolas; El Mamy, Ahmed B. Ould; Cappelle, Julien; Caron, Alexandre; Graeme S. Cumming; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; Servan de Almeida, Renata; Fereidouni, Sasan R.; Cattoli, Giovanni; Abolnik, Celia; Mundava, Josphine; Fofana, Bouba; Ndlovu, Mduduzi

    2012-01-01

    Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location a...

  19. Potential Economic Impacts of Avian Influenza in LAC

    OpenAIRE

    César Falconi

    2006-01-01

    This presentation discuses bird flu in two different related scenarios: as a disease that could affect the Poultry Sector and as a disease that could cause a Human Pandemic. The paper includes an analysis on what's at stake, risks and probabilities, costs, impacts and ways of prevention, as well as a series of conclusions. This presentation was created for the Seminar "The Mass Media and the Threat of Avian Influenza in Latin America" held in August of 2006.

  20. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal ...

  1. Complete Genome Sequence of an Avian-Like H4N8 Swine Influenza Virus Discovered in Southern China

    OpenAIRE

    Su, Shuo; Qi, Wen-bao; Chen, Ji-dang; Cao, Nan; Zhu, Wan-jun; Yuan, Li-Guo; Wang, Heng; Zhang, Gui-hong

    2012-01-01

    We report here the complete genomic sequence of an avian-like H4N8 swine influenza virus containing an H5N1 avian influenza virus segment from swine in southern China. Phylogenetic analyses of the sequences of all eight viral RNA segments demonstrated that these are wholly avian influenza viruses of the Asia lineage. To our knowledge, this is the first report of interspecies transmission of an avian H4N8 influenza virus to domestic pigs under natural conditions.

  2. The Pathology of Avian Influenza in Birds and Animals: An Analytical Review

    International Nuclear Information System (INIS)

    Influenza virus remains enigmatic despite of long extensive studies. Avian influenza virus (H5N1) is able to infect a large spectrum of animal and bird species. Highly pathogenic avian influenza virus represents a serious problem both for a human and birds, particularly for chicks. Many studies have been performed in order to show differences between highly and low pathogenic avian influenza H5N1 viruses, and examine their biological properties. Many separate pathological and microscopic descriptions are interspersed in numerous published articles. The aim of our study was to analyze data published in international scientific journals, and to attempt a generalized view of avian influenza pathology in various animal and bird hosts. We summarized and systematized data describing pathological changes caused by both highly and low pathogenic types of avian influenza virus (H5N1) in animals and birds, and developed generalized descriptions with accent at the type of virus. We also tried to show up species specific features of pathological changes in birds and animals infected with avian influenza virus (H5N1). The results of this analytical work may be useful for pathological studies of a new avian influenza virus isolates, and for understanding of avian influenza pathogenesis in birds and animals. (author)

  3. Emergence of European Avian Influenza Virus-Like H1N1 Swine Influenza A Viruses in China▿

    OpenAIRE

    Liu, Jinhua; Bi, Yuhai; Qin, Kun; Fu, Guanghua; Yang, Jun; Peng, Jinshan; Ma, Guangpeng; Liu, Qinfang; Pu, Juan; Tian, Fulin

    2009-01-01

    During swine influenza surveillance from 2007 to 2008, 10 H1N1 viruses were isolated and analyzed for their antigenic and phylogenetic properties. Our study revealed the emergence of avian-origin European H1N1 swine influenza virus in China, which highlights the necessity of swine influenza surveillance for potential pandemic preparedness.

  4. Influenza A (H3N2) Outbreak, Nepal

    OpenAIRE

    Daum, Luke T.; Shaw, Michael W.; Klimov, Alexander I; Canas, Linda C.; Macias, Elizabeth A.; Niemeyer, Debra; Chambers, James P.; Renthal, Robert; Shrestha, Sanjaya K.; Acharya, Ramesh P.; Huzdar, Shankar P.; Rimal, Nirmal; Myint, Khin S.; Gould, Philip

    2005-01-01

    In July 2004, an outbreak of influenza A (H3N2) was detected at 3 Bhutanese refugee camps in southeastern Nepal. Hemagglutination inhibition showed that ≈40% of the viruses from this outbreak were antigenically distinct from the A/Wyoming/3/03 vaccine strain. Four amino acid differences were observed in most of the 26 isolates compared with the A/Wyoming/3/2003 vaccine strain. All 4 substitutions are located within or adjacent to known antibody-binding sites. Several isolates showed a lysine-...

  5. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China

    Science.gov (United States)

    Yu, Zhijun; Gao, Xiaolong; Wang, Tiecheng; Li, Yanbing; Li, Yongcheng; Xu, Yu; Chu, Dong; Sun, Heting; Wu, Changjiang; Li, Shengnan; Wang, Haijun; Li, Yuanguo; Xia, Zhiping; Lin, Weishi; Qian, Jun; Chen, Hualan; Xia, Xianzhu; Gao, Yuwei

    2015-01-01

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans and susceptible domesticated animals, and the H5N6 AIVs may spread from southern China to northern China by wild birds. Additional surveillance is required to better understand the threat of zoonotic transmission of AIVs. PMID:26034886

  6. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia.

    Science.gov (United States)

    Peiris, J S Malik; Cowling, Benjamin J; Wu, Joseph T; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M

    2016-02-01

    Novel influenza viruses continue to emerge, posing zoonotic and potentially pandemic threats, such as with avian influenza A H7N9. Although closure of live poultry markets (LPMs) in mainland China stopped H7N9 outbreaks temporarily, closures are difficult to sustain, in view of poultry production and marketing systems in China. In this Personal View, we summarise interventions taken in mainland China, and provide evidence for other more sustainable but effective interventions in the live poultry market systems that reduce risk of zoonotic influenza including rest days, and banning live poultry in markets overnight. Separation of live ducks and geese from land-based (ie, non-aquatic) poultry in LPM systems can reduce the risk of emergence of zoonotic and epizootic viruses at source. In view of evidence that H7N9 is now endemic in over half of the provinces in mainland China and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China and other Asian countries at risk of H7N9 through cross-border poultry movements. Such generic measures are likely to reduce known and future threats of zoonotic influenza. PMID:26654122

  7. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza) in Pigs

    OpenAIRE

    Dyah Ayu Hewajuli; Ni Luh Putu Indi Dharmiayanti

    2012-01-01

    Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries ...

  8. Potential infections of H5N1 and H9N2 avian influenza do exist in Guangdong populations of China

    Institute of Scientific and Technical Information of China (English)

    LU Ci-yong; LU Jia-hai; CHEN Wei-qing; JIANG Li-fang; TAN Bing-yan; LING Wen-hua; ZHENG Bo-jian; SUI Hong-yan

    2008-01-01

    Background Southeast China is one of the sites of influenza origin. During 2003-2004, nine avian influenza outbreaks took place in Guangdong Province. But no human case was reported. To examine the status of potential human infection by human influenza (H1N1, H3N2) and avian influenza (H5N1, H7N7, H9N2) in the avian influenza epidemic area of Guangdong Province, China, we conducted a seroepidemiologic survey in the people of this area from April to June of 2004.Methods Three out of 9 H5N1 avian influenza affected poultry areas in Guangdong were randomly selected, and the population living within 3 kilometers of the affected poultries were chosen as the survey subjects. One thousand two hundred and fourteen people were selected from 3 villages at random. Human and avian influenza antibody tilers were determined by hemagglutination-inhibition (HI) test and microneutralization test (MNT).Results The positive rate of antibody to H5N1 was 3.03% in the occupational exposure group and 2.34% in general citizens group; that of H9N2 was 9.52% in the occupational exposure group and 3.76% in the general citizens group. Moreover one case in the occupational exposure group was positive for H7N7. One year later, all previously positive cases had become negative except for one H5N1 -positive case.Conclusion The observations imply that H5N1 and H9N2 avian influenza silent infections exist in Guangdon gpopulations.

  9. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    Directory of Open Access Journals (Sweden)

    Huaiying Xu

    2015-02-01

    Full Text Available Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA and matrix (M genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  10. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α,

  11. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Standard test procedures for avian influenza. 147.9 Section 147.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Blood Testing Procedures § 147.9 Standard test procedures for avian influenza. (a) The agar...

  12. Risk Perceptions for Avian Influenza Virus Infection among Poultry Workers, China

    OpenAIRE

    Yu, Qi; Liu, Linqing; Pu, Juan; Zhao, Jingyi; Sun, Yipeng; Shen, Guangnian; Wei, Haitao; Zhu, Junjie; Zheng, Ruifeng; Xiong, Dongyan; Liu, Xiaodong; Liu, Jinhua

    2013-01-01

    To determine risk for avian influenza virus infection, we conducted serologic surveillance for H5 and H9 subtypes among poultry workers in Beijing, China, 2009–2010, and assessed workers’ understanding of avian influenza. We found that poultry workers had considerable risk for infection with H9 subtypes. Increasing their knowledge could prevent future infections.

  13. Surveillance of low pathogenic avian influenza in layer chickens: risk factors, transmission and early detection

    NARCIS (Netherlands)

    Gonzales Rojas, J.L.

    2012-01-01

    Low pathogenic avian influenza virus (LPAIv) of H5 and H7 subtypes are able to mutate to highly pathogenic avian influenza virus (HPAIv), which are lethal for most poultry species, can cause large epidemics and are a serious threat to public health. Thus, circulation of these LPAIv in poultry is und

  14. Chicken dendritic cells are susceptible to highly pathogenic avian influenza viruses which induce strong cytokine responses

    NARCIS (Netherlands)

    Vervelde, L.; Reemens, S.S.; Haarlem, van D.A.; Post, J.; Claassen, E.A.W.; Rebel, J.M.J.; Jansen, C.A.

    2013-01-01

    Infection with highly pathogenic avian influenza (HPAI) in birds and mammals is associated with severe pathology and increased mortality. We hypothesize that in contrast to low pathogenicity avian influenza (LPAI) infection, HPAI infection of chicken dendritic cells (DC) induces a cytokine deregulat

  15. Epidemiology and ecology of highly pathogenic avian influenza with particular emphasis on South East Asia.

    Science.gov (United States)

    Martin, V; Sims, L; Lubroth, J; Pfeiffer, D; Slingenbergh, J; Domenech, J

    2006-01-01

    Highly pathogenic avian influenza (HPAI) has been recognised as a serious viral disease of poultry since 1878. The number of recorded outbreaks of HPAI has increased globally in the past 10 years culminating in 2004 with the unprecedented outbreaks of H5N1 HPAI involving at least nine countries in East and South-East Asia. Apart from the geographical extent of these outbreaks and apparent rapid spread, this epidemic has a number of unique features, among which is the role that asymptomatic domestic waterfowl and more particularly free-ranging ducks play in the transmission of highly pathogenic H5N1. Field epidemiological studies have been conducted by the Food and Agriculture Organization and several collaborative centres to explore the factors that could have led to a change from infection to the emergence of widespread disease in 2003-2004 and 2005. Domestic waterfowl, specific farming practices and agro-ecological environments have been identified to play a key role in the occurrence, maintenance and spread of HPAI. Although there are some questions that remain unanswered regarding the origins of the 2004 outbreaks, the current understanding of the ecology and epidemiology of the disease should now lead to the development of adapted targeted surveillance studies and control strategies. PMID:16447491

  16. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  17. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  18. Control of avian influenza: philosophy and perspectives on behalf of migratory birds

    Science.gov (United States)

    Friend, Milton

    1992-01-01

    Aquatic birds are considered the primary reservoir for influenza A viruses (Nettles et al., 1987).  However, there is little concern about avian influenza among conservation agencies responsible for the welfare of those species.  IN contrast, the poultry industry has great concern about avian influenza and view aquatic birds as a source for infection of poultry flocks.  In some instances, differences in these perspectives created conflict between conservation agencies and the poultry industry.  I speak on behalf of migratory birds, but philosophy and perspectives offered are intended to be helpful to the poultry industry in their efforts to combat avian influenza.

  19. Detecting influenza outbreaks by analyzing Twitter messages

    CERN Document Server

    Culotta, Aron

    2010-01-01

    We analyze over 500 million Twitter messages from an eight month period and find that tracking a small number of flu-related keywords allows us to forecast future influenza rates with high accuracy, obtaining a 95% correlation with national health statistics. We then analyze the robustness of this approach to spurious keyword matches, and we propose a document classification component to filter these misleading messages. We find that this document classifier can reduce error rates by over half in simulated false alarm experiments, though more research is needed to develop methods that are robust in cases of extremely high noise.

  20. Updated Values for Molecular Diagnosis for Highly Pathogenic Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Akira Sakurai

    2012-08-01

    Full Text Available Highly pathogenic avian influenza (HPAI viruses of the H5N1 strain pose a pandemic threat. H5N1 strain virus is extremely lethal and contagious for poultry. Even though mortality is 59% in infected humans, these viruses do not spread efficiently between humans. In 1997, an outbreak of H5N1 strain with human cases occurred in Hong Kong. This event highlighted the need for rapid identification and subtyping of influenza A viruses (IAV, not only to facilitate surveillance of the pandemic potential of avian IAV, but also to improve the control and treatment of infected patients. Molecular diagnosis has played a key role in the detection and typing of IAV in recent years, spurred by rapid advances in technologies for detection and characterization of viral RNAs and proteins. Such technologies, which include immunochromatography, quantitative real-time PCR, super high-speed real-time PCR, and isothermal DNA amplification, are expected to contribute to faster and easier diagnosis and typing of IAV.

  1. Serological Survey for Avian Influenza in Turkeys in Three States of Southwest Nigeria.

    Science.gov (United States)

    Oluwayelu, Daniel Oladimeji; Aiki-Raji, Comfort Oluladun; Adigun, Oladunni Taiwo; Olofintuyi, Opeyemi Kazeem; Adebiyi, Adebowale Idris

    2015-01-01

    Since the first outbreak of avian influenza (AI) in Nigeria in 2006, there has been continuous monitoring of the disease in chickens with little attention given to turkeys. As part of on-going surveillance for AI in southwest Nigeria, we used a competitive ELISA to detect anti-AI virus antibodies in 520 turkey sera obtained from poultry farms in Oyo, Osun, and Ondo states while haemagglutination inhibiting antibodies against low pathogenic AI viruses (LPAIVs) were detected using H3N8 and H5N2 subtype-specific antigens. The overall seroprevalence obtained by ELISA was 4.4% (23/520). Of the 23 ELISA-positive samples, 18 were positive for anti-AIV H3N8 antibodies only and four were positive for both anti-AIV H3N8 and H5N2 antibodies indicating a mixed infection, while five were negative for antibodies to either of the two AIV subtypes. Considering that turkeys have been implicated as a mixing vessel for generating influenza virus reassortants of human and avian origin, the detection of antibodies to LPAIV H3N8 and H5N2 in these turkeys is of public health concern. We advocate further studies to determine the potential role of turkeys in the zoonotic transmission of AIVs in Nigeria. Additionally, the practice of rearing turkeys with chickens should be discouraged. PMID:26664747

  2. Isolation of avian influenza virus (H9N2 from emu in china

    Directory of Open Access Journals (Sweden)

    Kang Wenhua

    2006-03-01

    Full Text Available Abstract This is the first reported isolation of avian influenza virus (AIV from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80 nm to 120 nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic AIV (LPAIV, according to OIE standards. It was named A/Emu/HeNen/14/2004(H9N2(Emu/HN/2004. The HA gene (1683bp was amplified by RT-PCR and it was compared with other animal H9N2 AIV sequences in GenBank, the US National Institutes of Health genetic sequence database. The results suggested that Emu/HN/2004 may have come from an avian influenza virus (H9N2 from Southern China.

  3. Isolation and genetic characterization of avian influenza viruses and a Newcastle disease virus from wild birds in Barbados: 2003-2004.

    Science.gov (United States)

    Douglas, Kirk O; Lavoie, Marc C; Kim, L Mia; Afonso, Claudio L; Suarez, David L

    2007-09-01

    Zoonotic transmission of an H5N1 avian influenza A virus to humans in 2003-present has generated increased public health and scientific interest in the prevalence and variability of influenza A viruses in wild birds and their potential threat to human health. Migratory waterfowl and shorebirds are regarded as the primordial reservoir of all influenza A viral subtypes and have been repeatedly implicated in avian influenza outbreaks in domestic poultry and swine. All of the 16 hemagglutinin and nine neuraminidase influenza subtypes have been isolated from wild birds, but waterfowl of the order Anseriformes are the most commonly infected. Using 9-to-11-day-old embryonating chicken egg culture, virus isolation attempts were conducted on 168 cloacal swabs from various resident, imported, and migratory bird species in Barbados during the months of July to October of 2003 and 2004. Hemagglutination assay and reverse transcription-polymerase chain reaction were used to screen all allantoic fluids for the presence of hemagglutinating agents and influenza A virus. Hemagglutination positive-influenza negative samples were also tested for Newcastle disease virus (NDV), which is also found in waterfowl. Two influenza A viruses and one NDV were isolated from Anseriformes (40/168), with isolation rates of 5.0% (2/40) and 2.5% (1/40), respectively, for influenza A and NDV. Sequence analysis of the influenza A virus isolates showed them to be H4N3 viruses that clustered with other North American avian influenza viruses. This is the first report of the presence of influenza A virus and NDV in wild birds in the English-speaking Caribbean. PMID:17992942

  4. Molecular diagnostics of Avian influenza virus

    OpenAIRE

    Petrović Tamaš; Lazić Sava; Kapetanov Miloš; Velhner Maja

    2006-01-01

    The success of supervizing an infectious disease depends on the ability for speedy detection and characterization of the cause and the forming of a corresponding system for examining the success of control implemented in order to prevent a recurrence of the disease. Since influenza viruses continue to circle, causing significant morbidity and mortality both among the human population and among animals all over the world, it is essential to secure the timely identification and monitoring of th...

  5. Transmission dynamics of Avian Influenza A virus

    OpenAIRE

    Lu, Lu

    2015-01-01

    Influenza A virus (AIV) has an extremely high rate of mutation. Frequent exchanges of gene segments between different AIV (reassortment) have been responsible for major pandemics in recent human history. The presence of a wild bird reservoir maintains the threat of incursion of AIV into domestic birds, humans and other animals. In this thesis, I addressed unanswered questions of how diverse AIV subtypes (classified according to antigenicity of the two surface proteins, haema...

  6. Specific detection of H5N1 avian influenza A virus in field specimens by a one-step RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Gupta Sanjay

    2006-03-01

    Full Text Available Abstract Background Continuous outbreaks of the highly pathogenic H5N1 avian influenza A in Asia has resulted in an urgent effort to improve current diagnostics to aid containment of the virus and lower the threat of a influenza pandemic. We report here the development of a PCR-based assay that is highly specific for the H5N1 avian influenza A virus. Methods A one-step reverse-transcription PCR assay was developed to detect the H5N1 avian influenza A virus. The specificity of the assay was shown by testing sub-types of influenza A virus and other viral and bacterial pathogens; and on field samples. Results Validation on 145 field specimens from Vietnam and Malaysia showed that the assay was specific without cross reactivity to a number of other infuenza strains as well as human respiratory related pathogens. Detection was 100% from allantoic fluid in H5N1 positive samples, suggesting it to be a reliable sampling source for accurate detection. Conclusion The assay developed from this study indicates that the primers are specific for the H5N1 influenza virus. As shown by the field tested results, this assay would be highly useful as a diagnostic tool to help identify and control influenza epidemics.

  7. Avian Influenza A Virus in Wild Birds in Highly Urbanized Areas

    OpenAIRE

    2012-01-01

    Avian influenza virus (AIV) surveillance studies in wild birds are usually conducted in rural areas and nature reserves. Less is known of avian influenza virus prevalence in wild birds located in densely populated urban areas, while these birds are more likely to be in close contact with humans. Influenza virus prevalence was investigated in 6059 wild birds sampled in cities in the Netherlands between 2006 and 2009, and compared with parallel AIV surveillance data from low urbanized areas in ...

  8. Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012

    OpenAIRE

    Marinjho Jonduo; Sook-San Wong; Nime Kapo; Paskalis Ominipi; Mohammad Abdad; Peter Siba; Pamela McKenzie; Richard Webby; Paul Horwood

    2013-01-01

    We investigated the circulation of avian influenza viruses in poultry populations throughout Papua New Guinea to assess the risk to the poultry industry and human health. Oropharyngeal swabs, cloacal swabs and serum were collected from 537 poultry from 14 provinces of Papua New Guinea over an 11–month period (June 2011 through April 2012). Virological and serological investigations were undertaken to determine the prevalence of avian influenza viruses. Neither influenza A viruses nor antibodi...

