WorldWideScience

Sample records for avian coronavirus infectious

  1. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    OpenAIRE

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this ...

  2. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette.

    Science.gov (United States)

    Madu, Ikenna G; Chu, Victor C; Lee, Hwajin; Regan, Andrew D; Bauman, Beverley E; Whittaker, Gary R

    2007-03-01

    The avian coronavirus infectious bronchitis virus (IBV) strain Beaudette is an embryo-adapted virus that has extended species tropism in cell culture. In order to understand the acquired tropism of the Beaudette strain, we compared the S protein sequences of several IBV strains. The Beaudette strain was found to contain a putative heparan sulfate (HS)-binding site, indicating that the Beaudette virus may use HS as a selective receptor. To ascertain the requirements of cell-surface HS for Beaudette infectivity, we assayed for infectivity in the presence of soluble heparin as a competitor and determined infectivity in mutant cell lines with no HS or glycosaminoglycan expression. Our results indicate that HS plays a role as an attachment factor for IBV, working in concert with other factors like sialic acid to mediate virus binding to cells, and may explain in part the extended tropism of IBV Beaudette.

  3. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

    Science.gov (United States)

    Cavanagh, Dave

    2003-12-01

    Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response

  4. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus

    Directory of Open Access Journals (Sweden)

    Kong Xiangang

    2011-03-01

    Full Text Available Abstract Background Avian infectious bronchitis (IB is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV. Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS. Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection.

  5. Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus.

    Science.gov (United States)

    Emmott, Edward; Smith, Catriona; Emmett, Stevan R; Dove, Brian K; Hiscox, Julian A

    2010-10-01

    The nucleolus is a dynamic subnuclear compartment involved in ribosome subunit biogenesis, regulation of cell stress and modulation of cellular growth and the cell cycle, among other functions. The nucleolus is composed of complex protein/protein and protein/RNA interactions. It is a target of virus infection with many viral proteins being shown to localize to the nucleolus during infection. Perturbations to the structure of the nucleolus and its proteome have been predicted to play a role in both cellular and infectious disease. Stable isotope labeling with amino acids in cell culture coupled to LC-MS/MS with bioinformatic analysis using Ingenuity Pathway Analysis was used to investigate whether the nucleolar proteome altered in virus-infected cells. In this study, the avian nucleolar proteome was defined in the absence and presence of virus, in this case the positive strand RNA virus, avian coronavirus infectious bronchitis virus. Data sets, potential protein changes and the functional consequences of virus infection were validated using independent assays. These demonstrated that specific rather than generic changes occurred in the nucleolar proteome in infectious bronchitis virus-infected cells.

  6. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis.

    Science.gov (United States)

    Tekes, G; Thiel, H-J

    2016-01-01

    Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed "discriminatory" mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies.

  7. Ribonucleoprotein of avian infectious bronchitis virus.

    Science.gov (United States)

    Davies, H A; Dourmashkin, R R; Macnaughton, M R

    1981-03-01

    The ribonucleoprotein (RNP) of avian infectious bronchitis virus (IBV) was examined by electron microscopy after shadowing with carbon/platinum. Linear RNP strands up to 6.7 microns in length, from three IVB strains, were sensitive to both pancreatic RNase and to proteases. These strands were obtained from spontaneously disrupted complete particles but not from disrupted incomplete particles that lacked RNP. They were also released from Nonidet P40-disrupted particles and could be isolated on sucrose density gradients at a density of 1.27 g/ml. In some cases, helical RNP complexes associated with virus particles were observed that were similar to RNPs of human coronavirus strain 229E and mouse hepatitis virus strain 3.

  8. Genotyping coronaviruses associated with feline infectious peritonitis.

    Science.gov (United States)

    Lewis, Catherine S; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R; Siddell, Stuart G

    2015-06-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP.

  9. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    Science.gov (United States)

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility.

  10. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    Harbison Carole E

    2007-02-01

    Full Text Available Abstract Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS, and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV. Feline aminopeptidase N (fAPN serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV, canine coronavirus, transmissible gastroenteritis virus (TGEV, and human coronavirus 229E (HCoV-229E. A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41, but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 ( Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.

  11. Transient dominant selection for the modification and generation of recombinant infectious bronchitis coronaviruses.

    Science.gov (United States)

    Keep, Sarah M; Bickerton, Erica; Britton, Paul

    2015-01-01

    We have developed a reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) in which a full-length cDNA corresponding to the IBV genome is inserted into the vaccinia virus genome under the control of a T7 promoter sequence. Vaccinia virus as a vector for the full-length IBV cDNA has the advantage that modifications can be introduced into the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. Here, we describe the use of transient dominant selection as a method for introducing modifications into the IBV cDNA; this has been successfully used for the substitution of specific nucleotides, deletion of genomic regions, and the exchange of complete genes. Infectious recombinant IBVs are generated in situ following the transfection of vaccinia virus DNA, containing the modified IBV cDNA, into cells infected with a recombinant fowlpox virus expressing T7 DNA-dependent RNA polymerase.

  12. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  13. Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium.

    Science.gov (United States)

    Addie, Diane D; Paltrinieri, Saverio; Pedersen, Niels C

    2004-04-01

    In August 2002, scientists and veterinarians from all over the world met in Scotland to discuss feline coronavirus (FCoV) and feline infectious peritonitis (FIP). The conference ended with delegates dividing into three workshops to draw up recommendations for FCoV control, diagnosis and treatment and future research. The workshops were chaired by the three authors and the recommendations are presented in this paper.

  14. Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis.

    Science.gov (United States)

    Soma, Takehisa; Wada, Makoto; Taharaguchi, Satoshi; Tajima, Tomoko

    2013-10-01

    Ascitic feline coronavirus (FCoV) RNA was examined in 854 cats with suspected feline infectious peritonitis (FIP) by RT-PCR. The positivity was significantly higher in purebreds (62.2%) than in crossbreds (34.8%) (P<0.0001). Among purebreds, the positivities in the Norwegian forest cat (92.3%) and Scottish fold (77.6%) were significantly higher than the average of purebreds (P=0.0274 and 0.0251, respectively). The positivity was significantly higher in males (51.5%) than in females (35.7%) (P<0.0001), whereas no gender difference has generally been noted in FCoV antibody prevalence, indicating that FIP more frequently develops in males among FCoV-infected cats. Genotyping was performed for 377 gene-positive specimens. Type I (83.3%) was far more predominantly detected than type II (10.6%) (P<0.0001), similar to previous serological and genetic surveys.

  15. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  16. Bronquitis infecciosa aviar: diagnóstico y control -Avian infectious bronchitis: diagnosis and control

    Directory of Open Access Journals (Sweden)

    Acevedo Beiras, Ana María

    2010-03-01

    Full Text Available ResumenLa bronquitis infecciosa aviar (BIA es una enfermedad que ocasiona unimpacto socio-económico severo en la industria avícola mundial. Es unaenfermedad respiratoria aguda, altamente contagiosa, caracterizadaprimariamente por signos respiratorios en los pollos en crecimiento. En las ponedoras, la sintomatología respiratoria es menor pero provoca una disminución marcada en la producción y calidad del huevo. El agente etiológico de esta enfermedad es el virus de la bronquitis infecciosa aviar, un Coronavirus del grupo 3 de la familia Coronaviridae, orden Nidovirales. El virus se replica en los tejidos del tracto respiratorio y en muchos tejidos a lo largo del tracto alimentario. Este virus puede infectar otras especies de aves además de los pollos. Los signos clínicos característicos son tos, estornudos, estertores traqueales, ojos acuosos, letargo y en los pollos, especialmente los jóvenes, se presentan descargas nasales. Estos signos son indicativos pero no tienen por sí solo valor diagnóstico y la confirmación requiere el aislamiento o la demostración directa de la presencia del virus aunque la serología puede ser útil en algunas circunstancias. El diagnóstico de laboratorio requiere el aislamiento viral y su identificación. Se emplean las técnicas de reacción en cadena de la polimerasa (RT-PCR, inhibición de la hemaglutinación (HI y ensayos inmunoenzimáticos (ELISA, así como la microscopía electrónica, anticuerpos monoclonales, virus neutralización (VN, inmunohistoquímica,ensayos de inmunofluorescencia y de inmunización desafío en pollos. Son ampliamente usadas vacunas vivas e inactivadas en el control de laenfermedad.SummaryAvian infectious bronchitis (BIA is a disease that provokes a severe socioeconomic impact in poultry world industry. It is a breathing sharp disease, highly contagious, characterized primarily for breathing signs in chickens in growth. In the egg-laying, the breathing sintomatology is

  17. Structural view and substrate specificity of papain-like protease from avian infectious bronchitis virus.

    Science.gov (United States)

    Kong, Lingying; Shaw, Neil; Yan, Lingming; Lou, Zhiyong; Rao, Zihe

    2015-03-13

    Papain-like protease (PLpro) of coronaviruses (CoVs) carries out proteolytic maturation of non-structural proteins that play a role in replication of the virus and performs deubiquitination of host cell factors to scuttle antiviral responses. Avian infectious bronchitis virus (IBV), the causative agent of bronchitis in chicken that results in huge economic losses every year in the poultry industry globally, encodes a PLpro. The substrate specificities of this PLpro are not clearly understood. Here, we show that IBV PLpro can degrade Lys(48)- and Lys(63)-linked polyubiquitin chains to monoubiquitin but not linear polyubiquitin. To explain the substrate specificities, we have solved the crystal structure of PLpro from IBV at 2.15-Å resolution. The overall structure is reminiscent of the structure of severe acute respiratory syndrome CoV PLpro. However, unlike the severe acute respiratory syndrome CoV PLpro that lacks blocking loop (BL) 1 of deubiquitinating enzymes, the IBV PLpro has a short BL1-like loop. Access to a conserved catalytic triad consisting of Cys(101), His(264), and Asp(275) is regulated by the flexible BL2. A model of ubiquitin-bound IBV CoV PLpro brings out key differences in substrate binding sites of PLpros. In particular, P3 and P4 subsites as well as residues interacting with the β-barrel of ubiquitin are different, suggesting different catalytic efficiencies and substrate specificities. We show that IBV PLpro cleaves peptide substrates KKAG-7-amino-4-methylcoumarin and LRGG-7-amino-4-methylcoumarin with different catalytic efficiencies. These results demonstrate that substrate specificities of IBV PLpro are different from other PLpros and that IBV PLpro might target different ubiquitinated host factors to aid the propagation of the virus.

  18. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  19. Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis.

    Science.gov (United States)

    Felten, Sandra; Weider, Karola; Doenges, Stephanie; Gruendl, Stefanie; Matiasek, Kaspar; Hermanns, Walter; Mueller, Elisabeth; Matiasek, Lara; Fischer, Andrea; Weber, Karin; Hirschberger, Johannes; Wess, Gerhard; Hartmann, Katrin

    2017-04-01

    Objectives Feline infectious peritonitis (FIP) is an important cause of death in the cat population worldwide. The ante-mortem diagnosis of FIP in clinical cases is still challenging. In cats without effusion, a definitive diagnosis can only be achieved post mortem or with invasive methods. The aim of this study was to evaluate the use of a combined reverse transcriptase nested polymerase chain reaction (RT-nPCR) and sequencing approach in the diagnosis of FIP, detecting mutations at two different nucleotide positions within the spike (S) gene. Methods The study population consisted of 64 cats with confirmed FIP and 63 cats in which FIP was initially suspected due to similar clinical or laboratory signs, but that were definitively diagnosed with another disease. Serum/plasma and/or effusion samples of these cats were examined for feline coronavirus (FCoV) RNA by RT-nPCR and, if positive, PCR products were sequenced for nucleotide transitions within the S gene. Results Specificity of RT-nPCR was 100% in all materials (95% confidence interval [CI] in serum/plasma 83.9-100.0; 95% CI in effusion 93.0-100.0). The specificity of the sequencing step could not be determined as none of the cats of the control group tested positive for FCoV RNA. Sensitivity of the 'combined RT-nPCR and sequencing approach' was 6.5% (95% CI 0.8-21.4) in serum/plasma and 65.3% (95% CI 50.4-78.3) in effusion. Conclusions and relevance A positive result is highly indicative of the presence of FIP, but as none of the control cats tested positive by RT-nPCR, it was not possible to confirm that the FCoV mutant described can only be found in cats with FIP. Further studies are necessary to evaluate the usefulness of the sequencing step including FCoV-RNA-positive cats with and without FIP. A negative result cannot be used to exclude the disease, especially when only serum/plasma samples are available.

  20. Activation of the chicken type I IFN response by infectious bronchitis coronavirus

    NARCIS (Netherlands)

    Kint, J.; Fernandez Gutierrez, M.M.; Maier, H.J.; Britton, P.; Langereis, M.A.; Koumans, J.; Wiegertjes, G.F.; Forlenza, M.

    2015-01-01

    Coronaviruses from both the Alpha and Betacoronavirus genera, interfere with the type I interferon (IFN) response in various ways, ensuring limited activation of the IFN response in most cell types. Of Gammacoronaviruses that mainly infect birds, little is known about activation of the host immune r

  1. Avian infectious bronchitis virus in Brazil: a highly complex virus meets a highly susceptible host population

    Directory of Open Access Journals (Sweden)

    PE Brandão

    2010-06-01

    Full Text Available Infectious bronchitis (IB is a highly aggressive disease for poultry in terms of symptoms and economic losses, and the control of this disease is difficult if flocks are not protected against type-specific challenges by the Avian infectious bronchitis virus (IBV. This article summarizes data presented by the author at the Workshop on Infectious Bronchitis 2009 on IB and IBV, including future developments on the field.

  2. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene.

    Science.gov (United States)

    Chang, Hui-Wen; de Groot, Raoul J; Egberink, Herman F; Rottier, Peter J M

    2010-02-01

    Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV), a virulent mutant of apathogenic feline enteric coronavirus (FECV). We analysed the 3c gene--a proposed virulence marker--in 27 FECV- and 28 FIPV-infected cats. Our findings suggest that functional 3c protein expression is crucial for FECV replication in the gut, but dispensable for systemic FIPV replication. Whilst intact in all FECVs, the 3c gene was mutated in the majority (71.4 %) of FIPVs, but not in all, implying that mutation in 3c is not the (single) cause of FIP. Most cats with FIP had no detectable intestinal feline coronaviruses (FCoVs) and had seemingly cleared the primary FECV infection. In those with detectable intestinal FCoV, the virus always had an intact 3c and seemed to have been acquired by FECV superinfection. Apparently, 3c-inactivated viruses replicate not at all--or only poorly--in the gut, explaining the rare incidence of FIP outbreaks.

  3. Cutaneous lesions associated with coronavirus-induced vasculitis in a cat with feline infectious peritonitis and concurrent feline immunodeficiency virus infection.

    Science.gov (United States)

    Cannon, Martha J; Silkstone, Malcolm A; Kipar, Anja M

    2005-08-01

    This report describes a clinical case of feline infectious peritonitis (FIP) with multisystemic involvement, including multiple nodular cutaneous lesions, in a cat that was co-infected with feline coronavirus and feline immunodeficiency virus. The skin lesions were caused by a pyogranulomatous-necrotising dermal phlebitis and periphlebitis. Immunohistology demonstrated the presence of coronavirus antigen in macrophages within these lesions. The pathogenesis of FIP involves a viral associated, disseminated phlebitis and periphlebitis which can arise at many sites. Target organs frequently include the eyes, abdominal organs, pleural and peritoneal membranes, and central nervous tissues, but cutaneous lesions have not previously been reported.

  4. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis.

    Science.gov (United States)

    Longstaff, Louise; Porter, Emily; Crossley, Victoria J; Hayhow, Sophie E; Helps, Christopher R; Tasker, Séverine

    2017-02-01

    Objectives The aim of the study was to determine whether feline coronavirus (FCoV) RNA in effusion samples can be used as a diagnostic marker of feline infectious peritonitis (FIP); and in FCoV RNA-positive samples to examine amino acid codons in the FCoV spike protein at positions 1058 and 1060 where leucine and alanine, respectively, have been associated with systemic or virulent (FIP) FCoV infection. Methods Total RNA was extracted from effusion samples from 20 cats with confirmed FIP and 23 cats with other diseases. Feline coronavirus RNA was detected using a reverse transcriptase quantitative polymerase chain reaction assay (qRT-PCR), and positive samples underwent pyrosequencing of position 1058 with or without Sanger sequencing of position 1060 in the FCoV spike protein. Results Seventeen (85%) of the effusion samples from 20 cats with FIP were positive for FCoV RNA, whereas none of the 23 cats with other diseases were positive. Pyrosequencing of the 17 FCoV-positive samples showed that 11 (65%) of the cats had leucine and two (12%) had methionine at position 1058. Of the latter two samples with methionine, one had alanine at position 1060. Conclusions and relevance A positive FCoV qRT-PCR result on effusions appears specific for FIP and may be a useful diagnostic marker for FIP in cats with effusions. The majority of FCoVs contained amino acid changes previously associated with systemic spread or virulence (FIP) of the virus.

  5. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis.

    Science.gov (United States)

    Litster, A L; Pogranichniy, R; Lin, T-L

    2013-11-01

    The antemortem diagnosis of feline infectious peritonitis (FIP) remains challenging in clinical practice, since current testing methods have suboptimal diagnostic accuracy. Immunohistochemical testing of biopsy specimens and postmortem examination are the standard diagnostic methods, although direct immunofluorescence (DIF) testing to detect feline coronavirus in macrophages in effusion specimens has been reported to have 100% specificity and has been recommended as an antemortem confirmatory test. The aim of this study was to compare the results of DIF testing in antemortem feline effusions with postmortem results using field samples. Effusion specimens were collected antemortem from 17 cats and tested by DIF, followed by postmortem examination. Histopathological examination of specimens collected at postmortem confirmed FIP in 10/17 cases and ruled out FIP out in 7/17 cases. Antemortem DIF testing was positive in all 10 cases confirmed as FIP at postmortem examination. In the seven cats where FIP was ruled out at postmortem examination, DIF was negative in five cases and positive in the remaining two cases. The calculated sensitivity of DIF testing was 100% and the specificity was 71.4%. Duplicate effusion specimens from eight cats that were initially DIF positive were stored refrigerated (4 °C) or at room temperature (22-25 °C) and subjected to serial DIF testing to determine the duration of positive results. DIF-positive specimens stored at both temperatures retained their positive status for at least 2 days.

  6. Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis.

    Science.gov (United States)

    Lin, Chao-Nan; Su, Bi-Ling; Huang, Hui-Pi; Lee, Jih-Jong; Hsieh, Min-Wei; Chueh, Ling-Ling

    2009-06-01

    Feline coronavirus (FCoV) varies greatly from causing subclinical or mild enteric infections to fatal feline infectious peritonitis (FIP). The open reading frame (ORF) 7b of FCoV has been speculated to play a determining role in virulence as deletions were found to be associated with avirulent viruses. To further clarify the correlation between this gene and FIP, clinical samples from 20 cats that had succumbed to wet-type FIP and 20 clinically healthy FCoV-infected cats were analysed. The ORF7b from the peritoneal/pleural effusions of FIP cats and from the rectal swabs of healthy cats was amplified. Of the 40 FCoVs analysed, 32 were found to have an intact 7b gene whereas eight showed deletions of either three or 12 nucleotides. Surprisingly, among the eight viruses with deletions, three were from FIP diseased cats. These results show that deletions in the ORF7b gene are not constrained to low pathogenicity/enteric biotypes but also associated with pathogenicity/FIP biotypes of FCoV.

  7. Increased expression of Interleukin-6 related to nephritis in chickens challenged with an Avian infectious bronchitis virus variant

    Directory of Open Access Journals (Sweden)

    Filipe S. Fernando

    2015-03-01

    Full Text Available A Brazilian field isolate (IBV/Brazil/PR05 of avian infectious bronchitis virus (IBV, associated with development of nephritis in chickens, was previously genotyped as IBV variant after S1 gene sequencing. The aim of this study was to evaluate the levels of IL-6 in kidneys and trachea of birds vaccinated and challenged with IBV/Brazil/PR05 strain, correlating these results with scores of microscopic lesions, specific IBV antigen detection and viral load. The up-regulation of IL-6 and the increased levels of viral load on renal and tracheal samples were significantly correlated with scores of microscopic lesions. Reduced levels of viral load were detected in kidneys of birds previously vaccinated and challenged, compared to non-vaccinated challenged group, although markedly microscopic lesions were observed for both groups. The expression of IL-6, present both in the kidney and in the tracheas, was dependent on the load of the virus present in the tissue, and the development of lesions was related with IL-6 present in the tissues. These data suggest that variant IBV/Brazil/PR05 can induce the expression of proinflammatory cytokines in a manner correlated with viral load and increased IL-6 is involved in the tissue with the influx of inflammatory cells and subsequent nephritis. This may contribute with a model to the development of immunosuppressive agents of IL-6 to prevent acute inflammatory processes against infection with IBV and perhaps other coronaviruses, as well as contribute to the understanding of the immunopathogenesis of IBV nephropatogenic strains.

  8. Significance of Coronavirus Mutants in Feces and Diseased Tissues of Cats Suffering from Feline Infectious Peritonitis

    Directory of Open Access Journals (Sweden)

    Niels C. Pedersen

    2009-08-01

    Full Text Available The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  9. Glycan-functionalized graphene-FETs toward selective detection of human-infectious avian influenza virus

    Science.gov (United States)

    Ono, Takao; Oe, Takeshi; Kanai, Yasushi; Ikuta, Takashi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Watanabe, Yohei; Nakakita, Shin-ichi; Suzuki, Yasuo; Kawahara, Toshio; Matsumoto, Kazuhiko

    2017-03-01

    There are global concerns about threat of pandemic caused by the human-infectious avian influenza virus. To prevent the oncoming pandemic, it is crucial to analyze the viral affinity to human-type or avian-type sialoglycans with high sensitivity at high speed. Graphene-FET (G-FET) realizes such high-sensitive electrical detection of the targets, owing to graphene’s high carrier mobility. In the present study, G-FET was functionalized using sialoglycans and employed for the selective detection of lectins from Sambucus sieboldiana and Maackia amurensis as alternatives of the human and avian influenza viruses. Glycan-functionalized G-FET selectively monitored the sialoglycan-specific binding reactions at subnanomolar sensitivity.

  10. Pathogenesis and Diagnostic Approaches of Avian Infectious Bronchitis

    Directory of Open Access Journals (Sweden)

    Faruku Bande

    2016-01-01

    Full Text Available Infectious bronchitis (IB is one of the major economically important poultry diseases distributed worldwide. It is caused by infectious bronchitis virus (IBV and affects both galliform and nongalliform birds. Its economic impact includes decreased egg production and poor egg quality in layers, stunted growth, poor carcass weight, and mortality in broiler chickens. Although primarily affecting the respiratory tract, IBV demonstrates a wide range of tissues tropism, including the renal and reproductive systems. Thus, disease outcome may be influenced by the organ or tissue involved as well as pathotypes or strain of the infecting virus. Knowledge on the epidemiology of the prevalent IBV strains in a particular region is therefore important to guide control and preventions. Meanwhile previous diagnostic methods such as serology and virus isolations are less sensitive and time consuming, respectively; current methods, such as reverse transcription polymerase chain reaction (RT-PCR, Restriction Fragment Length Polymorphism (RFLP, and sequencing, offer highly sensitive, rapid, and accurate diagnostic results, thus enabling the genotyping of new viral strains within the shortest possible time. This review discusses aspects on pathogenesis and diagnostic methods for IBV infection.

  11. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens

    OpenAIRE

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R. S.; Pierson, F. William; Huang, Yao-Wei; Dryman, Barbara A.; Meng, Xiang-Jin

    2010-01-01

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculat...

  12. Generation and infectivity titration of an infectious stock of avian hepatitis E virus (HEV) in chickens and cross-species infection of turkeys with avian HEV.

    Science.gov (United States)

    Sun, Z F; Larsen, C T; Huang, F F; Billam, P; Pierson, F W; Toth, T E; Meng, X J

    2004-06-01

    Avian hepatitis E virus (HEV), a novel virus identified from chickens with hepatitis-splenomegaly syndrome in the United States, is genetically and antigenically related to human HEV. In order to further characterize avian HEV, an infectious viral stock with a known infectious titer must be generated, as HEV cannot be propagated in vitro. Bile and feces collected from specific-pathogen-free (SPF) chickens experimentally infected with avian HEV were used to prepare an avian HEV infectious stock as a 10% suspension of positive fecal and bile samples in phosphate-buffered saline. The infectivity titer of this infectious stock was determined by inoculating 1-week-old SPF chickens intravenously with 200 microl of each of serial 10-fold dilutions (10(-2) to 10(-6)) of the avian HEV stock (two chickens were inoculated with each dilution). All chickens inoculated with the 10(-2) to 10(-4) dilutions of the infectious stock and one of the two chickens inoculated with the 10(-5) dilution, but neither of the chickens inoculated with the 10(-6) dilution, became seropositive for anti-avian HEV antibody at 4 weeks postinoculation (wpi). Two serologically negative contact control chickens housed together with chickens inoculated with the 10(-2) dilution also seroconverted at 8 wpi. Viremia and shedding of virus in feces were variable in chickens inoculated with the 10(-2) to 10(-5) dilutions but were not detectable in those inoculated with the 10(-6) dilution. The infectivity titer of the infectious avian HEV stock was determined to be 5 x 10(5) 50% chicken infectious doses (CID(50)) per ml. Eight 1-week-old turkeys were intravenously inoculated with 10(5) CID(50) of avian HEV, and another group of nine turkeys were not inoculated and were used as controls. The inoculated turkeys seroconverted at 4 to 8 wpi. In the inoculated turkeys, viremia was detected at 2 to 6 wpi and shedding of virus in feces was detected at 4 to 7 wpi. A serologically negative contact control turkey housed

  13. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats.

    Science.gov (United States)

    Pedersen, Niels C; Liu, Hongwei; Scarlett, Jennifer; Leutenegger, Christian M; Golovko, Lyudmila; Kennedy, Heather; Kamal, Farina Mustaffa

    2012-04-01

    Feline infectious peritonitis virus (FIPV) was presumed to arise from mutations in the 3c of a ubiquitous and largely nonpathogenic feline enteric coronavirus (FECV). However, a recent study found that one-third of FIPV isolates have an intact 3c and suggested that it is not solely involved in FIP but is essential for intestinal replication. In order to confirm these assumptions, 27 fecal and 32 FIP coronavirus isolates were obtained from resident or adopted cats from a large metropolitan shelter during 2008-2009 and their 3a-c, E, and M genes sequenced. Forty percent of coronavirus isolates from FIP tissues had an intact 3c gene, while 60% had mutations that truncated the gene product. The 3c genes of fecal isolates from healthy cats were always intact. Coronavirus from FIP diseased tissues consistently induced FIP when given either oronasally or intraperitoneally (i.p.), regardless of the functional status of their 3c genes, thus confirming them to be FIPVs. In contrast, fecal isolates from healthy cats were infectious following oronasal infection and shed at high levels in feces without causing disease, as expected for FECVs. Only one in three cats shed FECV in the feces following i.p. infection, indicating that FECVs can replicate systemically, but with difficulty. FIPVs having a mutated 3c were not shed in the feces following either oronasal or i.p. inoculation, while FIPVs with intact 3c genes were shed in the feces following oronasal but not i.p. inoculation. Therefore, an intact 3c appears to be essential for intestinal replication. Although FIPVs with an intact 3c were shed in the feces following oronasal inoculation, fecal virus from these cats was not infectious for other cats. Attempts to identify potential FIP mutations in the 3a, 3b, E, and M were negative. However, the 3c gene of FIPVs, even though appearing intact, contained many more non-synonymous amino acid changes in the 3' one-third of the 3c protein than FECVs. An attempt to trace FIPV

  14. Coronavirus Genomics and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Kwok-Yung Yuen

    2010-08-01

    Full Text Available The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4´10-4 to 2´10-2 substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV, between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1. Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.

  15. Identification of one peptide which inhibited infectivity of avian infectious bronchitis virus in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Purified avian infectious bronchitis virus (IBV) was used to screen a random phage display peptide library. After the fourth panning, 10 positive phages were sequenced and characterized. The phages specifically inhibited IBV infectivity in HeLa cells and blocked IBV haemagglutination. One linear peptide "GSH HRH VHS PFV" from the positive phages with the highest neutralization titer was synthesized and this peptide inhibited IBV infection in HeLa as well. The results may contribute to development of antiviral therapeutics for IBV and studying the determinants for viral and cell interaction.

  16. A Review of Coronavirus Infections in Avain%禽源冠状病毒感染情况概述

    Institute of Scientific and Technical Information of China (English)

    庄青叶; 陈继明; 王楷宬

    2015-01-01

    Based on epidemiological investigation,surveillance,gene analysis of coronaviruses in birds in the world,coronavirus infections and the related diseases in avian were summarized in this paper. Avian-origin coronavirus has a very complex population with abundant diversity,involving viruses in Gammacoronavirus and Deltacoronavirus at least. Avian infectious bronchitis virus existed and was endemic in almost all chicken-producing countries. Turkey coronavirus,duck coronavirus,goose coronavirus,pigeon coronavirus were already detected in avian and some of these were pandemic. A few other Deltacoronavirus were only detected in wildfowl .%以国内外对冠状病毒在禽类中的流行病学调查、监测和基因分析等研究报道为基础,从病毒分类学角度,对各“种”冠状病毒在禽类中的感染情况和引起的相关疾病进行简要概述。全球在禽类中发现的冠状病毒种类较多,至少涉及丙型和丁型冠状病毒属。其中,鸡传染性支气管炎病毒几乎在全球所有养鸡国家中存在,并呈地方性流行;火鸡冠状病毒、鸭冠状病毒、鹅冠状病毒、鸽冠状病毒也在禽类中被发现,部分病毒已在禽群中流行;其他丁型冠状病毒属病毒仅在少数野鸟中被发现。

  17. Construction and characterization of infectious cDNA clones of a chicken strain of hepatitis E virus (HEV), avian HEV.

    Science.gov (United States)

    Huang, F F; Pierson, F W; Toth, T E; Meng, X J

    2005-09-01

    Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important human pathogen. Increasing evidence indicates that hepatitis E is a zoonosis. Avian HEV was recently discovered in chickens with hepatitis-splenomegaly syndrome in the USA. Like swine HEV from pigs, avian HEV is also genetically and antigenically related to human HEV. The objective of this study was to construct and characterize an infectious cDNA clone of avian HEV for future studies of HEV replication and pathogenesis. Three full-length cDNA clones of avian HEV, pT7-aHEV-5, pT7G-aHEV-10 and pT7G-aHEV-6, were constructed and their infectivity was tested by in vitro transfection of leghorn male hepatoma (LMH) chicken liver cells and by direct intrahepatic inoculation of specific-pathogen-free (SPF) chickens with capped RNA transcripts from the three clones. The results showed that the capped RNA transcripts from each of the three clones were replication competent when transfected into LMH cells as demonstrated by detection of viral antigens with avian HEV-specific antibodies. SPF chickens intrahepatically inoculated with the capped RNA transcripts from each of the three clones developed active avian HEV infections as evidenced by seroconversion to avian HEV antibodies, viraemia and faecal virus shedding. The infectivity was further confirmed by successful infection of naïve chickens with the viruses recovered from chickens inoculated with the RNA transcripts. The results indicated that all three cDNA clones of avian HEV are infectious both in vitro and in vivo. The availability of these infectious clones for a chicken strain of HEV now affords an opportunity to study the mechanisms of HEV cross-species infection and tissue tropism by constructing chimeric viruses among human, swine and avian HEVs.

  18. Infectious bronchitis coronavirus limits interferon production by inducing a host shutoff that requires accessory protein 5b

    NARCIS (Netherlands)

    Kint, Joeri; Langereis, Martijn A.; Maier, Helena J.; Britton, Paul; Kuppeveld, van Frank J.; Koumans, Joseph; Wiegertjes, Geert F.; Forlenza, Maria

    2016-01-01

    During infection of their host cells, viruses often inhibit the production of host proteins, a process that is referred to as host shutoff. By doing this, viruses limit the production of antiviral proteins and increase production capacity for viral proteins. Coronaviruses from the genera Alphacor

  19. Securitization of infectious diseases in Vietnam: the cases of HIV and avian influenza.

    Science.gov (United States)

    Herington, Jonathan

    2010-11-01

    The frequent and swift emergence of new and devastating infectious diseases has brought renewed attention to health as an issue of international importance. Some states and regional organizations, including in Asia, have begun to regard infectious disease as a national and international security issue. This article seeks to examine the Vietnamese government's response to the epidemics of avian influenza and Human immunodeficiency virus. Both diseases have been recognized at different times as threats to international security and both are serious infectious disease problems in Vietnam. Yet, the character of the central government's response to these two epidemics has been starkly different. How and why this disparity in policy approaches occurs depends largely on the epidemiological, economic and political context in which they occur. Although epidemiological factors are frequently explored when discussing disease as a security issue, seldom are the political, social and economic characteristics of the state invoked. These dimensions, and their interaction with the epidemiology of the disease, are central to understanding which diseases are ultimately treated by states as security issues. In particular, the role of economic security as a powerful motivator for resistance to control measures and the role that local implementation of policies can have in disrupting the effect of central government policy are explored. In exploring both the outcomes of securitization, and its facilitating conditions, I suggest some preliminary observations on the potential costs and benefits of securitizing infectious disease and its utility as a mechanism for protecting health in Asia.

  20. Unraveling the Mysteries of Middle East Respiratory Syndrome Coronavirus

    Centers for Disease Control (CDC) Podcasts

    2014-03-11

    Dr. Aron Hall, a CDC coronavirus epidemiologist, discusses Middle East Respiratory Syndrome Coronavirus.  Created: 3/11/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/11/2014.

  1. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    OpenAIRE

    Sophie Le Poder

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious ...

  2. Feline and canine coronaviruses : common genetic and pathobiological features

    OpenAIRE

    Sophie Le Poder

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious ...

  3. Research Regarding some Live Attenuated Vaccines Used in Immunoprophylaxis of the Avian Infectious Bursitis

    Directory of Open Access Journals (Sweden)

    Emil Tirziu

    2010-10-01

    Full Text Available In our research four live attenuated vaccines against avian infectious bursitis (two inland produced and two imported were tested: Biavac, Biaromvac-Pa, Gumboro Vaccine Nobilis 228e and Live Virus Vaccine Tablets Gumboro, M.B. Strain. The research was made in production conditions on 44,400 broiler chickens maintained in industrial system and raised on bedding and in batteries. The broilers were kept in four poultry houses, each of them representing an experimental group. We mention that vaccines were administered only one time. Vaccines efficiency was assessed by immunoenzymatic test. In that purpose, for each poultry house, 20 broilers were isolated and identified by a tibial ring, their immune response being followed between 5 and 42 days of age. Analyzing the results about individual antibodies titer during the experiment, the significant differences were observed both in poultries and phases. The best results were obtained using Live Virus Vaccine Tablets Gumboro, M.B. strain.

  4. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens.

    Science.gov (United States)

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R S; Pierson, F William; Huang, Yao-Wei; Dryman, Barbara A; Meng, Xiang-Jin

    2011-01-27

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies.

  5. The intracellular cargo receptor ERGIC-53 is required for the production of infectious arenavirus, coronavirus, and filovirus particles.

    Science.gov (United States)

    Klaus, Joseph P; Eisenhauer, Philip; Russo, Joanne; Mason, Anne B; Do, Danh; King, Benjamin; Taatjes, Douglas; Cornillez-Ty, Cromwell; Boyson, Jonathan E; Thali, Markus; Zheng, Chunlei; Liao, Lujian; Yates, John R; Zhang, Bin; Ballif, Bryan A; Botten, Jason W

    2013-11-13

    Arenaviruses and hantaviruses cause severe human disease. Little is known regarding host proteins required for their propagation. We identified human proteins that interact with the glycoproteins (GPs) of a prototypic arenavirus and hantavirus and show that the lectin endoplasmic reticulum (ER)-Golgi intermediate compartment 53 kDa protein (ERGIC-53), a cargo receptor required for glycoprotein trafficking within the early exocytic pathway, associates with arenavirus, hantavirus, coronavirus, orthomyxovirus, and filovirus GPs. ERGIC-53 binds to arenavirus GPs through a lectin-independent mechanism, traffics to arenavirus budding sites, and is incorporated into virions. ERGIC-53 is required for arenavirus, coronavirus, and filovirus propagation; in its absence, GP-containing virus particles form but are noninfectious, due in part to their inability to attach to host cells. Thus, we have identified a class of pathogen-derived ERGIC-53 ligands, a lectin-independent basis for their association with ERGIC-53, and a role for ERGIC-53 in the propagation of several highly pathogenic RNA virus families.

  6. Comparative properties of feline coronaviruses in vitro.

    OpenAIRE

    McKeirnan, A J; Evermann, J F; Davis, E. V.; Ott, R L

    1987-01-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to pr...

  7. Comparative properties of feline coronaviruses in vitro.

    Science.gov (United States)

    McKeirnan, A J; Evermann, J F; Davis, E V; Ott, R L

    1987-04-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to proteolytic inactivation when compared with the feline enteric coronavirus strain. This observation may serve as a useful in vitro marker to distinguish closely related members of the feline coronavirus group. Plaque assay results indicated that the feline infectious peritonitis virus strains produced large homogeneous plaques in comparison to the feline enteric coronavirus strain and canine coronavirus, which showed a heterogenous plaque size distribution. No naturally temperature sensitive mutants were detected in either of the feline coronavirus populations. Both of the viruses were antigenically related to feline infectious peritonitis virus and to a lesser extent to canine coronavirus by virus neutralization.

  8. Egg whites from eggs of chickens infected experimentally with avian hepatitis E virus contain infectious virus, but evidence of complete vertical transmission is lacking.

    Science.gov (United States)

    Guo, H; Zhou, E M; Sun, Z F; Meng, X-J

    2007-05-01

    Avian hepatitis E virus (HEV) is genetically and antigenically related to human HEV. Vertical transmission of HEV has been reported in humans, but not in other animals. In this study, we showed that avian HEV could be detected in chicken egg-white samples. Subsequently, avian HEV in egg white was found to be infectious, as evidenced by the appearance of viraemia, faecal virus shedding and seroconversion in chickens inoculated with avian HEV-positive egg white, but not in chickens inoculated with HEV-negative egg white. To further assess the possibility of vertical transmission of avian HEV, batches of embryonated eggs from infected hens were hatched, and hatched chicks were monitored for evidence of avian HEV infection. However, no virus was detected in samples collected from the hatched chicks throughout this study, suggesting that avian HEV could not complete the vertical transmission cycle. The possible implications of our findings are also discussed.

  9. Molecular detection of infectious bronchitis and avian metapneumoviruses in Oman backyard poultry.

    Science.gov (United States)

    Al-Shekaili, Thunai; Baylis, Matthew; Ganapathy, Kannan

    2015-04-01

    Infectious bronchitis virus (IBV) and avian metapneumovirus (aMPV) are economically important viral pathogens infecting chickens globally. Identification of endemic IBV and aMPV strains promotes better control of both diseases and prevents production losses. Orophrayngeal swab samples were taken from 2317 birds within 243 different backyard flocks in Oman. Swabs from each flock were examined by RT-PCR using part-S1 and G gene primers for IBV and aMPV respectively. Thirty-nine chicken flocks were positive for IBV. Thirty two of these were genotyped and they were closely related to 793/B, M41, D274, IS/1494/06 and IS/885/00. 793/B-like IBV was also found in one turkey and one duck flock. Five flocks were positive for aMPV subtype B. Though no disease was witnessed at the time of sampling, identified viruses including variant IBV strains, may still pose a threat for both backyard and commercial poultry in Oman.

  10. Progress and Challenges toward the Development of Vaccines against Avian Infectious Bronchitis

    Directory of Open Access Journals (Sweden)

    Faruku Bande

    2015-01-01

    Full Text Available Avian infectious bronchitis (IB is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.

  11. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain

    Science.gov (United States)

    Guo, Huichen; Huang, Mei; Yuan, Quan; Wei, Yanquan; Gao, Yuan; Mao, Lejiao; Gu, Lingjun; Tan, Yong Wah; Zhong, Yanxin; Liu, Dingxiang; Sun, Shiqi

    2017-01-01

    Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage. PMID:28081264

  12. An outbreak of feline infectious peritonitis in a Taiwanese shelter: epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus.

    Science.gov (United States)

    Wang, Ying-Ting; Su, Bi-Ling; Hsieh, Li-En; Chueh, Ling-Ling

    2013-07-17

    Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.

  13. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: a 5-year study in Taiwan.

    Science.gov (United States)

    Lin, Chao-Nan; Su, Bi-Ling; Wang, Ching-Ho; Hsieh, Ming-Wei; Chueh, Ti-Jen; Chueh, Ling-Ling

    2009-05-12

    The outcomes of feline coronavirus (FCoV) infection vary greatly from asymptomatic or mild enteric infection to fatal feline infectious peritonitis (FIP). On the basis of in vitro neutralization tests, FCoVs can be divided into two serotypes. To explore the correlation between different types of FCoV and FIP, clinical specimens collected from 363 naturally infected cats during 2003-2007 were analyzed. Amplification of a portion of the S gene from the FCoV was performed and a total of 222 cases were differentiated. Among them, 197 (88.7%) cats were type I-positive, 13 (5.9%) were type II-positive, and 12 (5.4%) were positive for both types. Irrespective of the predominance of type I FCoV infection in Taiwan, type II FCoV demonstrated a significantly higher correlation with FIP (p<0.01). Analysis of partial S gene sequences of the local type I and II FCoVs strains revealed that type I viruses were more genetically divergent (6.2-11.7%) than type II viruses (0.6-3.2%) within the 5-year study period. The higher genetic diversity of type I FCoVs might be due to the larger infected cat population and to the long period of viral persistence in asymptomatic cats in comparison to type II viruses.

  14. Identification of Aminopeptidase N as a Cellular Receptor for Human Coronavirus-229E

    Science.gov (United States)

    1992-05-12

    feline enteric coronav irus feline infectious peritonitis virus hUman adult intestine hUman aminopeptidase N human aminopeptidase with 39 amino...coronavirus (TCV), rat coronavirus (RCV), cat feline infectious peritonitis virus (FIPV), and the hUman coronaviruses. These include the slow, patchy...While the cat, dog and pig serve as natural hosts for the other coronavirus group 1 viruses, feline infectious peritonitis virus (FIPV), canine

  15. INDUCTION OF ANTIVIRAL IMMUNE-RESPONSES BY IMMUNIZATION WITH RECOMBINANT-DNA ENCODED AVIAN CORONAVIRUS NUCLEOCAPSID PROTEIN

    NARCIS (Netherlands)

    BOOTS, AMH; BENAISSATROUW, BJ; HESSELINK, W; RIJKE, E; SCHRIER, C; HENSEN, EJ; Boots, Annemieke

    1992-01-01

    Immune responses to the infectious bronchitis virus (IBV) nucleocapsid protein were studied using a recombinant-DNA expression product. In mice, a lymphocyte proliferative response and a delayed-type hypersensitivity reaction to IBV were induced upon immunization with this nucleocapsid protein. Next

  16. Identifying risk factors of avian infectious diseases at household level in Poyang Lake region, China.

    Science.gov (United States)

    Jiang, Qian; Zhou, Jieting; Jiang, Zhiben; Xu, Bing

    2014-09-01

    Poultry kept in backyard farms are susceptible to acquiring and spreading infectious diseases because of free ranging and poor biosecurity measures. Since some of these diseases are zoonoses, this is also a significant health concern to breeders and their families. Backyard farms are common in rural regions of China. However, there is lack of knowledge of backyard poultry in the country. To obtain first-hand information of backyard poultry and identify risk factors of avian infectious diseases, a cross-sectional study was carried out at household level in rural regions around Poyang Lake. A door-to-door survey was conducted to collect data on husbandry practices, trading practices of backyard farmers, and surrounding environments of backyard farms. Farms were categorized into cases and controls based on their history of poultry death. Data were collected for 137 farms, and the association with occurrence of poultry death event was explored by chi-square tests. Results showed that vaccination implementation was a protective factor (odds ratio OR=0.40, 95% confidence interval CI: 0.20-0.80, p=0.01), while contact with other backyard flocks increased risk (OR=1.72, 95% CI: 0.79-3.74, p=0.16). A concept of "farm connectivity" characterized by the density of particular land-use types in the vicinity of the farm was proposed to characterize the degree of contact between poultry in one household farm and those in other household farms. It was found that housing density in a 20-m buffer zone of the farmhouse was most significantly associated with poultry death occurrence (OR=1.08, 95% CI: 1.02-1.17, p=0.03), and was in agreement with observation of villagers. Binary logistic regression was applied to evaluate the relationship between poultry death event and density of land-use types in all buffer zones. When integrated with vaccination implementation for poultry, prediction accuracy of poultry death event reached 72.0%. Results combining questionnaire survey with

  17. Interactions of Rodent Coronaviruses with Cellular Receptors

    Science.gov (United States)

    2016-05-08

    porcine transmissible gastroenteris vi rus; Cell , canine coronavi rus; FECI/ , feline enteric coronavlrus; FIPV. fel ine infectious peritonitis ...bluecomb disease). b. Other diseases caused by corooaviruses inc lude infectious peritonitis , r!¥lting, nephritis , pancreatitis, parotitis, and...first described in 1961 (Innes and Stanton, 1961). Rat coronaviruses are highly infectious but the disease they cause is self limiting and rarely

  18. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis.