  9. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced. PMID:18411943

  10. Vaccines for Pandemic Influenza

    OpenAIRE

    Luke, Catherine J.; Subbarao, Kanta

    2006-01-01

    Recent outbreaks of highly pathogenic avian influenza in Asia and associated human infections have led to a heightened level of awareness and preparation for a possible influenza pandemic. Vaccination is the best option by which spread of a pandemic virus could be prevented and severity of disease reduced. Production of live attenuated and inactivated vaccine seed viruses against avian influenza viruses, which have the potential to cause pandemics, and their testing in preclinical studies and...

  11. Antigenic characterization of avian influenza H9 subtype isolated from desi and zoo birds

    Directory of Open Access Journals (Sweden)

    Farrukh Saleem

    2011-08-01

    Full Text Available Avian influenza is a viral infection which affects mainly the respiratory system of birds. The H9N2 considered as low pathogenic avian influenza (LPAI virus and continuously circulating in poultry flocks causing enormous economic losses to poultry industry of Pakistan. As these viruses have RNA genome and their RNA polymerase enzyme lacks proof reading activity which resulted in spontaneous mutation in surface glycoproteins (HA and NA and reassortment of their genomic segments results in escape from host immune response produced by the vaccine. Efforts made for the isolation and identification of avian influenza virus from live desi and zoo birds of Lahore and performed antigenic characterization. The local vaccines although gives a little bit less titer when we raise the antisera against these vaccines but their antisera have more interaction with the local H9 subtype antigen so it gives better protective immune response. Infected chicken antisera are more reactive as compare to rabbit antisera. This shows that our isolates have highest similarity with the currently circulating viruses. These results guided us to devise a new control strategy against avian influenza viral infections. The antigenic characterization of these avian influenza isolates helped us to see the antigenic differences between the isolates of this study and H9 subtype avian influenza viruses used in vaccines. Therefore, this study clearly suggests that a new local H9 subtype avian influenza virus should be used as vaccinal candidate every year for the effective control of influenza viral infections of poultry.

  12. Novel Reassortant Highly Pathogenic Avian Influenza (H5N5) Viruses in Domestic Ducks, China

    OpenAIRE

    Gu, Min; Liu, Wenbo; Cao, Yongzhong; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhao, Guo; Xu, Quangang; Zhang, Wei; Song, Qingqing; Li, Yanfang; Liu, Xiufan

    2011-01-01

    In China, domestic ducks and wild birds often share the same water, in which influenza viruses replicate preferentially. Isolation of 2 novel reassortant highly pathogenic avian influenza (H5N5) viruses from apparently healthy domestic ducks highlights the role of these ducks as reassortment vessels. Such new subtypes of influenza viruses may pose a pandemic threat.

  13. Avian Influenza A (H5N1)

    Centers for Disease Control (CDC) Podcasts

    2009-05-27

    In this podcast, CDC's Dr. Tim Uyeki discusses H5N1, a subtype of influenza A virus. This highly pathogenic H5N1 virus doesn't usually infect people, although some rare infections with H5N1 viruses have occurred in humans. We need to use a comprehensive strategy to prevent the spread of H5N1 virus among birds, including having human health and animal health work closely together.  Created: 5/27/2009 by Emerging Infectious Diseases.   Date Released: 5/27/2009.

  14. Surveillance for avian influenza viruses in wild birds in Denmark and Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona; Handberg, Kurt J.; Therkildsen, Ole R.; Madsen, Jesper J.; Thorup, Kasper; Baroch, John A.; DeLiberto, Thomas J.; Larsen, Lars Erik; Jørgensen, Poul Henrik

    Avian influenza (AI) is a disease of major threat to poultry production. Surveillance of AI in wild birds contributes to the control of AI. In Denmark (DK) and Greenland (GL), extensive surveillance of AI viruses in the wild bird population has been conducted. The surveillance aimed at detecting...... areas for migratory waterfowl, whereas in GL, samples were collected in breeding areas. Samples from birds found dead at scattered locations across DK were sampled by oropharyngeal swabbing. 17530 wild birds from DK were tested as part of the surveillance during 2006-2010, of which 1614 were birds found......7 subtypes were detected throughout the period together with several other LPAI subtypes. In GL, HPAI was not detected, but few samples were PCR positive for AI. The occurrence of AI subtypes in the wild bird population correlates with concurrent outbreaks of LPAI in Danish poultry, which may...

  15. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    Directory of Open Access Journals (Sweden)

    Sean G. Young

    2016-09-01

    Full Text Available Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC curve (AUC 0.991.

  16. Priority areas for surveillance and prevention of avian influenza during the water-bird migration season in Pakistan

    Directory of Open Access Journals (Sweden)

    Tariq Abbas

    2011-11-01

    Full Text Available Avian influenza viruses may be introduced into domestic poultry through migratory wild birds, particularly from Pakistan, which is situated across the migratory Indus flyway and holds more than 225 wetlands. To answer the question which areas should be given priority in surveillance and prevention with respect to notifiable avian influenza during the migratory season, a subset of Asian waterbird census data was reviewed. The dataset contains 535 local sites and available counts of waterbirds reported from 1987 to 2007. However, as the majority of the sites are not counted regularly gaps in data matrix appeared. The coordinates of 270 known sites completely fitted the administrative boundaries of the country. These coordinates were geo-processed with polygons of water-bodies and a raster map of predicted poultry density. Pixels representing the estimated number of poultry per km2 were found within a 3 to 9 km range of the census sites (or water-bodies in their proximity. The coordinates were also used to map the maximum reported counts of waterbirds and local clusters of under-sampled sites. A retrospective case-series analysis of previous outbreaks (2006-2008 of influenza A virus, subtype H5N1 was performed, which revealed that 64% of outbreaks, reported to Office International des Epizooties, the World Organization for Animal Health, occurred during the migratory period. This paper highlights the potential use and limitations of the Asian waterbirds census data in the context of avian influenza. The proposed methodology may be used to prioritize districts for surveillance and economize prevention measures provided better data are generated in future.

  17. Avian influenza virus (H5N1; effects of physico-chemical factors on its survival

    Directory of Open Access Journals (Sweden)

    Hameed Sajid

    2009-03-01

    Full Text Available Abstract Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI H5N1 (local strain virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 108.3 ELD50/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon®-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda agents. Harvested amnio-allantoic fluid (AAF from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg was subjected to haemagglutination (HA and haemagglutination inhibition (HI tests. H5N1 virus lost infectivity after 30 min at 56°C, after 1 day at 28°C but remained viable for more than 100 days at 4°C. Acidic pH (1, 3 and basic pH (11, 13 were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h, 7 and 9 (more than 24 h. UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy®, detergent (surf excel® and alkali (caustic soda destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV outbreak.

  18. Avian influenza, domestic ducks and rice agriculture in Thailand

    OpenAIRE

    Gilbert, Marius; Xiao, Xiangming; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Premashthira, Sith; Boles, Stephen; Slingenbergh, Jan

    2007-01-01

    Highly pathogenic avian influenza (HPAI) caused by H5N1 viruses has become a global scale problem which first emerged in southern China and from there spread to other countries in Southeast and East Asia, where it was first confirmed in end 2003. In previous work, geospatial analyses demonstrated that free grazing ducks played critical role in the epidemiology of the disease in Thailand in the winter 2004/2005, both in terms of HPAI emergence and spread. This study explored the geographic ass...

  19. Within-host variation of avian influenza viruses

    OpenAIRE

    Iqbal, Munir; Xiao, Hiaxia; Baillie, Greg; Warry, Andrew; Essen, Steve C.; Londt, Brandon; Brookes, Sharon M; Brown, Ian H.; McCauley, John W.

    2009-01-01

    The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, b...

  20. Transmission of highly pathogenic avian influenza H7 virus

    OpenAIRE

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The method was based on a stochastic epidemic model in which birds move from being susceptible, latently infected and infectious, to death. Our results indicated that two weeks can elapse before a noticeab...

  1. First characterization of avian influenza viruses from Greenland 2014

    DEFF Research Database (Denmark)

    Hartby, Christina Marie; Krog, Jesper Schak; Ravn Merkel, Flemming;

    2016-01-01

    In late February 2014, unusually high numbers of wild birds, thick-billed murre (Uria lomvia), were found dead at the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examinations in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2 and...... emaciated appearance of birds, suggests that the murre die-off was not due to infection with AIV, but could be the mere cause of sparse food availability or stormy weather. Here we present the first characterization of AIVs isolated in Greenland, and our results support the idea that wild birds in Greenland...

  2. Zoonosis Update on H9N2 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Abdul Ahad*, Masood Rabbani, Altaf Mahmood1, Zulfiqar Hussan Kuthu2, Arfan Ahmad and Muhammad Mahmudur Rahman3

    2013-07-01

    Full Text Available Influenza A viruses infect various mammals like human, horse, pig and birds as well. A total of 16 hemagglutinin (HA and 9 neuraminidase (NA subtypes have been identified. Most of the combinations are found in birds and relatively few have been isolated from mammals. Although there is no report of human to human transmission till to date, several cases of H5N1, H7N7 and H9N2 identified in humans since 1997 raised serious concern for health and veterinary profession. This review paper will focus H9N2 avian influenza virus (AIV with special emphasis on zoonosis. The virus H9N2 though not highly pathogenic like H5N1 but can be virulent through antigenic drift and shift.

  3. 禽流感%Avian influenza

    Institute of Scientific and Technical Information of China (English)

    范学工; 龙云铸

    2005-01-01

    禽流感(avian influenza)是禽类流行性感冒的简称,是由甲型流感病毒株的某些亚型引起的急性呼吸道传染病。通常情况下,禽流感病毒并不感染人类,但自1997年禽甲型流感病毒H5N1感染人类之后,相继有H9N2、H7N7.亚型感染人类和H5N1再次感染人类的报道,引起了世人的广泛关注。

  4. Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China

    OpenAIRE

    Martin, Vincent; Pfeiffer, Dirk U; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling...

  5. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    Science.gov (United States)

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  6. FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface.

    Science.gov (United States)

    Anderson, Tara; Capua, Ilaria; Dauphin, Gwenaëlle; Donis, Ruben; Fouchier, Ron; Mumford, Elizabeth; Peiris, Malik; Swayne, David; Thiermann, Alex

    2010-05-01

    animal health and public health sectors, especially at the global level. In some countries outbreaks of H5N1 are being investigated jointly. Even greater transparency, cooperation, and information and materials exchange would allow more timely and effective responses in emergency situations, as well as in assessment and planning phases. Ensuring sustainability was also frequently emphasized, e.g. in infrastructure and capacity development and in development of tools and systems for surveillance, assessment and response. It was suggested that one way for tools and systems built or planned to address avian influenza to become more sustainable would be to make them applicable for a broader array of existing and emerging zoonotic diseases. PMID:20491978

  7. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Directory of Open Access Journals (Sweden)

    Haiming Zhang

    Full Text Available Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  8. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Science.gov (United States)

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; Zheng, Lilan; Yang, Jianyu; Zhang, Zhen; Zhou, Zhiwei; Li, Wenhua; Hu, Mailing; Zhong, Jinhui; Chen, Yuhua

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area. PMID:25356738

  9. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available BACKGROUND: Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses. METHODOLOGY / PRINCIPAL FINDINGS: The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device. CONCLUSIONS/SIGNIFICANCE: DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  10. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    Science.gov (United States)

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China. PMID:26733295

  11. A Cross-Sectional Study of Avian Influenza in One District of Guangzhou, 2013

    OpenAIRE

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; ZHENG Lilan; Yang, Jianyu; Zhang, Zhen

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs i...

  12. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation

    OpenAIRE

    Pengxiang Chang; Kuchipudi, Suresh V; Kenneth H. Mellits; Sujith Sebastian; Joe James; Jinhua Liu; Holly Shelton; Kin-Chow Chang

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) in...

  13. Seroprevalensi Avian influenza H5N1 pada Unggas di Kabupaten Aceh Utara

    OpenAIRE

    Darmawi Darmawi; Darniati Darniati; Maryulia Dewi; Fakhrurrazi Fakhrurrazi; Mahdi Abrar; Erina Erina

    2013-01-01

    Seroprevalence of avian influenza H5N1 in birds in north aceh district ABSTRACT. Avian influenza virus H5N1 infections are an important cause of diseases in humans and several animal species, including birds. The present study conducted to investigate the seroprevalence Avian Influenza H5N1 in native birds from 15 sub-districts of North Aceh.  This study utilized 1108 serum samples collected from the axilaris vein (left or right) of birds. The standard Hemaglutination Inhibition (HI) assa...

  14. Inactivation of various influenza strains to model avian influenza (Bird Flu) with various disinfectant chemistries.

    Energy Technology Data Exchange (ETDEWEB)

    Oberst, R. D.; Bieker, Jill Marie; Souza, Caroline Ann

    2005-12-01

    Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally, organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.

  15. Subtype Identification of Avian Influenza Virus on DNA Microarray

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-rong; YU Kang-zhen; DENG Guo-hua; SHI Rui; LIU Li-ling; QIAO Chuan-ling; BAO Hong-mei; KONG Xian-gang; CHEN Hua-lan

    2005-01-01

    We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-1abeled fluorescent cDNAs,which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.

  16. Avian influenza infection alters fecal odor in mallards.

    Directory of Open Access Journals (Sweden)

    Bruce A Kimball

    Full Text Available Changes in body odor are known to be a consequence of many diseases. Much of the published work on disease-related and body odor changes has involved parasites and certain cancers. Much less studied have been viral diseases, possibly due to an absence of good animal model systems. Here we studied possible alteration of fecal odors in animals infected with avian influenza viruses (AIV. In a behavioral study, inbred C57BL/6 mice were trained in a standard Y-maze to discriminate odors emanating from feces collected from mallard ducks (Anas platyrhynchos infected with low-pathogenic avian influenza virus compared to fecal odors from non-infected controls. Mice could discriminate odors from non-infected compared to infected individual ducks on the basis of fecal odors when feces from post-infection periods were paired with feces from pre-infection periods. Prompted by this indication of odor change, fecal samples were subjected to dynamic headspace and solvent extraction analyses employing gas chromatography/mass spectrometry to identify chemical markers indicative of AIV infection. Chemical analyses indicated that AIV infection was associated with a marked increase of acetoin (3-hydroxy-2-butanone in feces. These experiments demonstrate that information regarding viral infection exists via volatile metabolites present in feces. Further, they suggest that odor changes following virus infection could play a role in regulating behavior of conspecifics exposed to infected individuals.

  17. Influenza A (H3N2) outbreak, Nepal.

    Science.gov (United States)

    Daum, Luke T; Shaw, Michael W; Klimov, Alexander I; Canas, Linda C; Macias, Elizabeth A; Niemeyer, Debra; Chambers, James P; Renthal, Robert; Shrestha, Sanjaya K; Acharya, Ramesh P; Huzdar, Shankar P; Rimal, Nirmal; Myint, Khin S; Gould, Philip

    2005-08-01

    In July 2004, an outbreak of influenza A (H3N2) was detected at 3 Bhutanese refugee camps in southeastern Nepal. Hemagglutination inhibition showed that approximately 40% of the viruses from this outbreak were antigenically distinct from the A/Wyoming/3/03 vaccine strain. Four amino acid differences were observed in most of the 26 isolates compared with the A/Wyoming/3/2003 vaccine strain. All 4 substitutions are located within or adjacent to known antibody-binding sites. Several isolates showed a lysine-to-asparagine substitution at position 145 (K145N) in the hemagglutinin molecule, which may be noteworthy since position 145 is located within a glycosylation site and adjacent to an antibody-binding site. H3N2 viruses continue to drift from the vaccine strain and may remain as the dominant strains during the 2005-2006 influenza season. Thus, the 2005-2006 Northern Hemisphere vaccine strain was changed to A/California/7/2004, a virus with all 4 amino acid substitutions observed in these Nepalese isolates. PMID:16102305

  18. Epidemiological surveillance of low pathogenic avian influenza virus (LPAIV from poultry in Guangxi Province, Southern China.

    Directory of Open Access Journals (Sweden)

    Yi Peng

    Full Text Available Low pathogenic avian influenza virus (LPAIV usually causes mild disease or asymptomatic infection in poultry. However, some LPAIV strains can be transmitted to humans and cause severe infection. Genetic rearrangement and recombination of even low pathogenic influenza may generate a novel virus with increased virulence, posing a substantial risk to public health. Southern China is regarded as the world "influenza epicenter", due to a rash of outbreaks of influenza in recent years. In this study, we conducted an epidemiological survey of LPAIV at different live bird markets (LBMs in Guangxi province, Southern China. From January 2009 to December 2011, we collected 3,121 cotton swab samples of larynx, trachea and cloaca from the poultry at LBMs in Guangxi. Virus isolation, hemagglutination inhibition (HI assay, and RT-PCR were used to detect and subtype LPAIV in the collected samples. Of the 3,121 samples, 336 samples (10.8% were LPAIV positive, including 54 (1.7% in chicken and 282 (9.1% in duck. The identified LPAIV were H3N1, H3N2, H6N1, H6N2, H6N5, H6N6, H6N8, and H9N2, which are combinations of seven HA subtypes (H1, H3, H4, H6, H9, H10 and H11 and five NA subtypes (N1, N2, N5, N6 and N8. The H3 and H9 subtypes are predominant in the identified LPAIVs. Among the 336 cases, 29 types of mixed infection of different HA subtypes were identified in 87 of the cases (25.9%. The mixed infections may provide opportunities for genetic recombination. Our results suggest that the LPAIV epidemiology in poultry in the Guangxi province in southern China is complicated and highlights the need for further epidemiological and genetic studies of LPAIV in this area.

  19. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    Directory of Open Access Journals (Sweden)

    Hafez M. Hafez

    2012-11-01

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry.

  20. Avian Influenza (H5N1) Expert System using Dempster-Shafer Theory

    CERN Document Server

    Maseleno, Andino

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built an Avian Influenza (H5N1) Expert System for identifying avian influenza disease and displaying the result of identification process. In this paper, we describe five symptoms as major symptoms which include depression, combs, wattle, bluish face region, swollen face region, narrowness of eyes, and balance disorders. We use chicken as research object. Research location is in the Lampung Province, South Sumatera. The researcher reason to choose Lampung Province in South Sumatera on the basis that has a high poultry population. Dempster-Shafer theory to quantify the degree of belief as inference engine in expert system, our approach uses Dempster-Shafer theory to combine beliefs under conditions of uncertainty and ignorance, and allows quantitat...

  1. The challenges of avian influenza virus:mechanism,epidemiology and control

    Institute of Scientific and Technical Information of China (English)

    George; F.GAO; Pang-Chui; SHAW

    2009-01-01

    Early 2009, eight human infection cases of H5N1 highly pathogenic avian influenza (HPAI) virus, with 5 death cases, were reported in China. This again made the world alert on a possible pandemic worldwide, probably caused by

  2. Avian Influenza Surveillance and Disease Contingency Plan for Prime Hook National Wildlife Refuge 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — With Avian Influenza, a nonclinical viral infection, becoming a growing concern for wild bird populations in North America and the United States, it has become...

  3. VMRCVM's Center for Public and Corporate Veterinary Medicine presents Avian Influenza Program

    OpenAIRE

    Douglas, Jeffrey S.

    2005-01-01

    About 50 people from state and federal agencies and veterinary practitioners recently gathered at the Virginia-Maryland Regional College of Veterinary Medicine's (VMRCVM) College Park Campus for a four-hour seminar on Avian Influenza recently.

  4. Avian Influenza A(H5N1) Virus in Egypt

    Science.gov (United States)

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  5. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector.

    Science.gov (United States)

    Toro, Haroldo; Tang, De-chu C; Suarez, David L; Sylte, Matt J; Pfeiffer, Jennifer; Van Kampen, Kent R

    2007-04-12

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. This vaccine can be mass-administered using available robotic in ovo injectors which provide a major advantage over current vaccination regimens. In addition, this class of adenovirus-vectored vaccines can be produced rapidly with improved safety since they do not contain any replication-competent adenoviruses. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  6. Survelliance for Avian Influenza in Wood Ducks at Coldwater and Tallahatchie NWRs in 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report contains sampling effort and results of Avian Influenza testing in live wood ducks at Coldwater, Walker Tract, and Tallahatchie in 2009. All samples were...