    Science.gov (United States)

    Porter, Emily; Tasker, Séverine; Day, Michael J; Harley, Ross; Kipar, Anja; Siddell, Stuart G; Helps, Christopher R

    2014-04-25

    Recent evidence suggests that a mutation in the spike protein gene of feline coronavirus (FCoV), which results in an amino acid change from methionine to leucine at position 1058, may be associated with feline infectious peritonitis (FIP). Tissue and faecal samples collected post mortem from cats diagnosed with or without FIP were subjected to RNA extraction and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect FCoV RNA. In cats with FIP, 95% of tissue, and 81% of faecal samples were PCR-positive, as opposed to 22% of tissue, and 60% of faecal samples in cats without FIP. Relative FCoV copy numbers were significantly higher in the cats with FIP, both in tissues (P < 0.001) and faeces (P = 0.02). PCR-positive samples underwent pyrosequencing encompassing position 1058 of the FCoV spike protein. This identified a methionine codon at position 1058, consistent with the shedding of an enteric form of FCoV, in 77% of the faecal samples from cats with FIP, and in 100% of the samples from cats without FIP. In contrast, 91% of the tissue samples from cats with FIP and 89% from cats without FIP had a leucine codon at position 1058, consistent with a systemic form of FCoV. These results suggest that the methionine to leucine substitution at position 1058 in the FCoV spike protein is indicative of systemic spread of FCoV from the intestine, rather than a virus with the potential to cause FIP.

  19. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    Directory of Open Access Journals (Sweden)

    Sophie Le Poder

    2011-01-01

    Full Text Available A new human coronavirus responsible for severe acute respiratory syndrome (SARS was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  20. Adjuvant Activity of Sargassum pallidum Polysaccharides against Combined Newcastle Disease, Infectious Bronchitis and Avian Influenza Inactivated Vaccines

    Directory of Open Access Journals (Sweden)

    Li-Jie Li

    2012-11-01

    Full Text Available This study evaluates the effects of Sargassum pallidum polysaccharides (SPP on the immune responses in a chicken model. The adjuvanticity of Sargassum pallidum polysaccharides in Newcastle disease (ND, infectious bronchitis (IB and avian influenza (AI was investigated by examining the antibody titers and lymphocyte proliferation following immunization in chickens. The chickens were administrated combined ND, IB and AI inactivated vaccines containing SPP at 10, 30 and 50 mg/mL, using an oil adjuvant vaccine as a control. The ND, IB and AI antibody titers and the lymphocyte proliferation were enhanced at 30 mg/mL SPP. In conclusion, an appropriate dose of SPP may be a safe and efficacious immune stimulator candidate that is suitable for vaccines to produce early and persistent prophylaxis.

  1. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease.

    Science.gov (United States)

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C; Chang, Kyeong-Ok

    2013-02-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against a feline coronavirus in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC(50) in a nanomolar range) and, furthermore, combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in a cell culture system.

  2. The effect of infectious bursal disease virus induced immunosuppression on avian influenza virus vaccine efficacy

    Science.gov (United States)

    In the field, poultry are exposed to a variety of infectious agents, many of which are immunosuppressive. Co-infections between these agents are common, and these co-infections have effects on disease, immune response, and vaccine efficacy. The effect of co-infections in poultry between immunosupp...

  3. Evaluation of three avian infectious laryngotracheitis vaccination programmes using two commercial vectorized vaccines in broilers

    OpenAIRE

    Charca P., Silvia; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Icochea D’A., Eliana; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; González V., Rosa; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Perales C., Rosa; Laboratorio de Histología, Embriología y Patología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima-Perú.; San Martín D., Viviana; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Cribillero C., Nelly; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Reyna S., Pablo; Laboratorio de Patología Aviar, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima-Perú. Práctica privada.

    2015-01-01

    The aim of this study was to evaluate the protection of three immunization programmes against infectious laryngotracheitis (ILT) in broilers using two recombinant commercial vaccines. A total of 288 1-day-old Ross-308-line male birds were distributed in four experimental groups of 72 animals with three replicates of 24 birds per group. Group A was subcutaneously vaccinated at 1 day of age with a commercial recombinant fowlpox virus (FPV)-vectored vaccine expressing ILT virus (ILTV) glycoprote...

  4. S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt

    OpenAIRE

    Ladman Brian S; El-Kady Magdy F; Abdel-Moneim Ahmed S; Gelb Jack

    2006-01-01

    Abstract Background Infectious bronchitis is highly contagious and constitutes one of the most common and difficult poultry diseases to control. IBV is endemic in probably all countries that raise chickens. It exists as dozens of serotypes/genotypes. Only a few amino acid differences in the S1 protein of vaccine and challenge strains of IBV may result in poor protection. Tropism of IBV includes the respiratory tract tissues, proventriculus and caecal tonsils of the alimentary tract, the ovidu...

  5. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction.

    Science.gov (United States)

    Elhafi, G; Naylor, C J; Savage, C E; Jones, R C

    2004-06-01

    A method is described for enabling safe transit of denatured virus samples for polymerase chain reaction (PCR) identification without the risk of unwanted viable viruses. Cotton swabs dipped in avian infectious bronchitis virus (IBV) or avian pneumovirus (APV) were allowed to dry. Newcastle disease virus and avian influenza viruses were used as controls. Autoclaving and microwave treatment for as little as 20 sec destroyed the infectivity of all four viruses. However, both IBV and APV could be detected by reverse transcriptase (RT)-PCR after autoclaving and as long as 5 min microwave treatment (Newcastle disease virus and avian influenza viruses were not tested). Double microwave treatment of IBV and APV with an interval of 2 to 7 days between was tested. After the second treatment, RT-PCR products were readily detected in all samples. Swabs from the tracheas and cloacas of chicks infected with IBV shown to contain infectious virus were microwaved. Swabs from both sources were positive by RT-PCR. Microwave treatment appears to be a satisfactory method of inactivating virus while preserving nucleic acid for PCR identification.

  6. Response of white leghorn chickens to infection with avian leukosis virus subgroup J and infectious bursal disease virus.

    Science.gov (United States)

    Williams, Susan M; Sellers, Holly S

    2012-03-01

    The effects of viral-induced immunosuppression on the infectious status (viremia and antibody) and shedding of avian leukosis virus (ALV) were studied. Experimental white leghorn chickens were inoculated with ALV subgroup J (ALV-J) and infectious bursal disease virus (IBDV) at day of hatch with the ALV-J ADOL prototype strain Hcl, the Lukert strain of IBDV, or both. Appropriate groups were exposed a second time with the Lukert strain at 2 wk of age. Serum samples were collected at 2 and 4 wk of age for IBDV antibody detection. Samples for ALV-J viremia, antibody detection, and cloacal shedding were collected at 4, 10, 18, and 30 wk of age. The experiment was terminated at 30 wk of age, and birds were necropsied and examined grossly for tumor development. Neoplasias detected included hemangiomas, bile duct carcinoma, and anaplastic sarcoma of the nerve. Control birds and IBDV-infected birds were negative for ALV-J-induced viremia, antibodies, and cloacal shedding throughout experiment. By 10 wk, ALV-J-infected groups began to develop antibodies to ALV-J. However, at 18 wk the incidence of virus isolation increased in both groups, with a simultaneous decrease in antibody levels. At 30 wk, 97% of birds in the ALV-J group were virus positive and 41% were antibody positive. In the ALV-J/IDBV group, 96% of the birds were virus positive at 30 wk, and 27% had antibodies to ALV-J. In this study, infection with a mild classic strain of IBDV did not influence ALV-J infection or antibody production.

  7. Procedures for identifying infectious prions after passage through the digestive system of an avian species.

    Science.gov (United States)

    Fischer, Justin W; Nichols, Tracy A; Phillips, Gregory E; VerCauteren, Kurt C

    2013-11-06

    Infectious prion (PrP(Res)) material is likely the cause of fatal, neurodegenerative transmissible spongiform encephalopathy (TSE) diseases(1). Transmission of TSE diseases, such as chronic wasting disease (CWD), is presumed to be from animal to animal(2,3) as well as from environmental sources(4-6). Scavengers and carnivores have potential to translocate PrP(Res) material through consumption and excretion of CWD-contaminated carrion. Recent work has documented passage of PrP(Res) material through the digestive system of American crows (Corvus brachyrhynchos), a common North American scavenger(7). We describe procedures used to document passage of PrP(Res) material through American crows. Crows were gavaged with RML-strain mouse-adapted scrapie and their feces were collected 4 hr post gavage. Crow feces were then pooled and injected intraperitoneally into C57BL/6 mice. Mice were monitored daily until they expressed clinical signs of mouse scrapie and were thereafter euthanized. Asymptomatic mice were monitored until 365 days post inoculation. Western blot analysis was conducted to confirm disease status. Results revealed that prions remain infectious after traveling through the digestive system of crows and are present in the feces, causing disease in test mice.

  8. In Ovo Delivery of CpG DNA Reduces Avian Infectious Laryngotracheitis Virus Induced Mortality and Morbidity

    Directory of Open Access Journals (Sweden)

    Simrika Thapa

    2015-04-01

    Full Text Available Endosomal toll-like receptor-21 and -9 sense CpG DNA activating production of pro-inflammatory mediators with antimicrobial effects. Here, we investigated the induction of antiviral response of in ovo delivered CpG DNA against infectious laryngotracheitis virus (ILTV infection. We found that in ovo delivered CpG DNA significantly reduces ILTV infection pre-hatch correlating with the expression of IL-1β and increase of macrophages in lungs. As assessed in vitro, CpG DNA stimulated avian macrophages could be a potential source of IL-1β and other pro-inflammatory mediators. Since we also found that in ovo CpG DNA delivery maintains increased macrophages in the lungs post-hatch, we infected the chickens on the day of hatch with ILTV. We found that in ovo delivered CpG DNA significantly reduces mortality and morbidity resulting from ILTV infection encountered post-hatch. Thus, CpG DNA can be a candidate innate immune stimulant worthy of further investigation for the control of ILTV infection in chickens.

  9. S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt

    Directory of Open Access Journals (Sweden)

    Ladman Brian S

    2006-09-01

    Full Text Available Abstract Background Infectious bronchitis is highly contagious and constitutes one of the most common and difficult poultry diseases to control. IBV is endemic in probably all countries that raise chickens. It exists as dozens of serotypes/genotypes. Only a few amino acid differences in the S1 protein of vaccine and challenge strains of IBV may result in poor protection. Tropism of IBV includes the respiratory tract tissues, proventriculus and caecal tonsils of the alimentary tract, the oviduct and the kidney. Results Infectious bronchitis virus (IBV strain closely related to Massachusetts (Mass serotype was isolated from broiler chickens suffering from severe renal and respiratory distresses. The isolate was serologically identified by Dot-ELISA and further characterized by RT-PCR then genotyped using S1 gene sequence analysis. Alignment of the S1 sequence of the isolate with 16 IBV strains revealed high homology to isolates related to Mass serotype. Inoculation with the strain reproduced the disease in experimental 1-day-old chickens and resulted in 20% mortality, severe renal and moderate respiratory distresses. Marked histopathological changes in both kidney and trachea were observed in experimentally infected chickens. A protection study using the H120 live attenuated vaccine showed low protection rate in spite of high S1 sequence homology (97%. Protection based criteria were: virus re-isolation attempts from trachea, tracheal and renal histopathology as well as IBV antigens detection by immunofluorescent antibody technique in kidney sections. Conclusion Periodical evaluation of cross-protective capabilities of IBV vaccine(s versus recently recovered field isolates should be performed to ensure optimum control of IBV.

  10. Genotyping of news variants of the avian infectious bronchitis virus from Tolima department, Colombia

    Directory of Open Access Journals (Sweden)

    Analorena Cifuentes-Rincón

    2016-09-01

    Full Text Available Objective. The aim of this study was identify the different genotypes of infectious bronchitis virus (IVB present in commercial poultry farms from different localities of the Tolima Department, Colombia. Materials and methods. 105 samples of tracheal swabs of poultry of 21 farms were collected. Poultry had been vaccinated against IVB. An screen to identify positive samples and posteriorly the sequencing of the partial region of the S1 subunit and phylogenetic analysis of the isolates with the reference strains, including the vaccine currently used in the country was performed. Results. Poultry all farms had respiratory signs, but only four farms was confirmed the disease. Positive samples of the IBV (HT6, HT9, HT10 and HT11 were pathogenic for embryos 9-days-old. The HT6 sample was grouped in the same cluster that the Massachusetts strains. The HT9 and HT11 samples showed 99% similarity and were grouped genetically distant from the reference strains and other isolated. The HT10 sample showed low similarities with the isolates and reference strains, grouping alone in another cluster. Conclusions. New genotypes are circulating in the Tolima Department, where there is a risk of genetic recombination. Is believed that vaccines used were not providing cross-protection against the new genotypes.

  11. Dynamics of the coronavirus replicative structures

    NARCIS (Netherlands)

    Hagemeijer, M.C.

    2011-01-01

    Coronaviruses (CoV) are positive-strand RNA (+RNA) viruses that are important infectious agents in both animals and man. Upon infection, CoVs generate large multicomponent protein complexes, consisting of 16 nonstructural proteins (nsp’s) and yet to be identified cellular proteins, dedicated to the

  12. Construction of an infectious cDNA clone of genotype 1 avian hepatitis E virus: characterization of its pathogenicity in broiler breeders and demonstration of its utility in studying the role of the hypervariable region in virus replication.

    Science.gov (United States)

    Park, Soo-Jeong; Lee, Byung-Woo; Moon, Hyun-Woo; Sung, Haan Woo; Yoon, Byung-Il; Meng, Xiang-Jin; Kwon, Hyuk Moo

    2015-05-01

    A full-length infectious cDNA clone of the genotype 1 Korean avian hepatitis E virus (avian HEV) (pT11-aHEV-K) was constructed and its infectivity and pathogenicity were investigated in leghorn male hepatoma (LMH) chicken cells and broiler breeders. We demonstrated that capped RNA transcripts from the pT11-aHEV-K clone were translation competent when transfected into LMH cells and infectious when injected intrahepatically into the livers of chickens. Gross and microscopic pathological lesions underpinned the avian HEV infection and helped characterize its pathogenicity in broiler breeder chickens. The avian HEV genome contains a hypervariable region (HVR) in ORF1. To demonstrate the utility of the avian HEV infectious clone, several mutants with various deletions in and beyond the known HVR were derived from the pT11-aHEV-K clone. The HVR-deletion mutants were replication competent in LMH cells, although the deletion mutants extending beyond the known HVR were non-viable. By using the pT11-aHEV-K infectious clone as the backbone, an avian HEV luciferase reporter replicon and HVR-deletion mutant replicons were also generated. The luciferase assay results of the reporter replicon and its mutants support the data obtained from the infectious clone and its derived mutants. To further determine the effect of HVR deletion on virus replication, the capped RNA transcripts from the wild-type pT11-aHEV-K clone and its mutants were injected intrahepatically into chickens. The HVR-deletion mutants that were translation competent in LMH cells displayed in chickens an attenuation phenotype of avian HEV infectivity, suggesting that the avian HEV HVR is important in modulating the virus infectivity and pathogenicity.

  13. Prevalence of Newcastle disease virus and infectious bronchitis virus in avian influenza negative birds from live bird markets and backyard and commercial farms in Ivory-Coast.

    Science.gov (United States)

    Kouakou, A V; Kouakou, V; Kouakou, C; Godji, P; Kouassi, A L; Krou, H A; Langeois, Q; Webby, R J; Ducatez, M F; Couacy-Hymann, E

    2015-10-01

    Newcastle disease (ND) and infectious bronchitis (IB) are two major viral diseases affecting the respiratory tracts of birds and whose impact on African poultry is still poorly known. In the present study we aimed at assessing NDV and IBV prevalences in Ivory-Coast by molecular screening of >22,000 avian swabs by nested PCR and by serology testing of close to 2000 avian sera from 2010 through 2012. The NDV and IBV seroprevalences over the study period reached 22% and 72%, respectively. We found 14.7% pooled swabs positive by PCR for NDV and 14.6% for IBV. Both pathogens are therefore endemic in Ivory-Coast. Economic losses associated with NDV and IBV infections still need to be evaluated.

  14. Infectious diseases epidemic threats and mass gatherings: Refocusing global attention on the continuing spread of the Middle East Respiratory syndrome coronavirus (MERS-CoV)

    NARCIS (Netherlands)

    Zumla, A. (Alimuddin); Alagaili, A.N. (Abdulaziz N.); Cotten, M. (Matthew); Azhar, E.I. (Esam I.)

    2016-01-01

    textabstractMedia and World Health Organization (WHO) attention on Zika virus transmission at the 2016 Rio Olympic Games and the 2015 Ebola virus outbreak in West Africa diverted the attention of global public health authorities from other lethal infectious diseases with epidemic potential. Mass gat

  15. Genome sequencing and characterization analysis of a Beijing isolate of chicken corona virus infectious bronchitis virus

    Institute of Scientific and Technical Information of China (English)

    JIN Weiwu; YU Jialin; LI Ning; GONG Yuanshi; SUN Qixin; CHEN Zhangliang; CHEN Chen; ZHANG Ying; ZHAO Yiqiang; FENG Jidong; CHEN Fuyong; WU Qingming; YANG Hanchun; WANG Ming

    2004-01-01

    Avian infectious bronchitis virus (AIBV) is lassified as a member of the genus coronavirus in the family coronaviridae. The enveloped virus has a positive-sense, single-stranded RNA genome of approximately 28 kilo-bases,which has a 5′ cap structure and 3′ polyadenylation tract.The complete genome sequence of infectious bronchitis virus (IBV), Beijing isolate, was determined by cloning sequencing and primer walking. The whole genome is 27733 nucleotides in length, has ten open reading frames: 5′-orfla-orflab-s-3a-3b-e-m- 6a-6b-n-3′. Alignments of the genome sequence of IBV Beijing isolate with those of two AIBV strains and one SARS coronavirus were performed respectively. The genome sequence of IBV Beijing isolate compared with that of the IBV strain LX4 (uncompleted, 19440 bp in size) was 91.2%similarity. However, the full-length genome sequence of IBV Beijing isolate was 85.2% identity to that of IBV Strain Beaudette, and was only 50.8% homology to that of SARS coronavirus. The results showed that the genome of IBV has remarkable variation. And IBV Beijing isolate is not closely related to SARS coronavirus. Phylogenetic analyses based on the whole genome sequence, S protein, M protein and N protein, also showed that AIBV Beijing isolate is lone virus in group Ⅲ and is distant from SARS coronavirus. In conclusion, this study will contribute to the studies of diagnosis and diseases control on IBV in China.

  16. Genomic organization and expression of the 3' end of the canine and feline enteric coronaviruses

    NARCIS (Netherlands)

    Vennema, H; Rossen, J W; Wesseling, J; Horzinek, M C; Rottier, P J

    1993-01-01

    The genomic organization at the 3' end of canine coronavirus (CCV) and feline enteric coronavirus (FECV) was determined by sequence analysis and compared to that of feline infectious peritonitis virus (FIPV) and transmissible gastroenteritis virus (TGEV) of swine. Comparison of the latter two has pr

  17. Feline infectious peritonitis.

    Science.gov (United States)

    Goodson, Teresa; Randell, Susan; Moore, Lisa

    2009-10-01

    Feline infectious peritonitis (FIP) frequently results in death in cats. It is caused by a mutated, highly contagious coronavirus, and it is more common in indoor cats in multicat households. A complex interaction between the coronavirus and the feline immune system causes disseminated vasculitis, which is the hallmark of FIP. New tests are being developed, but the antemortem diagnosis of FIP continues to be difficult and frustrating. Current treatments are crude and involve supportive care and immunosuppression. Minimizing exposure is the best method of preventing infection.

  18. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    Science.gov (United States)

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C; Weerasekara, Sahani; Hua, Duy H; Groutas, William C; Chang, Kyeong-Ok; Pedersen, Niels C

    2016-03-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  19. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor

    Science.gov (United States)

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C.; Weerasekara, Sahani; Hua, Duy H.; Groutas, William C.; Chang, Kyeong-Ok; Pedersen, Niels C.

    2016-01-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  20. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    Directory of Open Access Journals (Sweden)

    Yunjeong Kim

    2016-03-01

    Full Text Available Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP, can arise through mutation of FECV to FIP virus (FIPV. The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for

  1. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos

    Directory of Open Access Journals (Sweden)

    Keil Günther M

    2009-02-01

    Full Text Available Abstract Background Infectious bronchitis virus primarily induces a disease of the respiratory system, different IBV strains may show variable tissue tropisms and also affect the oviduct and the kidneys. Proventriculitis was also associated with some new IBV strains. Aim of this study was to investigate by immunohistochemistry (IHC the tissue tropism of avian infectious bronchitis virus (IBV strain M41 in experimentally infected chicken embryos. Results To this end chicken embryos were inoculated in the allantoic sac with 103 EID50 of IBV M41 at 10 days of age. At 48, 72, and 120 h postinoculation (PI, embryos and chorioallantoic membranes (CAM were sampled, fixed, and paraffin-wax embedded. Allantoic fluid was also collected and titrated in chicken embryo kidney cells (CEK. The sensitivity of IHC in detecting IBV antigens in the CAM of inoculated eggs matched the virus reisolation and detection in CEK. Using IHC, antigens of IBV were detected in nasal epithelium, trachea, lung, spleen, myocardial vasculature, liver, gastrointestinal tract, kidney, skin, sclera of the eye, spinal cord, as well as in brain neurons of the inoculated embryos. These results were consistent with virus isolation and denote the wide tissue tropism of IBV M41 in the chicken embryo. Most importantly, we found infection of vasculature and smooth muscle of the proventriculus which has not seen before with IBV strain M41. Conclusion IHC can be an additional useful tool for diagnosis of IBV infection in chickens and allows further studies to foster a deeper understanding of the pathogenesis of infections with IBV strains of different virulence. Moreover, these results underline that embryonic tissues in addition to CAM could be also used as possible source to generate IBV antigens for diagnostic purposes.

  2. Rapid inactivation of SARS-like coronaviruses.

    Energy Technology Data Exchange (ETDEWEB)

    Kapil, Sanjay (Kansas State University, Manhattan, KS); Oberst, R. D. (Kansas State University, Manhattan, KS); Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  3. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  4. Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus

    Institute of Scientific and Technical Information of China (English)

    王鸣; 徐慧芳; 莫自耀; 郑伯健; 高阳; 顾菁; 秦鹏哲; 张周斌; 邹晓忠; 梁彩云; 赵宇腾; 高凯

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is an infectious disease first recognized in November 2002 in Guangdong province, China. It was spread to many countries all over the world within a few months.1,2 By April 2003, SARS-associated coronavirus (SARS-CoV) was found to be the etiological agent.

  5. Bovine coronavirus hemagglutinin protein.

    Science.gov (United States)

    King, B; Potts, B J; Brian, D A

    1985-02-01

    Treatment of purified bovine coronavirus (Mebus strain) with pronase destroyed the integrity of virion surface glycoproteins gp140, gp120, gp100, reduced the amount of gp26 and destroyed the hemagglutinating activity of the virus. Bromelain, on the other hand, destroyed the integrity of gp120, gp100 and gp26 but failed to remove gp140 and failed to destroy viral hemagglutinating activity. These experiments suggest that gp140 is the virion hemagglutinin. Immunoblotting studies using monospecific antiserum demonstrate that gp140 is a disulfide-linked dimeric structure reducible to monomers of 65 kDa.

  6. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions.

    Science.gov (United States)

    Mullis, Lisa; Saif, Linda J; Zhang, Yongbin; Zhang, Xuming; Azevedo, Marli S P

    2012-05-01

    Fecal suspensions with an aerosol route of transmission were responsible for a cluster of severe acute respiratory syndrome (SARS) cases in 2003 in Hong Kong. Based on that event, the World Health Organization recommended that research be implemented to define modes of transmission of SARS coronavirus through sewage, feces, food and water. Environmental studies have shown that animal coronaviruses remain infectious in water and sewage for up to a year depending on the temperature and humidity. In this study, we examined coronavirus stability on lettuce surfaces. A cell culture adapted bovine coronavirus, diluted in growth media or in bovine fecal suspensions to simulate fecal contamination was used to spike romaine lettuce. qRT-PCR detected viral RNA copy number ranging from 6.6 × 10⁴ to 1.7 × 10⁶ throughout the experimental period of 30 days. Whereas infectious viruses were detected for at least 14 days, the amount of infectious virus varied, depending upon the diluent used for spiking the lettuce. UV and confocal microscopic observation indicated attachment of residual labeled virions to the lettuce surface after the elution procedure, suggesting that rates of inactivation or detection of the virus may be underestimated. Thus, it is possible that contaminated vegetables may be potential vehicles for coronavirus zoonotic transmission to humans.

  7. Diagnostic Methods for Feline Coronavirus: A Review

    Directory of Open Access Journals (Sweden)

    Saeed Sharif

    2010-01-01

    Full Text Available Feline coronaviruses (FCoVs are found throughout the world. Infection with FCoV can result in a diverse range of signs from clinically inapparent infections to a highly fatal disease called feline infectious peritonitis (FIP. FIP is one of the most serious viral diseases of cats. While there is neither an effective vaccine, nor a curative treatment for FIP, a diagnostic protocol for FCoV would greatly assist in the management and control of the virus. Clinical findings in FIP are non-specific and not helpful in making a differential diagnosis. Haematological and biochemical abnormalities in FIP cases are also non-specific. The currently available serological tests have low specificity and sensitivity for detection of active infection and cross-react with FCoV strains of low pathogenicity, the feline enteric coronaviruses (FECV. Reverse transcriptase polymerase chain reaction (RT-PCR has been used to detect FCoV and is rapid and sensitive, but results must be interpreted in the context of clinical findings. At present, a definitive diagnosis of FIP can be established only by histopathological examination of biopsies. This paper describes and compares diagnostic methods for FCoVs and includes a brief account of the virus biology, epidemiology, and pathogenesis.

  8. Feline Lectin Activity Is Critical for the Cellular Entry of Feline Infectious Peritonitis Virus▿

    OpenAIRE

    Regan, Andrew D.; Ousterout, David G.; Whittaker, Gary R.

    2010-01-01

    Feline infectious peritonitis is a lethal disease of felids caused by systemic infection with a feline coronavirus. Here, we report identification and analysis of the feline homologue to the human lectin DC-SIGN and show that it is a coreceptor for virulent strains of serotype 1 and serotype 2 feline coronaviruses.

  9. Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus.

    Science.gov (United States)

    Regan, Andrew D; Ousterout, David G; Whittaker, Gary R

    2010-08-01

    Feline infectious peritonitis is a lethal disease of felids caused by systemic infection with a feline coronavirus. Here, we report identification and analysis of the feline homologue to the human lectin DC-SIGN and show that it is a coreceptor for virulent strains of serotype 1 and serotype 2 feline coronaviruses.

  10. Coronavirus Attachment and Replication

    Science.gov (United States)

    1988-03-28

    synthesis during RNA replication of vesicular stomatitis virus. J. Virol. 49:303-309. Pedersen, N.C. 1976a. Feline infectious peritonitis: Something old...receptors on intestinal brush border membranes from normal host species were developed for canine (CCV), feline (FIPV), porcine (TGEV), human (HCV...gastroenteritis receptor on pig BBMs ...... ................. ... 114 Feline infectious peritonitis virus receptor on cat BBMs ... .............. 117 Human

  11. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  12. Avian cardiology.

    Science.gov (United States)

    Strunk, Anneliese; Wilson, G Heather

    2003-01-01

    The field of avian cardiology is continually expanding. Although a great deal of the current knowledge base has been derived from poultry data, research and clinical reports involving companion avian species have been published. This article will present avian cardiovascular anatomy and physiology, history and physical examination considerations in the avian cardiac disease patient, specific diagnostic tools, cardiovascular disease processes, and current therapeutic modalities.

  13. Prevalence of Korean cats with natural feline coronavirus infections

    Directory of Open Access Journals (Sweden)

    Lee Myoung-Heon

    2011-09-01

    Full Text Available Abstract Background Feline coronavirus is comprised of two pathogenic biotypes consisting of feline infectious peritonitis virus (FIPV and feline enteric coronavirus (FECV, which are both divided into two serotypes. To examine the prevalence of Korean cats infected with feline coronavirus (FCoV type I and II, fecal samples were obtained from 212 cats (107 pet and 105 feral in 2009. Results Fourteen cats were FCoV-positive, including infections with type I FCoV (n = 8, type II FCoV (n = 4, and types I and II co-infection (n = 2. Low seroprevalences (13.7%, 29/212 of FCoV were identified in chronically ill cats (19.3%, 16/83 and healthy cats (10.1%, 13/129. Conclusions Although the prevalence of FCoV infection was not high in comparison to other countries, there was a higher prevalence of type I FCoV in Korean felines. The prevalence of FCoV antigen and antibody in Korean cats are expected to gradually increase due to the rising numbers of stray and companion cats.

  14. The Paradox of Feline Coronavirus Pathogenesis: A Review

    Directory of Open Access Journals (Sweden)

    Luciana Wanderley Myrrha

    2011-01-01

    Full Text Available Feline coronavirus (FCoV is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP. Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.

  15. "复方板蓝根制剂"治疗鸡传染性支气管炎的效果%Effect of Compound Chinese Medicine——Banlangen on the Treatment of Avian Infectious Bronchitis of Chicken

    Institute of Scientific and Technical Information of China (English)

    刘芳; 宋云鹏

    2009-01-01

    [目的] 观察"复方板蓝根制剂"治疗自然感染鸡传染性支气管炎的效果.[方法] 采用0.33‰、0.67‰和1.33‰ 3种不同浓度的"复方板蓝根制剂"饲喂病鸡,对7 340只自然发病鸡进行治疗,观察该药的治疗效果.[结果] 根据流行病学调查、临床症状鉴别、病理剖检变化和实验室检查确诊2个鸡场的7 340只病鸡所患疾病为鸡传染性支气管炎.病鸡服用"复方板蓝根制剂"后病情很快得到控制,未经治疗的对照组自愈率为85.18%,症状恢复缓慢;3个"复方板蓝根制剂"组的治愈率均在97%以上,病死率显著低于对照组,且症状恢复较快;0.33‰"复方板蓝根制剂"组与病毒灵组疗效相当;0.67‰和1.33‰剂量治疗组治愈率显著高于0.33‰剂量组与病毒灵治疗组.[结论] "复方板蓝根制剂"可有效治疗自然感染发病的鸡传染性支气管炎,推荐剂量为0.67‰.%[Objective] The effect of the compound Chinese medicine--Banlangen on the prevention of chicken avian infectious bronchitis naturally infected was experimented. [Method] The ill chickens were fed with the Banlangen with 3 different concentrations of 0.33 ‰, 0.67 ‰ and 1.33 ‰. The efficiency on total of 7 340 chickens treated with the method was observed. [Results] 7 340 chickens in two chicken farms were confirmed to be infected by the avian infectious bronchitis disease according to the epidemiological investigation, the identification of clinical symptoms, the pathological change in autopsy and laboratory test. The disease of treated chickens was under control soon and the recovery rate of untreated chicken(CK) was 85.18%, which recovery speed was relevant slow. The recovery rate of 3 treatments was over 97% with fast recovery speed and significantly lower rate of dead chicken than the CK. The treatment of Banlangen with 0.33 ‰ was with same efficiency as the treatment of other chemical--Bingtuling. The efficiency of the treatment of Banlangen

  16. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  17. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    Science.gov (United States)

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential.

  18. Taking forward a ‘One Health’ approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential

    Directory of Open Access Journals (Sweden)

    Alimuddin Zumla

    2016-06-01

    Full Text Available The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa. Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a ‘One Health’ approach to control such zoonotic pathogens with epidemic potential.

  19. A simple and rapid approach for screening of SARS-coronavirus genotypes: an evaluation study

    Directory of Open Access Journals (Sweden)

    Jin Yongjie

    2005-10-01

    Full Text Available Abstract Background The Severe Acute Respiratory Syndrome (SARS was a newly emerged infectious disease which caused a global epidemic in 2002–2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution. However, direct sequencing analysis of a large number of clinical samples is cumbersome and time consuming. We present here a simple and rapid assay for the screening of SARS-coronavirus genotypes based on the use of fluorogenic oligonucleotide probes for allelic discrimination. Methods Thirty SARS patients were recruited. Allelic discrimination assays were developed based on the use of fluorogenic oligonucleotide probes (TaqMan. Genotyping of the SARS-coronavirus isolates obtained from these patients were carried out by the allelic discrimination assays and confirmed by direct sequencing. Results Genotyping based on the allelic discrimination assays were fully concordant with direct sequencing. All of the 30 SARS-coronavirus genotypes studied were characteristic of genotypes previously documented to be associated with the latter part of the epidemic. Seven of the isolates contained a previously reported major deletion but in patients not epidemiologically related to the previously studied cohort. Conclusion We have developed a simple and accurate method for the characterization and screening of SARS-coronavirus genotypes. It is a promising tool for the study of epidemiological relationships between documented cases during an outbreak.

  20. Avian anemia's

    Directory of Open Access Journals (Sweden)

    Raukar Jelena

    2005-01-01

    Full Text Available This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematological parameters for every single avian species.

  1. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats.

    Science.gov (United States)

    Vogel, Liesbeth; Van der Lubben, Mariken; te Lintelo, Eddie G; Bekker, Cornelis P J; Geerts, Tamara; Schuijff, Leontine S; Grinwis, Guy C M; Egberink, Herman F; Rottier, Peter J M

    2010-01-01

    Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.

  2. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    2004-01-01

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been identifie

  3. Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus.

    Science.gov (United States)

    Tanaka, Yoshikazu; Amano, Arisa; Morisaki, Masateru; Sato, Yuka; Sasaki, Takashi

    2016-02-01

    Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation.

  4. Apoptosis and T cell depletion during feline infectious peritonitis

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activa

  5. 2013年感染性疾病热点回顾%Review of infectious diseases in 2013

    Institute of Scientific and Technical Information of China (English)

    王永怡; 李军; 王姝; 卢福昱; 胡玫; 董时军; 陈玉琪; 李楠; 郭子静; 张海陵

    2014-01-01

    本文对2013年全球传染病,包括禽流感、GⅡ4悉尼诺如病毒感染、中东呼吸综合征冠状病毒感染、手足口病、结核病、麻风病、登革热、病毒性肝炎、AIDS的流行特点和相关感染性疾病的疫情予以回顾。重点公布了中国大陆2013年法定传染病发病情况,介绍了全球发生的多起传染病疫情,归纳了几种新突发传染病的现状,关注了常见传染病的诊治、预防新动态。提示仍不可忽视对新突发、病原变异及尚未能控制的传染病的积极防治。%The article gives a review of the epidemiological characteristics of infectious diseases occurring world-wide in 2013, such as avian influenza, GⅡ. 4 Sydney norovirus infection, Middle East respiratory syndrome coronavirus infection, hand, food and mouth disease, tuberculosis, leprosy, dengue, viral hepatitis and AIDS, and the associated epidemics. It focuses on the morbidity and mortality of the notifiable infectious diseases occurring in Mainland China in 2013, the outbreaks of epidemics occurring world-wide, the current status of several emerging infectious diseases, and the new development of the diagnosis, treatment, prevention of common infectious diseases, suggesting that active efforts in the prevention and treatment of infectious diseases which are emerging, have pathogenic mutation and remain uncontrollable should be made.

  6. Apoptosis and T cell depletion during feline infectious peritonitis

    OpenAIRE

    Horzinek, M.C.; Haagmans, B. L.; Egberink, H F

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activated T cells. Since feline infectious peritonitis virus does not infect T cells, and viral proteins did not inhibit T-cell proliferation, we postulate that soluble mediators released during the infe...

  7. Isolation and biological properties of avian infectious bronchitis virus isolated from Shanxi province%鸡传染性支气管炎病毒地方流行株的分离与鉴定

    Institute of Scientific and Technical Information of China (English)

    闫芳; 化丽珍; 岳文斌; 刘娟; 李绪英; 赵宇军; 吉文汇; 刘风波; 吴倩; 任家琰

    2009-01-01

    从山西各地区疑似鸡传染性支气管炎(IB)的病料中,分离到5株鸡传染性支气管炎病毒(IBV)分离株,并对分离病毒进行了病毒形态观察、对鸡新城疫病毒(NDV)的干扰、鸡胚致病性试验、动物回归试验、血凝特性试验、病毒理化特性测定等生物特性鉴定及IBV N基因特异性片段的检测.电镜观察,可见直径为60~120 am,有囊膜及纤突呈冠状排列的病毒粒子;对NDV有明显的干扰作用;分离株的传代物均有明显的致鸡胚矮小化作用;动物回归感染死亡鸡肾脏病变明显,表现肾脏肿大、花斑肾现象,输尿管内充塞大量尿酸盐;无直接血凝性,经1%胰酶处理后可凝集鸡红细胞;分离株对乙醚和氯仿敏感;采用反转录-聚合酶链式反应(RT-PCR)对分离毒株进行扩增,结果均扩增出特异N基因核酸片段.%Five field strains of infectious bronchitis virus (IBV) were isolated from suspected flocks from different time and different regions of Shanxi province,respectively,and characterized by a series of systematic identification assays,such as morphological observation by electron-microscope,interfering with the propagation of NDV,virus pathological role to chicken embryo,virus pathological role to SPF chickens,hemagglutination activity,physiscochemical,and reverse transcription polymerase chain reaction(RT-PCR).The results showed:The typical coronavirus which the spherical virions 60-120 nm in diameter and surface covered with spike like corona were observed under electron-microscope)The propagation of NDV strain was seriously interfered by the 5 isolates respectively;The embryonated chicken egg passages of the 5 isolates could dwarf with chicken embryos;The five isolates had no hemagglutination activity,but after treatment with 1% trypsin,it can agglutinate chicken red blood cell.The strains are sensitive to chloroform and ethyl ether.The SPF chickens which inoculated with the 5 isolates showed clinical sign and

  8. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  9. Antiviral activity of mycophenolic acid against influenza viruses and MERS coronavirus

    OpenAIRE

    Mok, Ka-Yi; 莫嘉怡

    2014-01-01

    Influenza virusand Middle East Respiratory Syndrome Coronavirus(MERS-CoV) cause life-threatening respiratory disease. There are 3 to 5million severe cases and 250,000 to 500,000 fatal cases caused by seasonal influenza virus A(H1N1)virus, A(H3N2) virus and influenza B virus every year. Pandemic influenza, which is associated with higher mortality, has once every few decades. Among various influenza viruses, the avian-origin A(H5N1)virus and A(H7N9) virus are the most virulent in humans. MERS-...

  10. Orchitis in a cat associated with coronavirus infection.

    Science.gov (United States)

    Sigurdardóttir, O G; Kolbjørnsen, O; Lutz, H

    2001-01-01

    A case of severe, pyogranulomatous and necrotizing orchitis in a cat, which later succumbed to systemic feline infectious peritonitis (FIP), is described. The 3.5-year-old cat, positive for feline immunodeficiency virus infection, presented with a left testicular enlargement. A few months after castration the animal was humanely destroyed due to declining health. Post-mortem examination revealed inflammatory lesions in abdominal organs and in the brain compatible with FIP. Infection was confirmed with a reverse transcriptase-polymerase chain reaction test and by immunohistochemical demonstration of coronavirus antigen in the affected tissues, including the left testicle. FIP is usually a systemic disease. However, lesions and presenting clinical signs in a single organ system such as the brain are not uncommon. The results of this case study indicate that orchitis, although rare, should be on the list of lesions of FIP.

  11. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus.

    Science.gov (United States)

    Licitra, Beth N; Millet, Jean K; Regan, Andrew D; Hamilton, Brian S; Rinaldi, Vera D; Duhamel, Gerald E; Whittaker, Gary R

    2013-07-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.

  12. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A S; Tonietti, P O; Taniwaki, S A; Asano, K M; Maiorka, P; Richtzenhain, L J; Brandão, P E

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a-c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  13. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Directory of Open Access Journals (Sweden)

    A. S. Hora

    2016-01-01

    Full Text Available Feline infectious peritonitis virus (FIPV is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP, whereas feline enteric coronavirus (FECV is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  14. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Science.gov (United States)

    Hora, A. S.; Tonietti, P. O.; Taniwaki, S. A.; Asano, K. M.; Maiorka, P.; Richtzenhain, L. J.; Brandão, P. E.

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  15. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  16. Newcastle disease virus as a vaccine vector for infectious laryngotracheitis

    Science.gov (United States)

    Effective, safe, and incapable of reverting to virulence are characteristics desirable for infectious laryngotracheitis virus (ILTV) vaccines. Recombinant Newcastle disease virus (NDV) expressing foreign antigens of avian and mammalian pathogens have been demonstrated to elicit protective immunity....

  17. Primary diagnosis and therapy tests of nephropathogenic avian infectious bronchitis%鸡肾型传染性支气管炎的初步诊断与治疗

    Institute of Scientific and Technical Information of China (English)

    李瑞明; 史玉静; 韩涛; 韩忠燕; 宋小白

    2011-01-01

    [Objective ]The present study was conducted to investigate the epidemiology of avian infectious bronchitis (IB) in Qinhuangdao city of Hebei province, and to isolate the local representative strain of IB virus for development of immuo-vaccine. [Method]The epidemiology investigation, clinical manifestations and pathological changes in IB were recorded. The liver and kidney suspension of freshly sampled chicken were inoculated to ten--day SPF chick embryo allantoic cavity and the chicken embryo allantois solution was collected to conduct agar diffuse, haemagglutination (HA) and animal test. The comprehensive therapy was also practiced. [ Result ]The kidney of inoculated chick showed swelling and was found pale colored. White urate deposition in ureter was observed. The agar diffuse test result of allantois liquid showed positive results, as well as the HA and animal test results revealed that the isolated strain was IB virus. Based on pathological diagnosis, the lB was identified as nephropathgenic lB. The inactivated vaccine was made with isolated strains of nephropathogenic infectious bronchitis viruses. After 5 days of treatment with Hukang, Shenzhishuang, Hushentong and other medicines, the mortality of diseased chicken was recorded from 0.4 to 1.0%, the symptom in respiratory tract of chicken population decreased and the eggs production increased. The curative rate of lB in chicken reached 92.4%. [Conclustion ]The results of present study confirmed the disease as nephropathgenic lB. The proper medication and and immunization according to the virus strain can prevent the disease.%[目的]研究河北秦皇岛地区的鸡肾型鸡传染性支气管炎(IB)流行病学、分离鉴定地方代表毒株,为有效防制当地鸡肾型IB及研制具有免疫针对性的疫苗制剂提供参考依据.[方法]通过流行病学调查、临床症状、病理变化观察,取新鲜病死雏鸡肝脏、肾脏组织悬浮液接种10日龄SPF鸡胚尿囊腔,收集鸡胚尿

  18. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    Directory of Open Access Journals (Sweden)

    Beth N. Licitra

    2014-08-01

    Full Text Available Canine enteric coronavirus (CCoV is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host.

  19. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  20. Avian influenza

    Science.gov (United States)

    ... of avian influenza A in Asia, Africa, Europe, Indonesia, Vietnam, the Pacific, and the near East. Hundreds ... to detect abnormal breath sounds) Chest x-ray Culture from the nose or throat A method or ...

  1. Avian Influenza

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a letter from a professor at Clemson University about waterfowl that had been tested for avian influenza at Santee National Wildlife Refuge

  2. Avian hematology.

    Science.gov (United States)

    Jones, Michael P

    2015-01-01

    Avian veterinarians often rely heavily on the results of various diagnostic tests, including hematology results. As such, cellular identification and evaluation of the cellular response are invaluable tools that help veterinarians understand the health or condition of their patient, as well as to monitor severity and clinical progression of disease and response to treatment. Therefore, it is important to thoroughly understand how to identify and evaluate changes in the avian erythron and leukon, as well as to interpret normal and abnormal results.

  3. Avian Flu

    Energy Technology Data Exchange (ETDEWEB)

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  4. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish

  5. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish high quality contents that will be internationally accessible to any reader at no cost.

  6. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most signi cant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish

  7. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    Science.gov (United States)

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  8. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture.

    Science.gov (United States)

    de Wilde, Adriaan H; Jochmans, Dirk; Posthuma, Clara C; Zevenhoven-Dobbe, Jessika C; van Nieuwkoop, Stefan; Bestebroer, Theo M; van den Hoogen, Bernadette G; Neyts, Johan; Snijder, Eric J

    2014-08-01

    Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ∼ 30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC(50)s], 3 to 8 μM). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response.

  9. Coronavirus infection, ER stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    TO SING eFUNG

    2014-06-01

    Full Text Available The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER. Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR, a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP kinases activation, autophagy, apoptosis and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.