  7. Chest imaging of H7N9 subtype of human avian influenza

    Directory of Open Access Journals (Sweden)

    Xi-ming Wang

    2015-03-01

    Conclusions: The characteristic imaging demonstrations of H7N9 subtype of human avian influenza are segmental or lobar exudative lesions at lungs at the initial stage, which rapidly progress into bilateral distribution at lungs at the progressive stage.

  8. Spatial Diffusion of Influenza Outbreak-Related Climate Factors in Chiang Mai Province, Thailand

    Directory of Open Access Journals (Sweden)

    Marc Souris

    2012-10-01

    Full Text Available Influenza is one of the most important leading causes of respiratory illness in the countries located in the tropical areas of South East Asia and Thailand. In this study the climate factors associated with influenza incidence in Chiang Mai Province, Northern Thailand, were investigated. Identification of factors responsible for influenza outbreaks and the mapping of potential risk areas in Chiang Mai are long overdue. This work examines the association between yearly climate patterns between 2001 and 2008 and influenza outbreaks in the Chiang Mai Province. The climatic factors included the amount of rainfall, percent of rainy days, relative humidity, maximum, minimum temperatures and temperature difference. The study develops a statistical analysis to quantitatively assess the relationship between climate and influenza outbreaks and then evaluate its suitability for predicting influenza outbreaks. A multiple linear regression technique was used to fit the statistical model. The Inverse Distance Weighted (IDW interpolation and Geographic Information System (GIS techniques were used in mapping the spatial diffusion of influenza risk zones. The results show that there is a significance correlation between influenza outbreaks and climate factors for the majority of the studied area. A statistical analysis was conducted to assess the validity of the model comparing model outputs and actual outbreaks.

  9. Descriptive Study of an Outbreak of Avian Urolithiasis in a Large Commercial Egg Complex in Algeria

    OpenAIRE

    Hicham SID; Amine FETTAH; Abdelaziz LOUNAS

    2011-01-01

    Avian urolithiasis is one of the major causes of mortality in poultry. However, in Algeria this condition has never been described. An outbreak of avian urolithiasis was observed on a large commercial egg complex in the department of Chlef (West of Algeria). The clinical features of this condition are to be described. Mortality associated to urolithiasis started at the onset of egg production, estimated to 0.7 % per week. Urolithiasis induced an egg drop estimated to 12%. Dead and live layers...

  10. Newcastle Disease and Avian Influenza A Virus in Migratory Birds in Wetland of Boushehr-Iran

    Directory of Open Access Journals (Sweden)

    M.J. Mehrabanpour

    2011-08-01

    Full Text Available Wild birds are considered to be the natural reservoir of Newcastle Disease Virus (NDV and Avian Influenza virus (AI and are often suspected to be involved in outbreaks in domesticated birds. The objective of the present study was to determine ND and AI infection in migratory birds in the south of Iran in order to detect the possible source of these viruses to domestic poultry. A total of 443 fecal specimens (fresh dropping and cloacal swabs were collected from migratory and wild resident birds in the Bushehr wetlands from October 2009 to June 2010. AI virus was isolated from 3 out of 443 samples processed for virus isolation and confirmed by reverse transcriptase chain reaction (RT-PCR. NDVs were isolated from 22 (fresh fecal samples and were identified as avian paramyxomyxovirus-1 by the results obtained from the HI test with NDV-specific antibodies and RT-PCR-method. Mortality related to NDV was reported in some chicken flocks in the south of Iran. These results, as well as other data from the literature indicate that wild birds play a minor role as a potential disseminator of NDVs and AIVS. This study is the first report of NDV and AIV isolation from migratory and resident birds in the wetlands of Boushehr-Iran. In addition, our findings support the notion that wild aquatic and migratory birds may function as a reservoir for AIV and NDV in the south of Iran.

  11. Successful treatment of avian-origin influenza A (H7N9) infection using convalescent plasma.

    Science.gov (United States)

    Wu, Xiao-Xin; Gao, Hai-Nv; Wu, Hai-Bo; Peng, Xiu-Ming; Ou, Hui-Lin; Li, Lan-Juan

    2015-12-01

    In January 2015, there was an outbreak of avian-origin influenza A (H7N9) virus in Zhejiang Province, China. A 45-year-old man was admitted to the First Affiliated Hospital of Zhejiang University with a high fever that had lasted 7 days, chills, and a cough with yellow sputum. Laboratory testing confirmed infection with the H7N9 virus, likely obtained from contact with poultry at a local live poultry market. A large dense shadow was apparent in the patient's left lung at the time of admission. Treatment with oseltamivir (75mg twice daily) did not improve the patient's condition. The decision was made to try using convalescent plasma to treat the infection. Convalescent plasma was administered 3 days after the patient was admitted to the hospital and led to a marked improvement. To our knowledge, this is the first report of the successful use of convalescent plasma to treat a case of H7N9 infection in China. These results suggest that the combination of convalescent plasma and antiviral drugs may be effective for the treatment of avian-origin H7N9 infection. PMID:26482389

  12. Successful treatment of avian-origin influenza A (H7N9 infection using convalescent plasma

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-12-01

    Full Text Available In January 2015, there was an outbreak of avian-origin influenza A (H7N9 virus in Zhejiang Province, China. A 45-year-old man was admitted to the First Affiliated Hospital of Zhejiang University with a high fever that had lasted 7 days, chills, and a cough with yellow sputum. Laboratory testing confirmed infection with the H7N9 virus, likely obtained from contact with poultry at a local live poultry market. A large dense shadow was apparent in the patient's left lung at the time of admission. Treatment with oseltamivir (75 mg twice daily did not improve the patient's condition. The decision was made to try using convalescent plasma to treat the infection. Convalescent plasma was administered 3 days after the patient was admitted to the hospital and led to a marked improvement. To our knowledge, this is the first report of the successful use of convalescent plasma to treat a case of H7N9 infection in China. These results suggest that the combination of convalescent plasma and antiviral drugs may be effective for the treatment of avian-origin H7N9 infection.

  13. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    Science.gov (United States)

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  14. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014-2015.

    Science.gov (United States)

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S; DeLiberto, Thomas J; Swayne, David E

    2016-07-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  15. Examination of presence of specific antibodies against avian influenza virus in some species of wild birds

    OpenAIRE

    Šekler Milanko; Ašanin Ružica; Krnjaić D.; Palić T.; Milić N.; Jovanović Tanja; Kovačević Dragana; Plavšić B.; Stojanović Dragica; Vidanović D.; Ašanin N.

    2009-01-01

    Infections caused by the avian influenza virus have been known for a long time and they are present, to a smaller or greater extent, in both extensive and intensive poultry production in many parts of the world. Epidemiological investigations have established a definite significance of the population of wild birds in maintaining and spreading this infection. Avian influenza is a zoonosis, and the virus has a great potential for causing mortality in humans, in particular its subtypes H5 and H7...

  16. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    Science.gov (United States)

    Dong-Hun Lee; Justin Bahl; Mia Kim Torchetti; Mary Lea Killian; Ip, Hon S.; David E Swayne

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  17. Peningkatan Titer Antibodi Terhadap Avian Influenza Dalam Serum Ayam Petelur yang Divaksin Dengan Vaksin Komersial

    OpenAIRE

    Ummu Balqis; Muhammad Hambal; Mulyadi Mulyadi; Samadi Samadi; Darmawi Darmawi

    2011-01-01

    Increasing of antibody titre against avian influenza in serum of vaccinated laying hens with commercial vaccine ABSTRACT. The advantages of vaccination are that it reduces the risk of infection, and concurrently reduces morbidity, mortality and shedding of virus. The goal of the present study was to evaluate efficacy of Avian Influenza commercial vaccine based on humoral immunity responses of laying hens. Totally, 20 breakel silver layer hens were used in this research. The laying hens we...

  18. Risk maps for the spread of highly pathogenic avian influenza in poultry.

    OpenAIRE

    Gert Jan Boender; Hagenaars, Thomas J; Annemarie Bouma; Gonnie Nodelijk; Elbers, Armin R. W; De Jong, Mart C. M.; Michiel van Boven

    2007-01-01

    Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spr...

  19. Risk maps for the spread of highly pathogenic avian influenza in poultry

    OpenAIRE

    Boender, G.J.; Hagenaars, T.H.J.; Bouma, A.; Nodelijk, G.; Elbers, A.R.W.; Jong, de, D.; Boven, van, R.M.

    2007-01-01

    Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spr...

  20. Large-Scale Avian Influenza Surveillance in Wild Birds throughout the United States

    OpenAIRE

    Bevins, Sarah N.; Pedersen, Kerri; Lutman, Mark W.; Baroch, John A.; Schmit, Brandon S.; Kohler, Dennis; Gidlewski, Thomas; Nolte, Dale L.; Swafford, Seth R.; DeLiberto, Thomas J.

    2014-01-01

    Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, rep...

  1. Nowcasting influenza outbreaks using open-source media report.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Brownstein, John S. [Boston Children%3CU%2B2019%3Es Hospital, Boston, MA

    2013-02-01

    We construct and verify a statistical method to nowcast influenza activity from a time-series of the frequency of reports concerning influenza related topics. Such reports are published electronically by both public health organizations as well as newspapers/media sources, and thus can be harvested easily via web crawlers. Since media reports are timely, whereas reports from public health organization are delayed by at least two weeks, using timely, open-source data to compensate for the lag in %E2%80%9Cofficial%E2%80%9D reports can be useful. We use morbidity data from networks of sentinel physicians (both the Center of Disease Control's ILINet and France's Sentinelles network) as the gold standard of influenza-like illness (ILI) activity. The time-series of media reports is obtained from HealthMap (http://healthmap.org). We find that the time-series of media reports shows some correlation ( 0.5) with ILI activity; further, this can be leveraged into an autoregressive moving average model with exogenous inputs (ARMAX model) to nowcast ILI activity. We find that the ARMAX models have more predictive skill compared to autoregressive (AR) models fitted to ILI data i.e., it is possible to exploit the information content in the open-source data. We also find that when the open-source data are non-informative, the ARMAX models reproduce the performance of AR models. The statistical models are tested on data from the 2009 swine-flu outbreak as well as the mild 2011-2012 influenza season in the U.S.A.

  2. Outbreak of Avian Malaria Associated to Multiple Species of Plasmodium in Magellanic Penguins Undergoing Rehabilitation in Southern Brazil

    OpenAIRE

    Ralph Eric Thijl Vanstreels; Kolesnikovas, Cristiane K.M.; Sandro Sandri; Patrícia Silveira; Belo, Nayara O.; Francisco C Ferreira Junior; Sabrina Epiphanio; Mário Steindel; Érika M. Braga; José Luiz Catão-Dias

    2014-01-01

    Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic pen...

  3. The Dynamics of Avian Influenza: Individual-Based Model with Intervention Strategies in Traditional Trade Networks in Phitsanulok Province, Thailand

    OpenAIRE

    Chaiwat Wilasang; Anuwat Wiratsudakul; Sudarat Chadsuthi

    2016-01-01

    Avian influenza virus subtype H5N1 is endemic to Southeast Asia. In Thailand, avian influenza viruses continue to cause large poultry stock losses. The spread of the disease has a serious impact on poultry production especially among rural households with backyard chickens. The movements and activities of chicken traders result in the spread of the disease through traditional trade networks. In this study, we investigate the dynamics of avian influenza in the traditional trade network in Phit...

  4. Phylogenetic analysis of Neuraminidase gene of avian influenza H5N1 subtype detected in Iran in 1390(2011)

    OpenAIRE

    E Kord; Shoushtari, A.; H Ghadakchi; MOHAMMADI, R.; A ,Hadinia

    2013-01-01

    Abstract Background & aim: Among the various subtypes of avian influenza viruses, an H5N1 subtype virus with high pathogenicity is of great importance. The aim of this study was to determine the Phylogenetic analysis of neuraminidase gene of avian influenza virus subtype of the H5N1 in Iran in 1390. Methods: In this experimental study, two swab samples from chickens with suspected symptoms of avian influenza were tested by the World Health Organization recommendation. The neuraminidase...

  5. Prevalence of Antibodies to H9N2 Avian Influenza Virus in Backyard Chickens around Maharlou Lake in Iran

    OpenAIRE

    Mohammad Mehdi Hadipour*, Gholamhossein Habibi and Amir Vosoughi

    2011-01-01

    Backyard chickens play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 500 backyard chickens from villages around Maharlou lake in Iran, using the ...

  6. Vaccine Protection of Turkeys Against H5N1 Highly Pathogenic Avian Influenza Virus with a Recombinant Turkey Herpesvirus Expressing the Hemagglutinin Gene of Avian Influenza.

    Science.gov (United States)

    Kapczynski, Darrell R; Dorsey, Kristi; Chrzastek, Klaudia; Moraes, Mauro; Jackwood, Mark; Hilt, Debra; Gardin, Yannick

    2016-06-01

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies by subtype and virulence of field virus. In this study, the efficacy of a recombinant turkey herpesvirus (rHVT) vector vaccine expressing the hemagglutinin gene from a clade 2.2 AI virus (A/Swan/Hungary/4999/2006) was evaluated in turkeys for protection against challenge with A/Whooper Swan/Mongolia/L244/2005 H5N1 HPAI clade 2.2. One-day-old turkeys received a single vaccination and were challenged at 4 wk postvaccination with 2 × 10(6) 50% embryo infectious dose per bird. The results demonstrate that following H5N1 HPAI challenge 96% protection was observed in rHVT-AI vaccinated turkeys. The oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared with sham-vaccinated birds. From respiratory and gastrointestinal tracts, there was a greater than 6 log10 reduction in shedding in vaccinated birds as compared with the controls. This study provides support for the use of a commercially available rHVT-AI vaccine to protect turkeys against H5N1 HPAI. PMID:27309280

  7. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail

    Science.gov (United States)

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  8. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail.

    Directory of Open Access Journals (Sweden)

    Tinh Huu Nguyen

    Full Text Available H5N1 highly pathogenic avian influenza (HPAI viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010 and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014, were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010 and clade 2.3.2.1c (CVVI-50/2014, which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail.

  9. Negotiating equitable access to influenza vaccines: global health diplomacy and the controversies surrounding avian influenza H5N1 and pandemic influenza H1N1.

    OpenAIRE

    Fidler, David P.

    2010-01-01

    As part of the PLoS Medicine series on Global Health Diplomacy, David Fidler provides a case study of the difficult negotiations to increase equitable access to vaccines for highly pathogenic avian influenza A (H5N1) and pandemic 2009 influenza A (H1N1).

  10. Surveillance for Avian Influenza A(H7N9), Beijing, China, 2013

    OpenAIRE

    Yang, Peng; Pang, Xinghuo; Deng, Ying; Ma, Chunna; Zhang, Daitao; Sun, Ying; Shi, Weixian; Lu, Guilan; Zhao, Jiachen; Liu, Yimeng; Peng, Xiaomin; Tian, Yi; Qian, Haikun; Chen, Lijuan; Wang, Quanyi

    2013-01-01

    During surveillance for pneumonia of unknown etiology and sentinel hospital–based surveillance in Beijing, China, we detected avian influenza A(H7N9) virus infection in 4 persons who had pneumonia, influenza-like illness, or asymptomatic infections. Samples from poultry workers, associated poultry environments, and wild birds suggest that this virus might not be present in Beijing.

  11. EPIDEMIOLOGI TERPADU AVIAN INFLUENZA (FLU BURUNG) BERBASIS TINDAKAN KESEHATAN MASYARAKAT DALAM RESPON PANDEMI INFLUENZA

    OpenAIRE

    Denas Symond

    2009-01-01

    The term surveillance is used in two rather different ways. First, surveillance can mean the continuous security of the factors that determine the occurrence and distribution of disease and other conditions of ill health The second use of the term refers to a special reporting system which is set u for a particularly important health problem or disease, for example the spread of communicable diseases in an epidemic like Avian Influenza (AI) or ( H5N1 ). Such a surveillance system like AI aim ...

  12. The potential spread of highly pathogenic avian influenza virus via dynamic contacts between poultry premises in Great Britain

    Directory of Open Access Journals (Sweden)

    Kao Rowland R

    2011-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI viruses have had devastating effects on poultry industries worldwide, and there is concern about the potential for HPAI outbreaks in the poultry industry in Great Britain (GB. Critical to the potential for HPAI to spread between poultry premises are the connections made between farms by movements related to human activity. Movement records of catching teams and slaughterhouse vehicles were obtained from a large catching company, and these data were used in a simulation model of HPAI spread between farms serviced by the catching company, and surrounding (geographic areas. The spread of HPAI through real-time movements was modelled, with the addition of spread via company personnel and local transmission. Results The model predicted that although large outbreaks are rare, they may occur, with long distances between infected premises. Final outbreak size was most sensitive to the probability of spread via slaughterhouse-linked movements whereas the probability of onward spread beyond an index premises was most sensitive to the frequency of company personnel movements. Conclusions Results obtained from this study show that, whilst there is the possibility that HPAI virus will jump from one cluster of farms to another, movements made by catching teams connected fewer poultry premises in an outbreak situation than slaughterhouses and company personnel. The potential connection of a large number of infected farms, however, highlights the importance of retaining up-to-date data on poultry premises so that control measures can be effectively prioritised in an outbreak situation.

  13. New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt; Mellergaard, Stig; Corbet, S.; Fomsgaard, A.

    2005-01-01

    7, was identified. The HA gene showed great. sequence similarity to the highly pathogenic avian influenza A virus (HPAIV) A/Chicken/ftaly/312/97 (H5N2); however, the cleavage site sequence between HA1 and HA2 had a motif typical for low pathogenic avian influenza viruses (LPAIV). The full-length NA......During the past years increasing incidences of influenza A zoonosis have made it of uppermost importance to possess methods for rapid and precise identification and characterisation of influenza A Viruses. We present here a convenient one-step RT-PCR method that will amplify full......-length haemagglutinin (HA) and neuraminidase (NA) directly from clinical samples and from all known subtypes of influenza A. We applied the method on samples collected in September 2003 from a Danish flock of mallards with general health problems and by this a previously undescribed influenza A subtype combination, H5N...

  14. The Irrationality of GOF Avian Influenza Virus Research.

    Science.gov (United States)

    Wain-Hobson, Simon

    2014-01-01

    The last two and a half years have witnessed a curious debate in virology characterized by a remarkable lack of discussion. It goes by the misleading epithet "gain of function" (GOF) influenza virus research, or simply GOF. As will be seen, there is nothing good to be gained. The controversial experiments confer aerosol transmission on avian influenza virus strains that can infect humans, but which are not naturally transmitted between humans. Some of the newer strains are clearly highly pathogenic for man. It will be shown here that the benefits of the work are erroneous and overstated while the risk of an accident is finite, if small. The consequence of any accident would be anywhere from a handful of infections to a catastrophic pandemic. There has been a single open international meeting in this period, which is surprising given that openness and discussion are essential to good science. Despite US and EU government funding, no risk-benefit analysis has been published, which again is surprising. This research can be duplicated readily in many labs and requires little high tech. It falls under the definition of DURC without the slightest shadow of a doubt and constitutes the most important challenge facing contemporary biology. PMID:25077136

  15. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.; Fomsgaard, A.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  16. Genome Sequence of a Novel Reassortant H3N2 Avian Influenza Virus in Southern China

    OpenAIRE

    Tian, Jin; Zhang, Changhui; Qi, Wenbao; XU, CHENGGANG; Huang, Lihong; Li, Huanan; Liao, Ming

    2012-01-01

    The distribution and prevalence of H3 subtype influenza viruses in avian and mammalian hosts constitutes a potential threat to both human and avian health. We report a complete genome sequence of a novel reassortant H3N2 avian influenza virus. Phylogenetic analysis showed that HA and NA showed the highest sequence homologies with those of A/white-backed munia/Hong Kong/4519/2009 (H3N2). However, the internal genes had the highest sequence homologies with those of H6 and H7 subtypes. The data ...

  17. Emergence of avian H1N1 influenza viruses in pigs in China.

    OpenAIRE

    Guan, Y.; Shortridge, K. F.; Krauss, S.; Li, P H; Kawaoka, Y.; Webster, R G

    1996-01-01

    Avian influenza A viruses from Asia are recognized as the source of genes that reassorted with human vital genes to generate the Asian/57 (H2N2) and Hong Kong/68 (H3N2) pandemic strains earlier in this century. Here we report the genetic analysis of avian influenza A H1N1 viruses recently isolated from pigs in southern China, a host suspected to generate new pandemic strains through gene reassortment events. Each of the eight gene segments was of avian origin. Phylogenetic analysis indicates ...