  10. Stability of SARS Coronavirus in Human Specimens and Environment and Its Sensitivity to Heating and UV Irradiation

    Institute of Scientific and Technical Information of China (English)

    SHU-MING DUAN; XIAO-PING DONG; SARS RESEARCH TEAM; XIN-SHENG ZHAO; RUI-FU WEN; JING-JING HUANG; GUO-HUA PI; SU-XIANG ZHANG; JUN HAN; SHENG-LI BI; LI RUAN

    2003-01-01

    The causal agent for SARS is considered as a novel coronavirus that has never been described both in human and animals previously. The stability of SARS coronavirus in human specimens and in environments was studied. Methods Using a SARS coronavirus strain CoV-P9,which was isolated from pharyngeal swab of a probable SARS case in Beijing, its stability in mimic human specimens and in mimic environment including surfaces of commonly used materials or in household conditions, as well as its resistances to temperature and UV irradiation were analyzed. A total of 106 TCID50 viruses were placed in each tested condition, and changes of the viral infectivity in samples after treatments were measured by evaluating cytopathic effect (CPE) in cell line Vero-E6 at 48 h after infectionn. Results The results showed that SARS coronavirus in the testing condition could survive in serum, 1:20 diluted sputum and feces for at least 96 h, whereas it could remain alive in urine for at least 72 h with a low level of infectivity. The survival abilities on the surfaces of eight different materials and in water were quite comparable, revealing reduction of infectivity after 72 to 96 h exposure. Viruses stayed stable at 4℃, at room temperature (20℃) and at 37℃ for at least 2 h without remarkable change in the infectious ability in cells, but were convened to be non-infectious after 90-, 60- and 30-min exposure at 56℃, at 67℃ and at 75℃, respectively. Irradiation of UV for 60 min on the virus in culture medium resulted in the destruction of viral infectivity at an undetectable level. Conclusion The survival ability of SARS coronavirus in human specimens and in environments seems to be relatively strong. Heating and UV irradiation can efficiently eliminate the viral infectivity.

  11. Detection of feline coronavirus using microcantilever sensors

    Science.gov (United States)

    Velanki, Sreepriya; Ji, Hai-Feng

    2006-11-01

    This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.

  12. 鸡传染性法氏囊病病毒 RT-PCR 检测方法的建立与应用%Development and Application of RT-PCR for Detecting Avian Infectious Bursal Disease Virus

    Institute of Scientific and Technical Information of China (English)

    孙洁; 阮周曦; 陶虹; 张彩虹; 刘建利; 花群义; 吕建强; 秦智锋; 卢体康; 曾少灵; 杨俊兴; 詹爱军; 林庆燕; 曹琛福; 陈兵; 廖立珊

    2013-01-01

    Infectious bursal disease virus (IBDV)is one of three severe acute diseases in China.IBDV had emerged worldwide and caused great loss to poultry production.And IBD is a quarantine disease in the avian and avian product trade.The rapid diagnosis is crucial to any control program of IBD.In order to construct a protocol of mo-lecular diagnostic detection technique(MDD)for IBDV,two conventional RT-PCR assays directed at the VP2 gene in fragment A with 604bp production and VP1 gene of in fragment B with 642 bp respectively were optimized with the universal primers and IBDV-specific 3′extremity primers respectively.A Taqman real-time reverse transcrip-tion-PCR test IBDV(IBDV-VP2-rRT-PCR)directed at the VP2 gene in fragment A was developed specifically with 5 strains.The sensitivities of three kinds of MDD assays were evaluated.The sensitivities of IBDV-VP2(604)-RT-PCR and IBDV-VP1(642)-RT-PCR were equal in 10-3 dilution of IBDV-BLEN vaccine,and the sensitivity of IB-DV-VP2-rRT-PCR was ten times superior to two conventional RT-PCR assays in 10-4 dilution .The specificity of three MDD assays developed had no cross reaction with others.These methods potentially allowed for more rapid, sensitive,and specific detection with 221 field samples for five years with monitoring and surveillance of IBDV.%鸡传染性法氏囊病(IBD)是危害我国养禽业的主要疫病之一,呈世界性分布,对养鸡业造成重大危害。在国际种禽贸易中,对 IBDV 检测是口岸检疫的主要对象之一。为了建立标准的鸡传染性法氏囊病病毒分子检测方法,采用世界动物卫生组织(OIE)推荐的带有通用引物和酶切位点的特异性引物,通过对6株不同毒株的反复试验,优化了针对 A 片段 VP2基因的常规反转录-聚合酶链反应(RT-PCR)检测方法(IBDV-VP2(604)-RT-PCR)和针对 B 片段 VP1基因的 RT-PCR 检测方法(IBDV-VP1(642)-RT-PCR);针对 A 片段 VP2基因设计特异性引

  13. Severe acute respiratory syndrome coronavirus persistence in Vero cells

    Institute of Scientific and Technical Information of China (English)

    Gustavo Palacios; Omar Jabado; Neil Renwick; Thomas Briese; W. Ian Lipkin

    2005-01-01

    Background Several coronaviruses establish persistent infections in vitro and in vivo, however it is unknown whether persistence is a feature of the severe acute respiratory syndorme coronavirus (SARS-CoV) life cycle. This study was conducted to investigate viral persistence.Methods We inoculated confluent monolayers of Vero cells with SARS-CoV at a multiplicity of infection of 0.1 TCID50 and passaged the remaining cells every 4 to 8 days for a total of 11 passages. Virus was titrated at each passage by limited dilution assay and nucleocapsid antigen was detected by Western blot and immunofluoresence assays. The presence of viral particles in passage 11 cells was assessed by electron microscopy. Changes in viral genomic sequences during persistent infection were examined by DNA sequencing. Results Cytopathic effect was extensive after initial inoculation but diminished with serial passages. Infectious virus was detected after each passage and viral growth curves were identical for parental virus stock and virus obtained from passage 11 cells. Nucleocapsid antigen was detected in the majority of cells after initial inoculation but in only 10%-40% of cells at passages 2-11. Electron microscopy confirmed the presence of viral particles in passage 11 cells. Sequence analysis at passage 11 revealed fixed mutations in the spike (S) gene and ORFs 7a-8b but not in the nucleocapsid (N) gene. Conclusions SARS-CoV can establish a persistent infection in vitro. The mechanism for viral persistence is consistent with the formation of a carrier culture whereby a limited number of cells are infected with each round of virus replication and release. Persistence is associated with selected mutations in the SARS-CoV genome. This model may provide insight into SARS-related lung pathology and mechanisms by which humans and animals can serve as reservoirs for infection.

  14. An Outbreak of Human Coronavirus OC43 Infection and Serological Cross-Reactivity with SARS Coronavirus

    Directory of Open Access Journals (Sweden)

    David M Patrick

    2006-01-01

    Full Text Available BACKGROUND: In summer 2003, a respiratory outbreak was investigated in British Columbia, during which nucleic acid tests and serology unexpectedly indicated reactivity for severe acute respiratory syndrome coronavirus (SARS-CoV.

  15. Full genome analysis of a novel type II feline coronavirus NTU156.

    Science.gov (United States)

    Lin, Chao-Nan; Chang, Ruey-Yi; Su, Bi-Ling; Chueh, Ling-Ling

    2013-04-01

    Infections by type II feline coronaviruses (FCoVs) have been shown to be significantly correlated with fatal feline infectious peritonitis (FIP). Despite nearly six decades having passed since its first emergence, different studies have shown that type II FCoV represents only a small portion of the total FCoV seropositivity in cats; hence, there is very limited knowledge of the evolution of type II FCoV. To elucidate the correlation between viral emergence and FIP, a local isolate (NTU156) that was derived from a FIP cat was analyzed along with other worldwide strains. Containing an in-frame deletion of 442 nucleotides in open reading frame 3c, the complete genome size of NTU156 (28,897 nucleotides) appears to be the smallest among the known type II feline coronaviruses. Bootscan analysis revealed that NTU156 evolved from two crossover events between type I FCoV and canine coronavirus, with recombination sites located in the RNA-dependent RNA polymerase and M genes. With an exchange of nearly one-third of the genome with other members of alphacoronaviruses, the new emerging virus could gain new antigenicity, posing a threat to cats that either have been infected with a type I virus before or never have been infected with FCoV.

  16. Migratory birds reinforce local circulation of avian influenza viruses

    NARCIS (Netherlands)

    Verhagen, J.H.G.; Van Dijk, J.G.B.; Vuong, O.; Lexmond, P.; Klaassen, M.R.J.; Fouchier, R.A.M

    2014-01-01

    Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largel

  17. Migratory birds reinforce local circulation of avian influenza viruses

    NARCIS (Netherlands)

    J.H. Verhagen (Josanne); J.G.B. Dijk (Jacintha); O. Vuong (Spronken); T.M. Bestebroer (Theo); P. Lexmond (Pascal); M. Klaassen (Marcel); R.A.M. Fouchier (Ron)

    2014-01-01

    textabstractMigratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds

  18. Interference of infectious bursal disease virus on antibody production against Newcastle disease and infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    WM Cardoso

    2006-09-01

    Full Text Available This work has the objective of verifying the interference of infectious bursal disease virus in the antibody production against Newcastle disease virus and infectious bronchitis virus. The experiment was carried out with 640 day-old-chicks from a 42 weeks old hen flock. The birds were separated into eight experimental groups (n=80/group and were submitted to different combinations of vaccinations, with live vaccines, to Newcastle disease, avian infectious bronchitis, and infectious bursal disease with diverse combinations of days of vaccination. We verified that the utilization of polyvalent vaccinal programs have a different efficacy comparing to monovalent vaccinations when Newcastle disease, infectious bronchitis, and infectious bursal disease vaccinations are applied. This way, the use of vaccinations to infectious bursal disease in polyvalent vaccinal programs is desirable due to improvement of NDV response with the presence of IBV by the probable reduction of interference of IBV under NDV.

  19. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  20. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  1. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  2. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  3. Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Lintelo, E.G. te; Egberink, H.F.; Duquesne, V.; Aubert, A.; Rottier, P.J.M.

    2002-01-01

    Cell-mediated immunity is thought to play a decisive role in protecting cats against feline infectious peritonitis (FIP), a progressive and lethal coronavirus disease. In view of the potential of DNA vaccines to induce cell-mediated responses, their efficacy to induce protective immunity in cats was

  4. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens

    NARCIS (Netherlands)

    Horzinek, M.C.; Vennema, H.; Groot, R. de; Harbour, D.A.; Dalderup, M.; Gruffydd-Jones, T.; Spaan, W.J.M.

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis (FIVP) was recombined into the genome of vaccinia virus, strain WR. The recombinant induced spike protein specific, in vitro neutralizing antibodies in mkice. When kittens were immunized with the r

  5. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  6. MERS: Emergence of a novel human coronavirus

    NARCIS (Netherlands)

    V.S. Raj (Stalin); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); B.L. Haagmans (Bart)

    2014-01-01

    textabstractA novel coronavirus (CoV) that causes a severe lower respiratory tract infection in humans, emerged in the Middle East region in 2012. This virus, named Middle East respiratory syndrome (MERS)-CoV, is phylogenetically related to bat CoVs, but other animal species like dromedary camels ma

  7. MERS-coronavirus: From discovery to intervention

    NARCIS (Netherlands)

    W. Widagdo; N. Okba (Nisreen); V. Stalin Raj; B.L. Haagmans (Bart)

    2017-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans a

  8. Coronavirus antibodies in African bat species.

    Science.gov (United States)

    Müller, Marcel A; Paweska, Janusz T; Leman, Patricia A; Drosten, Christian; Grywna, Klaus; Kemp, Alan; Braack, Leo; Sonnenberg, Karen; Niedrig, Matthias; Swanepoel, Robert

    2007-09-01

    Asian bats have been identified as potential reservoir hosts of coronaviruses associated with severe acute respiratory syndrome (SARS-CoV). We detected antibody reactive with SARS-CoV antigen in 47 (6.7%) of 705 bat serum specimens comprising 26 species collected in Africa; thus, African bats may harbor agents related to putative group 4 CoV.

  9. Construction and Virus Rescue of Infectious Molecular Clones of Subgroup J Avian Myeloid Leukosis Virus%1株髓细胞瘤型J亚群禽白血病病毒感染性克隆的构建与病毒拯救

    Institute of Scientific and Technical Information of China (English)

    林艳; 夏静; 邹年莉; 郭明萍; 王富妍; 赵扬; 文心田; 曹三杰; 黄勇

    2013-01-01

    The objective of this study was to construct the infectious molecular clone with molecular marker of subgroup J avian myeloid leukosis virus (ALV-J) strain SCGS-1.A full-length infectious clone of ALV-J (pUC-SCGS) was constructed by cloning and combining of three fragments using PCR method from SCGS-1.Sal Ⅰ site was introduced on 4684nt of SCGS-1 by overlapping PCR to form another infectious clone and named pUC-△SCGS.The two plasmids,pUCSCGS and pUC-△SCGS,were transfected into CEF,and the rescued viruses were detected by PCR,avian leukosis virus antigen test kit and indirect immunofluorescence assay (IFA).Digestion and sequence analysis revealed that the infectious clone pUC-SCGS and pUC-△SCGS were constructed correctly.PCR,ELISA test and IFA results showed that the 3rd and 4th generation of rescued virus were positive,while the controlled CEF were negative.Rescued virus and the virus with molecular marker of subgroup J avian myeloid leukosis virus were successfully constructed,named rSCGS-1 and r△SCGS-1.%为构建髓细胞瘤型J亚群禽白血病病毒(avian leukosis virus,ALV-J) SCGS-1株前病毒cDNA分子标记感染性克隆,根据SCGS-1全基因测序结果,分3段进行全序列PCR扩增,顺次连接至pUC19,构建SCGS-1株前病毒cDNA感染性克隆pUC-SCGS;通过重叠PCR方法对SCGS-1基因组进行沉默突变,在4 684位点引入Sal I位点,构建SCGS-1株分子标记感染性克隆pUC-△SCGS;以pUC-SCGS和pUC-△SCGS重组质粒转染CEF进行病毒拯救,并通过PCR、间接免疫荧光与双抗体夹心ELISA进行拯救病毒检测.结果显示,成功构建pUC-SCGS与pUC-△SCGS重组质粒,转染后盲传第3代、第4代细胞与上清中均检测到拯救病毒;间接免疫荧光与抗原ELISA方法分别在CEF细胞和上清中检测到ALV-J抗原.成功拯救获得分子标记ALV-J.

  10. Avian Influenza in Birds

    Science.gov (United States)

    ... this? Submit Button Past Newsletters Avian Influenza in Birds Language: English Español Recommend on Facebook Tweet ... illness. Top of Page Avian Influenza in Wild Birds Avian influenza A viruses have been isolated from ...

  11. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization.

    OpenAIRE

    Vennema, H.; de Groot, R J; Harbour, D. A.; Dalderup, M.; Gruffydd-Jones, T.; Horzinek, M.C.; Spaan, W J

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis was recombined into the genome of vaccinia virus. The recombinant induced spike-protein-specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with feline infectious peritonitis virus, these animals succumbed earlier than did the control group immunized with wild-type vaccinia ...

  12. Infectious Arthritis

    Science.gov (United States)

    Most kinds of arthritis cause pain and swelling in your joints. Joints are places where two bones meet, such as your elbow or knee. Infectious arthritis is an infection in the joint. The infection ...

  13. Infectious Aortitis.

    Science.gov (United States)

    Ramirez, F Daniel; Jamison, Bruce M; Hibbert, Benjamin

    2016-09-28

    Aortitis is broadly divided into infectious and non-infectious etiologies, each with distinct treatment implications. We present the case of a patient who sustained a type A aortic dissection during urgent coronary angiography for acute coronary syndrome. Clinical findings and events during the procedure raised suspicion for an underlying vascular disorder; however, the diagnosis of staphylococcal aortitis was not made until pathological examination of resected tissue. Clues to the diagnosis of infectious aortitis noted throughout the patient's clinical course are detailed as are potential consequences of diagnostic delays and treatment decisions, underscoring the difficulties in recognizing and managing the condition. In addition, we describe a previously unreported complication of cardiac catheterization in the setting of an infectious aortopathy.

  14. Infectious Diseases

    Science.gov (United States)

    ... people worldwide than any other single cause. Infectious diseases are caused by germs. Germs are tiny living things that are found everywhere - in air, soil and water. You can get infected by touching, eating, drinking ...

  15. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus

    NARCIS (Netherlands)

    Horzinek, M.C.; Herrewegh, A.A.; Rottier, P.J.M.; Groot, R.J. de

    1998-01-01

    Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to r

  16. Feline infectious peritonitis: still an enigma?

    Science.gov (United States)

    Kipar, A; Meli, M L

    2014-03-01

    Feline infectious peritonitis (FIP) is one of the most important fatal infectious diseases of cats, the pathogenesis of which has not yet been fully revealed. The present review focuses on the biology of feline coronavirus (FCoV) infection and the pathogenesis and pathological features of FIP. Recent studies have revealed functions of many viral proteins, differing receptor specificity for type I and type II FCoV, and genomic differences between feline enteric coronaviruses (FECVs) and FIP viruses (FIPVs). FECV and FIP also exhibit functional differences, since FECVs replicate mainly in intestinal epithelium and are shed in feces, and FIPVs replicate efficiently in monocytes and induce systemic disease. Thus, key events in the pathogenesis of FIP are systemic infection with FIPV, effective and sustainable viral replication in monocytes, and activation of infected monocytes. The host's genetics and immune system also play important roles. It is the activation of monocytes and macrophages that directly leads to the pathologic features of FIP, including vasculitis, body cavity effusions, and fibrinous and granulomatous inflammatory lesions. Advances have been made in the clinical diagnosis of FIP, based on the clinical pathologic findings, serologic testing, and detection of virus using molecular (polymerase chain reaction) or antibody-based methods. Nevertheless, the clinical diagnosis remains challenging in particular in the dry form of FIP, which is partly due to the incomplete understanding of infection biology and pathogenesis in FIP. So, while much progress has been made, many aspects of FIP pathogenesis still remain an enigma.

  17. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    Science.gov (United States)

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  18. Feline coronavirus in multicat environments.

    Science.gov (United States)

    Drechsler, Yvonne; Alcaraz, Ana; Bossong, Frank J; Collisson, Ellen W; Diniz, Pedro Paulo V P

    2011-11-01

    Feline infectious peritonitis (FIP), a fatal disease in cats worldwide, is caused by FCoV infection, which commonly occurs in multicat environments. The enteric FCoV, referred to as feline enteric virus (FECV), is considered a mostly benign biotype infecting the gut, whereas the FIP virus biotype is considered the highly pathogenic etiologic agent for FIP. Current laboratory tests are unable to distinguish between virus biotypes of FCoV. FECV is highly contagious and easily spreads in multicat environments; therefore, the challenges to animal shelters are tremendous. This review summarizes interdisciplinary current knowledge in regard to virology, immunology, pathology, diagnostics, and treatment options in the context of multicat environments.

  19. Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus

    Science.gov (United States)

    Vergara-Alert, Júlia; van den Brand, Judith M.A.; Widagdo, W.; Muñoz, Marta; Raj, Stalin; Schipper, Debby; Solanes, David; Cordón, Ivan; Bensaid, Albert; Haagmans, Bart L.

    2017-01-01

    Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible. PMID:27901465

  20. Suppression of feline coronavirus replication in vitro by cyclosporin A.

    Science.gov (United States)

    Tanaka, Yoshikazu; Sato, Yuka; Osawa, Shuichi; Inoue, Mai; Tanaka, Satoka; Sasaki, Takashi

    2012-04-30

    The feline infectious peritonitis virus (FIPV) is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA), an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT) to bind cellular cyclophilins (CyP), dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP) but not CyP) did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.

  1. Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection.

    Science.gov (United States)

    Addie, Diane D; McDonald, Mike; Audhuy, Stéphane; Burr, Paul; Hollins, Jonathan; Kovacic, Rémi; Lutz, Hans; Luxton, Zoe; Mazar, Shlomit; Meli, Marina L

    2012-02-01

    Feline coronavirus (FCoV) causes feline infectious peritonitis (FIP). Since 2002, when 20 cats on the Falkland Islands were found to be FCoV seronegative, only seronegative cats could be imported. Between 2005-2007, 95 pet and 10 feral cats tested negative by indirect immunofluorescence antibody (IFA) analysis using two strains of type II FCoV, two transmissible gastroenteritis virus assays, an enzyme-linked immunosorbent assay and rapid immunomigration test. Twenty-four samples (23%) showed non-specific fluorescence, mostly attributable to anti-nuclear antibodies (ANA). The reason for ANA was unclear: reactive samples were negative for Erhlichia canis antibodies; seven were feline immunodeficiency virus positive, but 15 were negative. It was not possible to determine retrospectively whether the cats had autoimmune disease, hyperthyroidism treatment, or recent vaccination which may also cause ANA. The FCoV/ FIP-free status of the Falkland Islands cats should be maintained by FCoV testing incoming cats. However, ANA can complicate interpretation of IFA tests.

  2. Sites of feline coronavirus persistence in healthy cats.

    Science.gov (United States)

    Kipar, Anja; Meli, Marina L; Baptiste, Keith E; Bowker, Laurel J; Lutz, Hans

    2010-07-01

    Feline coronavirus (FCoV) is transmitted via the faecal-oral route and primarily infects enterocytes, but subsequently spreads by monocyte-associated viraemia. In some infected cats, virulent virus mutants induce feline infectious peritonitis (FIP), a fatal systemic disease that can develop in association with viraemia. Persistently infected, healthy carriers are believed to be important in the epidemiology of FIP, as they represent a constant source of FCoV, shed either persistently or intermittently in faeces. So far, the sites of virus persistence have not been determined definitely. The purpose of this study was to examine virus distribution and viral load in organs and gut compartments of specified-pathogen-free cats, orally infected with non-virulent type I FCoV, over different time periods and with or without detectable viraemia. The colon was identified as the major site of FCoV persistence and probable source for recurrent shedding, but the virus was shown also to persist in several other organs, mainly in tissue macrophages. These might represent additional sources for recurrent viraemia.

  3. Suppression of feline coronavirus replication in vitro by cyclosporin A

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshikazu

    2012-04-01

    Full Text Available Abstract The feline infectious peritonitis virus (FIPV is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA, an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT to bind cellular cyclophilins (CyP, dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP but not CyP did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.

  4. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  5. MERS Coronaviruses in Dromedary Camels, Egypt

    OpenAIRE

    Chu, Daniel K. W.; Poon, Leo L.M.; Gomaa, Mokhtar M.; Shehata, Mahmoud M.; Perera, Ranawaka A. P. M.; Abu Zeid, Dina; El Rifay, Amira S.; Siu, Lewis Y.; Guan, Yi; Webby, Richard J; Mohamed A Ali; Peiris, Malik; Kayali, Ghazi

    2014-01-01

    We identified the near-full-genome sequence (29,908 nt, >99%) of Middle East respiratory syndrome coronavirus (MERS-CoV) from a nasal swab specimen from a dromedary camel in Egypt. We found that viruses genetically very similar to human MERS-CoV are infecting dromedaries beyond the Arabian Peninsula, where human MERS-CoV infections have not yet been detected.

  6. Detection of feline coronavirus in captive Felidae in the USA.

    Science.gov (United States)

    Kennedy, Melissa; Citino, Scott; McNabb, Amanda Hillis; Moffatt, Amy Serino; Gertz, Karen; Kania, Stephen

    2002-11-01

    Feline coronavirus (FCoV) is an important pathogen of domestic and nondomestic Felidae. Investigation into the prevalence of FCoV in exotic Felidae has relied primarily on serology. The usefulness of genetic detection of FCoV using reverse transcription and nested polymerase chain reaction (RT/nPCR) for viral screening was investigated. Seventy-five biologic samples, primarily feces, from captive felids from 11 institutions were tested using PCR. Serum samples collected from all but 12 of these animals were tested for antibodies to type I and type II FCoV by indirect immunofluorescence. Twenty-four animals were positive using RT/nPCR for virus. Twenty-nine animals were seropositive to type I and/or type II FCoV. From serologic data, infection with a virus antigenically related to FCoV type I occurred most commonly. Serology did not correlate with virus shedding because 13 animals were seronegative to FCoV type I and II but positive using RT/nPCR for virus. Conversely, 20 animals were seropositive but negative using RT/nPCR for FCoV. Some of the populations in which virus was detected had experienced health problems, including feline infectious peritonitis (FIP), necrotizing colitis, and mild enteritis. In addition to its role in FIP, this virus may play a role in gastrointestinal diseases of infected animals. This study demonstrates that FCoV is a significant infectious agent of captive felids because over half of the animals tested were positive by viral genetic detection, serology, or both. Dependence upon one method for detection of infection is unreliable.

  7. Interferon-Beta 1a and SARS Coronavirus Replication

    Science.gov (United States)

    2004-02-01

    ribavirin remains uncertain because it has no activity against SARS-CoV in vitro. Molecular modeling studies suggest that rhinovirus 3Cpro inhibitors...coronavirus. Science 2003;300:1399–404. 3. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure

  8. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    Science.gov (United States)

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  9. Placebo-controlled evaluation of a modified life virus vaccine against feline infectious peritonitis: safety and efficacy under field conditions

    NARCIS (Netherlands)

    Horzinek, M.C.; Fehr, D.; Holznagel, E.; Bolla, S.; Hauser, B.; Herrewegh, A.A.; Lutz, Hans

    1997-01-01

    A modified live virus vaccine against feline infectious peritonitis (FIP) was evaluated in a double blind, placebo-controlled field trial in two high-risk populations. The vaccine was found to be safe and efficacious in one population of cats that had low antibody titre against feline coronavirus (F

  10. Bats as reservoirs of severe emerging infectious diseases.

    Science.gov (United States)

    Han, Hui-Ju; Wen, Hong-ling; Zhou, Chuan-Min; Chen, Fang-Fang; Luo, Li-Mei; Liu, Jian-wei; Yu, Xue-Jie

    2015-07-01

    In recent years severe infectious diseases have been constantly emerging, causing panic in the world. Now we know that many of these terrible diseases are caused by viruses originated from bats (Table 1), such as Ebola virus, Marburg, SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), Nipah virus (NiV) and Hendra virus (HeV). These viruses have co-evolved with bats due to bats' special social, biological and immunological features. Although bats are not in close contact with humans, spillover of viruses from bats to intermediate animal hosts, such as horses, pigs, civets, or non-human primates, is thought to be the most likely mode to cause human infection. Humans may also become infected with viruses through aerosol by intruding into bat roosting caves or via direct contact with bats, such as catching bats or been bitten by bats.

  11. Genetic determinants of pathogenesis by feline infectious peritonitis virus.

    Science.gov (United States)

    Brown, Meredith A

    2011-10-15

    Feline infectious peritonitis (FIP) is a fatal, immune-augmented, and progressive viral disease of cats associated with feline coronavirus (FCoV). Viral genetic determinants specifically associated with FIPV pathogenesis have not yet been discovered. Viral gene signatures in the spike, non-structural protein 3c, and membrane of the coronavirus genome have been shown to often correlate with disease manifestation. An "in vivo mutation transition hypothesis" is widely accepted and postulates that de novo virus mutation occurs in vivo giving rise to virulence. The existence of "distinct circulating avirulent and virulent strains" is an alternative hypothesis of viral pathogenesis. It may be possible that viral dynamics from both hypotheses are at play in the occurrence of FIP. Epidemiologic data suggests that the genetic background of the cat contributes to the manifestation of FIP. Further studies exploring both viral and host genetic determinants of disease in FIP offer specific opportunities for the management of this disease.

  12. Similarity of avian paramyxovirus serotype 1 isolates of low virulence for chickens obtained from contaminated poultry vaccines and from poultry flocks

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Handberg, K. J.; Ahrens, Peter;

    2000-01-01

    At present Denmark has the status of a 'non-vaccinating' country for Newcastle disease and its poultry population should therefore be free of antibodies to avian paramyxovirus 1 (APMV-1). Three live avian vaccines against infectious bronchitis, avian encephalomyelitis, and chick anaemia which had...

  13. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  14. Effects of air temperature and relative humidity on coronavirus survival on surfaces.

    Science.gov (United States)

    Casanova, Lisa M; Jeon, Soyoung; Rutala, William A; Weber, David J; Sobsey, Mark D

    2010-05-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4 degrees C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20 degrees C than at 4 degrees C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40 degrees C than at 20 degrees C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.

  15. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces▿

    Science.gov (United States)

    Casanova, Lisa M.; Jeon, Soyoung; Rutala, William A.; Weber, David J.; Sobsey, Mark D.

    2010-01-01

    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4°C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20°C than at 4°C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40°C than at 20°C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces. PMID:20228108

  16. Novel Coronaviruses and Astroviruses in Bats

    Institute of Scientific and Technical Information of China (English)

    Daniel K. W. Chu; J. S. Malik Peiris; Leo L. M. Poon

    2009-01-01

    Zoonotic transmissions of emerging pathogens from wildlife to human have shaped the history of mankind. These events have also highlighted our poor understanding of microorganisms circulated in wild animals. Coronaviruses and astroviruses, which can be found from a wide range of mammals, were recently detected in bats. Strikingly, these bat viruses are genetically highly diverse and these interesting findings might help to better understand the evolution and ecology of these viruses. The discoveries of these novel bats viruses not only suggested that bats are important hosts for these virus families, but also reiterated the role of bats as a reservoir of viruses that might pose a zoonotic threat to human health.

  17. Middle East respiratory syndrome coronavirus in children

    OpenAIRE

    Thabet, Farah; Chehab, May; Bafaqih, Hind; AlMohaimeed, Sulaiman

    2015-01-01

    The Middle East respiratory syndrome (MERS) is a new human disease caused by a novel coronavirus (CoV). The disease is reported mainly in adults. Data in children are scarce. The disease caused by MERS-CoV in children presents with a wide range of clinical manifestations, and it is associated with a lower mortality rate compared with adults. Poor outcome is observed mainly in admitted patients with medical comorbidities. We report a new case of MERS-CoV infection in a 9-month-old child compli...

  18. Immunocytochemical demonstration of feline infectious peritonitis virus within cerebrospinal fluid macrophages.

    Science.gov (United States)

    Ives, Edward J; Vanhaesebrouck, An E; Cian, Francesco

    2013-12-01

    A 4-month-old female entire domestic shorthair cat presented with an acute onset of blindness, tetraparesis and subsequent generalised seizure activity. Haematology and serum biochemistry demonstrated a moderate, poorly regenerative anaemia, hypoalbuminaemia and hyperglobulinaemia with a low albumin:globulin ratio. Serology for feline coronavirus antibody was positive with an elevated alpha-1 acid glycoprotein. Analysis of cisternal cerebrospinal fluid (CSF) demonstrated markedly elevated protein and a mixed, predominately neutrophilic pleocytosis. Immunocytochemistry for feline coronavirus was performed on the CSF, with positive staining observed inside macrophages. The cat was subsequently euthanased, and both histopathology and immunohistochemistry were consistent with a diagnosis of feline infectious peritonitis. This is the first reported use of immunocytochemistry for detection of feline coronavirus within CSF macrophages. If this test proves highly specific, as for identification of feline coronavirus within tissue or effusion macrophages, it would be strongly supportive of an ante-mortem diagnosis of feline infectious peritonitis in cats with central nervous system involvement without the need for biopsy.

  19. Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany.

    Science.gov (United States)

    Fischer, Kerstin; Zeus, Veronika; Kwasnitschka, Linda; Kerth, Gerald; Haase, Martin; Groschup, Martin H; Balkema-Buschmann, Anne

    2016-01-01

    Recently several infectious agents with a zoonotic potential have been detected in different bat species. However, there is still a lack of knowledge on the transmission dynamics within and between bat species, as well as from bats to other mammals. To better understand these processes, it is important to compare the phylogenetic relationships between different agents to that of their respective hosts. In this study, we analysed more than 950 urine, faeces and oral swab samples collected from 653 bats from mainly four species (Myotis nattereri, Myotis bechsteinii, Myotis daubentonii, and Plecotus auritus) for the presence of coronavirus, paramyxovirus and astrovirus related nucleic acids located in three different regions of Germany. Using hemi-nested reverse transcriptase (RT)-PCR amplification of fragments within the highly conserved regions of the respective RNA dependent RNA polymerase (RdRp) genes, we detected astrovirus sequences at an overall detection rate of 25.8% of the analysed animals, with a maximum of 65% in local populations. The detection rates for coronaviruses and paramyxoviruses were distinctly lower, ranging between 1.4% and 3.1%. Interestingly, the sequence similarities in samples collected from the same bat species in different geographical areas were distinctly larger than the sequence similarities between samples from different species sampled at the same location. This indicates that host specificity may be more important than host ecology for the presence of certain viruses in bats.

  20. Cloning of avian adeno-associated virus genome and rescue of the infectious virus%禽腺联病毒全基因组的克隆及感染性病毒的拯救

    Institute of Scientific and Technical Information of China (English)

    王建业; 孙怀昌; 朱国强

    2007-01-01

    为了克隆禽腺联病毒(Avian adeno-associated virus,AAAV)全基因组用于构建基因转移载体研究,以鸡胚致死孤儿病毒(CELO)作为辅助病毒与AAAV共接种SPF鸡胚进行AAAV的增殖,将AAAV约4.7 kb双链基因组DNA与pCR2.1载体连接,构建了含AAAV全基因组的重组质粒pAAAV并进行了测序.序列分析表明,AAAV YZ-1株的基因组为4 684 bp,两端具有141 bp的末端倒置重复序列和Rep蛋白结合位点特征序列,与GenBank中收录的AAAV DA-1株和VR-865株的核苷酸序列同源性分别为95.0%和92.2%.将pAAAV质粒转染CELO病毒感染的鸡胚肝细胞系,获得了感染性AAAV病毒粒子,结果证明克隆的AAAV基因组中存在与病毒复制和包装相关的正确关键序列,可用于重组AAAV载体的构建.

  1. Regulation of Stress Responses and Translational Control by Coronavirus

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  2. Regulation of Stress Responses and Translational Control by Coronavirus

    Directory of Open Access Journals (Sweden)

    To Sing Fung

    2016-07-01

    Full Text Available Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  3. A reverse genetics approach to study feline infectious peritonitis.

    Science.gov (United States)

    Tekes, Gergely; Spies, Danica; Bank-Wolf, Barbara; Thiel, Volker; Thiel, Heinz-Jürgen

    2012-06-01

    Feline infectious peritonitis (FIP) is a lethal immunopathological disease caused by feline coronaviruses (FCoVs). Here, we describe a reverse genetics approach to study FIP by assessing the pathogenicity of recombinant type I and type II and chimeric type I/type II FCoVs. All recombinant FCoVs established productive infection in cats, and recombinant type II FCoV (strain 79-1146) induced FIP. Virus sequence analyses from FIP-diseased cats revealed that the 3c gene stop codon of strain 79-1146 has changed to restore a full-length open reading frame (ORF).

  4. Indirect transmission of highly pathogenic avian influenza in chickens

    NARCIS (Netherlands)

    Spekreijse, D.

    2013-01-01

    Highly Pathogenic Avian Influenza (HPAI), also known bird flu, is a serious infectious disease of chickens causing high mortality in flocks and economic damage for farmers. The control strategy to control an outbreak of HPAI in the Netherlands will include culling of infected flocks and depopulation

  5. Positive immunolabelling for feline infectious peritonitis in an African lion (Panthera leo) with bilateral panuveitis.

    Science.gov (United States)

    Mwase, M; Shimada, K; Mumba, C; Yabe, J; Squarre, D; Madarame, H

    2015-01-01

    A 15-year-old male African lion (Panthera leo) was presented with blindness due to bilateral panuveitis with retinal detachment. Feline coronavirus (FCoV) antigen was identified immunohistochemically in ocular macrophages, consistent with a diagnosis of feline infectious peritonitis (FIP) infection. This is the first report of FIP in an African lion and the first report of ocular FIP in a non-domestic felid.

  6. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts.

    Directory of Open Access Journals (Sweden)

    Stephanie Bertram

    Full Text Available The type II transmembrane serine proteases TMPRSS2 and HAT activate influenza viruses and the SARS-coronavirus (TMPRSS2 in cell culture and may play an important role in viral spread and pathogenesis in the infected host. However, it is at present largely unclear to what extent these proteases are expressed in viral target cells in human tissues. Here, we show that both HAT and TMPRSS2 are coexpressed with 2,6-linked sialic acids, the major receptor determinant of human influenza viruses, throughout the human respiratory tract. Similarly, coexpression of ACE2, the SARS-coronavirus receptor, and TMPRSS2 was frequently found in the upper and lower aerodigestive tract, with the exception of the vocal folds, epiglottis and trachea. Finally, activation of influenza virus was conserved between human, avian and porcine TMPRSS2, suggesting that this protease might activate influenza virus in reservoir-, intermediate- and human hosts. In sum, our results show that TMPRSS2 and HAT are expressed by important influenza and SARS-coronavirus target cells and could thus support viral spread in the human host.

  7. Comparative in vivo analysis of recombinant type II feline coronaviruses with truncated and completed ORF3 region.

    Directory of Open Access Journals (Sweden)

    Ádám Bálint

    Full Text Available Our previous in vitro comparative study on a feline coronavirus (FCoV pair, differing only in the intactness of their ORF3abc regions, showed that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II feline infectious peritonitis virus (FIPV. In the present study, we describe a challenge experiment with the same recombinant FCoVs in order to gain data on the in vivo characteristics on these viruses. While parent virus FIPV DF-2 developed feline infectious peritonitis in all the infected cats, its recombinant virus PBFIPV-DF-2, differing only in seven nucleotides, proved to be surprisingly low virulent, although caused an acute febrile episode similarly to the original FIPV DF-2. PBFIPV-DF-2 infection induced significantly lower virus neutralization titers than its parent virus, and lacked the second phase of viremia and development of fatal course of the disease. The recombinant PBFIPV-DF-2-R3i with completed ORF3abc gained biological properties that differentiate between the feline enteric coronavirus (FECV and FIPV biotypes such as intensive replication in the gut, absence of viremia and weak or no serological response. Using reverse genetic approaches our study is the first experimental proof that ORF3abc is indeed responsible for the restriction of FECV replication to the intestine in vivo.

  8. Two novel neutralizing antigenic epitopes of the s1 subunit protein of a QX-like avian infectious bronchitis virus strain Sczy3 as revealed using a phage display peptide library.

    Science.gov (United States)

    Zou, Nianli; Xia, Jing; Wang, Fuyan; Duan, Zhenzhen; Miao, Dan; Yan, Qigui; Cao, Sanjie; Wen, Xintian; Liu, Ping; Huang, Yong

    2015-11-15

    The spike (S) protein of the infectious bronchitis virus (IBV) plays a central role in the pathogenicity, the immune antibody production, serotype and the tissue tropism. In this study, we generate 11 monoclonal antibodies (mAbs) against S1 subunit of IBV Sczy3 strain, and two mAbs 1D5 and 6A12 were positive in indirect ELISA against both His-S1 protein and the purified whole viral antigen. MAb 6A12 and 1D5 could recognized by other 10 IBV strains (IBVs) from five different genotypes, except that 1D5 had a relatively low reaction with two of the 10 tested IBVs. End-point neutralizing assay performed in chicken embro kidney (CEK) cells revealed that the neutralization titer of 6A12 and 1D5 against Sczy3 reached 1:44.7 and 1:40.6, respectively. After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 1D5 and 6A12, which corresponded to the amino acid sequences (87)PPQGMAW(93) and (412)IQTRTEP(418), respectively, in the IBV S1 subunit. Sequences comparison revealed that epitope (412)IQTRTEP(418) was conserved among IBVs, while the epitope (87)PPQGMAW(93) was relatively variable among IBVs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections.

  9. [New coronavirus infection: new challenges, new legacies].

    Science.gov (United States)

    Cabrera-Gaytán, David Alejandro; Vargas-Valerio, Alfredo; Grajales-Muñiz, Concepción

    2014-01-01

    Introducción: emergió una nueva enfermedad por coronavirus. Su historia natural y sus determinantes todavía se están investigando. Se carece de una publicación que estudie todos los casos identificados en el mundo, por lo que el objetivo de este artículo estriba en describir los casos y defunciones por el nuevo coronavirus. Métodos: se revisaron las publicaciones en línea de la Organización Mundial de la Salud, del Centro Europeo para el Control y Prevención de Enfermedades y de la Eurosurveillance. Se realizó un análisis descriptivo de los casos, se calcularon los límites para proporciones con un alfa del 0.05 por prueba de Wilson y una prueba t de Student para diferencia de medias. Resultados: son 17 casos confirmados y 11 defunciones en varios países de Asia y Europa; predominaron los pacientes masculinos. La tasa de letalidad fue de 64.70 %; los que fallecieron se hospitalizaron cinco días después de los primeros síntomas. Se carece de publicaciones que describan la historia natural de la enfermedad; sin embargo, lo descrito en las publicaciones de Europa coincide con los resultados de este estudio. Conclusión: es necesario continuar con la vigilancia epidemiológica y la realización de nuevos estudios para evaluar el impacto de esta enfermedad en la salud pública internacional.

  10. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... files Questions & answers Features Multimedia Contacts Avian and other zoonotic influenza Fact sheet Updated November 2016 Key ... A(H3) subtypes. Clinical features of avian and other zoonotic influenza infections in humans Avian and other ...

  11. Avian cytokines in health and disease

    Directory of Open Access Journals (Sweden)

    P Wigley

    2003-04-01

    Full Text Available Cytokines are proteins secreted by cells that play an important role in the activation and regulation of other cells and tissues during inflammation and immune responses. Although well described in several mammalian species, the role of cytokines and other related proteins is poorly understood in avian species. Recent advances in avian genetics and immunology have begun to allow the exploration of cytokines in health and disease. Cytokines may be classified in a number of ways, but may be conveniently arranged into four broad groups on the basis of their function. Proinflammatory cytokines such as interleukin-6 and interleukin-1beta play a role in mediating inflammation during disease or injury. Th1 cytokines, including interleukin-12 and interferon-gamma, are involved in the induction of cell-mediated immunity, whereas Th2 cytokines such as interleukin-4 are involved in the induction of humoral immunity. The final group Th3 or Tr cytokines play a role in regulation of immunity. The role of various cytokines in infectious and non-infectious diseases of chickens and turkeys is now being investigated. Although there are only a few reliable ELISAs or bioassays developed for avian cytokines, the use of molecular techniques, and in particular quantitative RT-PCR (Taqman has allowed investigation of cytokine responses in a number of diseases including salmonellosis, coccidiosis and autoimmune thyroiditis. In addition the use of recombinant cytokines as therapeutic agents or as vaccine adjuvants is now being explored.

  12. Construction of Recombinant Baculoviruses Expressing Infectious Bursal Disease Virus Main Protective Antigen and Their Immune Effects on Chickens

    OpenAIRE

    Jingping Ge; Qi An; Shanshan Song; Dongni Gao; Wenxiang Ping

    2015-01-01

    In order to overcome the limitations of conventional vaccines for infectious bursal disease virus (IBDV), we constructed recombinant dual expression system baculoviruses with VP2 and VP2/4/3, the main protective antigens of IBDV. We compared the immune effects of the baculoviruses in avian cells and detected their control effects on chickens with infectious bursal disease. We used Western blot analysis to measure VP2 protein and VP2/4/3 polyprotein expression in avian cells infected using the...

  13. Genetic grouping of avian infectious bronchitis virus isolated in Brazil based on RT-PCR/RFLP analysis of the S1 gene Agrupamento genético de isolados do vírus da bronquite infecciosa das aves no Brasil com base na análise do gene S1 por RT-PCR-RFLP

    Directory of Open Access Journals (Sweden)

    Maria de Fátima S. Montassier

    2008-03-01

    Full Text Available Twelve Brazilian isolates and one reference vaccine strain of avian infectious bronchitis virus (IBV were propagated in embryonating chicken eggs. The entire S1 glycoprotein gene of these viruses was analysed by reverse-transcriptase-polymerase chain reaction and restriction fragment length polymorphism (RT-PCR-RFLP, using the restriction enzymes HaeIII, XcmI and BstyI. The RFLP patterns led to the classification of these isolates into five distinct genotypes: A, B, C, D and Massachusetts. Five of twelve isolates were grouped in Massachusetts genotype and the remaining seven viruses were classified into four distinct genotypes: A (2, B (2, C (2 or D (1. Such genotyping classification agreed with previous immunological analysis for most of these viruses, highlighting the occurrence of a relevant variability among the IBV strains that are circulating in Brazilian commercial poultry flocks.Doze isolados de campo do Brasil e uma estirpe de referência vacinal do vírus da bronquite infecciosa das aves (VBI foram propagadas em ovos embrionados SPF. O gene S1 dessas amostras foi analisado por RT-PCR seguido de RFLP, empregando-se as enzimas de restrição HaeIII, XcmI e BstyI. Observou-se a existência de cinco genotipos diferentes: M (Massachusetts, A , B, C e D. Cinco dos doze isolados de campo do VBI foram classificados no genótipo Massachusetts e os sete vírus restantes foram classificados em quatro genotipos diferentes; A (2, B (2, C (2 ou D (1. Os resultados desta genotipagem concordam com os dados obtidos na análise imunológica previamente realizada para a maior parte destes vírus, destacando a ocorrência de uma variabilidade marcante entre os isolados do VBI que estão circulando nas granjas avícolas comerciais do Brasil.

  14. Effect of diethylcarbamazine on serum antibodies to feline infectious peritonitis in cats.

    Science.gov (United States)

    Kitchen, L W

    1988-02-01

    In preceding studies by the author, use of the immunomodulator drug diethylcarbamazine resulted in the detection of antibodies to feline oncornavirus-associated cell membrane antigen in nine feline leukaemia virus infected cats that had previously given negative results to this antibody. In the present report, seven diethylcarbamazine-treated cats developed higher serum antibody titres to feline infectious peritonitis more frequently than did seven untreated controls. Since feline infectious peritonitis is caused by a coronavirus, these results suggest that diethylcarbamazine treatment could be exploited for vaccination and treatment strategies for non-retroviral in addition to retroviral infections.

  15. Feline infectious peritonitis in a mountain lion (Puma concolor), California, USA.

    Science.gov (United States)

    Stephenson, Nicole; Swift, Pamela; Moeller, Robert B; Worth, S Joy; Foley, Janet

    2013-04-01

    Feline infectious peritonitis (FIP) is a fatal immune-mediated vasculitis of felids caused by a mutant form of a common feline enteric virus, feline enteric coronavirus. The virus can attack many organ systems and causes a broad range of signs, commonly including weight loss and fever. Regardless of presentation, FIP is ultimately fatal and often presents a diagnostic challenge. In May 2010, a malnourished young adult male mountain lion (Puma concolor) from Kern County, California, USA was euthanized because of concern for public safety, and a postmortem examination was performed. Gross necropsy and histopathologic examination revealed necrotizing, multifocal myocarditis; necrotizing, neutrophilic, and histiocytic myositis and vasculitis of the tunica muscularis layer of the small and large intestines; and embolic, multifocal, interstitial pneumonia. Feline coronavirus antigen was detected in both the heart and intestinal tissue by immunohistochemistry. A PCR for coronavirus performed on kidney tissue was positive, confirming a diagnosis of FIP. Although coronavirus infection has been documented in mountain lions by serology, this is the first confirmed report of FIP.

  16. Bats, emerging infectious diseases, and the rabies paradigm revisited

    Directory of Open Access Journals (Sweden)

    Ivan V. Kuzmin

    2011-06-01

    Full Text Available The significance of bats as sources of emerging infectious diseases has been increasingly appreciated, and new data have been accumulated rapidly during recent years. For some emerging pathogens the bat origin has been confirmed (such as lyssaviruses, henipaviruses, coronaviruses, for other it has been suggested (filoviruses. Several recently identified viruses remain to be ‘orphan’ but have a potential for further emergence (such as Tioman, Menangle, and Pulau viruses. In the present review we summarize information on major bat-associated emerging infections and discuss specific characteristics of bats as carriers of pathogens (from evolutionary, ecological, and immunological positions. We also discuss drivers and forces of an infectious disease emergence and describe various existing and potential approaches for control and prevention of such infections at individual, populational, and societal levels.

  17. Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR)

    DEFF Research Database (Denmark)

    Hornyák, Ákos; Bálint, Ádám; Farsang, Attila

    2012-01-01

    Feline infectious peritonitis is one of the most severe devastating diseases of the Felidae. Upon the appearance of clinical signs, a cure for the infected animal is impossible. Therefore rapid and proper diagnosis for both the presence of the causative agent, feline coronavirus (FCo......V) and the manifestation of feline infectious peritonitis is of paramount importance. In the present work, a novel real-time RT-PCR method is described which is able to detect FCoV and to determine simultaneously the quantity of the viral RNA. The new assay combines the M gene subgenomic messenger RNA (sg-mRNA) detection...... assay was proven by positive amplification from a set of nine different FCoV strains and negative from the tested non-coronaviral targets. Examination of faecal samples of healthy young cats, organ samples of perished animals, which suffered from feline infectious peritonitis, and cat leukocytes from...

  18. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    Science.gov (United States)

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  19. Coronaviruses: emerging and re-emerging pathogens in humans and animals.

    Science.gov (United States)

    Lau, Susanna K P; Chan, Jasper F W

    2015-12-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals with huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.

  20. Infectious Risks of Traveling Abroad.

    Science.gov (United States)

    Chen, Lin H; Blair, Barbra M

    2015-08-01

    A popular leisure activity, international travel can be associated with some infections. The most common travel-related illnesses appear to be gastrointestinal, dermatologic, respiratory, and systemic febrile syndromes. The pretravel medical consultation includes immunizations, malaria chemoprophylaxis, self-treatment for traveler's diarrhea, and advice on the prevention of a myriad of other infectious causes including dengue, chikungunya, rickettsiosis, leptospirosis, schistosomiasis, and strongyloidiasis. Travel to locations experiencing outbreaks such as Ebola virus disease, Middle East respiratory syndrome, avian influenza, and chikungunya call for specific alerts on preventive strategies. After travel, evaluation of an ill traveler must explore details of exposure, including destinations visited; activities; ingestion of contaminated food or drinks; contact with vectors, animals, fresh water, or blood and body fluids; and other potential exposures. Knowledge of the geographic distribution of infectious diseases is important in generating the differential diagnoses and testing accordingly. Empiric treatment is sometimes necessary when suspicion of a certain diagnosis is strong and confirmatory tests are delayed or lacking, particularly for infections that are rapidly progressive (for example, malaria) or for which timing of testing is prolonged (such as leptospirosis).

  1. Avian Chlamydiosis Zoonotic Disease.

    Science.gov (United States)

    Szymańska-Czerwińska, Monika; Niemczuk, Krzysztof

    2016-01-01

    This review presents recent data about avian chlamydiosis. Chlamydia psittaci has been considered to be the main causative agent of chlamydiosis in birds; however, two new Chlamydia species have been detected recently-C. gallinacea in breeding birds and C. avium in wild birds. We discuss the zoonotic potential of avian Chlamydia species.

  2. Comparative pathogenesis in specific-pathogen-free chickens of two strains of avian hepatitis E virus recovered from a chicken with Hepatitis-Splenomegaly syndrome and from a clinically healthy chicken, respectively

    OpenAIRE

    Billam, P.; LeRoith, T; Pudupakam, R. S.; Pierson, F.W.; Duncan, R. B.; Meng, X. J.

    2009-01-01

    Avian hepatitis E virus (avian HEV) is the primary causative agent of Hepatitis-Splenomegaly (HS) syndrome in chickens. Recently, a genetically unique strain of avian HEV, designated avian HEV-VA, was recovered from healthy chickens in Virginia. The objective of this study was to experimentally compare the pathogenicity of the prototype strain recovered from a chicken with HS syndrome and the avian HEV-VA strain in specific-pathogen-free chickens. An infectious stock of the avian HEV-VA strai...

  3. Tackling feline infectious peritonitis via reverse genetics.

    Science.gov (United States)

    Thiel, Volker; Thiel, Heinz-Jürgen; Tekes, Gergely

    2014-01-01

    Feline infectious peritonitis (FIP) is caused by feline coronaviruses (FCoVs) and represents one of the most important lethal infectious diseases of cats. To date, there is no efficacious prevention and treatment, and our limited knowledge on FIP pathogenesis is mainly based on analysis of experiments with field isolates. In a recent study, we reported a promising approach to study FIP pathogenesis using reverse genetics. We generated a set of recombinant FCoVs and investigated their pathogenicity in vivo. The set included the type I FCoV strain Black, a type I FCoV strain Black with restored accessory gene 7b, two chimeric type I/type II FCoVs and the highly pathogenic type II FCoV strain 79-1146. All recombinant FCoVs and the reference strain isolates were found to establish productive infections in cats. While none of the type I FCoVs and chimeric FCoVs induced FIP, the recombinant type II FCoV strain 79-1146 was as pathogenic as the parental isolate. Interestingly, an intact ORF 3c was confirmed to be restored in all viruses (re)isolated from FIP-diseased animals.

  4. Human coronavirus EMC is not the same as severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Perlman, Stanley; Zhao, Jincun

    2013-01-15

    A newly identified betacoronavirus, human coronavirus EMC (HCoV-EMC), has been isolated from several patients with respiratory and renal disease in the Middle East. While only a few infected patients have been identified, the mortality of the infection is greater than 50%. Like its better-known cousin severe acute respiratory syndrome coronavirus (SARS-CoV), HCoV-EMC appears to have originated from bats. In a recent article in mBio, Müller et al. described several important differences between the two viruses [M. A. Müller et al., mBio 3(6):e00515-12, 2012, doi:10.1128/mBio.00515-12]. Unlike SARS-CoV, HCoV-EMC can directly infect bat cells. As important, HCoV-EMC does not enter cells using the SARS-CoV receptor, human angiotensin-converting receptor-2 (hACE2). These results provide a strong incentive for identifying the host cell receptor used by HCoV-EMC. Identification of the receptor will provide insight into the pathogenesis of pulmonary and renal disease and may also suggest novel therapeutic interventions.

  5. Molecular phylogeny of coronaviruses including human SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Phylogenetic tree of coronaviruses (CoVs) including the human SARS-associated virus is reconstructed from complete genomes by using our newly developed K- string composition approach. The relation of the human SARS-CoV to other coronaviruses, i.e. the rooting of the tree is suggested by choosing an appropriate outgroup. SARS-CoV makes a separate group closer but still distant from G2 (CoVs in mammalian host). The relation between different isolates of the human SARS virus is inferred by first constructing an ultrametric distance matrix from counting sequence variations in the genomes. The resulting tree is consistent with clinic relations between the SARS-CoV isolates. In addition to a larger variety of coronavirus genomes these results provide phylogenetic knowledge based on independent novel methodology as compared to recent phylogenetic studies on SARS-CoV.

  6. Middle East Respiratory Syndrome Coronavirus: A Review

    Directory of Open Access Journals (Sweden)

    Leila Sarparast

    2015-01-01

    Full Text Available Context: Middle East Respiratory Syndrome Coronavirus (MERS-CoV infection is an emerging human disease that has been reported from the Arabian Peninsula and Middle East countries since 2012. Although zoonotic transmission was postulated, virological and serological finding suggest that the dromedary camels act as the potential reservoirs of MERS-CoV infection to humans. As October 2014, a totally 855 confirmed cases with 333 related deaths were reported to WHO. All cases occurred in or epidemiologically linked to affected countries. The virus ability to induce a pandemic attack is limited. The clinical presentations vary and range from asymptomatic infection to severe respiratory disease and death. However, most severe disease occurs in elderly and in those with underlying conditions. Infection prevention and control measures are critical to prevent the possible spread of MERS-CoV infection is health care facilities and in the community. The WHO encourages all member states to perform surveillance of patients with acute severe respiratory infection and to carefully monitor any unusual patterns. This paper aims to review the current key characteristics of MERS-CoV infection in human and update the WHO recommendations about this illness.

  7. Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia

    Directory of Open Access Journals (Sweden)

    Amer Alazawy

    2012-11-01

    Full Text Available Abstract Background Feline infectious peritonitis virus (FIPV and feline enteric coronavirus (FECV are two important coronaviruses of domestic cat worldwide. Although FCoV is prevalent among cats; the fastidious nature of type I FCoV to grow on cell culture has limited further studies on tissue tropism and pathogenesis of FCoV. While several studies reported serological evidence for FCoV in Malaysia, neither the circulating FCoV isolated nor its biotypes determined. This study for the first time, describes the isolation and biotypes determination of type I and type II FCoV from naturally infected cats in Malaysia. Findings Of the total number of cats sampled, 95% (40/42 were RT-PCR positive for FCoV. Inoculation of clinical samples into Crandell feline kidney cells (CrFK, and Feline catus whole fetus-4 cells (Fcwf-4, show cytopathic effect (CPE characterized by syncytial cells formation and later cell detachment. Differentiation of FCoV biotypes using RT-PCR assay revealed that, 97.5% and 2.5% of local isolates were type I and type II FCoV, respectively. These isolates had high sequence homology and phylogenetic similarity with several FCoV isolates from Europe, South East Asia and USA. Conclusions This study reported the successful isolation of local type I and type II FCoV evident with formation of cytopathic effects in two types of cell cultures namely the CrFK and Fcwf-4 , where the later cells being more permissive. However, the RT-PCR assay is more sensitive in detecting the antigen in suspected samples as compared to virus isolation in cell culture. The present study indicated that type I FCoV is more prevalent among cats in Malaysia.

  8. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study....

  9. 鸡新城疫、传染性支气管炎、禽流感(H9亚型)三联灭活疫苗对禽流感H9亚型流行株攻毒的保护作用%Protective efficiency of the inactivated Newcastle disease virus, infectious bronchitis virus and avian influenza virus (H9 subtype) vaccine against epidemic strains of avian influenza virus H9

    Institute of Scientific and Technical Information of China (English)

    林绮萍; 陈瑞爱; 黄文科; 区德庆; 严洁珍

    2012-01-01

    To monitor the protective efficiency of the inactivated Newcastle disease virus, infectious bronchitis virus and avian influenza virus H9 subtype (AIV-H9) vaccine (LaSota + M41 + SS/94), SPF chickens were respectively inoculated with strain SS/94 and three epidemic strains of AIV-H9 isolated during 2009-2010, after being immunized with the inactivated vaccine. The results showed that at 21 days after immunization, the HI antibody titers to AIV-H9 in the experimental chickens varied from 81og2 to lllog2. The antibody levels had protective ability against the challenge with 2x106EID50 of AIV-H9 strains including SS/94, BLCN09, WDZ09 and YT10, and the protection rates were above 90% (9/10). It suggested that the triple inactivated vaccine with the strain SS/94 used as the AIV antigen could induce protective immunity against challenge with epidemic strains of AIV-H9.%为了监测鸡新城疫、传染性支气管炎、禽流感(H9亚型)三联灭活疫苗(LaSota株+M41株+SS/94株)对H9亚型禽流感病毒流行毒株的免疫保护效果,采用H9亚型禽流感病毒SS/94株及2009-2010年现地分离的3株H9亚型禽流感病毒对已免疫上述三联灭活苗的SPF鸡进行攻毒试验.结果显示,试验鸡以0.3 mL/只的剂量免疫三联灭活苗后21 d,其H9亚型禽流感病毒的HI抗体效价可达8~ 11log2,此抗体水平可抵抗2×106 EID50的H9亚型禽流感病毒SS/94株、BLCN09株、WDZ09株、YT10株的攻击,攻毒保护率均达90% (9/10)以上.可见,以SS/94株作为禽流感疫苗抗原制备的三联灭活苗具有良好的免疫原性,能使免疫鸡抵抗2009-2010年期间现地分离的多株H9亚型禽流感病毒的攻击.

  10. Development of an antigen-capture ELISA for the detection of avian leukosis virus p27 antigen.

    Science.gov (United States)

    Yun, Bingling; Li, Delong; Zhu, Haibo; Liu, Wen; Qin, Liting; Liu, Zaisi; Wu, Guan; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei; Gao, Yulong

    2013-02-01

    An antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) employing monoclonal and polyclonal antibodies against p27 was developed for the detection of the avian leukosis virus (ALV). The specificity of the optimized AC-ELISA was evaluated using avian leukosis virus subgroup J (ALV-J), avian leukosis virus subgroup A (ALV-A), avian leukosis virus subgroup B (ALV-B), avian infectious bronchitis virus (IBV), Marek's disease virus (MDV), avian infectious laryngotracheitis virus (ILTV), Fowlpox virus (FPV), infectious bursal disease virus (IBDV), Newcastle disease virus (NDV), avian reovirus (ARV), reticuloendotheliosis virus (REV), avian influenza virus (AIV) and Escherichia coli. The only specimens that yielded a strong signal were ALV-J, ALV-A and ALV-B, indicating that this assay is suitable for the detection of ALV. The limit of detection of this assay was 1.25 ng/ml of rp27 protein and 10(1.79)TCID(50) units of HLJ09MDJ-1 (ALV-J). Moreover, this AC-ELISA can detect ALV in cloacal swabs of chickens experimentally infected as early as 12 days post-infection. The AC-ELISA detected the virus in the albumin and cloacal swabs of naturally infected chickens, and the results were confirmed by PCR, indicating that the AC-ELISA was a suitable method for the detection of ALV. This test is rapid and sensitive and could be convenient for epidemiological studies and eradication programs.

  11. The Helper Activities of Different Avian Viruses for Propagation of Recombinant Avian Adeno-Associated Virus

    Institute of Scientific and Technical Information of China (English)

    WANG An-ping; SUN Huai-chang; WANG Jian-ye; WANG Yong-juan; YUAN Wei-feng

    2007-01-01

    To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV-mediated transgene expression could be enhanced by super infection with the helper viruses.

  12. The book of infectious diseases—a living document

    Directory of Open Access Journals (Sweden)

    Ashfaq Hasan

    2014-07-01

    Full Text Available Planet Earth continues to be pillaged by its dominant species. Man’s incursions into forests have resulted in denudation of massive tracts of land, and the displaced inhabitants—vectors carrying exotic infectious agents—have begun to wander deeper into man’s territory. In 1993, in South-Western United States, the Sin Nombre virus (the first Hantavirus normally a pathogen of mice, developed its first taste for Homo sapiens. In 1997, the avian influenza H5N1 virus, jumped species to man. In 2002, a virus of civet cats in the Guangdong Province in Southern China transformed itself into the lethal SARS virus. In 2009, two swine strains, one human strain, and one bird strain of influenza all combined them-selves into a new deadly strain—the H1N1 Swine Flu virus. And only last year, the MERS-Coronavirus became a new player in the changea-ble game of infectious disease. Almost as soon as the world comes stumblingly to terms with one new epidemic, another unleashes itself. Lessons were clearly not learnt after the Ebola epidemic in 1976 which was followed by another major outbreak in Zaire in 1995. This year, confronted with a death-count that ex-ceeds the combined tally of all previous Ebola epidemics, the WHO has finally declared the Ebola outbreak in West Africa as an “extraordinary event” and admitted that it is indeed a “public health risk to other countries.” As a human pathogen, the Ebola virus is four dec-ades old. True to form, the little-affected developed nations—the countries with the resources to tackle emerging infections—have taken no great interest in the matter. Forty precious years have ticked by. The CDC admits: “We do not know how to treat Ebola or vaccinate against it—and it will be a long time before we do.” As with the other major infectious killers that ravage the developing world, the profit margin for a drug against Ebola is slender. The Zaire Ebola virus though, is special—it is the most deadly

  13. Historical Prevalence and Distribution of Avian Influenza Virus A(H7N9) among Wild Birds

    Centers for Disease Control (CDC) Podcasts

    2013-12-19

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases’ dispatch, Historical Prevalence and Distribution of Avian Influenza Virus A(H7N9) among Wild Birds.  Created: 12/19/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/24/2013.

  14. Equine Infectious Anemia

    OpenAIRE

    Hoopes, Karl H.

    2017-01-01

    This fact sheet gives information on equine infectious anemia, a blood-borne infectious viral disease of horses, donkeys, and mules. It describes transmission, clinical disease, diagnosis and control.

  15. Efficacy of various disinfectants against SARS coronavirus.

    Science.gov (United States)

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  16. [Nosocomial infections due to human coronaviruses in the newborn].

    Science.gov (United States)

    Gagneur, A; Legrand, M C; Picard, B; Baron, R; Talbot, P J; de Parscau, L; Sizun, J

    2002-01-01

    Human coronaviruses, with two known serogroups named 229-E and OC-43, are enveloped positive-stranded RNA viruses. The large RNA is surrounded by a nucleoprotein (protein N). The envelop contains 2 or 3 glycoproteins: spike protein (or protein S), matrix protein (or protein M) and a hemagglutinin (or protein HE). Their pathogen role remains unclear because their isolation is difficult. Reliable and rapid methods as immunofluorescence with monoclonal antibodies and reverse transcription-polymerase chain reaction allow new researches on epidemiology. Human coronaviruses can survive for as long as 6 days in suspension and 3 hours after drying on surfaces, suggesting that they could be a source of hospital-acquired infections. Two prospective studies conducted in a neonatal and paediatric intensive care unit demonstrated a significant association of coronavirus-positive nasopharyngal samples with respiratory illness in hospitalised preterm neonates. Positive samples from staff suggested either a patient-to-staff or a staff-to-patient transmission. No cross-infection were observed from community-acquired respiratory-syncitial virus or influenza-infected children to neonates. Universal precautions with hand washing and surface desinfection could be proposed to prevent coronavirus transmission.

  17. Geographic distribution of MERS coronavirus among dromedary camels, Africa

    NARCIS (Netherlands)

    Reusken, Chantal B E M; Messadi, Lilia; Feyisa, Ashenafi; Ularamu, Hussaini; Godeke, Gert Jan; Danmarwa, Agom; Dawo, Fufa; Jemli, Mohamed; Melaku, Simenew; Shamaki, David; Woma, Yusuf; Wungak, Yiltawe; Gebremedhin, Endrias Zewdu; Zutt, Ilse; Bosch, Berend Jan; Haagmans, Bart L.; Koopmans, Marion P G

    2014-01-01

    We found serologic evidence for the circulation of Middle East respiratory syndrome coronavirus among dromedary camels in Nigeria, Tunisia, and Ethiopia. Circulation of the virus among dromedaries across broad areas of Africa may indicate that this disease is currently underdiagnosed in humans outsi

  18. MERS Coronavirus in Dromedary Camel Herd Saudi Arabia

    OpenAIRE

    Hemida, Maged G.; Chu, Daniel K. W.; Poon, Leo L.M.; Perera, Ranawaka A. P. M.; Alhammadi, Mohammad A.; Ng, Hoi-yee; Siu, Lewis Y.; Guan, Yi; Alnaeem, Abdelmohsen; Peiris, Malik

    2014-01-01

    A prospective study of a dromedary camel herd during the 2013–14 calving season showed Middle East respiratory syndrome coronavirus infection of calves and adults. Virus was isolated from the nose and feces but more frequently from the nose. Preexisting neutralizing antibody did not appear to protect against infection.

  19. Transmission of MERS-coronavirus in household contacts

    NARCIS (Netherlands)

    Drosten, Christian; Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Al-Masri, Malak; Hossain, Raheela; Madani, Hosam; Sieberg, Andrea; Bosch, Berend Jan; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Hajomar, Waleed; Albarrak, Ali M; Al-Tawfiq, Jaffar A; Zumla, Alimuddin I; Memish, Ziad A

    2014-01-01

    BACKGROUND: Strategies to contain the Middle East respiratory syndrome coronavirus (MERS-CoV) depend on knowledge of the rate of human-to-human transmission, including subclinical infections. A lack of serologic tools has hindered targeted studies of transmission. METHODS: We studied 26 index patien

  20. Neotropical Bats from Costa Rica harbour Diverse Coronaviruses.

    Science.gov (United States)

    Moreira-Soto, A; Taylor-Castillo, L; Vargas-Vargas, N; Rodríguez-Herrera, B; Jiménez, C; Corrales-Aguilar, E

    2015-11-01

    Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host-species barrier. For analysing coronavirus diversity in a bat species-rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA-dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus-derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α-CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected.

  1. Editorial: Avian Research

    Institute of Scientific and Technical Information of China (English)

    Yong; Wang; Guangmei; Zheng

    2014-01-01

    <正>Welcome to Avian Research!This new journal is a continuation and enhancement of Chinese Birds,which has been and continues to be sponsored by the China Ornithological Society and Beijing Forestry University.In the four years since its inception,the original journal—the only one in China focusing on avian research—has published over 130 manuscripts,with authors from all continents across the world,garnering global respect in

  2. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  3. Coronavirus-like particles in laboratory rabbits with different syndromes in The Netherlands (Coronavirus-like particles in rabbits).

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J.S. Teppema; G. van Steenis (Bert)

    1982-01-01

    textabstractVirus-like particles were identified from the plasma of rabbits which developed pleural effusion disease after inoculation with different strains of Treponema pallidum. These particles were considered coronavirus-like on the basis of their size, morphology, and buoyant density. Clinical

  4. Avian influenza and pandemic influenza preparedness in Hong Kong.

    Science.gov (United States)

    Lam, Ping Yan

    2008-06-01

    Avian influenza A H5N1 continues to be a major threat to global public health as it is a likely candidate for the next influenza pandemic. To protect public health and avert potential disruption to the economy, the Hong Kong Special Administrative Region Government has committed substantial effort in preparedness for avian and pandemic influenza. Public health infrastructures for emerging infectious diseases have been developed to enhance command, control and coordination of emergency response. Strategies against avian and pandemic influenza are formulated to reduce opportunities for human infection, detect pandemic influenza timely, and enhance emergency preparedness and response capacity. Key components of the pandemic response include strengthening disease surveillance systems, updating legislation on infectious disease prevention and control, enhancing traveller health measures, building surge capacity, maintaining adequate pharmaceutical stockpiles, and ensuring business continuity during crisis. Challenges from avian and pandemic influenza are not to be underestimated. Implementing quarantine and social distancing measures to contain or mitigate the spread of pandemic influenza is problematic in a highly urbanised city like Hong Kong as they involved complex operational and ethical issues. Sustaining effective risk communication campaigns during interpandemic times is another challenge. Being a member of the global village, Hong Kong is committed to contributing its share of efforts and collaborating with health authorities internationally in combating our common public health enemy.

  5. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model.

    Science.gov (United States)

    de Wilde, Adriaan H; Falzarano, Darryl; Zevenhoven-Dobbe, Jessika C; Beugeling, Corrine; Fett, Craig; Martellaro, Cynthia; Posthuma, Clara C; Feldmann, Heinz; Perlman, Stanley; Snijder, Eric J

    2017-01-15

    Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication.

  6. Animal genomics and infectious disease resistance in poultry.

    Science.gov (United States)

    Smith, J; Gheyas, A; Burt, D W

    2016-04-01

    Avian pathogens are responsible for major costs to society, both in terms of huge economic losses to the poultry industry and their implications for human health. The health and welfare of millions of birds is under continued threat from many infectious diseases, some of which are increasing in virulence and thus becoming harder to control, such as Marek's disease virus and avian influenza viruses. The current era in animal genomics has seen huge developments in both technologies and resources, which means that researchers have never been in a better position to investigate the genetics of disease resistance and determine the underlying genes/mutations which make birds susceptible or resistant to infection. Avian genomics has reached a point where the biological mechanisms of infectious diseases can be investigated and understood in poultry and other avian species. Knowledge of genes conferring disease resistance can be used in selective breeding programmes or to develop vaccines which help to control the effects of these pathogens, which have such a major impact on birds and humans alike.

  7. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro.

    Science.gov (United States)

    Chen, Lili; Gui, Chunshan; Luo, Xiaomin; Yang, Qingang; Günther, Stephan; Scandella, Elke; Drosten, Christian; Bai, Donglu; He, Xichang; Ludewig, Burkhard; Chen, Jing; Luo, Haibin; Yang, Yiming; Yang, Yifu; Zou, Jianping; Thiel, Volker; Chen, Kaixian; Shen, Jianhua; Shen, Xu; Jiang, Hualiang

    2005-06-01

    The 3C-like proteinase (3CLpro) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for anti-SARS-CoV drugs due to its crucial role in the viral life cycle. In this study, a database containing structural information of more than 8,000 existing drugs was virtually screened by a docking approach to identify potential binding molecules of SARS-CoV 3CLpro. As a target for screening, both a homology model and the crystallographic structure of the binding pocket of the enzyme were used. Cinanserin (SQ 10,643), a well-characterized serotonin antagonist that has undergone preliminary clinical testing in humans in the 1960s, showed a high score in the screening and was chosen for further experimental evaluation. Binding of both cinanserin and its hydrochloride to bacterially expressed 3CLpro of SARS-CoV and the related human coronavirus 229E (HCoV-229E) was demonstrated by surface plasmon resonance technology. The catalytic activity of both enzymes was inhibited with 50% inhibitory concentration (IC50) values of 5 microM, as tested with a fluorogenic substrate. The antiviral activity of cinanserin was further evaluated in tissue culture assays, namely, a replicon system based on HCoV-229E and quantitative test assays with infectious SARS-CoV and HCoV-229E. All assays revealed a strong inhibition of coronavirus replication at nontoxic drug concentrations. The level of virus RNA and infectious particles was reduced by up to 4 log units, with IC50 values ranging from 19 to 34 microM. These findings demonstrate that the old drug cinanserin is an inhibitor of SARS-CoV replication, acting most likely via inhibition of the 3CL proteinase.

  8. Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures

    Science.gov (United States)

    Desmarets, Lowiese M. B.; Vermeulen, Ben L.; Theuns, Sebastiaan; Conceição-Neto, Nádia; Zeller, Mark; Roukaerts, Inge D. M.; Acar, Delphine D.; Olyslaegers, Dominique A. J.; Van Ranst, Marc; Matthijnssens, Jelle; Nauwynck, Hans J.

    2016-01-01

    Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections are lacking, the present study investigated these missing links during experimental infection of three SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted for 28–56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not different compared to the other cats, except for the CD8+ regulatory T cells. These data indicate that FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that the gradual adaptation to these cells can allow non-enterotropic mutants to arise. PMID:26822958

  9. Lesions of the avian pancreas.

    Science.gov (United States)

    Schmidt, Robert E; Reavill, Drury R

    2014-01-01

    Although not well described, occasional reports of avian exocrine and endocrine pancreatic disease are available. This article describes the lesions associated with common diseases of the avian pancreas reported in the literature and/or seen by the authors.

  10. Genetics and pathogenesis of feline infectious peritonitis virus.

    Science.gov (United States)

    Brown, Meredith A; Troyer, Jennifer L; Pecon-Slattery, Jill; Roelke, Melody E; O'Brien, Stephen J

    2009-09-01

    Feline coronavirus (FCoV) is endemic in feral cat populations and cat colonies, frequently preceding outbreaks of fatal feline infectious peritonitis (FIP). FCoV exhibits 2 biotypes: the pathogenic disease and a benign infection with feline enteric coronavirus (FECV). Uncertainty remains regarding whether genetically distinctive avirulent and virulent forms coexist or whether an avirulent form mutates in vivo, causing FIP. To resolve these alternative hypotheses, we isolated viral sequences from FCoV-infected clinically healthy and sick cats (8 FIP cases and 48 FECV-asymptomatic animals); 735 sequences from 4 gene segments were generated and subjected to phylogenetic analyses. Viral sequences from healthy cats were distinct from sick cats on the basis of genetic distances observed in the membrane and nonstructural protein 7b genes. These data demonstrate distinctive circulating virulent and avirulent strains in natural populations. In addition, 5 membrane protein amino acid residues with functional potential differentiated healthy cats from cats with FIP. These findings may have potential as diagnostic markers for virulent FIP-associated FCoV.

  11. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang (Cornell); (UMM-MED); (Colorado)

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  12. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    Science.gov (United States)

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru.

  13. Respiratory protection and emerging infectious diseases: lessons from severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    John H. Lange

    2005-01-01

    @@ The severe acute respiratory syndrome (SARS) that emerged 2002-2003 and apparently again 2004 (reported by the news media on December 27, 2003) as the first confirmed case by the World Health Organization (WHO)1,2 raised awareness of emerging infectious diseases.3 Every year there are both new and old infectious diseases emerging as potential pandemic agents.4-6 However, few of these diseases receive the public attention and concern expressed as occurred during the emergence of SARS. Much of this concern was a result of the rapid spread of the novel coronavirus (CoV) to different regions of the world and its high infectivity, especially for health care workers (HCW).3 In many ways, the high percent of HCW infected is a warning of the potential hazards of old and emerging infectious diseases.6 However, SARS was not the only disease (e.g. Monkeypox) that emerged in 2003,3 rather it received the greatest attention.

  14. Etiology and immunology of infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    LF Caron

    2010-06-01

    Full Text Available Infectious bronchitis virus (IBV of chickens is currently one of the main diseases associated with respiratory syndrome in domestic poultry, as well as with losses related to egg production. The etiological agent is a coronavirus, which presents structural differences in the field, mainly in the S1 spike protein. The immune response against this virus is complicated by the few similarities among serotypes. Environmental and management factors, as well as the high mutation rate of the virus, render it difficult to control the disease and compromise the efficacy of the available vaccines. Bird immune system capacity to respond to challenges depend on the integrity of the mucosae, as an innate compartment, and on the generation of humoral and cell-mediated adaptive responses, and may affect the health status of breeding stocks in the medium run. Vaccination of day-old chicks in the hatchery on aims at eliciting immune responses, particularly cell-mediated responses that are essential when birds are first challenged. Humoral response (IgY and IgA are also important for virus clearance in subsequent challenges. The presence of antibodies against the S1 spike protein in 3- to 4-week-old birds is important both in broilers and for immunological memory in layers and breeders.

  15. Treatment of cats with feline infectious peritonitis.

    Science.gov (United States)

    Hartmann, Katrin; Ritz, Susanne

    2008-05-15

    Feline infectious peritonitis (FIP) infection resulting in clinical signs is invariably fatal despite clinical intervention. As FIP is an immune-mediated disease, treatment is mainly aimed at controlling the immune response triggered by the infection with the feline coronavirus (FCoV). Immune suppressive drugs such as prednisone or cyclophosphamide may slow disease progression but do not produce a cure. In nearly every published case report of attempted therapy for clinical FIP, glucocorticoids have been used; there are, however, no controlled studies that evaluate the effect of glucocorticoids as a therapy for FIP. Some veterinarians prescribe immune modulators to treat cats with FIP with no documented controlled evidence of efficacy. It has been suggested that these agents may benefit infected animals by restoring compromised immune function, thereby allowing the patient to control viral burden and recover from clinical signs. However, a non-specific stimulation of the immune system may be contraindicated as clinical signs develop and progress as a result of an immune-mediated response to the mutated FCoV.

  16. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  17. Serological survey on canine coronavirus antibodies in giant pandas by virus neutralization test

    Institute of Scientific and Technical Information of China (English)

    QIAOJun; XIAXian-zhu; YANGSong-tao; LIDe-sheng; HUGui-xue; GAOYu-wei; SUNHe-ting; ZHAOZhong-pen; XlEZhi-jing; YANFang; HEWen-qi; HUANGGen

    2004-01-01

    In order to survey the infectious situation of canine coronavirus (CCV) in giant panda population, a virus neutralization test detecting specific antibodies against CCV in giant panda's sera was established by using two-fold dilutions of serum and 100 TCID50 of the virus. The 62 sera samples of giant pandas, which were gathered from zoos and reserve region of Sichuan Province, China were detected. The neutralization antibody titer of 1:4 was recognized as the positive criterion, 8 sera samples were detected to be positive, and the positive rate was 12.9%. The titers of neutralizing antibody ranged from 1:8 to 1:32. It was the first comprehensive investigation on neutralization antibodies against CCV in giant panda population in China. The results of study showed that the infection of CCV in giant panda population was universal, which has posed a threat to the health of giant panda. Therefore, it is incumbent on us to study safe and effective vaccines to protect giant panda against CCV infection.

  18. In vitro inhibition of feline coronavirus replication by small interfering RNAs.

    Science.gov (United States)

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2011-06-01

    Infection with virulent biotypes of feline coronavirus (FCoV) can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. In this study we demonstrate the ability of small interfering RNA (siRNA) mediated RNA interference (RNAi) to inhibit the replication of virulent FCoV strain FIPV WSU 79-1146 in an immortalised feline cell line. A panel of eight synthetic siRNAs targeting four different regions of the FCoV genome were tested for antiviral effects. Efficacy was determined by qRT-PCR of intracellular viral genomic and messenger RNA, TCID50 infectivity assay of extracellular virus, and direct IFA for viral protein expression. All siRNAs demonstrated an inhibitory effect on viral replication in vitro. The two most effective siRNAs, targeting the untranslated 5' leader sequence (L2) and the nucleocapsid gene (N1), resulted in a >95% reduction in extracellular viral titre. Further characterisation of these two siRNAs demonstrated their efficacy when used at low concentrations and in cells challenged with high viral loads. Taken together these findings provide important information for the potential therapeutic application of RNAi in treating FIP.

  19. Identification and characterisation of small molecule inhibitors of feline coronavirus replication.

    Science.gov (United States)

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2014-12-05

    Feline infectious peritonitis (FIP), a feline coronavirus (FCoV) induced disease, is almost invariably fatal with median life expectancy measured in days. Current treatment options are, at best, palliative. The objectives of this study were to evaluate a panel of nineteen candidate compounds for antiviral activity against FCoV in vitro to determine viable candidates for therapy. A resazurin-based cytopathic effect inhibition assay, which detects viable cells through their reduction of the substrate resazurin to fluorescent resorufin, was developed for screening compounds for antiviral efficacy against FCoV. Plaque reduction and virus yield reduction assays were performed to confirm antiviral effects of candidate compounds identified during screening, and the possible antiviral mechanisms of action of these compounds were investigated using virucidal suspension assays and CPE inhibition and IFA-based time of addition assays. Three compounds, chloroquine, mefloquine, and hexamethylene amiloride demonstrated marked inhibition of virus induced CPE at low micromolar concentrations. Orthogonal assays confirmed inhibition of CPE was associated with significant reductions in viral replication. Selectivity indices calculated based on in vitro cytotoxicity screening and reductions in extracellular viral titre were 217, 24, and 20 for chloroquine, mefloquine, and hexamethylene amiloride respectively. Preliminary experiments performed to inform the antiviral mechanism of the compounds demonstrated all three acted at an early stage of viral replication. These results suggest that these direct acting antiviral compounds, or their derivatives, warrant further investigation for clinical use in cats with FIP.

  20. Differential effect of cholesterol on type I and II feline coronavirus infection.

    Science.gov (United States)

    Takano, Tomomi; Satomi, Yui; Oyama, Yuu; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal disease of domestic and wild felidae that is caused by feline coronavirus (FCoV). FCoV has been classified into types I and II. Since type I FCoV infection is dominant in the field, it is necessary to develop antiviral agents and vaccines against type I FCoV infection. However, few studies have been conducted on type I FCoV. Here, we compare the effects of cholesterol on types I and II FCoV infections. When cells were treated methyl-β-cyclodextrin (MβCD) and inoculated with type I FCoV, the infection rate decreased significantly, and the addition of exogenous cholesterol to MβCD-treated cells resulted in the recovery of the infectivity of type I FCoV. Furthermore, exogenous cholesterol increased the infectivity of type I FCoV. In contrast, the addition of MβCD and exogenous cholesterol had little effect on the efficiency of type II FCoV infection. These results strongly suggest that the dependence of infection by types I and II FCoV on cholesterol differs.

  1. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus.

    Science.gov (United States)

    Hsieh, Li-En; Lin, Chao-Nan; Su, Bi-Ling; Jan, Tong-Rong; Chen, Chi-Min; Wang, Ching-Ho; Lin, Dah-Sheng; Lin, Chung-Tien; Chueh, Ling-Ling

    2010-10-01

    Feline infectious peritonitis (FIP) is a fatal disease in domestic and nondomestic felids caused by feline coronavirus (FCoV). Currently, no effective vaccine is available for the prevention of this disease. In searching for agents that may prove clinically effective against FCoV infection, 16 compounds were screened for their antiviral activity against a local FCoV strain in Felis catus whole fetus-4 cells. The results showed that Galanthus nivalis agglutinin (GNA) and nelfinavir effectively inhibited FCoV replication. When the amount of virus preinoculated into the test cells was increased to mimic the high viral load present in the target cells of FIP cats, GNA and nelfinavir by themselves lost their inhibitory effect. However, when the two agents were added together to FCoV-infected cells, a synergistic antiviral effect defined by complete blockage of viral replication was observed. These results suggest that the combined use of GNA and nelfinavir has therapeutic potential in the prophylaxis and treatment of cats with early-diagnosed FIP.

  2. Immunohistochemistry Assay to Detect Turkey Coronavirus (TCoV from Experimentally Infected Poults

    Directory of Open Access Journals (Sweden)

    Thais Larissa L. Castanheira

    2007-01-01

    Full Text Available The objective of this study was to develop a direct immunohistochemical assay to detect TCoV antigens in formalin-fixed paraffin-embedded sections prepared from experimentally infected poults. The sections of ileo, ileo-cecal junction and ceca regions from intestine were prepared and submitted to two different primary antibodies, first the non-biotin labeled polyclonal antibody for the indirect method, and second the biotin-labeled polyclonal antibody, both raised against IBV by immunized specific pathogen free chickens. All sections were submitted to immufluorescent assay (IFA, a conventional method, and the results compared. The direct immunohistochemical technique showed a higher frequency of antigen in tissues, especially from the ileo-cecal junction with no difference between results obtained by the conventional method. Finally, the immunofluorescence and all modalities of molecular approaches have been played an important role to the diagnosis and prevention of TCoV infections, although to be precise on infectious disease diagnosis, it is necessary complementary techniques. Here, was standardized the biotin labeled polyclonal antibody as reliable tool to be used as an alternative detection of Turkey Coronavirus.

  3. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus.

    Directory of Open Access Journals (Sweden)

    I-Chueh Huang

    Full Text Available Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3 are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV hemagglutinin (HA protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2 of Marburg and Ebola filoviruses (MARV, EBOV. Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV and entry mediated by the SARS-CoV spike (S protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.

  4. Detection of Coronaviruses in Bats of Various Species in Italy

    Directory of Open Access Journals (Sweden)

    Maria B. Boniotti

    2013-10-01

    Full Text Available Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS and the Middle East respiratory syndrome (MERS CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl’s pipistrelle (Pipistrellus kuhlii, three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros, and 10 clade 2c betacoronaviruses from Kuhl’s pipistrelle, common noctule (Nyctalus noctula, and Savi’s pipistrelle (Hypsugo savii. This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses.

  5. The nucleocapsid protein of human coronavirus NL63.

    Directory of Open Access Journals (Sweden)

    Kaja Zuwała

    Full Text Available Human coronavirus (HCoV NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E. Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.

  6. Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination.

    Science.gov (United States)

    Ammayappan, Arun; Upadhyay, Chitra; Gelb, Jack; Vakharia, Vikram N

    2008-12-22

    An infectious bronchitis virus Arkansas DPI (Ark DPI) virulent strain was sequenced, analyzed and compared with many different IBV strains and coronaviruses. The genome of Ark DPI consists of 27,620 nucleotides, excluding poly (A) tail, and comprises ten open reading frames. Comparative sequence analysis of Ark DPI with other IBV strains shows striking similarity to the Conn, Gray, JMK, and Ark 99, which were circulating during that time period. Furthermore, comparison of the Ark genome with other coronaviruses demonstrates a close relationship to turkey coronavirus. Among non-structural genes, the 5'untranslated region (UTR), 3C-like proteinase (3CLpro) and the polymerase (RdRp) sequences are 100% identical to the Gray strain. Among structural genes, S1 has 97% identity with Ark 99; S2 has 100% identity with JMK and 96% to Conn; 3b 99%, and 3C to N is 100% identical to Conn strain. Possible recombination sites were found at the intergenic region of spike gene, 3'end of S1 and 3a gene. Independent recombination events may have occurred in the entire genome of Ark DPI, involving four different IBV strains, suggesting that genomic RNA recombination may occur in any part of the genome at number of sites. Hence, we speculate that the Ark DPI strain originated from the Conn strain, but diverged and evolved independently by point mutations and recombination between field strains.

  7. Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination

    Directory of Open Access Journals (Sweden)

    Gelb Jack

    2008-12-01

    Full Text Available Abstract An infectious bronchitis virus Arkansas DPI (Ark DPI virulent strain was sequenced, analyzed and compared with many different IBV strains and coronaviruses. The genome of Ark DPI consists of 27,620 nucleotides, excluding poly (A tail, and comprises ten open reading frames. Comparative sequence analysis of Ark DPI with other IBV strains shows striking similarity to the Conn, Gray, JMK, and Ark 99, which were circulating during that time period. Furthermore, comparison of the Ark genome with other coronaviruses demonstrates a close relationship to turkey coronavirus. Among non-structural genes, the 5'untranslated region (UTR, 3C-like proteinase (3CLpro and the polymerase (RdRp sequences are 100% identical to the Gray strain. Among structural genes, S1 has 97% identity with Ark 99; S2 has 100% identity with JMK and 96% to Conn; 3b 99%, and 3C to N is 100% identical to Conn strain. Possible recombination sites were found at the intergenic region of spike gene, 3'end of S1 and 3a gene. Independent recombination events may have occurred in the entire genome of Ark DPI, involving four different IBV strains, suggesting that genomic RNA recombination may occur in any part of the genome at number of sites. Hence, we speculate that the Ark DPI strain originated from the Conn strain, but diverged and evolved independently by point mutations and recombination between field strains.

  8. Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion.

    Science.gov (United States)

    Hewson, Kylie A; Ignjatovic, Jagoda; Browning, Glenn F; Devlin, Joanne M; Noormohammadi, Amir H

    2011-02-01

    Infectious bronchitis viruses (IBVs) are group III coronaviruses that infect poultry worldwide. Genetic variations, including whole-gene deletions, are key to IBV evolution. Australian subgroup 2 IBVs contain sequence insertions and multiple gene deletions that have resulted in a substantial genomic divergence from international IBVs. The genomic variations present in Australian IBVs were investigated and compared to those of another group III coronavirus, turkey coronavirus (TCoV). Open reading frames (ORFs) found throughout the genome of Australian IBVs were analogous in sequence and position to TCoV ORFs, except for ORF 4b, which appeared to be translocated to a different position in the subgroup 2 strains. Subgroup 2 strains were previously reported to lack genes 3a, 3b and 5a, with some also lacking 5b. Of these, however, genes 3b and 5b were found to be present but contained various mutations that may affect transcription. In this study, it was found that subgroup 2 IBVs have undergone a more substantial genomic rearrangements than previously thought.