  18. Mapping the risk of avian influenza in wild birds in the US

    OpenAIRE

    Nott Mark P; DeSante David F; Buermann Wolfgang; Thomassen Henri A; Toffelmier Erin; Curd Emily E; Saatchi Sassan S; Fuller Trevon L; Saracco James F; Ralph CJ; Alexander John D; Pollinger John P; Smith Thomas B

    2010-01-01

    Abstract Background Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling t...

  19. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  20. Pasteurella multocida from outbreaks of avian cholera in wild and captive birds in Denmark

    DEFF Research Database (Denmark)

    Pedersen, Karl; Dietz, Hans-Henrik; Jørgensen, J.C.;

    2003-01-01

    An outbreak of avian cholera was observed among wild birds in a few localities in Denmark in 2001. The highest mortalities were among breeding ciders (Somateria mollissima) and gulls (Larus spp.). Pulsed-field gel electrophoresis (PFGE) was conducted using ApaI and SmaI as restriction enzymes and...

  1. Multi-agent modeling of the South Korean avian influenza epidemic

    Directory of Open Access Journals (Sweden)

    Kim Taehyong

    2010-08-01

    Full Text Available Abstract Background Several highly pathogenic avian influenza (AI outbreaks have been reported over the past decade. South Korea recently faced AI outbreaks whose economic impact was estimated to be 6.3 billion dollars, equivalent to nearly 50% of the profit generated by the poultry-related industries in 2008. In addition, AI is threatening to cause a human pandemic of potentially devastating proportions. Several studies show that a stochastic simulation model can be used to plan an efficient containment strategy on an emerging influenza. Efficient control of AI outbreaks based on such simulation studies could be an important strategy in minimizing its adverse economic and public health impacts. Methods We constructed a spatio-temporal multi-agent model of chickens and ducks in poultry farms in South Korea. The spatial domain, comprised of 76 (37.5 km × 37.5 km unit squares, approximated the size and scale of South Korea. In this spatial domain, we introduced 3,039 poultry flocks (corresponding to 2,231 flocks of chickens and 808 flocks of ducks whose spatial distribution was proportional to the number of birds in each province. The model parameterizes the properties and dynamic behaviors of birds in poultry farms and quarantine plans and included infection probability, incubation period, interactions among birds, and quarantine region. Results We conducted sensitivity analysis for the different parameters in the model. Our study shows that the quarantine plan with well-chosen values of parameters is critical for minimize loss of poultry flocks in an AI outbreak. Specifically, the aggressive culling plan of infected poultry farms over 18.75 km radius range is unlikely to be effective, resulting in higher fractions of unnecessarily culled poultry flocks and the weak culling plan is also unlikely to be effective, resulting in higher fractions of infected poultry flocks. Conclusions Our results show that a prepared response with targeted

  2. Seroprevalence of avian influenza (H9N2) in broiler chickens in Northwest of Iran

    Institute of Scientific and Technical Information of China (English)

    Abolfazl Ghaniei; Manoochehr Allymehr; Ali Moradschendi

    2013-01-01

    Objective:To demonstrate seroprevalence of avian invluenza (H9N2) subtybe in broiler chickens in Northwest of Iran. Materials:A total of 310 blood samples were collected from 25 broiler flocks in slaughterhouses of West Azarbayjan, Iran. Serum samples were subjected to haemagglutination inhibition test. Results:The test showed 40.6%of positive serums. Mean antibody titer of avian influenza virus differed between geographical locations in this survey. Conclusions:High prevalence of avian influenza virus antibodies in serum of birds emphasize that avian influenza has an important role in respiratory complexes in broiler chickens in this region, and probably throughout Iran. Biosecurity measures, monitoring and surveillance programs, and to some degree vaccination are effective tools to prevent introduction of H9N2 infection and its economic losses.

  3. Transmission and reassortment of avian influenza viruses at the Asian-North American interface

    Science.gov (United States)

    Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.

    2010-01-01

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.

  4. Evaluation and optimization of avian embryos and cell culture methods for efficient isolation and propagation of avian influenza viruses

    Science.gov (United States)

    Surveillance of wild bird populations for avian influenza viruses (AIV) contributes to our understanding of AIV evolution and ecology. Both real-time reverse transcriptase polymerase chain reaction (RRT-PCR) and virus isolation in embryonating chicken eggs (ECE) are standard methods for detecting A...

  5. Outbreak of pandemic influenza A/H1N1 2009 in Nepal

    OpenAIRE

    Shrestha Sirjana; Prakash KC Khagendra; Upadhyay Bishnu; Shakya Geeta; Adhikari Bal Ram; Dhungana Guna

    2011-01-01

    Abstract Background The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1) 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009. Results Out of 609 collected samples, 302 (49.6%) were Universal Influenza A positive. Among the influenza A pos...

  6. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar

    Directory of Open Access Journals (Sweden)

    Laure Guerrini

    2014-05-01

    Full Text Available While the spatial pattern of the highly pathogenic avian influenza H5N1 virus has been studied throughout Southeast Asia, little is known on the spatial risk factors for avian influenza in Africa. In the present paper, we combined serological data from poultry and remotely sensed environmental factors in the Lake Alaotra region of Madagascar to explore for any association between avian influenza and landscape variables. Serological data from cross-sectional surveys carried out on poultry in 2008 and 2009 were examined together with a Landsat 7 satellite image analysed using supervised classification. The dominant landscape features in a 1-km buffer around farmhouses and distance to the closest water body were extracted. A total of 1,038 individual bird blood samples emanating from 241 flocks were analysed, and the association between avian influenza seroprevalence and these landcape variables was quantified using logistic regression models. No evidence of the presence of H5 or H7 avian influenza subtypes was found, suggesting that only low pathogenic avian influenza (LPAI circulated. Three predominant land cover classes were identified around the poultry farms: grassland savannah, rice paddy fields and wetlands. A significant negative relationship was found between LPAI seroprevalence and distance to the closest body of water. We also found that LPAI seroprevalence was higher in farms characterised by predominant wetlands or rice landscapes than in those surrounded by dry savannah. Results from this study suggest that if highly pathogenic avian influenza H5N1 virus were introduced in Madagascar, the environmental conditions that prevail in Lake Alaotra region may allow the virus to spread and persist.

  7. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Yipeng Sun

    Full Text Available BACKGROUND: The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. CONCLUSIONS/SIGNIFICANCE: We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.

  8. Effects of infection-induced migration delays on the epidemiology of avian influenza in wild mallard populations.

    Directory of Open Access Journals (Sweden)

    Stephen J Galsworthy

    Full Text Available Wild waterfowl populations form a natural reservoir of Avian Influenza (AI virus, and fears exist that these birds may contribute to an AI pandemic by spreading the virus along their migratory flyways. Observational studies suggest that individuals infected with AI virus may delay departure from migratory staging sites. Here, we explore the epidemiological dynamics of avian influenza virus in a migrating mallard (Anas platyrhynchos population with a specific view to understanding the role of infection-induced migration delays on the spread of virus strains of differing transmissibility. We develop a host-pathogen model that combines the transmission dynamics of influenza with the migration, reproduction and mortality of the host bird species. Our modeling predicts that delayed migration of individuals influences both the timing and size of outbreaks of AI virus. We find that (1 delayed migration leads to a lower total number of cases of infection each year than in the absence of migration delay, (2 when the transmission rate of a strain is high, the outbreak starts at the staging sites at which birds arrive in the early part of the fall migration, (3 when the transmission rate is low, infection predominantly occurs later in the season, which is further delayed when there is a migration delay. As such, the rise of more virulent AI strains in waterfowl could lead to a higher prevalence of infection later in the year, which could change the exposure risk for farmed poultry. A sensitivity analysis shows the importance of generation time and loss of immunity for the effect of migration delays. Thus, we demonstrate, in contrast to many current transmission risk models solely using empirical information on bird movements to assess the potential for transmission, that a consideration of infection-induced delays is critical to understanding the dynamics of AI infection along the entire flyway.

  9. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization.

    Science.gov (United States)

    Gao, Wentao; Soloff, Adam C; Lu, Xiuhua; Montecalvo, Angela; Nguyen, Doan C; Matsuoka, Yumi; Robbins, Paul D; Swayne, David E; Donis, Ruben O; Katz, Jacqueline M; Barratt-Boyes, Simon M; Gambotto, Andrea

    2006-02-01

    The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza. PMID:16439551

  10. Effect of homosubtypic and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa)

    Science.gov (United States)

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus...

  11. Assessment of national strategies for control of high pathogenicity avian influenza and low pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination

    Science.gov (United States)

    Twenty-nine distinct epizootics of highly pathogenic avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. Historically, control strategies have focus...

  12. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009-2011 in the West Bengal State, India

    Directory of Open Access Journals (Sweden)

    Pawar Shailesh D

    2012-08-01

    Full Text Available Abstract Introduction More than 70 outbreaks of the highly pathogenic avian influenza (HPAI H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009–2011 in the State of West Bengal. Methods A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum] were from domestic ducks and poultry. All tracheal, cloacal and environmental samples were processed for virus isolation. Virus isolates were detected using hemagglutination assay and identified using hemagglutination inhibition (HI and reverse transcriptase polymerase chain reaction (RT-PCR assays. Sequencing and phylogenetic analysis of partial region of the hemagglutinin and neuraminidase genes was done. Intravenous pathogenicity index assays were performed in chickens to assess pathogenicity of AI virus isolates. Serum samples were tested for detection of antibodies against AI viruses using HI assay. Results A total of 57 AI H9N2, 15 AI H4N6 and 15 Newcastle Disease (NDV viruses were isolated from chickens, from both backyard and wet poultry markets; AI H4N6 viruses were isolated from backyard chickens and domestic ducks. Characterization of AI H9N2 and H4N6 viruses revealed that they were of low pathogenicity. Domestic ducks were positive for antibodies against H5 and H7 viruses while chickens were positive for presence of antibodies against AI H9N2 and NDV. Conclusions In the current scenario of HPAI H5N1 outbreaks in West Bengal, this report shows presence of low pathogenic AI H9N2 and H4N6 viruses in chickens and domestic ducks during the period 2009–2011. This is the first report of

  13. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl.

    Directory of Open Access Journals (Sweden)

    Nicolas Gaidet

    Full Text Available The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  14. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    Science.gov (United States)

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  15. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Nancy A Gerloff

    Full Text Available Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50 were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the

  16. Paradoxical risk perception and behaviours related to Avian Flu outbreak and education campaign, Laos

    Directory of Open Access Journals (Sweden)

    Lorvongseng Somchay

    2010-10-01

    Full Text Available Abstract Background In Laos, small backyard poultry systems predominate (90%. The first lethal human cases of highly pathogenic avian influenza (HPAI occurred in 2007. Few studies have addressed the impact of outbreaks and education campaigns on a smallholder producer system. We evaluated awareness and behaviours related to educational campaigns and the 2007 HPAI outbreaks. Methods During a national 2-stage cross-sectional randomised survey we interviewed 1098 households using a pre-tested questionnaire in five provinces representative of the Southern to Northern strata of Laos. We used multivariate analysis (Stata, version 8; Stata Corporation, College Station, TX, USA to analyse factors affecting recollection of HPAI educational messages, awareness of HPAI, and behaviour change. Results Of the 1098 participants, 303 (27.6% received training on HPAI. The level of awareness was similar to that in 2006. The urban population considered risk to be decreased, yet unsafe behaviours persisted or increased. This contrasted with an increase in awareness and safe behaviour practices in rural areas. Reported behaviour changes in rural areas included higher rates of cessation of poultry consumption and dead poultry burial when compared to 2006. No participants reported poultry deaths to the authorities. Overall, 70% could recall an educational message but the content and accuracy differed widely depending on training exposure. Washing hands and other hygiene advice, messages given during the HPAI educational campaign, were not recalled. Trained persons were able to recall only one message while untrained participants recalled a broader range of messages. Factors associated with an awareness of a threat of AI in Laos were: having received HPAI training, literacy level, access to TV, recent information, living in rural areas. Conclusion We report a paradoxical relationship between unsafe behaviours and risk perception in urban areas, as well as exposure to

  17. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt;

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase gene...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  18. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Science.gov (United States)

    2010-11-10

    ..., we published in the Federal Register (75 FR 17368-17370, Docket No. APHIS-2009-0088) a notice \\1\\ in... Pathogenic Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and...

  19. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal; Tumpey, Terrence M; Blixt, Ola; Belser, Jessica A; Gustin, Kortney M; Pearce, Melissa B; Pappas, Claudia; Stevens, James; Cox, Nancy J; Paulson, James C; Raman, Rahul; Sasisekharan, Ram; Katz, Jacqueline M; Donis, Ruben O

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced...

  20. Complete Genome Sequences of Six Avian-Like H1N1 Swine Influenza Viruses from Northwestern China

    OpenAIRE

    Wang, Jing-Yu; Ren, Juan-Juan; Qiu, Yuan-Hao; Liu, Hung-Jen

    2013-01-01

    Very little is known about swine influenza in northwestern China. Here, we report the complete genomic sequences of six avian-like H1N1 swine influenza viruses (SIVs) isolated in pigs in northwestern China. Phylogenetic analyses of the sequences of eight genomic segments demonstrated that they are avian-like H1N1 SIVs.

  1. Mapping antibody epitopes of the avian H5N1 influenza virus

    OpenAIRE

    Surender Khurana; Suguitan, Amorsolo L.; Yonaira Rivera; Simmons, Cameron P.; Antonio Lanzavecchia; Federica Sallusto; Jody Manischewitz; King, Lisa R.; Kanta Subbarao; Hana Golding

    2009-01-01

    Editors' Summary Background Every winter, millions of people catch influenza, a viral infection of the airways. Most recover quickly but seasonal influenza outbreaks (epidemics) kill about half a million people annually. These epidemics occur because small but frequent changes in the viral proteins (antigens) to which the human immune system responds mean that an immune response produced one year by infection or through vaccination provides only partial protection against influenza the next y...

  2. Receptor Characterization and Susceptibility of Cotton Rats to Avian and 2009 Pandemic Influenza Virus Strains

    OpenAIRE

    Blanco, Jorge C. G.; Pletneva, Lioubov M; Wan, Hongquan; Araya, Yonas; Angel, Matthew; Oue, Raymonde O.; Sutton, Troy C.; Perez, Daniel R

    2013-01-01

    Animal influenza viruses (AIVs) are a major threat to human health and the source of pandemic influenza. A reliable small-mammal model to study the pathogenesis of infection and for testing vaccines and therapeutics against multiple strains of influenza virus is highly desirable. We show that cotton rats (Sigmodon hispidus) are susceptible to avian and swine influenza viruses. Cotton rats express α2,3-linked sialic acid (SA) and α2,6-linked SA residues in the trachea and α2,6-linked SA residu...

  3. Complete Genome Sequence of an H10N5 Avian Influenza Virus Isolated from Pigs in Central China

    OpenAIRE

    Wang, Nan; Zou, Wei; Yang, Ying; Guo, Xuebo; Hua, Yafeng; Qiang ZHANG; Zhao, Zongzheng; Jin, Meilin

    2012-01-01

    An avian H10N5 influenza virus, A/swine/Hubei/10/2008/H10N5, was isolated from pigs in the Hubei Province of central China. Homology and phylogenetic analyses of all eight gene segments demonstrated that the strain was wholly of avian origin and closely homologous to the Eurasian lineage avian influenza virus. To our knowledge, this is the first report of interspecies transmission of an avian H10N5 influenza virus to domestic pigs under natural conditions.

  4. Partial direct contact transmission in ferrets of a mallard H7N3 influenza virus with typical avian-like receptor specificity

    Directory of Open Access Journals (Sweden)

    Araya Yonas

    2009-08-01

    Full Text Available Abstract Background Avian influenza viruses of the H7 subtype have caused multiple outbreaks in domestic poultry and represent a significant threat to public health due to their propensity to occasionally transmit directly from birds to humans. In order to better understand the cross species transmission potential of H7 viruses in nature, we performed biological and molecular characterizations of an H7N3 virus isolated from mallards in Canada in 2001. Results Sequence analysis that the HA gene of the mallard H7N3 virus shares 97% identity with the highly pathogenic avian influenza (HPAI H7N3 virus isolated from a human case in British Columbia, Canada in 2004. The mallard H7N3 virus was able to replicate in quail and chickens, and transmitted efficiently in quail but not in chickens. Interestingly, although this virus showed preferential binding to analogs of avian-like receptors with sialic acid (SA linked to galactose in an α2–3 linkage (SAα2–3Gal, it replicated to high titers in cultures of primary human airway epithelial (HAE cells, comparable to an avian H9N2 influenza virus with human-like α2–6 linkage receptors (SAα2–6Gal. In addition, the virus replicated in mice and ferrets without prior adaptation and was able to transmit partially among ferrets. Conclusion Our findings highlight the importance and need for systematic in vitro and in vivo analysis of avian influenza viruses isolated from the natural reservoir in order to define their zoonotic potential.

  5. Descriptive Study of an Outbreak of Avian Urolithiasis in a Large Commercial Egg Complex in Algeria

    Directory of Open Access Journals (Sweden)

    Hicham SID

    2011-03-01

    Full Text Available Avian urolithiasis is one of the major causes of mortality in poultry. However, in Algeria this condition has never been described. An outbreak of avian urolithiasis was observed on a large commercial egg complex in the department of Chlef (West of Algeria. The clinical features of this condition are to be described. Mortality associated to urolithiasis started at the onset of egg production, estimated to 0.7 % per week. Urolithiasis induced an egg drop estimated to 12%. Dead and live layers were both necropsied and examined for kidney lesions. Most of the birds examined presented enlarged ureters, renal atrophy and visceral gout deposition.

  6. Little evidence of subclinical avian influenza virus infections among rural villagers in Cambodia.

    Directory of Open Access Journals (Sweden)

    Gregory C Gray

    Full Text Available In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI. Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI virus infection and withdrew from the study. Ninety-seven ILI cases (22.1% were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0% had detectable antibody titers (≥ 1:10 against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6, 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1, 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up against an avian-like A/Hong Kong/1073/1999(H9N2, 6 (1 detected at both 12- and 24-month follow-up against an avian-like A/Duck/Memphis/546/74(H11N9, and 2 against an avian-like A/Duck/Alberta/60/76(H12N5. With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  7. In ovo and in vitro susceptibility of American alligators (Alligator mississippiensis) to avian influenza virus infection.

    Science.gov (United States)

    Temple, Bradley L; Finger, John W; Jones, Cheryl A; Gabbard, Jon D; Jelesijevic, Tomislav; Uhl, Elizabeth W; Hogan, Robert J; Glenn, Travis C; Tompkins, S Mark

    2015-01-01

    Avian influenza has emerged as one of the most ubiquitous viruses within our biosphere. Wild aquatic birds are believed to be the primary reservoir of all influenza viruses; however, the spillover of H5N1 highly pathogenic avian influenza (HPAI) and the recent swine-origin pandemic H1N1 viruses have sparked increased interest in identifying and understanding which and how many species can be infected. Moreover, novel influenza virus sequences were recently isolated from New World bats. Crocodilians have a slow rate of molecular evolution and are the sister group to birds; thus they are a logical reptilian group to explore susceptibility to influenza virus infection and they provide a link between birds and mammals. A primary American alligator (Alligator mississippiensis) cell line, and embryos, were infected with four, low pathogenic avian influenza (LPAI) strains to assess susceptibility to infection. Embryonated alligator eggs supported virus replication, as evidenced by the influenza virus M gene and infectious virus detected in allantoic fluid and by virus antigen staining in embryo tissues. Primary alligator cells were also inoculated with the LPAI viruses and showed susceptibility based upon antigen staining; however, the requirement for trypsin to support replication in cell culture limited replication. To assess influenza virus replication in culture, primary alligator cells were inoculated with H1N1 human influenza or H5N1 HPAI viruses that replicate independent of trypsin. Both viruses replicated efficiently in culture, even at the 30 C temperature preferred by the alligator cells. This research demonstrates the ability of wild-type influenza viruses to infect and replicate within two crocodilian substrates and suggests the need for further research to assess crocodilians as a species potentially susceptible to influenza virus infection. PMID:25380354

  8. Investigation on the preventive strategies against two cases of human infection by avian influenza%两起人禽流感防控策略之思考

    Institute of Scientific and Technical Information of China (English)

    王慧琴; 房桂兰

    2014-01-01

    Objective The purpose of this study was to investigate the outbreak of avian flu,in order to develop scientific methods and strategies for prevention and control against human infection by avian influenza.Methods Epidemiological descriptive approach was adopted after two outbreaks of avian flu were reported in a town in Shapotou district.Analysis on prevention and control measures against human infection by bird flu was performed.Results During the first outbreak in 2006,because the health administrative department was inexperienced,resources were not uniformly integrated,and 218 staffs from ten units and excess resources were utilized.During the second outbreak in 2012,only 65 staffs from five units participated in dealing with the outbreak,which was much less than 2006.Conclusion Unified commanding,clear responsibilities,focused propaganda,and appropriate training are the most fundamental effective approach in prevention and control of highly pathogenic avian influenza infection.Unified commanding,integrated resources,and unified deployment by the health administrative department are the key to prevent human infection by avian influenza.%目的 探讨禽流感疫情发生后,科学防控人感染禽流感的方法和策略.方法 采取描述性的流行病学方法对沙坡头区某镇两次发生禽流感疫情后人感染禽流感防控措施进行分析.结果 2006年第一次禽流感疫情处置时,因卫生行政部门无经验,没有统一整合资源,参与处置疫情投入人员达218人、动用单位达10个,投入物资也较多,均明显多于2012年的65人、5个单位.结论 卫生行政部门统一指挥,整合资源,统一调配,加强人员防护及开展宣传教育是科学、高效防控人感染高致病性禽流感的关键.