  9. Differential effects of viroporin inhibitors against feline infectious peritonitis virus serotypes I and II.

    Science.gov (United States)

    Takano, Tomomi; Nakano, Kenta; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2015-05-01

    Feline infectious peritonitis virus (FIP virus: FIPV), a feline coronavirus of the family Coronaviridae, causes a fatal disease called FIP in wild and domestic cat species. The genome of coronaviruses encodes a hydrophobic transmembrane protein, the envelope (E) protein. The E protein possesses ion channel activity. Viral proteins with ion channel activity are collectively termed "viroporins". Hexamethylene amiloride (HMA), a viroporin inhibitor, can inhibit the ion channel activity of the E protein and replication of several coronaviruses. However, it is not clear whether HMA and other viroporin inhibitors affect replication of FIPV. We examined the effect of HMA and other viroporin inhibitors (DIDS [4,4'-disothiocyano-2,2'-stilbenedisulphonic acid] and amantadine) on infection by FIPV serotypes I and II. HMA treatment drastically decreased the titers of FIPV serotype I strains Black and KU-2 in a dose-dependent manner, but it only slightly decreased the titer of FIPV serotype II strain 79-1146. In contrast, DIDS treatment decreased the titer of FIPV serotype II strain 79-1146 in dose-dependent manner, but it only slightly decreased the titers of FIPV serotype I strains Black and KU-2. We investigated whether there is a difference in ion channel activity of the E protein between viral serotypes using E. coli cells expressing the E protein of FIPV serotypes I and II. No difference was observed, suggesting that a viroporin other than the E protein influences the differences in the actions of HMA and DIDS on FIPV serotypes I and II.

  10. [Infectious diseases research].

    Science.gov (United States)

    Carratalà, Jordi; Alcamí, José; Cordero, Elisa; Miró, José M; Ramos, José Manuel

    2008-12-01

    There has been a significant increase in research activity into infectious diseases in Spain in the last few years. The Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) currently has ten study groups, with the cooperation of infectious diseases specialists and microbiologists from different centres, with significant research activity. The program of Redes Temáticas de Investigación Cooperativa en Salud (Special Topics Cooperative Health Research Networks) is an appropriate framework for the strategic coordination of research groups from the Spanish autonomous communities. The Spanish Network for Research in Infectious Diseases (REIPI) and the Network for Research in AIDS (RIS) integrate investigators in Infectious Diseases from multiple groups, which continuously perform important research projects. Research using different experimental models in infectious diseases, in numerous institutions, is an important activity in our country. The analysis of the recent scientific production in Infectious Diseases shows that Spain has a good position in the context of the European Union. The research activity in Infectious Diseases carried out in our country is a great opportunity for the training of specialists in this area of knowledge.

  11. The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus

    Directory of Open Access Journals (Sweden)

    Enjuanes Luis

    2011-09-01

    Full Text Available Abstract Background Transmissible gastroenteritis virus (TGEV has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity. Methods The infectivity of different viruses was analyzed by a plaque assay after adsorption times of 5, 20, and 60 min. Prior to infection, cultured cells were either treated with neuraminidase to deplete sialic acids from the cell surface, or mock-treated. In a second approach, pre-treatment of the virus with porcine intestinal mucin was performed, followed by the plaque assay after a 5 min adsorption time. A student's t-test was used to verify the significance of the results. Results Desialylation of cells only had a minor effect on the infection by TGEV strain Purdue 46 when an adsorption period of 60 min was allowed for initiation of infection. However, when the adsorption time was reduced to 5 min the infectivity on desialylated cells decreased by more than 60%. A TGEV PUR46 mutant (HAD3 deficient in sialic acid binding showed a 77% lower titer than the parental virus after a 5 min adsorption time. After an adsorption time of 60 min the titer of HAD3 was 58% lower than that of TGEV PUR46. Another TGEV strain, TGEV Miller, and IBV Beaudette showed a reduction in infectivity after neuraminidase treatment of the cultured cells irrespective of the virion adsorption time. Conclusions Our results suggest that the sialic acid binding activity facilitates the infection by TGEV under unfavorable environmental conditions. The dependence on the sialic acid binding activity for an efficient infection differs in the analyzed TGEV strains.

  12. Pathogenesis and transmission of highly pathogenic avian influenza H5Nx in swine

    Science.gov (United States)

    Introduction Influenza A viruses (IAV) periodically transmit between pigs, people, and birds. If two IAV strains infect the same host, genes can reassort to generate progeny virus with potential to be more infectious or avoid immunity. Pigs pose a risk for such reassortment. Highly pathogenic avian ...

  13. IL-17A regulates Eimeria tenella schizont maturation and migration in avian coccidiosis

    Science.gov (United States)

    Although IL17A is associated with the immunological control of various infectious diseases, its role in host response to Eimeria infections is not well understood. In an effort to better dissect the role of IL17A in host-pathogen interactions in avian coccidiosis, a neutralizing antibody (Ab) to chi...

  14. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

    NARCIS (Netherlands)

    Walls, Alexandra C; Tortorici, M Alejandra; Bosch, Berend-Jan; Frenz, Brandon; Rottier, Peter J M; DiMaio, Frank; Rey, Félix A; Veesler, David

    2016-01-01

    The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion f

  15. Biological Characteristics and Etiological Significance of Porcine Respiratory Coronavirus(PRCV)

    Institute of Scientific and Technical Information of China (English)

    FAN Xiuping; FENG Li; SHI Hongyan; CHEN Jianfei

    2009-01-01

    Porcine respiratory coronavirus (PRCV), a spike (S) gene natural deletion mutant of transmissible gastroenteritis virus (TGEV), causes porcine respiratory disease complex. Research advances on porcine respiratory coronavirus were reviewed from four aspects of biological character, the model function for SARS-CoV research, contribution of the immunity to PRCV to protection against TGEV challenge exposure and other etiological significance.

  16. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    2007-08-01

    Full Text Available Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1. In cell culture, nsp1 of mouse hepatitis virus (MHV, like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.

  17. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits.

    Science.gov (United States)

    Lau, Susanna K P; Woo, Patrick C Y; Yip, Cyril C Y; Fan, Rachel Y Y; Huang, Yi; Wang, Ming; Guo, Rongtong; Lam, Carol S F; Tsang, Alan K L; Lai, Kenneth K Y; Chan, Kwok-Hung; Che, Xiao-Yan; Zheng, Bo-Jian; Yuen, Kwok-Yung

    2012-05-01

    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 10(8) copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5'-UCUAAAC-3'. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits.

  18. Avian influenza control strategies

    Science.gov (United States)

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  19. Avian influenza virus

    Science.gov (United States)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  20. Coronavirus bovino: Infecciones neumoentéricas (Bovine coronavirus:Neumoenteric infections

    Directory of Open Access Journals (Sweden)

    Betancourt, Martell, Alexander|

    2006-12-01

    Full Text Available Coronavirus bovino (BCoV es reconocido como un importante agente patógeno del ganado bovino, el cual está asociado a tres síndromes clínicos diferentes, Síndrome diarreico neonatal del ternero, caracterizado en terneros recién nacidos por diarreas líquidas profusas, en ocasiones hemorrágicas, anorexia, deshidratación y frecuentemente la muerte; Disentería de Invierno, la cual ocurre primariamente en bovinos adultos y cursa con severas diarreas, algunas veces con restos de sangre y mucus, decrecimiento de laproducción láctea, depresión, anorexia y descargas nasolagrimales; y finalmente como causa de infecciones respiratorias en vacas, incluida la Fiebre de Embarque. En todos los casos el diagnóstico requiere deensayos de laboratorio para la confirmación de BCoV, debido que resulta imposible su reconocimiento basado en elementos clínicos y anatomopatológicos por su similitud con otras enfermedades. Hasta elmomento todos los aislados de BCoV, tanto de cuadros entéricos como respiratorios pertenecen a un solo serotipo, pero con dos o tres subtipos identificados por seroneutralización empleando anticuerposmonoclonales. En adición, diferencias genéticas (por mutaciones puntuales, no delecciones han sido detectadas en el gen S, diferenciando entre aislados entéricos y respiratorios. No obstante, numerosos experimentos han demostrado la protección cruzada experimentada por terneros recién nacidos, privados de calostro ygnotobióticos, inoculados con aislados de BCoV obtenidos a partir de cuadros entéricos y respiratorios de terneros y bovinos adultos, los cuales resultaron protegidos al desafío subsiguiente con cepas de BCoV asociadas a diarrea.

  1. Enhanced Surveillance for Detection and Management of Infectious Diseases: Regional Collaboration in the Middle East

    Directory of Open Access Journals (Sweden)

    Alex Leventhal

    2013-01-01

    Full Text Available Formed before international negotiations of the revised International Health Regulations (IHR, the Middle East Consortium for Infectious Disease Surveillance (MECIDS is a regional collaboration aimed at facilitating implementation of the revised IHR and, more broadly, improving the detection and control of infectious disease outbreaks among neighboring countries in an area of continuous dispute. Initially focused on enhancing foodborne disease surveillance, MECIDS has expanded the scope of its work to also include avian and pandemic influenza and other emerging and re-emerging infectious diseases. Here, we describe the history and governance of MECIDS, highlighting key achievements over the consortium's seven-year history, and discuss the future of MECIDS.

  2. Intrahost Diversity of Feline Coronavirus: A Consensus between the Circulating Virulent/Avirulent Strains and the Internal Mutation Hypotheses?

    Directory of Open Access Journals (Sweden)

    Aline S. Hora

    2013-01-01

    Full Text Available To evaluate the most controversial issue concerning current feline coronavirus (FCoV virology, the coexisting hypotheses of the intrahost and interhost origins of feline infectious peritonitis virus (FIPV in regard to the pathogenesis of feline infectious peritonitis (FIP, this study aimed to assess the molecular diversity of the membrane gene FCoVs in 190 samples from 10 cats with signs of FIP and in 5 faecal samples from cats without signs of FIP. All samples from the non-FIP cats and 25.26% of the samples from the FIP cats were positive for the FCoV membrane (M gene. Mutations in this gene consisted of SNP changes randomly scattered among the sequences; few mutations resulted in amino acid changes. No geographic pattern was observed. Of the cats without FIP that harboured FECoV, the amino acid sequence identities for the M gene were 100% among cats (Cats 1–3 from the same cattery, and the overall sequence identity for the M gene was ≥91%. In one cat, two different lineages of FCoV, one enteric and one systemic, were found that segregated apart in the M gene tree. In conclusion, the in vivo mutation transition hypothesis and the circulating high virulent-low virulent FCoV hypothesis have been found to be plausible according to the results obtained from sequencing the M gene.

  3. Infectious bovine keratoconjunctivitis (pinkeye)

    OpenAIRE

    Angelos, JA

    2015-01-01

    Copyright © 2015 Elsevier Inc. All rights reserved. As is the case for controlling other infectious livestock diseases, the most successful efforts to control infectious bovine keratoconjunctivitis (IBK) will include consideration of the host, the environment, herd management, and ongoing surveillance even after the immediate crisis has passed. Research over many years has led to the discovery of a variety of antibiotic treatments and antibiotic regimens that can be effective against IBK. The...

  4. BIRD FLU (AVIAN INFLUENZA)

    OpenAIRE

    Ali ACAR; Bulent BESIRBELLIOÐLU

    2005-01-01

    Avian influenza (bird flu) is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, ...

  5. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  6. Peptides corresponding to the predicted heptad repeat 2 domain of the feline coronavirus spike protein are potent inhibitors of viral infection.

    Directory of Open Access Journals (Sweden)

    I-Jung Liu

    Full Text Available BACKGROUND: Feline infectious peritonitis (FIP is a lethal immune-mediated disease caused by feline coronavirus (FCoV. Currently, no therapy with proven efficacy is available. In searching for agents that may prove clinically effective against FCoV infection, five analogous overlapping peptides were designed and synthesized based on the putative heptad repeat 2 (HR2 sequence of the spike protein of FCoV, and the antiviral efficacy was evaluated. METHODS: Plaque reduction assay and MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide cytotoxicity assay were performed in this study. Peptides were selected using a plaque reduction assay to inhibit Feline coronavirus infection. RESULTS: The results demonstrated that peptide (FP5 at concentrations below 20 μM inhibited viral replication by up to 97%. The peptide (FP5 exhibiting the most effective antiviral effect was further combined with a known anti-viral agent, human interferon-α (IFN-α, and a significant synergistic antiviral effect was observed. CONCLUSION: Our data suggest that the synthetic peptide FP5 could serve as a valuable addition to the current FIP prevention methods.

  7. Avian cholera, a threat to the viability of an Arctic seabird colony?

    Directory of Open Access Journals (Sweden)

    Sébastien Descamps

    Full Text Available Evidence that infectious diseases cause wildlife population extirpation or extinction remains anecdotal and it is unclear whether the impacts of a pathogen at the individual level can scale up to population level so drastically. Here, we quantify the response of a Common eider colony to emerging epidemics of avian cholera, one of the most important infectious diseases affecting wild waterfowl. We show that avian cholera has the potential to drive colony extinction, even over a very short period. Extinction depends on disease severity (the impact of the disease on adult female survival and disease frequency (the number of annual epidemics per decade. In case of epidemics of high severity (i.e., causing >30% mortality of breeding females, more than one outbreak per decade will be unsustainable for the colony and will likely lead to extinction within the next century; more than four outbreaks per decade will drive extinction to within 20 years. Such severity and frequency of avian cholera are already observed, and avian cholera might thus represent a significant threat to viability of breeding populations. However, this will depend on the mechanisms underlying avian cholera transmission, maintenance, and spread, which are currently only poorly known.

  8. Emergent infectious uveitis

    Directory of Open Access Journals (Sweden)

    Khairallah Moncef

    2009-01-01

    Full Text Available Infectious causes should always be considered in all patients with uveitis and it should be ruled out first. The differential diagnosis includes multiple well-known diseases including herpes, syphilis, toxoplasmosis, tuberculosis, bartonellosis, Lyme disease, and others. However, clinicians should be aware of emerging infectious agents as potential causes of systemic illness and also intraocular inflammation. Air travel, immigration, and globalization of business have overturned traditional pattern of geographic distribution of infectious diseases, and therefore one should work locally but think globally, though it is not possible always. This review recapitulates the systemic and ocular mainfestations of several emergent infectious diseases relevant to the ophthalmologist including Rickettsioses, West Nile virus infection, Rift valley fever, dengue fever, and chikungunya. Retinitis, chorioretinitis, retinal vasculitis, and optic nerve involvement have been associated with these emergent infectious diseases. The diagnosis of any of these infections is usually based on pattern of uveitis, systemic symptoms and signs, and specific epidemiological data and confirmed by detection of specific antibody in serum. A systematic ocular examination, showing fairly typical fundus findings, may help in establishing an early clinical diagnosis, which allows prompt, appropriate management.

  9. Coronavirus envelope (E) protein remains at the site of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Venkatagopalan, Pavithra [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Daskalova, Sasha M. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401 (United States); Lopez, Lisa A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Dolezal, Kelly A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Hogue, Brenda G., E-mail: Brenda.Hogue@asu.edu [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States)

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  10. Coronaviridae and SARS-associated Coronavirus Strain HSR1

    Science.gov (United States)

    Canducci, Filippo; Pinna, Debora; Mancini, Nicasio; Carletti, Silvia; Lazzarin, Adriano; Bordignon, Claudio; Poli, Guido; Clementi, Massimo

    2004-01-01

    During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription–polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 μg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features. PMID:15109406

  11. Middle East respiratory syndrome coronavirus: epidemiology and disease control measures

    Directory of Open Access Journals (Sweden)

    Al-Tawfiq JA

    2014-11-01

    Full Text Available Jaffar A Al-Tawfiq,1,2 Ziad A Memish3,4 1Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; 2Indiana University School of Medicine, Indianapolis, IN, USA; 3Ministry of Health, 4Alfaisal University, Riyadh, Saudi Arabia Abstract: The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV infection in 2012 resulted in an increased concern of the spread of the infection globally. MERS-CoV infection had previously caused multiple health-care-associated outbreaks and resulted in transmission of the virus within families. Community onset MERS-CoV cases continue to occur. Dromedary camels are currently the most likely animal to be linked to human MERS-CoV cases. Serologic tests showed significant infection in adult camels compared to juvenile camels. The control of MERS-CoV infection relies on prompt identification of cases within health care facilities, with institutions applying appropriate infection control measures. In addition, determining the exact route of transmission from camels to humans would further add to the control measures of MERS-CoV infection. Keywords: MERS, Middle East respiratory syndrome coronavirus, epidemiology, control measures, transmission, Saudi Arabia

  12. An update on feline infectious peritonitis: virology and immunopathogenesis.

    Science.gov (United States)

    Pedersen, Niels C

    2014-08-01

    Feline infectious peritonitis (FIP) continues to be one of the most researched infectious diseases of cats. The relatively high mortality of FIP, especially for younger cats from catteries and shelters, should be reason enough to stimulate such intense interest. However, it is the complexity of the disease and the grudging manner in which it yields its secrets that most fascinate researchers. Feline leukemia virus infection was conquered in less than two decades and the mysteries of feline immunodeficiency virus were largely unraveled in several years. After a half century, FIP remains one of the last important infections of cats for which we have no single diagnostic test, no vaccine and no definitive explanations for how virus and host interact to cause disease. How can a ubiquitous and largely non-pathogenic enteric coronavirus transform into a highly lethal pathogen? What are the interactions between host and virus that determine both disease form (wet or dry) and outcome (death or resistance)? Why is it so difficult, and perhaps impossible, to develop a vaccine for FIP? What role do genetics play in disease susceptibility? This review will explore research conducted over the last 5 years that attempts to answer these and other questions. Although much has been learned about FIP in the last 5 years, the ultimate answers remain for yet more studies.

  13. Infectious bovine keratoconjunctivitis (pinkeye).

    Science.gov (United States)

    Angelos, John A

    2015-03-01

    As is the case for controlling other infectious livestock diseases, the most successful efforts to control infectious bovine keratoconjunctivitis (IBK) will include consideration of the host, the environment, herd management, and ongoing surveillance even after the immediate crisis has passed. Research over many years has led to the discovery of a variety of antibiotic treatments and antibiotic regimens that can be effective against IBK. The discoveries of Mor bovoculi and reports of IBK associated with Mycoplasma spp without concurrent Mor bovis or Mor bovoculi have raised new questions into the roles that other organisms may play in IBK pathogenesis.

  14. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors.

    Science.gov (United States)

    Medeiros, Matthew C I; Ricklefs, Robert E; Brawn, Jeffrey D; Hamer, Gabriel L

    2015-11-01

    The prevalence of vector-borne parasites varies greatly across host species, and this heterogeneity has been used to relate infectious disease susceptibility to host species traits. However, a few empirical studies have directly associated vector-borne parasite prevalence with exposure to vectors across hosts. Here, we use DNA sequencing of blood meals to estimate utilization of different avian host species by Culex mosquitoes, and relate utilization by these malaria vectors to avian Plasmodium prevalence. We found that avian host species that are highly utilized as hosts by avian malaria vectors are significantly more likely to have Plasmodium infections. However, the effect was not consistent among individual Plasmodium taxa. Exposure to vector bites may therefore influence the relative number of all avian Plasmodium infections among host species, while other processes, such as parasite competition and host-parasite coevolution, delimit the host distributions of individual Plasmodium species. We demonstrate that links between avian malaria susceptibility and host traits can be conditioned by patterns of exposure to vectors. Linking vector utilization rates to host traits may be a key area of future research to understand mechanisms that produce variation in the prevalence of vector-borne pathogens among host species.

  15. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir

    OpenAIRE

    Mohd, Hamzah A.; Al-Tawfiq, Jaffar A; Memish, Ziad A.

    2016-01-01

    Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans. Though not confirmed yet, multiple surveillance and phylogenetic studies suggest a bat origin. The disease is heavily endemic in dromedary camel populations of East Africa and the Middle East. It is unclear as to when the virus was introduced to dromedary camels, but data from studies that investigated stored dromedary camel sera and ge...

  16. Fatal respiratory distress syndrome due to coronavirus infection in a child with severe combined immunodeficiency.

    Science.gov (United States)

    Szczawinska-Poplonyk, Aleksandra; Jonczyk-Potoczna, Katarzyna; Breborowicz, Anna; Bartkowska-Sniatkowska, Alicja; Figlerowicz, Magdalena

    2013-09-01

    Coronaviruses have been demonstrated to contribute substantially to respiratory tract infections among the child population. Though infected children commonly present mild upper airway symptoms, in high-risk patients with underlying conditions, particularly in immunocompromised children these pathogens may lead to severe lung infection and extrapulmonary disorders. In this paper, we provide the first report of the case of a 15-month-old child with severe combined immunodeficiency and coronavirus HKU1-related pneumonia with fatal respiratory distress syndrome.

  17. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A

    OpenAIRE

    Susanna K. P. Lau; Woo, Patrick C.Y.; Li, Kenneth S. M.; Tsang, Alan K. L.; Fan, Rachel Y. Y.; Luk, Hayes K. H.; Cai, Jian-Piao; Chan, Kwok-Hung; Zheng, Bo-Jian; Wang, Ming; Yuen, Kwok-Yung

    2015-01-01

    We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCo...

  18. Infectious uveitis in Virginia

    Directory of Open Access Journals (Sweden)

    Engelhard SB

    2015-08-01

    Full Text Available Stephanie B Engelhard,1 Zeina Haddad,1 Asima Bajwa,1 James Patrie,2 Wenjun Xin,2 Ashvini K Reddy1 1Department of Ophthalmology, 2Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA Purpose: To report the causes, clinical features, and outcomes of infectious uveitis in patients managed in a mid-Atlantic tertiary care center.Methods: Retrospective, observational study of infectious uveitis patients seen at the University of Virginia from 1984 to 2014.Results: Seventy-seven of 491 patients (15.7% were diagnosed with infectious uveitis (mean age 58 years, 71.4% female, 76.6% Caucasian. The mean follow-up was 5 years. Anterior uveitis was the most common anatomic classification (39 patients, 50.6% followed by panuveitis (20 patients, 26.0% and posterior uveitis (18 patients, 23.4%. The most common infectious etiology was herpetic anterior uveitis (37 patients, 48.1% followed by toxoplasma uveitis (14 patients, 18.2%. The most prevalent viral pathogen was varicella-zoster virus (21 patients, 27.3% followed by herpes simplex virus (20 patients, 26.0%. Acute retinal necrosis (ARN was diagnosed in 14 patients (18.2%. Aqueous humor yielded an etiologic diagnosis in seven (50% of ARN patients, four of whom tested positive for cytomegalovirus and three for varicella-zoster virus. On presentation, 43 patients (55.8% had a visual acuity (VA better than 20/40 and 17 (22.1% had a VA worse than 20/200. VA at the final follow-up was better than 20/40 in 39 patients (50.6% and worse than 20/200 in 22 patients (28.6%. In all, 16 (20.8% and 10 (13.0% patients required cataract and vitrectomy surgery, respectively. A total of 14 patients (18.2% were on glaucoma topical treatment and four (5.2% required glaucoma surgery.Conclusion: The most common type of infectious uveitis seen over the study period was herpetic anterior uveitis secondary to varicella-zoster virus or herpes simplex virus, found to be most prevalent in patients

  19. Rapid sample preparation for detection and identification of avian influenza virus from chicken faecal samples using magnetic bead microsystem

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram; Bu, Minqiang; Handberg, Kurt;

    2010-01-01

    Avian influenza virus (AIV) is an infectious agent of birds and mammals. AIV is causing huge economic loss and can be a threat to human health. Reverse transcriptase polymerase chain reaction (RT-PCR) has been used as a method for the detection and identification of AIV virus. Although RT...

  20. Detection of avian nephritis virus in Australian chicken flocks.

    Science.gov (United States)

    Hewson, Kylie A; O'Rourke, Denise; Noormohammadi, Amir H

    2010-09-01

    Avian nephritis virus (ANV) is thought to infect poultry flocks worldwide, but no confirmed case has been reported in Australia. The first such case is described in this study. Cases of young chickens with clinical signs of dehydration and diarrhea were submitted to our laboratory and histopathology detected interstitial nephritis. Vaccine strains of infectious bronchitis virus were detected in some of these cases but were not considered to be the causative agent. A total of seven fresh submissions from broiler chicken flocks were collected at 8-11 days of age. Degenerate PCR primers were designed based on published ANV polymerase gene sequences and used to analyze historic cases as well as the fresh submissions. Six of the seven fresh submissions, and one historic case, were positive for ANV with nucleotide sequencing confirming these results. These results establish ANV as an infectious pathogen circulating in Australian poultry.

  1. Vasculitis and infectious diseases.

    Science.gov (United States)

    Satta, R; Biondi, G

    2015-04-01

    Vasculitis usually presents without a well-known underline cause (idiopathic vasculitis), nevertheless, it is sometimes possible to find out one or more causative agents (secondary vasculitis). Nowadays, thanks to the increasing amount of precise diagnostic tools, a piece of idiopathic vasculitis is reclassified as associated with probable etiology, which can be set off by several factors, such as infections. Infections are considered to be the most common cause of secondary vasculitis. Virtually, every infectious agent can trigger a vasculitis by different mechanisms which can be divided in two main categories: direct and indirect. In the former, infectious agents destroy directly the vascular wall leading, eventually, to a subsequent inflammatory response. In the latter, indirect form, they stimulate an immune response against blood vessels. Different infectious agents are able to directly damage the vascular wall. Among these, it is possible to recognize Staphylococcus spp, Streptococcus spp, Salmonella spp, Treponema spp, Rickettsia spp, Cytomegalovirus, Herpes Simplex Virus 1 and 2, and many others which have a peculiar tropism for endothelial cells. Conversely, another group of microbial agents, such as Mycobacterium tuberculosis, Mycobacterium leprae, Hepatits B Virus, Human Immunodeficiency Virus and others, trigger vasculitis in the indirect way. This is due to the fact that they can share epitopes with the host or modify self-antigens, thus leading to a cross-self reaction of the immune system. These mechanism, in turn, leads to immunological responses classified as type I-IV by Gell-Coombs. Nevertheless, it is difficult to strictly separate the direct and indirect forms, because most infectious agents can cause vasculitis in both ways (mixed forms). This paper will analyze the link between infectious agents and vasculitis, focusing on direct and indirect secondary vasculitis, and on a group of probable infection-related idiopathic vasculitis, and finally

  2. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.

    Science.gov (United States)

    Raj, V Stalin; Mou, Huihui; Smits, Saskia L; Dekkers, Dick H W; Müller, Marcel A; Dijkman, Ronald; Muth, Doreen; Demmers, Jeroen A A; Zaki, Ali; Fouchier, Ron A M; Thiel, Volker; Drosten, Christian; Rottier, Peter J M; Osterhaus, Albert D M E; Bosch, Berend Jan; Haagmans, Bart L

    2013-03-14

    Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.

  3. Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Zielecki, Florian; Weber, Michaela; Eickmann, Markus; Spiegelberg, Larissa; Zaki, Ali Moh; Matrosovich, Mikhail; Becker, Stephan; Weber, Friedemann

    2013-05-01

    Infections with human coronavirus EMC (HCoV-EMC) are associated with severe pneumonia. We demonstrate that HCoV-EMC resembles severe acute respiratory syndrome coronavirus (SARS-CoV) in productively infecting primary and continuous cells of the human airways and in preventing the induction of interferon regulatory factor 3 (IRF-3)-mediated antiviral alpha/beta interferon (IFN-α/β) responses. However, HCoV-EMC was markedly more sensitive to the antiviral state established by ectopic IFN. Thus, HCoV-EMC can utilize a broad range of human cell substrates and suppress IFN induction, but it does not reach the IFN resistance of SARS-CoV.

  4. Expression and Purification of SARS Coronavirus Membrane Protein

    Institute of Scientific and Technical Information of China (English)

    戴五星; 雷明军; 吴少庭; 陈智浩; 梁靓; 潘晖榕; 秦莉; 高士同; 袁仕善; 张仁利

    2004-01-01

    To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis revealed that the cloned DNA sequence was the same as that reported. The re combinants were transformed into Escherichia coli (E. Coli) BL21 (DE3) and induced by Isopropylβ-D-thiogalactopyranoside (IPTG). The expression of 27 kD (1 kD=0. 992 1 ku) protein was detected by SDS-PAGE and pured by metal chelated chromatography. Results of Western-blot showed that this expressed protein could react with antibodies in sera of SARS patients during convalescence. This provided the basis for the further study on SARS virus vaccine and diagnostic agents.

  5. Identification of an epitope of SARS-coronavirus nucleocapsid protein

    Institute of Scientific and Technical Information of China (English)

    YING LIN; JIN WANG; HONG XIA WANG; HUA LIANG JIANG; JIAN HUA SHEN; YOU HUA XIE; YUAN WANG; GANG PEI; BEI FEN SHEN; JIA RUI WU; BING SUN; XU SHEN; RUI FU YANG; YI XUE LI; YONG YONG JI; YOU YU HE; MUDE SHI; WEI LU; TIE LIU SHI

    2003-01-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV werepredicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodieswere isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-inducedpolyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratorysyndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.

  6. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    Directory of Open Access Journals (Sweden)

    Makoto Ujike

    2015-04-01

    Full Text Available The envelopes of coronaviruses (CoVs contain primarily three proteins; the two major glycoproteins spike (S and membrane (M, and envelope (E, a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER-Golgi intermediate compartment (ERGIC. For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions.

  7. Avian rotavirus enteritis - an updated review.

    Science.gov (United States)

    Dhama, Kuldeep; Saminathan, Mani; Karthik, Kumaragurubaran; Tiwari, Ruchi; Shabbir, Muhammad Zubair; Kumar, Naveen; Malik, Yashpal Singh; Singh, Raj Kumar

    2015-01-01

    Rotaviruses (RVs) are among the leading causes of enteritis and diarrhea in a number of mammalian and avian species, and impose colossal loss to livestock and poultry industry globally. Subsequent to detection of rotavirus in mammalian hosts in 1973, avian rotavirus (AvRV) was first reported in turkey poults in USA during 1977 and since then RVs of group A (RVA), D (RVD), F (RVF) and G (RVG) have been identified around the globe. Besides RVA, other AvRV groups (RVD, RVF and RVG) may also contribute to disease. However, their significance has yet to be unraveled. Under field conditions, co-infection of AvRVs occurs with other infectious agents such as astroviruses, enteroviruses, reoviruses, paramyxovirus, adenovirus, Salmonella, Escherichia coli, cryptosporidium and Eimeria species prospering severity of disease outcome. Birds surviving to RV disease predominantly succumb to secondary bacterial infections, mostly E. coli and Salmonella spp. Recent developments in molecular tools including state-of-the-art diagnostics and vaccine development have led to advances in our understanding towards AvRVs. Development of new generation vaccines using immunogenic antigens of AvRV has to be explored and given due importance. Till now, no effective vaccines are available. Although specific as well as sensitive approaches are available to identify and characterize AvRVs, there is still need to have point-of-care detection assays to review disease burden, contemplate new directions for adopting vaccination and follow improvements in public health measures. This review discusses AvRVs, their epidemiology, pathology and pathogenesis, immunity, recent trends in diagnostics, vaccines, therapeutics as well as appropriate prevention and control strategies.

  8. 76 FR 39041 - Infectious Diseases

    Science.gov (United States)

    2011-07-05

    ... Occupational Safety and Health Administration 29 CFR Part 1910 RIN 1218-AC46 Infectious Diseases AGENCY... exposure to infectious diseases. OSHA plans to use the information gathered at these meetings to explore... your request to: (781) 674-7200, and label it ``Attention: OSHA Infectious Diseases Stakeholder...

  9. Koyukuk NWR 1985 avian checklist

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An avian checklist survey was conducted within the boundaries of the Koyukuk National Wildlife Refuge and Kaiyuh Flats unit of the Innoko National Wildlife Refuge...

  10. Koyukuk NWR 1986 avian checklist

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An avian checklist survey was conducted within the boundaries of the Koyukuk National Wildlife Refuge and Kaiyuh Flats unit of the Innoko National Wildlife Refuge in...

  11. Wetlands and infectious diseases

    OpenAIRE

    Robert H. Zimmerman

    2001-01-01

    There is a historical association between wetlands and infectious disease that has led to the modification of wetlands to prevent disease. At the same time there has been the development of water resources projects that increase the risk of disease. The demand for more water development projects and the increased pressure to make natural wetlands economically beneficial creates the need for an ecological approach to wetland management and health assessment. The environmental and health intera...

  12. Simulating avian wingbeat kinematics.

    Science.gov (United States)

    Parslew, Ben; Crowther, William J

    2010-12-01

    Inverse dynamics methods are used to simulate avian wingbeats in varying flight conditions. A geometrically scalable multi-segment bird model is constructed, and optimisation techniques are employed to determine segment motions that generate desired aerodynamic force coefficients with minimal mechanical power output. The results show that wingbeat kinematics vary gradually with changes in cruise speed, which is consistent with experimental data. Optimised solutions for cruising flight of the pigeon suggest that upstroke wing retraction is used as a method of saving energy. Analysis of the aerodynamic force coefficient variation in high and low speed cruise leads to the proposal that a suitable gait metric should include both thrust and lift generation during each half-stroke.

  13. Avian host defense peptides.

    Science.gov (United States)

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  14. BIRD FLU (AVIAN INFLUENZA

    Directory of Open Access Journals (Sweden)

    Ali ACAR

    2005-12-01

    Full Text Available Avian influenza (bird flu is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, severe respiratory diseases and other severe and life-threatening complications. In such situation, people should avoid contact with infected birds or contaminated surface, and should be careful when handling and cooking poultry. [TAF Prev Med Bull 2005; 4(6.000: 345-353

  15. Protection of chickens against avian hepatitis E virus (avian HEV) infection by immunization with recombinant avian HEV capsid protein.

    Science.gov (United States)

    Guo, H; Zhou, E M; Sun, Z F; Meng, X J

    2007-04-12

    Avian hepatitis E virus (avian HEV) is an emerging virus associated with hepatitis-splenomegaly syndrome in chickens in North America. Avian HEV is genetically and antigenically related to human HEV, the causative agent of hepatitis E in humans. In the lack of a practical animal model, avian HEV infection in chickens has been used as a model to study human HEV replication and pathogenesis. A 32 kDa recombinant ORF2 capsid protein of avian HEV expressed in Escherichia coli was found having similar antigenic structure as that of human HEV containing major neutralizing epitopes. To determine if the capsid protein of avian HEV can be used as a vaccine, 20 chickens were immunized with purified avian HEV recombinant protein with aluminum as adjuvant and another 20 chickens were mock immunized with KLH precipitated in aluminum as controls. Both groups of chickens were subsequently challenged with avian HEV. All the tested mock-immunized control chickens developed typical avian HEV infection characterized by viremia, fecal virus shedding and seroconversion to avian HEV antibodies. Gross hepatic lesions were also found in portion of these chickens. In contrast, none of the tested chickens immunized with avian HEV capsid protein had detectable viremia, fecal virus shedding or observable gross hepatitis lesions. The results from this study suggested that immunization of chickens with avian HEV recombinant ORF2 capsid protein with aluminum as adjuvant can induce protective immunity against avian HEV infection. Chickens are a useful small animal model to study anti-HEV immunity and pathogenesis.

  16. Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro.

    Science.gov (United States)

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2015-03-23

    Virulent biotypes of feline coronavirus (FCoV), commonly referred to as feline infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, a problem which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV.

  17. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  18. A reverse transcription-polymerase chain reaction assay for the detection of avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Ali, A; Reynolds, D L

    1999-01-01

    A reverse transcription-polymerase chain reaction assay was developed for the detection of avian pneumovirus (Colorado strain) (APV-Col). The specific primers were designed from the published sequence of the matrix protein gene of APV-Col. The primers amplified a product of 631 nucleotides from APV-Col. The assay identified only APV-Col and did not react with Newcastle disease virus and infectious bronchitis virus.

  19. Role of Urbanization, Land-Use Diversity, and Livestock Intensification in Zoonotic Emerging Infectious Diseases

    OpenAIRE

    2014-01-01

    Emerging infectious diseases (EIDs) continue to significantly threaten human and animal health. While there has been some progress in identifying underlying proximal driving forces and causal mechanisms of disease emergence, the role of distal factors is most poorly understood. This article focuses on analyzing the statistical association between highly pathogenic avian influenza (HPAI) H5N1 and urbanization, land-use diversity and poultry intensification. A special form of the urban transiti...

  20. Comparative pathogenesis in specific-pathogen-free chickens of two strains of avian hepatitis E virus recovered from a chicken with Hepatitis-Splenomegaly syndrome and from a clinically healthy chicken.

    Science.gov (United States)

    Billam, P; LeRoith, T; Pudupakam, R S; Pierson, F W; Duncan, R B; Meng, X J

    2009-11-18

    Avian hepatitis E virus (avian HEV) is the primary causative agent of Hepatitis-Splenomegaly (HS) syndrome in chickens. Recently, a genetically unique strain of avian HEV, designated avian HEV-VA, was recovered from healthy chickens in Virginia. The objective of this study was to experimentally compare the pathogenicity of the prototype strain recovered from a chicken with HS syndrome and the avian HEV-VA strain in specific-pathogen-free chickens. An infectious stock of the avian HEV-VA strain was first generated and its infectivity titer determined in chickens. For the comparative pathogenesis study, 54 chickens of 6-week-old were assigned to 3 groups of 18 chickens each. The group 1 chickens were each intravenously inoculated with 5x10(2.5) 50% chicken infectious dose of the prototype strain. The group 2 received the same dose of the avian HEV-VA strain, and the group 3 served as negative controls. Six chickens from each group were necropsied at 2, 3 and 4 weeks post-inoculation (wpi). Most chickens in both inoculated groups seroconverted by 3wpi, and the mean anti-avian HEV antibody titers were higher for the prototype strain group than the avian HEV-VA strain group. There was no significant difference in the patterns of viremia and fecal virus shedding. Blood analyte profiles did not differ between treatment groups except for serum creatine phosphokinase levels which were higher for prototype avian HEV group than avian HEV-VA group. The hepatic lesion score was higher for the prototype strain group than the other two groups. The results indicated that the avian HEV-VA strain is only slightly attenuated compared to the prototype strain, suggesting that the full spectrum of HS syndrome is likely associated with other co-factors.

  1. Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus

    DEFF Research Database (Denmark)

    Have, P; Moving, V; Svansson, V;

    1992-01-01

    -reacted with N and M polypeptides of porcine epidemic diarrhea virus (PEDV). Thus MCV may occupy an intermediate position between the TGEV group of coronaviruses and PEDV. The possibility that MCV may be associated with syndromes of acute enteritis in preweaning mink is discussed....

  2. Globalization and infectious diseases.

    Science.gov (United States)

    Frenk, Julio; Gómez-Dantés, Octavio; Knaul, Felicia M

    2011-09-01

    This article discusses the nature of the health challenges created by globalization and proposes new forms of international cooperation to confront them. The discussion of global health challenges includes both the transfer of health risks, with an emphasis on infectious diseases, and the international dissemination of health opportunities, including the transfer of knowledge and technology. The authors argue that the health-related challenges and opportunities of an increasingly interdependent world demand new forms of international cooperation. The authors suggest the promotion of 3 elements that, in their essence, contain the idea of collaboration: exchange, evidence, and empathy.

  3. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication

    Science.gov (United States)

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H.; Züst, Roland; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; Silverman, Robert H.; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C.; Ziebuhr, John; Kalinke, Ulrich

    2017-01-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses. PMID:28158275

  4. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China.

    Directory of Open Access Journals (Sweden)

    Qing-Ye Zhuang

    Full Text Available The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV, and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV. The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks.

  5. Structure of the C-terminal domain of nsp4 from feline coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Snijder, Eric J.; Gorbalenya, Alexander E. [Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Berglind, Hanna; Nordlund, Pär [Division of Biophysics, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, Karolinska Institute, SE-171 77 Stockholm (Sweden); Coutard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille (France); Tucker, Paul A., E-mail: tucker@embl-hamburg.de [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  6. Emergence of a novel avian pox disease in British tit species.

    Directory of Open Access Journals (Sweden)

    Becki Lawson

    Full Text Available Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006-2010. Reports of affected Paridae (211 incidents outnumbered reports in non-Paridae (91 incidents. The majority (90% of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3% than were incidents in non-Paridae hosts (31.9%. Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.

  7. [Globalization and infectious diseases].

    Science.gov (United States)

    Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata

    2011-01-01

    Globalization is a phenomenon characteristic of present times. It can be considered in various aspects: economic, environmental changes, demographic changes, as well as the development of new technologies. All these aspects of globalization have a definite influence on the emergence and spread of infectious diseases. Economic aspects ofglobalization are mainly the trade development, including food trade, which has an impact on the spread of food-borne diseases. The environmental changes caused by intensive development of industry, as a result of globalization, which in turn affects human health. The demographic changes are mainly people migration between countries and rural and urban areas, which essentially favors the global spread of many infectious diseases. While technological advances prevents the spread of infections, for example through better access to information, it may also increase the risk, for example through to create opportunities to travel into more world regions, including the endemic regions for various diseases. The phenomenon ofglobalization is also closely associated with the threat of terrorism, including bioterrorism. It forces the governments of many countries to develop effective programs to protect and fight against this threat.

  8. Studies on Infectious Mononucleosis

    Science.gov (United States)

    Joncas, J.; Chagnon, A.; Pavilanis, V.

    1966-01-01

    Viral studies were carried out on throat swabs, rectal swabs and washed white blood cells from 27 cases of infectious mononucleosis (positive Paul-Bunnell-David-sohn test), and from 22 controls. Four cytopathic agents were isolated in the test group, two of which were readily subcultured for at least three successive passages. Three cytopathic agents were recovered in the control group, two of which have been identified as adenovirus type 5 and adenovirus type 3. The unidentified agents tested so far are sensitive to ether and to pH 3. The results of acridine-orange staining and the immunofluorescence technique, using a conjugated control serum and two conjugated convalescent infectious mononucleosis sera, indicate that the isolated agent or agents in the test group are RNA-type agents with a cytoplasmic cycle of development. The overall results of this study lead the authors to suspect a respiratory syncytial-like myxovirus as the as yet unidentified agent which they recovered. ImagesFig. 1aFig. 1bFig. 1cFig. 1dFig. 2aFig. 2bFig. 2cFig. 2dFig. 3aFig. 3bFig. 3cFig. 3dFig. 3eFig. 3f PMID:4952899

  9. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR...

  10. Markov Chain Estimation of Avian Seasonal Fecundity

    Science.gov (United States)

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  11. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  12. Avian influenza : a review article

    Directory of Open Access Journals (Sweden)

    A. Yalda

    2006-07-01

    Full Text Available The purpose of this paper is to provides general information about avian influenza (bird flu and specific information about one type of bird flu, called avian influenza A (H5N1, that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO , world organization for animal health (OIE , food and agriculture organization of the united nations (FAO information and recommendations and review of the published literature about avian influenza. Since December 2003, highly pathogenic H5N1 avian influenza viruses have swept through poultry populations across Asia and parts of Europe. The outbreaks are historically unprecedented in scale and geographical spread. Their economic impact on the agricultural sector of the affected countries has been large. Human cases, with an overall fatality rate around 50%, have also been reported and almost all human infections can be linked to contact with infected poultry. Influenza viruses are genetically unstable and their behaviour cannot be predicted so the risk of further human cases persists. The human health implications have now gained importance, both for illness and fatalities that have occurred following natural infection with avian viruses, and for the potential of generating a re-assortant virus that could give rise to the next human influenza pandemic.

  13. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines.

    Science.gov (United States)

    Müller, Marcel A; Raj, V Stalin; Muth, Doreen; Meyer, Benjamin; Kallies, Stephan; Smits, Saskia L; Wollny, Robert; Bestebroer, Theo M; Specht, Sabine; Suliman, Tasnim; Zimmermann, Katrin; Binger, Tabea; Eckerle, Isabella; Tschapka, Marco; Zaki, Ali M; Osterhaus, Albert D M E; Fouchier, Ron A M; Haagmans, Bart L; Drosten, Christian

    2012-12-11

    A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is

  14. Pseudothrombocytopenia associated with infectious mononucleosis.

    Science.gov (United States)

    Hsieh, A T; Chao, T Y; Chen, Y C

    2003-01-01

    A 22-year-old man was hospitalized for assessment of thrombocytopenia and fever. Examination showed that he had infectious mononucleosis and moderately severe thrombocytopenia that was asymptomatic. Examination of blood smears revealed that the thrombocytopenia was caused by the clumping of platelets. We made a diagnosis of ethylenediaminetetraacetic acid-dependent pseudothrombocytopenia after excluding other infectious mononucleosis-related mechanisms of thrombocytopenia. When the patient recovered from infectious mononucleosis 2 months later, his thrombocytopenia improved, and no platelet clumping in peripheral blood smears was noted. Ethylenediaminetetraacetic acid-dependent pseudothrombocytopenia should always be considered as a possible cause of reported low platelet counts, even in patients with infectious mononucleosis and splenomegaly.