  9. Pasteurella multocida from outbreaks of avian cholera in wild and captive birds in Denmark

    DEFF Research Database (Denmark)

    Pedersen, Karl; Dietz, Hans-Henrik; Jørgensen, J.C.; Christensen, T.K.; Bregnballe, T.; Andersen, T.H.

    2003-01-01

    An outbreak of avian cholera was observed among wild birds in a few localities in Denmark in 2001. The highest mortalities were among breeding ciders (Somateria mollissima) and gulls (Larus spp.). Pulsed-field gel electrophoresis (PFGE) was conducted using ApaI and SmaI as restriction enzymes and...... restriction enzyme analysis (REA) using HpaII. The Pasteurella multocida subsp. multocida strain isolated from birds in this outbreak was indistinguishable from a strain that caused outbreaks in 1996 and 2003. Most isolates from domestic poultry had other PFGE patterns but some were indistinguishable from the...... outbreak strain. Among 68 isolates from wild birds, only one PFGE and one REA pattern were demonstrated, whereas among 23 isolates from domestic poultry, 14 different SmaI, 12 different ApaI, and 10 different HpaII patterns were found. The results suggest that a P. multocida strain has survived during...

  10. Impact of avian influenza on village poultry production globally.

    Science.gov (United States)

    Alders, Robyn; Awuni, Joseph Adongo; Bagnol, Brigitte; Farrell, Penny; de Haan, Nicolene

    2014-01-01

    Village poultry and their owners were frequently implicated in disease transmission in the early days of the highly pathogenic avian influenza (HPAI) H5N1 pandemic. With improved understanding of the epidemiology of the disease, it was recognized that village poultry raised under extensive conditions pose less of a threat than intensively raised poultry of homogeneous genetic stock with poor biosecurity. This paper provides an overview of village poultry production and the multiple ways that the HPAI H5N1 pandemic has impacted on village poultry, their owners, and the traders whose livelihoods are intimately linked to these birds. It reviews impact in terms of gender and cultural issues; food security; village poultry value chains; approaches to biosecurity; marketing; poultry disease prevention and control; compensation; genetic diversity; poultry as part of livelihood strategies; and effective communication. It concludes on a positive note that there is growing awareness amongst animal health providers of the importance of facilitating culturally sensitive dialogue to develop HPAI prevention and control options. PMID:24136383

  11. First Characterization of Avian Influenza Viruses from Greenland 2014.

    Science.gov (United States)

    Hartby, Christina Marie; Krog, Jesper Schak; Merkel, Flemming; Holm, Elisabeth; Larsen, Lars Erik; Hjulsager, Charlotte Kristiane

    2016-05-01

    In late February 2014, unusually high numbers of wild thick-billed murres (Uria lomvia) were found dead on the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examination in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2 and low pathogenic H5N1 were detected in some of the birds. Characterization of the viruses by full genome sequencing revealed that all the gene segments belonged to the North American lineage of AIVs. The seemingly sparse and mixed subtype occurrence of low pathogenic AIVs in these birds, in addition to the emaciated appearance of the birds, suggests that the murre die-off was due to malnutrition as a result of sparse food availability or inclement weather. Here we present the first characterization of AIVs isolated in Greenland, and our results support the idea that wild birds in Greenland may be involved in the movement of AIV between North America and Europe. PMID:27309071

  12. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    Science.gov (United States)

    Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.

    2012-01-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.

  13. Avian Influenza (H5N1) Warning System using Dempster-Shafer Theory and Web Mapping

    CERN Document Server

    Maseleno, Andino

    2012-01-01

    Based on Cumulative Number of Confirmed Human Cases of Avian Influenza (H5N1) Reported to World Health Organization (WHO) in the 2011 from 15 countries, Indonesia has the largest number death because Avian Influenza which 146 deaths. In this research, the researcher built a Web Mapping and Dempster-Shafer theory as early warning system of avian influenza. Early warning is the provision of timely and effective information, through identified institutions, that allows individuals exposed to a hazard to take action to avoid or reduce their risk and prepare for effective response. In this paper as example we use five symptoms as major symptoms which include depression, combs, wattle, bluish face region, swollen face region, narrowness of eyes, and balance disorders. Research location is in the Lampung Province, South Sumatera. The researcher reason to choose Lampung Province in South Sumatera on the basis that has a high poultry population. Geographically, Lampung province is located at 103040' to 105050' East Lo...

  14. Avian Influenza Ecology in North Atlantic Sea Ducks: Not All Ducks Are Created Equal.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Hall

    Full Text Available Wild waterfowl are primary reservoirs of avian influenza viruses (AIV. However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61% in these sea duck populations but low virus prevalence (0.3%. Using these data we estimated that an antibody half-life of 141 weeks (3.2 years would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  15. Avian influenza ecology in North Atlantic sea ducks: Not all ducks are created equal

    Science.gov (United States)

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J Christian; Soos, Catherine; Dusek, Robert; Allen, R. Bradford; Nashold, Sean W.; Teslaa, Joshua L.; Jónsson, Jón Einar; Ballard, Jennifer R.; Harms, Naomi Jnae; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  16. Attitude of poultry farmers towards vaccination against newcastle disease and avian influenza in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    OE Oluwole,

    2012-06-01

    Full Text Available Newcastle disease (ND and Avian Influenza (AI are among the important viral diseases of poultry with very high economic implications. ND is enzootic in most parts of the world while Highly Pathogenic AI (HPAI is an emerging zoonosis in Nigeria. This study was carried out to assess the perception and attitude of poultry farmers in the selected Local Government Areas in Ibadan towards vaccination of birds against these diseases, and to find out the types of vaccines that were available for the control of the two diseases. A total of 84 respondents out of 100 (84% completed and returned the questionnaires administered. The results indicated that all farmers vaccinated their birds against ND. The regime for ND vaccination was not the same across the local government areas. Some 32 (38.1% farmers operated vaccination schedules provided by hatchery technicians, while 43 (51.2% farmers vaccinated their birds at about 4-6 weeks interval. Nine (10.7% farmers combined hatchery and laboratory evaluation to determine schedule. Thirty nine farmers (46.4% indicated that they were aware of national policy of non-vaccination against AI. However, 14 out of 84 farmers (16.7% vaccinated their birds against HPAI. There is a need to continue the national policy of slaughter of HPAI infected poultry birds and compensation of farmers, albeit allowing strategic use of vaccine to effectively control HPAI outbreaks in south-western part of Nigeria.

  17. Avian influenza (H5N1 virus of clade 2.3.2 in domestic poultry in India.

    Directory of Open Access Journals (Sweden)

    Shanmuga Nagarajan

    Full Text Available South Asia has experienced regular outbreaks of H5N1 avian influenza virus since its first detection in India and Pakistan in February, 2006. Till 2009, the outbreaks in this region were due to clade 2.2 H5N1 virus. In 2010, Nepal reported the first outbreak of clade 2.3.2 virus in South Asia. In February 2011, two outbreaks of H5N1 virus were reported in the State of Tripura in India. The antigenic and genetic analyses of seven H5N1 viruses isolated during these outbreaks were carried out. Antigenic analysis confirmed 64 to 256-fold reduction in cross reactivity compared with clade 2.2 viruses. The intravenous pathogenicity index of the isolates ranged from 2.80-2.95 indicating high pathogenicity to chickens. Sequencing of all the eight gene-segments of seven H5N1 viruses isolated in these outbreaks was carried out. The predicted amino acid sequence analysis revealed high pathogenicity to chickens and susceptibility to the antivirals, amantadine and oseltamivir. Phylogenetic analyses indicated that these viruses belong to clade 2.3.2.1 and were distinct to the clade 2.3.2.1 viruses isolated in Nepal. Identification of new clade 2.3.2 H5N1 viruses in South Asia is reminiscent of the introduction of clade 2.2 viruses in this region in 2006/7. It is now important to monitor whether the clade 2.3.2.1 is replacing clade 2.2 in this region or co-circulating with it. Continued co-circulation of various subclades of the H5N1 virus which are more adapted to land based poultry in a highly populated region such as South Asia increases the risk of evolution of pandemic H5N1 strains.

  18. Controlling equine influenza: policy networks and decision-making during the 2007 Australian equine influenza outbreak.

    Science.gov (United States)

    Schemann, K; Gillespie, J A; Toribio, J-A L M L; Ward, M P; Dhand, N K

    2014-10-01

    Rapid, evidence-based decision-making is critical during a disease outbreak response; however, compliance by stakeholders is necessary to ensure that such decisions are effective - especially if the response depends on voluntary action. This mixed method study evaluated technical policy decision-making processes during the 2007 outbreak of equine influenza in Australia by identifying and analysing the stakeholder network involved and the factors driving policy decision-making. The study started with a review of the outbreak literature and published policy documents. This identified six policy issues regarding policy modifications or differing interpretations by different state agencies. Data on factors influencing the decision-making process for these six issues and on stakeholder interaction were collected using a pre-tested, semi-structured questionnaire. Face-to-face interviews were conducted with 24 individuals representing 12 industry and government organizations. Quantitative data were analysed using social network analysis. Qualitative data were coded and patterns matched to test a pre-determined general theory using a method called theory-oriented process-tracing. Results revealed that technical policy decisions were framed by social, political, financial, strategic and operational considerations. Industry stakeholders had influence through formal pre-existing channels, yet specific gaps in stakeholder interaction were overcome by reactive alliances formed during the outbreak response but outside the established system. Overall, the crisis management system and response were seen as positive, and 75-100% of individuals interviewed were supportive of, had interest in and considered the outcome as good for the majority of policy decisions, yet only 46-75% of those interviewed considered that they had influence on these decisions. Training to increase awareness and knowledge of emergency animal diseases (EADs) and response systems will improve stakeholder

  19. Environmental factors contributing to the spread of H5N1 avian influenza in mainland China.

    Directory of Open Access Journals (Sweden)

    Li-Qun Fang

    Full Text Available BACKGROUND: Since late 2003, highly pathogenic avian influenza (HPAI outbreaks caused by infection with H5N1 virus has led to the deaths of millions of poultry and more than 10 thousands of wild birds, and as of 18-March 2008, at least 373 laboratory-confirmed human infections with 236 fatalities, have occurred. The unrestrained worldwide spread of this disease has caused great anxiety about the potential of another global pandemic. However, the effect of environmental factors influencing the spread of HPAI H5N1 virus is unclear. METHODOLOGY/PRINCIPAL FINDINGS: A database including incident dates and locations was developed for 128 confirmed HPAI H5N1 outbreaks in poultry and wild birds, as well as 21 human cases in mainland China during 2004-2006. These data, together with information on wild bird migration, poultry densities, and environmental variables (water bodies, wetlands, transportation routes, main cities, precipitation and elevation, were integrated into a Geographical Information System (GIS. A case-control design was used to identify the environmental factors associated with the incidence of the disease. Multivariate logistic regression analysis indicated that minimal distance to the nearest national highway, annual precipitation and the interaction between minimal distance to the nearest lake and wetland, were important predictive environmental variables for the risk of HPAI. A risk map was constructed based on these factors. CONCLUSIONS/SIGNIFICANCE: Our study indicates that environmental factors contribute to the spread of the disease. The risk map can be used to target countermeasures to stop further spread of the HPAI H5N1 at its source.

  20. Cambodia’s patient zero: The political economy of foreign aid and avian influenza

    OpenAIRE

    Ear, Sophal

    2009-01-01

    The article of record may be found at https://mpra.ub.uni-muenchen.de/21825/ What happens when a developing country with poor health infrastructure and even poorer animal health surveillance is thought to be a potential source for the next emerging infectious disease? This is the story of Cambodia and Avian Influenza. This paper undertakes a review of the relevant literature and analyzes the results of detailed semi-structured interviews of individuals highly engaged in Avian I...

  1. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers

    Science.gov (United States)

    Gomaa, Mokhtar R.; Kandeil, Ahmed; Kayed, Ahmed S.; Elabd, Mona A.; Zaki, Shaimaa A.; Abu Zeid, Dina; El Rifay, Amira S.; Mousa, Adel A.; Farag, Mohamed M.; McKenzie, Pamela P.; Webby, Richard J.; Ali, Mohamed A.; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses. PMID:27258357

  2. Interspecies transmission and host restriction of avian H5N1 influenza virus

    Institute of Scientific and Technical Information of China (English)

    GAO; George; Fu

    2009-01-01

    Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.

  3. Wild Bird Movements and Avian Influenza Risk Mapping in Southern Africa

    Directory of Open Access Journals (Sweden)

    Morne A. Du Plessis

    2008-12-01

    Full Text Available Global analyses of the potential for avian influenza transmission by wild birds have ignored key characteristics of the southern African avifauna. Although southern Africa hosts a variety of migratory, Holarctic-breeding wading birds and shorebirds, the documented prevalence of avian influenza in these species is low. The primary natural carriers of influenza viruses in the northern hemisphere are the anatids, i.e., ducks. In contrast to Palearctic-breeding species, most southern African anatids do not undertake predictable annual migrations and do not follow migratory flyways. Here we present a simple, spatially explicit risk analysis for avian influenza transmission by wild ducks in southern Africa. We developed a risk value for each of 16 southern African anatid species and summed risk estimates at a quarter-degree cell resolution for the entire subregion using data from the Southern African Bird Atlas. We then quantified environmental risks for South Africa at the same resolution. Combining these two risk values produced a simple risk map for avian influenza in South Africa, based on the best currently available data. The areas with the highest risk values were those near the two largest cities, Johannesburg and Cape Town, although parts of Kwazulu-Natal and the Eastern Cape also had high-risk scores. Our approach is simple, but has the virtue that it could be readily applied in other relatively low-data areas in which similar assessments are needed; and it provides a first quantitative assessment for decision makers in the subregion.

  4. Current and future antiviral therapy of severe seasonal and avian influenza

    OpenAIRE

    Beigel, John; Bray, Mike

    2008-01-01

    The currently circulating H3N2 and H1N1 subtypes of influenza A virus cause a transient, febrile upper respiratory illness in most adults and children (“seasonal influenza”), but infants, the elderly, immunodeficient and chronically ill persons may develop life-threatening primary viral pneumonia or complications such as bacterial pneumonia. By contrast, avian influenza viruses such as the H5N1 virus that recently emerged in Southeast Asia can cause severe disease when transferred from birds ...

  5. Avian-origin H3N2 canine influenza A viruses in Southern China

    OpenAIRE

    Li, Shoujun; Shi, Zhihai; Jiao, Peirong; Zhang, Guihong; Zhong, Zhiwen; Tian, Wenru; Long, Li-Ping; Cai, Zhipeng; Zhu, Xingquan; Liao, Ming; Wan, Xiu-Feng

    2010-01-01

    This study reports four sporadic cases of H3N2 canine influenza in southern China, which were identified from sick dogs from May 2006 to October 2007. The evolutionary analysis showed that all eight segments of these four viruses are avian-origin and phylogenetically close to the H3N2 canine influenza viruses reported earlier in South Korea. Systematic surveillance is required to monitor the disease and evolutionary behavior of this virus in canine populations in China.

  6. El virus influenza y la gripe aviar Influenza virus and avian flu

    Directory of Open Access Journals (Sweden)

    Libia Herrero-Uribe

    2008-03-01

    Full Text Available En este artículo se presenta una revisión del virus influenza,su biología,sus mecanismos de variación antigénica,las pandemias que ha producido y la prevención mediante las vacunas y medicamentos antivirales.Se analizan las razones por las cuales aparece el virus H5N1 que produce la fiebre aviar en humanos,la patogénesis de este virus y las estrategias para su prevención.Se informa sobre el plan de preparación para la pandemia en los niveles nacional e internacional.This article presents a review of Influenza virus,its biology,its mechanism of antigenic variation and its prevention by vaccination and the use of antivirals.The pandemics produced by this virus through history are presented.The appearance of the avian flu virus H5N1 is analyzed and its pathogenesis and strategies of prevention are discussed.National and international information about pandemic preparedness is presented.

  7. Analysis of spatial distribution and transmission characters for highly pathogenic avian influenza in Chinese mainland in 2004

    Science.gov (United States)

    Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.

    2006-03-01

    After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.

  8. The avian-origin H3N2 canine influenza virus that recently emerged in the United States has limited replication in swine.

    Science.gov (United States)

    Abente, Eugenio J; Anderson, Tavis K; Rajao, Daniela S; Swenson, Sabrina; Gauger, Phillip C; Vincent, Amy L

    2016-09-01

    Equine-origin H3N8 has circulated in dogs in the United States since 1999. A genetically and antigenically distinct avian-origin H3N2 canine influenza was detected in March of 2015 in Chicago, Illinois. Subsequent outbreaks were reported with over 1000 dogs in the Midwest affected followed by 23 additional states with detections within 5 months. The potential for canine-to-swine transmission was unknown. Experimental infection in pigs showed this virus does not replicate efficiently in swine. PMID:27110913

  9. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015

    OpenAIRE

    Arriola, Carmen S.; Nelson, Deborah I.; DeLiberto, Thomas J.; Blanton, Lenee; Kniss, Krista; Levine, Min Z.; Trock, Susan C.; Finelli, Lyn; Jhung, Michael A.; ,

    2015-01-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexpo...

  10. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan

    Science.gov (United States)

    MORIGUCHI, Sachiko; ONUMA, Manabu; GOKA, Koichi

    2016-01-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333

  11. Linking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups

    Directory of Open Access Journals (Sweden)

    Caron Alexandre

    2012-10-01

    Full Text Available Abstract The ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG concept to explore the relationships between wild bird communities and avian influenza virus (AIV in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks and charadriiforms (waders drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology.

  12. Migratory birds reinforce local circulation of avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Josanne H Verhagen

    Full Text Available Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i H3 virus kinship, (ii temporal patterns in H3 virus prevalence and shedding and (iii H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife.

  13. Investigating avian influenza infection hotspots in old-world shorebirds.

    Directory of Open Access Journals (Sweden)

    Nicolas Gaidet

    Full Text Available Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May. This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered.

  14. Phylogenetic Analysis of H7N9 Avian Influenza Virus Based on a Novel Mathematical Descriptor

    OpenAIRE

    Yusheng Bai; Tingting Ma; Yuhua Yao; Qi Dai; Ping-an He

    2014-01-01

    A new mathematical descriptor was proposed based on 3D graphical representation. Using the method, we construct the phylogenetic trees of nine proteins of H7N9 influenza virus to analyze the originated source of H7N9. The results show that the evolution route of H7N9 avian influenza is from America through Europe to Asia. Furthermore, two samples collected from environment in Nanjing and Zhejiang and one sample collected from chicken are the sources of H7N9 influenza virus that infected human...

  15. Prevention and control of Foot-and-Mouth disease, classical swine fever and Avian influenza in the European Union: An integrated analysis of epidemiological, economic and social-ethical aspects

    OpenAIRE

    Asseldonk, van, N.; Jong, de, D.; Vlieger, de, J.J.; Huirne, R.B.M.

    2005-01-01

    The recent outbreaks of Foot-and-Mouth Disease (FMD), Classical Swine Fever (CSF), and highly pathogenetic Avian Influenza (AI) in the European Union (EU) have shown that such contagious animal diseases can have a devastating impact in terms of animal welfare, economics and societal outcry and disturbance. Insights into the three interrelated, aspects of epidemiology, economics, and social-ethics are crucial in order to better prevent and control contagious diseases in the future. Because of ...

  16. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Directory of Open Access Journals (Sweden)

    Margaret A Carrel

    Full Text Available BACKGROUND: Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10: e3462 demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. CONCLUSIONS/SIGNIFICANCE: The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space

  17. Serological Evidence of Inter-Species Transmission of H9N2 Avian Influenza Virus in Poultry, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Hadipour

    2011-02-01

    Full Text Available Ducks and in-contact backyard chickens on 20 smallholder backyard farms in 4 districts of Shiraz, Southwest of Iran, were monitored for antibodies against H9N2 avian influenza virus using hemagglutinationinhibition (HI test. A total of 200 unvaccinated ducks and backyard chickens were sampled. The mean H I titers and seroprevalence in ducks and backyard chickens were 8.3, 5.7 and 78.4, 62.9%, respectively. Results of this study revealed that the Scavenging ducks are the natural reservoir of avian influenza viruses and play an important role in the epidemiology of H9N2 avian influenza virus infection.

  18. An outbreak of influenza A(H1N1)pdm09 virus in a primary school in Vietnam

    OpenAIRE

    Duong, Tran Nhu; Tho, Nguyen Thi Thi; Hien, Nguyen Tran; Olowokure, Babatunde

    2015-01-01

    Background Despite school pupils being at greatest risk during the 2009 influenza pandemic there are limited data on outbreaks of influenza A(H1N1)pdm09 in primary schools in South-East Asia. This prospective cohort study describes an outbreak of influenza A(H1N1)pdm09 in a primary school in rural Vietnam. Findings In total 103 cases of influenza-like illness were found among the 407 pupils in the primary school. Ten of these were laboratory confirmed cases of influenza A(H1N1)pdm09 virus. Th...

  19. Strengthening the diagnostic capacity to detect Bio Safety Level 3 organisms in unusual respiratory viral outbreaks

    NARCIS (Netherlands)

    van Asten, Liselotte; van der Lubben, Mariken; van den Wijngaard, Cees; van Pelt, Wilfrid; Verheij, Robert; Jacobi, Andre; Overduin, Pieter; Meijer, Adam; Luijt, Dirk; Claas, Eric; Hermans, Mirjam; Melchers, Willem; Rossen, John; Schuurman, Rob; Wolffs, Petra; Bouchier, Charles; Schirm, Jurjen; Kroes, Louis; Leenders, Sander; Galama, Joep; Peeters, Marcel; van Loon, Anton; Stobberingh, Ellen; Schutten, Martin; Koopmans, Marion D. V. M.

    2009-01-01

    Background: Experience with a highly pathogenic avian influenza outbreak in the Netherlands (2003) illustrated that the diagnostic demand for respiratory viruses at different biosafety levels (including BSL3), can increase unexpectedly and dramatically. Objectives: We describe the measures taken sin

  20. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses

    Science.gov (United States)

    Gandhale, Pradeep N.; Kumar, Himanshu; Kulkarni, Diwakar D.

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens. PMID:27071061

  1. Two special topics on the avian influenza virus and on epigenetics,have drawn much attention

    Institute of Scientific and Technical Information of China (English)

    HU YongLin

    2010-01-01

    @@ Several excellent well-organized reviews and research papers on two special topics, "The challenges of avian influenza virus: mechanism, epidemiology, and control" and "Molecular epigenetics: dawn of a new era of biomedical research", published in the 2009 edition of Science in China Series C: Life Sciences, have drawn much attention.

  2. Experimental Infection of Dogs with Avian-Origin Canine Influenza A Virus (H3N2)

    OpenAIRE

    Song, Daesub; Lee, Chulseung; Kang, Bokyu; Jung, Kwonil; Oh, Taehoon; Kim, Hyekwon; Park, Bongkyun; Oh, Jinsik

    2009-01-01

    Susceptible dogs were brought into contact with dogs experimentally infected with an avian-origin influenza A virus (H3N2) that had been isolated from a pet dog with severe respiratory syndrome. All the experimentally infected and contact-exposed dogs showed elevated rectal temperatures, virus shedding, seroconversion, and severe necrotizing tracheobronchitis and bronchioalveolitis.

  3. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    Science.gov (United States)

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  4. Cross-clade immunity in cats vaccinated with a canarypox-vectored avian influenza vaccine

    Science.gov (United States)

    Several felid species have been shown to be susceptible to infection with highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype. Infection of felids by H5N1 HPAI virus is often fatal, and cat-to-cat transmission has been documented. Domestic cats may then be involved in the transmis...

  5. Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination

    Science.gov (United States)

    Maternal antibodies (MAb) may interfere with avian influenza (AI) vaccination. MAb interference prevents an immune response by binding to the vaccine antigen. Once MAb titers are depleted, the chick is susceptible to a circulating AI virus. This study examined the affect of MAb on seroconversion ...

  6. Experimental infection studies of avian influenza in wild birds as a complement to surveillance

    Science.gov (United States)

    Over the last ten years, an unprecedented amount of experimental and field research has expanded our understanding of AI virus infection in wild birds. The majority of this work, however, has specifically focused on H5N1 high pathogenicity avian influenza (HPAI) viruses, which is a biologically uni...

  7. Low Pathogenic Avian Influenza (H7N1) Transmission Between Wild Ducks and Domestic Ducks

    DEFF Research Database (Denmark)

    Therkildsen, O. R.; Jensen, Trine Hammer; Handberg, Kurt;

    2011-01-01

    This article describes a virological investigation in a mixed flock of ducks and geese following detection of avian influenza virus antibodies in domestic geese. Low pathogenic H7N1 was found in both domestic and wild birds, indicating that transmission of virus was likely to have taken place...

  8. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Diagnostic surveillance program for low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  9. 76 FR 66032 - Availability of an Environmental Assessment for Field Testing Avian Influenza-Marek's Disease...

    Science.gov (United States)

    2011-10-25

    ...We are advising the public that the Animal and Plant Health Inspection Service has prepared an environmental assessment concerning authorization to ship for the purpose of field testing, and then to field test, an unlicensed Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector. The environmental assessment, which is based on a risk analysis prepared to......

  10. Low pathogenicity notifiable avian influenza (LPNAI) with an emphasis on vaccination programs

    Science.gov (United States)

    There have been 30 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2012. The largest has been the H5N1 HPAI which began in Guangdong China in 1996, and has affected over 250 million poultry and/or wild birds in 63 countries. For most countries, stamping-out prog...

  11. Mekabu fucoidan: Structural complexity and defensive effects against avian influenza A viruses

    Czech Academy of Sciences Publication Activity Database

    Synytsya, A.; Bleha, R.; Synytsya, Al.; Pohl, Radek; Hayashi, K.; Yoshinaga, K.; Nakano, T.; Hayashi, T.

    2014-01-01

    Roč. 111, Oct 13 (2014), s. 633-644. ISSN 0144-8617 Institutional support: RVO:61388963 Keywords : Mekabu fucoidan * sporophyll Undaria pinnatifida * spectroscopic methods * avian influenza A virus * immunostimulating effect Subject RIV: CC - Organic Chemistry Impact factor: 4.074, year: 2014

  12. Avian influenza virus with Hemagglutinin-Neuraminidase combination H8N8, isolated in Russia

    Science.gov (United States)

    This study reports the genome sequence of an avian influenza virus (AIV) subtype H8N8 isolated in Russia. The genome analysis shows that all genes belong to AIV Eurasian lineages. The PB2 gene was similar to a Mongolian low pathogenic (LP) AIV H7N1 and a Chinese high pathogenic (HP) AIV H5N2....

  13. RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza

    DEFF Research Database (Denmark)

    Dybkaer, Karen; Munch, Mette; Handberg, Kurt Jensen; Jørgensen, Poul H

    A one-tube reverse transcriptase/polymerase chain reaction coupled with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) was developed for the rapid detection of avian influenza virus (AIV) in clinical specimens. A total of 419 swab pools were analyzed from chickens experimentally infected with...

  14. Surveillance for avian influenza viruses in wild birds in Denmark and Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona; Handberg, Kurt J.; Therkildsen, Ole R.; Madsen, Jesper J.; Thorup, Kasper; Baroch, John A.; DeLiberto, Thomas J.; Larsen, Lars Erik; Jørgensen, Poul Henrik

    Avian influenza (AI) is a disease of major threat to poultry production. Surveillance of AI in wild birds contributes to the control of AI. In Denmark (DK) and Greenland (GL), extensive surveillance of AI viruses in the wild bird population has been conducted. The surveillance aimed at detecting...

  15. Detection of American lineage low pathogenic avian influenza viruses in Uria lomvia in Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Hartby, Christina Marie; Krog, Jesper Schak; Holm, Elisabeth; Larsen, Lars Erik

    Denmark. Five birds were randomly selected for diagnostic investigation and samples were taken from the cadavers (pooled oropharyngeal swabs, cloacal swabs, lung/trachea/heart tissues and liver/spleen/kidney tissues, and separate preparation of stomach from a single bird). Avian influenza virus (AIV) with...

  16. Complete Genome Sequence of a New H9N2 Avian Influenza Virus Isolated in China

    OpenAIRE

    Wang, Jing-Yu; Ren, Juan-Juan; Liu, Wan-Hua; Tang, Pan; Wu, Ning; Wang, Chi-Young; Chang, Ching-Dong; Liu, Hung-Jen

    2013-01-01

    The complete genomic sequence of a new H9N2 avian influenza virus (AIV), isolated in northwestern China, was determined. Sequence and phylogenetic analyses based on the sequences of eight genomic segments revealed that the isolate is phylogenetically related to the Y280-like sublineage.

  17. Subclinical Highly Pathogenic Avian Influenza Virus Infection among Vaccinated Chickens, China

    OpenAIRE

    Ma, Qing-Xia; Jiang, Wen-Ming; Liu, Shuo; Wang, Su-Chun; Zhuang, Qing-Ye; Hou, Guang-Yu; Liu, Xiang-Ming; Sui, Zheng-Hong; Chen, Ji-Ming

    2014-01-01

    Subclinical infection of vaccinated chickens with a highly pathogenic avian influenza A(H5N2) virus was identified through routine surveillance in China. Investigation suggested that the virus has evolved into multiple genotypes. To better control transmission of the virus, we recommend a strengthened program of education, biosecurity, rapid diagnostics, surveillance, and elimination of infected poultry.

  18. Avian Influenza (H7N9) Virus Infection in Chinese Tourist in Malaysia, 2014

    OpenAIRE

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah; Yeo, Tsin Wen

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally.

  19. New Avian Influenza Virus (H5N1) in Wild Birds, Qinghai, China

    OpenAIRE

    Li, Yanbing; Liu, Liling; Zhang, Yi; Duan, Zhenhua; Tian, Guobin; Zeng, Xianying; Shi, Jianzhong; Zhang, Licheng; Chen, Hualan

    2011-01-01

    Highly pathogenic avian influenza virus (H5N1) (QH09) was isolated from dead wild birds (3 species) in Qinghai, China, during May–June 2009. Phylogenetic and antigenic analyses showed that QH09 was clearly distinguishable from classical clade 2.2 viruses and belonged to clade 2.3.2.

  20. Differentiation of infected and vaccinated animals (DIVA) using the NS1 protein of avian influenza virus

    Science.gov (United States)

    Vaccination against avian influenza (AI) virus, a powerful tool for control of the disease, may result in issues related to surveillance programs and international trade of poultry and poultry products. The use of AI vaccination in poultry would have greater world-wide acceptance if a reliable test...

  1. New Avian Influenza Virus (H5N1) in Wild Birds, Qinghai, China

    Science.gov (United States)

    Li, Yanbing; Liu, Liling; Zhang, Yi; Duan, Zhenhua; Tian, Guobin; Zeng, Xianying; Shi, Jianzhong; Zhang, Licheng

    2011-01-01

    Highly pathogenic avian influenza virus (H5N1) (QH09) was isolated from dead wild birds (3 species) in Qinghai, China, during May–June 2009. Phylogenetic and antigenic analyses showed that QH09 was clearly distinguishable from classical clade 2.2 viruses and belonged to clade 2.3.2. PMID:21291602

  2. Vaccine induced protection from egg production losses in commercial turkey breeder hens following experimental challenge with a triple reassortant H3N2 avian influenza virus

    Science.gov (United States)

    Avian influenza (AI) infection in turkey breeder hens can cause decreases in both egg production and quality which results in significant production losses. Recently, an H3N2 subtype of avian influenza triple reassortant containing human, swine, and avian gene segments was isolated from turkey bree...

  3. The avian influenza virus nucleoprotein gene and a specific constellation of avian and human virus polymerase genes each specify attenuation of avian-human influenza A/Pintail/79 reassortant viruses for monkeys.

    OpenAIRE

    Snyder, M H; Buckler-White, A J; London, W T; Tierney, E L; Murphy, B R

    1987-01-01

    Reassortant viruses which possessed the hemagglutinin and neuraminidase genes of wild-type human influenza A viruses and the remaining six RNA segments (internal genes) of the avian A/Pintail/Alberta/119/79 (H4N6) virus were previously found to be attenuated in humans. To study the genetic basis of this attenuation, we isolated influenza A/Pintail/79 X A/Washington/897/80 reassortant viruses which contained human influenza virus H3N2 surface glycoprotein genes and various combinations of avia...

  4. Highly Pathogenic Avian Influenza H5N1 in Mainland China

    Directory of Open Access Journals (Sweden)

    Xin-Lou Li

    2015-05-01

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = −0.19, p value = 0.005. Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of

  5. It is not just AIV: From avian to swine-origin influenza virus

    Institute of Scientific and Technical Information of China (English)

    GAO George F; SUN YePing

    2010-01-01

    @@ In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States.The virus spreads worldwide by human-to-human transmission.Within a few weeks, it reached a pandemic level.The virus is a novel reassorment virus.It contains gene fragments of influenza virus of swine, avian and human emerged from a triple reassortant virus circulating in North American swine.The source triple-reassortant itself comprised genes derived from avian (PB2 and PA), human H3N2 (PB1) and classical swine (HA, NP and NS) lineages.In contrast, the NA and M gene segments have their origin in the Eurasian avian-like swine H1N1 lineage (Figure 1).

  6. Profiles of cytokine and chemokine gene expression in human pulmonary epithelial cells induced by human and avian influenza viruses

    OpenAIRE

    Chan Paul KS; Chu Ida MT; Yeung Apple CM; Lam WY

    2010-01-01

    Abstract Influenza pandemic remains a serious threat to human health. In this study, the repertoire of host cellular cytokine and chemokine responses to infections with highly pathogenic avian influenza H5N1, low pathogenicity avian influenza H9N2 and seasonal human influenza H1N1 were compared using an in vitro system based on human pulmonary epithelial cells. The results showed that H5N1 was more potent than H9N2 and H1N1 in inducing CXCL-10/IP-10, TNF-alpha and CCL-5/RANTES. The cytokine/c...

  7. A review on human influenza A H5N1 infections in Hong Kong

    Institute of Scientific and Technical Information of China (English)

    CHAN Paul K S

    2009-01-01

    Avian influenza A H5N1 remains the most threatening virus that may cause another devastating pan-demic in the foreseeable future, In 1997, Hong Kong was the first place to detect human infections due to this virus originated from birds. The experience and lessons learnt provide important information for controlling further outbreaks caused by avian influenza viruses.

  8. A review on human influenza A H5N1 infections in Hong Kong

    Institute of Scientific and Technical Information of China (English)

    CHAN; Paul; K; S

    2009-01-01

    Avian influenza A H5N1 remains the most threatening virus that may cause another devastating pandemic in the foreseeable future. In 1997, Hong Kong was the first place to detect human infections due to this virus originated from birds. The experience and lessons learnt provide important information for controlling further outbreaks caused by avian influenza viruses.

  9. Engineering development of avian influenza virus detection system in a patient's body

    International Nuclear Information System (INIS)

    The avian influenza virus detection equipment in a patient's body has been made. Currently, detection of avian influenza virus carried out by expensive laboratory equipment's, so only certain hospitals can perform this detection. This developing equipment is expected to be cheaper than existing equipment and the diagnosis can be known immediately. The sensing device is made using the principle of nuclear radiation detection. Radiation comes from a drunk labelled tamiflu (oseltamivir) which is drunk to the patient. Tamiflu is a drug to catch, H5N1 viruses in a patient's body. A labelled tamiflu is tamiflu which is labelled by I-131 radioisotopes. The presence of virus in the body is proportional to the amount of radiation captured by the detector. The equipment is composed of a Geiger-Mueller (GM) pancake detector type, a signal processor, a counter, and a data processor (computer). The GM detector converts the radiation that comes into electrical signals. Electrical signal is then converted into TTL level pulses by the signal processor. Pulse counting results are processed by data processor. The total count is proportional to the amount of virus captured by labelled tamiflu. The measurement threshold can be set by medical officer through software. At a certain threshold can be inferred identified patients infected with avian influenza virus. If the measurement below the threshold means that the patient is still within safe limits. This equipment is expected to create avian influenza virus detection system that cheaply and quickly so that more and more hospitals are using to detect the avian influenza virus. (author)

  10. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China.

    Science.gov (United States)

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F

    2009-09-27

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the 'well-known' reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China. PMID:19687041

  11. Profiles of acute cytokine and antibody responses in patients infected with avian influenza A H7N9.

    Directory of Open Access Journals (Sweden)

    Rui Huang

    Full Text Available The influenza A H7N9 virus outbreak in Eastern China in the spring of 2013 represented a novel, emerging avian influenza transmission to humans. While clinical and microbiological features of H7N9 infection have been reported in the literature, the current study investigated acute cytokine and antibody responses in acute H7N9 infection. Between March 27, 2013 and April 23, 2013, six patients with confirmed H7N9 influenza infection were admitted to Drum Tower Hospital, Nanjing, China. Acute phase serum cytokine profiles were determined using a high-throughput multiplex assay. Daily H7 hemagglutinin (HA-specific IgG, IgM, and IgA responses were monitored by ELISA. Neutralizing antibodies specific for H7N9 viruses were determined against a pseudotyped virus expressing the novel H7 subtype HA antigen. Five cytokines (IL-6, IP-10, IL-10, IFNγ, and TNFα were significantly elevated in H7N9-infected patients when compared to healthy volunteers. Serum H7 HA-specific IgG, as well as IgM and IgA responses, were detected within 8 days of disease onset and increased in a similar pattern during acute infection. Neutralizing antibodies developed shortly after the appearance of binding antibody responses and showed similar kinetics as a fraction of the total H7 HA-specific IgG responses. H7N9 infection resulted in hallmark serum cytokine increases, which correlated with fever and disease persistence. The novel finding of simultaneous development of IgG, IgM, and IgA responses in acute H7N9 infection points to the potential for live influenza viruses to elicit fast and potent protective antibodies to limit the infection.

  12. Genesis of avian influenza H9N2 in Bangladesh.

    Science.gov (United States)

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-12-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011-2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans. PMID:26038507

  13. Genomic sequences of human infection of avian-origin influenza A(H7N9) virus in Zhejiang province

    Institute of Scientific and Technical Information of China (English)

    陈寅

    2013-01-01

    Objective To analyze the etiology and genomic sequences of human infection of avian-origin influenza A (H7N9) virus from Zhejiang province.Methods Viral RNA was extracted from patients of suspected H7N9

  14. Mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District : 2008-2009 proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal for 20082009 mortality surveillance for Highly Pathogenic Avian Influenza HPAI at Kulm Wetland Management District in North Dakota. Surveillance will focus...

  15. Mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District : 2010-2011 proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal for 20102011 mortality surveillance for Highly Pathogenic Avian Influenza HPAI at Kulm Wetland Management District in North Dakota. Surveillance will focus...

  16. Mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District : 2009-2010 proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal for 2009-2010 mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District in North Dakota. Surveillance will...

  17. Mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District : 2008-2009 proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal for 2008-2009 mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District in North Dakota. Surveillance will...

  18. Mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District : 2010-2011 proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal for 2010-2011 mortality surveillance for Highly Pathogenic Avian Influenza (HPAI) at Kulm Wetland Management District in North Dakota. Surveillance will...