  15. Discovery of Anti-SARS Coronavirus Drug Based on Molecular Docking and Database Screening

    Institute of Scientific and Technical Information of China (English)

    CHEN,Hai-Feng(陈海峰); YAO,Jian-Hua(姚建华); SUN,Jing(孙晶); LI,Qiang(李强); LI,Feng(李丰); FAN,Bo-Tao(范波涛); YUAN,Shen-Gang(袁身刚)

    2004-01-01

    The active site of 3CL proteinase (3CLpro) for coronavirus was identified by comparing the crystal structures of human and porcine coronavirus. The inhibitor of the main protein of rhinovirus (Ag7088) could bind with 3CLpro of human coronavirus, then it was selected as the reference for molecular docking and database screening. The ligands from two databases were used to search potential lead structures with molecular docking. Several structures from natural products and ACD-SC databases were found to have lower binding free energy with 3CLpro than that of Ag7088. These structures have similar hydrophobicity to Ag7088. They have complementary electrostatic potential and hydrogen bond acceptor and donor with 3CLpro, showing that the strategy of anti-SARS drug design based on molecular docking and database screening is feasible.

  16. Dissection of SARS Coronavirus Spike Protein into Discrete Folded Fragments

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; CAI Zhen; CHEN Yong; LIN Zhanglin

    2006-01-01

    The spike protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) mediates cell fusion by binding to target cell surface receptors. This paper reports a simple method for dissecting the viral protein and for searching for foldable fragments in a random but systematic manner. The method involves digestion by DNase I to generate a pool of short DNA segments, followed by an additional step of reassembly of these segments to produce a library of DNA fragments with random ends but controllable lengths. To rapidly screen for discrete folded polypeptide fragments, the reassembled gene fragments were further cloned into a vector as N-terminal fusions to a folding reporter gene which was a variant of green fluorescent protein. Two foldable fragments were identified for the SARS-CoV spike protein, which coincide with various anti-SARS peptides derived from the hepated repeat (HR) region 2 of the spike protein. The method should be applicable to other viral proteins to isolate antigen or vaccine candidates, thus providing an alternative to the full-length proteins (subunits) or linear short peptides.

  17. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus.

    Science.gov (United States)

    Alhogbani, Tariq

    2016-01-01

    The novel Middle east respiratory syndrome coronavirus (MeRS-CoV) has been identified as a cause of pneumonia; however, it has not been reported as a cause of acute myocarditis. A 60-year-old man presented with pneumonia and congestive heart failure. On the first day of admission, he was found to have an elevated troponin-l level and severe global left ventricular systolic dysfunction on echo-cardiography. The serum creatinine level was found mildly elevated. Chest radiography revealed in the lower lung fields accentuated bronchovascular lung markings and multiple small patchy opacities. Laboratory tests were negative for viruses known to cause myocarditis. Sputum sample was positive for MeRS-CoV. Cardiovascular magnetic resonance revealed evidence of acute myocarditis. the patient had all criteria specified by the international Consensus Group on CMR in Myocarditis that make a clinical suspicion for acute myocarditis. this was the first case that demonstrated that MeRS-CoV may cause acute myocarditis and acute-onset heart failure.

  18. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Xu; Xiao-Ming Gao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abspresent in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified.It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease.

  19. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    XiaojunXu; Xiao-MingGao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abs present in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified. It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease. Cellular & Molecular Immunology. 2004;1(2):119-122.

  20. Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia.

    Science.gov (United States)

    Briese, Thomas; Mishra, Nischay; Jain, Komal; Zalmout, Iyad S; Jabado, Omar J; Karesh, William B; Daszak, Peter; Mohammed, Osama B; Alagaili, Abdulaziz N; Lipkin, W Ian

    2014-04-29

    ABSTRACT Complete Middle East respiratory syndrome coronavirus (MERS-CoV) genome sequences were obtained from nasal swabs of dromedary camels sampled in the Kingdom of Saudi Arabia through direct analysis of nucleic acid extracts or following virus isolation in cell culture. Consensus dromedary MERS-CoV genome sequences were the same with either template source and identical to published human MERS-CoV sequences. However, in contrast to individual human cases, where only clonal genomic sequences are reported, detailed population analyses revealed the presence of more than one genomic variant in individual dromedaries. If humans are truly infected only with clonal virus populations, we must entertain a model for interspecies transmission of MERS-CoV wherein only specific genotypes are capable of passing bottleneck selection. IMPORTANCE In most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection.

  1. Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo.

    Science.gov (United States)

    Takano, Tomomi; Katoh, Yasuichiroh; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2013-08-01

    Feline infectious peritonitis (FIP) is a feline coronavirus-induced fatal disease in domestic and wild cats. Several studies have investigated potential treatments for FIP. However, there have been no reports on agents that have exhibited a therapeutic effect. Recently, chloroquine has been reported to antiviral effect. We investigated whether chloroquine can be used to treat FIP in vitro and in vivo. It was demonstrated that chloroquine has inhibitory effect against the replication of FIPV and anti-inflammatory effect in vitro. In vivo study using cats with experimentally induced FIP, the clinical score of chloroquine-treatment groups were better than in chloroquine-untreated group. However, alanine aminotransferase levels increased in the chloroquine-treated groups. It will be necessary to further investigate the possibility of FIP treatment with a combination of chloroquine and other agents.

  2. Sports: The Infectious Hazards.

    Science.gov (United States)

    Minooee, Arezou; Wang, Jeff; Gupta, Geeta K

    2015-10-01

    Although the medical complications of sports are usually traumatic in nature, infectious hazards also arise. While blood-borne pathogens such as HIV, hepatitis B, and hepatitis C, cause significant illness, the risk of acquiring these agents during sporting activities is minimal. Skin infections are more commonplace, arising from a variety of microbial agents including bacterial, fungal, and viral pathogens. Sports involving water contact can lead to enteric infections, eye infections, or disseminated infections such as leptospirosis. Mumps, measles, and influenza are vaccine-preventable diseases that have been transmitted during sporting events, both in players and in spectators. Prevention is the key to many of these infections. Players should be vaccinated and should not participate in sports if their infection can be spread by contact, airborne, or droplet transmission.

  3. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  4. A cellular automaton framework for infectious disease spread simulation.

    Science.gov (United States)

    Pfeifer, Bernhard; Kugler, Karl; Tejada, Maria M; Baumgartner, Christian; Seger, Michael; Osl, Melanie; Netzer, Michael; Handler, Michael; Dander, Andreas; Wurz, Manfred; Graber, Armin; Tilg, Bernhard

    2008-01-01

    In this paper, a cellular automaton framework for processing the spatiotemporal spread of infectious diseases is presented. The developed environment simulates and visualizes how infectious diseases might spread, and hence provides a powerful instrument for health care organizations to generate disease prevention and contingency plans. In this study, the outbreak of an avian flu like virus was modeled in the state of Tyrol, and various scenarios such as quarantine, effect of different medications on viral spread and changes of social behavior were simulated.The proposed framework is implemented using the programming language Java. The set up of the simulation environment requires specification of the disease parameters and the geographical information using a population density colored map, enriched with demographic data.The results of the numerical simulations and the analysis of the computed parameters will be used to get a deeper understanding of how the disease spreading mechanisms work, and how to protect the population from contracting the disease. Strategies for optimization of medical treatment and vaccination regimens will also be investigated using our cellular automaton framework.In this study, six different scenarios were simulated. It showed that geographical barriers may help to slow down the spread of an infectious disease, however, when an aggressive and deadly communicable disease spreads, only quarantine and controlled medical treatment are able to stop the outbreak, if at all.

  5. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response.

    Science.gov (United States)

    Dedeurwaerder, Annelike; Olyslaegers, Dominique A J; Desmarets, Lowiese M B; Roukaerts, Inge D M; Theuns, Sebastiaan; Nauwynck, Hans J

    2014-02-01

    The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.

  6. Molecular characterization of Indonesia avian influenza virus

    Directory of Open Access Journals (Sweden)

    N.L.P.I. Dharmayanti

    2005-06-01

    Full Text Available Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1. Molecular basis of pathogenicity in HA cleavage site indicated that the isolates of avian influenza virus have multiple basic amino acid (B-X-B-R indicating that all of the isolates representing virulent avian influenza virus (highly pathogenic avian influenza virus.

  7. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP.

  8. The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection

    Directory of Open Access Journals (Sweden)

    Anthony R. Fehr

    2016-12-01

    Full Text Available ADP-ribosylation is a common posttranslational modification that may have antiviral properties and impact innate immunity. To regulate this activity, macrodomain proteins enzymatically remove covalently attached ADP-ribose from protein targets. All members of the Coronavirinae, a subfamily of positive-sense RNA viruses, contain a highly conserved macrodomain within nonstructural protein 3 (nsp3. However, its function or targets during infection remain unknown. We identified several macrodomain mutations that greatly reduced nsp3’s de-ADP-ribosylation activity in vitro. Next, we created recombinant severe acute respiratory syndrome coronavirus (SARS-CoV strains with these mutations. These mutations led to virus attenuation and a modest reduction of viral loads in infected mice, despite normal replication in cell culture. Further, macrodomain mutant virus elicited an early, enhanced interferon (IFN, interferon-stimulated gene (ISG, and proinflammatory cytokine response in mice and in a human bronchial epithelial cell line. Using a coinfection assay, we found that inclusion of mutant virus in the inoculum protected mice from an otherwise lethal SARS-CoV infection without reducing virus loads, indicating that the changes in innate immune response were physiologically significant. In conclusion, we have established a novel function for the SARS-CoV macrodomain that implicates ADP-ribose in the regulation of the innate immune response and helps to demonstrate why this domain is conserved in CoVs.

  9. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NARCIS (Netherlands)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes

  10. Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system

    NARCIS (Netherlands)

    Reemers, Sylvia S.; van Leenen, Dik; Koerkamp, Marian J. Groot; van Haarlem, Daphne; van de Haar, Peter; van Eden, Willem; Vervelde, Lonneke

    2010-01-01

    Newly hatched chickens are more susceptible to infectious diseases than older birds because of an immature immune system. The aim of this study was to determine to what extent host responses to avian influenza virus (AIV) inoculation are affected by age. Therefore, 1- and 4-week (wk) old birds were

  11. Adjuvanticity of Cordyceps militaris stroma Polysaccharides in Inactivated Vaccine to Avian Infectious Bronchitis%蛹虫草基质多糖对鸡传染性支气管炎灭活疫苗的 免疫佐剂作用

    Institute of Scientific and Technical Information of China (English)

    周梅仙; 周业飞

    2016-01-01

    以蛹虫草基质多糖为免疫佐剂,将其混入传染性支气管炎灭活疫苗,从而探讨其对肉仔鸡的免疫功能影响。选用150只1日龄黄羽肉鸡,随机分成5组。免疫后21d(35日龄)采用 IBVM41株病毒液进行点眼、滴鼻攻毒。通过测定每组的鸡淋巴细胞(PBMC)增殖情况、鸡血清抗体效价、IBV 强毒株攻毒保护及组织病理学变化。结果表明,蛹虫草基质多糖中剂量佐剂组的鸡淋巴细胞(PBMC)增殖指数、鸡血清抗体效价水平有着显著提高(P<0.05),在 IBVM41株攻毒试验中,蛹虫草基质多糖中剂量佐剂组可以显著减轻病毒感染肉仔鸡临床症状,肺和肾无组织病理学变化,免疫保护率达到96.7%。表明以蛹虫草基质多糖佐剂能够提高肉仔鸡对传染性支气管炎的免疫力。%It aimed to use Cordyceps militaris stroma polysaccharides as adjuvants that mix with inactivated vaccine to infectious bronchitis,and to investigate its effects on the immune functions of broilers. Total 150 1-day Huangyu broilers were selected and randomly divided into 5 groups. Then the broilers of 21 d after immunized(35-day)were infected with Mass 41 infectious bronchitis virus(IBV M41) strain by the ocular-nasal route. The proliferation of peripheral blood mononuclear cells(PBMC),serum antibody titer,the protection of IBV virulent strain,and histopathological changes in each group were evaluated respectively by MTT method and hemagglutination inhibition assay. The results showed that proliferation index of PBMC and serum antibody titer in the broilers with dosage C. militaris stroma polysaccharides as adjuvants significantly raised(P<0.05). Following challenge test with IBV M41 strain,broilers inoculated with C. militaris stroma polysaccharides showed significantly lighter clinical symptoms,there were no histopathological changes in lung and kidney,and immune protection reached 96.7%. This indicated that C. militaris

  12. Evolution of Avian Tumor Viruses

    Science.gov (United States)

    Virus-induced neoplastic diseases of poultry, namely Marek’s disease (MD), induced by a herpesvirus, and the avian leukosis and reticuloendotheliosis induced by retroviruses, can cause significant economic losses from tumor mortality as well as poor performance. Successful control of MD is and has ...

  13. Avian Paramyxovirus: A Brief Review.

    Science.gov (United States)

    Gogoi, P; Ganar, K; Kumar, S

    2017-02-01

    Avian paramyxoviruses (APMVs) have been reported from a wide variety of avian species around the world. Avian paramyxoviruses are economically significant because of the huge mortality and morbidity associated with it. Twelve different serotypes of APMV have been reported till date. Avian paramyxoviruses belong to the family Paramyxoviridae under genus Avulavirus. Newcastle disease virus (APMV-1) is the most characterized members among the APMV serotypes. Complete genome sequence of all twelve APMV serotypes has been published recently. In recent years, APMV-1 has attracted the virologists for its oncolytic activity and its use as a vaccine vector for both animals and humans. The recombinant APMV-based vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its minimum recombination frequency, modular nature of transcription and lack of DNA phase during its replication. Although insufficient data are available regarding other APMV serotypes, our understanding about the APMV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.

  14. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; de Beer, R; Godeke, G J; Raamsman, M J; Horzinek, M C; Vennema, H; Rottier, P J

    1998-01-01

    Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to th

  15. Human Infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013

    NARCIS (Netherlands)

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Watson, Simon J.; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend Jan; Beer, Martin; Müller, Marcel A.; Kellam, Paul; Drosten, Christian

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species trans

  16. Human Infection with MERS Coronavirus after Exposure to Infected Camels, Saudi Arabia, 2013

    OpenAIRE

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Simon J Watson; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend-Jan; Beer, Martin; Müller, Marcel A.

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection.

  17. A Structural analysis of M protein in coronavirus assembly and morphology

    DEFF Research Database (Denmark)

    W. Neuman, Benjamin; Kiss, Gabriella; H. Kunding, Andreas

    2011-01-01

    The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy...

  18. Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014.

    Science.gov (United States)

    Wernery, Ulrich; Corman, Victor M; Wong, Emily Y M; Tsang, Alan K L; Muth, Doreen; Lau, Susanna K P; Khazanehdari, Kamal; Zirkel, Florian; Ali, Mansoor; Nagy, Peter; Juhasz, Jutka; Wernery, Renate; Joseph, Sunitha; Syriac, Ginu; Elizabeth, Shyna K; Patteril, Nissy Annie Georgy; Woo, Patrick C Y; Drosten, Christian

    2015-06-01

    Camels carry Middle East respiratory syndrome coronavirus, but little is known about infection age or prevalence. We studied >800 dromedaries of all ages and 15 mother-calf pairs. This syndrome constitutes an acute, epidemic, and time-limited infection in camels <4 years of age, particularly calves. Delayed social separation of calves might reduce human infection risk.

  19. MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983-1997

    NARCIS (Netherlands)

    Müller, Marcel A; Corman, Victor Max; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Bosch, Berend-Jan; Lattwein, Erik; Hilali, Mosaad; Musa, Bakri E; Bornstein, Set; Drosten, Christian

    2014-01-01

    To analyze the distribution of Middle East respiratory syndrome coronavirus (MERS-CoV)-seropositive dromedary camels in eastern Africa, we tested 189 archived serum samples accumulated during the past 30 years. We identified MERS-CoV neutralizing antibodies in 81.0% of samples from the main camel-ex

  20. Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013

    NARCIS (Netherlands)

    Meyer, Benjamin; Müller, Marcel A.; Corman, Victor M.; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F.; Muth, Doreen; Bosch, Berend Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary came

  1. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013

    NARCIS (Netherlands)

    Corman, Victor M.; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Said, Mohammed Y.; Gluecks, Ilona; Lattwein, Erik; Bosch, Berend Jan; Drexler, Jan Felix; Bornstein, Set; Drosten, Christian; Müller, Marcel A.

    2014-01-01

    Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992-2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity

  2. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation

    NARCIS (Netherlands)

    B.L. Haagmans (Bart); S.H.S. Al Dhahiry (Said); C.B.E.M. Reusken (Chantal); V.S. Raj (Stalin); M. Galiano (Monica); R.H. Myers (Richard); G-J. Godeke (Gert-Jan); M. Jonges (Marcel); E. Farag (Elmoubasher); A. Diab (Ayman); H. Ghobashy (Hazem); F. Alhajri (Farhoud); M. Al-Thani (Mohamed); S.A. Al-Marri (Salih); H.E. Al Romaihi (Hamad); A. Al Khal (Abdullatif); A. Bermingham (Alison); A.D.M.E. Osterhaus (Albert); M.M. AlHajri (Mohd); M.P.G. Koopmans D.V.M. (Marion)

    2014-01-01

    textabstractBackground: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar link

  3. Inhibition of middle east respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody

    NARCIS (Netherlands)

    K. Ohnuma (Kei); B.L. Haagmans (Bart); R. Hatano (Ryo); V.S. Raj (Stalin); H. Mou (Huihui); S. Iwata (Satoshi); R.L. Dang (Rong); B.J. Bosch (Berend Jan); C. Morimoto (Chikao)

    2013-01-01

    textabstractWe identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also sign

  4. Circulation of Group 2 Coronaviruses in a Bat Species Common to Urban Areas in Western Europe

    NARCIS (Netherlands)

    Reusken, C.B.E.M.; Lina, P.H.C.; Pielaat, A.; Vries, de A.; Dam-Deisz, C.; Adema, J.; Drexler, J.F.; Drosten, C.; Kooi, E.A.

    2010-01-01

    Fecal samples of 211 bats representing 13 different bat species from 31 locations in the Netherlands were analyzed for the presence of coronaviruses (CoV) using a genus-wide reverse transcription (RT)-polymerase chain reaction. CoVs are known for their high potential for interspecies transmission, i

  5. First Case of Systemic Coronavirus Infection in a Domestic Ferret (Mustela putorius furo) in Peru.

    Science.gov (United States)

    Lescano, J; Quevedo, M; Gonzales-Viera, O; Luna, L; Keel, M K; Gregori, F

    2015-12-01

    A domestic ferret from Lima, Peru, died after ten days of non-specific clinical signs. Based on pathology, immunohistochemistry and molecular analysis, ferret systemic coronavirus (FRSCV)-associated disease was diagnosed for the first time in South America. This report highlights the potential spread of pathogens by the international pet trade.

  6. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture.

    NARCIS (Netherlands)

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-01-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infec

  7. Characterization of a novel coronavirus associated with severe acute respiratory syndrome

    NARCIS (Netherlands)

    P.A. Rota (Paul); M.S. Oberste (Steven); S.S. Monroe (Stephan); W.A. Nix (Allan); R. Campagnoli (Ray); J.P. Icenogle (Joseph); S. Penaranda; B. Bankamp (Bettina); K. Maher (Kaija); M.H. Chen (Min-hsin); S. Tong (Suxiong); A. Tamin (Azaibi); L. Lowe (Luis); M. Frace (Michael); J.L. DeRisi (Joseph); Q. Chen (Qi); D. Wang (David); D.D. Erdman (Dean); T.C. Peret (Teresa); C. Burns (Cara); T.G. Ksiazek (Thomas); P.E. Rollin (Pierre); A. Sanchez (Berenguer); S. Liffick (Stephanie); B. Holloway (Brian); J. Limor (Josef); K. McCaustland (Karen); M. Olsen-Rasmussen (Mellissa); S. Gunther; A.D.M.E. Osterhaus (Albert); C. Drosten (Christian); M.A. Pallansch (Mark); L.J. Anderson (Larry); W.J. Belline; R.A.M. Fouchier (Ron)

    2003-01-01

    textabstractIn March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The geno

  8. Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China.

    Science.gov (United States)

    Wang, Wen; Lin, Xian-Dan; Guo, Wen-Ping; Zhou, Run-Hong; Wang, Miao-Ruo; Wang, Cai-Qiao; Ge, Shuang; Mei, Sheng-Hua; Li, Ming-Hui; Shi, Mang; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    Although rodents are important reservoirs for RNA viruses, to date only one species of rodent coronavirus (CoV) has been identified. Herein, we describe a new CoV, denoted Lucheng Rn rat coronavirus (LRNV), and novel variants of two Betacoronavirus species termed Longquan Aa mouse coronavirus (LAMV) and Longquan Rl rat coronavirus (LRLV), that were identified in a survey of 1465 rodents sampled in China during 2011-2013. Phylogenetic analysis revealed that LAMV and LRLV fell into lineage A of the genus Betacoronavirus, which included CoVs discovered in humans and domestic and wild animals. In contrast, LRNV harbored by Rattus norvegicus formed a distinct lineage within the genus Alphacoronavirus in the 3CL(pro), RdRp, and Hel gene trees, but formed a more divergent lineage in the N and S gene trees, indicative of a recombinant origin. Additional recombination events were identified in LRLV. Together, these data suggest that rodents may carry additional unrecognized CoVs.

  9. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells

    NARCIS (Netherlands)

    C. Burkard (Christine); M.H. Verheije (Monique); B.L. Haagmans (Bart); F.J.M. van Kuppeveld (Frank ); P.J.M. Rottier (Peter); B.J. Bosch (Berend Jan); C.A.M. de Haan (Cornelis)

    2015-01-01

    textabstractIn addition to transporting ions, the multisubunit Na+,K+-ATPase also functions by relaying cardiotonic steroid (CTS)-binding- induced signals into cells. In this study, we analyzed the role of Na+,K+-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection.

  10. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren

    2004-01-01

    such as the cystic fibrosis transmembrane conductance regulator ( CFTR), transcription factors CREB-RP and OCT-I, and components of the ubiquitin pathway. Conclusions: Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified...

  11. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus.

    Science.gov (United States)

    Qian, Zhaohui; Travanty, Emily A; Oko, Lauren; Edeen, Karen; Berglund, Andrew; Wang, Jieru; Ito, Yoko; Holmes, Kathryn V; Mason, Robert J

    2013-06-01

    Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-β and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.

  12. A retrospective clinical and epidemiological study on feline coronavirus (FCoV) in cats in Istanbul, Turkey.

    Science.gov (United States)

    Tekelioglu, B K; Berriatua, E; Turan, N; Helps, C R; Kocak, M; Yilmaz, H

    2015-04-01

    The presence of antibodies to feline coronavirus (FCoV) and feline immunodeficiency virus (FIV), together with feline leukemia virus (FeLV) antigen was investigated in 169 ill household and stray cats attending a veterinary surgery in Istanbul in 2009-14. The estimated FCoV and FIV seroprevalence (95% confidence intervals) were 37% (30-45%) and 11% (6-16%), respectively and FeLV prevalence was 1% (0-3%). FCoV seroprevalence increased until 2 years of age, was highest in 2014 and among household cats living with other cats and with outdoor access, and was lower in FIV seropositive compared to seronegative cats. Symptoms typically associated with wet feline infectious peritonitis (FIP) including ascites, abdominal distention or pleural effusion, coupled in many cases with non-antibiotic responsive fever, were observed in 19% (32/169) of cats, and 75% (24/32) of these cats were FCoV seropositive. FCoV seropositivity was also associated with a high white blood cell count, high plasma globulin, low plasma albumin and low blood urea nitrogen. The percentage of FCoV seropositive and seronegative cats that died in spite of supportive veterinary treatment was 33% (21/63) and 12% (13/106), respectively. These results indicate that FCoV is widespread and has a severe clinical impact in cats from Istanbul. Moreover, the incidence of FCoV infections could be rising, and in the absence of effective vaccination cat owners need to be made aware of ways to minimize the spread of this virus.

  13. Polymorphisms in the feline TNFA and CD209 genes are associated with the outcome of feline coronavirus infection.

    Science.gov (United States)

    Wang, Ying-Ting; Hsieh, Li-En; Dai, Yu-Rou; Chueh, Ling-Ling

    2014-12-16

    Feline infectious peritonitis (FIP), caused by feline coronavirus (FCoV) infection, is a highly lethal disease without effective therapy and prevention. With an immune-mediated disease entity, host genetic variant was suggested to influence the occurrence of FIP. This study aimed at evaluating cytokine-associated single nucleotide polymorphisms (SNPs), i.e., tumor necrosis factor alpha (TNF-α), receptor-associated SNPs, i.e., C-type lectin DC-SIGN (CD209), and the five FIP-associated SNPs identified from Birman cats of USA and Denmark origins and their associations with the outcome of FCoV infection in 71 FIP cats and 93 FCoV infected non-FIP cats in a genetically more diverse cat populations. A promoter variant, fTNFA - 421 T, was found to be a disease-resistance allele. One SNP was identified in the extracellular domain (ECD) of fCD209 at position +1900, a G to A substitution, and the A allele was associated with FIP susceptibility. Three SNPs located in the introns of fCD209, at positions +2276, +2392, and +2713, were identified to be associated with the outcome of FCoV infection, with statistical relevance. In contrast, among the five Birman FIP cat-associated SNPs, no genotype or allele showed significant differences between our FIP and non-FIP groups. As disease resistance is multifactorial and several other host genes could involve in the development of FIP, the five genetic traits identified in this study should facilitate in the future breeding of the disease-resistant animal to reduce the occurrence of cats succumbing to FIP.

  14. Total sialic acid: an acute phase reactant in cats with a possible role in feline coronavirus infection.

    Science.gov (United States)

    Rossi, Gabriele; Paltrinieri, Saverio

    2009-04-01

    The aims of this study were to validate a colorimetric method to measure total sialic acid (TSA) in feline serum and to investigate the serum concentration of TSA in clinically healthy cats seronegative (n = 9) and seropositive (n = 48) for feline coronavirus (FCoV), and in cats affected by feline infectious peritonitis (FIP, n = 28), tumors (n = 20), or inflammation (n = 16). The correlation between TSA and alpha(1)-acid glycoprotein (AGP) was also investigated. The method employed in this study is precise and accurate at TSA levels (in mg/L) commonly encountered in feline serum. No significant differences between seropositive (385.6 +/- 192.2 mg/L) and seronegative (433.5 +/- 179.0 mg/L) cats were detectable, suggesting that the simple infection by FCoVs does not influence TSA levels. Compared with seropositive controls, the concentration of TSA was higher in cats with FIP (556.7 +/- 268.3 mg/L, P = 0.003), tumors (522.5 +/- 294.4 mg/L, P = 0.028), and inflammation (546.8 +/- 208.3 mg/L, P = 0.018). The discriminating power of TSA for FIP is moderate (area under the ROC curve = 0.65) and the likelihood ratio is higher than 3.0 only at high TSA levels. Consequently, TSA could support a diagnosis of FIP only at extremely high serum concentration (> 800 mg/L) or when the pre-test probability of FIP is high. No correlations were found between the TSA and AGP concentrations in cats with FIP, suggesting that sialylated proteins other than AGP are present. Both the antibody titre and the degree of AGP sialylation were negatively correlated with TSA levels, suggesting that increased TSA may contribute to reduce the burden of FCoVs.

  15. Infectious Diseases in the Homeless

    Centers for Disease Control (CDC) Podcasts

    2008-08-26

    In this podcast, Ted Pestorius speaks with Dr. Marian McDonald, Associate Director for Minority and Women’s Health at CDC about an article in September 2008 issue of Emerging Infectious Diseases on infectious diseases in the homeless. There are an estimated 100 million homeless people worldwide today, and this number is likely to grow. The homeless population is vulnerable to many diseases, including HIV, hepatitis, and tuberculosis. Dr. McDonald discusses why this population is so vulnerable.  Created: 8/26/2008 by Emerging Infectious Diseases.   Date Released: 8/27/2008.

  16. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring

    Directory of Open Access Journals (Sweden)

    I Davidson

    2009-09-01

    Full Text Available The large amounts of feathers produced by the poultry industry, that is considered as a waste was explored for possible uses in various industries, such as meals for animals, biofuels, biodegradable plastic materials, combating water pollution and more. That review mentions these uses, but concentrate on the utilization of feathers for the diagnosis of viral infections and for monitoring vaccine viruses in chickens after vaccination. The viral diseases in which diagnosis using nucleic acids extracted from the feather shafts was described are, Marek's disease virus, circoviruses, chicken anemia virus, fowlpox virus, avian retroviruses, avian influenza virus and infectious laryngotracheitis virus. In two cases, of Marek's disease virus and of infectious laryngotracheitis virus, the differentiation of vaccine and wild-type viruses from feather shafts was made possible, thus allowing for monitoring the vaccination efficacy. The present review demonstrates also the stability of DNA viruses in feather shafts, and the possible evaluation of environmental dissemination of pathogens. When viruses are transmitted vertically, like in the cases of the retrovirus REV, a teratogenic effect on the development of feathers of the day-old newly hatched chick might occur in the case of avian influenza and the chicken anemia virus, which might indicate on a viral infection.

  17. Avian disease at the Salton Sea

    Science.gov (United States)

    Friend, M.

    2002-01-01

    A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907a??1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated

  18. Malarial birds: modeling infectious human disease in animals.

    Science.gov (United States)

    Slater, Leo B

    2005-01-01

    Through the examination of avian malarias as models of infectious human disease, this paper reveals the kinds of claims that scientists and physicians made on the basis of animal models-biological systems in the laboratory and the field-and what characteristics made for congruence between these models and human malaria. The focus is on the period between 1895 and 1945, and on the genesis and trajectory of certain animal models of malaria within specific locations, such as the Johns Hopkins School of Hygiene and Public Health in Baltimore and Bayer (I. G. Farben) in Elberfeld. These exemplars illustrate a diversity of approaches to malaria-as-disease, and the difficulties of framing aspects of this disease complex within an animal or laboratory system. The diversity and nearness to wild types of the birds, protozoan parasites, and mosquitoes that made up these malaria models contributed a great deal to the complexity of the models. Avian malarias, adopted with enthusiasm, were essential to the success of the U.S. antimalarial program during World War II.

  19. Multiple sclerosis after infectious mononucleosis

    DEFF Research Database (Denmark)

    Nielsen, Trine Rasmussen; Rostgaard, Klaus; Nielsen, Nete Munk

    2007-01-01

    BACKGROUND: Infectious mononucleosis caused by the Epstein-Barr virus has been associated with increased risk of multiple sclerosis. However, little is known about the characteristics of this association. OBJECTIVE: To assess the significance of sex, age at and time since infectious mononucleosis......, and attained age to the risk of developing multiple sclerosis after infectious mononucleosis. DESIGN: Cohort study using persons tested serologically for infectious mononucleosis at Statens Serum Institut, the Danish Civil Registration System, the Danish National Hospital Discharge Register, and the Danish...... Multiple Sclerosis Registry. SETTING: Statens Serum Institut. PATIENTS: A cohort of 25 234 Danish patients with mononucleosis was followed up for the occurrence of multiple sclerosis beginning on April 1, 1968, or January 1 of the year after the diagnosis of mononucleosis or after a negative Paul...

  20. Verification of poultry carcass composting research through application during actual avian influenza outbreaks.

    Science.gov (United States)

    Flory, Gary A; Peer, Robert W

    2010-01-01

    An avian influenza outbreak in 2002 affected 197 poultry farms in Virginia and cost an estimated $130 million in losses and cleanup. In 2004-2005, researchers initiated a project to investigate the feasibility and practicality of in-house composting of turkey mortalities (heavy hens and toms) as a method of disposal and disease containment. Occurrences of low pathogenic avian influenza (LPAI) in West Virginia and Virginia in 2007 provided an opportunity for first responders to verify composting as an effective carcass disposal method. Many lessons learned from these experiences have led to improvements in the application of this technology. Market-weight turkeys, once thought too large for effective composting, were composted sufficiently for land application within 4 to 6 weeks. Additionally, fire-fighting foam, a new method of mass depopulation, proved to be compatible with composting. Knowledge gained from these incidents will be valuable not only for future responses to LPAI but also for outbreaks of highly pathogenic avian influenza such as the H5N1 virus, which currently causes disease in both animals and humans in many parts of the world. Since three-quarters of all recent emerging infectious diseases (EIDs) have arisen from animals, control of disease in animals is the principal way to reduce human exposure and prevent EIDs. Many of the general approaches and specific techniques used to eradicate the avian influenza virus can also be used to control other EIDs such as H1N1, Nipah virus, Rift Valley Fever, and plague.

  1. A recombinant avian leukosis virus subgroup j for directly monitoring viral infection and the selection of neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Avian leukosis virus subgroup J (ALV-J has induced serious clinical outbreaks and has become a serious infectious disease of chickens in China. We describe here the creation of a recombinant ALV-J tagged with the enhanced green fluorescent protein (named rHPRS-103EGFP. We successfully utilize the rHPRS-103EGFP to visualize viral infection and for development of a simplified serum-neutralization test.

  2. A recombinant avian leukosis virus subgroup j for directly monitoring viral infection and the selection of neutralizing antibodies.

    Science.gov (United States)

    Wang, Qi; Li, Xiaofei; Ji, Xiaolin; Wang, Jingfei; Shen, Nan; Gao, Yulong; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Zhang, Shide; Wang, Xiaomei

    2014-01-01

    Avian leukosis virus subgroup J (ALV-J) has induced serious clinical outbreaks and has become a serious infectious disease of chickens in China. We describe here the creation of a recombinant ALV-J tagged with the enhanced green fluorescent protein (named rHPRS-103EGFP). We successfully utilize the rHPRS-103EGFP to visualize viral infection and for development of a simplified serum-neutralization test.

  3. Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR).

    Science.gov (United States)

    Hornyák, Akos; Bálint, Adám; Farsang, Attila; Balka, Gyula; Hakhverdyan, Mikhayil; Rasmussen, Thomas Bruun; Blomberg, Jonas; Belák, Sándor

    2012-05-01

    Feline infectious peritonitis is one of the most severe devastating diseases of the Felidae. Upon the appearance of clinical signs, a cure for the infected animal is impossible. Therefore rapid and proper diagnosis for both the presence of the causative agent, feline coronavirus (FCoV) and the manifestation of feline infectious peritonitis is of paramount importance. In the present work, a novel real-time RT-PCR method is described which is able to detect FCoV and to determine simultaneously the quantity of the viral RNA. The new assay combines the M gene subgenomic messenger RNA (sg-mRNA) detection and the quantitation of the genome copies of FCoV. In order to detect the broadest spectrum of potential FCoV variants and to achieve the most accurate results in the detection ability the new assay is applying the primer-probe energy transfer (PriProET) principle. This technology was chosen since PriProET is very robust to tolerate the nucleotide substitutions in the target area. Therefore, this technology provides a very broad-range system, which is able to detect simultaneously many variants of the virus(es) even if the target genomic regions show large scale of variations. The detection specificity of the new assay was proven by positive amplification from a set of nine different FCoV strains and negative from the tested non-coronaviral targets. Examination of faecal samples of healthy young cats, organ samples of perished animals, which suffered from feline infectious peritonitis, and cat leukocytes from uncertain clinical cases were also subjected to the assay. The sensitivity of the P-sg-QPCR method was high, since as few as 10 genome copies of FCoV were detected. The quantitative sg-mRNA detection method revealed more than 10-50,000 times increase of the M gene sg-mRNA in organ materials of feline infectious peritonitis cases, compared to those of the enteric FCoV variants present in the faeces of normal, healthy cats. These results indicate the applicability of

  4. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  5. Effect of coronavirus infection on reproductive performance of turkey hens.

    Science.gov (United States)

    Awe, Olusegun O; Ali, Ahmed; Elaish, Mohamed; Ibrahim, Mahmoud; Murgia, Maria; Pantin-Jackwood, Mary; Saif, Yehia M; Lee, Chang-Won

    2013-09-01

    Turkey coronavirus (TCoV) infection causes enteritis in turkeys of varying ages with high mortality in young birds. In older birds, field evidence indicates the possible involvement of TCoV in egg-production drops in turkey hens. However, no experimental studies have been conducted to demonstrate TCoV pathogenesis in turkey hens and its effect on reproductive performance. In the present study, we assessed the possible effect of TCoV on the reproductive performance of experimentally infected turkey hens. In two separate trials, 29- to 30-wk-old turkey hens in peak egg production were either mock-infected or inoculated orally with TCoV (Indiana strain). Cloacal swabs and intestinal and reproductive tissues were collected and standard reverse-transcription PCR was conducted to detect TCoV RNA. In the cloacal swabs, TCoV was detected consistently at 3, 5, 7, and 12 days postinoculation (DPI) with higher rates of detection after 5 DPI (> 90%). All intestinal samples were also positive for TCoV at 7 DPI, and microscopic lesions consisting of severe enteritis with villous atrophy were observed in the duodenum and jejunum of TCoV-infected hens. In one of the trials TCoV was detected from the oviduct of two birds at 7 DPI; however, no or mild microscopic lesions were present. In both experimental trials an average of 28%-29% drop in egg production was observed in TCoV-infected turkey hens between 4 and 7 DPI. In a separate trial we also confirmed that TCoV can efficiently transmit from infected to contact control hens. Our results show that TCoV infection can affect the reproductive performance in turkey hens, causing a transient drop in egg production. This drop in egg production most likely occurred as consequence of the severe enteritis produced by the TCoV. However, the potential replication of TCoV in the oviduct and its effect on pathogenesis should be considered and further investigated.

  6. Avian malaria in New Zealand.

    Science.gov (United States)

    Schoener, E R; Banda, M; Howe, L; Castro, I C; Alley, M R

    2014-07-01

    Avian malaria parasites of the genus Plasmodium have the ability to cause morbidity and mortality in naïve hosts, and their impact on the native biodiversity is potentially serious. Over the last decade, avian malaria has aroused increasing interest as an emerging disease in New Zealand with some endemic avian species, such as the endangered mohua (Mohua ochrocephala), thought to be particularly susceptible. To date, avian malaria parasites have been found in 35 different bird species in New Zealand and have been diagnosed as causing death in threatened species such as dotterel (Charadrius obscurus), South Island saddleback (Philesturnus carunculatus carunculatus), mohua, hihi (Notiomystis cincta) and two species of kiwi (Apteryx spp.). Introduced blackbirds (Turdus merula) have been found to be carriers of at least three strains of Plasmodium spp. and because they are very commonly infected, they are likely sources of infection for many of New Zealand's endemic birds. The spread and abundance of introduced and endemic mosquitoes as the result of climate change is also likely to be an important factor in the high prevalence of infection in some regions and at certain times of the year. Although still limited, there is a growing understanding of the ecology and epidemiology of Plasmodium spp. in New Zealand. Molecular biology has played an important part in this process and has markedly improved our understanding of the taxonomy of the genus Plasmodium. This review presents our current state of knowledge, discusses the possible infection and disease outcomes, the implications for host behaviour and reproduction, methods of diagnosis of infection, and the possible vectors for transmission of the disease in New Zealand.

  7. Using EGEE against avian flu

    CERN Multimedia

    2006-01-01

    During April 2006 avian flu was spreading across the world with the potential of turning into a pandemic, a drug to treat the deadly H5N1 strain was needed. Such a task required the huge processing power provided by EGEE, which analysed 300 000 possible drug components for their suitability. This map shows the network of computer centres and their activity during this time.

  8. Gender determination of avian embryo

    Science.gov (United States)

    Daum, Keith A.; Atkinson, David A.

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  9. Avian zoonoses – a review

    Directory of Open Access Journals (Sweden)

    Kozdruń Wojciech

    2015-06-01

    Full Text Available Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other hazardous bacterial factors, Salmonella and Campylobacter are responsible for gastrointestinal diseases. Avian influenza is the most dangerous of the viral diseases. It should be noted, however, that avian influenza is a disease of birds, not humans. The recent threat which has appeared is infection with West Nile virus. The results of serological examinations of birds and humans indicate that the virus exists in our ecosystem. Allergic alveolitis connected with the pigeon tick and the Dermanyssus gallinae mite also merits mention. In any case, where people have contact with birds or their droppings and secretions, special precautions should be taken. This way the negative effects of birds on human health can be minimised or eliminated

  10. Outbreak patterns of the novel avian influenza (H7N9)

    Science.gov (United States)

    Pan, Ya-Nan; Lou, Jing-Jing; Han, Xiao-Pu

    2014-05-01

    The attack of novel avian influenza (H7N9) in East China caused a serious health crisis and public panic. In this paper, we empirically analyze the onset patterns of human cases of the novel avian influenza and observe several spatial and temporal properties that are similar to other infectious diseases. More specifically, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges two-regime-power-law edge-length distribution, indicating the picture that several islands with higher and heterogeneous risk straggle in East China. The proposed method is applicable to the analysis of the spreading situation in the early stage of disease outbreak using quite limited dataset.

  11. Towards the routine application of nucleic acid technology for avian disease diagnosis.

    Science.gov (United States)

    Cavanagh, D; Mawditt, K; Shaw, K; Britton, P; Naylor, C

    1997-01-01

    The use of nucleic acid technology (polymerase chain reaction, probing, restriction fragment analysis and nucleotide sequencing) in the study of avian diseases has largely been confined to fundamental analysis and retrospective studies. More recently these approaches have been applied to diagnosis and what one might call real-time epidemiological studies on chickens and turkeys. At the heart of these approaches is the identification and characterisation of pathogens based on their genetic material, RNA or DNA. Among the objectives has been the detection of pathogens quickly combined with the simultaneous identification of serotype, subtype or genotype. Nucleic acid sequencing also gives a degree of characterisation unmatched by other approaches. In this paper we describe the use of nucleic acid technology for the diagnosis and epidemiology of infectious bronchitis virus, turkey rhinotracheitis virus (avian pneumovirus) and Newcastle disease virus.

  12. In vitro antiviral activity of circular triple helix forming oligonucleotide RNA towards Feline Infectious Peritonitis virus replication.

    Science.gov (United States)

    Choong, Oi Kuan; Mehrbod, Parvaneh; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 10(14) in the virus-inoculated cells to 10(9) in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.

  13. In Vitro Antiviral Activity of Circular Triple Helix Forming Oligonucleotide RNA towards Feline Infectious Peritonitis Virus Replication

    Directory of Open Access Journals (Sweden)

    Oi Kuan Choong

    2014-01-01

    Full Text Available Feline Infectious Peritonitis (FIP is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV, a virulent mutant strain of Feline Enteric Coronavirus (FECV. Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO RNAs (TFO1 to TFO5, which target the different regions of virulent feline coronavirus (FCoV strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 1014 in the virus-inoculated cells to 109 in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.

  14. Serosurvey of infectious disease agents of carnivores in captive red pandas (Ailurus fulgens) in China.

    Science.gov (United States)

    Qin, Qin; Wei, Fuwen; Li, Ming; Dubovi, Edward J; Loeffler, I Kati

    2007-03-01

    The future of the endangered red panda (Ailurusfulgens) depends in part on the development of protective measures against infectious diseases. The present study is a first step toward improved understanding of infectious diseases in the species' home regions. Serum samples obtained from 73 red pandas in 10 captive facilities in southwest, east, and northeast China from October to December 2004 were tested for antibodies against nine common infectious pathogens of carnivores. Antibody titers against canine distemper virus (CDV), canine parvovirus (CPV), and canine adenovirus (CAV) in the three facilities in which red pandas were vaccinated were highly variable. The CAV titer in one vaccinated red panda was high enough to suggest infection with the field virus following vaccination. Together with anecdotal reports of vaccine-associated morbidity and mortality, our results suggest that the Chinese vaccine is not suitable for this species. In the seven unvaccinated groups, CDV titers were low and occurred in 20-100% of the animals; antibody titers against CPV were found in seven of eight areas. Only one of 61 and two of 61 unvaccinated red pandas had CAV and canine coronavirus titers, respectively, and these titers were all low. Positive titers to Toxoplasma gondii were found in four locations (33-94% seropositive); the titers in 52% of seropositive individuals were of a magnitude consistent with active disease in other species (1:1,024 to > or = 1:4,096). One red panda in each of three locations was seropositive for Neospora caninum. Antibodies against canine herpesvirus and Brucella canis were not detected in any of the samples. Only one of the 73 red pandas had a weak positive influenza A titer. The results of this study emphasize the need for research on and protection against infectious diseases of red pandas and other endangered species in China.

  15. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies

    Directory of Open Access Journals (Sweden)

    Mihayl Varbanov

    2012-11-01

    Full Text Available The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV, were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS, due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV; led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1, NL63, HKU1 or SARS-CoV to survive in different environmental conditions (e.g. temperature and humidity, on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections, the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to

  16. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies.

    Science.gov (United States)

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E

    2012-11-12

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002-2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  17. DIFFERENTIAL DIAGNOSTICS OF INFECTIOUS EXANTHEMAS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    D. Yu. Ovsyannikov

    2015-01-01

    Full Text Available The lecture is devoted to the problem of differential diagnosis of infectious exanthemas in children. Information about differential-diagnostic sings of infectious and non-infectious exanthemas is present. Differential diagnosis is proposed on the basis of morphological elements identified in objective research. Presents possible infectious and non-infectious causes of rashes which are characterized by different primary (spot, papula, blister, knob, knot, bubble, abscess, bladder and secondary (scale, erosion, ulcer morphological elements.