  19. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    Directory of Open Access Journals (Sweden)

    Ding Yuan Oh

    2014-01-01

    Full Text Available Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013, the adamantanes and the neuraminidase inhibitors (NAIs. During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1 viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future.

  20. Flu and Finances: Influenza Outbreaks and Loan Defaults in US Cities, 2004–2012

    Science.gov (United States)

    Collins, J. Michael; Schmeiser, Maximilian D.

    2015-01-01

    Objectives. We examined the association between influenza outbreaks in 83 metropolitan areas and credit card and mortgage defaults, as measured in quarterly zip code–level credit data over the period of 2004 to 2012. Methods. We used ordinary least squares, fixed effects, and 2-stage least squares instrumental variables regression strategies to examine the relationship between influenza-related Google searches and 30-, 60-, and 90-day credit card and mortgage delinquency rates. Results. We found that a proxy for influenza outbreaks is associated with a small but statistically significant increase in credit card and mortgage default rates, net of other factors. These effects are largest for 90-day defaults, suggesting that influenza outbreaks have a disproportionate impact on vulnerable borrowers who are already behind on their payments. Conclusions. Overall, it appears there is a relationship between exogenous health shocks (such as influenza) and credit default. The results suggest that consumer finances could benefit from policies that aim to reduce the financial shocks of illness, particularly for vulnerable borrowers. PMID:26180971

  1. Adenovirus-Vectored Vaccine as a Rapid-Response Tool Against Avian Influenza Pandemic

    International Nuclear Information System (INIS)

    Influenza viruses in nature undergo genetic mutation and reassortment. Three pandemics of avian influenza in man were recorded in the twentieth century. Highly pathogenic avian influenza (HPAI) viruses currently in circulation pose a threat for another world-wide pandemic, if they become transmissible from man to man. Manufacturing protective vaccines using current egg-based technology is often difficult due to the virulence of the virus and its adverse effects on the embryonating egg substrate. New technologies allow the creation of safe and protective pandemic influenza vaccines without the need for egg based substrates. These technologies allow new vaccines to be created in less than one month. Manufacturing is in tissue culture, not eggs. Vaccine can be administered to man non-invasively, without adjuvants, eliciting a rapid and protective immune response. Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad5)-derived vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5N2 HPAI virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. Vaccination using this vaccine could protect the the largest host reservoir (chickens) and greatly reduce the exposure of man to avian influenza. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural AI virus infections. In addition to mass immunization of poultry, both animals and humans have been effectively immunized by intranasal administration of Ad5-vectored influenza vaccines without any appreciable side effects, even in mice and human volunteers with

  2. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation.

    Science.gov (United States)

    Arafa, A; Suarez, D; Kholosy, S G; Hassan, M K; Nasef, S; Selim, A; Dauphin, G; Kim, M; Yilma, J; Swayne, D; Aly, M M

    2012-10-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season. PMID:22760662

  3. Diverse inter-continental and host lineage reassortant avian influenza A viruses in pelagic seabirds.

    Science.gov (United States)

    Huang, Yanyan; Robertson, Gregory J; Ojkic, Davor; Whitney, Hugh; Lang, Andrew S

    2014-03-01

    Avian influenza A viruses (AIVs) often infect waterfowl, gulls and shorebirds, but other bird groups including pelagic seabirds also serve as hosts. In this study, we analyzed 21 AIVs found in two distant breeding colonies of Common Murre (Uria aalge) in Newfoundland and Labrador, Canada, during 2011. Phylogenetic analyses and genotype assignments were performed for the 21 Common Murre viruses together with all Common and Thick-billed Murre (Uria lomvia) AIV sequences available in public sequence databases. All fully characterized viruses from the Common Murres in 2011 were H1N2 subtype, but the genome sequences revealed greater diversity and the viruses belonged to four distinct genotypes. The four genotypes shared most segments in common, but reassortment was observed for PB2 and M segments. This provided direct genetic data of AIV diversification through segment reassortment during an outbreak of AIV infection in high-density breeding colonies. Analysis of the total collection of available murre viruses revealed a diverse collection of subtypes and gene lineages with high similarity to those found in viruses from waterfowl and gulls, and there was no indication of murre-specific AIV gene lineages. Overall, the virus gene pool in murres was predominantly made up of AIV lineages associated with waterfowl, but also featured considerable gull lineage genes and inter-continental reassortments. In particular, all but one of the 21 Common Murre viruses from 2011 in Newfoundland contained 1 or 2 Eurasian segments and 16 contained 1 gull lineage segment. This mosaic nature of characterized murre AIV genomes might reflect an under-recognized role of these pelagic seabirds in virus transmission across space and between bird host taxa. PMID:24462905

  4. Avian influenza shedding patterns in waterfowl: implications for surveillance, environmental transmission, and disease spread

    Science.gov (United States)

    Viviane Henaux; Samuel, Michael D.

    2011-01-01

    Despite the recognized importance of fecal/oral transmission of low pathogenic avian influenza (LPAI) via contaminated wetlands, little is known about the length, quantity, or route of AI virus shed by wild waterfowl. We used published laboratory challenge studies to evaluate the length and quantity of low pathogenic (LP) and highly pathogenic (HP) virus shed via oral and cloacal routes by AI-infected ducks and geese, and how these factors might influence AI epidemiology and virus detection. We used survival analysis to estimate the duration of infection (from virus inoculation to the last day virus was shed) and nonlinear models to evaluate temporal patterns in virus shedding. We found higher mean virus titer and longer median infectious period for LPAI-infected ducks (10–11.5 days in oral and cloacal swabs) than HPAI-infected ducks (5 days) and geese (7.5 days). Based on the median bird infectious dose, we found that environmental contamination is two times higher for LPAI- than HPAI-infectious ducks, which implies that susceptible birds may have a higher probability of infection during LPAI than HPAI outbreaks. Less environmental contamination during the course of infection and previously documented shorter environmental persistence for HPAI than LPAI suggest that the environment is a less favorable reservoir for HPAI. The longer infectious period, higher virus titers, and subclinical infections with LPAI viruses favor the spread of these viruses by migratory birds in comparison to HPAI. Given the lack of detection of HPAI viruses through worldwide surveillance, we suggest monitoring for AI should aim at improving our understanding of AI dynamics (in particular, the role of the environment and immunity) using long-term comprehensive live bird, serologic, and environmental sampling at targeted areas. Our findings on LPAI and HPAI shedding patterns over time provide essential information to parameterize environmental transmission and virus spread in predictive

  5. Complete Genome Sequence of a Novel Avian-Like H3N2 Swine Influenza Virus Discovered in Southern China

    OpenAIRE

    Su, Shuo; Chen, Ji-dang; Qi, Hai-tao; Zhu, Wan-jun; Xie, Jie-xiong; Huang, Zhen; Tan, Li-kai; Qi, Wen-bao; Zhang, Gui-hong

    2012-01-01

    We report here the complete genomic sequence of a novel avian-like H3N2 swine influenza virus containing an H5N1 highly pathogenic avian influenza virus segment that was obtained from swine in southern China. Phylogenetic analysis indicated that this virus might originate from domestic aquatic birds. The sequence information provided herein suggests that continuing study is required to determine if this virus can be established in the swine population and pose potential threats to public health.

  6. Infection with Possible Precursor of Avian Influenza A(H7N9) Virus in a Child, China, 2013

    OpenAIRE

    Ren, Lili; Yu, Xuelian; Zhao, Baihui; Wu, Fan; Jin, Qi; Zhang, Xi; Wang, Jianwei

    2014-01-01

    During the early stage of the avian influenza A(H7N9) epidemic in China in March 2013, a strain of the virus was identified in a 4-year-old boy with mild influenza symptoms. Phylogenetic analysis indicated that this strain, which has similarity to avian subtype H9N2 viruses, may represent a precursor of more-evolved H7N9 subtypes co-circulating among humans.

  7. Enhanced inactivation of avian influenza virus at -20°C by disinfectants supplemented with calcium chloride or other antifreeze agents.

    Science.gov (United States)

    Guan, Jiewen; Chan, Maria; Brooks, Brian W; Rohonczy, Elizabeth

    2015-10-01

    Avian influenza outbreaks have occurred during winter months, and effective disinfection of poultry premises at freezing temperatures is needed. The commercial disinfectants Virkon and Accel, supplemented with an antifreeze agent [propylene glycol (PG), methanol (MeOH), or calcium chloride (CaCl₂)], were evaluated for their effectiveness in killing avian influenza virus (AIV) at -20°C or 21°C. An AIV suspension was applied to stainless steel disks, air-dried, and covered with a disinfectant or antifreeze agent for 5 to 30 min. Virkon (2%) and Accel (6.25%) with 30% PG, 20% MeOH, or 20% CaCl₂ inactivated 6 log₁₀ AIV within 5 min at -20°C and 21°C. At these temperatures PG and MeOH alone did not kill AIV, but the 20% CaCl₂ solution alone inactivated 5 log10 AIV within 10 min. The results suggested that CaCl₂ is potentially useful to enhance the effectiveness of disinfection of poultry facilities after outbreaks of AIV infection in warm and cold seasons. PMID:26424918

  8. A pelagic outbreak of avian cholera in North American gulls: Scavenging as a primary mechanism for transmission?

    Science.gov (United States)

    Wille, Michelle; McBurney, Scott; Robertson, Gregory J.; Wilhelm, Sabine; Blehert, David; Soos, Catherine; Dunphy, Ron; Whitney, Hugh

    2016-01-01

    Avian cholera, caused by the bacterium Pasteurella multocida, is an endemic disease globally, often causing annual epizootics in North American wild bird populations with thousands of mortalities. From December 2006 to March 2007, an avian cholera outbreak caused mortality in marine birds off the coast of Atlantic Canada, largely centered 300–400 km off the coast of the island of Newfoundland. Scavenging gulls (Larus spp.) were the primary species detected; however, mortality was also identified in Black-legged Kittiwakes (Rissa tridactyla) and one Common Raven (Corvus corax), a nonmarine species. The most common gross necropsy findings in the birds with confirmed avian cholera were acute fibrinous and necrotizing lesions affecting the spleen, air sacs, and pericardium, and nonspecific hepatomegaly and splenomegaly. The etiologic agent, P. multocida serotype 1, was recovered from 77 of 136 carcasses examined, and confirmed or probable avian cholera was diagnosed in 85 cases. Mortality observed in scavenging gull species was disproportionately high relative to their abundance, particularly when compared to nonscavenging species. The presence of feather shafts in the ventricular lumen of the majority of larid carcasses diagnosed with avian cholera suggests scavenging of birds that died from avian cholera as a major mode of transmission. This documentation of an outbreak of avian cholera in a North American pelagic environment affecting primarily scavenging gulls indicates that offshore marine environments may be a component of avian cholera dynamics.

  9. Simultaneous detection of avian influenza virus NP and H5 antibodies in chicken sera using a fluorescence microsphere immunoassay.

    Science.gov (United States)

    Lupiani, Blanca; Mozisek, Blayne; Mason, Peter W; Lamichhane, Chinta; Reddy, Sanjay M

    2010-03-01

    Avian influenza (AI) surveillance in commercial poultry is accomplished by detecting the presence of antibodies to two group-specific antigens, NP and M1, using the agar gel immunodiffusion test. In order to determine the viral subtype responsible for the infection, positive samples must be further subtyped using the hemagglutination inhibition and neuraminidase inhibition tests. These tests are labor intensive and may take up to 4 days, thus slowing down responses to outbreaks. To expedite the subtyping of chicken sera we have developed a multiplex fluorescence microsphere immunoassay (FMIA), which allows for the simultaneous detection and subtyping of chicken sera to H5 influenza viruses. The FMIA was developed using NP (full length) and H5 (HA1 region) proteins expressed in baby hamster kidney cells using a Venezuela equine encephalitis virus replicon system. Both proteins were tagged with 6xHis at the carboxy-end and purified using cobalt-coated agarose beads. Purified H5 protein showed minimal cross-reactivity with anti-H2 serum, while no cross-reactivity was observed with sera to other AI virus (AIV) subtypes and other important poultry viral pathogens. In addition, and as expected, all the AIV sera tested reacted strongly with purified NP protein. Our results indicate that FMIA can be used for rapid subtyping of chicken sera. PMID:20521712

  10. Looking for avian influenza in remote areas. A case study in Northern Vietnam.

    Science.gov (United States)

    Trevennec, K; Chevalier, V; Grosbois, V; Garcia, J M; Thu, H Ho; Berthouly-Salazar, C; Peiris, J S M; Roger, F

    2011-12-01

    Epidemiological surveys of avian influenza infections rarely focus on backyard poultry systems in remote locations because areas with low levels of poultry production are considered to have little influence on the emergence, re-emergence, persistence or spread of avian influenza viruses. In addition, routine disease investigations in remote areas often are neglected due to the lower availability and relatively high cost of veterinary services there. A bank of avian sera collected in 2005 from ethnic minority households in Ha Giang province (Northern Vietnam), located on the Chinese border, was analysed to estimate the seroprevalence of avian influenza virus (AIV) during a H5N1 epidemic and to identify potential risk factors for infection. The results suggest that the chicken population had been exposed to AIV with a seroprevalence rate of 7.2% [1.45; 10.5]. The H5 and H9 subtypes were identified with a seroprevalence of 3.25% [2.39; 4.11] and 1.12% [0.61; 1.63], respectively. The number of inhabitants in a village and the distance to the main national road were the most influential risk factors of AIV infection, and high-risk clusters were located along the road leading to China. These two results suggest a virus spread through commercial poultry exchanges and a possible introduction of AIV from southern China. Remote areas and small-scale farms may play an under-estimated role in the spread and persistence of AIV. PMID:21840292

  11. The hemagglutinin structure of an avian H1N1 influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang; Zhang, Qian; Wu, Caiming; Zhang, Rongfu; Cai, Qixu; Song, Wenjun; Yuen, Kwok-Yung; (U. Hong Kong); (Inter. Inst. Infect. Imm.); (Xiamen)

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptor binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.

  12. Poultry Drinking Water Used for Avian Influenza Surveillance

    OpenAIRE

    Leung, Y H Connie; Zhang, Li-Juan; Chow, Chun-Kin; Tsang, Chun-Lok; Ng, Chi-Fung; Wong, Chun-Kuen; Guan, Yi; Peiris, J S Malik

    2007-01-01

    Samples of drinking water from poultry cages, which can be collected conveniently and noninvasively, provide higher rates of influenza (H9N2) virus isolation than do samples of fecal droppings. Studies to confirm the usefulness of poultry drinking water for detecting influenza (H5N1) should be conducted in disease-endemic areas.

  13. Seroprevalence of antibodies against highly pathogenic avian influenza A (H5N1 virus among poultry workers in Bangladesh, 2009.

    Directory of Open Access Journals (Sweden)

    Sharifa Nasreen

    Full Text Available We conducted a cross-sectional study in 2009 to determine the seroprevalence and risk factors for highly pathogenic avian influenza A (H5N1 [HPAI H5N1] virus antibodies among poultry workers at farms and live bird markets with confirmed/suspected poultry outbreaks during 2009 in Bangladesh. We tested sera by microneutralization assay using A/Bangladesh/207095/2008 (H5N1; clade 2.2.2 virus with confirmation by horse red blood cell hemagglutination inhibition and H5-specific Western blot assays. We enrolled 212 workers from 87 farms and 210 workers from three live bird markets. One hundred and two farm workers (48% culled poultry. One hundred and ninety-three farm workers (91% and 178 market workers (85% reported direct contact with poultry that died during a laboratory confirmed HPAI H5N1 poultry farm outbreak or market poultry die-offs from suspected HPAI H5N1. Despite exposure to sick poultry, no farm or market poultry workers were seropositive for HPAI H5N1 virus antibodies (95% confidence interval 0-1%.

  14. Vaccination against H5 avian influenza virus induces long-term humoral immune responses in flamingoes (Phoenicopterus spp.).

    Science.gov (United States)

    Fernández-Bellon, Hugo; Vergara-Alert, Júlia; Almagro, Vanessa; Rivas, Raquel; Sánchez, Azucena; Martínez, María Carmen; Majó, Natàlia; Busquets, Núria; Ramis, Antonio

    2016-06-01

    Avian influenza (AI) can represent a threat to endangered wild birds, as demonstrated with the H5N1 highly pathogenic AI (HPAI) outbreaks. Vaccination against AI using inactivated H5-vaccines has been shown to induce humoral immune response in zoo bird species. In this study, the long-term efficacy of H5-vaccination was evaluated in flamingoes from Barcelona Zoo. Specific H5-antibody titres were maintained at high levels (geometric mean titres ≥32) for over 7 years after vaccination, both against the H5N9 and H5N3 vaccine strains, as well as H5N3 and H5N1 reference strains. In addition the breadth of the immune response was also studied by testing antibody production against H1-, H3-, H4-, H7-, and H10-subtypes. It was observed that most flamingoes presented specific antibodies against H1 virus subtypes, but titres to the other HA-subtypes were rarely detected. We show that AI-vaccines can induce immunity lasting seven years in flamingoes, which suggests that vaccination can provide long term protection from HPAI outbreaks in zoo birds. PMID:27151883

  15. Surveillance of avian influenza in the Caribbean through the Caribbean Animal Health Network: surveillance tools and epidemiologic studies.

    Science.gov (United States)

    Lefrançois, T; Hendrikx, P; Ehrhardt, N; Millien, M; Gomez, L; Gouyet, L; Gaidet, N; Gerbier, G; Vachiéry, N; Petitclerc, F; Carasco-Lacombe, C; Pinarello, V; Ahoussou, S; Levesque, A; Gongora, H V; Trotman, M

    2010-03-01

    The Caribbean region is considered to be at risk for avian influenza (AI) due to a large backyard poultry system, an important commercial poultry production system, the presence of migratory birds, and disparities in the surveillance systems. The Caribbean Animal Health Network (CaribVET) has developed tools to implement AI surveillance in the region with the goals to have 1) a regionally harmonized surveillance protocol and specific web pages for AI surveillance on www.caribvet.net, and 2) an active and passive surveillance for AI in domestic and wild birds. A diagnostic network for the Caribbean, including technology transfer and AI virus molecular diagnostic capability in Guadeloupe (real-time reverse transcription-polymerase chain reaction for the AI virus matrix gene), was developed. Between 2006 and 2009, 627 samples from four Caribbean countries were tested for three circumstances: importation purposes, following a clinical suspicion of AI, or through an active survey of wild birds (mainly waders) during the southward and northward migration periods in Guadeloupe. None of the samples tested were positive, suggesting a limited role of these species in the AI virus ecology in the Caribbean. Following low pathogenic H5N2 outbreaks in the Dominican Republic in 2007, a questionnaire was developed to collect data for a risk analysis of AI spread in the region through fighting cocks. The infection pathway of the Martinique commercial poultry sector by AI, through introduction of infected cocks, was designed, and recommendations were provided to the Caribbean Veterinary Services to improve cock movement control and biosecurity measures. The CaribVET and its organization allowed interaction between diagnostic and surveillance tools on the one hand and epidemiologic studies on the other, both of them developed in congruence with regional strategies. Together, these CaribVET activities contribute to strengthening surveillance of avian influenza virus (AIV) in the

  16. Avian-origin H3N2 canine influenza virus circulating in farmed dogs in Guangdong, China.

    Science.gov (United States)

    Su, Shuo; Chen, Ye; Zhao, Fu-Rong; Chen, Ji-Dang; Xie, Jie-Xiong; Chen, Zhong-Ming; Huang, Zhen; Hu, Yi-Ming; Zhang, Min-Ze; Tan, Li-Kai; Zhang, Gui-Hong; Li, Shou-Jun

    2013-10-01

    Since 2006, more and more cases of the infectious H3N2 canine influenza virus (CIV) in pet dogs have been reported in Southern China. However, little is known about the prevalence situation of H3N2 CIV infections in farmed dogs in China. This is the first systematic epidemiological surveillance of CIV in different dog populations in Southern China. Two virus strains A/Canine/Guangdong/1/2011(H3N2) and A/canine/Guangdong/5/2011(H3N2) were isolated from canine nasal swabs collected at one dog farm in Guangzhou and the other farm in Shenzhen. Sequence and phylogenetic analysis of eight gene segments of these viruses revealed that they were most similar to the newly isolated canine H3N2 viruses in dogs and cats from Korea and China, which originated from avian strain. This indicates that H3N2 CIV may be a common pathogen for pet and farmed dog populations in Southern China at present. Serological surveillance has shown that the infection rate of this avian-origin canine influenza in farmed dogs and in pet dogs were 12.22% and 5.3%, respectively; as determined by the ELISA. The data also suggested that transmission occurred, most probably by close contact, between H3N2 CIV infected dogs in different dog populations in recently years. As H3N2 outbreaks among dogs continue in the Guangdong Province (located very close to Hong Kong), the areas where is densely populated and with frequent animal trade, there is a continued risk for pet H3N2 CIV infections and for mutations or genetic reassortment leading to new virus strains with increased transmissibility among dogs. Further in-depth study is required as the H3N2 CIV has been established in different dog populations and posed potential threat to public health. PMID:24298574

  17. Pathogenesis of the novel avian-origin influenza A (H7N9) virus Influenza H7N9 virus in human lower respiratory tract

    OpenAIRE

    Chan, LY; Chan, WY; Peiris, JSM; Chan, MCW

    2013-01-01

    Background: As of May 2013, 131 laboratory-confirmed human infections with a novel influenza H7N9 virus had been reported from China. The source of human infection appears to be poultry. There is so far no evidence of sustained human-to-human transmission. Genetic analysis revealed that all eight gene segments of H7N9 were of avian origin; six internal gene segments from avian influenza H7N9 viruses, while hemagglutinin and neuraminidase genes were derived from influenza viruses c...

  18. The role of the legal and illegal trade of live birds and avian products in the spread of avian influenza.

    Science.gov (United States)

    van den Berg, T

    2009-04-01

    The panzootic of the H5N1 strain of highly pathogenic avian influenza has become an international crisis. All parts of the world are now considered at risk due to trade globalisation, with the worldwide movement of animals, products and humans, and because of the possible spread of the virus through the migration of wild birds. The risk of introducing notifiable avian influenza (NAI) through trade depends on several factors, including the disease status of the exporting country and the type of products. The highest risk occurs in the trade of live birds. It is important to assess and manage these risks to ensure that global trade does not result in the dissemination of NAI. However, it is also important that the risk of infection is not used as an unjustified trade barrier. The role of the regulatory authorities is thus to facilitate the safe trade of animal products according to international guidelines. Nevertheless, the balance between acceptable risk and safe trade is difficult to achieve. Since the movements of poultry and birds are sometimes difficult to trace, the signature or 'identity card' of each isolated virus can be very informative. Indeed, sequencing the genes of H5N1 and other avian influenza viruses has assisted greatly in establishing links and highlighting differences between isolates from different countries and tracing the possible source of introduction. Recent examples from Asia, Europe and Africa, supported by H5N1 molecular fingerprinting, have demonstrated that the sources of introduction can be many and no route should be underestimated. PMID:19618621

  19. Pandemic Influenza Planning, United States, 1978–2008

    OpenAIRE

    Iskander, John; Strikas, Raymond A.; Gensheimer, Kathleen F.; Cox, Nancy J.; Redd, Stephen C.

    2013-01-01

    During the past century, 4 influenza pandemics occurred. After the emergence of a novel influenza virus of swine origin in 1976, national, state, and local US public health authorities began planning efforts to respond to future pandemics. Several events have since stimulated progress in public health emergency planning: the 1997 avian influenza A(H5N1) outbreak in Hong Kong, China; the 2001 anthrax attacks in the United States; the 2003 outbreak of severe acute respiratory syndrome; and the ...

  20. First detection of highly pathogenic avian influenza virus H5N1 in common kestrel falcon (Falco tinnunculus) in Egypt

    OpenAIRE

    ElBakrey, Reham M.; Mansour, Shimaa M. G.; Ali, Haytham; Knudsen, David E. B.; Eid, Amal A. M.

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) poses threats to animal and human health worldwide. A common kestrel (Falco tinnunculus) was submitted to Avian and Rabbit Medicine Department, Zagazig University, Egypt. It exhibited torticollis, incoordination, and inability to stand. Conjunctivitis and crust formation were seen. Postmortem findings revealed congestion in internal organs and greenish content in gizzard. No avian pox virus was detected in cutaneous lesions neither in histopatho...

  1. Birds as the probable factor of introduction and spread of highly pathogenic avian influenza H5N1 in megapolis conditions

    Directory of Open Access Journals (Sweden)

    I. T. Rusev

    2012-03-01

    Full Text Available In 2005 highly pathogenic avian influenza spreaded rapidly from the Central Asia along the main migration routes of wild birds includingUkraine. In the autumn, and mostly in the winter, the avian influenza was found in many countries of Europe, Asia and Africa in the places of traditional birds wintering. The paper considers the ways of importation of the avian influenza pathogens intoUkraineand the role of wild birds in the possible formation of anthropogenic and natural foci of highly pathogenic avian influenza in megapolis conditions.

  2. Contacts between poultry farms, their spatial dimension and their relevance for avian influenza preparedness

    Directory of Open Access Journals (Sweden)

    Lena Fiebig

    2009-11-01

    Full Text Available Ongoing economic losses by and exposure of humans to highly pathogenic avian influenza (HPAI in poultry flocks across Asia and parts of Africa and Europe motivate also outbreak-free countries such as Switzerland to invest in preparedness planning. Country-specific population data on between-farm contacts are required to anticipate probable patterns of pathogen spread. Information is scarce; in particular on how strongly small, non-commercial poultry farms are involved in between-farm contacts. We aimed to identify between-farm contacts of interest for HPAI spread at both commercial and non-commercial farms in a non-outbreak situation: whether or not commercial and non-commercial farms were involved in poultry and person movements and shared resources by company integration. Focus was on poultry movements for the purpose of purchase, sale and poultry show visits, their spatial dimension, their frequencies and the farm types they connected. Of the total 49,437 recorded poultry farms in Switzerland, 95% had less than 500 birds. The farm number resulted in densities of up to 8 poultry farms per km2 and a median number of 47 neighbour farms within a 3 km radius around the farms. Person movements and shared resources were identified in 78% of the surveyed farms (93% among commercials, 67% among non-commercials. Poultry trading movements over extensive spatial ranges were stated at 65% (79% among commercials, 55% among non-commercials. Movement frequencies depended on farm specialization and were higher for commercial than for non-commercial farms except for poultry show visits. Estimates however for the entire population revealed 3.5 times higher chances of a poultry purchase, and 14.6 times higher chances of exhibiting birds at poultry shows occurring in a given time by a farm smaller than 500 birds (non-commercial farm than by a larger (commercial farm. These findings indicate that both commercial and non-commercial farms are involved in

  3. Surveillance of wild birds for avian influenza virus

    OpenAIRE

    Hoye, B.; Munster, V.J.; Nishiura, H.M.; Klaassen, M.; Fouchier, R. A. M.

    2010-01-01

    Recent demand for increased understanding of avian infl uenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian infl uenza virus surveillance in wild birds, including consideratio...

  4. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the...

  5. Pathogenicity of recombinant H5N1 avian influenza viruses with truncated NS1 gene in chickens

    Science.gov (United States)

    The NS1 protein of influenza A virus plays an important role in blocking the induction of type I interferon and other regulatory functions in infected cells. However, differences in length of the NS1 protein has been observed in highly pathogenic H5N1, H5N2, and H7N1 subtype avian influenza viruses...

  6. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Science.gov (United States)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  7. Avian influenza A (H5N1) infection in a patient in China, 2006

    Science.gov (United States)

    Chen, X.; Smith, G.J.D.; Zhou, B.; Qiu, C.; Wu, W.L.; Li, Y.; Lu, P.; Duan, L.; Liu, S.; Yuan, J.; Yang, G.; Wang, H.; Cheng, J.; Jiang, H.; Peiris, J.S.M.; Chen, H.; Yuen, K.Y.; Zhong, N.; Guan, Y.

    2008-01-01

    Background  Highly pathogenic avian influenza H5N1 virus has caused increasing human infection in Eurasia since 2004. So far, H5N1 human infection has been associated with over 50% mortality that is partly because of delay of diagnosis and treatment. Objectives and methods  Here, we report that an H5N1 influenza virus infected a 31‐year‐old patient in Shenzhen in June 2006. To identify the possible source of the infection, the human isolate and other H5N1 influenza viruses obtained from poultry and wild birds in southern China during the same period of time were characterized. Results  Genetic and antigenic analyses revealed that the human H5N1 influenza virus, Shenzhen/406H/06, is of purely avian origin and is most closely related to viruses detected in poultry and wild birds in Hong Kong in early 2006. Conclusions  The findings of the present study suggest that the continued endemicity of H5N1 influenza virus in the poultry in southern China increases the chance for introduction of the virus to humans. This highlights the importance of continued surveillance of poultry and wild birds for determining the source for human H5N1 infection. PMID:19453428

  8. Surveillance for Avian Influenza Viruses in Wild Birds in Denmark and Greenland, 2007–10

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona; Handberg, Kurt Jensen; Therkildsen, Ole Roland; Madsen, Jesper Johannes; Thorup, Kasper; Baroch, John A.; DeLiberto, Thomas J.; Larsen, Lars Erik; Jørgensen, Poul Henrik

    In Denmark and Greenland, extensive surveillance of avian influenza (AI) viruses in wild bird populations has been conducted from 2007 through 2010. In Denmark, the surveillance consisted of passive surveillance of wild birds found dead or sick across Denmark and active surveillance of apparently...... were birds that were found dead. In Greenland, samples were collected mainly from fecal droppings in breeding areas. Samples from 3555 live and apparently healthy wild birds were tested. All swab samples were tested by pan-influenza reverse transcriptase–PCR (RT-PCR), and the positive samples were...

  9. H5N1 avian influenza virus: human cases reported in southern China.

    OpenAIRE

    Crofts, J; Paget, J; Karcher, F.

    2003-01-01

    Two cases of confirmed influenza due to the avian influenza A H5N1 virus were reported last week in Hong Kong (1). The cases occurred in a Hong Kong family who had recently visited Fujian province in southern China. The daughter, aged 8 years, died following a respiratory illness. The cause of her death is unknown. The father and son also had respiratory illnesses; the father died and the son recovered. Both were infected with the H5N1 virus. The mother also had a respiratory illness, which i...

  10. Dogs are highly susceptible to H5N1 avian influenza virus

    OpenAIRE

    Chen, Ying; Zhong, Gongxun; Wang, Guojun; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Zhang, Zhuo; Guan, Yuntao; Jiang, Yongping; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2010-01-01

    Replication of avian influenza viruses (AIVs) in dogs may facilitate their adaptation in humans; however, the data to date on H5N1 influenza virus infection in dogs are conflicting. To elucidate the susceptibility of dogs to this pathogen, we infected two groups of 6 beagles with 106 50% egg-infectious dose of H5N1 AIV A/bar-headed goose/Qinghai/3/05 (BHG/QH/3/05) intranasally (i.n.) and intratracheally (i.t.), respectively. The dogs showed disease symptoms, including anorexic, fever, conjunc...

  11. Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl

    Science.gov (United States)

    Dusek, Robert J.; Hall, Jeffrey S.; Nashold, Sean W.; TeSlaa, Joshua L.; Ip, Hon S.

    2011-01-01

    The utility of using Nobuto paper strips for the detection of avian influenza antibodies was examined in mallards (Anas platyrhynchos) experimentally infected with low pathogenic avian influenza viruses. Blood was collected 2 wk after infection and was preserved either as serum or whole blood absorbed onto Nobuto strips. Analysis of samples using a commercially available blocking enzyme-linked immunosorbent assay revealed comparable results (≥96% sensitivity for all methods) between sera stored at -30 C and the Nobuto strip preservation method even when the Nobuto strips were stored up to 3 mo at room temperature (RT). Significant differences were detected in the ratio of sample absorbance to negative control absorbance for Nobuto strips stored at RT compared with sera stored at -30 C, although these differences did not affect the ability of the test to reliably detect positive and negative samples. Nobuto strips are a convenient and sensitive alternative to the collection of serum samples when maintaining appropriate storage temperatures is difficult.

  12. Preparation of Anti-Idiotypic Antibody against Avian Influenza Virus Subtype H9

    Institute of Scientific and Technical Information of China (English)

    BaoquanLi; JunPeng; ZhongxiangNiu; XunheYin; FaxiaoLiu

    2005-01-01

    To generate monoclonal anti-idiotypic antibodies (mAb2) against avian influenza virus subtype H9 (H9 AIV), BALB/c mice were immunized with purified chicken anti-H9-AIV IgG and the splenocytes of immunized mice were fused with myeloma cells NS-1. Hybridoma cells were screened by indirect enzyme-linked immunosorbent assays with both chicken and rabbit anti-H9-AIV IgG as coating antigens. One hybridoma cell clone secreting monoclonal antibody against idiotypes shared by both chicken and rabbit anti-H9-AIV IgG was established. Experiments demonstrated the mAb2 was able to inhibit the binding of hemagglutinin to anti-H9-AIV IgG and to induce chickens to generate hemagglutination inhibition antibodies, indicating this anti-species-sharing-idiotypic antibody bore the internal image of hemagglutinin on avian influenza virus. Cellular & Molecular Immunology. 2005;2(2):155-157.

  13. Preparation of Anti-Idiotypic Antibody against Avian Influenza Virus Subtype H9

    Institute of Scientific and Technical Information of China (English)

    Baoquan Li; Jun Peng; Zhongxiang Niu; Xunhe Yin; Faxiao Liu

    2005-01-01

    To generate monoclonal anti-idiotypic antibodies (mAb2) against avian influenza virus subtype H9 (H9 AIV),BALB/c mice were immunized with purified chicken anti-H9-AIV IgG and the splenocytes of immunized mice were fused with myeloma cells NS-1. Hybridoma cells were screened by indirect enzyme-linked immunosorbent assays with both chicken and rabbit anti-H9-AIV IgG as coating antigens. One hybridoma cell clone secreting monoclonal antibody against idiotypes shared by both chicken and rabbit anti-H9-AIV IgG was established. Experiments demonstrated the mAb2 was able to inhibit the binding of hemagglutinin to anti-H9-AIV IgG and to induce chickens to generate hemagglutination inhibition antibodies, indicating this anti-species-sharing-idiotypic antibody bore the internal image of hemagglutinin on avian influenza virus. Cellular & Molecular Immunology. 2005;2(2):155-157.

  14. The variable codons of H5N1 avian influenza A virus haemagglutinin genes

    Institute of Scientific and Technical Information of China (English)

    Mark; J.GIBBS; Robert; W.MURPHY

    2008-01-01

    We investigated the selection pressures on the haemagglutinin genes of H5N1 avian influenza viruses using fixed effects likelihood models. We found evidence of positive selection in the sequences from isolates from 1997 to 2007, except viruses from 2000. The haemagglutinin sequences of viruses from southeast Asia, Hong Kong and mainland China were the most polymorphic and had similar nonsyn-onymous profiles. Some sites were positively selected in viruses from most regions and a few of these sites displayed different amino acid patterns. Selection appeared to produce different outcomes in vi-ruses from Europe, Africa and Russia and from different host types. One position was found to be positively selected for human isolates only. Although the functions of some positively selected posi-tions are unknown, our analysis provided evidence of different temporal, spatial and host adaptations for H5N1 avian influenza viruses.

  15. Avian influenza virus infection in apparently healthy domestic birds in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Innocent Okwundu Nwankwo

    2012-09-01

    Full Text Available The study was conducted among apparently healthy birds brought from different local government areas, neighbouring states and across international boundaries to the Sokoto central live bird market between October 2008 and March 2009. Tracheal and cloacal swabs were collected from 221 apparently healthy birds comprising 182 chickens, 3 turkeys, 11 guineafowl, 17 ducks and 8 pigeons. These samples were analysed using nested polymerase chain reaction (nPCR to check for the presence of avian influenza virus. An overall prevalence of 1.4% (3 positive cases was detected with two cases observed in chickens and one in a pigeon. The findings indicate the circulation of avian influenza in the study area. This raises concern for human and animal health due to zoonotic and economic implications of this virus.

  16. Preparedness of elderly long-term care facilities in HSE East for influenza outbreaks.

    LENUS (Irish Health Repository)

    O'Connor, L

    2015-01-01

    Abstract We assessed preparedness of HSE East elderly long-term care facilities for an influenza outbreak, and identified Public Health Department support needs. We surveyed 166 facilities based on the HSE checklist document for influenza outbreaks, with 58% response rate. Client flu vaccination rates were > 75%; leading barriers were client anxiety and consent issues. Target flu vaccine uptake of 40% in staff occurred in 43% of facilities and was associated with staff vaccine administration by afacility-attached GP (p = 0.035), having a facility outbreak plan (p = 0.013) and being anon-HSE run facility (p = 0.013). Leading barriers were staff personal anxiety (94%) and lack of awareness of the protective effect on clients (21%). Eighty-nine percent found Public Health helpful, and requested further educational support and advocacy. Staff vaccine uptake focus, organisational leadership, optimal vaccine provision models, outbreak plans and Public Health support are central to the influenza campaign in elderly long-term care facilities.

  17. Ecology, Evolution and Pathogenesis of Avian Influenza Viruses

    OpenAIRE

    Munster, Vincent

    2006-01-01

    textabstractInfluenza A virus behoort tot de familie van Orthomyxoviridae. Infl uenza A virussen zijn onregelmatig gevormde virussen van ongeveer 120 nm groot. Het genoom van influenza A virussen is gesegmenteerd en bestaat uit negatief-strengs RNA. De acht gensegmenten coderen voor 11 verschillende eiwitten. Infl uenza A virussen worden onderverdeeld op basis van de oppervlakte eiwitten; hemagglutinine (HA, een eiwit dat zorg draagt voor de binding van het virus aan en binnendringen van de g...

  18. Properties and Dissemination of H5N1 Viruses Isolated during an Influenza Outbreak in Migratory Waterfowl in Western China †

    Science.gov (United States)

    Chen, Hualan; Li, Yanbing; Li, Zejun; Shi, Jianzhong; Shinya, Kyoko; Deng, Guohua; Qi, Qiaoling; Tian, Guobin; Fan, Shufang; Zhao, Haidan; Sun, Yingxiang; Kawaoka, Yoshihiro

    2006-01-01

    H5N1 influenza A viruses are widely distributed among poultry in Asia, but until recently, only a limited number of wild birds were affected. During late April through June 2005, an outbreak of H5N1 virus infection occurred among wild birds at Qinghai Lake in China. Here, we describe the features of this outbreak. First identified in bar-headed geese, the disease soon spread to other avian species populating the lake. Sequence analysis of 15 viruses representing six avian species and collected at different times during the outbreak revealed four different H5N1 genotypes. Most of the isolates possessed lysine at position 627 in the PB2 protein, a residue known to be associated with virulence in mice and adaptation to humans. However, neither of the two index viruses possessed this residue. All of the viruses tested were pathogenic in mice, with the exception of one index virus. We also tested the replication of two viruses isolated during the Qinghai Lake outbreak and one unrelated duck H5N1 virus in rhesus macaques. The Qinghai Lake viruses did not replicate efficiently in these animals, producing no evidence of disease other than transient fever, while the duck virus replicated in multiple organs and caused symptoms of respiratory illness. Importantly, H5N1 viruses isolated in Mongolia, Russia, Inner Mongolia, and the Liaoning Province of China after August 2005 were genetically closely related to one of the genotypes isolated during the Qinghai outbreak, suggesting the dominant nature of this genotype and underscoring the need for worldwide intensive surveillance to minimize its devastating consequences. PMID:16731936

  19. The Influence of Ecological Factors on the Transmission and Stability of Avian Influenza Virus in the Environment

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2014-09-01

    Full Text Available Ecology is a science studying the correlation among organisms and some environmental factors. Ecological factors play an important role to transmit Avian Influenza (AI virus and influence its stability in the environment. Avian Influenza virus is classified as type A virus and belong to Orthomyxoviridae family. The virus can infect various vertebrates, mainly birds and mammals, including human. Avian Influenza virus transmission can occur through bird migration. The bird migration patterns usually occur in the large continent covers a long distance area within a certain periode hence transmit the virus from infected birds to other birds and spread to the environment. The biotic (normal flora microbes and abiotic (physical and chemical factors play important role in transmitting the virus to susceptible avian species and influence its stability in the environment. Disinfectant can inactivate the AI virus in the environment but its effectivity is influenced by the concentration, contact time, pH, temperature and organic matter.

  20. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable. PMID:27309078