  18. DIFFERENTIAL DIAGNOSTICS OF INFECTIOUS EXANTHEMAS IN CHILDREN

    OpenAIRE

    D. Yu. Ovsyannikov

    2015-01-01

    The lecture is devoted to the problem of differential diagnosis of infectious exanthemas in children. Information about differential-diagnostic sings of infectious and non-infectious exanthemas is present. Differential diagnosis is proposed on the basis of morphological elements identified in objective research. Presents possible infectious and non-infectious causes of rashes which are characterized by different primary (spot, papula, blister, knob, knot, bubble, abscess, bladder) and seconda...

  19. IDBD: infectious disease biomarker database.

    Science.gov (United States)

    Yang, In Seok; Ryu, Chunsun; Cho, Ki Joon; Kim, Jin Kwang; Ong, Swee Hoe; Mitchell, Wayne P; Kim, Bong Su; Oh, Hee-Bok; Kim, Kyung Hyun

    2008-01-01

    Biomarkers enable early diagnosis, guide molecularly targeted therapy and monitor the activity and therapeutic responses across a variety of diseases. Despite intensified interest and research, however, the overall rate of development of novel biomarkers has been falling. Moreover, no solution is yet available that efficiently retrieves and processes biomarker information pertaining to infectious diseases. Infectious Disease Biomarker Database (IDBD) is one of the first efforts to build an easily accessible and comprehensive literature-derived database covering known infectious disease biomarkers. IDBD is a community annotation database, utilizing collaborative Web 2.0 features, providing a convenient user interface to input and revise data online. It allows users to link infectious diseases or pathogens to protein, gene or carbohydrate biomarkers through the use of search tools. It supports various types of data searches and application tools to analyze sequence and structure features of potential and validated biomarkers. Currently, IDBD integrates 611 biomarkers for 66 infectious diseases and 70 pathogens. It is publicly accessible at http://biomarker.cdc.go.kr and http://biomarker.korea.ac.kr.

  20. The Leeuwenhoek Lecture 2001. Animal origins of human infectious disease.

    Science.gov (United States)

    Weiss, R A

    2001-06-29

    Since time immemorial animals have been a major source of human infectious disease. Certain infections like rabies are recognized as zoonoses caused in each case by direct animal-to-human transmission. Others like measles became independently sustained with the human population so that the causative virus has diverged from its animal progenitor. Recent examples of direct zoonoses are variant Creutzfeldt-Jakob disease arising from bovine spongiform encephalopathy, and the H5N1 avian influenza outbreak in Hong Kong. Epidemics of recent animal origin are the 1918-1919 influenza pandemic, and acquired immune deficiency syndrome caused by human immunodeficiency virus (HIV). Some retroviruses jump into and out of the chromosomal DNA of the host germline, so that they oscillate between being inherited Mendelian traits or infectious agents in different species. Will new procedures like animal-to-human transplants unleash further infections? Do microbes become more virulent upon cross-species transfer? Are animal microbes a threat as biological weapons? Will the vast reservoir of immunodeficient hosts due to the HIV pandemic provide conditions permissive for sporadic zoonoses to take off as human-to-human transmissible diseases? Do human infections now pose a threat to endangered primates? These questions are addressed in this lecture.

  1. Europe: history, current situation and control measures for infectious bronchitis

    Directory of Open Access Journals (Sweden)

    RC Jones

    2010-06-01

    Full Text Available The emergence and nature of different strains of infectious bronchitis virus (IBV in Europe are described. Infectious bronchitis (IB is the most important endemic viral respiratory disease where highly pathogenic Newcastle disease and avian influenza are not present. IB was first described in the UK in 1948 and identified as Massachusetts type. In the 1970s and 80s new serotypes were reported in Holland and elsewhere and new vaccines were developed. The 1990s saw the emergence of the major variant commonly called 793B, again needing a new vaccine. Two novel types have been recognised since 2000, Italy 02 and QX. Italy 02 appears to be well controlled by the use of two different live vaccines (H120 and the 793B-related 4/91 while for QX, associated with nephritis in young birds and silent layers, new vaccines are in development. The use of two vaccines as above is a widely used protocol and is capable of protecting against a wide range of different types. Alternative approaches to IB vaccination are discussed. The importance of constant surveillance for prevalent and novel IBV types is emphasised and the value of experimental infections in chickens to determine the pathogenesis and pathology of new types in addition to testing efficacy of vaccines is outlined.

  2. Antimicrobial sensitivity pattern of Haemophilus paragallinarum isolated from suspected cases of infectious coryza in poultry

    Directory of Open Access Journals (Sweden)

    Gayatri Rajurkar

    2010-08-01

    Full Text Available Among infectious diseases of avian species Infectious coryza is one of the major problems affecting commercial poultry industry in the country. Infectious coryza is an upper respiratory disease of chickens caused by infection with H. paragallinarum (HPG. The disease is characterized by swollen infra-orbital sinuses, nasal discharge, and depression. The disease is seen most commonly in adult chickens and can cause a very significant reduction in the rate of egg production. Considering the economic importance of the disease, the present research pursuit was undertaken with the aim to isolate H. paragallinarum from the suspected cases of Infectious coryza in commercial poultry farms in Gujarat state with reference to their cultural, morphological characterization and antimicrobial drug sensitivity patterns. Further these isolates were confirmed by using specific colony PCR test. The research work aims to characterize Haemophilus paragallinarum field isolates of poultry origin from Infectious coryza outbreak in and around Anand, Kheda and Mahua area of Saurashtra region of Gujarat state, India. [Vet World 2010; 3(4.000: 177-181

  3. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    The avian vocal organ, the syrinx, is a specialized structure located rather inaccessibly in an air sac close to the heart where the trachea bifurcates into the two primary bronchi. The syrinx of different avian taxa varies so much in position and morphology that it has been used for taxonomy. It...

  4. Infectious Disease, Endangerment, and Extinction

    Directory of Open Access Journals (Sweden)

    Ross D. E. MacPhee

    2013-01-01

    Full Text Available Infectious disease, especially virulent infectious disease, is commonly regarded as a cause of fluctuation or decline in biological populations. However, it is not generally considered as a primary factor in causing the actual endangerment or extinction of species. We review here the known historical examples in which disease has, or has been assumed to have had, a major deleterious impact on animal species, including extinction, and highlight some recent cases in which disease is the chief suspect in causing the outright endangerment of particular species. We conclude that the role of disease in historical extinctions at the population or species level may have been underestimated. Recent methodological breakthroughs may lead to a better understanding of the past and present roles of infectious disease in influencing population fitness and other parameters.

  5. Molecular patterns of avian influenza A viruses

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; LEI FuMin; WANG ShengYue; ZHOU YanHong; LI TianXian

    2008-01-01

    Avian influenza A viruses could get across the species barrier and be fatal to humans. Highly patho-genic avian influenza H5N1 virus was an example. The mechanism of interspecies transmission is not clear as yet. In this research, the protein sequences of 237 influenza A viruses with different subtypes were transformed into pseudo-signals. The energy features were extracted by the method of wavelet packet decomposition and used for virus classification by the method of hierarchical clustering. The clustering results showed that five patterns existed in avian influenza A viruses, which associated with the phenotype of interspecies transmission, and that avian viruses with patterns C and E could across species barrier and those with patterns A, B and D might not have the abilities. The results could be used to construct an early warning system to predict the transmissibility of avian influenza A viruses to humans.

  6. Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuan-hai; XIONG Sheng; LI Jiu-xiang; QI Shu-yuan; WANG Yi-fei; LIU Xin-jian; LU Jia-hai; QIAN Chui-wen; WAN Zhuo-yue; YAN Xin-ge; ZHENG Huan-ying; ZHANG Mei-ying

    2005-01-01

    @@ Severe acute respiratory syndrome (SARS) is the first severe viral epidemic we encountered this century, which once spread in more than thirty countries in 2003.1 The etiological agent of SARS has been confirmed to be a novel coronavirus, namely SARS coronavirus (SARS-CoV),2,3 and the first outbreak of SARS has been successfully controlled worldwide, but the identification of SARS-CoV isolated from wild animals, the emergence of some sporadic SARS cases later after that outbreak, all suggest that the recurrence of such an epidemic is not unlikely in the future. In this case, development of SARS vaccines and specific drugs is undoubtedly essential to the control and prevention from the possible outbreak.4,5

  7. The Middle East respiratory syndrome coronavirus (MERS-CoV does not replicate in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Emmie de Wit

    Full Text Available In 2012 a novel coronavirus, MERS-CoV, associated with severe respiratory disease emerged in the Arabian Peninsula. To date, 55 human cases have been reported, including 31 fatal cases. Several of the cases were likely a result of human-to-human transmission. The emergence of this novel coronavirus prompts the need for a small animal model to study the pathogenesis of this virus and to test the efficacy of potential intervention strategies. In this study we explored the use of Syrian hamsters as a small animal disease model, using intratracheal inoculation and inoculation via aerosol. Clinical signs of disease, virus replication, histological lesions, cytokine upregulation nor seroconversion were observed in any of the inoculated animals, indicating that MERS-CoV does not replicate in Syrian hamsters.

  8. Analysis of Avian Hepatitis E Virus from Chickens, China

    OpenAIRE

    Zhao, Qin; Zhou, En Min; Dong, Shi Wei; Qiu, Hong Kai; Zhang, Lu; Hu, Shou Bin; Zhao, Fei Fei; Jiang, Shi Jin; Sun, Ya Ni

    2010-01-01

    Avian hepatitis E virus (HEV) has been identified in chickens; however, only 4 complete or near-complete genomic sequences have been reported. We found that the near-complete genomic sequence of avian HEV in chickens from China shared the highest identity (98.3%) with avian HEV from Europe and belonged to avian HEV genotype 3.

  9. Analysis of avian hepatitis E virus from chickens, China.

    Science.gov (United States)

    Zhao, Qin; Zhou, En Min; Dong, Shi Wei; Qiu, Hong Kai; Zhang, Lu; Hu, Shou Bin; Zhao, Fei Fei; Jiang, Shi Jin; Sun, Ya Ni

    2010-09-01

    Avian hepatitis E virus (HEV) has been identified in chickens; however, only 4 complete or near-complete genomic sequences have been reported. We found that the near-complete genomic sequence of avian HEV in chickens from China shared the highest identity (98.3%) with avian HEV from Europe and belonged to avian HEV genotype 3.

  10. Migratory birds reinforce local circulation of avian influenza viruses.

    Science.gov (United States)

    Verhagen, Josanne H; van Dijk, Jacintha G B; Vuong, Oanh; Bestebroer, Theo; Lexmond, Pascal; Klaassen, Marcel; Fouchier, Ron A M

    2014-01-01

    Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos) - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i) H3 virus kinship, (ii) temporal patterns in H3 virus prevalence and shedding and (iii) H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife.

  11. Migratory birds reinforce local circulation of avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Josanne H Verhagen

    Full Text Available Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i H3 virus kinship, (ii temporal patterns in H3 virus prevalence and shedding and (iii H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife.

  12. Positive immunostaining for feline infectious peritonitis (FIP) in a Sphinx cat with cutaneous lesions and bilateral panuveitis.

    Science.gov (United States)

    Bauer, Bianca S; Kerr, Moira E; Sandmeyer, Lynne S; Grahn, Bruce H

    2013-07-01

    Feline infectious peritonitis (FIP) is a common, fatal, systemic disease of cats. This case report describes the antemortem diagnosis of FIP in a 2-year-old spayed female Sphinx cat that presented with a bilateral panuveitis and multiple papular cutaneous lesions. Histopathologically, the skin lesions were characterized by perivascular infiltrates of macrophages, neutrophils, with fewer plasma cells, mast cells, and small lymphocytes in the mid- to deep dermis. Immunohistochemistry for intracellular feline coronavirus (FeCoV) antigen demonstrated positive staining in dermal macrophages providing an antemortem diagnosis of a moderate, nodular to diffuse, pyogranulomatous perivascular dermatitis due to FIP infection. Obtaining an antemortem diagnosis of FIP can be a challenge and cutaneous lesions are rare in the disease. Recognition and biopsy of any cutaneous lesions in cats with panuveitis and suspected FIP can help establish an antemortem diagnosis of the disease.

  13. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid.

    OpenAIRE

    Sturman, L S; Holmes, K V; Behnke, J.

    1980-01-01

    The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus a...

  14. Middle East Respiratory Syndrome Coronavirus during Pregnancy, Abu Dhabi, United Arab Emirates, 2013.

    Science.gov (United States)

    Malik, Asim; El Masry, Karim Medhat; Ravi, Mini; Sayed, Falak

    2016-03-01

    As of June 19, 2015, the World Health Organization had received 1,338 notifications of laboratory-confirmed infection with Middle East respiratory syndrome coronavirus (MERS-CoV). Little is known about the course of or treatment for MERS-CoV in pregnant women. We report a fatal case of MERS-CoV in a pregnant woman administered combination ribavirin-peginterferon-α therapy.

  15. The role of viral population diversity in adaptation of bovine coronavirus to new host environments.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    Full Text Available The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing and 38,000×(Illumina. The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.

  16. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  17. Multiple Sequence Alignment of the M Proteinin SARS—Associated and Other Known Coronaviruses

    Institute of Scientific and Technical Information of China (English)

    史定华; 周晖杰; 王斌宾; 顾燕红; 王翼飞

    2003-01-01

    In this paper, we report a multiple sequence alignment result on the basis of 10 amino acid sequences of the M protein,which come from different coronaviruses (4 SARS-associated and 6 others known). The alignment model was based on the profile HMM (Hidden Markov Model), and the model training was implemented through the SAHMM (Self-Adapting Hidden Markov Model)software developed by the authors.

  18. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus

    Science.gov (United States)

    2011-01-06

    West Nile viruses . In contrast, they do not inhibit replication of murine leukemia virus (MLV), or the entry processes of amphotropic MLV, Machupo virus ...MACV), Lassa virus (LASV), or lympho- cytic choriomeningitis virus (LCMV). Although IFITM proteins are induced by type I and II interferons, most...processes of several highly pathogenic viruses – Marburg virus , Ebola virus , and SARS coronavirus – are similarly disrupted by IFITM proteins. We

  19. Detection of feline coronavirus in cheetah (Acinonyx jubatus) feces by reverse transcription-nested polymerase chain reaction in cheetahs with variable frequency of viral shedding.

    Science.gov (United States)

    Gaffney, Patricia M; Kennedy, Melissa; Terio, Karen; Gardner, Ian; Lothamer, Chad; Coleman, Kathleen; Munson, Linda

    2012-12-01

    Cheetahs (Acinonyx jubatus) are a highly threatened species because of habitat loss, human conflict, and high prevalence of disease in captivity. An epidemic of feline infectious peritonitis and concern for spread of infectious disease resulted in decreased movement of cheetahs between U.S. zoological facilities for managed captive breeding. Identifying the true feline coronavirus (FCoV) infection status of cheetahs is challenging because of inconsistent correlation between seropositivity and fecal viral shedding. Because the pattern of fecal shedding of FCoV is unknown in cheetahs, this study aimed to assess the frequency of detectable fecal viral shedding in a 30-day period and to determine the most efficient fecal sampling strategy to identify cheetahs shedding FCoV. Fecal samples were collected from 16 cheetahs housed at seven zoological facilities for 30 to 46 consecutive days; the samples were evaluated for the presence of FCoV by reverse transcription-nested polymerase chain reaction (RT-nPCR). Forty-four percent (7/16) of cheetahs had detectable FCoV in feces, and the proportion of positive samples for individual animals ranged from 13 to 93%. Cheetahs shed virus persistently, intermittently, or rarely over 30-46 days. Fecal RT-nPCR results were used to calculate the probability of correctly identifying a cheetah known to shed virus given multiple hypothetical fecal collection schedules. The most efficient hypothetical fecal sample collection schedule was evaluation of five individual consecutive fecal samples, resulting in a 90% probability of identifying a known shedder. Demographic and management risk factors were not significantly associated (P cheetahs shed virus intermittently to rarely, fecal sampling schedules meant to identify all known shedders would be impractical with current tests and eradication of virus from the population unreasonable. Managing the captive population as endemically infected with FCoV may be a more feasible approach.

  20. Physiologically driven avian vocal synthesizer

    Science.gov (United States)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  1. Design and application of 60mer oligonucleotide microarray in SARS coronavirus detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute respiratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submitted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as restricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microarray for hybridization. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microarray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide microarray, which can improve the positive ratio of the diagnosis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.

  2. Genome sequence variation analysis of two SARS coronavirus isolates after passage in Vero cell culture

    Institute of Scientific and Technical Information of China (English)

    JIN Weiwu; LI Ning; HU Liangxiang; DU Zhenglin; GAO Qiang; GAO Hong; NING Ye; FENG Jidong; ZHANG Jiansan; YIN Weidong

    2004-01-01

    SARS coronavirus is an RNA virus whose replication is error-prone, which provides possibility for escape of host defenses, and even leads to evolution of new viral strains during the passage or the transmission. Lots of variations have been detected among different SARS-CoV strains. And a study on these variations is helpful for development of efficient vaccine. Moreover, the test of nucleic acid characterization and genetic stability of SARS-CoV is important in the research of inactivated vaccine. The whole genome sequences of two SARS coronavirus strains after passage in Vero cell culture were determined and were compared with those of early passages, respectively. Results showed that both SARS coronavirus strains have high genetic stability, although nearly 10 generations were passed. Four nucleotide variations were observed between the second passage and the 11th passage of Sino1 strain for identification of SARS inactivated vaccine. Moreover, only one nucleotide was different between the third passage and the 10th passage of Sino3 strain for SARS inactivated vaccine. Therefore, this study suggested it was possible to develop inactivated vaccine against SARS-CoV in the future.

  3. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  4. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    Science.gov (United States)

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  5. Sequence Analysis and Structural Prediction of the Severe Acute Respiratory Syndrome Coronavirus nsp5

    Institute of Scientific and Technical Information of China (English)

    Jia-Hai LU; Nan-Shan ZHONG; Ding-Mei ZHANG; Guo-Ling WANG; Zhong-Min GUO; Juan LI; Bing-Yan TAN; Li-Ping OU-YANG; Wen-Hua LING; Xin-Bing YU

    2005-01-01

    The non-structural proteins (nsp or replicase proteins) of coronaviruses are relatively conserved and can be effective targets for drugs. Few studies have been conducted into the function of the severe acute respiratory syndrome coronavirus (SARS-CoV) nsp5. In this study, bioinformatics methods were employed to predict the secondary structure and construct 3-D models of the SARS-CoV GD strain nsp5. Sequencing and sequential comparison was performed to analyze the mutation trend of the polymerase nsp5 gene during the epidemic process using a nucleotide-nucleotide basic local alignment search tool (BLASTN) and a protein-protein basic local alignment search tool (BLASTP). The results indicated that the nsp5 gene was steady during the epidemic process and the protein was homologous with other coronavirus nsp5 proteins. The protein encoded by the nsp5 gene was expressed in COS-7 cells and analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This study provided the foundation for further exploration of the protein's biological function, and contributed to the search for anti-SARS-CoV drugs.

  6. 75 FR 24835 - Infectious Diseases

    Science.gov (United States)

    2010-05-06

    ... healthcare and social assistance sector as a whole had 16.5 million employees.\\1\\ Healthcare workplaces can... that dealt with the negative impact of non-compliance with hand hygiene on the transmission of... on occupationally-acquired infectious diseases (e.g., Federal, State, provider network, or...

  7. Dilemmas of securitization and health risk management in the People's Republic of China: the cases of SARS and avian influenza.

    Science.gov (United States)

    Wishnick, Elizabeth

    2010-11-01

    Since the SARS epidemic in 2003, the international community has urged Chinese leaders to do more to address infectious diseases. This paper looks at two cases in which the Chinese government securitized infectious disease (SARS and avian influenza) and examines the pros and cons of securitization. It is argued that the reactive mobilization involved in a securitizing move runs counter to the preventive risk management strategy needed to address infectious diseases. Although the Copenhagen School favours desecuritization as a return to normal practices, in the Chinese cases desecuritizing moves proved detrimental, involving cover-ups and restrictions on activists pressing for greater information. The article begins by examining the contributions of the Copenhagen School and sociological theories of risk to conceptualizing the security challenges that pandemics pose. Although analysis of the cases of SARS and avian influenza gives credence to criticisms of this approach, securitization theory proves useful in outlining the different stages in China's reaction to epidemics involving reactive mobilization and subsequent efforts to return to politics as usual. The second section examines securitizing and desecuritizing moves in Chinese responses to SARS and avian influenza. Each case study concludes with an assessment of the consequences for health risk management in China. The reactive mobilization implicit in Chinese securitization moves in the two cases is contrasted with the preventive logic of risk management. A third section draws out the implications of these cases for theories of securitization and risk. It is argued here that when securitization has occurred, risk management has failed. Although Copenhagen School theorists see the return to politics as usual-what they call 'desecuritization'-as optimal, this turns out to be far from the case in China during SARS and avian influenza, where the process involved retribution against whistleblowers and new

  8. The urban health transition hypothesis: empirical evidence of an avian influenza Kuznets curve in Vietnam?

    Science.gov (United States)

    Spencer, James Herbert

    2013-04-01

    The literature on development has focused on the concept of transition in understanding the emergent challenges facing poor but rapidly developing countries. Scholars have focused extensively on the health and urban transitions associated with this change and, in particular, its use for understanding emerging infectious diseases. However, few have developed explicit empirical measures to quantify the extent to which a transitions focus is useful for theory, policy, and practice. Using open source data on avian influenza in 2004 and 2005 and the Vietnam Census of Population and Housing, this paper introduces the Kuznets curve as a tool for empirically estimating transition and disease. Findings suggest that the Kuznets curve is a viable tool for empirically assessing the role of transitional dynamics in the emergence of new infectious diseases.

  9. A Review of the Molecular Biology Techniques in Detection of Avian Influenza Virus%禽流感病毒分子生物学检测技术研究进展

    Institute of Scientific and Technical Information of China (English)

    但晓雅; 董英; 邹明强; 薛强

    2012-01-01

    禽流感(avian influenza,AI)是A型流感病毒引起的一种禽类传染病,同时也是一种人和动物之间的高度传染性疾病.近年来,禽流感病毒的分子生物学检测技术发展迅速,文章就此进行了综述.%Avian influenza (AI) is a poultry infectious disease and a highly infectious disease between human and animal caused by influenza A virus. In recent years, the molecular biology techniques in detection of avian influenza virus (AIV) had rapidly been developing. And these were reviewed in this study.

  10. Interplay between environment, agriculture and infectious diseases of poverty: case studies in China.

    Science.gov (United States)

    Yang, Guo-Jing; Utzinger, Jürg; Zhou, Xiao-Nong

    2015-01-01

    Changes in the natural environment and agricultural systems induced by economic and industrial development, including population dynamics (growth, urbanization, migration), are major causes resulting in the persistence, emergence and re-emergence of infectious diseases in developing countries. In the face of rapid demographic, economic and social transformations, the People's Republic of China (P.R. China) is undergoing unprecedented environmental and agricultural change. We review emerging and re-emerging diseases such as schistosomiasis, dengue, avian influenza, angiostrongyliasis and soil-transmitted helminthiasis that have occurred in P.R. China due to environmental and agricultural change. This commentary highlights the research priorities and the response strategies, namely mitigation and adaptation, undertaken to eliminate the resurgence of those infectious diseases.

  11. Prion remains infectious after passage through digestive system of American crows (Corvus brachyrhynchos.

    Directory of Open Access Journals (Sweden)

    Kurt C VerCauteren

    Full Text Available Avian scavengers, such as American crows (Corvus brachyrhynchos, have potential to translocate infectious agents (prions of transmissible spongiform encephalopathy (TSE diseases including chronic wasting disease, scrapie, and bovine spongiform encephalopathy. We inoculated mice with fecal extracts obtained from 20 American crows that were force-fed material infected with RML-strain scrapie prions. These mice all evinced severe neurological dysfunction 196-231 d postinoculation (x =198; 95% CI: 210-216 and tested positive for prion disease. Our results suggest a large proportion of crows that consume prion-positive tissue are capable of passing infectious prions in their feces (ˆp=1.0; 95% CI: 0.8-1.0. Therefore, this common, migratory North American scavenger could play a role in the geographic spread of TSE diseases.

  12. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture

    NARCIS (Netherlands)

    A.H. de Wilde (Adriaan); D. Jochmans (Dirk); C.C. Posthuma (Clara); J.C. Zevenhoven-Dobbe (Jessika); S. van Nieuwkoop (Stefan); T.M. Bestebroer (Theo); B.G. van den Hoogen (Bernadette); J. Neyts; E.J. Snijder (Eric)

    2014-01-01

    textabstractCoronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previ

  13. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation

    NARCIS (Netherlands)

    Haan, de C.A.M.; Haijema, B.J.; Schellen, P.; Wichgers Schreur, P.J.; Lintelo, te E.; Vennema, H.; Rottier, P.J.M.

    2008-01-01

    A longstanding enigmatic feature of the group 1 coronaviruses is the uncleaved phenotype of their spike protein, an exceptional property among class I fusion proteins. Here, however, we show that some group 1 coronavirus spike proteins carry a furin enzyme recognition motif and can actually be cleav

  14. Infectious Progeny of 2009 A (H1N1) Influenza Virus Replicated in and Released from Human Neutrophils.

    Science.gov (United States)

    Zhang, Zhang; Huang, Tao; Yu, Feiyuan; Liu, Xingmu; Zhao, Conghui; Chen, Xueling; Kelvin, David J; Gu, Jiang

    2015-12-07

    Various reports have indicated that a number of viruses could infect neutrophils, but the multiplication of viruses in neutrophils was abortive. Based on our previous finding that avian influenza viral RNA and proteins were present in the nucleus of infected human neutrophils in vivo, we investigated the possibility of 2009 A (H1N1) influenza viral synthesis in infected neutrophils and possible release of infectious progeny from host cells. In this study we found that human neutrophils in vitro without detectable level of sialic acid expression could be infected by this virus strain. We also show that the infected neutrophils can not only synthesize 2009 A (H1N1) viral mRNA and proteins, but also produce infectious progeny. These findings suggest that infectious progeny of 2009 A (H1N1) influenza virus could be replicated in and released from human neutrophils with possible clinical implications.

  15. Emerging and reemerging diseases of avian wildlife

    Science.gov (United States)

    Pello, Susan J.; Olsen, Glenn H.

    2013-01-01

    Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive.

  16. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Fan, Rachel Y Y; Lau, Candy C Y; Wong, Emily Y M; Joseph, Sunitha; Tsang, Alan K L; Wernery, Renate; Yip, Cyril C Y; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-05-07

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5'-UCUAAAC-3' as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1.

  17. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    Directory of Open Access Journals (Sweden)

    Patrick C. Y. Woo

    2016-05-01

    Full Text Available Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23 from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3% and 59 (100% of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001. Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV, respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1.

  18. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    Science.gov (United States)

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Fan, Rachel Y. Y.; Lau, Candy C. Y.; Wong, Emily Y. M.; Joseph, Sunitha; Tsang, Alan K. L.; Wernery, Renate; Yip, Cyril C. Y.; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-01-01

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1. PMID:27164099

  19. Infectious pathogens and bronchiolitis outcomes.

    Science.gov (United States)

    Hasegawa, Kohei; Mansbach, Jonathan M; Camargo, Carlos A

    2014-07-01

    Bronchiolitis is a common early childhood illness and an important cause of morbidity, it is the number one cause of hospitalization among US infants. Bronchiolitis is also an active area of research, and recent studies have advanced our understanding of this illness. Although it has long been the conventional wisdom that the infectious etiology of bronchiolitis does not affect outcomes, a growing number of studies have linked specific pathogens of bronchiolitis (e.g., rhinovirus) to short- and long-term outcomes, such as future risk of developing asthma. The authors review the advent of molecular diagnostic techniques that have demonstrated diverse pathogens in bronchiolitis, and they review recent studies on the complex link between infectious pathogens of bronchiolitis and the development of childhood asthma.

  20. Montana 2006 Avian Influenza Surveillance Project Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the summer of 2006, the U.S. Department of Agriculture (USDA) and the U.S. Fish and Wildlife Service (USFWS) initiated a nationwide avian influenza...

  1. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys at...

  2. Avian models in teratology and developmental toxicology.

    Science.gov (United States)

    Smith, Susan M; Flentke, George R; Garic, Ana

    2012-01-01

    The avian embryo is a long-standing model for developmental biology research. It also has proven utility for toxicology research both in ovo and in explant culture. Like mammals, avian embryos have an allantois and their developmental pathways are highly conserved with those of mammals, thus avian models have biomedical relevance. Fertile eggs are inexpensive and the embryo develops rapidly, allowing for high-throughput. The chick genome is sequenced and significant molecular resources are available for study, including the ability for genetic manipulation. The absence of a placenta permits the direct study of an agent's embryotoxic effects. Here, we present protocols for using avian embryos in toxicology research, including egg husbandry and hatch, toxicant delivery, and assessment of proliferation, apoptosis, and cardiac structure and function.

  3. Avian protection plan : Lostwood National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Lostwood National Wildlife Refuge (LNWR) initiated this Avian Protection Plan (APP) in 2003 to protect birds from potential electrocution hazards on the...

  4. Immunizing Canada geese against avian cholera

    Science.gov (United States)

    Price, J.I.

    1985-01-01

    A small flock of captive giant Canada geese were vaccinated with the experimental bac- terin in Nebraska to test its efficacy under field conditions. Only 2 of 157 vaccinates died from avian cholera during an annual spring die-off.

  5. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... their saliva, mucous and feces. Human infections with bird flu viruses can happen when enough virus gets into ... Virus (CVV) for a Highly Pathogenic Avian Influenza (Bird Flu) Virus ” for more information on this process. ...

  6. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria

    Institute of Scientific and Technical Information of China (English)

    Selles Sidi Mohammed Ammar; Kouidri Mokhtaria; Belhamiti Belkacem Tahar; Ait Amrane Amar; Benia Ahmed Redha; Bellik Yuva; Hammoudi Si Mohamed; Niar Abdellatif; Boukra Laid

    2014-01-01

    Objective: To study the prevalence of bovine group A rotavirus (GARV) and bovine coronavirus (BCoV) in diarrheic feces from calves and the sensitive’s parameters such as age group and sex.Methods:Feces samples from 82 diarrheic dairy calves from farms around Tiaret (Western Algeria) were collected. These samples were tested by ELISA assay.Results:The present study demonstrates that the both BCoV and GARV are involved in the (12.2% alone and 2.43% associated with bovine coronavirus) and 20.73% (18.3% alone and 2.43%associated with GARV), respectively.Conclusions:The results showed that the prevalence of rotavirus and coronavirus infection are 14.63%neonatal calves’ diarrhea, where the frequency of BCoV is clearly higher than that of GARV.

  7. [Genomic medicine and infectious diseases].

    Science.gov (United States)

    Fellay, Jacques

    2014-05-07

    Relentless progress in our knowledge of the nature and functional consequences of human genetic variation allows for a better understanding of the protracted battle between pathogens and their human hosts. Multiple polymorphisms have been identified that impact our response to infections or to anti-infective drugs, and some of them are already used in the clinic. However, to make personalized medicine a reality in infectious diseases, a sustained effort is needed not only in research but also in genomic education.

  8. Molecular detection of avian pathogens in poultry red mite (Dermanyssus gallinae) collected in chicken farms.

    Science.gov (United States)

    Huong, Chu Thi Thanh; Murano, Takako; Uno, Yukiko; Usui, Tatsufumi; Yamaguchi, Tsuyoshi

    2014-12-01

    Poultry red mite (PRM, Dermanyssus gallinae) is a blood-sucking ectoparasite as well as a possible vector of several avian pathogens. In this study, to define the role of PRM in the prevalence of avian infectious agents, we used polymerase chain reaction (PCR) to check for the presence of seven pathogens: Avipox virus (APV), Fowl Adenovirus (FAdV), Marek's disease virus (MDV), Erysipelothrix rhusiopathiae (ER), Salmonella enterica (SE), Mycoplasma synoviae (MS) and Mycoplasma gallisepticum (MG). A total of 159 PRM samples collected between 2004 and 2012 from 142 chicken farms in 38 prefectures in Japan were examined. APV DNA was detected in 22 samples (13.8%), 19 of which were wild-type APV. 16S ribosomal RNA (16S rRNA) of MS was detected in 15 samples (9.4%), and the mgc2 gene of MG was detected in 2 samples (1.3%). Eight of 15 MS 16S rRNA sequences differed from the vaccine sequence, indicating they were wild-type strains, while both of the MG mgc2 gene sequences detected were identical to the vaccine sequences. Of these avian pathogen-positive mite samples, three were positive for both wild-types of APV and MS. On the other hand, the DNAs of ER, SE, FAdV and MDV were not detected in any samples. These findings indicated that PRM can harbor the wild-type pathogens and might play a role as a vector in spreading these diseases in farms.

  9. Acute tonsillitis at infectious patients

    Directory of Open Access Journals (Sweden)

    Y. P. Finogeev

    2011-01-01

    Full Text Available We examined 1824 patients with diphtheria treated in Clinical Infectious Diseases Hospital Botkin (St. Petersburg in 1993 – 1994, and more than 500 patients referred to the clinic with a diagnosis of «angina». Based on published data and our own research observations investigated the etiology of acute tonsillitis. Bacterial tonsillitis should be treated with antibiotics, and this is important aetiological interpretation of these diseases. Streptococcal tonsillitis should always be a sore throat syndrome as a diagnostic sign of support. For other forms of lymphoma lesion of the tonsils should not be defined as «angina», and called «tonsillitis». Аngina as β-hemolytic streptococcus group A infection is recognized as the leader in the development of rheumatic fever. On the basis of a large clinical material briefly analyzed the clinical manifestations of various forms of diphtheria with membranous tonsillitis. Also presented with a syndrome of infectious diseases as tonsillitis, therapeutic and surgical «mask» of infectious diseases.

  10. Cell killing by avian leukosis viruses.

    OpenAIRE

    Weller, S K; Temin, H M

    1981-01-01

    Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with c...

  11. Report of the Avian Development Working Group

    Science.gov (United States)

    Fallon, J. F.

    1985-01-01

    The anteroposterior axis of the avian embryo is established before it is laid. Baer's rule states that the cephalic end of the avian embryo will be away from the observer when the pointed end of the shell is on the observer's right. There are experimental data available which indicate gravity has a role in the establishment of the anteroposterior axis while the egg is in the uterus; this results in Baer's rule. The influence of gravity on egg development is studied.

  12. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Florian Wrensch

    2014-09-01

    Full Text Available The interferon-inducible transmembrane (IFITM proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs.

  13. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  14. Infectious offspring: how birds acquire and transmit an avian polyomavirus in the wild.

    Directory of Open Access Journals (Sweden)

    Jaime Potti

    Full Text Available Detailed patterns of primary virus acquisition and subsequent dispersal in wild vertebrate populations are virtually absent. We show that nestlings of a songbird acquire polyomavirus infections from larval blowflies, common nest ectoparasites of cavity-nesting birds, while breeding adults acquire and renew the same viral infections via cloacal shedding from their offspring. Infections by these DNA viruses, known potential pathogens producing disease in some bird species, therefore follow an 'upwards vertical' route of an environmental nature mimicking horizontal transmission within families, as evidenced by patterns of viral infection in adults and young of experimental, cross-fostered offspring. This previously undescribed route of viral transmission from ectoparasites to offspring to parent hosts may be a common mechanism of virus dispersal in many taxa that display parental care.

  15. Radiological description about the globally first case of human infected avian influenza virus (H10N8 induced pneumonia

    Directory of Open Access Journals (Sweden)

    Jian He

    2016-03-01

    Full Text Available Human infected avian influenza (H10N8 is an acute infectious respiratory tract infection caused by JX346-H10N8. The reported case in this paper is the globally first case report about radiological description of human infected avian influenza (H10N8 virus related pneumonia. The patient showed an epidemiological history of contacts to living poultries and the incubation period lasted for 4 days. The condition was clinically characterized by fever, cough, chest distress and obvious hypoxia. CT scan demonstrated the lungs with large flake of hyper-intense consolidation, confined patch of ground glass opacity, dilated bronchi, predominantly dorsal thickening of the interlobular septum, and other types of lesions related to interstitial pulmonary edema. Meanwhile, accompanying interlobar effusion, infrapulmonary effusion and pleural effusion were demonstrated in a small quantity by CT scan. Human infected avian influenza (H10N8 related pneumonia should be differentiated from pneumonia induced by human infected avian influenza viruses H5N1 and H7N9. No characteristic key points for radiological differentiation have been found. And its definitive diagnosis should be based on the etiological examination.

  16. Automated extraction protocol for quantification of SARS-Coronavirus RNA in serum: an evaluation study

    Directory of Open Access Journals (Sweden)

    Lui Wing-bong

    2006-02-01

    Full Text Available Abstract Background We have previously developed a test for the diagnosis and prognostic assessment of the severe acute respiratory syndrome (SARS based on the detection of the SARS-coronavirus RNA in serum by real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR. In this study, we evaluated the feasibility of automating the serum RNA extraction procedure in order to increase the throughput of the assay. Methods An automated nucleic acid extraction platform using the MagNA Pure LC instrument (Roche Diagnostics was evaluated. We developed a modified protocol in compliance with the recommended biosafety guidelines from the World Health Organization based on the use of the MagNA Pure total nucleic acid large volume isolation kit for the extraction of SARS-coronavirus RNA. The modified protocol was compared with a column-based extraction kit (QIAamp viral RNA mini kit, Qiagen for quantitative performance, analytical sensitivity and precision. Results The newly developed automated protocol was shown to be free from carry-over contamination and have comparable performance with other standard protocols and kits designed for the MagNA Pure LC instrument. However, the automated method was found to be less sensitive, less precise and led to consistently lower serum SARS-coronavirus concentrations when compared with the column-based extraction method. Conclusion As the diagnostic efficiency and prognostic value of the serum SARS-CoV RNA RT-PCR test is critically associated with the analytical sensitivity and quantitative performance contributed both by the RNA extraction and RT-PCR components of the test, we recommend the use of the column-based manual RNA extraction method.

  17. Role of the lipid rafts in the life cycle of canine coronavirus.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2015-02-01

    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.

  18. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  19. Middle East Respiratory Syndrome Coronavirus Antibody Reactors Among Camels in Dubai, United Arab Emirates, in 2005

    OpenAIRE

    Alexandersen, S; Kobinger, G P; Soule, G; Wernery, U

    2014-01-01

    We tested, using a low starting dilution, sequential serum samples from dromedary camels, sheep and horses collected in Dubai from February/April to October of 2005 and from dromedary camels for export/import testing between Canada and USA in 2000–2001. Using a standard Middle East respiratory syndrome coronavirus (MERS-CoV) neutralization test, serial sera from three sheep and three horses were all negative while sera from 9 of 11 dromedary camels from Dubai were positive for antibodies supp...

  20. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  1. NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV).

    Science.gov (United States)

    Huang, Yi-Ping; Cho, Chao-Cheng; Chang, Chi-Fon; Hsu, Chun-Hua

    2016-10-01

    The newly emerging human pathogen, Middle East respiratory syndrome coronavirus (MERS-CoV), contains a macro domain in the highly conserved N-terminal region of non-structural protein 3. Intense research has shown that macro domains bind ADP-ribose and other derivatives, but it still remains intangible about their exact function. In this study we report the preliminary structural analysis through solution NMR spectroscopy of the MERS-CoV macro domain. The near complete NMR assignments of MERS-CoV macro domain provide the basis for subsequent structural and biochemical investigation in the context of protein function.

  2. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  3. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yongxiu Yao

    2014-03-01

    Full Text Available With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs, avirulent Marek’s disease virus-2 (36 miRNAs, herpesvirus of turkeys (28 miRNAs, infectious laryngotracheitis virus (10 miRNAs, duck enteritis virus (33 miRNAs and avian leukosis virus (2 miRNAs. Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  4. Investigative modalities in infectious keratitis

    Directory of Open Access Journals (Sweden)

    Gupta Noopur

    2008-01-01

    Full Text Available Standard recommended guidelines for diagnosis of infectious keratitis do exist. Based on an extensive Medline literature search, the various investigative modalities available for aiding the diagnosis of microbial keratitis have been reviewed and described briefly. Preferred practice patterns have been outlined and the importance of routine pre-treatment cultures in the primary management of infectious keratitis has been highlighted. Corneal scraping, tear samples and corneal biopsy are few of the specimens needed to carry out the investigative procedures for diagnosis and for initiating therapy in cases of microbial keratitis. In bacterial, fungal and amoebic keratitis, microscopic examination of smears is essential for rapid diagnosis. Potassium hydroxide (KOH wet mount, Gram′s stain and Giemsa stain are widely used and are important for clinicians to start empirical therapy before microbial culture results are available. The usefulness of performing corneal cultures in all cases of suspected infectious keratitis has been well established. In cases of suspected viral keratitis, therapy can be initiated on clinical judgment alone. If a viral culture is needed, scrapings should directly be inoculated into the viral transport media. In vivo confocal microscopy is a useful adjunct to slit lamp bio-microscopy for supplementing diagnosis in most cases and establishing early diagnosis in many cases of non-responding fungal and amoebic keratitis. This is a non-invasive, high resolution technique which allows rapid detection of Acanthamoeba cysts and trophozoites and fungal hyphae in the cornea long before laboratory cultures give conclusive results. Other new modalities for detection of microbial keratitis include molecular diagnostic techniques like polymerase chain reaction, and genetic finger printing by pulsed field gel electrophoresis.

  5. Avian cholera in Nebraska's Rainwater Basin

    Science.gov (United States)

    Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.

    1984-01-01

    The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.

  6. Avian Point Count Locations - Dahomey NWR 2007-2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Map depicts locations of avian point counts conducted on Dahomey in 2007 and 2008. Actual point count data are contained in the avian knowledge network database

  7. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism.

    Science.gov (United States)

    Bálint, Ádám; Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencso, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-06-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log(10) titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV.

  8. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect.

    Directory of Open Access Journals (Sweden)

    John P Swaddle

    Full Text Available Recent infectious disease models illustrate a suite of mechanisms that can result in lower incidence of disease in areas of higher disease host diversity--the 'dilution effect'. These models are particularly applicable to human zoonoses, which are infectious diseases of wildlife that spill over into human populations. As many recent emerging infectious diseases are zoonoses, the mechanisms that underlie the 'dilution effect' are potentially widely applicable and could contribute greatly to our understanding of a suite of diseases. The dilution effect has largely been observed in the context of Lyme disease and the predictions of the underlying models have rarely been examined for other infectious diseases on a broad geographic scale. Here, we explored whether the dilution effect can be observed in the relationship between the incidence of human West Nile virus (WNV infection and bird (host diversity in the eastern US. We constructed a novel geospatial contrasts analysis that compares the small differences in avian diversity of neighboring US counties (where one county reported human cases of WNV and the other reported no cases with associated between-county differences in human disease. We also controlled for confounding factors of climate, regional variation in mosquito vector type, urbanization, and human socioeconomic factors that are all likely to affect human disease incidence. We found there is lower incidence of human WNV in eastern US counties that have greater avian (viral host diversity. This pattern exists when examining diversity-disease relationships both before WNV reached the US (in 1998 and once the epidemic was underway (in 2002. The robust disease-diversity relationships confirm that the dilution effect can be observed in another emerging infectious disease and illustrate an important ecosystem service provided by biodiversity, further supporting the growing view that protecting biodiversity should be considered in public

  9. Determination and analysis of the complete genomic sequence of avian hepatitis E virus (avian HEV) and attempts to infect rhesus monkeys with avian HEV.

    Science.gov (United States)

    Huang, F F; Sun, Z F; Emerson, S U; Purcell, R H; Shivaprasad, H L; Pierson, F W; Toth, T E; Meng, X J

    2004-06-01

    Avian hepatitis E virus (avian HEV), recently identified from a chicken with hepatitis-splenomegaly syndrome in the United States, is genetically and antigenically related to human and swine HEVs. In this study, sequencing of the genome was completed and an attempt was made to infect rhesus monkeys with avian HEV. The full-length genome of avian HEV, excluding the poly(A) tail, is 6654 bp in length, which is about 600 bp shorter than that of human and swine HEVs. Similar to human and swine HEV genomes, the avian HEV genome consists of a short 5' non-coding region (NCR) followed by three partially overlapping open reading frames (ORFs) and a 3'NCR. Avian HEV shares about 50 % nucleotide sequence identity over the complete genome, 48-51 % identity in ORF1, 46-48 % identity in ORF2 and only 29-34 % identity in ORF3 with human and swine HEV strains. Significant genetic variations such as deletions and insertions, particularly in ORF1 of avian HEV, were observed. However, motifs in the putative functional domains of ORF1, such as the helicase and methyltransferase, were relatively conserved between avian HEV and mammalian HEVs, supporting the conclusion that avian HEV is a member of the genus Hepevirus. Phylogenetic analysis revealed that avian HEV represents a branch distinct from human and swine HEVs. Swine HEV infects non-human primates and possibly humans and thus may be zoonotic. An attempt was made to determine whether avian HEV also infects across species by experimentally inoculating two rhesus monkeys with avian HEV. Evidence of virus infection was not observed in the inoculated monkeys as there was no seroconversion, viraemia, faecal virus shedding or serum liver enzyme elevation. The results from this study confirmed that avian HEV is related to, but distinct from, human and swine HEVs; however, unlike swine HEV, avian HEV is probably not transmissible to non-human primates.

  10. Infectious bovine keratoconjunctivitis: a review.

    Science.gov (United States)

    Brown, M H; Brightman, A H; Fenwick, B W; Rider, M A

    1998-01-01

    The economic impact of infectious bovine keratoconjunctivitis (IBK) warrants continued investigation of the mechanisms by which Moraxella bovis survives on and colonizes the corneal surface. Virulent strains of M bovis produce hemolysin and exhibit different plasmid profiles than nonvirulent strains. Interactions among host, environment, vector, season, and concurrent infection influence the prevalence of IBK. Mycoplasma sp. or infectious bovine rhinotracheitis virus may enhance or hasten the disease process. The manifestations of IBK may range from mild conjunctivitis to severe ulceration, corneal perforation, and blindness. Treatment of IBK is dictated by economic considerations, intended animal use, and feasibility of administration. Antibiotic therapy is aimed at achieving drug concentrations in tears to meet or exceed the minimum inhibitory concentration for prolonged periods. At present, IBK is not a preventable disease. Affected animals must be separated from the herd and vector control vigorously instituted. Carrier animals must be identified and removed from the herd. Vaccination trials have been unsuccessful because of pili antigen cross-reactivity, variable strains, and uncontrolled environmental factors. Recent investigations have determined that M bovis may utilize host iron sources via iron-repressible outer membrane proteins and siderophores for growth. Elucidation of normal defense mechanisms of the bovine eye may lead to new strategies to enhance the immune response against M bovis.

  11. Proceedings of National Avian-Wind Power Planning Meeting IV

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  12. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the...

  13. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  14. Differential expression of the MERS-coronavirus receptor in the upper respiratory tract of humans and dromedary camels

    NARCIS (Netherlands)

    Widagdo, W; Raj, V Stalin; Schipper, Debby; Kolijn, Kimberley; van Leenders, Geert J L H; Bosch, Berend J; Bensaid, Albert; Segalés, Joaquim; Baumgärtner, Wolfgang; Osterhaus, Albert D M E; Koopmans, Marion P; van den Brand, Judith M A; Haagmans, Bart L

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor - dipeptidyl peptidase 4 (DPP4) - is expressed in the upper respiratory tract epithelium of camels but not

  15. Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels

    NARCIS (Netherlands)

    W. Widagdo; V.S. Raj (Stalin); D. Schipper (Debby); K. Kolijn (Kimberley); G.J.H.L. Leenders (Geert); B.J. Bosch (Berend Jan); A. Bensaid (Albert); J. Segalés (Joaquim); W. Baumgärtner (Wolfgang); A.D.M.E. Osterhaus (Albert); M.P.G. Koopmans D.V.M. (Marion); J.M.A. van den Brand (Judith); B.L. Haagmans (Bart)

    2016-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor-dipeptidyl peptidase 4 (DPP4)-is expressed in the upper respiratory tract epithelium of camels

  16. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia : a nationwide, cross-sectional, serological study

    NARCIS (Netherlands)

    Müller, Marcel A; Meyer, Benjamin; Corman, Victor M; Al-Masri, Malak; Turkestani, Abdulhafeez; Ritz, Daniel; Sieberg, Andrea; Aldabbagh, Souhaib; Bosch, Berend-J; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Albarrak, Ali M; Al-Shangiti, Ali M; Al-Tawfiq, Jaffar A; Wikramaratna, Paul; Alrabeeah, Abdullah A; Drosten, Christian; Memish, Ziad A

    2015-01-01

    BACKGROUND: Scientific evidence suggests that dromedary camels are the intermediary host for the Middle East respiratory syndrome coronavirus (MERS-CoV). However, the actual number of infections in people who have had contact with camels is unknown and most index patients cannot recall any such cont

  17. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic sta

  18. [Importance of the case of coronavirus-associated severe acute respiratory syndrome detected in Hungary in 2005].

    Science.gov (United States)

    Rókusz, László; Jankovics, István; Jankovics, Máté; Sarkadi, Júlia; Visontai, Ildikó

    2013-11-24

    Ten years have elapsed since the severe acute respiratory syndrome outbreak, which resulted in more than 8000 cases worldwide with more than 700 deaths. Recently, a new coronavirus, the Middle East Respiratory Syndrome Coronavirus emerged, causing serious respiratory cases and death. By the end of August 2013, 108 cases including 50 deaths were reported. The authors discuss a coronavirus-associated severe acute respiratory syndrome, which was detected in Hungary in 2005 and highlight its significance in 2013. In 2005 the patient was hospitalized and all relevant clinical and microbiological tests were performed. Based on the IgG antibody positivity of the serum samples, the patient was diagnosed as having severe acute respiratory syndrome coronavirus infection in the past. The time and source of the infection remained unknown. The condition of the patient improved and he was discharged from the hospital. The case raises the possibility of infections in Hungary imported from remote areas of the world and the importance of thorough examination of patients with severe respiratory syndrome with unknown etiology.

  19. Detection by radioimmunoassay and enzyme-linked immunosorbent assay of coronavirus antibodies in bovine serum and lacteal secretions.

    Science.gov (United States)

    Rodak, L; Babiuk, L A; Acres, S D

    1982-07-01

    The sensitivity of a radioimmunoassay (RIA), an enzyme-linked immunosorbent assay (ELISA), and a serum neutralization assay (SN) for detecting antibodies to bovine coronavirus in serum and colostrum were compared. Although there proved to be a good correlation among all three assays (r = 0.915 and 0.964 for RIA with SN and ELISA, respectively), RIA and ELISA proved to be at least 10 times more sensitive than neutralization tests. By using these techniques, it was possible to detect a time-dependent decrease in antibody levels in bovine colostrum after parturition. Using ELISA, we demonstrated that 12 of 12 herds in Saskatchewan, and 109 of 110 animals tested, and antibody to bovine coronavirus. There was no elevated antibody response in serum or lacteal secretions of cows vaccinated once or twice with a commercially available modified live rota-coronavirus vaccine. In addition to being more sensitive than SN, ELISA and RIA proved to have other advantages for measuring antibody levels to bovine coronavirus and therefore warrant wider use as tools in diagnostic virology.

  20. Evaluation of bovine coronavirus antibody levels, virus shedding, and respiratory disease incidence throughout the beef cattle production cycle

    Science.gov (United States)

    Objective- Determine how levels of serum antibody to bovine coronavirus (BCV) are related to virus shedding patterns and respiratory disease incidence in beef calves at various production stages. Animals- 890 crossbred beef calves from four separately managed herds at the U.S. Meat Animal Research C...

  1. Unmet Diagnostic Needs in Infectious Disease

    Science.gov (United States)

    Blaschke, Anne J.; Hersh, Adam L.; Beekmann, Susan E.; Ince, Dilek; Polgreen, Philip M.; Hanson, Kimberly E.

    2014-01-01

    Accurate diagnosis is critical to providing appropriate care in infectious diseases. New technologies for infectious disease diagnostics are emerging, but gaps remain in test development and availability. The Emerging Infections Network surveyed Infectious Diseases physicians to assess unmet diagnostic needs. Responses reflected the urgent need to identify drug-resistant infections and highlighted the potential for early diagnosis to improve antibiotic stewardship. Information gained from this survey can help inform recommendations for new diagnostic test development in the future. PMID:25456043

  2. Neonatal diarrhea by bovine coronavirus (BCoV in beef cattle herds

    Directory of Open Access Journals (Sweden)

    Elis Lorenzetti

    2014-02-01

    Full Text Available Bovine coronavirus (BCoV is the second most important viral agent involved in neonatal diarrhea in calves worldwide. The reports on the frequency of BCoV infection in beef cattle herds under extensive management are uncommon in Brazil. The present study analyzed 93 diarrheic fecal samples of calves up to 60 days of age from 13 commercial beef cattle herds located in the states of Mato Grosso, Mato Grosso do Sul, Minas Gerais, Paraná, and Rondônia. The fecal samples were collected during 2009-2012 and were previously analyzed for the presence of bovine rotavirus group A (BoRVA, with negative results. The presence of BCoV in the fecal samples was evaluated by the partial amplification of the N gene by using the semi-nested PCR technique. The expected products of 251 bp length were amplified 33.3% (31/93 of the analyzed diarrheic fecal samples. The results revealed that coronaviruses has important participation in the neonatal diarrhea complex of beef cattle herds reared extensively from the different geographical regions of Brazil.

  3. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy.

    Science.gov (United States)

    Decaro, Nicola; Campolo, Marco; Desario, Costantina; Cirone, Francesco; D'Abramo, Maria; Lorusso, Eleonora; Greco, Grazia; Mari, Viviana; Colaianni, Maria Loredana; Elia, Gabriella; Martella, Vito; Buonavoglia, Canio

    2008-01-01

    Four outbreaks of bovine respiratory disease (BRD) associated with bovine coronavirus (BCoV) infection in Italian cattle herds were reported. In 3 outbreaks, BRD was observed only in 2-3-month-old feedlot calves, whereas in the remaining outbreak, lactating cows, heifers, and calves were simultaneously affected. By using reverse transcription polymerase chain reaction (RT-PCR), BCoV RNA was detected in all outbreaks without evidence of concurrent viral pathogens (i.e., bovine respiratory syncytial virus, bovine herpesvirus type 1, bovine viral diarrhea virus, bovine parainfluenza virus). Common bacteria of cattle were recovered only from 2 outbreaks of BRD: Staphylococcus spp. and Proteus mirabilis (outbreak 1) and Mannheimia haemolytica (outbreak 4). A recently established real-time RT-PCR assay showed that viral RNA loads in nasal secretions ranged between 3.10 x 10(2) and 7.50 x 10(7) RNA copies/microl of template. Bovine coronavirus was isolated from respiratory specimens from all outbreaks except outbreak 1, in which real-time RT-PCR found very low viral titers in nasal swabs.

  4. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs

    Institute of Scientific and Technical Information of China (English)

    Yi SHI; De Hua YANG; Jie XIONG; Jie JIA; Bing HUANG; You Xin JIN

    2005-01-01

    RNA interference (RNAi) is triggered by the presence of a double-stranded RNA (dsRNA), and results in the silencing of homologous gene expression through the specific degradation of an mRNA containing the same sequence. dsRNAmediated RNAi can be used in a wide variety of eucaryotes to induce the sequence-specific inhibition of gene expression.Synthetic 21-23 nucleotide (nt) small interfering RNA (siRNA) with 2 nt 3' overhangs was recently found to mediate efficient sequence-specific mRNA degradation in mammalian cells. Here, we studied the effects of synthetic siRNA duplexes targeted to SARS coronavirus structural proteins E, M, and N in a cell culture system. Among total 26 siRNA duplexes, we obtained 3 siRNA duplexes which could sequence-specifically reduce target genes expression over 80% at the concentration of 60 nM in Vero E6 cells. The downregulation effect was in correlation with the concentrations of the siRNA duplexes in a range of 0~60 nM. Our results also showed that many inactive siRNA duplexes may be brought to life simply by unpairing the 5' end of the antisense strands. Results suggest that siRNA is capable of inhibiting SARS coronavirus genes expression and thus may be a new therapeutic strategy for treatment of SARS.

  5. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Mitchell, Hugh D.; Gralinski, Lisa E.; Eisfeld, Amie J.; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C.; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S.; Katze, Michael G.; Waters, Katrina M.

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).

  6. The emergence of human coronavirus EMC: how scared should we be?

    Science.gov (United States)

    Chan, Renee W Y; Poon, Leo L M

    2013-04-09

    A novel betacoronavirus, human coronavirus (HCoV-EMC), has recently been detected in humans with severe respiratory disease. Further characterization of HCoV-EMC suggests that this virus is different from severe acute respiratory syndrome coronavirus (SARS-CoV) because it is able to replicate in multiple mammalian cell lines and it does not use angiotensin-converting enzyme 2 as a receptor to achieve infection. Additional research is urgently needed to better understand the pathogenicity and tissue tropism of this virus in humans. In their recent study published in mBio, Kindler et al. shed some light on these important topics (E. Kindler, H. R. Jónsdóttir, M. Muth, O. J. Hamming, R. Hartmann, R. Rodriguez, R. Geffers, R. A. Fouchier, C. Drosten, M. A. Müller, R. Dijkman, and V. Thiel, mBio 4[1]:e00611-12, 2013). These authors report the use of differentiated pseudostratified human primary airway epithelial cells, an in vitro model with high physiological relevance to the human airway epithelium, to characterize the cellular tropism of HCoV-EMC. More importantly, the authors demonstrate the potential use of type I and type III interferons (IFNs) to control viral infection.

  7. Identification of Immunogenic Determinants of the Spike Protein of SARS-like Coronavirus

    Institute of Scientific and Technical Information of China (English)

    Peng Zhou; Zhenggang Han; Lin-Fa Wang; Zhengli Shi

    2013-01-01

    Bat SARS-like coronavirus (SL-CoV) has a genome organization almost identical to that of SARS-CoV,but the N-terminus of the Spike (S) proteins,which interacts with host receptor and is a major target of neutralizing antibodies against CoVs,of the two viruses has only 63-64% sequence identity.Although there have been reports studying the overall immunogenicity of SSL,knowledge on the precise location of immunodominant determinants for SSL is still lacking.In this study,using a series of truncated expressed SSL fragments and SsL specific mouse sera,we identified two immunogenic determinants for SSL.Importantly,one of the two regions seems to be located in a region not shared by known immunogenic determinants of the SSARS.This finding will be of potential use in future monitoring of SL-CoV infection in bats and spillover animals and in development of more effective vaccine to cover broad protection against this new group of coronaviruses.

  8. Survey of feline leukemia virus and feline coronaviruses in captive neotropical wild felids from Southern Brazil.

    Science.gov (United States)

    Guimaraes, Ana M S; Brandão, Paulo E; de Moraes, Wanderlei; Cubas, Zalmir S; Santos, Leonilda C; Villarreal, Laura Y B; Robes, Rogério R; Coelho, Fabiana M; Resende, Mauricio; Santos, Renata C F; Oliveira, Rosangela C; Yamaguti, Mauricio; Marques, Lucas M; Neto, Renata L; Buzinhani, Melissa; Marques, Regina; Messick, Joanne B; Biondo, Alexander W; Timenetsky, Jorge

    2009-06-01

    A total of 57 captive neotropical felids (one Leopardus geoffroyi, 14 Leopardus pardalis, 17 Leopardus wiedii, 22 Leopardus tigrinus, and three Puma yagouaroundi) from the Itaipu Binacional Wildlife Research Center (Refúgio Bela Vista, Southern Brazil) were anesthetized for blood collection. Feces samples were available for 44 animals, including one L. geoffroyi, eight L. pardalis, 14 L. wiedii, 20 L. tigrinus, and one P. yagouaroundi. Total DNA and RNA were extracted from blood and feces, respectively, using commercial kits. Blood DNA samples were evaluated by polymerase chain reaction (PCR) for feline leukemia virus (FeLV) proviral DNA, whereas reverse transcriptase-PCR was run on fecal samples for detection of coronavirus RNA. None of the samples were positive for coronaviruses. A male L. pardalis and a female L. tigrinus were positive for FeLV proviral DNA, and identities of PCR products were confirmed by sequencing. This is the first evidence of FeLV proviral DNA in these species in Southern Brazil.

  9. Study on Substrate Specificity at Subsites for Severe Acute Respiratory Syndrome Coronavirus 3CL Protease

    Institute of Scientific and Technical Information of China (English)

    Yu-Fei SHAN; Gen-Jun XU

    2005-01-01

    Autocleavage assay and peptide-based cleavage assay were used to study the substrate specificity of 3CL protease from the severe acute respiratory syndrome coronavirus. It was found that the recognition between the enzyme and its substrates involved many positions in the substrate, at least including residues from P4 to P2'. The deletion of either P4 or P2' residue in the substrate would decrease its cleavage efficiency dramatically. In contrast to the previous suggestion that only small residues in substrate could be accommodated to the S 1' subsite, we have found that bulky residues such as Tyr and Trp were also acceptable.In addition, based on both peptide-based assay and autocleavage assay, Ile at the P1' position could not be hydrolyzed, but the mutant L27A could hydrolyze the Ile peptide fragment. It suggested that there was a stereo hindrance between the S 1' subsite and the side chain of Ile in the substrate. All 20 amino acids except Pro could be the residue at the P2' position in the substrate, but the cleavage efficiencies were clearly different. The specificity information of the enzyme is helpful for potent anti-virus inhibitor design and useful for other coronavirus studies.

  10. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings.

    Science.gov (United States)

    Luongo, J C; Fennelly, K P; Keen, J A; Zhai, Z J; Jones, B W; Miller, S L

    2016-10-01

    Infectious disease outbreaks and epidemics such as those due to SARS, influenza, measles, tuberculosis, and Middle East respiratory syndrome coronavirus have raised concern about the airborne transmission of pathogens in indoor environments. Significant gaps in knowledge still exist regarding the role of mechanical ventilation in airborne pathogen transmission. This review, prepared by a multidisciplinary group of researchers, focuses on summarizing the strengths and limitations of epidemiologic studies that specifically addressed the association of at least one heating, ventilating and/or air-conditioning (HVAC) system-related parameter with airborne disease transmission in buildings. The purpose of this literature review was to assess the quality and quantity of available data and to identify research needs. This review suggests that there is a need for well-designed observational and intervention studies in buildings with better HVAC system characterization and measurements of both airborne exposures and disease outcomes. Studies should also be designed so that they may be used in future quantitative meta-analyses.

  11. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: the Case of SARS

    Directory of Open Access Journals (Sweden)

    Olivia C eDemurtas

    2016-02-01

    Full Text Available Severe Acute Respiratory Syndrome (SARS is a dangerous infection with pandemic potential. It emerged in 2002 and its aetiological agent, the SARS Coronavirus (SARS-CoV, crossed the species barrier to infect humans, showing high morbidity and mortality rates. No vaccines are currently licensed for SARS-CoV and important efforts have been performed during the first outbreak to develop diagnostic tools. Here we demonstrate the transient expression in Nicotiana benthamiana of two important antigenic determinants of the SARS-CoV, the nucleocapsid protein (N and the membrane protein (M using a virus-derived vector or agro-infiltration, respectively. For the M protein, this is the first description of production in plants, while for plant-derived N protein we demonstrate that it is recognized by sera of patients from the SARS outbreak in Hong Kong in 2003. The availability of recombinant N and M proteins from plants opens the way to further evaluation of their potential utility for the development of diagnostic and protection/therapy tools to be quickly manufactured, at low cost and with minimal risk, to face potential new highly infectious SARS-CoV outbreaks.

  12. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    Directory of Open Access Journals (Sweden)

    Yingying Xu

    2014-07-01

    Full Text Available Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT. Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.

  13. Descriptive distribution and phylogenetic analysis of feline infectious peritonitis virus isolates of Malaysia

    Directory of Open Access Journals (Sweden)

    Arshad Habibah

    2010-01-01

    Full Text Available Abstract The descriptive distribution and phylogeny of feline coronaviruses (FCoVs were studied in cats suspected of having feline infectious peritonitis (FIP in Malaysia. Ascitic fluids and/or biopsy samples were subjected to a reverse transcription polymerase chain reaction (RT-PCR targeted for a conserved region of 3'untranslated region (3'UTR of the FCoV genome. Eighty nine percent of the sampled animals were positive for the presence of FCoV. Among the FCoV positive cats, 80% of cats were males and 64% were below 2 years of age. The FCoV positive cases included 56% domestic short hair (DSH, 40% Persian, and 4% Siamese cats. The nucleotide sequences of 10 selected amplified products from FIP cases were determined. The sequence comparison revealed that the field isolates had 96% homology with a few point mutations. The extent of homology decreased to 93% when compared with reference strains. The overall branching pattern of phylogenetic tree showed two distinct clusters, where all Malaysian isolates fall into one main genetic cluster. These findings provided the first genetic information of FCoV in Malaysia.

  14. Descriptive distribution and phylogenetic analysis of feline infectious peritonitis virus isolates of Malaysia.

    Science.gov (United States)

    Sharif, Saeed; Arshad, Siti S; Hair-Bejo, Mohd; Omar, Abdul R; Zeenathul, Nazariah A; Fong, Lau S; Rahman, Nor-Alimah; Arshad, Habibah; Shamsudin, Shahirudin; Isa, Mohd-Kamarudin A

    2010-01-06

    The descriptive distribution and phylogeny of feline coronaviruses (FCoVs) were studied in cats suspected of having feline infectious peritonitis (FIP) in Malaysia. Ascitic fluids and/or biopsy samples were subjected to a reverse transcription polymerase chain reaction (RT-PCR) targeted for a conserved region of 3'untranslated region (3'UTR) of the FCoV genome. Eighty nine percent of the sampled animals were positive for the presence of FCoV. Among the FCoV positive cats, 80% of cats were males and 64% were below 2 years of age. The FCoV positive cases included 56% domestic short hair (DSH), 40% Persian, and 4% Siamese cats. The nucleotide sequences of 10 selected amplified products from FIP cases were determined. The sequence comparison revealed that the field isolates had 96% homology with a few point mutations. The extent of homology decreased to 93% when compared with reference strains. The overall branching pattern of phylogenetic tree showed two distinct clusters, where all Malaysian isolates fall into one main genetic cluster. These findings provided the first genetic information of FCoV in Malaysia.

  15. Abdominal ultrasonographic findings associated with feline infectious peritonitis: a retrospective review of 16 cases.

    Science.gov (United States)

    Lewis, Kristin M; O'Brien, Robert T

    2010-01-01

    The feline infectious peritonitis virus (FIPV) is a mutated form of the feline enteric coronavirus (FeCV) that can present with a variety of clinical signs. The purpose of this retrospective study was to analyze abdominal ultrasonographic findings associated with cats with confirmed FIPV infection. Sixteen cases were included in the study from a review of medical records at two academic institutions; inclusion was based either on necropsy lesions (n=13) or a combination of histopathological, cytological, and clinicopathological findings highly suggestive of FIPV infection (n=3). The liver was judged to be normal in echogenicity in 11 (69%) cats, diffusely hypoechoic in three cats, focally hyperechoic in one cat, and focally hypoechoic in one cat. Five cats had a hypoechoic subcapsular rim in one (n=3) or both (n=2) kidneys. Free fluid was present in the peritoneal cavity in seven cats and in the retroperitoneal space in one cat. Abdominal lymphadenopathy was noted in nine cats. The spleen was normal in echogenicity in 14 cats and was hypoechoic in two. One cat had bilateral orchitis with loss of normal testicular architecture. Although none of these ultrasonographic findings are specific for FIPV infection, a combination of these findings should increase the index of suspicion for FIPV infection when considered along with appropriate clinical signs.

  16. What Is a Pediatric Infectious Diseases Specialist?

    Science.gov (United States)

    ... are recurrent Respiratory infections Bone and joint infections Tuberculosis (TB) Acquired Immunodeficiency syndrome (AIDS) Hepatitis Meningitis Where Can I Find A Pediatric Infectious Diseases ...

  17. Characteristics of Hodgkin's lymphoma after infectious mononucleosis

    DEFF Research Database (Denmark)

    Hjalgrim, Henrik; Askling, Johan; Rostgaard, Klaus;

    2003-01-01

    -based Danish cohorts of patients who were tested for infectious mononucleosis: 17,045 with serologic evidence of having had acute EBV infection, and 24,614 with no such evidence. We combined the cohort of patients who had serologically verified infectious mononucleosis with a cohort of 21,510 Swedish patients....... Sixteen of 29 tumors (55 percent), obtained from patients with infectious mononucleosis, had evidence of EBV. There was no evidence of an increased risk of EBV-negative Hodgkin's lymphoma after infectious mononucleosis. In contrast, the risk of EBV-positive Hodgkin's lymphoma was significantly increased...

  18. Infectious Disease Clinical Research Program (IDCRP)

    Data.gov (United States)

    Federal Laboratory Consortium — Our mission is to conduct infectious disease clinical research of importance to the military through a unique, adaptive, and collaborative network, to inform health...

  19. Real time bayesian estimation of the epidemic potential of emerging infectious diseases.

    Directory of Open Access Journals (Sweden)

    Luís M A Bettencourt

    Full Text Available BACKGROUND: Fast changes in human demographics worldwide, coupled with increased mobility, and modified land uses make the threat of emerging infectious diseases increasingly important. Currently there is worldwide alert for H5N1 avian influenza becoming as transmissible in humans as seasonal influenza, and potentially causing a pandemic of unprecedented proportions. Here we show how epidemiological surveillance data for emerging infectious diseases can be interpreted in real time to assess changes in transmissibility with quantified uncertainty, and to perform running time predictions of new cases and guide logistics allocations. METHODOLOGY/PRINCIPAL FINDINGS: We develop an extension of standard epidemiological models, appropriate for emerging infectious diseases, that describes the probabilistic progression of case numbers due to the concurrent effects of (incipient human transmission and multiple introductions from a reservoir. The model is cast in terms of surveillance observables and immediately suggests a simple graphical estimation procedure for the effective reproductive number R (mean number of cases generated by an infectious individual of standard epidemics. For emerging infectious diseases, which typically show large relative case number fluctuations over time, we develop a bayesian scheme for real time estimation of the probability distribution of the effective reproduction number and show how to use such inferences to formulate significance tests on future epidemiological observations. CONCLUSIONS/SIGNIFICANCE: Violations of these significance tests define statistical anomalies that may signal changes in the epidemiology of emerging diseases and should trigger further field investigation. We apply the methodology to case data from World Health Organization reports to place bounds on the current transmissibility of H5N1 influenza in humans and establish a statistical basis for monitoring its evolution in real time.

  20. The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes.

    Science.gov (United States)

    Dedeurwaerder, Annelike; Desmarets, Lowiese M; Olyslaegers, Dominique A J; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-03-23

    The ability to productively infect monocytes/macrophages is the most important difference between the low virulent feline enteric coronavirus (FECV) and the lethal feline infectious peritonitis virus (FIPV). In vitro, the replication of FECV in peripheral blood monocytes always drops after 12h post inoculation, while FIPV sustains its replication in the monocytes from 45% of the cats. The accessory proteins of feline coronaviruses have been speculated to play a prominent role in virulence as deletions were found to be associated with attenuated viruses. Still, no functions have been ascribed to them. In order to investigate if the accessory proteins of FIPV are important for sustaining its replication in monocytes, replication kinetics were determined for FIPV 79-1146 and its deletion mutants, lacking either accessory protein open reading frame 3abc (FIPV-Δ3), 7ab (FIPV-Δ7) or both (FIPV-Δ3Δ7). Results showed that the deletion mutants FIPV-Δ7 and FIPV-Δ3Δ7 could not maintain their replication, which was in sharp contrast to wt-FIPV. FIPV-Δ3 could still sustain its replication, but the percentage of infected monocytes was always lower compared to wt-FIPV. In conclusion, this study showed that ORF7 is crucial for FIPV replication in monocytes/macrophages, giving an explanation for its importance in vivo, its role in the development of FIP and its conservation in field strains. The effect of an ORF3 deletion was less pronounced, indicating only a supportive role of ORF3 encoded proteins during the infection of the in vivo target cell by FIPVs.

  1. Structural Basis for the Development of Avian Virus Capsids That Display Influenza Virus Proteins and Induce Protective Immunity

    OpenAIRE

    Pascual, Elena; Mata, Carlos P.; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L.; Castón, José R.

    2014-01-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ∼70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an am...

  2. Feline infectious peritonitis virus with a large deletion in the 5'-terminal region of the spike gene retains its virulence for cats.

    Science.gov (United States)

    Terada, Yutaka; Shiozaki, Yuto; Shimoda, Hiroshi; Mahmoud, Hassan Youssef Abdel Hamid; Noguchi, Keita; Nagao, Yumiko; Shimojima, Masayuki; Iwata, Hiroyuki; Mizuno, Takuya; Okuda, Masaru; Morimoto, Masahiro; Hayashi, Toshiharu; Tanaka, Yoshikazu; Mochizuki, Masami; Maeda, Ken

    2012-09-01

    In this study, the Japanese strain of type I feline infectious peritonitis virus (FIPV), C3663, was found to have a large deletion of 735 bp within the gene encoding the spike (S) protein, with a deduced loss of 245 aa of the N-terminal region of the S protein. This deletion is similar to that observed in porcine respiratory coronavirus (PRCoV) when compared to transmissible gastroenteritis virus, which correlates with reduced virulence. By analogy to PRCoV, we expected that the pathogenicity of C3663 may be attenuated in cats. However, two of four cats inoculated with C3663 died of FIP, and a third C3663-inoculated cat showed FIP lesions at 91 days after challenge. These results indicate that the 5'-terminal region of the S gene is not essential for the development of FIP.

  3. Cardiac imaging in infectious endocarditis

    DEFF Research Database (Denmark)

    Bruun, Niels Eske; Habib, Gilbert; Thuny, Franck;

    2014-01-01

    Infectious endocarditis remains both a diagnostic and a treatment challenge. A positive outcome depends on a rapid diagnosis, accurate risk stratification, and a thorough follow-up. Imaging plays a key role in each of these steps and echocardiography remains the cornerstone of the methods in use....... The technique of both transthoracic echocardiography and transoesophageal echocardiography has been markedly improved across the last decades and most recently three-dimensional real-time echocardiography has been introduced in the management of endocarditis patients. Echocardiography depicts structural changes...... with conventional CT (SPECT/CT). Of these methods, (18)F-FDG PET-CT carries the best promise for a future role in endocarditis. But there are distinct limitations with both SPECT/CT and (18)F-FDG PET-CT which should not be neglected. MRI and spiral CT are methods primarily used in the search for extra cardial...

  4. Use of heliox delivered via high-flow nasal cannula to treat an infant with coronavirus-related respiratory infection and severe acute air-flow obstruction.

    Science.gov (United States)

    Morgan, Sherwin E; Vukin, Kirissa; Mosakowski, Steve; Solano, Patti; Stanton, Lolita; Lester, Lucille; Lavani, Romeen; Hall, Jesse B; Tung, Avery

    2014-11-01

    Heliox, a helium-oxygen gas mixture, has been used for many decades to treat obstructive pulmonary disease. The lower density and higher viscosity of heliox relative to nitrogen-oxygen mixtures can significantly reduce airway resistance when an anatomic upper air-flow obstruction is present and gas flow is turbulent. Clinically, heliox can decrease airway resistance in acute asthma in adults and children and in COPD. Heliox may also enhance the bronchodilating effects of β-agonist administration for acute asthma. Respiratory syndromes caused by coronavirus infections in humans range in severity from the common cold to severe acute respiratory syndrome associated with human coronavirus OC43 and other viral strains. In infants, coronavirus infection can cause bronchitis, bronchiolitis, and pneumonia in variable combinations and can produce enough air-flow obstruction to cause respiratory failure. We describe a case of coronavirus OC43 infection in an infant with severe acute respiratory distress treated with heliox inhalation to avoid intubation.

  5. Establishment of a fluorescent polymerase chain reaction method for the detection of the SARS-associated coronavirus and its clinical application

    Institute of Scientific and Technical Information of China (English)

    吴新伟; 程钢; 狄飚; 尹爱华; 何蕴韶; 王鸣; 周新宇; 何丽娟; 罗凯; 杜琳

    2003-01-01

    Objective To establish a fluorescent polymerase chain reaction (F-PCR) method for detecting the coronavirus related to severe acute respiratory syndrome (SARS) and to evaluate its value for clinical application. Methods The primers and the fluorescence-labeled probe were designed and synthesized according to the published sequence of the SARS-associated coronavirus genes. A F-PCR diagnosis kit for detecting the coronavirus was developed, and 115 clinical nasopharyngeal gargling liquid samples were tested. Results The sequence of PCR amplified products completely matched the related sequence of the SARS-associated coronavirus genome. Forty-nine out of 67 samples from identified SARS patients and 8 of 18 samples from persons having close contact with SARS patients showed positive results. All 30 samples from healthy controls were negative. Conclusion The F-PCR method established may be a rapid, accurate and efficient way for screening and for the early diagnosis of SARS patients.

  6. The role of backyard poultry flocks in the epidemic of highly pathogenic avian influenza virus (H7N7) in the Netherlands in 2003.

    Science.gov (United States)

    Bavinck, V; Bouma, A; van Boven, M; Bos, M E H; Stassen, E; Stegeman, J A

    2009-04-01

    In recent years, outbreaks of highly pathogenic avian influenza (HPAI) viruses have caused the death of millions of poultry and of more than 200 humans worldwide. A proper understanding of the transmission dynamics and risk factors for epidemic spread of these viruses is key to devising effective control strategies. The aim of this study was to quantify the epidemiological contributions of backyard flocks using data from the H7N7 HPAI epidemic in the Netherlands in 2003. A dataset was constructed in which flocks in the affected area were classified as susceptible (S), infected but not yet infectious (E), infectious (I), and removed (R). The analyses were based on a two-type SEIR epidemic model, with the two types representing commercial poultry farms and backyard poultry flocks. The analyses were aimed at estimation of the susceptibility (g) and infectiousness (f) of backyard flocks relative to commercial farms. The results show that backyard flocks were considerably less susceptible to infection than commercial farms (g = 0.014; 95%CI = 0.0071-0.023), while estimates of the relative infectiousness of backyard flocks varied widely (0 backyard flocks played a marginal role in the outbreak of highly pathogenic avian influenza in the Netherlands in 2003.

  7. Thermal emissivity of avian eggshells.

    Science.gov (United States)

    Björn, Lars Olof; Bengtson, Sven-Axel; Li, Shaoshan; Hecker, Christoph; Ullah, Saleem; Roos, Arne; Nilsson, Annica M

    2016-04-01

    The hypothesis has been tested that evolution has resulted in lower thermal emissivity of eggs of birds breeding openly in cold climates than of eggs of birds that nest under protective covering or in warmer climates. Directional thermal emissivity has been estimated from directional-hemispherical reflectance spectra. Due to several methodological difficulties the absolute emissivity is not accurately determined, but differences between species are obvious. Most notably, small waders of the genus Calidris, breeding in cold climates on the tundra, and in most cases with uniparental nest attendance, have low directional emissivity of their eggshells, about 0.92 when integration is carried out for wavelengths up to 16μm. Species belonging to Galloanserinae have the highest directional emissivity, about 0.96, of their eggs. No differences due to climate or breeding conditions were found within this group. Eggs of most other birds tested possess intermediate emissivity, but the values for Pica pica and Corvus corone cornix are as low as for Calidris. Large species-dependent differences in spectral reflectance were found at specific wavelengths. For instance, at 4.259μm the directional-hemispherical reflectance for galliforms range from 0.05 to 0.09, while for Fratercula arctica and Fulmarus glacialis it is about 0.3. The reflection peaks at 6.5 and 11.3μm due to calcite are differentially attenuated in different species. In conclusion, the hypothesis that evolution has resulted in lower thermal emissivity of bird eggs being exposed in cold climates is not supported by our results. The emissivity is not clearly related to nesting habits or climate, and it is unlikely that the small differences observed are ecologically important. The spectral differences between eggs that nevertheless exist should be taken into account when using infrared thermometers for estimating the surface temperature of avian eggs.

  8. Economic effects of avian influenza on egg producers in Turkey

    Directory of Open Access Journals (Sweden)

    V Demircan

    2009-09-01

    Full Text Available This study determined the economic effects of avian influenza on the egg-production sector of Afyon Province, Turkey. Economic indicators were compared before and during the avian influenza outbreak. A questionnaire was conducted with 75 poultry farmers. Farms were divided into three groups according to their size. The profitability of the three farm size groups was compared during two study periods: before and during the avian influenza outbreak. The results indicate that, as compared to previous levels, farms experienced significantly reduced incomes during the avian influenza episode. While net income and profit margin were found to be negative in all three farm groups during the avian influenza period, only group I showed economic loss prior to avian influenza. Average net income per group was -19,576.14, -39,810.11, and -112,035.33 YTL respectively during the avian influenza outbreak, compared with prior incomes of -5,665.51, 8,422.92, and 16,3873.71 YTL (1 USD=1.43 YTL. The profit margin per egg during avian influenza was -0.029, -0.016, -0.010 YTL in group I, II, III, respectively, as compared to -0.007, 0.003, and 0.014 YTL/egg before avian influenza. It was found that, whereas larger farms were more profitable than small farms prior to the avian influenza period, larger farms suffered greater economic losses than small farms during avian influenza outbreak in the participating farms.

  9. CWD prions remain infectious after passage through the digestive system of coyotes (Canis latrans).

    Science.gov (United States)

    Nichols, Tracy A; Fischer, Justin W; Spraker, Terry R; Kong, Qingzhong; VerCauteren, Kurt C

    2015-01-01

    Chronic wasting disease (CWD) is a geographically expanding prion disease of wild and captive cervids in North America. Disease can be transmitted directly, animal to animal, or indirectly via the environment. CWD contamination can occur residually in the environment via soil, water, and forage following deposition of bodily fluids such as urine, saliva, and feces, or by the decomposition of carcasses. Recent work has indicated that plants may even take up prions into the stems and leaves. When a carcass or gut pile is present in the environment, a large number of avian and mammalian species visit and consume the carrion. Additionally, predators like coyotes, likely select for disease-compromised cervids. Natural cross-species CWD transmission has not been documented, however, passage of infectious prion material has been observed in the feces of crows. In this study we evaluated the ability of CWD-infected brain material to pass through the gastrointestinal tract of coyotes (Canis latrans) following oral ingestion, and be infectious in a cervidized transgenic mouse model. Results from this study indicate that coyotes can pass infectious prions via their feces for at least 3 days post ingestion, demonstrating that mammalian scavengers could contribute to the translocation and contamination of CWD in the environment.

  10. Sustaining a Regional Emerging Infectious Disease Research Network: A Trust-Based Approach

    Directory of Open Access Journals (Sweden)

    Pornpit Silkavute

    2013-01-01

    Full Text Available The Asia Partnership on Emerging Infectious Diseases Research (APEIR was initiated in 2006 to promote regional collaboration in avian influenza research. In 2009, the partnership expanded its scope to include all emerging infectious diseases. APEIR partners include public health and animal researchers, officials and practitioners from Cambodia, China, Lao PDR, Indonesia, Thailand and Vietnam. APEIR has accomplished several major achievements in three key areas of activity: (i knowledge generation (i.e., through research; (ii research capacity building (e.g., by developing high-quality research proposals, by planning and conducting joint research projects, by adopting a broader Ecohealth/OneHealth approach; and (iii policy advocacy (e.g., by disseminating research results to policy makers. This paper describes these achievements, with a focus on the partnership's five major areas of emerging infectious disease research: wild migratory birds, backyard poultry systems, socio-economic impact, policy analysis, and control measures. We highlight two case studies illustrating how the partnership's research results are being used to inform policy. We also highlight lessons learned after five years of working hard to build our partnership and the value added by a multi-country, multi-sectoral, multi-disciplinary research partnership like APEIR.

  11. Emerging infectious diseases at the beginning of the 21st century.

    Science.gov (United States)

    Lashley, Felissa R

    2006-01-31

    The emergence and re-emergence of infectious diseases involves many interrelated factors. Global interconnectedness continues to increase with international travel and trade; economic, political, and cultural interactions; and human-to-human and animal-to-human interactions. These interactions include the accidental and deliberate sharing of microbial agents and antimicrobial resistance and allow the emergence of new and unrecognized microbial disease agents. As the 21st century begins, already new agents have been identified, and new outbreaks have occurred. Solutions to limiting the spread of emerging infectious diseases will require cooperative efforts among many disciplines and entities worldwide. This article defines emerging infectious diseases, summarizes historical background, and discusses factors that contribute to emergence. Seven agents that have made a significant appearance, particularly in the 21st century, are reviewed, including: Ebola and Marburg hemorrhagic fevers, human monkeypox, bovine spongiform encephalopathy, severe acute respiratory syndrome (SARS), West Nile virus, and avian influenza. The article provides for each agent a brief historical background, case descriptions, and health care implications.

  12. Sustaining a regional emerging infectious disease research network: a trust-based approach.

    Science.gov (United States)

    Silkavute, Pornpit; Tung, Dinh Xuan; Jongudomsuk, Pongpisut

    2013-01-01

    The Asia Partnership on Emerging Infectious Diseases Research (APEIR) was initiated in 2006 to promote regional collaboration in avian influenza research. In 2009, the partnership expanded its scope to include all emerging infectious diseases. APEIR partners include public health and animal researchers, officials and practitioners from Cambodia, China, Lao PDR, Indonesia, Thailand and Vietnam. APEIR has accomplished several major achievements in three key areas of activity: (i) knowledge generation (i.e., through research); (ii) research capacity building (e.g., by developing high-quality research proposals, by planning and conducting joint research projects, by adopting a broader Ecohealth/OneHealth approach); and (iii) policy advocacy (e.g., by disseminating research results to policy makers). This paper describes these achievements, with a focus on the partnership's five major areas of emerging infectious disease research: wild migratory birds, backyard poultry systems, socio-economic impact, policy analysis, and control measures. We highlight two case studies illustrating how the partnership's research results are being used to inform policy. We also highlight lessons learned after five years of working hard to build our partnership and the value added by a multi-country, multi-sectoral, multi-disciplinary research partnership like APEIR.

  13. Empowering African genomics for infectious disease control.

    Science.gov (United States)

    Folarin, Onikepe A; Happi, Anise N; Happi, Christian T

    2014-11-07

    At present, African scientists can only participate minimally in the genomics revolution that is transforming the understanding, surveillance and clinical treatment of infectious diseases. We discuss new initiatives to equip African scientists with knowledge of cutting-edge genomics tools, and build a sustainable critical mass of well-trained African infectious diseases genomics scientists.

  14. 25 CFR 140.26 - Infectious plants.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Infectious plants. 140.26 Section 140.26 Indians BUREAU... Infectious plants. Traders shall not introduce into, sell, or spread within Indian reservations any plant, plant product, seed, or any type of vegetation, which is infested, or infected or which might act as...

  15. Atypical Pyoderma Gangrenosum Mimicking an Infectious Process

    Directory of Open Access Journals (Sweden)

    Derek To

    2014-01-01

    Full Text Available We present a patient with atypical pyoderma gangrenosum (APG, which involved the patient’s arm and hand. Hemorrhagic bullae and progressive ulcerations were initially thought to be secondary to an infectious process, but a biopsy revealed PG. Awareness of APG by infectious disease services may prevent unnecessary use of broad-spectrum antibiotics.

  16. Atypical pyoderma gangrenosum mimicking an infectious process.

    Science.gov (United States)

    To, Derek; Wong, Aaron; Montessori, Valentina

    2014-01-01

    We present a patient with atypical pyoderma gangrenosum (APG), which involved the patient's arm and hand. Hemorrhagic bullae and progressive ulcerations were initially thought to be secondary to an infectious process, but a biopsy revealed PG. Awareness of APG by infectious disease services may prevent unnecessary use of broad-spectrum antibiotics.

  17. An Interdisciplinary Perspective: Infectious Diseases and History.

    Science.gov (United States)

    Turco, Jenifer; Byrd, Melanie

    2001-01-01

    Introduces the course "Infectious Diseases and History" which is designed for freshman and sophomore students. Aims to teach about infectious diseases, develop skills of using libraries and computer resources, and develop oral and written communication skills. Focuses on tuberculosis as an example of an instructional approach and…

  18. Emerging Infectious Disease Journal Cover Art

    Centers for Disease Control (CDC) Podcasts

    2012-04-04

    Polyxeni Potter discusses the art used on the covers of the Emerging Infectious Diseases journal.  Created: 4/4/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/5/2012.

  19. Contiguous spinal metastasis mimicking infectious spondylodiscitis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Min; Lee, Seung Hun [Dept. of Radiology, Hanyang University Hospital, Seoul (Korea, Republic of); Bae, Ji Yoon [Dept. of Pathology, National Police Hospital, Seoul (Korea, Republic of)

    2015-12-15

    Differential diagnosis between spinal metastasis and infectious spondylodiscitis is one of the occasional challenges in daily clinical practice. We encountered an unusual case of spinal metastasis in a 75-year-old female breast cancer patient that mimicked infectious spondylodiscitis. Magnetic resonance imaging (MRI) showed diffuse bone marrow infiltrations with paraspinal soft tissue infiltrative changes in 5 contiguous cervical vertebrae without significant compression fracture or cortical destruction. These MRI findings made it difficult to differentiate between spinal metastasis and infectious spondylodiscitis. Infectious spondylodiscitis such as tuberculous spondylodiscitis was regarded as the more appropriate diagnosis due to the continuous involvement of > 5 cervical vertebrae. The patient's clinical presentation also supported the presumptive diagnosis of infectious spondylodiscitis rather than spinal metastasis. Intravenous antibiotics were administered, but clinical symptoms worsened despite treatment. After pathologic confirmation by computed tomography-guided biopsy, we were able to confirm a final diagnosis of spinal metastasis.

  20. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity.

    Science.gov (United States)

    Chen, Xiaojuan; Wang, Kai; Xing, Yaling; Tu, Jian; Yang, Xingxing; Zhao, Qian; Li, Kui; Chen, Zhongbin

    2014-12-01

    Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagy-inducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM's inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity.