WorldWideScience

Sample records for avian cone photoreceptors

  1. Action spectra of zebrafish cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Duco Endeman

    Full Text Available Zebrafish is becoming an increasingly popular model in the field of visual neuroscience. Although the absorption spectra of its cone photopigments have been described, the cone action spectra were still unknown. In this study we report the action spectra of the four types of zebrafish cone photoreceptors, determined by measuring voltage responses upon light stimulation using whole cell patch clamp recordings. A generic template of photopigment absorption spectra was fit to the resulting action spectra in order to establish the maximum absorption wavelength, the A2-based photopigment contribution and the size of the β-wave of each cone-type. Although in general there is close correspondence between zebrafish cone action- and absorbance spectra, our data suggest that in the case of MWS- and LWS-cones there is appreciable contribution of A2-based photopigments and that the β-wave for these cones is smaller than expected based on the absorption spectra.

  2. Integrity of the cone photoreceptor mosaic in oligocone trichromacy

    DEFF Research Database (Denmark)

    Michaelides, Michel; Rha, Jungtae; Dees, Elise W;

    2011-01-01

    Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome characterized by reduced visual acuity, mild photophobia, reduced amplitude of the cone electroretinogram with normal rod responses, normal fundus appearance, and normal or near-normal color vision. It has been proposed that these...... that these patients have a reduced number of normal functioning cones (oligocone). This paper has sought to evaluate the integrity of the cone photoreceptor mosaic in four patients previously described as having OT....

  3. Automatic cone photoreceptor segmentation using graph theory and dynamic programming.

    Science.gov (United States)

    Chiu, Stephanie J; Lokhnygina, Yuliya; Dubis, Adam M; Dubra, Alfredo; Carroll, Joseph; Izatt, Joseph A; Farsiu, Sina

    2013-06-01

    Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five.

  4. Bat eyes have ultraviolet-sensitive cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Brigitte Müller

    Full Text Available Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins that have absorption maxima at short wavelengths (blue or ultraviolet light and long wavelengths (green or red light. Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S opsin and a longwave-sensitive (L opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar.

  5. CNGA3 mutations in hereditary cone photoreceptor disorders

    NARCIS (Netherlands)

    Wissinger, B; Gamer, D; Jagle, H; Giorda, R; Marx, T; Mayer, S; Tippmann, S; Broghammer, M; Jurklies, B; Rosenberg, T; Jacobson, SG; Sener, EC; Tatlipinar, S; Hoyng, CB; Castellan, C; Bitoun, P; Andreasson, S; Rudolph, G; Kellner, U; Lorenz, B; Wolff, G; Verellen-Dumoulin, C; Schwartz, M; Cremers, FPM; Apfelstedt-ylla, E; Zrenner, E; Salati, R; Sharpe, LT; Kohl, S

    2001-01-01

    We recently showed that mutations in the CNGA3 gene encoding the alpha -subunit of the cone photoreceptor cGMP-gated channel cause autosomal recessive complete achromatopsia linked to chromosome 2q11. We now report the results of a first comprehensive screening for CNGA3 mutations in a cohort of 258

  6. Programming Retinal Stem Cells into Cone Photoreceptors

    Science.gov (United States)

    2015-12-01

    inhibiting the Notch pathway as intended. Blocking Notch signaling forces progenitors to exit the cell cycle and differentiate and the gene Sox9, which...marks progenitors is downregulated at 9 hours. This correlates with the upregulation of Otx2. 3 photoreceptors at the earliest stages of...expression was activated in advance of Otx2. Of these, three factors (Ascl1, Olig2, and Neurog2) were previously shown to be made by progenitors

  7. Analysis of macular cone photoreceptors in a case of occult macular dystrophy

    Directory of Open Access Journals (Sweden)

    Tojo N

    2013-05-01

    Full Text Available Naoki Tojo Tomoko Nakamura Hironori Ozaki Miyako Oka Toshihiko Oiwake Atsushi HayashiDepartment of Ophthalmology, University of Toyama, Toyama, JapanPurpose: To investigate changes in cone photoreceptors with adaptive optics (AO fundus imaging and spectral domain optical coherence tomography (SD-OCT in a case of occult macular dystrophy (OMD.Patient and methods: Both eyes of a 42-year-old woman diagnosed with OMD were examined. We used an AO fundus camera to obtain images of cone photoreceptors in the macula of the OMD subject and five healthy control subjects. Correlations between the AO images and the SD-OCT images were examined. Cone photoreceptors in eight areas in the macula of OMD and healthy control subjects were analyzed and compared.Results: SD-OCT showed a loss of the cone outer-segment tips line outside of the fovea in both eyes of the subject with OMD. The left eye with decreased visual acuity showed a discontinuous photoreceptor inner-segment and outer-segment line and cone outer-segment tips line at the fovea in SD-OCT and loss of cone mosaics as a dark spot in the AO image. In panoramic AO images and cone-density maps, less cone density was observed in a ring-like region outside the fovea than in the peripheral retina. In most of the areas examined, the cone densities were lower in the OMD eyes than in the healthy control eyes.Conclusions: Cone densities in the macula of the OMD patient were greatly decreased. AO images were found to be useful to evaluate morphologic changes in cone photoreceptors in patients with OMD.Keywords: occult macular dystrophy, adaptive optics, cone photoreceptor, cone analysis, optical coherence tomography

  8. Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals.

    Science.gov (United States)

    Nießner, Christine; Denzau, Susanne; Malkemper, Erich Pascal; Gross, Julia Christina; Burda, Hynek; Winklhofer, Michael; Peichl, Leo

    2016-02-22

    Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.

  9. A positive feedback synapse from retinal horizontal cells to cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Skyler L Jackman

    2011-05-01

    Full Text Available Cone photoreceptors and horizontal cells (HCs have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca(2+ and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca(2+, whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement.

  10. A hybrid photoreceptor expressing both rod and cone genes in a mouse model of enhanced S-cone syndrome.

    Directory of Open Access Journals (Sweden)

    Joseph C Corbo

    2005-08-01

    Full Text Available Rod and cone photoreceptors subserve vision under dim and bright light conditions, respectively. The differences in their function are thought to stem from their different gene expression patterns, morphologies, and synaptic connectivities. In this study, we have examined the photoreceptor cells of the retinal degeneration 7(rd7 mutant mouse, a model for the human enhanced S-cone syndrome (ESCS. This mutant carries a spontaneous deletion in the mouse ortholog of NR2E3, an orphan nuclear receptor transcription factor mutated in ESCS. Employing microarray and in situ hybridization analysis we have found that the rd7 retina contains a modestly increased number of S-opsin-expressing cells that ultrastructurally appear to be normal cones. Strikingly, the majority of the photoreceptors in the rd7 retina represent a morphologically hybrid cell type that expresses both rod- and cone-specific genes. In addition, in situ hybridization screening of genes shown to be up-regulated in the rd7 mutant retina by microarray identified ten new cone-specific or cone-enriched genes with a wide range of biochemical functions, including two genes specifically involved in glucose/glycogen metabolism. We suggest that the abnormal electroretinograms, slow retinal degeneration, and retinal dysmorphology seen in humans with ESCS may, in part, be attributable to the aberrant function of a hybrid photoreceptor cell type similar to that identified in this study. The functional diversity of the novel cone-specific genes identified here indicates molecular differences between rods and cones extending far beyond those previously discovered.

  11. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    Science.gov (United States)

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  12. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors.

    Science.gov (United States)

    Huang, Cathy Chia-Yu; Ko, Michael Lee; Ko, Gladys Yi-Ping

    2013-01-01

    In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.

  13. Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Kyoung-In Cho

    2013-06-01

    Full Text Available Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2, a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+ -apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct

  14. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1 in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Cathy Chia-Yu Huang

    Full Text Available In the retina, the L-type voltage-gated calcium channels (L-VGCCs are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.

  15. Integrity of the cone photoreceptor mosaic in oligocone trichromacy

    DEFF Research Database (Denmark)

    Michaelides, Michel; Rha, Jungtae; Dees, Elise W;

    2011-01-01

    Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome characterized by reduced visual acuity, mild photophobia, reduced amplitude of the cone electroretinogram with normal rod responses, normal fundus appearance, and normal or near-normal color vision. It has been proposed that these...

  16. LINC complexes mediate the positioning of cone photoreceptor nuclei in mouse retina.

    Directory of Open Access Journals (Sweden)

    David Razafsky

    Full Text Available It has long been observed that many neuronal types position their nuclei within restricted cytoplasmic boundaries. A striking example is the apical localization of cone photoreceptors nuclei at the outer edge of the outer nuclear layer of mammalian retinas. Yet, little is known about how such nuclear spatial confinement is achieved and further maintained. Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes consist of evolutionary-conserved macromolecular assemblies that span the nuclear envelope to connect the nucleus with the peripheral cytoskeleton. Here, we applied a new transgenic strategy to disrupt LINC complexes either in cones or rods. In adult cones, we observed a drastic nuclear mislocalization on the basal side of the ONL that affected cone terminals overall architecture. We further provide evidence that this phenotype may stem from the inability of cone precursor nuclei to migrate towards the apical side of the outer nuclear layer during early postnatal retinal development. By contrast, disruption of LINC complexes within rod photoreceptors, whose nuclei are scattered across the outer nuclear layer, had no effect on the positioning of their nuclei thereby emphasizing differential requirements for LINC complexes by different neuronal types. We further show that Sun1, a component of LINC complexes, but not A-type lamins, which interact with LINC complexes at the nuclear envelope, participate in cone nuclei positioning. This study provides key mechanistic aspects underlying the well-known spatial confinement of cone nuclei as well as a new mouse model to evaluate the pathological relevance of nuclear mispositioning.

  17. Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors.

    Science.gov (United States)

    van Diepen, Hester C; Ramkisoensing, Ashna; Peirson, Stuart N; Foster, Russell G; Meijer, Johanna H

    2013-10-01

    Light information is transmitted to the central clock of the suprachiasmatic nuclei (SCN) for daily synchronization to the external solar cycle. Essential for synchronization is the capacity of SCN neurons to respond in a sustained and irradiance-dependent manner to light. Melanopsin has been considered to mediate this photosensory task of irradiance detection. By contrast, the contribution of the classical photoreceptors in irradiance encoding is less clear. Here we investigate the role of classical photoreceptors by in vivo electrophysiological responses in freely moving animals to specific wavelengths of light (UV, λmax 365 nm; blue, λmax 467 nm; and green, λmax 505 nm) in both melanopsin-deficient (Opn4(-/-)) mice and mice lacking rods and cones (rd/rd cl). Short- and long-wavelength light induced sustained irradiance-dependent responses in congenic wild-type mice (+19.6%). Unexpectedly, sustained responses to light persisted in Opn4(-/-) mice (+18.4%). These results provide unambiguous evidence that classical photoreceptors can transmit irradiance information to the SCN. In addition, at light intensities that would stimulate rod and cone photoreceptors, the SCN of rd/rd cl mice showed greatly reduced sustained responses to light (+7.8%). Collectively, our data demonstrate a role for classical photoreceptors in illuminance detection by the SCN.

  18. Retinal bipolar cells: temporal filtering of signals from cone photoreceptors.

    Science.gov (United States)

    Burkhardt, Dwight A; Fahey, Patrick K; Sikora, Michael A

    2007-01-01

    The temporal dynamics of the response of neurons in the outer retina were investigated by intracellular recording from cones, bipolar, and horizontal cells in the intact, light-adapted retina of the tiger salamander (Ambystoma tigrinum), with special emphasis on comparing the two major classes of bipolars cells, the ON depolarizing bipolars (Bd) and the OFF hyperpolarizing bipolars (Bh). Transfer functions were computed from impulse responses evoked by a brief light flash on a steady background of 20 cd/m(2). Phase delays ranged from about 89 ms for cones to 170 ms for Bd cells, yielding delays relative to that of cones of about 49 ms for Bh cells and 81 ms for Bd cells. The difference between Bd and Bh cells, which may be due to a delay introduced by the second messenger G-protein pathway unique to Bd cells, was further quantified by latency measurements and responses to white noise. The amplitude transfer functions of the outer retinal neurons varied with light adaptation in qualitative agreement with results for other vertebrates and human vision. The transfer functions at 20 cd/m(2) were predominantly low pass with 10-fold attenuation at about 13, 14, 9.1, and 7.7 Hz for cones, horizontal, Bh, and Bd cells, respectively. The transfer function from the cone voltage to the bipolar voltage response, as computed from the above measurements, was low pass and approximated by a cascade of three low pass RC filters ("leaky integrators"). These results for cone-->bipolar transmission are surprisingly similar to recent results for rod-->bipolar transmission in salamander slice preparations. These and other findings suggest that the rate of vesicle replenishment rather than the rate of release may be a common factor shaping synaptic signal transmission from rods and cones to bipolar cells.

  19. Induction of Neuronal Morphology in the 661W Cone Photoreceptor Cell Line with Staurosporine.

    Directory of Open Access Journals (Sweden)

    Alex F Thompson

    Full Text Available RGC-5 cells undergo differentiation into a neuronal phenotype with low concentrations of staurosporine. Although the RGC-5 cell line was initially thought to be of retinal ganglion cell origin, recent evidence suggests that the RGC-5 line could have been the result of contamination with 661W mouse cone photoreceptor cells. This raised the possibility that a cone photoreceptor cell line could be multipotent and could be differentiated to a neuronal phenotype.661W and RGC-5 cells, non-neuronal retinal astrocytes, retinal endothelial cells, retinal pericytes, M21 melanoma cells, K562 chronic myelogenous leukemia cells, and Daudi Burkitt lymphoma cells, were differentiated with staurosporine. The resulting morphology was quantitated using NeuronJ with respect to neurite counts and topology.Treatment with staurosporine induced similar-appearing morphological differentiation in both 661W and RGC-5 cells. The following measures were not significantly different between 661W and RGC-5 cells: number of neurites per cell, total neurite field length, number of neurite branch points, and cell viability. Neuronal-like differentiation was not observed in the other cell lines tested.661W and RGC-5 cells have virtually identical and distinctive morphology when differentiated with low concentrations of staurosporine. This result demonstrates that a retinal neuronal precursor cell with cone photoreceptor lineage can be differentiated to express a neuronal morphology.

  20. Cone Photoreceptor Structure in Patients With X-Linked Cone Dysfunction and Red-Green Color Vision Deficiency

    DEFF Research Database (Denmark)

    Patterson, Emily J; Wilk, Melissa; Langlo, Christopher S;

    2016-01-01

    PURPOSE: Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations ...... tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.......PURPOSE: Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations...... to clarify the link between color vision deficiency and cone dysfunction. METHODS: We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone...

  1. The Ciliopathy Gene ahi1 Is Required for Zebrafish Cone Photoreceptor Outer Segment Morphogenesis and Survival

    Science.gov (United States)

    Lessieur, Emma M.; Fogerty, Joseph; Gaivin, Robert J.; Song, Ping; Perkins, Brian D.

    2017-01-01

    Purpose Joubert syndrome (JBTS) is an autosomal recessive ciliopathy with considerable phenotypic variability. In addition to central nervous system abnormalities, a subset of JBTS patients exhibit retinal dystrophy and/or kidney disease. Mutations in the AHI1 gene are causative for approximately 10% of all JBTS cases. The purpose of this study was to generate ahi1 mutant alleles in zebrafish and to characterize the retinal phenotypes. Methods Zebrafish ahi1 mutants were generated using transcription activator-like effector nucleases (TALENs). Expression analysis was performed by whole-mount in situ hybridization. Anatomic and molecular characterization of photoreceptors was investigated by histology, electron microscopy, and immunohistochemistry. The optokinetic response (OKR) behavior assay was used to assess visual function. Kidney cilia were evaluated by whole-mount immunostaining. Results The ahi1lri46 mutation in zebrafish resulted in shorter cone outer segments but did not affect visual behavior at 5 days after fertilization (dpf). No defects in rod morphology or rhodopsin localization were observed at 5 dpf. By 5 months of age, cone degeneration and rhodopsin mislocalization in rod photoreceptors was observed. The connecting cilium formed normally and Cc2d2a and Cep290 localized properly. Distal pronephric duct cilia were absent in mutant fish; however, only 9% of ahi1 mutants had kidney cysts by 5 dpf, suggesting that the pronephros remained largely functional. Conclusions The results indicate that Ahi1 is required for photoreceptor disc morphogenesis and outer segment maintenance in zebrafish. PMID:28118669

  2. Investigating photoreceptor densities, potential visual acuity, and cone mosaics of shallow water, temperate fish species.

    Science.gov (United States)

    Hunt, D E; Rawlinson, N J F; Thomas, G A; Cobcroft, J M

    2015-06-01

    The eye is an important sense organ for teleost species but can vary greatly depending on the adaption to the habitat, environment during ontogeny and developmental stage of the fish. The eye and retinal morphology of eight commonly caught trawl bycatch species were described: Lepidotrigla mulhalli; Lophonectes gallus; Platycephalus bassensis; Sillago flindersi; Neoplatycephalus richardsoni; Thamnaconus degeni; Parequula melbournensis; and Trachurus declivis. The cone densities ranged from 38 cones per 0.01 mm(2) for S. flindersi to 235 cones per 0.01 mm(2) for P. melbournensis. The rod densities ranged from 22800 cells per 0.01 mm(2) for L. mulhalli to 76634 cells per 0.01 mm(2) for T. declivis and potential visual acuity (based on anatomical measures) ranged from 0.08 in L. gallus to 0.31 in P. melbournensis. Higher rod densities were correlated with maximum habitat depths. Six species had the regular pattern of four double cones arranged around a single cone in the photoreceptor mosaic, while T. declivis had only rows of double cones. P. melbournensis had the greatest potential ability for detecting fine detail based on eye anatomy. The potential visual acuity estimates and rod densities can be applied to suggest the relative detection ability of different species in a commercial fishing context, since vision is a critical sense in an illuminated environment for perceiving an oncoming trawl.

  3. Origin and control of the dominant time constant of salamander cone photoreceptors.

    Science.gov (United States)

    Zang, Jingjing; Matthews, Hugh R

    2012-08-01

    Recovery of the light response in vertebrate photoreceptors requires the shutoff of both active intermediates in the phototransduction cascade: the visual pigment and the transducin-phosphodiesterase complex. Whichever intermediate quenches more slowly will dominate photoresponse recovery. In suction pipette recordings from isolated salamander ultraviolet- and blue-sensitive cones, response recovery was delayed, and the dominant time constant slowed when internal [Ca(2+)] was prevented from changing after a bright flash by exposure to 0Ca(2+)/0Na(+) solution. Taken together with a similar prior observation in salamander red-sensitive cones, these observations indicate that the dominance of response recovery by a Ca(2+)-sensitive process is a general feature of amphibian cone phototransduction. Moreover, changes in the external pH also influenced the dominant time constant of red-sensitive cones even when changes in internal [Ca(2+)] were prevented. Because the cone photopigment is, uniquely, exposed to the external solution, this may represent a direct effect of protons on the equilibrium between its inactive Meta I and active Meta II forms, consistent with the notion that the process dominating recovery of the bright flash response represents quenching of the active Meta II form of the cone photopigment.

  4. Photocurrents of cone photoreceptors of the golden-mantled ground squirrel.

    Science.gov (United States)

    Kraft, T W

    1988-10-01

    1. Visual transduction in photoreceptors of the ground squirrel, Citellus lateralis, was studied by recording membrane current from individual cones in small pieces of retina. 2. Brief flashes of light produced transient reductions of the dark current; saturating response amplitudes were up to 67 pA. A flash strength of about 11,000 photons microns-2 at lambda max was required to give a half-saturating response. The stimulus-response relation was well fitted by an exponential saturation curve. Responses below 20% of maximum behaved linearly. 3. The response to a dim flash in most cells had a time to peak of 20-30 ms and resembled the impulse response of a series of five low-pass filters. 4. The variance of the dim-flash response amplitude put an upper limit of 80 fA on the size of the single photon response. Estimates based on the effective collecting area suggest the single photon response to be of the order of 10 fA. 5. Flash responses of squirrel cones usually lacked the undershoot observed in primate cones, although in about 1/3 of the cells a small undershoot developed during recording. 6. Background lights slightly shortened the time to peak of the flash response and reduced the integration time. 7. Spectral sensitivity measurements showed two classes of cones with peak sensitivities at about 520 and 435 nm. Rod sensitivity peaked near 500 nm. Spectral univariance was obeyed by all three classes of cells. 8. The shapes of the spectral sensitivity curves of the rod and both types of cones were similar to each other when plotted on a log wave number scale, but differed significantly from similar plots of monkey and human cone spectra. 9. The kinetics and sensitivity of flash responses of the blue- and green-sensitive cones were indistinguishable.

  5. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors.

    Science.gov (United States)

    Van Hook, Matthew J; Parmelee, Caitlyn M; Chen, Minghui; Cork, Karlene M; Curto, Carina; Thoreson, Wallace B

    2014-11-01

    At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.

  6. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.

    Science.gov (United States)

    Cork, Karlene M; Van Hook, Matthew J; Thoreson, Wallace B

    2016-08-01

    Photoreceptors have depolarized resting potentials that stimulate calcium-dependent release continuously from a large vesicle pool but neurons can also release vesicles without stimulation. We characterized the Ca(2+) dependence, vesicle pools, and release sites involved in spontaneous release at photoreceptor ribbon synapses. In whole-cell recordings from light-adapted horizontal cells (HCs) of tiger salamander retina, we detected miniature excitatory post-synaptic currents (mEPSCs) when no stimulation was applied to promote exocytosis. Blocking Ca(2+) influx by lowering extracellular Ca(2+) , by application of Cd(2+) and other agents reduced the frequency of mEPSCs but did not eliminate them, indicating that mEPSCs can occur independently of Ca(2+) . We also measured release presynaptically from rods and cones by examining quantal glutamate transporter anion currents. Presynaptic quantal event frequency was reduced by Cd(2+) or by increased intracellular Ca(2+) buffering in rods, but not in cones, that were voltage clamped at -70 mV. By inhibiting the vesicle cycle with bafilomycin, we found the frequency of mEPSCs declined more rapidly than the amplitude of evoked excitatory post-synaptic currents (EPSCs) suggesting a possible separation between vesicle pools in evoked and spontaneous exocytosis. We mapped sites of Ca(2+) -independent release using total internal reflectance fluorescence (TIRF) microscopy to visualize fusion of individual vesicles loaded with dextran-conjugated pHrodo. Spontaneous release in rods occurred more frequently at non-ribbon sites than evoked release events. The function of Ca(2+) -independent spontaneous release at continuously active photoreceptor synapses remains unclear, but the low frequency of spontaneous quanta limits their impact on noise.

  7. Quantitative analysis of cone photoreceptor distribution and its relationship with axial length, age, and early age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Ryo Obata

    Full Text Available PURPOSE: It has not been clarified whether early age-related macular degeneration (AMD is associated with cone photoreceptor distribution. We used adaptive optics fundus camera to examine cone photoreceptors in the macular area of aged patients and quantitatively analyzed its relationship between the presence of early AMD and cone distribution. METHODS: Sixty cases aged 50 or older were studied. The eyes were examined with funduscopy and spectral-domain optical coherence tomography to exclude the eyes with any abnormalities at two sites of measurement, 2° superior and 5° temporal to the fovea. High-resolution retinal images with cone photoreceptor mosaic were obtained with adaptive optics fundus camera (rtx1, Imagine Eyes, France. After adjusting for axial length, cone packing density was calculated and the relationship with age, axial length, or severity of early AMD based on the age-related eye disease study (AREDS classification was analyzed. RESULTS: Patient's age ranged from 50 to 77, and axial length from 21.7 to 27.5 mm. Mean density in metric units and that in angular units were 24,900 cells/mm2, 2,170 cells/deg2 at 2° superior, and 18,500 cells/mm2, 1,570 cels/deg2 at 5° temporal, respectively. Axial length was significantly correlated with the density calculated in metric units, but not with that in angular units. Age was significantly correlated with the density both in metric and angular units at 2° superior. There was no significant difference in the density in metric and angular units between the eyes with AREDS category one and those with categories two or three. CONCLUSION: Axial length and age were significantly correlated with parafoveal cone photoreceptor distribution. The results do not support that early AMD might influence cone photoreceptor density in the area without drusen or pigment abnormalities.

  8. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    Science.gov (United States)

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  9. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina.

    Science.gov (United States)

    Van Hook, Matthew J; Thoreson, Wallace B

    2015-09-01

    Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca(2+) dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of IC l(Ca) confirmed that endogenous Ca(2+) buffering is equivalent to ~0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca(2+)] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca(2+) currents. Peak efficiency of ~0.2 vesicles/channel was similar to that of cones (~0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca(2+) buffering. However, weak Ca(2+) buffering speeded Ca(2+)/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca(2+) buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca(2+)] at nonribbon sites in cones with weak Ca(2+) buffering and by inhibiting Ca(2+) extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca(2+) buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca(2+)/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods.

  10. Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations.

    Directory of Open Access Journals (Sweden)

    William A Beltran

    Full Text Available Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina. Similar anatomical structure observed in rare human subjects has been named fovea-plana. In addition, dogs with mutations in two different genes, that cause macular degeneration in humans, developed earliest disease at the newly-identified canine fovea-like area. Our results challenge the dogma that within the phylogenetic tree of mammals, haplorhine primates with a fovea are the sole lineage in which the retina has a central bouquet of cones. Furthermore, a predilection for naturally-occurring retinal degenerations to alter this cone-enriched area fills the void for a clinically-relevant animal model of human macular degenerations.

  11. Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations.

    Science.gov (United States)

    Beltran, William A; Cideciyan, Artur V; Guziewicz, Karina E; Iwabe, Simone; Swider, Malgorzata; Scott, Erin M; Savina, Svetlana V; Ruthel, Gordon; Stefano, Frank; Zhang, Lingli; Zorger, Richard; Sumaroka, Alexander; Jacobson, Samuel G; Aguirre, Gustavo D

    2014-01-01

    Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina. Similar anatomical structure observed in rare human subjects has been named fovea-plana. In addition, dogs with mutations in two different genes, that cause macular degeneration in humans, developed earliest disease at the newly-identified canine fovea-like area. Our results challenge the dogma that within the phylogenetic tree of mammals, haplorhine primates with a fovea are the sole lineage in which the retina has a central bouquet of cones. Furthermore, a predilection for naturally-occurring retinal degenerations to alter this cone-enriched area fills the void for a clinically-relevant animal model of human macular degenerations.

  12. Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina.

    Science.gov (United States)

    Pow, David V; Sullivan, Robert K P

    2007-05-01

    Tissues often respond to damage by recapitulating developmental programs. We have investigated whether anatomical signs of developmental recapitulation are evident in cone photoreceptors of the aged and AMD-afflicted human retina. Radial migration of cell nuclei mediated by microtubules is a characteristic feature of cells in the developing retina. Similarly, neurite outgrowth is a feature of developing neurons. We have examined whether nuclear kinesis and neurite outgrowth from cone photoreceptors is evident. Calbindin-positive cone photoreceptor nuclei are normally positioned as a single layer of somata at the outer border of the outer nuclear layer. In AMD-afflicted retinae, many nuclei are translocated, with some somata abutting the outer plexiform layer (OPL) and others outside the outer limiting membrane whilst many nuclei are present at intermediate levels. The axonal processes of many cones were also aberrant, displaying tortuous pathways as they projected to the OPL, with occasional evidence for bifurcation at points where the axon changed direction. We suggest that tangential extension of collateral neurites and the rapid retraction of the original process may give rise to the tortuous axonal projections observed. Since microtubules are key mediators of both neurite extension and nuclear kinesis we examined expression of microtubule associated protein 2 (MAP2) which is an important regulator of neurite extension. The strong expression of MAP2 observed in those cells with aberrant morphologies supports the notion that abnormal microtubule-mediated remodelling events are present in the AMD retina and to a lesser extent in normal aged retinas, allowing cone photoreceptors to recapitulate two key features of development.

  13. Canine Retina Has a Primate Fovea-Like Bouquet of Cone Photoreceptors Which Is Affected by Inherited Macular Degenerations

    OpenAIRE

    Beltran, William A.; Artur V Cideciyan; Karina E Guziewicz; Simone Iwabe; Malgorzata Swider; Scott, Erin M.; Savina, Svetlana V.; Gordon Ruthel; Frank Stefano; Lingli Zhang; Richard Zorger; Alexander Sumaroka; Samuel G Jacobson; Aguirre, Gustavo D.

    2014-01-01

    Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local i...

  14. Rb deficiency during Drosophila eye development deregulates EMC, causing defects in the development of photoreceptors and cone cells.

    Science.gov (United States)

    Popova, Milena K; He, Wei; Korenjak, Michael; Dyson, Nicholas J; Moon, Nam-Sung

    2011-12-15

    Retinoblastoma tumor suppressor protein (pRb) regulates various biological processes during development and tumorigenesis. Although the molecular mechanism by which pRb controls cell cycle progression is well characterized, how pRb promotes cell-type specification and differentiation is less understood. Here, we report that Extra Macrochaetae (EMC), the Drosophila homolog of inhibitor of DNA binding/differentiation (ID), is an important protein contributing to the developmental defects caused by Rb deficiency. An emc allele was identified from a genetic screen designed to identify factors that, when overexpressed, cooperate with mutations in rbf1, which encodes one of the two Rb proteins found in Drosophila. EMC overexpression in an rbf1 hypomorphic mutant background induces cone cell and photoreceptor defects but has negligible effects in the wild-type background. Interestingly, a substantial fraction of the rbf1-null ommatidia normally exhibit similar cone cell and photoreceptor defects in the absence of ectopic EMC expression. Detailed EMC expression analyses revealed that RBF1 suppresses expression of both endogenous and ectopic EMC protein in photoreceptors, thus explaining the synergistic effect between EMC overexpression and rbf1 mutations, and the developmental defect observed in rbf1-null ommatidia. Our findings demonstrate that ID family proteins are an evolutionarily conserved determinant of Rb-deficient cells, and play an important role during development.

  15. Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system.

    LENUS (Irish Health Repository)

    Bhatt, Lavinia

    2010-01-01

    PURPOSE: The production of reactive oxygen species (ROS) can lead to oxidative stress, which is a strong contributory factor to many ocular diseases. In this study, the removal of trophic factors is used as a model system to investigate the effects of stress in the retina. The aims were to determine if both rod and cone photoreceptor cells produce ROS when they are deprived of trophic factor support and to demonstrate if the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes are responsible for this ROS production. METHODS: Retinas were explanted from mice aged between postnatal days 8-10 and cultured overnight. The following morning, confocal microscopy combined with various fluorescent probes was used to detect the production of ROS. Each time peanut agglutinin (PNA), a cone photoreceptor marker, was used to facilitate orientation of the retina. Dihydroethidium and dihydrorhodamine 123 (DHR123) were used to determine which cells produce ROS. Subsequently, western blots of retinal serial sections were used to detect the presence of Noxs in the different retinal layers. The Nox inhibitor apocynin was then tested to determine if it altered the production of ROS within these cells. RESULTS: Live retinal explants, viewed at high magnifications using confocal microscopy, displayed an increase in the fluorescent products of dihydroethidium and DHR123 upon serum removal when compared to controls. DHR123 fluorescence, once oxidized, localized to mitochondria and was found in the same focal plane as the PNA staining. This showed that cones and rods produced ROS when stressed. Retinal serial sectioning established that the photoreceptor layer expressed Nox4, dual oxidase (Duox) 1, and Duox2 at varying levels. Finally, the Nox inhibitor apocynin decreased the burst stimulated by the stress of serum removal. CONCLUSIONS: Confocal microscopy and PNA staining allowed differentiation of cell types within the outermost layers of the retina, demonstrating

  16. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.

    Directory of Open Access Journals (Sweden)

    Ralph W Pridmore

    Full Text Available This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0 in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones. Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.

  17. Avian ultraviolet/violet cones identified as probable magnetoreceptors.

    Directory of Open Access Journals (Sweden)

    Christine Niessner

    Full Text Available BACKGROUND: The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so far, the exact subcellular characterization of these molecules in the retina remained unknown. METHODOLOGY/PRINCIPAL FINDINGS: We here describe the localization of cryptochrome 1a (Cry1a in the retina of European robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V cones that are distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is anchored along membranes. CONCLUSIONS/SIGNIFICANCE: We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic directions, and thus provide the Radical-Pair-Model with a profound histological background.

  18. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks.

    Science.gov (United States)

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra; Swaroop, Anand

    2015-12-01

    The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.

  19. Distribution of retinal cone photoreceptor oil droplets, and identification of associated carotenoids in crow (Corvus macrorhynchos).

    Science.gov (United States)

    Rahman, Mohammad Lutfur; Yoshida, Kazuyuki; Maeda, Isamu; Tanaka, Hideuki; Sugita, Shoei

    2010-06-01

    The topography of cone oil droplets and their carotenoids were investigated in the retina of jungle crow (Corvus macrorhynchos). Fresh retina was sampled for the study of retinal cone oil droplets, and extracted retinal carotenoids were saponified using methods adapted from a recent study, then identified with reverse-phase high-performance liquid chromatography (HPLC). To assess the effects of saponification conditions on carotenoid recovery from crow retina, we varied base concentration and total time of saponification across a wide range of conditions, and again used HPLC to compare carotenoid concentrations. Based on colors, at least four types of oil droplets were recognized, i.e., red, orange, green, and translucent, across the retina. With an average of 91,202 /mm(2), density gradually declines in an eccentric manner from optic disc. In retina, the density and size of droplets are inversely related. In the peripheral zone, oil droplets were significantly larger than those of the central area. The proportion of orange oil droplets (33%) was higher in the central area, whereas green was predominant in other areas. Three types of carotenoid (astaxanthin, galloxanthin and lutein), together with one unknown carotenoid, were recovered from the crow retina; astaxanthin was the dominant carotenoid among them. The recovery of carotenoids was affected by saponification conditions. Astaxanthin was well recovered in weak alkali (0.06 M KOH), in contrast, xanthophyllic carotenoids were best recovered in strong alkali (0.6 M KOH) after 12 h of saponification at freeze temperature.

  20. Retinal photoreceptor fine structure in the red-tailed hawk (Buteo jamaicensis).

    Science.gov (United States)

    Braekevelt, C R

    1993-09-01

    The retinal photoreceptors of the red-tailed hawk (Buteo jamaicensis) consist of rods, single cones and double (unequal) cones present in a ratio of about 2:1:5. In the light-adapted state, the rods are slender elongated cells with outer segments that reach to the retinal epithelial (RPE) cells. The inner segment displays an ellipsoid of mitochondria, plentiful polysomes, some rough ER and Golgi zones. The rod nucleus is located deep within the outer nuclear layer and the synaptic spherule displays both invaginated (ribbon) and superficial (conventional) synaptic sites. Single cones show a thin tapering outer segment, a large electron lucent oil droplet at the apex of the inner segment and an ellipsoid of mitochondria. Double cones consist of a larger chief member which displays a thin tapering outer segment and an electron dense oil droplet as well as a smaller accessory cone which shows no oil droplet, an ellipsoid and a paraboloid of glycogen. As in the single cone, polysomes, RER and Golgi zones are also noted in the inner segments of both members of the double cone. Near the external limiting membrane the chief and accessory cones show membrane specializations indicative of junctions on their contiguous surfaces. All cone photoreceptors are of a smaller diameter than is normally reported for avian species. Both single and double cones display several invaginated synapses as well as numerous superficial synaptic sites.

  1. Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones.

    Directory of Open Access Journals (Sweden)

    Shijun Weng

    Full Text Available Intrinsically photosensitive retinal ganglion cells (iprgcs are depolarized by light by two mechanisms: directly, through activation of their photopigment melanopsin; and indirectly through synaptic circuits driven by rods and cones. To learn more about the rod and cone circuits driving ipRGCs, we made multielectrode array (MEA and patch-clamp recordings in wildtype and genetically modified mice. Rod-driven ON inputs to ipRGCs proved to be as sensitive as any reaching the conventional ganglion cells. These signals presumably pass in part through the primary rod pathway, involving rod bipolar cells and AII amacrine cells coupled to ON cone bipolar cells through gap junctions. Consistent with this interpretation, the sensitive rod ON input to ipRGCs was eliminated by pharmacological or genetic disruption of gap junctions, as previously reported for conventional ganglion cells. A presumptive cone input was also detectable as a brisk, synaptically mediated ON response that persisted after disruption of rod ON pathways. This was roughly three log units less sensitive than the rod input. Spectral analysis revealed that both types of cones, the M- and S-cones, contribute to this response and that both cone types drive ON responses. This contrasts with the blue-OFF, yellow-ON chromatic opponency reported in primate ipRGCs. The cone-mediated response was surprisingly persistent during steady illumination, echoing the tonic nature of both the rod input to ipRGCs and their intrinsic, melanopsin-based phototransduction. These synaptic inputs greatly expand the dynamic range and spectral bandpass of the non-image-forming visual functions for which ipRGCs provide the principal retinal input.

  2. Photoreceptor engineering

    Directory of Open Access Journals (Sweden)

    Thea eZiegler

    2015-06-01

    Full Text Available Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.

  3. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203

    OpenAIRE

    Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Shin, Tae-Hoon; Seo, Yoojin; Kim, Hyung-Sik; Kang, Kyung-Sun

    2016-01-01

    Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sources. Human amniotic epithelial stem cells (AESCs) and umbilical cord blood-derived mesenchymal stem c...

  4. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203.

    Science.gov (United States)

    Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Shin, Tae-Hoon; Seo, Yoojin; Kim, Hyung-Sik; Kang, Kyung-Sun

    2016-07-05

    Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sources. Human amniotic epithelial stem cells (AESCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) treated with a retina differentiation cocktail induced gene expressions of retina development-relevant genes. Furthermore, microRNA-203 (miR-203) is abundantly expressed in human AESCs and human UCB-MSCs. This miR-203 is predicted to target multiple retina development-relevant genes, particularly DKK1, CRX, RORβ, NEUROD1, NRL and THRB. The inhibition of miR-203 induced a retina differentiation of AESCs and UCB-MSCs. Moreover, successive treatments of anti-miR-203 led to the expression of both mature photoreceptor (PR) markers, rhodopsin and opsin. In addition, we determined that CRX, NRL and DKK1 are direct targets of miR-203 using a luciferase assay. Thus, the work presented here suggests that somatic stem cells can potentially differentiate into neural retina cell types when treated with anti-miR-203. They may prove to be a source of both PR subtypes for future allogeneic stem cell-based therapies of non-regenerative retina diseases.

  5. Specialized photoreceptor composition in the raptor fovea.

    Science.gov (United States)

    Mitkus, Mindaugas; Olsson, Peter; Toomey, Matthew B; Corbo, Joseph C; Kelber, Almut

    2017-02-15

    The retinae of many bird species contain a depression with high photoreceptor density known as the fovea. Many species of raptors have two foveae, a deep central fovea and a shallower temporal fovea. Birds have six types of photoreceptors: rods, active in dim light, double cones that are thought to mediate achromatic discrimination, and four types of single cones mediating color vision. To maximize visual acuity, the fovea should only contain photoreceptors contributing to high-resolution vision. Interestingly, it has been suggested that raptors might lack double cones in the fovea. We used transmission electron microscopy and immunohistochemistry to evaluate this claim in five raptor species: the common buzzard (Buteo buteo), the honey buzzard (Pernis apivorus), the Eurasian sparrowhawk (Accipiter nisus), the red kite (Milvus milvus) and the peregrine falcon (Falco peregrinus). We found that all species, except the Eurasian sparrowhawk, lack double cones in the center of the central fovea. The size of the double cone-free zone differed between species. Only the common buzzard had a double cone-free zone in the temporal fovea. In three species, we examined opsin expression in the central fovea and found evidence that rod opsin positive cells were absent and violet-sensitive cone and green-sensitive cone opsin positive cells were present. We conclude that not only double cones, but also single cones may contribute to high-resolution vision in birds, and that raptors may in fact possess high-resolution tetrachromatic vision in the central fovea. This article is protected by copyright. All rights reserved.

  6. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.

    Science.gov (United States)

    Baumhardt, Patrice E; Moore, Bret A; Doppler, Megan; Fernández-Juricic, Esteban

    2014-01-01

    Several species of the most diverse avian order, Passeriformes, specialize in foraging on passive prey, although relatively little is known about their visual systems. We tested whether some components of the visual system of the American goldfinch (Spinus tristis), a granivorous bird, followed the profile of species seeking passive food items (small eye size relative to body mass, narrow binocular fields and blind areas, centrally located retinal specialization projecting laterally, ultraviolet-sensitive vision). We measured eye size, visual field configuration, the degree of eye movement, variations in the density of ganglion cells and cone photoreceptors, and the sensitivity of photoreceptor visual pigments and oil droplets. Goldfinches had relatively large binocular (46°) and lateral (134°) visual fields with a high degree of eye movement (66° at the plane of the bill). They had a single centrotemporally located fovea that projects laterally, but can be moved closer to the edge of the binocular field by converging the eyes. Goldfinches could also increase their panoramic vision by diverging their eyes while handling food items in head-up positions. The distribution of photoreceptors indicated that the highest density of single and double cones was surrounding the fovea, making it the center of chromatic and achromatic vision and motion detection. Goldfinches possessed a tetrachromatic ultraviolet visual system with visual pigment peak sensitivities of 399 nm (ultraviolet-sensitive cone), 442 nm (short-wavelength-sensitive cone), 512 nm (medium-wavelength-sensitive cone), and 580 nm (long-wavelength-sensitive cone). Overall, the visual system of American goldfinches showed characteristics of passive as well as active prey foragers, with a single-fovea configuration and a large degree of eye movement that would enhance food searching and handling with their relatively wide binocular fields.

  7. Ocular anatomy and retinal photoreceptors in a skink, the sleepy lizard (Tiliqua rugosa).

    Science.gov (United States)

    New, Shaun T D; Hemmi, Jan M; Kerr, Gregory D; Bull, C Michael

    2012-10-01

    The Australian sleepy lizard (Tiliqua rugosa) is a large day-active skink which occupies stable overlapping home ranges and maintains long-term monogamous relationships. Its behavioral ecology has been extensively studied, making the sleepy lizard an ideal model for investigation of the lizard visual system and its specializations, for which relatively little is known. We examine the morphology, density, and distribution of retinal photoreceptors and describe the anatomy of the sleepy lizard eye. The sleepy lizard retina is composed solely of photoreceptors containing oil droplets, a characteristic of cones. Two groups could be distinguished; single cones and double cones, consistent with morphological descriptions of photoreceptors in other diurnal lizards. Although all photoreceptors were cone-like in morphology, a subset of photoreceptors displayed immunoreactivity to rhodopsin-the visual pigment of rods. This finding suggests that while the morphological properties of rod photoreceptors have been lost, photopigment protein composition has been conserved during evolutionary history.

  8. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, M.

    2015-01-01

    KEY POINTS: In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the g

  9. Overlap of abnormal photoreceptor development and progressive degeneration in Leber congenital amaurosis caused by NPHP5 mutation.

    Science.gov (United States)

    Downs, Louise M; Scott, Erin M; Cideciyan, Artur V; Iwabe, Simone; Dufour, Valerie; Gardiner, Kristin L; Genini, Sem; Marinho, Luis Felipe; Sumaroka, Alexander; Kosyk, Mychajlo S; Swider, Malgorzata; Aguirre, Geoffrey K; Jacobson, Samuel G; Beltran, William A; Aguirre, Gustavo D

    2016-10-01

    Ciliary defects can result in severe disorders called ciliopathies. Mutations in NPHP5 cause a ciliopathy characterized by severe childhood onset retinal blindness, Leber congenital amaurosis (LCA), and renal disease. Using the canine NPHP5-LCA model we compared human and canine retinal phenotypes, and examined the early stages of photoreceptor development and degeneration, the kinetics of photoreceptor loss, the progression of degeneration and the expression profiles of selected genes. NPHP5-mutant dogs recapitulate the human phenotype of very early loss of rods, and relative retention of the central retinal cone photoreceptors that lack function. In mutant dogs, rod and cone photoreceptors have a sensory cilium, but develop and function abnormally and then rapidly degenerate; L/M cones are more severely affected than S-cones. The lack of outer segments in mutant cones indicates a ciliary dysfunction. Genes expressed in mutant rod or both rod and cone photoreceptors show significant downregulation, while those expressed only in cones are unchanged. Many genes in cell-death and -survival pathways also are downregulated. The canine disease is a non-syndromic LCA-ciliopathy, with normal renal structures and no CNS abnormalities. Our results identify the critical time points in the pathogenesis of the photoreceptor disease, and bring us closer to defining a potential time window for testing novel therapies for translation to patients.

  10. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  11. Adaptive Optics Reveals Photoreceptor Abnormalities in Diabetic Macular Ischemia

    Science.gov (United States)

    Nesper, Peter L.; Scarinci, Fabio

    2017-01-01

    Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated with chronic hypoxia of retinal tissue. The goal of this prospective observational study was to report evidence of photoreceptor abnormalities using adaptive optics scanning laser ophthalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) non-perfusion. Eleven eyes from 11 patients (6 women, age 31–68), diagnosed with DR without macular edema, underwent optical coherence tomography angiography (OCTA) and AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to characterize the enlargement of the foveal avascular zone. The parameters studied included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP non-perfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)-OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with AOSLO and OCTA, this study shows an association between capillary non-perfusion of the DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is important in confirming the significant contribution of the DCP to oxygen requirements of photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photoreceptor changes not always visible on SD-OCT. PMID:28068435

  12. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  13. Patterning the cone mosaic array in zebrafish retina requires specification of ultraviolet-sensitive cones.

    Directory of Open Access Journals (Sweden)

    Pamela A Raymond

    Full Text Available Cone photoreceptors in teleost fish are organized in precise, crystalline arrays in the epithelial plane of the retina. In zebrafish, four distinct morphological/spectral cone types occupy specific, invariant positions within a regular lattice. The cone lattice is aligned orthogonal and parallel to circumference of the retinal hemisphere: it emerges as cones generated in a germinal zone at the retinal periphery are incorporated as single-cell columns into the cone lattice. Genetic disruption of the transcription factor Tbx2b eliminates most of the cone subtype maximally sensitive to ultraviolet (UV wavelengths and also perturbs the long-range organization of the cone lattice. In the tbx2b mutant, the other three cone types (red, green, and blue cones are specified in the correct proportion, differentiate normally, and acquire normal, planar polarized adhesive interactions mediated by Crumbs 2a and Crumbs 2b. Quantitative image analysis of cell adjacency revealed that the cones in the tbx2b mutant primarily have two nearest neighbors and align in single-cell-wide column fragments that are separated by rod photoreceptors. Some UV cones differentiate at the dorsal retinal margin in the tbx2b mutant, although they are severely dysmorphic and are eventually eliminated. Incorporating loss of UV cones during formation of cone columns at the margin into our previously published mathematical model of zebrafish cone mosaic formation (which uses bidirectional interactions between planar cell polarity proteins and anisotropic mechanical stresses in the plane of the retinal epithelium to generate regular columns of cones parallel to the margin reproduces many features of the pattern disruptions seen in the tbx2b mutant.

  14. Vision. Realignment of cones after cataract removal.

    Science.gov (United States)

    Smallman, H S; MacLeod, D I; Doyle, P

    2001-08-01

    Through unique observations of an adult case of bilateral congenital cataract removal, we have found evidence that retinal photoreceptors will swiftly realign towards the brightest regions in the pupils of the eye. Cones may be phototropic, actively orientating themselves towards light like sunflowers in a field.

  15. Ciliary photoreceptors in the cerebral eyes of a protostome larva

    Directory of Open Access Journals (Sweden)

    Passamaneck Yale J

    2011-03-01

    Full Text Available Abstract Background Eyes in bilaterian metazoans have been described as being composed of either ciliary or rhabdomeric photoreceptors. Phylogenetic distribution, as well as distinct morphologies and characteristic deployment of different photopigments (ciliary vs. rhabdomeric opsins and transduction pathways argue for the co-existence of both of these two photoreceptor types in the last common bilaterian ancestor. Both receptor types exist throughout the Bilateria, but only vertebrates are thought to use ciliary photoreceptors for directional light detection in cerebral eyes, while all other invertebrate bilaterians studied utilize rhabdomeric photoreceptors for this purpose. In protostomes, ciliary photoreceptors that express c-opsin have been described only from a non-visual deep-brain photoreceptor. Their homology with vertebrate rods and cones of the human eye has been hypothesized to represent a unique functional transition from non-visual to visual roles in the vertebrate lineage. Results To test the hypothesis that protostome cerebral eyes employ exclusively rhabdomeric photoreceptors, we investigated the ultrastructure of the larval eyes in the brachiopod Terebratalia transversa. We show that these pigment-cup eyes consist of a lens cell and a shading pigment cell, both of which are putative photoreceptors, deploying a modified, enlarged cilium for light perception, and have axonal connections to the larval brain. Our investigation of the gene expression patterns of c-opsin, Pax6 and otx in these eyes confirms that the larval eye spots of brachiopods are cerebral eyes that deploy ciliary type photoreceptors for directional light detection. Interestingly, c-opsin is also expressed during early embryogenesis in all potential apical neural cells, becoming restricted to the anterior neuroectoderm, before expression is initiated in the photoreceptor cells of the eyes. Coincident with the expression of c-opsin in the presumptive neuroectoderm

  16. Do male and female cowbirds see their world differently? Implications for sex differences in the sensory system of an avian brood parasite.

    Directory of Open Access Journals (Sweden)

    Esteban Fernández-Juricic

    Full Text Available BACKGROUND: Male and female avian brood parasites are subject to different selection pressures: males compete for mates but do not provide parental care or territories and only females locate hosts to lay eggs. This sex difference may affect brain architecture in some avian brood parasites, but relatively little is known about their sensory systems and behaviors used to obtain sensory information. Our goal was to study the visual resolution and visual information gathering behavior (i.e., scanning of brown-headed cowbirds. METHODOLOGY/PRINCIPAL FINDINGS: We measured the density of single cone photoreceptors, associated with chromatic vision, and double cone photoreceptors, associated with motion detection and achromatic vision. We also measured head movement rates, as indicators of visual information gathering behavior, when exposed to an object. We found that females had significantly lower density of single and double cones than males around the fovea and in the periphery of the retina. Additionally, females had significantly higher head-movement rates than males. CONCLUSIONS: Overall, we suggest that female cowbirds have lower chromatic and achromatic visual resolution than males (without sex differences in visual contrast perception. Females might compensate for the lower visual resolution by gazing alternatively with both foveae in quicker succession than males, increasing their head movement rates. However, other physiological factors may have influenced the behavioral differences observed. Our results bring up relevant questions about the sensory basis of sex differences in behavior. One possibility is that female and male cowbirds differentially allocate costly sensory resources, as a recent study found that females actually have greater auditory resolution than males.

  17. Avian cardiology.

    Science.gov (United States)

    Strunk, Anneliese; Wilson, G Heather

    2003-01-01

    The field of avian cardiology is continually expanding. Although a great deal of the current knowledge base has been derived from poultry data, research and clinical reports involving companion avian species have been published. This article will present avian cardiovascular anatomy and physiology, history and physical examination considerations in the avian cardiac disease patient, specific diagnostic tools, cardiovascular disease processes, and current therapeutic modalities.

  18. Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa

    Science.gov (United States)

    Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen

    2016-09-01

    Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.

  19. Cone rod dystrophies

    Directory of Open Access Journals (Sweden)

    Hamel Christian P

    2007-02-01

    Full Text Available Abstract Cone rod dystrophies (CRDs (prevalence 1/40,000 are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP, also called the rod cone dystrophies (RCDs resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7. Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far. The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs, CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs, and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs. It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is

  20. Rhodopsin-like immunoreactivity in the 'all cone' retina of the chameleon (Chameleo chameleo).

    Science.gov (United States)

    Bennis, Mohamed; Molday, Robert S; Versaux-Botteri, Claudine; Repérant, Jacques; Jeanny, Jean-Claude; McDevitt, David S

    2005-05-01

    Chameleons (Order, Reptilia: Family, Lacertilia) are unique among vertebrates in being able to make independent eye movements. The organisation of their retina, however, closely ressembles that of other diurnal lizards; based on morphological studies, it is typically described as containing only cone photoreceptors. We show here that a subpopulation of the photoreceptors are immunolabelled by an antibody directed against rhodopsin, suggesting the presence of rods. We conclude that in the nonmammalian retina, rods and cones cannot be exclusively distinguished on purely morphological grounds.

  1. Avian anemia's

    Directory of Open Access Journals (Sweden)

    Raukar Jelena

    2005-01-01

    Full Text Available This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematological parameters for every single avian species.

  2. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    Science.gov (United States)

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  3. In-vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S; Doble, N; Hardy, J; Jones, S; Keltner, J; Olivier, S; Werner, J S

    2005-10-26

    To relate in-vivo microscopic retinal changes to visual function assessed with clinical tests in patients with various forms of retinal dystrophies. The UC Davis Adaptive Optics (AO) Fundus Camera was used to acquire in-vivo retinal images at the cellular level. Visual function tests, consisting of visual field analysis, multifocal electroretinography (mfERG), contrast sensitivity and color vision measures, were performed on all subjects. Five patients with different forms of retinal dystrophies and three control subjects were recruited. Cone densities were quantified for all retinal images. In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were characteristic features in fundi with retinal dystrophies. There was a correlation between functional vision loss and the extent to which the irregularities occurred in retinal images. Cone densities were found to decrease with an associated decrease in retinal function. AO fundus photography is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests give borderline or ambiguous results, as it allows visualization of individual photoreceptors.

  4. Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina.

    Science.gov (United States)

    Derlig, Kristin; Giessl, Andreas; Brandstätter, Johann Helmut; Enz, Ralf; Dahlhaus, Regina

    2015-11-01

    Chromatin organization and the management of transcription and splicing are fundamental to the correct functioning of every cell but, in particular, for highly active cells such as photoreceptors, the sensory neurons of the retina. Rod photoreceptor cells of nocturnal animals have recently been shown to have an inverted chromatin architecture compared with rod photoreceptor cells of diurnal animals. The heterochromatin is concentrated in the center of the nucleus, whereas the genetically active euchromatin is positioned close to the nuclear membrane. This unique chromatin architecture suggests that the transcription and splicing machinery is also subject to specific adaptations in these cells. Recently, we described the protein Simiate, which is enriched in nuclear speckles and seems to be involved in transcription and splicing processes. Here, we examine the distribution of Simiate and nuclear speckles in neurons of mouse retinae. In retinal neurons of the inner nuclear and ganglion cell layer, Simiate is concentrated in a clustered pattern in the nuclear interior, whereas in rod and cone photoreceptor cells, Simiate is present at the nuclear periphery. Further staining with markers for the transcription and splicing machinery has confirmed the localization of nuclear speckle components at the periphery. Comparing the distribution of nuclear speckles in retinae of the nocturnal mouse with the diurnal degu, we found no differences in the arrangement of the transcription and splicing machinery in their photoreceptor cells, thus suggesting that the organization of these machineries is not related to the animal's lifestyle but rather represents a general characteristic of photoreceptor organization and function.

  5. Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Mailin Sotolongo-Lopez

    2016-04-01

    Full Text Available The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7 regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation

  6. Modeling the role of mid-wavelength cones in circadian responses to light.

    Science.gov (United States)

    Dkhissi-Benyahya, Ouria; Gronfier, Claude; De Vanssay, Wena; Flamant, Frederic; Cooper, Howard M

    2007-03-01

    Nonvisual responses to light, such as photic entrainment of the circadian clock, involve intrinsically light-sensitive melanopsin-expressing ganglion cells as well as rod and cone photoreceptors. However, previous studies have been unable to demonstrate a specific contribution of cones in the photic control of circadian responses to light. Using a mouse model that specifically lacks mid-wavelength (MW) cones we show that these photoreceptors play a significant role in light entrainment and in phase shifting of the circadian oscillator. The contribution of MW cones is mainly observed for light exposures of short duration and toward the longer wavelength region of the spectrum, consistent with the known properties of this opsin. Modeling the contributions of the various photoreceptors stresses the importance of considering the particular spectral, temporal, and irradiance response domains of the photopigments when assessing their role and contribution in circadian responses to light.

  7. Three distinct roles for notch in Drosophila R7 photoreceptor specification.

    Directory of Open Access Journals (Sweden)

    Andrew Tomlinson

    2011-08-01

    Full Text Available Receptor tyrosine kinases (RTKs and Notch (N proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev and the EGF receptor (DER to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to particular fates. The R7 photoreceptor derives from a cohort of three cells that are incorporated together following specification of the R2-R5 and R8 photoreceptors. Two cells of the cohort are specified as the R1/6 photoreceptor type by DER activation. These cells then activate N in the third cell (the R7 precursor. By manipulation of N and RTK signaling in diverse combinations we establish three roles for N in specifying the R7 fate. The first role is to impose a block to photoreceptor differentiation; a block that DER activation cannot overcome. The second role, paradoxically, is to negate the first; Notch activation up-regulates Sev expression, enabling the presumptive R7 cell to receive an RTK signal from R8 that can override the block. The third role is to specify the cell as an R7 rather than an R1/6 once RTK signaling has specified the cells as a photoreceptor. We speculate why N acts both to block and to facilitate photoreceptor differentiation, and provide a model for how N and RTK signaling act combinatorially to specify the R1/6 and R7 photoreceptors as well as the surrounding non-neuronal cone cells.

  8. Photoreceptors: unconventional ways of seeing

    OpenAIRE

    Diaz, Naryttza N.; Sprecher, Simon G.

    2011-01-01

    Animals perceive light typically by photoreceptor neurons assembled in eyes, but some also use non-eye photosensory neurons. Multidendritic neurons in the body wall of Drosophila larvae have now been shown to use an unconventional phototransduction mechanism to sense light.

  9. On Dispersion in Visual Photoreceptors

    NARCIS (Netherlands)

    Stavenga, D.G.; Barneveld, H.H. van

    1975-01-01

    An idealized visual pigment absorbance spectrum is used together with a Kramers-Kronig dispersion relation to calculate the contribution of the visual pigment to the refractive index of the fly photoreceptor. It appears that an absorption coefficient of 0.010 µm-1 results in a refractive index varia

  10. Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation

    NARCIS (Netherlands)

    Nishiguchi, KM; Sandberg, MA; Kooijman, AC; Martemyanov, KA; Pott, JWR; Hagstrom, SA; Arshavsky, VY; Berson, EL; Dryja, TP

    2004-01-01

    The RGS proteins are GTPase activating proteins that accelerate the deactivation of G proteins in a variety of signalling pathways in eukaryotes(1-6). RGS9 deactivates the G proteins (transducins) in the rod and cone phototransduction cascades(7,8). It is anchored to photoreceptor membranes by the t

  11. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors

    CERN Document Server

    Hillmann, Dierck; Pfäffle, Clara; Sudkamp, Helge; Franke, Gesa; Hüttmann, Gereon

    2016-01-01

    Non-invasive functional imaging of molecular and cellular processes of vision is expected to have immense impact on research and clinical diagnostics. Although suitable intrinsic optical signals (IOS) have been observed ex vivo and in immobilized animals in vivo, it was so far not possible to obtain convincing IOS of photoreceptor activity in humans in vivo. Here, we observed spatially and temporally clearly resolved changes in the optical path length of the photoreceptor outer segment as response to an optical stimulus in living human. To obtain these changes, we evaluated phase data of a parallelized and computationally aberration-corrected optical coherence tomography (OCT) system. The non-invasive detection of optical path length changes shows the neuronal photoreceptor activity of single cones in living human retina, and, more importantly, it provides a new diagnostic option in ophthalmology and neurology and could give new insights into visual phototransduction in humans.

  12. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.

    Science.gov (United States)

    Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A

    2016-08-01

    This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes.

  13. Photoreceptor damage following exposure to excess riboflavin.

    Science.gov (United States)

    Eckhert, C D; Hsu, M H; Pang, N

    1993-12-15

    Flavins generate oxidants during metabolism and when exposed to light. Here we report that the photoreceptor layer of retinas from black-eyed rats is reduced in size by a dietary regime containing excess riboflavin. The effect of excess riboflavin was dose-dependent and was manifested by a decrease in photoreceptor length. This decrease was due in part to a reduction in the thickness of the outer nuclear layer, a structure formed from stacked photoreceptor nuclei. These changes were accompanied by an increase in photoreceptor outer segment autofluorescence following illumination at 328 nm, a wavelength that corresponds to the excitation maxima of oxidized lipopigments of the retinal pigment epithelium.

  14. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  15. Avian influenza

    Science.gov (United States)

    ... of avian influenza A in Asia, Africa, Europe, Indonesia, Vietnam, the Pacific, and the near East. Hundreds ... to detect abnormal breath sounds) Chest x-ray Culture from the nose or throat A method or ...

  16. Avian Influenza

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a letter from a professor at Clemson University about waterfowl that had been tested for avian influenza at Santee National Wildlife Refuge

  17. Microspectrophotometric evidence for cone monochromacy in sharks

    Science.gov (United States)

    Hart, Nathan Scott; Theiss, Susan Michelle; Harahush, Blake Kristin; Collin, Shaun Patrick

    2011-03-01

    Sharks are apex predators, and their evolutionary success is in part due to an impressive array of sensory systems, including vision. The eyes of sharks are well developed and function over a wide range of light levels. However, whilst close relatives of the sharks—the rays and chimaeras—are known to have the potential for colour vision, an evolutionary trait thought to provide distinct survival advantages, evidence for colour vision in sharks remains equivocal. Using single-receptor microspectrophotometry, we measured the absorbance spectra of visual pigments located in the retinal photoreceptors of 17 species of shark. We show that, while the spectral tuning of the rod (wavelength of maximum absorbance, λmax 484-518 nm) and cone (λmax 532-561 nm) visual pigments varies between species, each shark has only a single long-wavelength-sensitive cone type. This suggests that sharks may be cone monochromats and, therefore, potentially colour blind. Whilst cone monochromacy on land is rare, it may be a common strategy in the marine environment: many aquatic mammals (whales, dolphins and seals) also possess only a single, green-sensitive cone type. It appears that both sharks and marine mammals may have arrived at the same visual design by convergent evolution. The spectral tuning of the rod and cone pigments of sharks is also discussed in relation to their visual ecology.

  18. Microspectrophotometric evidence for cone monochromacy in sharks.

    Science.gov (United States)

    Hart, Nathan Scott; Theiss, Susan Michelle; Harahush, Blake Kristin; Collin, Shaun Patrick

    2011-03-01

    Sharks are apex predators, and their evolutionary success is in part due to an impressive array of sensory systems, including vision. The eyes of sharks are well developed and function over a wide range of light levels. However, whilst close relatives of the sharks-the rays and chimaeras-are known to have the potential for colour vision, an evolutionary trait thought to provide distinct survival advantages, evidence for colour vision in sharks remains equivocal. Using single-receptor microspectrophotometry, we measured the absorbance spectra of visual pigments located in the retinal photoreceptors of 17 species of shark. We show that, while the spectral tuning of the rod (wavelength of maximum absorbance, λ(max) 484-518 nm) and cone (λ(max) 532-561 nm) visual pigments varies between species, each shark has only a single long-wavelength-sensitive cone type. This suggests that sharks may be cone monochromats and, therefore, potentially colour blind. Whilst cone monochromacy on land is rare, it may be a common strategy in the marine environment: many aquatic mammals (whales, dolphins and seals) also possess only a single, green-sensitive cone type. It appears that both sharks and marine mammals may have arrived at the same visual design by convergent evolution. The spectral tuning of the rod and cone pigments of sharks is also discussed in relation to their visual ecology.

  19. Avian hematology.

    Science.gov (United States)

    Jones, Michael P

    2015-01-01

    Avian veterinarians often rely heavily on the results of various diagnostic tests, including hematology results. As such, cellular identification and evaluation of the cellular response are invaluable tools that help veterinarians understand the health or condition of their patient, as well as to monitor severity and clinical progression of disease and response to treatment. Therefore, it is important to thoroughly understand how to identify and evaluate changes in the avian erythron and leukon, as well as to interpret normal and abnormal results.

  20. Avian Flu

    Energy Technology Data Exchange (ETDEWEB)

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  1. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish

  2. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish high quality contents that will be internationally accessible to any reader at no cost.

  3. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most signi cant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,Avian Research provides a unique opportunity to publish

  4. Bestrophinopathy: An RPE-photoreceptor interface disease.

    Science.gov (United States)

    Guziewicz, Karina E; Sinha, Divya; Gómez, Néstor M; Zorych, Kathryn; Dutrow, Emily V; Dhingra, Anuradha; Mullins, Robert F; Stone, Edwin M; Gamm, David M; Boesze-Battaglia, Kathleen; Aguirre, Gustavo D

    2017-01-19

    Bestrophinopathies, one of the most common forms of inherited macular degenerations, are caused by mutations in the BEST1 gene expressed in the retinal pigment epithelium (RPE). Both human and canine BEST1-linked maculopathies are characterized by abnormal accumulation of autofluorescent material within RPE cells and bilateral macular or multifocal lesions; however, the specific mechanism leading to the formation of these lesions remains unclear. We now provide an overview of the current state of knowledge on the molecular pathology of bestrophinopathies, and explore factors promoting formation of RPE-neuroretinal separations, using the first spontaneous animal model of BEST1-associated retinopathies, canine Best (cBest). Here, we characterize the nature of the autofluorescent RPE cell inclusions and report matching spectral signatures of RPE-associated fluorophores between human and canine retinae, indicating an analogous composition of endogenous RPE deposits in Best Vitelliform Macular Dystrophy (BVMD) patients and its canine disease model. This study also exposes a range of biochemical and structural abnormalities at the RPE-photoreceptor interface related to the impaired cone-associated microvillar ensheathment and compromised insoluble interphotoreceptor matrix (IPM), the major pathological culprits responsible for weakening of the RPE-neuroretina interactions, and consequently, formation of vitelliform lesions. These salient alterations detected at the RPE apical domain in cBest as well as in BVMD- and ARB-hiPSC-RPE model systems provide novel insights into the pathological mechanism of BEST1-linked disorders that will allow for development of critical outcome measures guiding therapeutic strategies for bestrophinopathies.

  5. Double Cones as a Basis for Polarization Sensitivity in Vertebrates

    Science.gov (United States)

    Rowe, Manoel

    1995-01-01

    Over the course of the past 50 years there has been an increasing number of claims that certain vertebrates are sensitive to the linear polarization state of visible radiation. However, the mechanism(s) that mediates this polarization sensitivity remains elusive at the present time. The retinas of most vertebrates contain anatomical structures loosely referred to as double cones--composite entities constituted by the apposition of two independently developed, diurnally active photoreceptors. The significance of this apposition for visual function also remains elusive. It is possible that double cones mediate polarization sensitivity as a consequence of geometric birefringence; light polarized parallel to the axis joining the centers of the two halves of a double cone can potentially stimulate the receptors more strongly than light polarized in the direction perpendicular to both that axis and the normal axis of light propagation down the length of the double cone. The feasibility of this mechanism for polarization sensitivity has been examined here with specific reference to the retina of a representative animal, the green sunfish (Lepomis cyanellus). Transmission electron micrographs of thin sections from a sunfish retina were analyzed in order to develop simple models of waveguiding down the long axis of a sunfish double cone. The results of the computations indicate that the mechanism is feasible only if there are refractive index gradients in the photoreceptors of sunfish. Isolated receptors were thus examined with scanning microinterferometry to demonstrate the presence of such gradients. In the course of the investigation, the literature pertaining to vertebrate polarization sensitivity and retinal anatomy were reviewed to delimit the generality of the conclusions drawn from sunfish photoreceptors. As a result of this analysis, it should be concluded that much future research is needed to clarify what (if any) role optical polarization plays in the sensory

  6. Insights into the role of RD3 in guanylate cyclase trafficking, photoreceptor degeneration and Leber Congenital Amaurosis

    Directory of Open Access Journals (Sweden)

    Robert S. Molday

    2014-05-01

    Full Text Available RD3 is an evolutionarily conserved 23 kDa protein expressed in rod and cone photoreceptor cells. Mutations in the gene encoding RD3 resulting in unstable non-functional C-terminal truncated proteins are responsible for early onset photoreceptor degeneration in Leber Congenital Amaurosis 12 (LCA12 patients, the rd3 mice, and the rcd2 collies. Recent studies have shown that RD3 interacts with guanylate cyclases GC1 and GC2 in retinal cell extracts and HEK293 cells co-expressing GC and RD3. This interaction inhibits GC catalytic activity and promotes the exit of GC1 and GC2 from the endoplasmic reticulum and their trafficking to photoreceptor outer segments. Adeno-associated viral vector delivery of the normal RD3 gene to photoreceptors of the Rd3 mouse restores GC1 and GC2 expression and outer segment localization and leads to the long-term recovery of visual function and photoreceptor cell survival. This review focuses on the genetic and biochemical studies that have provided insight into the role of RD3 in photoreceptor function and survival.

  7. Role of spectraplakin in Drosophila photoreceptor morphogenesis.

    Directory of Open Access Journals (Sweden)

    Uyen Ngoc Mui

    Full Text Available BACKGROUND: Crumbs (Crb, a cell polarity gene, has been shown to provide a positional cue for the apical membrane domain and adherens junction during Drosophila photoreceptor morphogenesis. It has recently been found that stable microtubules in developing Drosophila photoreceptors were linked to Crb localization. Coordinated interactions between microtubule and actin cytoskeletons are involved in many polarized cellular processes. Since Spectraplakin is able to bind both microtubule and actin cytoskeletons, the role of Spectraplakin was analyzed in the regulations of apical Crb domain in developing Drosophila photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS: The localization pattern of Spectraplakin in developing pupal photoreceptors showed a unique intracellular distribution. Spectraplakin localized at rhabdomere terminal web which is at the basal side of the apical Crb or rhabdomere, and in between the adherens junctions. The spectraplakin mutant photoreceptors showed dramatic mislocalizations of Crb, adherens junctions, and the stable microtubules. This role of Spectraplakin in Crb and adherens junction regulation was further supported by spectraplakin's gain-of-function phenotype. Spectraplakin overexpression in photoreceptors caused a cell polarity defect including dramatic mislocalization of Crb, adherens junctions and the stable microtubules in the developing photoreceptors. Furthermore, a strong genetic interaction between spectraplakin and crb was found using a genetic modifier test. CONCLUSIONS/SIGNIFICANCE: In summary, we found a unique localization of Spectraplakin in photoreceptors, and identified the role of spectraplakin in the regulation of the apical Crb domain and adherens junctions through genetic mutational analysis. Our data suggest that Spectraplakin, an actin-microtubule cross-linker, is essential in the apical and adherens junction controls during the photoreceptors morphogenesis.

  8. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    Science.gov (United States)

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.

  9. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  10. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  11. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  12. Avian Research

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Aims and Scope Avian Research is an open access,peer-reviewed journal publishing high quality research and review articles on all aspects of ornithology from all over the world.It aims to report the latest and most significant progress in ornithology and to encourage exchange of ideas among international ornithologists.As an Open Access journal,

  13. Avian Influenza in Birds

    Science.gov (United States)

    ... this? Submit Button Past Newsletters Avian Influenza in Birds Language: English Español Recommend on Facebook Tweet ... illness. Top of Page Avian Influenza in Wild Birds Avian influenza A viruses have been isolated from ...

  14. Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data

    Directory of Open Access Journals (Sweden)

    Simpson David

    2006-03-01

    Full Text Available Abstract Background Retinal photoreceptors are highly specialised cells, which detect light and are central to mammalian vision. Many retinal diseases occur as a result of inherited dysfunction of the rod and cone photoreceptor cells. Development and maintenance of photoreceptors requires appropriate regulation of the many genes specifically or highly expressed in these cells. Over the last decades, different experimental approaches have been developed to identify photoreceptor enriched genes. Recent progress in RNA analysis technology has generated large amounts of gene expression data relevant to retinal development. This paper assesses a machine learning methodology for supporting the identification of photoreceptor enriched genes based on expression data. Results Based on the analysis of publicly-available gene expression data from the developing mouse retina generated by serial analysis of gene expression (SAGE, this paper presents a predictive methodology comprising several in silico models for detecting key complex features and relationships encoded in the data, which may be useful to distinguish genes in terms of their functional roles. In order to understand temporal patterns of photoreceptor gene expression during retinal development, a two-way cluster analysis was firstly performed. By clustering SAGE libraries, a hierarchical tree reflecting relationships between developmental stages was obtained. By clustering SAGE tags, a more comprehensive expression profile for photoreceptor cells was revealed. To demonstrate the usefulness of machine learning-based models in predicting functional associations from the SAGE data, three supervised classification models were compared. The results indicated that a relatively simple instance-based model (KStar model performed significantly better than relatively more complex algorithms, e.g. neural networks. To deal with the problem of functional class imbalance occurring in the dataset, two data re

  15. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images

    Science.gov (United States)

    Cooper, Robert F.; Lombardo, Marco; Carroll, Joseph; Sloan, Kenneth R.; Lombardo, Giuseppe

    2016-01-01

    The ability to non-invasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described (Pum et al., 1990) and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in both simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm would provide an accurate description of individual photoreceptor orientation. Despite the high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where both the image and cone coordinate reliability was excellent, the method of Pum et al. (1990) performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology. PMID:27484961

  16. What determines the relationship between color naming, unique hues, and sensory singularities: Illuminations, surfaces, or photoreceptors?

    Science.gov (United States)

    Witzel, Christoph; Cinotti, François; O'Regan, J Kevin

    2015-01-01

    The relationship between the sensory signal of the photoreceptors on one hand and color appearance and language on the other hand is completely unclear. A recent finding established a surprisingly accurate correlation between focal colors, unique hues, and so-called singularities in the laws governing how sensory signals for different surfaces change across illuminations. This article examines how this correlation with singularities depends on reflectances, illuminants, and cone sensitivities. Results show that this correlation holds for a large range of illuminants and for a large range of sensors, including sensors that are fundamentally different from human photoreceptors. In contrast, the spectral characteristics of the reflectance spectra turned out to be the key factor that determines the correlation between focal colors, unique hues, and sensory singularities. These findings suggest that the origins of color appearance and color language may be found in particular characteristics of the reflectance spectra that correspond to focal colors and unique hues.

  17. The Na(+)/Ca(2+), K(+) exchanger 2 modulates mammalian cone phototransduction.

    Science.gov (United States)

    Sakurai, Keisuke; Vinberg, Frans; Wang, Tian; Chen, Jeannie; Kefalov, Vladimir J

    2016-09-01

    Calcium ions (Ca(2+)) modulate the phototransduction cascade of vertebrate cone photoreceptors to tune gain, inactivation, and light adaptation. In darkness, the continuous current entering the cone outer segment through cGMP-gated (CNG) channels is carried in part by Ca(2+), which is then extruded back to the extracellular space. The mechanism of Ca(2+) extrusion from mammalian cones is not understood. The dominant view has been that the cone-specific isoform of the Na(+)/Ca(2+), K(+) exchanger, NCKX2, is responsible for removing Ca(2+) from their outer segments. However, indirect evaluation of cone function in NCKX2-deficient (Nckx2(-/-)) mice by electroretinogram recordings revealed normal photopic b-wave responses. This unexpected result suggested that NCKX2 may not be involved in the Ca(2+) homeostasis of mammalian cones. To address this controversy, we examined the expression of NCKX2 in mouse cones and performed transretinal recordings from Nckx2(-/-) mice to determine the effect of NCKX2 deletion on cone function directly. We found that Nckx2(-/-) cones exhibit compromised phototransduction inactivation, slower response recovery and delayed background adaptation. We conclude that NCKX2 is required for the maintenance of efficient Ca(2+) extrusion from mouse cones. However, surprisingly, Nckx2(-/-) cones adapted normally in steady background light, indicating the existence of additional Ca(2+)-extruding mechanisms in mammalian cones.

  18. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  19. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Directory of Open Access Journals (Sweden)

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  20. Unidirectional photoreceptor-to-Muller glia coupling and unique K+ channel expression in Caiman retina.

    Directory of Open Access Journals (Sweden)

    Astrid Zayas-Santiago

    Full Text Available BACKGROUND: Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. METHODS: We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus, endowed with both diurnal and nocturnal vision, by (i immunohistochemistry, (ii whole-cell voltage-clamp, and (iii fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. RESULTS: Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. CONCLUSION: Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K

  1. Rod photoreceptors express GPR55 in the adult vervet monkey retina.

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    Full Text Available Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R and cannabinoid CB2 receptor (CB2R. In recent years, the G-protein coupled receptor 55 (GPR55 was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol. Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells and CB2R in glial components (Müller cells. The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin, the photosensitive pigment in rods, revealed a clear overlap of expression throughout the rod structure with most prominent staining in the inner segments. Additionally, double-label of GPR55 with calbindin, a specific marker for cone photoreceptors in the primate retina, allowed us to exclude expression of GPR55 in cones. The labeling of GPR55 in rods was further assessed with a 3D visualization in the XZ and YZ planes thus confirming its exclusive expression in rods. These results provide data on the distribution of GPR55 in the monkey retina, different than CB1R and CB2R. The presence of GPR55 in rods suggests a function of this receptor in scotopic vision that needs to be demonstrated.

  2. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    Science.gov (United States)

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions.

  3. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  4. CHARACTERIZATION OF SOLID CONES

    Institute of Scientific and Technical Information of China (English)

    Qiu Jinghui

    2008-01-01

    The author gives a dual characterization of solid cones in locally convex spaces.From this the author obtains some criteria for judging convex cones to be solid in various inds of locally convex spaces. Using a general expression of the interior of a solid cone,the author obtains a number of necessary and sufficient conditions for convex cones to be solid in the framework of Banach spaces. In particular, the author gives a dual relationship between solid cones and generalized sharp cones. The related known results are improved and extended.

  5. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  6. MAS NMR study of the photoreceptor phytochrome

    NARCIS (Netherlands)

    Rohmer, Thierry

    2009-01-01

    Plants, algae and bacteria respond to light in various manners. The effect of light on the growth of plants is called photomorphogenesis and is regulated by the photoreceptor protein named phytochrome. Phytochrome is formed in the dark in its inactive red-absorbing (Pr) state and transformed upon ab

  7. Rod photoreceptors express GPR55 in the adult vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    . Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells) and CB2R in glial...... components (Müller cells). The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin...... in cones. The labeling of GPR55 in rods was further assessed with a 3D visualization in the XZ and YZ planes thus confirming its exclusive expression in rods. These results provide data on the distribution of GPR55 in the monkey retina, different than CB1R and CB2R. The presence of GPR55 in rods suggests...

  8. The giant mottled eel, Anguilla marmorata, uses blue-shifted rod photoreceptors during upstream migration.

    Directory of Open Access Journals (Sweden)

    Feng-Yu Wang

    Full Text Available Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2 revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292 and four putative (S124, V189, V286, I290 tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.

  9. Zinc modulation of calcium activity at the photoreceptor terminal: a calcium imaging study.

    Science.gov (United States)

    Anastassov, Ivan; Shen, Wen; Ripps, Harris; Chappell, Richard L

    2013-07-01

    There is abundant experimental evidence that zinc ions (Zn(2+)) are present in the synaptic vesicles of vertebrate photoreceptors, and that they are co-released with glutamate. Here we show that increasing the concentration of extracellular zinc (2 μM-2 mM) suppresses the entry of calcium into the synaptic terminals of isolated salamander double cones. The resultant dose-dependent curve was fit by an inverse Hill equation having an IC50 of 38 μM, and Hill coefficient of 1.1. Because there is currently no reliable way to measure the concentration of extracellular zinc, it is not known whether the zinc released under normal circumstances is of physiological significance. In an attempt to circumvent this problem we used zinc chelators to reduce the available pool of endogenous zinc. This enabled us to determine how the absence of zinc affected calcium entry. We found that when intra- or extra-cellular zinc was chelated by 250 μM of membrane-permeable TPEN or 500 μM of membrane-impermeable histidine, there was a significant rise in the depolarization-induced intracellular calcium level within photoreceptor terminals. This increase in internal [Ca(2+)] will undoubtedly lead to a concomitant increase in glutamate release. In addition, we found that blocking the L-type calcium channels that are expressed on the synaptic terminals of photoreceptors with 50 μM nicardipine or 100 μM verapamil abolished the effects of zinc chelation. These findings are a good indication that, when released in vivo, the zinc concentration is sufficient to suppress voltage-gated calcium channels, and reduce the rate of glutamate release from photoreceptor terminals.

  10. Morphological characterization and topographic analysis of multiple photoreceptor types in the retinae of mesopelagic hatchetfishes with tubular eyes

    Directory of Open Access Journals (Sweden)

    Lauren Michelle Biagioni

    2016-03-01

    Full Text Available Marine hatchetfishes, Argyropelecus spp., are one of the 14 genera of mesopelagic teleosts, which possess tubular eyes. The tubular eyes are positioned dorsally on the head and consist of a main retina, which subtends a large dorsal binocular field, and an accessory retina, which subtends the lateral monocular visual field. The topographic distribution of photoreceptors in the retina of Argyropelecus sladeni, A. affinis and A. aculeatus was determined using a random, unbiased and systematic stereological approach, which consistently revealed a region of high density (area centralis in the central region of the main retina (up to a peak of 96,000 receptors per mm2 and a relatively homogeneous density of photoreceptors in the accessory retina (of approximately 20,000 receptors per mm2. The position of the area centralis in the main retina indicates this retinal region subserves greater spatial resolution in the centre of the dorsal binocular visual field. Light microscopy and transmission electron microscopy also revealed the presence of multiple photoreceptor types (two rod-like and one cone-like based on the size and shape of the inner and outer segments and ultrastructural differences in the ellipsoidal region. The presence of multiple photoreceptor types in these tubular-eyed, mesopelagic hatchetfishes may reflect the need for the visual system to function under different lighting conditions during vertical migratory behavior, especially given their unique dorsally-facing eyes.

  11. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; DeLuca, Adam P; Anfinson, Kristin R; Cranston, Cathryn M; Kaalberg, Emily E; Penticoff, Jessica A; Affatigato, Louisa M; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-07-29

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans.

  12. Insect photoreceptor adaptations to night vision.

    Science.gov (United States)

    Honkanen, Anna; Immonen, Esa-Ville; Salmela, Iikka; Heimonen, Kyösti; Weckström, Matti

    2017-04-05

    Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.

  13. ABCA4 gene analysis in patients with autosomal recessive cone and cone rod dystrophies.

    Science.gov (United States)

    Kitiratschky, Veronique B D; Grau, Tanja; Bernd, Antje; Zrenner, Eberhart; Jägle, Herbert; Renner, Agnes B; Kellner, Ulrich; Rudolph, Günther; Jacobson, Samuel G; Cideciyan, Artur V; Schaich, Simone; Kohl, Susanne; Wissinger, Bernd

    2008-07-01

    The ATP-binding cassette (ABC) transporters constitute a family of large membrane proteins, which transport a variety of substrates across membranes. The ABCA4 protein is expressed in photoreceptors and possibly functions as a transporter for N-retinylidene-phosphatidylethanolamine (N-retinylidene-PE), the Schiff base adduct of all-trans-retinal with PE. Mutations in the ABCA4 gene have been initially associated with autosomal recessive Stargardt disease. Subsequent studies have shown that mutations in ABCA4 can also cause a variety of other retinal dystrophies including cone rod dystrophy and retinitis pigmentosa. To determine the prevalence and mutation spectrum of ABCA4 gene mutations in non-Stargardt phenotypes, we have screened 64 unrelated patients with autosomal recessive cone (arCD) and cone rod dystrophy (arCRD) applying the Asper Ophthalmics ABCR400 microarray followed by DNA sequencing of all coding exons of the ABCA4 gene in subjects with single heterozygous mutations. Disease-associated ABCA4 alleles were identified in 20 of 64 patients with arCD or arCRD. In four of 64 patients (6%) only one mutant ABCA4 allele was detected and in 16 patients (25%), mutations on both ABCA4 alleles were identified. Based on these data we estimate a prevalence of 31% for ABCA4 mutations in arCD and arCRD, supporting the concept that the ABCA4 gene is a major locus for various types of degenerative retinal diseases with abnormalities in cone or both cone and rod function.

  14. Quotient Normed Cones

    Indian Academy of Sciences (India)

    Oscar Valero

    2006-05-01

    Given a normed cone (, ) and a subcone , we construct and study the quotient normed cone $(X/Y,\\tilde{p})$ generated by . In particular we characterize the bicompleteness of $(X/Y,\\tilde{p})$ in terms of the bicompleteness of (, ), and prove that the dual quotient cone $((X/Y)^∗,\\|\\cdot\\|_{\\tilde{p},u})$ can be identified as a distinguished subcone of the dual cone $(X^∗,\\|\\cdot\\|_{\\tilde{p},u})$. Furthermore, some parts of the theory are presented in the general setting of the space $CL(X,Y)$ of all continuous linear mappings from a normed cone (, ) to a normed cone (, ), extending several well-known results related to open continuous linear mappings between normed linear spaces.

  15. Bornological Locally Convex Cones

    Directory of Open Access Journals (Sweden)

    Davood Ayaseh

    2014-10-01

    Full Text Available In this paper we define bornological and b-bornological cones and investigate their properties. We give some characterization for these cones. In the special case of locally convex topological vector space both these concepts reduce to the known concept  of bornological spaces. We introduce and investigate the  convex quasiuniform   structures U_{tau}, U_{sigma}(P,P* and \\U_{beta}(P,P* on locally convex cone (P,U.

  16. Berkeley Lighting Cone

    Energy Technology Data Exchange (ETDEWEB)

    Lask, Kathleen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-24

    A lighting cone is a simple metal cone placed on the fuel bed of a stove during ignition to act as a chimney, increasing the draft through the fuel bed. Many stoves tend to be difficult to light due to poor draft through the fuel bed, so lighting cones are used in various parts of the world as an inexpensive accessory to help with ignition.

  17. Rpr- and hid-driven cell death in Drosophila photoreceptors.

    Science.gov (United States)

    Hsu, Cheng Da; Adams, Sheila M; O'Tousa, Joseph E

    2002-02-01

    The reaper (rpr) and head involution defective (hid) genes mediate programmed cell death (PCD) during Drosophila development. We show that expression of either rpr or hid under control of a rhodopsin promoter induces rapid cell death of adult photoreceptor cells. Ultrastructural analysis revealed that the dying photoreceptor cells share morphological features with other cells undergoing PCD. The anti-apoptotic baculoviral P35 protein acts downstream of hid activity to suppress the photoreceptor cell death driven by rpr and hid. These results establish that the Drosophila photoreceptors are sensitive to the rpr- and hid-driven cell death pathways.

  18. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... files Questions & answers Features Multimedia Contacts Avian and other zoonotic influenza Fact sheet Updated November 2016 Key ... A(H3) subtypes. Clinical features of avian and other zoonotic influenza infections in humans Avian and other ...

  19. Cloning and characterization of mr-s, a novel SAM domain protein, predominantly expressed in retinal photoreceptor cells

    Directory of Open Access Journals (Sweden)

    Koike Chieko

    2006-03-01

    Full Text Available Abstract Background Sterile alpha motif (SAM domains are ~70 residues long and have been reported as common protein-protein interaction modules. This domain is found in a large number of proteins, including Polycomb group (PcG proteins and ETS family transcription factors. In this work, we report the cloning and functional characterization of a novel SAM domain-containing protein, which is predominantly expressed in retinal photoreceptors and the pineal gland and is designated mouse mr-s (major retinal SAM domain protein. Results mr-s is evolutionarily conserved from zebrafish through human, organisms through which the mechanism of photoreceptor development is also highly conserved. Phylogenetic analysis suggests that the SAM domain of mr-s is most closely related to a mouse polyhomeotic (ph ortholog, Mph1/Rae28, which is known as an epigenetic molecule involved in chromatin modifications. These findings provide the possibility that mr-s may play a critical role by regulating gene expression in photoreceptor development. mr-s is preferentially expressed in the photoreceptors at postnatal day 3–6 (P3-6, when photoreceptors undergo terminal differentiation, and in the adult pineal gland. Transcription of mr-s is directly regulated by the cone-rod homeodomain protein Crx. Immunoprecipitation assay showed that the mr-s protein self-associates mainly through the SAM domain-containing region as well as ph. The mr-s protein localizes mainly in the nucleus, when mr-s is overexpressed in HEK293T cells. Moreover, in the luciferase assays, we found that mr-s protein fused to GAL4 DNA-binding domain functions as a transcriptional repressor. We revealed that the repression activity of mr-s is not due to a homophilic interaction through its SAM domain but to the C-terminal region. Conclusion We identified a novel gene, mr-s, which is predominantly expressed in retinal photoreceptors and pineal gland. Based on its expression pattern and biochemical analysis

  20. Bax-induced apoptosis in Leber's congenital amaurosis: a dual role in rod and cone degeneration.

    Directory of Open Access Journals (Sweden)

    Séverine Hamann

    Full Text Available Pathogenesis in the Rpe65(-/- mouse model of Leber's congenital amaurosis (LCA is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65(-/- mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65, was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65(-/- mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors.Quantitative PCR analysis showed that increased expression of pro-apoptotic Bax and decreased level of anti-apoptotic Bcl-2 were restored in Rpe65(-/-/Gnat1(-/- mice lacking the Gnat1 gene encoding rod transducin. Moreover, photoreceptor apoptosis was prevented as assessed by TUNEL assay. These data indicate that abnormal activity of opsin apoprotein induces retinal cell apoptosis through the Bcl-2-mediated pathway. Following immunohistological and real-time PCR analyses, we further observed that decreased expression of rod genes in Rpe65-deficient mice was rescued in Rpe65(-/-/Bax(-/- mice. Histological and TUNEL studies confirmed that rod cell demise and apoptosis in diseased Rpe65(-/- mice were dependent on Bax-induced pathway. Surprisingly, early loss of cones was not prevented in Rpe65(-/-/Bax(-/- mice, indicating that pro-apoptotic Bax was not involved in the pathogenesis of cone cell death in Rpe65-deficient mice

  1. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration.

    Science.gov (United States)

    Yang, Zhenglin; Alvarez, Bernardo V; Chakarova, Christina; Jiang, Li; Karan, Goutam; Frederick, Jeanne M; Zhao, Yu; Sauvé, Yves; Li, Xi; Zrenner, Eberhart; Wissinger, Bernd; Hollander, Anneke I Den; Katz, Bradley; Baehr, Wolfgang; Cremers, Frans P; Casey, Joseph R; Bhattacharya, Shomi S; Zhang, Kang

    2005-01-15

    Retina and retinal pigment epithelium (RPE) belong to the metabolically most active tissues in the human body. Efficient removal of acid load from retina and RPE is a critical function mediated by the choriocapillaris. However, the mechanism by which pH homeostasis is maintained is largely unknown. Here, we show that a functional complex of carbonic anhydrase 4 (CA4) and Na+/bicarbonate co-transporter 1 (NBC1) is specifically expressed in the choriocapillaris and that missense mutations in CA4 linked to autosomal dominant rod-cone dystrophy disrupt NBC1-mediated HCO3- transport. Our results identify a novel pathogenic pathway in which a defect in a functional complex involved in maintaining pH balances, but not expressed in retina or RPE, leads to photoreceptor degeneration. The importance of a functional CA4 for survival of photoreceptors implies that CA inhibitors, which are widely used as medications, particularly in the treatment of glaucoma, may have long-term adverse effects on vision.

  2. C-opsin expressing photoreceptors in echinoderms.

    Science.gov (United States)

    Ullrich-Lüter, Esther M; D'Aniello, Salvatore; Arnone, Maria I

    2013-07-01

    Today's progress in molecular analysis and, in particular, the increased availability of genome sequences have enabled us to investigate photoreceptor cells (PRCs) in organisms that were formerly inaccessible to experimental manipulation. Our studies of marine non-chordate deuterostomes thus aim to bridge a gap of knowledge regarding the evolution of deuterostome PRCs prior to the emergence of vertebrates' eyes. In this contribution, we will show evidence for expression of a c-opsin photopigment, which, according to our phylogenetic analysis, is closely related to an assemblage of chordate visual c-opsins. An antibody raised against sea urchins' c-opsin protein (Sp-Opsin1) recognizes epitopes in a variety of tissues of different echinoderms. While in sea urchins this c-opsin is expressed in locomotory and buccal tube feet, spines, pedicellaria, and epidermis, in brittlestars and starfish we found the immuno-reaction to be located exclusively in cells within the animals' spines. Structural characteristics of these c-opsin+ PRC types include the close vicinity/connection to nerve strands and a, so far unexplored, conspicuous association with the animals' calcite skeleton, which previously has been hypothesized to play a role in echinoderm photobiology. These features are discussed within the context of the evolution of photoreceptors in echinoderms and in deuterostomes generally.

  3. A neuroanatomical and physiological study of the non-image forming visual system of the cone-rod homeobox gene (Crx) knock out mouse

    DEFF Research Database (Denmark)

    Rovsing, Louise; Rath, Martin F; Lund-Andersen, Casper

    2010-01-01

    The anatomy and physiology of the non-image forming visual system was investigated in a visually blind cone-rod homeobox gene (Crx) knock-out mouse (Crx(-)(/)(-)), which lacks the outer segments of the photoreceptors. We show that the suprachiasmatic nuclei (SCN) in the Crx(-/-) mouse exhibit...

  4. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    Science.gov (United States)

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  5. Growth cone collapse assay.

    Science.gov (United States)

    Cook, Geoffrey M W; Jareonsettasin, Prem; Keynes, Roger J

    2014-01-01

    The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.

  6. Technical factors influencing cone packing density estimates in adaptive optics flood illuminated retinal images.

    Directory of Open Access Journals (Sweden)

    Marco Lombardo

    Full Text Available PURPOSE: To investigate the influence of various technical factors on the variation of cone packing density estimates in adaptive optics flood illuminated retinal images. METHODS: Adaptive optics images of the photoreceptor mosaic were obtained in fifteen healthy subjects. The cone density and Voronoi diagrams were assessed in sampling windows of 320×320 µm, 160×160 µm and 64×64 µm at 1.5 degree temporal and superior eccentricity from the preferred locus of fixation (PRL. The technical factors that have been analyzed included the sampling window size, the corrected retinal magnification factor (RMFcorr, the conversion from radial to linear distance from the PRL, the displacement between the PRL and foveal center and the manual checking of cone identification algorithm. Bland-Altman analysis was used to assess the agreement between cone density estimated within the different sampling window conditions. RESULTS: The cone density declined with decreasing sampling area and data between areas of different size showed low agreement. A high agreement was found between sampling areas of the same size when comparing density calculated with or without using individual RMFcorr. The agreement between cone density measured at radial and linear distances from the PRL and between data referred to the PRL or the foveal center was moderate. The percentage of Voronoi tiles with hexagonal packing arrangement was comparable between sampling areas of different size. The boundary effect, presence of any retinal vessels, and the manual selection of cones missed by the automated identification algorithm were identified as the factors influencing variation of cone packing arrangements in Voronoi diagrams. CONCLUSIONS: The sampling window size is the main technical factor that influences variation of cone density. Clear identification of each cone in the image and the use of a large buffer zone are necessary to minimize factors influencing variation of Voronoi

  7. Evaluating outer segment length as a surrogate measure of peak foveal cone density.

    Science.gov (United States)

    Wilk, Melissa A; Wilk, Brandon M; Langlo, Christopher S; Cooper, Robert F; Carroll, Joseph

    2017-01-01

    Adaptive optics (AO) imaging tools enable direct visualization of the cone photoreceptor mosaic, which facilitates quantitative measurements such as cone density. However, in many individuals, low image quality or excessive eye movements precludes making such measures. As foveal cone specialization is associated with both increased density and outer segment (OS) elongation, we sought to examine whether OS length could be used as a surrogate measure of foveal cone density. The retinas of 43 subjects (23 normal and 20 albinism; aged 6-67years) were examined. Peak foveal cone density was measured using confocal adaptive optics scanning light ophthalmoscopy (AOSLO), and OS length was measured using optical coherence tomography (OCT) and longitudinal reflectivity profile-based approach. Peak cone density ranged from 29,200 to 214,000cones/mm(2) (111,700±46,300cones/mm(2)); OS length ranged from 26.3 to 54.5μm (40.5±7.7μm). Density was significantly correlated with OS length in albinism (pdensity as a function of OS length was created based on histology and optimized to fit the albinism data. The model includes triangular cone packing, a cylindrical OS with a fixed volume of 136.6μm(3), and a ratio of OS to inner segment width that increased linearly with increasing OS length (R(2)=0.72). Normal subjects showed no apparent relationship between cone density and OS length. In the absence of adequate AOSLO imagery, OS length may be used to estimate cone density in patients with albinism. Whether this relationship exists in other patient populations with foveal hypoplasia (e.g., premature birth, aniridia, isolated foveal hypoplasia) remains to be seen.

  8. Avian Chlamydiosis Zoonotic Disease.

    Science.gov (United States)

    Szymańska-Czerwińska, Monika; Niemczuk, Krzysztof

    2016-01-01

    This review presents recent data about avian chlamydiosis. Chlamydia psittaci has been considered to be the main causative agent of chlamydiosis in birds; however, two new Chlamydia species have been detected recently-C. gallinacea in breeding birds and C. avium in wild birds. We discuss the zoonotic potential of avian Chlamydia species.

  9. Lunar cinder cones.

    Science.gov (United States)

    McGetchin, T R; Head, J W

    1973-04-01

    Data on terrestrial eruptions of pyroclastic material and ballistic considerations suggest that in the lunar environment (vacuum and reduced gravity) low-rimmed pyroclastic rings are formed rather than the high-rimmed cinder cones so abundant on the earth. Dark blanketing deposits in the Taurus-Littrow region (Apollo 17 landing area) are interpreted as being at least partly composed of lunar counterparts of terrestrial cinder cones.

  10. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years.

    Science.gov (United States)

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-07-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation.

  11. Axial length and cone density as assessed with adaptive optics in myopia

    Directory of Open Access Journals (Sweden)

    Supriya Dabir

    2015-01-01

    Full Text Available Aim: To assess the variations in cone mosaic in myopia and its correlation with axial length (AL. Subjects and Methods: Twenty-five healthy myopic volunteers underwent assessment of photoreceptors using adaptive optics retinal camera at 2° and 3° from the foveal center in four quadrants superior, inferior, temporal and nasal. Data was analyzed using SPSS version 17 (IBM. Multivariable regression analysis was conducted to study the relation between cone density and AL, quadrant around the fovea and eccentricity from the fovea. Results: The mean cone density was significantly lower as the eccentricity increased from 2° from the fovea to 3° (18,560 ± 5455-16,404 ± 4494/mm 2 respectively. There was also a statistically significant difference between four quadrants around the fovea. The correlation of cone density and spacing with AL showed that there was a significant inverse relation of AL with the cone density. Conclusion: In myopic patients with good visual acuity cone density around the fovea depends on the quadrant, distance from the fovea as well as the AL. The strength of the relation of AL with cone density depends on the quadrant and distance.

  12. Visual transduction in human rod photoreceptors.

    Science.gov (United States)

    Kraft, T W; Schneeweis, D M; Schnapf, J L

    1993-05-01

    1. Photocurrents were recorded with suction electrodes from rod photoreceptors of seven humans. 2. Brief flashes of light evoked transient outward currents of up to 20 pA. With increasing light intensity the peak response amplitude increased along an exponential saturation function. A half-saturating peak response was evoked by approximately sixty-five photoisomerizations. 3. Responses to brief dim flashes rose to a peak in about 200 ms. The waveform was roughly like the impulse response of a series of four to five low-pass filters. 4. The rising phases of the responses to flashes of increasing strength were found to fit with a biochemical model of phototransduction with an 'effective delay time' and 'characteristic time' of about 2 and 800 ms, respectively. 5. Spectral sensitivities were obtained over a wavelength range from 380 to 760 nm. The action spectrum, which peaked at 495 nm, followed the template described for photoreceptors in the macaque retina. Variation between rods in the position of the spectrum on the wavelength axis was small. 6. The scotopic luminosity function derived from human psychophysical experiments was found to agree well with the measured rod action spectrum after adjustments were made for lens absorption and photopigment self-screening in the intact eye. 7. Responses to steps of light rose monotonically to a maintained level, showing little or no relaxation. Nevertheless, the relationship between light intensity and steady-state response amplitude was shallower than that expected from simple response saturation. This is consistent with an adaptation mechanism acting on a rapid time scale. 8. Flash sensitivity fell with increasing intensities of background light according to Weber's law. Sensitivity was reduced twofold by lights evoking about 120 photoisomerizations per second. Background lights decreased the time to peak and the integration time of the flash response by up to 20%.

  13. Beta-ionone activates and bleaches visual pigment in salamander photoreceptors.

    Science.gov (United States)

    Isayama, Tomoki; McCabe England, S L; Crouch, R K; Zimmerman, A L; Makino, C L

    2009-01-01

    Vision begins with photoisomerization of 11-cis retinal to the all-trans conformation within the chromophore-binding pocket of opsin, leading to activation of a biochemical cascade. Release of all-trans retinal from the binding pocket curtails but does not fully quench the ability of opsin to activate transducin. All-trans retinal and some other analogs, such as beta-ionone, enhance opsin's activity, presumably on binding the empty chromophore-binding pocket. By recording from isolated salamander photoreceptors and from patches of rod outer segment membrane, we now show that high concentrations of beta-ionone suppressed circulating current in dark-adapted green-sensitive rods by inhibiting the cyclic nucleotide-gated channels. There were also decreases in circulating current and flash sensitivity, and accelerated flash response kinetics in dark-adapted blue-sensitive (BS) rods and cones, and in ultraviolet-sensitive cones, at concentrations too low to inhibit the channels. These effects persisted in BS rods even after incubation with 9-cis retinal to ensure complete regeneration of their visual pigment. After long exposures to high concentrations of beta-ionone, recovery was incomplete unless 9-cis retinal was given, indicating that visual pigment had been bleached. Therefore, we propose that beta-ionone activates and bleaches some types of visual pigments, mimicking the effects of light.

  14. Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice.

    Science.gov (United States)

    Parry, David A; Toomes, Carmel; Bida, Lina; Danciger, Michael; Towns, Katherine V; McKibbin, Martin; Jacobson, Samuel G; Logan, Clare V; Ali, Manir; Bond, Jacquelyn; Chance, Rebecca; Swendeman, Steven; Daniele, Lauren L; Springell, Kelly; Adams, Matthew; Johnson, Colin A; Booth, Adam P; Jafri, Hussain; Rashid, Yasmin; Banin, Eyal; Strom, Tim M; Farber, Debora B; Sharon, Dror; Blobel, Carl P; Pugh, Edward N; Pierce, Eric A; Inglehearn, Chris F

    2009-05-01

    Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.

  15. Adaptive potentiation in rod photoreceptors after light exposure

    OpenAIRE

    McKeown, Alex S; Kraft, Timothy W.

    2014-01-01

    Photoreceptors adapt to changes in illumination by altering transduction kinetics and sensitivity, thereby extending their working range. We describe a previously unknown form of rod photoreceptor adaptation in wild-type (WT) mice that manifests as a potentiation of the light response after periods of conditioning light exposure. We characterize the stimulus conditions that evoke this graded hypersensitivity and examine the molecular mechanisms of adaptation underlying the phenomenon. After e...

  16. Editorial: Avian Research

    Institute of Scientific and Technical Information of China (English)

    Yong; Wang; Guangmei; Zheng

    2014-01-01

    <正>Welcome to Avian Research!This new journal is a continuation and enhancement of Chinese Birds,which has been and continues to be sponsored by the China Ornithological Society and Beijing Forestry University.In the four years since its inception,the original journal—the only one in China focusing on avian research—has published over 130 manuscripts,with authors from all continents across the world,garnering global respect in

  17. Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila.

    Science.gov (United States)

    Yamaguchi, Satoko; Desplan, Claude; Heisenberg, Martin

    2010-03-23

    The visual systems of most species contain photoreceptors with distinct spectral sensitivities that allow animals to distinguish lights by their spectral composition. In Drosophila, photoreceptors R1-R6 have the same spectral sensitivity throughout the eye and are responsible for motion detection. In contrast, photoreceptors R7 and R8 exhibit heterogeneity and are important for color vision. We investigated how photoreceptor types contribute to the attractiveness of light by blocking the function of certain subsets and by measuring differential phototaxis between spectrally different lights. In a "UV vs. blue" choice, flies with only R1-R6, as well as flies with only R7/R8 photoreceptors, preferred blue, suggesting a nonadditive interaction between the two major subsystems. Flies defective for UV-sensitive R7 function preferred blue, whereas flies defective for either type of R8 (blue- or green-sensitive) preferred UV. In a "blue vs. green" choice, flies defective for R8 (blue) preferred green, whereas those defective for R8 (green) preferred blue. Involvement of all photoreceptors [R1-R6, R7, R8 (blue), R8 (green)] distinguishes phototaxis from motion detection that is mediated exclusively by R1-R6.

  18. Visual ecology and potassium conductances of insect photoreceptors.

    Science.gov (United States)

    Frolov, Roman; Immonen, Esa-Ville; Weckström, Matti

    2016-04-01

    Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance.

  19. Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis.

    Science.gov (United States)

    Cideciyan, Artur V; Aleman, Tomas S; Jacobson, Samuel G; Khanna, Hemant; Sumaroka, Alexander; Aguirre, Geoffrey K; Schwartz, Sharon B; Windsor, Elizabeth A M; He, Shirley; Chang, Bo; Stone, Edwin M; Swaroop, Anand

    2007-11-01

    Mutations in the centrosomal-ciliary gene CEP290/NPHP6 are associated with Joubert syndrome and are the most common cause of the childhood recessive blindness known as Leber congenital amaurosis (LCA). An in-frame deletion in Cep290 shows rapid degeneration in the rod-rich mouse retina. To explore the mechanisms of the human retinal disease, we studied CEP290-LCA in patients of different ages (7-48 years) and compared results to Cep290-mutant mice. Unexpectedly, blind CEP290-mutant human retinas retained photoreceptor and inner laminar architecture in the cone-rich central retina, independent of severity of visual loss. Surrounding the cone-rich island was photoreceptor loss and distorted retina, suggesting neural-glial remodeling. The mutant mouse retina at 4-6 weeks of age showed similar features of retinal remodeling, with altered neural and synaptic laminae and Muller glial activation. The visual brain pathways in CEP290-LCA were anatomically intact. Our findings of preserved foveal cones and visual brain anatomy in LCA with CEP290 mutations, despite severe blindness and rapid rod cell death, suggest an opportunity for visual restoration of central vision in this common form of inherited blindness.

  20. Feedback from horizontal cells to cones mediates color induction and may facilitate color constancy in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Shai Sabbah

    Full Text Available Color vision is most beneficial when the visual system is color constant and can correct the excitations of photoreceptors for differences in environmental irradiance. A phenomenon related to color constancy is color induction, where the color of an object shifts away from the color of its surroundings. These two phenomena depend on chromatic spatial integration, which was suggested to originate at the feedback synapse from horizontal cells (HC to cones. However, the exact retinal site was never determined. Using the electroretinogram and compound action potential recordings, we estimated the spectral sensitivity of the photoresponse of cones, the output of cones, and the optic nerve in rainbow trout. Recordings were performed before and following pharmacological inhibition of HC-cone feedback, and were repeated under two colored backgrounds to estimate the efficiency of color induction. No color induction could be detected in the photoresponse of cones. However, the efficiency of color induction in the cone output and optic nerve was substantial, with the efficiency in the optic nerve being significantly higher than in the cone output. We found that the efficiency of color induction in the cone output and optic nerve decreased significantly with the inhibition of HC-cone feedback. Therefore, our findings suggest not only that color induction originates as a result of HC-cone feedback, but also that this effect of HC-cone feedback is further amplified at downstream retinal elements, possibly through feedback mechanisms at the inner plexiform layer. This study provides evidence for an important role of HC-cone feedback in mediating color induction, and therefore, likely also in mediating color constancy.

  1. Exploration of cone cyclic nucleotide-gated channel-interacting proteins using affinity purification and mass spectrometry.

    Science.gov (United States)

    Ding, Xi-Qin; Matveev, Alexander; Singh, Anil; Komori, Naoka; Matsumoto, Hiroyuki

    2014-01-01

    Photopic (cone) vision essential for color sensation, central vision, and visual acuity is mediated by the activation of photoreceptor cyclic nucleotide-gated (CNG) channels. Naturally occurring mutations in the cone channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. This work investigated the functional modulation of cone CNG channel by exploring the channel-interacting proteins. Retinal protein extracts prepared from cone-dominant Nrl (- / -) mice were used in CNGA3 antibody affinity purification, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. The peptide mass fingerprinting of the tryptic digests and database search identified a number of proteins including spectrin alpha-2, ATPase (Na(+)/K(+) transporting) alpha-3, alpha and beta subunits of ATP synthase (H(+) transporting, mitochondrial F1 complex), and alpha-2 subunit of the guanine nucleotide-binding protein. In addition, the affinity-binding assays demonstrated an interaction between cone CNG channel and calmodulin but not cone Na(+)/Ca(2+)-K(+) exchanger in the mouse retina. Results of this study provide insight into our understanding of cone CNG channel-interacting proteins and the functional modulations.

  2. Ablation of EYS in zebrafish causes mislocalisation of outer segment proteins, F-actin disruption and cone-rod dystrophy

    Science.gov (United States)

    Lu, Zhaojing; Hu, Xuebin; Liu, Fei; Soares, Dinesh C.; Liu, Xiliang; Yu, Shanshan; Gao, Meng; Han, Shanshan; Qin, Yayun; Li, Chang; Jiang, Tao; Luo, Daji; Guo, An-Yuan; Tang, Zhaohui; Liu, Mugen

    2017-01-01

    Mutations in EYS are associated with autosomal recessive retinitis pigmentosa (arRP) and autosomal recessive cone-rod dystrophy (arCRD) however, the function of EYS and the molecular mechanisms of how these mutations cause retinal degeneration are still unclear. Because EYS is absent in mouse and rat, and the structure of the retina differs substantially between humans and Drosophila, we utilised zebrafish as a model organism to study the function of EYS in the retina. We constructed an EYS-knockout zebrafish-line by TALEN technology which showed visual impairment at an early age, while the histological and immunofluorescence assays indicated the presence of progressive retinal degeneration with a cone predominately affected pattern. These phenotypes recapitulate the clinical manifestations of arCRD patients. Furthermore, the EYS−/− zebrafish also showed mislocalisation of certain outer segment proteins (rhodopsin, opn1lw, opn1sw1, GNB3 and PRPH2), and disruption of actin filaments in photoreceptors. Protein mislocalisation may, therefore, disrupt the function of cones and rods in these zebrafish and cause photoreceptor death. Collectively, these results point to a novel role for EYS in maintaining the morphological structure of F-actin and in protein transport, loss of this function might be the trigger for the resultant cellular events that ultimately lead to photoreceptor death. PMID:28378834

  3. Derivation of Traceable and Transplantable Photoreceptors from Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Sarah Decembrini

    2014-06-01

    Full Text Available Retinal degenerative diseases resulting in the loss of photoreceptors are one of the major causes of blindness. Photoreceptor replacement therapy is a promising treatment because the transplantation of retina-derived photoreceptors can be applied now to different murine retinopathies to restore visual function. To have an unlimited source of photoreceptors, we derived a transgenic embryonic stem cell (ESC line in which the Crx-GFP transgene is expressed in photoreceptors and assessed the capacity of a 3D culture protocol to produce integration-competent photoreceptors. This culture system allows the production of a large number of photoreceptors recapitulating the in vivo development. After transplantation, integrated cells showed the typical morphology of mature rods bearing external segments and ribbon synapses. We conclude that a 3D protocol coupled with ESCs provides a safe and renewable source of photoreceptors displaying a development and transplantation competence comparable to photoreceptors from age-matched retinas.

  4. Lesions of the avian pancreas.

    Science.gov (United States)

    Schmidt, Robert E; Reavill, Drury R

    2014-01-01

    Although not well described, occasional reports of avian exocrine and endocrine pancreatic disease are available. This article describes the lesions associated with common diseases of the avian pancreas reported in the literature and/or seen by the authors.

  5. Photoreceptor Outer Segment on Internal Limiting Membrane after Macular Hole Surgery: Implications for Pathogenesis

    Directory of Open Access Journals (Sweden)

    Michael E. Grinton

    2015-09-01

    Full Text Available Purpose: This report presents a case, which highlights key principles in the pathophysiology of macular holes. It has been hypothesized that anteroposterior (AP and tangential vitreous traction on the fovea are the primary underlying factors causing macular holes [Nischal and Pearson; in Kanski and Bowling: Clinical Ophthalmology: A Systemic Approach, 2011, pp 629-631]. Spectral domain optical coherence tomography (OCT has subsequently corroborated this theory in part but shown that AP vitreofoveal traction is the more common scenario [Steel and Lotery: Eye 2013;27:1-21]. Methods: This study was conducted as a single case report. Results: A 63-year old female presented to her optician with blurred and distorted vision in her left eye. OCT showed a macular hole with a minimum linear diameter of 370 µm, with persistent broad vitreofoveal attachment on both sides of the hole edges. The patient underwent combined left phacoemulsification and pars plana vitrectomy, internal limiting membrane (ILM peel and gas injection. The ILM was examined by electron microscopy and showed the presence of a cone outer segment on the retinal side. Post-operative OCT at 11 weeks showed a closed hole with recovery of the foveal contour and good vision. Conclusion: Our case shows the presence of a photoreceptor outer segment on the retinal side of the ILM and reinforces the importance of tangential traction in the development of some macula holes. The case highlights the theory of transmission of inner retinal forces to the photoreceptors via Müller cells and how a full thickness macular hole defect can occur in the absence of AP vitreomacular traction.

  6. Photoreceptor Outer Segment on Internal Limiting Membrane after Macular Hole Surgery: Implications for Pathogenesis

    Science.gov (United States)

    Grinton, Michael E.; Sandinha, Maria T.; Steel, David H.W.

    2015-01-01

    Purpose This report presents a case, which highlights key principles in the pathophysiology of macular holes. It has been hypothesized that anteroposterior (AP) and tangential vitreous traction on the fovea are the primary underlying factors causing macular holes [Nischal and Pearson; in Kanski and Bowling: Clinical Ophthalmology: A Systemic Approach, 2011, pp 629–631]. Spectral domain optical coherence tomography (OCT) has subsequently corroborated this theory in part but shown that AP vitreofoveal traction is the more common scenario [Steel and Lotery: Eye 2013;27:1–21]. Methods This study was conducted as a single case report. Results A 63-year old female presented to her optician with blurred and distorted vision in her left eye. OCT showed a macular hole with a minimum linear diameter of 370 µm, with persistent broad vitreofoveal attachment on both sides of the hole edges. The patient underwent combined left phacoemulsification and pars plana vitrectomy, internal limiting membrane (ILM) peel and gas injection. The ILM was examined by electron microscopy and showed the presence of a cone outer segment on the retinal side. Post-operative OCT at 11 weeks showed a closed hole with recovery of the foveal contour and good vision. Conclusion Our case shows the presence of a photoreceptor outer segment on the retinal side of the ILM and reinforces the importance of tangential traction in the development of some macula holes. The case highlights the theory of transmission of inner retinal forces to the photoreceptors via Müller cells and how a full thickness macular hole defect can occur in the absence of AP vitreomacular traction. PMID:26557083

  7. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy

    2014-07-07

    We present findings from an experimental investigation into the impact of solid cone-shaped bodies onto liquid pools. Using a variety of cone angles and liquid physical properties, we show that the ejecta formed during the impact exhibits self-similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed to the air entrainment phenomenon. We analyse of a range of cone angles, including some ogive cones, and impact speeds in terms of the spatiotemporal evolution of the ejecta tip. Using superhydrophobic cones, we also examine the entry of cones which entrain an air layer.

  8. Biophysical mechanism of transient retinal phototropism in rod photoreceptors

    Science.gov (United States)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-03-01

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  9. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  10. Cones and craters on Mount Pavagadh, Deccan Traps: Rootless cones?

    Indian Academy of Sciences (India)

    Hetu C Sheth; George Mathew; Kanchan Pande; Soumen Mallick; Balaram Jena

    2004-12-01

    Rootless cones, also (erroneously) called pseudocraters, form due to explosions that ensue when a lava flow enters a surface water body, ice, or wet ground. They do not represent primary vents connected by vertical conduits to a subsurface magma source. Rootless cones in Iceland are well studied. Cones on Mars, morphologically very similar to Icelandic rootless cones, have also been suggested to be rootless cones formed by explosive interaction between surface lava flows and ground ice. We report here a group of gentle cones containing nearly circular craters from Mount Pavagadh, Deccan volcanic province, and suggest that they are rootless cones. They are very similar morphologically to the rootless cones of the type locality of Mý vatn in northeastern Iceland. A group of three phreatomagmatic craters was reported in 1998 from near Jabalpur in the northeastern Deccan, and these were suggested to be eroded cinder cones. A recent geophysical study of the Jabalpur craters does not support the possibility that they are located over volcanic vents. They could also be rootless cones. Many more probably exist in the Deccan, and volcanological studies of the Deccan are clearly of value in understanding planetary basaltic volcanism.

  11. Light cone matrix product

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Matthew B [Los Alamos National Laboratory

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  12. OPTIMIZED STRAPDOWN CONING CORRECTION ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    黄磊; 刘建业; 曾庆化

    2013-01-01

    Traditional coning algorithms are based on the first-order coning correction reference model .Usually they reduce the algorithm error of coning axis (z) by increasing the sample numbers in one iteration interval .But the increase of sample numbers requires the faster output rates of sensors .Therefore ,the algorithms are often lim-ited in practical use .Moreover ,the noncommutivity error of rotation usually exists on all three axes and the in-crease of sample numbers has little positive effect on reducing the algorithm errors of orthogonal axes (x ,y) . Considering the errors of orthogonal axes cannot be neglected in the high-precision applications ,a coning algorithm with an additional second-order coning correction term is developed to further improve the performance of coning algorithm .Compared with the traditional algorithms ,the new second-order coning algorithm can effectively reduce the algorithm error without increasing the sample numbers .Theoretical analyses validate that in a coning environ-ment with low frequency ,the new algorithm has the better performance than the traditional time-series and fre-quency-series coning algorithms ,while in a maneuver environment the new algorithm has the same order accuracy as the traditional time-series and frequency-series algorithms .Finally ,the practical feasibility of the new coning al-gorithm is demonstrated by digital simulations and practical turntable tests .

  13. PHOTORECEPTOR DEGENERATION IN A MOUNTAIN LION CUB (PUMA CONCOLOR).

    Science.gov (United States)

    DiSalvo, Andrew R; Reilly, Christopher M; Wiggans, K Tomo; Woods, Leslie W; Wack, Ray F; Clifford, Deana L

    2016-12-01

    An orphaned 4-mo-old female mountain lion cub ( Puma concolor ) was captured along the coastline in Montaña de Oro State Park in Los Osos, California, USA. Following suspicion that the cub was visually impaired, ophthalmic examination revealed diffuse bilateral retinal atrophy. Due to a poor prognosis, humane euthanasia was elected. Necropsy and histopathological findings were consistent with photoreceptor degeneration. Based on the cub's signalment, history, and histopathology, a genetic or nutritional etiology was suspected, with the former etiology more strongly supported. To the authors' knowledge, this is the first report of photoreceptor degeneration in a wild felid and should be considered in cases of blindness.

  14. Avian influenza control strategies

    Science.gov (United States)

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  15. Avian influenza virus

    Science.gov (United States)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  16. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    Science.gov (United States)

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  17. Gene therapy into photoreceptors and Müller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models.

    Science.gov (United States)

    Pellissier, Lucie P; Quinn, Peter M; Alves, C Henrique; Vos, Rogier M; Klooster, Jan; Flannery, John G; Heimel, J Alexander; Wijnholds, Jan

    2015-06-01

    Mutations in the Crumbs-homologue-1 (CRB1) gene lead to severe recessive inherited retinal dystrophies. Gene transfer therapy is the most promising cure for retinal dystrophies and has primarily been applied for recessive null conditions via a viral gene expression vector transferring a cDNA encoding an enzyme or channel protein, and targeting expression to one cell type. Therapy for the human CRB1 disease will be more complex, as CRB1 is a structural and signaling transmembrane protein present in three cell classes: Müller glia, cone and rod photoreceptors. In this study, we applied CRB1 and CRB2 gene therapy vectors in Crb1-retinitis pigmentosa mouse models at mid-stage disease. We tested if CRB expression restricted to Müller glial cells or photoreceptors or co-expression in both is required to recover retinal function. We show that targeting both Müller glial cells and photoreceptors with CRB2 ameliorated retinal function and structure in Crb1 mouse models. Surprisingly, targeting a single cell type or all cell types with CRB1 reduced retinal function. We show here the first pre-clinical studies for CRB1-related eye disorders using CRB2 vectors and initial elucidation of the cellular mechanisms underlying CRB1 function.

  18. Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels.

    Directory of Open Access Journals (Sweden)

    Tamas Szikra

    Full Text Available Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca(2+ entry (SOCE to Ca(2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn(2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca(2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca(2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca(2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca(2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca(2+ channels. Exposure to MRS 1845 resulted in approximately 40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca(2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca(2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.

  19. Geometric phases in graphitic cones

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Claudio [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil)], E-mail: furtado@fisica.ufpb.br; Moraes, Fernando [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil); Carvalho, A.M. de M [Departamento de Fisica, Universidade Estadual de Feira de Santana, BR116-Norte, Km 3, 44031-460 Feira de Santana, BA (Brazil)

    2008-08-04

    In this Letter we use a geometric approach to study geometric phases in graphitic cones. The spinor that describes the low energy states near the Fermi energy acquires a phase when transported around the apex of the cone, as found by a holonomy transformation. This topological result can be viewed as an analogue of the Aharonov-Bohm effect. The topological analysis is extended to a system with n cones, whose resulting configuration is described by an effective defect00.

  20. Light Cone Current Algebra

    CERN Document Server

    Fritzsch, Harald

    2003-01-01

    This talk follows by a few months a talk by the same authors on nearly the same subject at the Coral Gables Conference. The ideas presented here are basically the same, but with some amplification, some change of viewpoint, and a number of new questions for the future. For our own convenience, we have transcribed the Coral Gables paper, but with an added ninth section, entitled "Problems of light cone current algebra", dealing with our present views and emphasizing research topics that require study.

  1. Diurnal Changes in Angular Sensitivity of Crab Photoreceptors

    NARCIS (Netherlands)

    Leggett, L.M.W.; Stavenga, D.G.

    1981-01-01

    The electrophysiological and anatomical consequences of diurnal changes in screening pigment position were investigated in the apposition eye of the portunid crab Scylla serrata. Intracellular recordings revealed that the acceptance angles of dark-adapted photoreceptors enlarged up to four-fold at n

  2. Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants.

    Science.gov (United States)

    Ogawa, Yuri; Falkowski, Marcin; Narendra, Ajay; Zeil, Jochen; Hemmi, Jan M

    2015-06-07

    Ants are thought to be special among Hymenopterans in having only dichromatic colour vision based on two spectrally distinct photoreceptors. Many ants are highly visual animals, however, and use vision extensively for navigation. We show here that two congeneric day- and night-active Australian ants have three spectrally distinct photoreceptor types, potentially supporting trichromatic colour vision. Electroretinogram recordings show the presence of three spectral sensitivities with peaks (λmax) at 370, 450 and 550 nm in the night-active Myrmecia vindex and peaks at 370, 470 and 510 nm in the day-active Myrmecia croslandi. Intracellular electrophysiology on individual photoreceptors confirmed that the night-active M. vindex has three spectral sensitivities with peaks (λmax) at 370, 430 and 550 nm. A large number of the intracellular recordings in the night-active M. vindex show unusually broad-band spectral sensitivities, suggesting that photoreceptors may be coupled. Spectral measurements at different temporal frequencies revealed that the ultraviolet receptors are comparatively slow. We discuss the adaptive significance and the probability of trichromacy in Myrmecia ants in the context of dim light vision and visual navigation.

  3. Activation of autophagy in photoreceptor necroptosis after experimental retinal detachment

    Institute of Scientific and Technical Information of China (English)

    Kai; Dong; Zi-Cheng; Zhu; Feng-Hua; Wang; Gen-Jie; Ke; Zhang; Yu; Xun; Xu

    2014-01-01

    AIM:To investigate whether photoreceptor necroptosis induced by z-VAD-FMK(pan caspase inhibitor) was involved the activation of autophagy and whether Necrostatin-1, a specific necroptosis inhibitor, could inhibit this induction of autophagy after experimental retinal detachment.METHODS:Experimental retinal detachment models were created in Sprague-Dawley rats by subretinal injection of sodium hyaluronate and subretinal injections of z-VAD-FMK, vehicle or z-VAD-FMK plus Necrostatin-1.Three days after retinal detachment, morphologic changes were observed by transmission electron microscopy. In other animals, retinas were subjected to immunoprecipitation and Western Blotting, then probed with anti-RIP1, phosphoserine, LC-3II or caspase 8antibody.RESULTS:It was proved by immunoprecipitation and western blotting, that photoreceptor necroptosis was mediated by caspase-8 inhibition and receptor interacting protein kinase(RIP1) phosphorylation activation. Transmission electron microscope and western blotting results indicated that photoreceptornecroptosis was involved the LC-3II and autophagosomes induction. We also discovered Necrostatin-1 could inhibit RIP1 phosphorylation and LC-3II induction.CONCLUSION:These data firstly indicate photoreceptor necroptosis is associated with the activation of autophagy. Necrostatin-1 protects photoreceptors from necroptosis and autophagy by down-regulation of RIP1 phosphorylation and LC-3II.

  4. Chloroplasts continuously monitor photoreceptor signals during accumulation movement.

    Science.gov (United States)

    Tsuboi, Hidenori; Wada, Masamitsu

    2013-07-01

    Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.

  5. Dlic1 deficiency impairs ciliogenesis of photoreceptors by destabilizing dynein

    Institute of Scientific and Technical Information of China (English)

    Shanshan Kong; Xinrong Du; Chao Peng; Yiming Wu; Huirong Li; Xi Jin; Ling Hou

    2013-01-01

    Cytoplasmic dynein 1 is fundamentally important for transporting a variety of essential cargoes along microtubules within eukaryotic cells.However,in mammals,few mutants are available for studying the effects of defects in dynein-controlled processes in the context of the whole organism.Here,we deleted mouse Dlic1 gene encoding DLIC1,a subunit of the dynein complex.Dlic1-/-mice are viable,but display severe photoreceptor degeneration.Ablation of Dlic1 results in ectopic accumulation of outer segment (OS) proteins,and impairs OS growth and ciliogenesis of photoreceptors by interfering with Rabll-vesicle trafficking and blocking efficient OS protein transport from Golgi to the basal body.Our studies show that Dlic1 deficiency partially blocks vesicle export from endoplasmic reticulum (ER),but seems not to affect vesicle transport from the ER to Golgi.Further mechanistic study reveals that lack of Dlic1 destabilizes dynein subunits and alters the normal subcellular distribution of dynein in photoreceptors,probably due to the impaired transport function of dynein.Our results demonstrate that Dlic1 plays important roles in ciliogenesis and protein transport to the OS,and is required for photoreceptor development and survival.The Dlic1-/-mice also provide a new mouse model to study human retinal degeneration.

  6. Mapping nonlinear receptive field structure in primate retina at single cone resolution.

    Science.gov (United States)

    Freeman, Jeremy; Field, Greg D; Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam; Simoncelli, Eero P; Chichilnisky, E J

    2015-01-01

    The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits.

  7. Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals

    Directory of Open Access Journals (Sweden)

    Kelvin Xi Zhang

    2016-02-01

    Full Text Available A common step in the formation of neural circuits is the conversion of growth cones to presynaptic terminals. Characterizing patterns of global gene expression during this process is problematic due to the cellular diversity of the brain and the complex temporal dynamics of development. Here, we take advantage of the synchronous conversion of Drosophila photoreceptor growth cones into presynaptic terminals to explore global changes in gene expression during presynaptic differentiation. Using a tandemly tagged ribosome trap (T-TRAP and RNA sequencing (RNA-seq at multiple developmental times, we observed dramatic changes in coding and non-coding RNAs with presynaptic differentiation. Marked changes in the mRNA encoding transmembrane and secreted proteins occurred preferentially. The 3′ UTRs of transcripts encoding synaptic proteins were preferentially lengthened, and these extended UTRs were preferentially enriched for sites recognized by RNA binding proteins. These data provide a rich resource for uncovering the regulatory logic underlying presynaptic differentiation.

  8. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Takeshi Nakao

    Full Text Available Most of inherited retinal diseases such as retinitis pigmentosa (RP cause photoreceptor cell death resulting in blindness. RP is a large family of diseases in which the photoreceptor cell death can be caused by a number of pathways. Among them, light exposure has been reported to induce photoreceptor cell death. However, the detailed mechanism by which photoreceptor cell death is caused by light exposure is unclear. In this study, we have shown that even a mild light exposure can induce ectopic phototransduction and result in the acceleration of rod photoreceptor cell death in some vertebrate models. In ovl, a zebrafish model of outer segment deficiency, photoreceptor cell death is associated with light exposure. The ovl larvae show ectopic accumulation of rhodopsin and knockdown of ectopic rhodopsin and transducin rescue rod photoreceptor cell death. However, knockdown of phosphodiesterase, the enzyme that mediates the next step of phototransduction, does not. So, ectopic phototransduction activated by light exposure, which leads to rod photoreceptor cell death, is through the action of transducin. Furthermore, we have demonstrated that forced activation of adenylyl cyclase in the inner segment leads to rod photoreceptor cell death. For further confirmation, we have also generated a transgenic fish which possesses a human rhodopsin mutation, Q344X. This fish and rd10 model mice show photoreceptor cell death caused by adenylyl cyclase. In short, our study indicates that in some RP, adenylyl cyclase is involved in photoreceptor cell death pathway; its inhibition is potentially a logical approach for a novel RP therapy.

  9. BIRD FLU (AVIAN INFLUENZA)

    OpenAIRE

    Ali ACAR; Bulent BESIRBELLIOÐLU

    2005-01-01

    Avian influenza (bird flu) is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, ...

  10. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  11. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells.

    Science.gov (United States)

    Li, Tianqing; Lewallen, Michelle; Chen, Shuyi; Yu, Wei; Zhang, Nian; Xie, Ting

    2013-06-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptor-deficient mice, but there is still some concern of tumor formation. In this study, we have successfully cultured Nestin(+)Sox2(+)Pax6(+) multipotent retinal stem cells (RSCs) from the adult mouse retina, which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation. After they have been expanded for over 35 passages in the presence of FGF and EGF, the cultured RSCs still maintain stable proliferation and differentiation potential. Under proper differentiation conditions, they can differentiate into all the major retinal cell types found in the adult retina. More importantly, they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions. Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes, RSC-derived photoreceptor cells integrate into the retina, morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons. When transplanted into eyes of photoreceptor-deficient rd1 mutant mice, a RP model, RSC-derived photoreceptors can partially restore light response, indicating that those RSC-derived photoreceptors are functional. Finally, there is no evidence for tumor formation in the photoreceptor-transplanted eyes. Therefore, this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  12. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  13. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria

    OpenAIRE

    Bussell, Adam N.; Kehoe, David M.

    2013-01-01

    Photoreceptors are biologically important for sensing changes in the color and intensity of ambient light and, for photosynthetic organisms, processing this light information to optimize food production through photosynthesis. Cyanobacteria are an evolutionarily and ecologically important prokaryotic group of oxygenic photosynthesizers that contain cyanobacteriochrome (CBCR) photoreceptors, whose family members sense nearly the entire visible spectrum of light colors. Some cyanobacteria conta...

  14. The Retinal Pigment Epithelium: a Convenient Source of New Photoreceptor cells?

    Directory of Open Access Journals (Sweden)

    Shu-Zhen Wang

    2014-01-01

    Full Text Available Recent success in restoring visual function through photoreceptor replacement in mouse models of photoreceptor degeneration intensifies the need to generate or regenerate photoreceptor cells for the ultimate goal of using cell replacement therapy for blindness caused by photoreceptor degeneration. Current research on deriving new photoreceptors for replacement, as regenerative medicine in general, focuses on the use of embryonic stem cells and induced pluripotent stem (iPS cells to generate transplantable cells. Nonetheless, naturally occurring regeneration, such as wound healing, involves awakening cells at or near a wound site to produce new cells needed to heal the wound. Here we discuss the possibility of tweaking an ocular tissue, the retinal pigment epithelium (RPE, to produce photoreceptor cells in situ in the eye. Unlike the neural retina, the RPE in adult mammals maintains cell proliferation capability. Furthermore, progeny cells from RPE proliferation may differentiate into cells other than RPE. The combination of proliferation and plasticity opens a question of whether they could be channeled by a regulatory gene with pro-photoreceptor activity towards photoreceptor production. Studies using embryonic chick and transgenic mouse showed that indeed photoreceptor-like cells were produced in culture and in vivo in the eye using genedirected reprogramming of RPE cells, supporting the feasibility of using the RPE as a convenient source of new photoreceptor cells for in situ retinal repair without involving cell transplantation.

  15. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells

    Institute of Scientific and Technical Information of China (English)

    Tianqing Li; Michelle Lewallen; Shuyi Chen; Wei Yu; Nian Zhang; Ting Xie

    2013-01-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases,such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD).Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptordeficient mice,but there is still some concern of tumor formation.In this study,we have successfully cultured Nestin+Sox2+Pax6+ multipotent retinal stem cells (RSCs) from the adult mouse retina,which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation.After they have been expanded for over 35 passages in the presence of FGF and EGF,the cultured RSCs still maintain stable proliferation and differentiation potential.Under proper differentiation conditions,they can differentiate into all the major retinal cell types found in the adult retina.More importantly,they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions.Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes,RSC-derived photoreceptor cells integrate into the retina,morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons.When transplanted into eyes of photoreceptor-deficient rd1 mutant mice,a RP model,RSC-derived photoreceptors can partially restore light response,indicating that those RSC-derived photoreceptors are functional.Finally,there is no evidence for tumor formation in the photoreceptor-transplanted eyes.Therefore,this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  16. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1 restores vision in an avian model of childhood blindness.

    Directory of Open Access Journals (Sweden)

    Melissa L Williams

    2006-06-01

    Full Text Available BACKGROUND: Leber congenital amaurosis (LCA is a genetically heterogeneous group of retinal diseases that cause congenital blindness in infants and children. Mutations in the GUCY2D gene that encodes retinal guanylate cyclase-1 (retGC1 were the first to be linked to this disease group (LCA type 1 [LCA1] and account for 10%-20% of LCA cases. These mutations disrupt synthesis of cGMP in photoreceptor cells, a key second messenger required for function of these cells. The GUCY1*B chicken, which carries a null mutation in the retGC1 gene, is blind at hatching and serves as an animal model for the study of LCA1 pathology and potential treatments in humans. METHODS AND FINDINGS: A lentivirus-based gene transfer vector carrying the GUCY2D gene was developed and injected into early-stage GUCY1*B embryos to determine if photoreceptor function and sight could be restored to these animals. Like human LCA1, the avian disease shows early-onset blindness, but there is a window of opportunity for intervention. In both diseases there is a period of photoreceptor cell dysfunction that precedes retinal degeneration. Of seven treated animals, six exhibited sight as evidenced by robust optokinetic and volitional visual behaviors. Electroretinographic responses, absent in untreated animals, were partially restored in treated animals. Morphological analyses indicated there was slowing of the retinal degeneration. CONCLUSIONS: Blindness associated with loss of function of retGC1 in the GUCY1*B avian model of LCA1 can be reversed using viral vector-mediated gene transfer. Furthermore, this reversal can be achieved by restoring function to a relatively low percentage of retinal photoreceptors. These results represent a first step toward development of gene therapies for one of the more common forms of childhood blindness.

  17. Ejecta evolution during cone impact

    Science.gov (United States)

    Marston, Jeremy; Vakarelski, Ivan; Thoroddsen, Sigurdur

    2013-11-01

    We present results from an experimental study of the impact of conical shaped bodies into a pool of liquid. By varying the cone angle, impact speed and liquid physical properties, we examine a broad parameter space and seek to find conditions when self-similarity can be observed during this phenomena. We use high-speed imaging to capture the early-time motion of the liquid ejecta which emanates from the tip of the cone and travels up along the cone surface. Surprisingly, we find that the detachment of the ejecta can be simply described by air entrainment relationships derived from coating experiments.

  18. ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.

    Science.gov (United States)

    Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru

    2016-03-01

    Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.

  19. Discussion on Photoreceptor for Negative Phototropism in Rice Roots

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-xia; WANG Zhong; SUO Biao; GU Yun-jie; WANG Hui-hui; CHEN Yong-hui; DAI Yun-xia

    2007-01-01

    To properly explore the photoreceptor for the negative phototropism in rice (Oryza sativa L.) root, lights with different wavelengths were applied to investigate the effect of light quality on phototropic bending. The phototropic bending could be induced prominently by blue/ultraviolet light, whereas not by red or far-red light. The absorption spectrum of the extracted solution from rice root cap had two peaks at 350 nm and 450 nm, respectively, and the molecular weight of the 120 kD protein in the root cap under unilateral light was larger than that under the dark. It suggested that the blue light receptor might be the photoreceptor for the negative phototropism in rice root.

  20. Carbenoxolone blocks the light-evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors.

    Directory of Open Access Journals (Sweden)

    Jayne R Bramley

    Full Text Available BACKGROUND: Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs. These ganglion cell photoreceptors send axons to several central targets involved in a variety of functions. Within the retina ipRGCs provide excitatory drive to dopaminergic amacrine cells via glutamatergic signals and ipRGCs are coupled to wide-field GABAergic amacrine cells via gap junctions. However, the extent to which ipRGCs are coupled to other retinal neurons in the ganglion cell layer via gap junctions is unclear. Carbenoxolone, a widely employed gap junction inhibitor, greatly reduces the number of retinal neurons exhibiting non-rod, non-cone mediated light-evoked Ca(2+ signals suggesting extensive intercellular coupling between ipRGCs and non-ipRGCs in the ganglion cell layer. However, carbenoxolone may directly inhibit light-evoked Ca(2+ signals in ipRGCs independent of gap junction blockade. METHODOLOGY/PRINCIPAL FINDINGS: To test the possibility that carbenoxolone directly inhibits light-evoked Ca(2+ responses in ipRGCs, the light-evoked rise in intracellular Ca(2+ ([Ca(2+](i was examined using fura-2 imaging in isolated rat ipRGCs maintained in short-term culture in the absence and presence of carbenoxolone. Carbenoxolone at 50 and 100 µM concentrations completely abolished the light-evoked rise in [Ca(2+](i in isolated ipRGCs. Recovery from carbenoxolone inhibition was variable. CONCLUSIONS/SIGNIFICANCE: We demonstrate that the light-evoked rise in [Ca(2+](i in isolated mammalian ganglion cell photoreceptors is inhibited by carbenoxolone. Since the light-evoked increase in [Ca(2+](i in isolated ipRGCs is almost entirely due to Ca(2+ entry via L-type voltage-gated calcium channels and carbenoxolone does not inhibit light-evoked action potential firing in ipRGCs in situ, carbenoxolone may block the light-evoked increase in [Ca(2+](i in ipRGCs by blocking L-type voltage-gated Ca(2+ channels. The ability of

  1. Photoreceptor atrophy in acute zonal occult outer retinopathy

    DEFF Research Database (Denmark)

    Zibrandtsen, N.; Munch, I.C.; Klemp, K.;

    2008-01-01

    PURPOSE: To assess retinal morphology in acute zonal occult outer retinopathy (AZOOR) without ophthalmoscopically visible fundus changes. METHODS: Retrospective case series. Two consecutive patients with bilateral AZOOR with photopsia corresponding to areas of visual field loss and a normal fundus...... appearance were examined using optical coherence tomography (OCT), automated perimetry and electroretinography (ERG). RESULTS: Both patients demonstrated photoreceptor atrophy corresponding to partial or complete scotomata with reduced or extinct electroretinographic responses. Attenuation or complete loss...

  2. Adaptive potentiation in rod photoreceptors after light exposure.

    Science.gov (United States)

    McKeown, Alex S; Kraft, Timothy W

    2014-06-01

    Photoreceptors adapt to changes in illumination by altering transduction kinetics and sensitivity, thereby extending their working range. We describe a previously unknown form of rod photoreceptor adaptation in wild-type (WT) mice that manifests as a potentiation of the light response after periods of conditioning light exposure. We characterize the stimulus conditions that evoke this graded hypersensitivity and examine the molecular mechanisms of adaptation underlying the phenomenon. After exposure to periods of saturating illumination, rods show a 10-35% increase in circulating dark current, an adaptive potentiation (AP) to light exposure. This potentiation grows as exposure to light is extended up to 3 min and decreases with longer exposures. Cells return to their initial dark-adapted sensitivity with a time constant of recovery of ∼7 s. Halving the extracellular Mg concentration prolongs the adaptation, increasing the time constant of recovery to 13.3 s, but does not affect the magnitude of potentiation. In rods lacking guanylate cyclase activating proteins 1 and 2 (GCAP(-/-)), AP is more than doubled compared with WT rods, and halving the extracellular Mg concentration does not affect the recovery time constant. Rods from a mouse expressing cyclic nucleotide-gated channels incapable of binding calmodulin also showed a marked increase in the amplitude of AP. Application of an insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitor (Tyrphostin AG1024) blocked AP, whereas application of an insulin receptor kinase inhibitor (HNMPA(AM)3) failed to do so. A broad-acting tyrosine phosphatase inhibitor (orthovanadate) also blocked AP. Our findings identify a unique form of adaptation in photoreceptors, so that they show transient hypersensitivity to light, and are consistent with a model in which light history, acting via the IGF-1R, can increase the sensitivity of rod photoreceptors, whereas the photocurrent overshoot is regulated by Ca-calmodulin and Ca(2

  3. Arap1 Deficiency Causes Photoreceptor Degeneration in Mice

    Science.gov (United States)

    Moshiri, Ala; Humpal, Devin; Leonard, Brian C.; Imai, Denise M.; Tham, Addy; Bower, Lynette; Clary, Dave; Glaser, Thomas M.; Lloyd, K. C. Kent; Murphy, Christopher J.

    2017-01-01

    Purpose Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the control of GTPase-activating proteins (GAPs). Arap1 is an Arf-directed GAP that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome, but the diversity of its functions is incompletely understood. The aim of this study was to determine the role of Arap1 in the mammalian retina. Methods Genetically engineered Arap1 knockout mice were screened for ocular abnormalities in the National Institutes of Health Knockout Mouse Production and Phenotyping (KOMP2) Project. Arap1 knockout and wild-type eyes were imaged using optical coherence tomography and fundus photography, and analyzed by immunohistochemistry. Results Arap1−/− mice develop a normal appearing retina, but undergo photoreceptor degeneration starting at 4 weeks postnatal age. The fundus appearance of mutants is notable for pigmentary changes, optic nerve pallor, vascular attenuation, and outer retinal thinning, reminiscent of retinitis pigmentosa in humans. Immunohistochemical studies suggest the cell death is predominantly in the outer nuclear layer. Functional evaluation of the retina by electroretinography reveals amplitudes are reduced. Arap1 is detected most notably in Müller glia, and not in photoreceptors, implicating a role for Müller glia in photoreceptor survival. Conclusions Arap1 is necessary for normal photoreceptor survival in mice, and may be a novel gene relevant to human retinal degenerative processes, although its mechanism is unknown. Further studies in this mouse model of retinal degeneration will give insights into the cellular functions and signaling pathways in which Arap1 participates. PMID:28324111

  4. Extracellular electrical activity from the photoreceptors of midge

    Indian Academy of Sciences (India)

    A A Babrekar; G R Kulkarni; B B Nath; P B Vidyasagar

    2004-09-01

    The ontogeny of photosensitivity has been studied in a holometabolous insect, the midge Chironomus ramosus. The life cycle of midges shifts from an aquatic environment to a non-aquatic environment. Extracellular electrical activity of photoreceptor organs was recorded at larval and adult stages. We found an increase in photosensitivity as the larva metamorphosed to the adult stage. This is the first report of changes in photosensitivity during the development of any insect described in an ecological context.

  5. Dominant cone-rod dystrophy: a mouse model generated by gene targeting of the GCAP1/Guca1a gene.

    Directory of Open Access Journals (Sweden)

    Prateek K Buch

    Full Text Available Cone dystrophy 3 (COD3 is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1. The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG, retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions.

  6. Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation

    Institute of Scientific and Technical Information of China (English)

    Gesa Rosenfeldt; Rafael Mu(n)oz Viana; Henning D.Mootz; Albrecht G.Von Arnim; Alfred Batschauer

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  7. Effect of Purified Murine NGF on Isolated Photoreceptors of a Rodent Developing Retinitis Pigmentosa

    Science.gov (United States)

    Rocco, Maria Luisa; Balzamino, Bijorn Omar; Petrocchi Passeri, Pamela; Micera, Alessandra; Aloe, Luigi

    2015-01-01

    A number of different studies have shown that neurotrophins, including nerve growth factor (NGF) support the survival of retinal ganglion neurons during a variety if insults. Recently, we have reported that that eye NGF administration can protect also photoreceptor degeneration in a mice and rat with inherited retinitis pigmentosa. However, the evidence that NGF acts directly on photoreceptors and that other retinal cells mediate the NGF effect could not be excluded. In the present study we have isolated retinal cells from rats with inherited retinitis pigmentosa (RP) during the post-natal stage of photoreceptor degenerative. In presence of NGF, these cells are characterized by enhanced expression of NGF-receptors and rhodopsin, the specific marker of photoreceptor and better cell survival, as well as neuritis outgrowth. Together these observations support the hypothesis that NGF that NGF acts directly on photoreceptors survival and prevents photoreceptor degeneration as previously suggested by in vivo studies. PMID:25897972

  8. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light.

  9. The light-cone theorem

    Energy Technology Data Exchange (ETDEWEB)

    Choquet-Bruhat, Yvonne [Academie des Sciences, Paris (France); Chrusciel, Piotr T [Federation Denis Poisson, LMPT, Tours (France); MartIn-GarcIa, Jose M [Laboratoire Univers et Theories, CNRS, Meudon, and Universite Paris Diderot (France)

    2009-07-07

    We prove that the area of cross-sections of light cones, in spacetimes satisfying suitable energy conditions, is smaller than or equal to that of the corresponding cross-sections in Minkowski, or de Sitter, or anti-de Sitter spacetime. The equality holds if and only if the metric coincides with the corresponding model in the domain of dependence of the light cone.

  10. The light-cone theorem

    CERN Document Server

    Choquet-Bruhat, Yvonne; Martin-Garcia, Jose M

    2009-01-01

    We prove that the area of cross-sections of light-cones, in space-times satisfying suitable energy conditions, is smaller than or equal to that of the corresponding cross-sections in Minkowski, or de Sitter, or anti-de Sitter space-time. The equality holds if and only if the metric coincides with the corresponding model in the domain of dependence of the light-cone.

  11. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells

    OpenAIRE

    2007-01-01

    Usher syndrome type IIA (USH2A), characterized by progressive photoreceptor degeneration and congenital moderate hearing loss, is the most common subtype of Usher syndrome. In this article, we show that the USH2A protein, also known as usherin, is an exceptionally large (≈600-kDa) matrix protein expressed specifically in retinal photoreceptors and developing cochlear hair cells. In mammalian photoreceptors, usherin is localized to a spatially restricted membrane microdomain at the apical inne...

  12. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.

    Science.gov (United States)

    Davies, A; Gowen, B E; Krebs, A M; Schertler, G F; Saibil, H R

    2001-11-30

    Invertebrate rhodopsins activate a G-protein signalling pathway in microvillar photoreceptors. In contrast to the transducin-cyclic GMP phosphodiesterase pathway found in vertebrate rods and cones, visual transduction in cephalopod (squid, octopus, cuttlefish) invertebrates is signalled via Gq and phospholipase C. Squid rhodopsin contains the conserved residues of the G-protein coupled receptor (GPCR) family, but has only 35% identity with mammalian rhodopsins. Unlike vertebrate rhodopsins, cephalopod rhodopsin is arranged in an ordered lattice in the photoreceptor membranes. This organization confers sensitivity to the plane of polarized light and also provides the optimal orientation of the linear retinal chromophores in the cylindrical microvillar membranes for light capture. Two-dimensional crystals of squid rhodopsin show a rectilinear arrangement that is likely to be related to the alignment of rhodopsins in vivo.Here, we present a three-dimensional structure of squid rhodopsin determined by cryo-electron microscopy of two-dimensional crystals. Docking the atomic structure of bovine rhodopsin into the squid density map shows that the helix packing and extracellular plug structure are conserved. In addition, there are two novel structural features revealed by our map. The linear lattice contact appears to be made by the transverse C-terminal helix lying on the cytoplasmic surface of the membrane. Also at the cytoplasmic surface, additional density may correspond to a helix 5-6 loop insertion found in most GPCRs relative to vertebrate rhodopsins. The similarity supports the conservation in structure of rhodopsins (and other G-protein-coupled receptors) from phylogenetically distant organisms. The map provides the first indication of the structural basis for rhodopsin alignment in the microvillar membrane.

  13. Koyukuk NWR 1985 avian checklist

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An avian checklist survey was conducted within the boundaries of the Koyukuk National Wildlife Refuge and Kaiyuh Flats unit of the Innoko National Wildlife Refuge...

  14. Koyukuk NWR 1986 avian checklist

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An avian checklist survey was conducted within the boundaries of the Koyukuk National Wildlife Refuge and Kaiyuh Flats unit of the Innoko National Wildlife Refuge in...

  15. Simulating avian wingbeat kinematics.

    Science.gov (United States)

    Parslew, Ben; Crowther, William J

    2010-12-01

    Inverse dynamics methods are used to simulate avian wingbeats in varying flight conditions. A geometrically scalable multi-segment bird model is constructed, and optimisation techniques are employed to determine segment motions that generate desired aerodynamic force coefficients with minimal mechanical power output. The results show that wingbeat kinematics vary gradually with changes in cruise speed, which is consistent with experimental data. Optimised solutions for cruising flight of the pigeon suggest that upstroke wing retraction is used as a method of saving energy. Analysis of the aerodynamic force coefficient variation in high and low speed cruise leads to the proposal that a suitable gait metric should include both thrust and lift generation during each half-stroke.

  16. Avian host defense peptides.

    Science.gov (United States)

    Cuperus, Tryntsje; Coorens, Maarten; van Dijk, Albert; Haagsman, Henk P

    2013-11-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.

  17. BIRD FLU (AVIAN INFLUENZA

    Directory of Open Access Journals (Sweden)

    Ali ACAR

    2005-12-01

    Full Text Available Avian influenza (bird flu is a contagious disease of animals caused by influenza A viruses. These flu viruses occur naturally among birds. Actually, humans are not infected by bird flu viruses.. However, during an outbreak of bird flu among poultry, there is a possible risk to people who have contact infect birds or surface that have been contaminated with excreations from infected birds. Symptoms of bird flu in humans have ranged from typical flu-like symptoms to eye infections, pneumonia, severe respiratory diseases and other severe and life-threatening complications. In such situation, people should avoid contact with infected birds or contaminated surface, and should be careful when handling and cooking poultry. [TAF Prev Med Bull 2005; 4(6.000: 345-353

  18. Role of kinesin heavy chain in Crumbs localization along the rhabdomere elongation in Drosophila photoreceptor.

    Directory of Open Access Journals (Sweden)

    Garrett P League

    Full Text Available BACKGROUND: Crumbs (Crb, a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ, and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc, a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS: Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. CONCLUSIONS/SIGNIFICANCE: In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in

  19. Protection of chickens against avian hepatitis E virus (avian HEV) infection by immunization with recombinant avian HEV capsid protein.

    Science.gov (United States)

    Guo, H; Zhou, E M; Sun, Z F; Meng, X J

    2007-04-12

    Avian hepatitis E virus (avian HEV) is an emerging virus associated with hepatitis-splenomegaly syndrome in chickens in North America. Avian HEV is genetically and antigenically related to human HEV, the causative agent of hepatitis E in humans. In the lack of a practical animal model, avian HEV infection in chickens has been used as a model to study human HEV replication and pathogenesis. A 32 kDa recombinant ORF2 capsid protein of avian HEV expressed in Escherichia coli was found having similar antigenic structure as that of human HEV containing major neutralizing epitopes. To determine if the capsid protein of avian HEV can be used as a vaccine, 20 chickens were immunized with purified avian HEV recombinant protein with aluminum as adjuvant and another 20 chickens were mock immunized with KLH precipitated in aluminum as controls. Both groups of chickens were subsequently challenged with avian HEV. All the tested mock-immunized control chickens developed typical avian HEV infection characterized by viremia, fecal virus shedding and seroconversion to avian HEV antibodies. Gross hepatic lesions were also found in portion of these chickens. In contrast, none of the tested chickens immunized with avian HEV capsid protein had detectable viremia, fecal virus shedding or observable gross hepatitis lesions. The results from this study suggested that immunization of chickens with avian HEV recombinant ORF2 capsid protein with aluminum as adjuvant can induce protective immunity against avian HEV infection. Chickens are a useful small animal model to study anti-HEV immunity and pathogenesis.

  20. A Characterization of Generalized Monotone Normed Cones

    Institute of Scientific and Technical Information of China (English)

    S.ROMAGUERA; E.A.S(A)NCHEZ-P(E)REZ; O.VALERO

    2007-01-01

    Let C be a cone and consider a quasi-norm p defined on it. We study the structure of the couple (C, p) as a topological space in the case where the function p is also monotone. We characterize when the topology of a quasi-normed cone can be defined by means of a monotone norm. We also define and study the dual cone of a monotone normed cone and the monotone quotient of a general cone.We provide a decomposition theorem which allows us to write a cone as a direct sum of a monotone subcone that is isomorphic to the monotone quotient and other particular subcone.

  1. Constitutively active UVR8 photoreceptor variant in Arabidopsis

    OpenAIRE

    2013-01-01

    Sunlight is an essential environmental factor for photosynthetic plants and ultimately for life on Earth, which is sustained through plants as fundamental source of food. However, plants have a love/hate relationship with sunlight and must be protected from potentially harmful UV-B radiation. The UV-B photoreceptor UVR8 is of great importance in mounting UV-protective responses and thus for survival in sunlight. Based on our understanding of UVR8 signaling, we have engineered a UVR8 variant t...

  2. Calcium-dependent potassium current in barnacle photoreceptor

    OpenAIRE

    1981-01-01

    When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays t...

  3. Photoreceptor atrophy in acute zonal occult outer retinopathy

    DEFF Research Database (Denmark)

    Zibrandtsen, N.; Munch, I.C.; Klemp, K.;

    2008-01-01

    To assess retinal morphology in acute zonal occult outer retinopathy (AZOOR) without ophthalmoscopically visible fundus changes. Retrospective case series. Two consecutive patients with bilateral AZOOR with photopsia corresponding to areas of visual field loss and a normal fundus appearance were...... composing the photoreceptor layer was found by OCT. Full-field ERG revealed affection of the 30 Hz flicker responses and subnormal photopic responses in both patients and subnormal scotopic responses in case 1. Multifocal electroretinography (mERG) revealed localized outer retinal dysfunction. The field...

  4. Measurement of Photon Statistics with Live Photoreceptor Cells

    CERN Document Server

    Sim, Nigel; Bessarab, Dmitri; Jones, C Michael; Krivitsky, Leonid

    2012-01-01

    We analyzed the electrophysiological response of an isolated rod photoreceptor of Xenopus laevis under stimulation by coherent and pseudo-thermal light sources. Using the suction electrode technique for single cell recordings and a fiber optics setup for light delivery allowed measurements of the major statistical characteristics of the rod response. The results indicate differences in average responses of rod cells to coherent and pseudo-thermal light of the same intensity and also differences in signal-to-noise ratios and second order intensity correlation functions. These findings should be relevant for interdisciplinary studies in applications of quantum optics in biology.

  5. Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly

    NARCIS (Netherlands)

    Hateren, J.H. van

    1986-01-01

    A new method of microstimulation of the blowfly eye using corneal neutralization was applied to the 6 peripheral photoreceptor cells (R1-R6) connected to one neuro-ommatidium (and thus looking into the same direction), whilst the receptor potential of a dark-adapted photoreceptor cell was recorded b

  6. Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors

    Directory of Open Access Journals (Sweden)

    Salmela Iikka

    2012-08-01

    Full Text Available Abstract Background The importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana, a nocturnal insect with a visual system adapted for dim light. Results Whole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR and a fast transient inactivating type (KA. Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role. Conclusions The relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding.

  7. Evidence for dynamic network regulation of Drosophila photoreceptor function from mutants lacking the neurotransmitter histamine

    Directory of Open Access Journals (Sweden)

    An eDau

    2016-03-01

    Full Text Available Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  8. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.

    Science.gov (United States)

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K; Hardie, Roger C; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  9. Large variation among photoreceptors as the basis of visual flexibility in the common backswimmer

    Science.gov (United States)

    Immonen, Esa-Ville; Ignatova, Irina; Gislen, Anna; Warrant, Eric; Vähäsöyrinki, Mikko; Weckström, Matti; Frolov, Roman

    2014-01-01

    The common backswimmer, Notonecta glauca, uses vision by day and night for functions such as underwater prey animal capture and flight in search of new habitats. Although previous studies have identified some of the physiological mechanisms facilitating such flexibility in the animal's vision, neither the biophysics of Notonecta photoreceptors nor possible cellular adaptations are known. Here, we studied Notonecta photoreceptors using patch-clamp and intracellular recording methods. Photoreceptor size (approximated by capacitance) was positively correlated with absolute sensitivity and acceptance angles. Information rate measurements indicated that large and more sensitive photoreceptors performed better than small ones. Our results suggest that backswimmers are adapted for vision in both dim and well-illuminated environments by having open-rhabdom eyes with large intrinsic variation in absolute sensitivity among photoreceptors, exceeding those found in purely diurnal or nocturnal species. Both electrophysiology and microscopic analysis of retinal structure suggest two retinal subsystems: the largest peripheral photoreceptors provide vision in dim light and the smaller peripheral and central photoreceptors function primarily in sunlight, with light-dependent pigment screening further contributing to adaptation in this system by dynamically recruiting photoreceptors with varying sensitivity into the operational pool. PMID:25274359

  10. Ionic currents underlying difference in light response between type A and type B photoreceptors.

    Science.gov (United States)

    Blackwell, K T

    2006-05-01

    In Hermissenda crassicornis, the memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in both type A and type B photoreceptors. These photoreceptor types exhibit qualitatively different responses to light and current injection, and these differences shape the spatiotemporal firing patterns that control behavior. Thus the objective of the study was to identify the mechanisms underlying these differences. The approach was to develop a type B model that reproduced characteristics of type B photoreceptors recorded in vitro, and then to create a type A model by modifying a select number of ionic currents. Comparison of type A models with characteristics of type A photoreceptors recorded in vitro revealed that type A and type B photoreceptors have five main differences, three that have been characterized experimentally and two that constitute hypotheses to be tested with experiments in the future. The three differences between type A and type B photoreceptors previously characterized include the inward rectifier current, the fast sodium current, and conductance of calcium-dependent and transient potassium channels. Two additional changes were required to produce a type A photoreceptor model. The very fast firing frequency observed during the first second after light onset required a faster time constant of activation of the delayed rectifier. The fast spike adaptation required a fast, noninactivating calcium-dependent potassium current. Because these differences between type A and type B photoreceptors have not been confirmed in comparative experiments, they constitute hypotheses to be tested with future experiments.

  11. On the Effective Optical Density of the Pupil Mechanism in Fly Photoreceptors

    NARCIS (Netherlands)

    Roebroek, Jos G.H.; Stavenga, Doekele G.

    1990-01-01

    A simple electrophysiological method is described for determining the effective optical density of the intracellular pupil mechanism of insect photoreceptor ceils. The method depends on the fact that the photoreceptors can not only be illuminated in the normal, orthodromic way, but also antidromical

  12. On Markov operators and cones

    OpenAIRE

    Ivkovic, Stefan

    2015-01-01

    In this thesis we will consider Markov operators on cones . More precisely, we let X equipped with certain norm be a real Banach space, K in X be a closed, normal cone with nonempty interior, e in Int (K) be an order unit. A bounded, linear operator T from X into X is a Markov operator w.r.t. K and e if K is invariant under T and e is fixed by T. We consider then the adjoint of T, T* and homogeneous, discrete time Markov system given by u_k+1 = T*(u_k), k = 0,1,2 where u_0(x) is nonnegative f...

  13. Spectral consequences of photoreceptor sampling in the rhesus retina

    Science.gov (United States)

    Yellott, J. I., Jr.

    1983-01-01

    Optical transforms were used to compute the power spectra of rhesus cones treated as arrays of image sampling points. Spectra were obtained for the central fovea, parafovea, periphery, and far periphery. All were consistent with a novel spatial sampling principle that introduces minimal noise for spatial frequencies below the Nyquist limits implied by local receptor densities, while frequencies above the nominal Nyquist limits are not converted into conspicuous moiree patterns, but instead are scattered into broadband noise. This sampling scheme allows the visual system to escape aliasing distortion despite a large mismatch between retinal image bandwidth and the Nyquist limits implied by extrafoveal cone densities.

  14. Photoreceptor processing speed and input resistance changes during light adaptation correlate with spectral class in the bumblebee, Bombus impatiens.

    Directory of Open Access Journals (Sweden)

    Peter Skorupski

    Full Text Available Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm, drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width were 11.3 ± 1.6 ms for green photoreceptors compared with 18.6 ± 4.4 ms and 15.6 ± 4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value in green photoreceptors, compared to blue and UV (41% and 49%, respectively. Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed

  15. Response Function of the Crayfish Caudal Photoreceptor to Hydrodynamic Stimuli

    Science.gov (United States)

    Breite, Sally; Bahar, Sonya; Neiman, Alexander; Moss, Frank

    2002-03-01

    In its abdominal 6th ganglion the crayfish houses 2 light-sensitive neurons (caudal photoreceptors, or CPRs). It is known that these neurons work in tandem with a mechanosensory system of tiny hairs spread across the tailfan, which make synaptic contact with the photoreceptors. A stochastic resonance effect has been shown in this system in which light enhances the transduction of a weak, periodic mechanosensory (hydrodynamic) stimulus. It is not known, however, whether an optimal response from the CPR is induced by a single sine wave cycle or some other waveform. We have experimentally investigated this favorable waveform by driving a tailfan preparation with mechanical 10 Hz correlated Ornstein-Uhlenbeck noise and calculating the response function from the spike-triggered average of the applied noise waveform. We will discuss differences in the shape of the optimal waveform under dark and light conditions, as well as what seems to be a noticeable difference in the magnitude of the animals' response to a noisy stimulus in comparison with a periodic stimulus.

  16. Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells.

    Science.gov (United States)

    Bulgakova, Natalia A; Rentsch, Michaela; Knust, Elisabeth

    2010-11-15

    Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs-Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.

  17. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation.

    Science.gov (United States)

    Valen, Ragnhild; Eilertsen, Mariann; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Rønnestad, Ivar; van der Meeren, Terje; Karlsen, Ørjan; Nilsen, Tom Ole; Helvik, Jon Vidar

    2016-08-15

    Unlike in mammals, persistent postembryonic retinal growth is a characteristic feature of fish, which includes major remodeling events that affect all cell types including photoreceptors. Consequently, visual capabilities change during development, where retinal sensitivity to different wavelengths of light (photopic vision), -and to limited photons (scotopic vision) are central capabilities for survival. Differently from well-established model fish, Atlantic cod has a prolonged larval stage where only cone photoreceptors are present. Rods do not appear until juvenile transition (metamorphosis), a hallmark of indirect developing species. Previously we showed that whole gene families of lws (red-sensitive) and sws1 (UV-sensitive) opsins have been lost in cod, while rh2a (green-sensitive) and sws2 (blue-sensitive) genes have tandem duplicated. Here, we provide a comprehensive characterization of a two-step developing duplex retina in Atlantic cod. The study focuses on cone subtype dynamics and delayed rod neurogenesis and differentiation in all cod life stages. Using transcriptomic and histological approaches we show that different opsins disappear in a topographic manner during development where central to peripheral retina is a key axis of expressional change. Early cone differentiation was initiated in dorso-temporal retina different from previously described in fish. Rods first appeared during initiation of metamorphosis and expression of the nuclear receptor transcription factor nr2e3-1, suggest involvement in rod specification. The indirect developmental strategy thus allows for separate studies of cones and rods development, which in nature correlates with visual changes linked to habitat shifts. The clustering of key retinal genes according to life stage, suggests that Atlantic cod with its sequenced genome may be an important resource for identification of underlying factors required for development and function of photopic and scotopic vision.

  18. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    Science.gov (United States)

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.

  19. Cone positioning device for oral radiation therapy.

    Science.gov (United States)

    Mahanna, G K; Ivanhoe, J R; Attanasio, R A

    1994-06-01

    This article describes the fabrication and modification of a peroral cone-positioning device. The modification provides added cone stability and prevents tongue intrusion into the radiation field. This device provides a repeatable accurate cone/lesion relationship and the fabrication technique is simplified, accurate, and minimizes patient discomfort.

  20. Small Molecules in the Cone Snail Arsenal.

    Science.gov (United States)

    Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S; Antunes, Agostinho; Vasconcelos, Vitor; Olivera, Baldomero M; Schmidt, Eric W

    2015-10-16

    Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom.

  1. DOS cones along atomic chains

    Science.gov (United States)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin–orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  2. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR...

  3. Markov Chain Estimation of Avian Seasonal Fecundity

    Science.gov (United States)

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  4. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  5. Avian influenza : a review article

    Directory of Open Access Journals (Sweden)

    A. Yalda

    2006-07-01

    Full Text Available The purpose of this paper is to provides general information about avian influenza (bird flu and specific information about one type of bird flu, called avian influenza A (H5N1, that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO , world organization for animal health (OIE , food and agriculture organization of the united nations (FAO information and recommendations and review of the published literature about avian influenza. Since December 2003, highly pathogenic H5N1 avian influenza viruses have swept through poultry populations across Asia and parts of Europe. The outbreaks are historically unprecedented in scale and geographical spread. Their economic impact on the agricultural sector of the affected countries has been large. Human cases, with an overall fatality rate around 50%, have also been reported and almost all human infections can be linked to contact with infected poultry. Influenza viruses are genetically unstable and their behaviour cannot be predicted so the risk of further human cases persists. The human health implications have now gained importance, both for illness and fatalities that have occurred following natural infection with avian viruses, and for the potential of generating a re-assortant virus that could give rise to the next human influenza pandemic.

  6. Hanford waste tank cone penetrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ``waste`` data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment.

  7. Amyloid precursor protein is required for normal function of the rod and cone pathways in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Tracy Ho

    Full Text Available Amyloid precursor protein (APP is a transmembrane glycoprotein frequently studied for its role in Alzheimer's disease. Our recent study in APP knockout (KO mice identified an important role for APP in modulating normal neuronal development in the retina. However the role APP plays in the adult retina and whether it is required for vision is unknown. In this study we evaluated the role of APP in retinal function and morphology comparing adult wildtype (WT and APP-KO mice. APP was expressed on neuronal cells of the inner retina, including horizontal, cone bipolar, amacrine and ganglion cells in WT mice. The function of the retina was assessed using the electroretinogram and although the rod photoreceptor responses were similar in APP-KO and WT mice, the post-photoreceptor, inner retinal responses of both the rod and cone pathways were reduced in APP-KO mice. These changes in inner retinal function did not translate to a substantial change in visual acuity as assessed using the optokinetic response or to changes in the gross cellular structure of the retina. These findings indicate that APP is not required for basic visual function, but that it is involved in modulating inner retinal circuitry.

  8. Possible involvement of cone opsins in distinct photoresponses of intrinsically photosensitive dermal chromatophores in tilapia Oreochromis niloticus.

    Directory of Open Access Journals (Sweden)

    Shyh-Chi Chen

    Full Text Available Dermal specialized pigment cells (chromatophores are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation.

  9. Activation of the molecular chaperone, sigma 1 receptor, preserves cone function in a murine model of inherited retinal degeneration.

    Science.gov (United States)

    Wang, Jing; Saul, Alan; Roon, Penny; Smith, Sylvia B

    2016-06-28

    Retinal degenerative diseases are major causes of untreatable blindness, and novel approaches to treatment are being sought actively. Here we explored the activation of a unique protein, sigma 1 receptor (Sig1R), in the treatment of PRC loss because of its multifaceted role in cellular survival. We used Pde6β(rd10) (rd10) mice, which harbor a mutation in the rod-specific phosphodiesterase gene Pde6β and lose rod and cone photoreceptor cells (PRC) within the first 6 wk of life, as a model for severe retinal degeneration. Systemic administration of the high-affinity Sig1R ligand (+)-pentazocine [(+)-PTZ] to rd10 mice over several weeks led to the rescue of cone function as indicated by electroretinographic recordings using natural noise stimuli and preservation of cone cells upon spectral domain optical coherence tomography and retinal histological examination. The protective effect appears to result from the activation of Sig1R, because rd10/Sig1R(-/-) mice administered (+)-PTZ exhibited no cone preservation. (+)-PTZ treatment was associated with several beneficial cellular phenomena including attenuated reactive gliosis, reduced microglial activation, and decreased oxidative stress in mutant retinas. To our knowledge, this is the first report that activation of Sig1R attenuates inherited PRC loss. The findings may have far-reaching therapeutic implications for retinal neurodegenerative diseases.

  10. RNAi-mediated gene suppression in a GCAP1(L151F cone-rod dystrophy mouse model.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Dominant mutations occurring in the high-affinity Ca(2+-binding sites (EF-hands of the GUCA1A gene encoding guanylate cyclase-activating protein 1 (GCAP1 cause slowly progressing cone-rod dystrophy (CORD in a dozen families worldwide. We developed a nonallele-specific adeno-associated virus (AAV-based RNAi knockdown strategy to rescue the retina degeneration caused by GCAP1 mutations. We generated three genomic transgenic mouse lines expressing wildtype (WT and L151F mutant mouse GCAP1 with or without a C-terminal GFP fusion. Under control of endogenous regulatory elements, the transgenes were expressed specifically in mouse photoreceptors. GCAP1(L151F and GCAP1(L151F-GFP transgenic mice presented with a late onset and slowly progressive photoreceptor degeneration, similar to that observed in human GCAP1-CORD patients. Transgenic expression of WT GCAP1-EGFP in photoreceptors had no adverse effect. Toward therapy development, a highly effective anti-mGCAP1 shRNA, mG1hp4, was selected from four candidate shRNAs using an in-vitro screening assay. Subsequently a self-complementary (sc AAV serotype 2/8 expressing mG1hp4 was delivered subretinally to GCAP1(L151F-GFP transgenic mice. Knockdown of the GCAP1(L151F-GFP transgene product was visualized by fluorescence live imaging in the scAAV2/8-mG1hp4-treated retinas. Concomitant with the mutant GCAP1-GFP fusion protein, endogenous GCAP1 decreased as well in treated retinas. We propose nonallele-specific RNAi knockdown of GCAP1 as a general therapeutic strategy to rescue any GCAP1-based dominant cone-rod dystrophy in human patients.

  11. Rod and cone pathway signalling is altered in the P2X7 receptor knock out mouse.

    Directory of Open Access Journals (Sweden)

    Kirstan A Vessey

    Full Text Available The P2X7 receptor (P2X7-R is expressed in the retina and brain and has been implicated in neurodegenerative diseases. However, whether it is expressed by neurons and plays a role as a neurotransmitter receptor has been the subject of controversy. In this study, we first show that the novel vesicular transporter for ATP, VNUT, is expressed in the retina, verifying the presence of the molecular machinery for ATP to act as neurotransmitter at P2X7-Rs. Secondly we show the presence of P2X7-R mRNA and protein in the retina and cortex and absence of the full length variant 1 of the receptor in the P2X7-R knock out (P2X7-KO mouse. The role of the P2X7-R in neuronal function of the retina was assessed by comparing the electroretinogram response of P2X7-KO with WT mice. The rod photoreceptor response was found to be similar, while both rod and cone pathway post-photoreceptor responses were significantly larger in P2X7-KO mice. This suggests that activation of P2X7-Rs modulates output of second order retinal neurons. In line with this finding, P2X7-Rs were found in the outer plexiform layer and on inner retinal cell classes, including horizontal, amacrine and ganglion cells. The receptor co-localized with conventional synapses in the IPL and was expressed on amacrine cells post-synaptic to rod bipolar ribbon synapses. In view of the changes in visual function in the P2X7-KO mouse and the immunocytochemical location of the receptor in the normal retina, it is likely the P2X7-R provides excitatory input to photoreceptor terminals or to inhibitory cells that shape both the rod and cone pathway response.

  12. Generation of a genetically encoded marker of rod photoreceptor outer segment growth and renewal

    Directory of Open Access Journals (Sweden)

    John J. Willoughby

    2011-10-01

    Vertebrate photoreceptors are specialized light sensing neurons. The photoreceptor outer segment is a highly modified cilium where photons of light are transduced into a chemical and electrical signal. The outer segment has the typical cilary axoneme but, in addition, it has a large number of densely packed, stacked, intramembranous discs. The molecular and cellular mechanisms that contribute to vertebrate photoreceptor outer segment morphogenesis are still largely unknown. Unlike typical cilia, the outer segment is continuously regenerated or renewed throughout the life of the animal through the combined process of distal outer segment shedding and proximal outer segment growth. The process of outer segment renewal was discovered over forty years ago, but we still lack an understanding of how photoreceptors renew their outer segments and few, if any, molecular mechanisms that regulate outer segment growth or shedding have been described. Our lack of progress in understanding how photoreceptors renew their outer segments has been hampered by the difficulty in measuring rates of renewal. We have created a new method that uses heat-shock induction of a fluorescent protein that can be used to rapidly measure outer segment growth rates. We describe this method, the stable transgenic line we created, and the growth rates observed in larval and adult rod photoreceptors using this new method. This new method will allow us to begin to define the genetic and molecular mechanisms that regulate rod outer segment renewal, a crucial aspect of photoreceptor function and, possibly, viability.

  13. Histamine Recycling Is Mediated by CarT, a Carcinine Transporter in Drosophila Photoreceptors.

    Science.gov (United States)

    Xu, Ying; An, Futing; Borycz, Jolanta A; Borycz, Janusz; Meinertzhagen, Ian A; Wang, Tao

    2015-12-01

    Histamine is an important chemical messenger that regulates multiple physiological processes in both vertebrate and invertebrate animals. Even so, how glial cells and neurons recycle histamine remains to be elucidated. Drosophila photoreceptor neurons use histamine as a neurotransmitter, and the released histamine is recycled through neighboring glia, where it is conjugated to β-alanine to form carcinine. However, how carcinine is then returned to the photoreceptor remains unclear. In an mRNA-seq screen for photoreceptor cell-enriched transporters, we identified CG9317, an SLC22 transporter family protein, and named it CarT (Carcinine Transporter). S2 cells that express CarT are able to take up carcinine in vitro. In the compound eye, CarT is exclusively localized to photoreceptor terminals. Null mutations of cart alter the content of histamine and its metabolites. Moreover, null cart mutants are defective in photoreceptor synaptic transmission and lack phototaxis. These findings reveal that CarT is required for histamine recycling at histaminergic photoreceptors and provide evidence for a CarT-dependent neurotransmitter trafficking pathway between glial cells and photoreceptor terminals.

  14. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Deepak A Lamba

    Full Text Available BACKGROUND: Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells. METHODOLOGY/PHYSICAL FINDINGS: In this report we have used a similar method to direct induced pluripotent stem cells (iPS from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers. CONCLUSIONS: This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells.

  15. STEREOLOGY AND SOME STRUCTURAL CORRELATES OF RETINAL AND PHOTORECEPTOR CELL FUNCTION

    Directory of Open Access Journals (Sweden)

    Terry M Mayhew

    2011-05-01

    Full Text Available The retina is the part of the eye which detects light, transduces it into nerve impulses and plays a significant role in visual perception. Sensitivity to light is multi-factorial and depends on the properties of photopigment molecules, their synthesis and incorporation into photoreceptor membranes and the neural circuitry between photoreceptor cells, bipolar neurons and ganglion neurons. In addition, it depends on structural factors such as the absolute and relative numbers of different types of photoreceptor neurons, their subcellular morphology, their distribution across the retina and the physical dimensions (especially surface areas and spatial arrangements of their photoreceptor membranes. At the molecular level, these membranes harbour photosensitive pigment molecules comprising transmembrane glycoproteins (opsins, which vary between photoreceptor cells and a non-protein chromophore. Phototransduction involves a conformational change in the chromophore and activation of an opsin. A transducer G protein, transducin, lowers levels of cGMP and triggers changes in membrane ion permeability including the closure of Na+ channels. This causes the plasmalemma to become less depolarized and the relative hyperpolarization stimulates ganglion cells whose axons form the optic nerve. Phosducin is a light-regulated phosphoprotein located in inner and outer segments of rod photoreceptor cells. It modulates phototransduction by binding to beta and gamma subunits of transducin. This review briefly illustrates ways in which stereology can contribute to our understanding of these processes by providing quantitative data on photoreceptor number, disk membrane surface area and the subcellular immunolocalisation of key molecules.

  16. A new photosensory function for simple photoreceptors, the intrinsically photoresponsive neurons of the sea slug Onchidium

    Directory of Open Access Journals (Sweden)

    Tsukasa Gotow

    2009-12-01

    Full Text Available Simple photoreceptors, namely intrinsically light-sensitive neurons without microvilli and/or cilia, have long been known to exist in the central ganglia of crayfish, Aplysia, Onchidium, and Helix. These simple photoreceptors are not only first-order photosensory cells, but also second-order neurons (interneurons, relaying several kinds of sensory synaptic inputs. Another important issue is that the photoresponses of these simple photoreceptors show very slow kinetics and little adaptation. These characteristics suggest that the simple photoreceptors of the Onchidium have a function in non-image-forming vision, different from classical eye photoreceptors used for cording dynamic images of vision. The cited literature provides evidence that the depolarizing and hyperpolarizing photoresponses of simple photoreceptors play a role in the long-lasting potentiation of synaptic transmission of excitatory and inhibitory sensory inputs, and as well as in the potentiation and the suppression of the subsequent behavioral outputs. In short, we suggest that simple photoreceptors operate in the general potentiation of synaptic transmission and subsequent motor output; i.e., they perform a new photosensory function.

  17. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  18. Photoreceptors and neural circuitry underlying phototaxis in insects.

    Science.gov (United States)

    Yamaguchi, Satoko; Heisenberg, Martin

    2011-01-01

    Visual behavior of insects has long been studied, but it is only recently that a wide variety of genetic tools has become available for its analysis. Perhaps the most basic visual behaviour is phototaxis, locomotion towards a source of light. It is known in many insects and has been studied for over a century but the neural network underlying it is little understood. We recently described in the fruit fly Drosophila how different photoreceptor types contribute to phototaxis. By blocking subsets of them we showed that at least four of the five types are involved. In this short review, we compare phototactic behaviour in fruit flies and other insects (especially honeybees), and discuss what is known about the underlying neural circuitry. :

  19. Stimulus-evoked outer segment changes in rod photoreceptors

    Science.gov (United States)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng

    2016-06-01

    Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.

  20. The cis-regulatory logic of the mammalian photoreceptor transcriptional network.

    Directory of Open Access Journals (Sweden)

    Timothy H-C Hsiau

    Full Text Available The photoreceptor cells of the retina are subject to a greater number of genetic diseases than any other cell type in the human body. The majority of more than 120 cloned human blindness genes are highly expressed in photoreceptors. In order to establish an integrative framework in which to understand these diseases, we have undertaken an experimental and computational analysis of the network controlled by the mammalian photoreceptor transcription factors, Crx, Nrl, and Nr2e3. Using microarray and in situ hybridization datasets we have produced a model of this network which contains over 600 genes, including numerous retinal disease loci as well as previously uncharacterized photoreceptor transcription factors. To elucidate the connectivity of this network, we devised a computational algorithm to identify the photoreceptor-specific cis-regulatory elements (CREs mediating the interactions between these transcription factors and their target genes. In vivo validation of our computational predictions resulted in the discovery of 19 novel photoreceptor-specific CREs near retinal disease genes. Examination of these CREs permitted the definition of a simple cis-regulatory grammar rule associated with high-level expression. To test the generality of this rule, we used an expanded form of it as a selection filter to evolve photoreceptor CREs from random DNA sequences in silico. When fused to fluorescent reporters, these evolved CREs drove strong, photoreceptor-specific expression in vivo. This study represents the first systematic identification and in vivo validation of CREs in a mammalian neuronal cell type and lays the groundwork for a systems biology of photoreceptor transcriptional regulation.

  1. Molecular characterization of Indonesia avian influenza virus

    Directory of Open Access Journals (Sweden)

    N.L.P.I. Dharmayanti

    2005-06-01

    Full Text Available Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1. Molecular basis of pathogenicity in HA cleavage site indicated that the isolates of avian influenza virus have multiple basic amino acid (B-X-B-R indicating that all of the isolates representing virulent avian influenza virus (highly pathogenic avian influenza virus.

  2. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available BACKGROUND: TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels. METHODOLOGY/PRINCIPAL FINDINGS: We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content. CONCLUSIONS/SIGNIFICANCE: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a

  3. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...... develops in a ship bottom raking accident or a collision with a floating object. The deformation involves a complex mixture of large plastic deformations, fracture and friction. The observed mode of deformation is idealised by a simplified, kinematically admissible deformation mode, and the rate...... of internal energy dissipation in plasticity, fracture and friction is quantified accordingly by analytical expressions. The idealised mode has two free parameters which are determined from the postulate that they adjust to give the least rate of energy dissipation. The theory is compared to a series...

  4. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1997-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...... of internal energy dissipation in plasticity,fracture and friction is quantified accordingly by analytical expressions. The idealised mode has two free parameters which are determined from the postulate that they adjust to give the least rate of energy dissipation. The theory is compared to a series...... of measurements. The coefficient of friction was not measured, so the calculation are presented for different realistic values and it is shown that for a coefficient of friction of about 0,2, there is a reasonably good agreement between theory and measurements for the inplane resistance force as well...

  5. Coning, symmetry and spherical frameworks

    CERN Document Server

    Schulze, Bernd

    2011-01-01

    In this paper, we combine separate works on (a) the transfer of infinitesimal rigidity results from an Euclidean space to the next higher dimension by coning, (b) the further transfer of these results to spherical space via associated rigidity matrices, and (c) the prediction of finite motions from symmetric infinitesimal motions at regular points of the symmetry-derived orbit rigidity matrix. Each of these techniques is reworked and simplified to apply across several metrics, including the Minkowskian metric $\\M^{d}$ and the hyperbolic metric $\\H^{d}$. This leads to a set of new results transferring infinitesimal and finite motions associated with corresponding symmetric frameworks among $\\E^{d}$, cones in $E^{d+1}$, $\\SS^{d}$, $\\M^{d}$, and $\\H^{d}$. We also consider the further extensions associated with the other Cayley-Klein geometries overlaid on the shared underlying projective geometry.

  6. Visual function and cortical organization in carriers of blue cone monochromacy.

    Science.gov (United States)

    Rossi, Ethan A; Achtman, Rebecca L; Guidon, Arnaud; Williams, David R; Roorda, Austin; Bavelier, Daphne; Carroll, Joseph

    2013-01-01

    Carriers of blue cone monochromacy have fewer cone photoreceptors than normal. Here we examine how this disruption at the level of the retina affects visual function and cortical organization in these individuals. Visual resolution and contrast sensitivity was measured at the preferred retinal locus of fixation and visual resolution was tested at two eccentric locations (2.5° and 8°) with spectacle correction only. Adaptive optics corrected resolution acuity and cone spacing were simultaneously measured at several locations within the central fovea with adaptive optics scanning laser ophthalmoscopy (AOSLO). Fixation stability was assessed by extracting eye motion data from AOSLO videos. Retinotopic mapping using fMRI was carried out to estimate the area of early cortical regions, including that of the foveal confluence. Without adaptive optics correction, BCM carriers appeared to have normal visual function, with normal contrast sensitivity and visual resolution, but with AO-correction, visual resolution was significantly worse than normal. This resolution deficit is not explained by cone loss alone and is suggestive of an associated loss of retinal ganglion cells. However, despite evidence suggesting a reduction in the number of retinal ganglion cells, retinotopic mapping showed no reduction in the cortical area of the foveal confluence. These results suggest that ganglion cell density may not govern the foveal overrepresentation in the cortex. We propose that it is not the number of afferents, but rather the content of the information relayed to the cortex from the retina across the visual field that governs cortical magnification, as under normal viewing conditions this information is similar in both BCM carriers and normal controls.

  7. Visual function and cortical organization in carriers of blue cone monochromacy.

    Directory of Open Access Journals (Sweden)

    Ethan A Rossi

    Full Text Available Carriers of blue cone monochromacy have fewer cone photoreceptors than normal. Here we examine how this disruption at the level of the retina affects visual function and cortical organization in these individuals. Visual resolution and contrast sensitivity was measured at the preferred retinal locus of fixation and visual resolution was tested at two eccentric locations (2.5° and 8° with spectacle correction only. Adaptive optics corrected resolution acuity and cone spacing were simultaneously measured at several locations within the central fovea with adaptive optics scanning laser ophthalmoscopy (AOSLO. Fixation stability was assessed by extracting eye motion data from AOSLO videos. Retinotopic mapping using fMRI was carried out to estimate the area of early cortical regions, including that of the foveal confluence. Without adaptive optics correction, BCM carriers appeared to have normal visual function, with normal contrast sensitivity and visual resolution, but with AO-correction, visual resolution was significantly worse than normal. This resolution deficit is not explained by cone loss alone and is suggestive of an associated loss of retinal ganglion cells. However, despite evidence suggesting a reduction in the number of retinal ganglion cells, retinotopic mapping showed no reduction in the cortical area of the foveal confluence. These results suggest that ganglion cell density may not govern the foveal overrepresentation in the cortex. We propose that it is not the number of afferents, but rather the content of the information relayed to the cortex from the retina across the visual field that governs cortical magnification, as under normal viewing conditions this information is similar in both BCM carriers and normal controls.

  8. Evolution of Avian Tumor Viruses

    Science.gov (United States)

    Virus-induced neoplastic diseases of poultry, namely Marek’s disease (MD), induced by a herpesvirus, and the avian leukosis and reticuloendotheliosis induced by retroviruses, can cause significant economic losses from tumor mortality as well as poor performance. Successful control of MD is and has ...

  9. Avian Paramyxovirus: A Brief Review.

    Science.gov (United States)

    Gogoi, P; Ganar, K; Kumar, S

    2017-02-01

    Avian paramyxoviruses (APMVs) have been reported from a wide variety of avian species around the world. Avian paramyxoviruses are economically significant because of the huge mortality and morbidity associated with it. Twelve different serotypes of APMV have been reported till date. Avian paramyxoviruses belong to the family Paramyxoviridae under genus Avulavirus. Newcastle disease virus (APMV-1) is the most characterized members among the APMV serotypes. Complete genome sequence of all twelve APMV serotypes has been published recently. In recent years, APMV-1 has attracted the virologists for its oncolytic activity and its use as a vaccine vector for both animals and humans. The recombinant APMV-based vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its minimum recombination frequency, modular nature of transcription and lack of DNA phase during its replication. Although insufficient data are available regarding other APMV serotypes, our understanding about the APMV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.

  10. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity.

    Science.gov (United States)

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.

  11. Identifying functional connections of the inner photoreceptors in Drosophila using Tango-Trace.

    Science.gov (United States)

    Jagadish, Smitha; Barnea, Gilad; Clandinin, Thomas R; Axel, Richard

    2014-08-06

    In Drosophila, the four inner photoreceptor neurons exhibit overlapping but distinct spectral sensitivities and mediate behaviors that reflect spectral preference. We developed a genetic strategy, Tango-Trace, that has permitted the identification of the connections of the four chromatic photoreceptors. Each of the four stochastically distributed chromatic photoreceptor subtypes make distinct connections in the medulla with four different TmY cells. Moreover, each class of TmY cells forms a retinotopic map in both the medulla and the lobula complex, generating four overlapping topographic maps that could carry different color information. Thus, the four inner photoreceptors transmit spectral information through distinct channels that may converge in both the medulla and lobula complex. These projections could provide an anatomic basis for color vision and may relay information about color to motion sensitive areas. Moreover, the Tango-Trace strategy we used may be applied more generally to identify neural circuits in the fly brain.

  12. Registration of RF Plasma Radiation in Ultra-Violet Range by Solar-blind Photoreceptor

    Science.gov (United States)

    Nguyen-Kuok, Shi; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    A spectrum response of a photoreceptor to the RF plasma radiation is determined in the present work by means of a spectrophotometer utilizing a gas-filled photoreceptor. A continuous radiation spectrum was observed in the wavelength interval of 190 - 270 nm. The photoreceptor allows measuring of absolute radiation taking into account the spectral sensitivity of the photoreceptor and the values of quantum output for the given wavelength. A continuous spectrum was observed in all three orders of magnitude of diffraction. Develop and test a technique for measuring the intensity of the plasma radiation in the UV wavelength range measured amount of discharge pulses can be used to determine the spectral sensitivity range of UV radiation receivers. Professor.

  13. Spectral sensitivity of light induced respiratory activity of photoreceptor mitochondria in the intact fly

    NARCIS (Netherlands)

    Tinbergen, J.; Stavenga, D.G.

    1987-01-01

    Fly Calliphora erythrocephala (white eyed) photoreceptors were investigated in intact, living animals by microspectrofluorometry in vivo. The fluorescence of mitochondrial flavoproteins was used to monitor transient changes in oxidative metabolism, which were induced by a test light following a stim

  14. Influence of dietary melatonin on photoreceptor survival in the rat retina: an ocular toxicity study.

    Science.gov (United States)

    Wiechmann, Allan F; Chignell, Colin F; Roberts, Joan E

    2008-02-01

    Previous studies have shown that melatonin treatment increases the susceptibility of retinal photoreceptors to light-induced cell death. The purpose of this study was to evaluate under various conditions the potential toxicity of dietary melatonin on retinal photoreceptors. Male and female Fischer 344 (non-pigmented) and Long-Evans (pigmented) rats were treated with daily single doses of melatonin by gavage for a period of 14 days early in the light period or early in the dark period. In another group, rats were treated 3 times per week with melatonin early in the light period, and then exposed to high intensity illumination (1000-1500 lx; HII) for 2h, and then returned to the normal cyclic lighting regime. At the end of the treatment periods, morphometric measurements of outer nuclear layer thickness (ONL; the layer containing the photoreceptor cell nuclei) were made at specific loci throughout the retinas. In male and female non-pigmented Fischer rats, melatonin administration increased the degree of photoreceptor cell death when administered during the nighttime and during the day when followed by exposure to HII. There were some modest effects of melatonin on photoreceptor cell death when administered to Fischer rats during the day or night without exposure to HII. Melatonin treatment caused increases in the degree of photoreceptor cell death when administered in the night to male pigmented Long-Evans rats, but melatonin administration during the day, either with or without exposure to HII, had little if any effect on photoreceptor cell survival. In pigmented female Long-Evans rats, melatonin administration did not appear to have significant effects on photoreceptor cell death in any treatment group. The results of this study confirm and extend previous reports that melatonin increases the susceptibility of photoreceptors to light-induced cell death in non-pigmented rats. It further suggests that during the dark period, melatonin administration alone (i.e., no

  15. Cone Penetrometer Off-Surface Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Smail, T.R.; French, p.J.; Huffman, R.K.; Hebert, P.S.

    1999-10-20

    Cone penetrometer technology accounts for approximately 50 percent of the subsurface drilling done at the Savannah River Site. This technology provides a means of collecting data for use in the characterization of the subsurface. The cone penetrometer consists of a steel cone attached to a pipe column that is hydraulically inserted into the ground. To allow researchers to accurately measure subsurface properties, without the inherent problems of cone penetrometer equipment, the Savannah River Technology Center has developed the Cone Penetrometer Off-Surface Sensor (CPOSS). The CPOSS design consists of a knife-blade mechanism mounted along the surface of a module capable of attaching to existing cone penetrometer equipment and being deployed at depths of up to 200 feet. CPOSS development is the subject of this report.

  16. The influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (Myctophidae)

    KAUST Repository

    de Busserolles, Fanny

    2014-06-13

    The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the

  17. Avian disease at the Salton Sea

    Science.gov (United States)

    Friend, M.

    2002-01-01

    A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907a??1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated

  18. g-Weak Contraction in Ordered Cone Rectangular Metric Spaces

    Directory of Open Access Journals (Sweden)

    S. K. Malhotra

    2013-01-01

    Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.

  19. Anatomy of the Hesse photoreceptor cell axonal system in the central nervous system of amphioxus.

    Science.gov (United States)

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Sherwood, Nancy M; Anadón, Ramón

    2006-01-01

    The present study reports the organization of the Hesse cell axonal system in the central nervous system of the amphioxus, with the use of a polyclonal antiserum raised against lamprey gonadotropin-releasing hormone-I (GnRH-I). In the spinal cord, the rhabdomeric photoreceptor cells of the bicellular organs were well labeled with this antibody. These cells sent smooth, straight, lateral processes that bent and became beaded as they passed ventrally and crossed to the contralateral side of the cord. There, the processes of several cells aggregated to give rise to a longitudinal fiber bundle. Beaded collaterals of these processes were directed to ventral neuropil and did not appear to contact giant Rohde cell axons. The crossed projections of the Hesse photoreceptors are compared with those of vertebrate retinal ganglion cells. Other antisera raised against GnRH weakly labeled rhabdomeric photoreceptors located dorsally in the brain, the Joseph cells. The finding that GnRH antibodies label amphioxus photoreceptor cells and axons is not definitive proof that the photoreceptors contain GnRH. Regardless of whether the antibody recognizes amphioxus GnRH, which has not yet been identified by structure, the antibody has revealed the processes of the Hesse photoreceptor cells.

  20. Photobiomodulation reduces photoreceptor death and regulates cytoprotection in early states of P23H retinal dystrophy

    Science.gov (United States)

    Kirk, Diana K.; Gopalakrishnan, Sandeep; Schmitt, Heather; Abroe, Betsy; Stoehr, Michele; Dubis, Adam; Carroll, Joseph; Stone, Jonathan; Valter, Krisztina; Eells, Janis

    2013-03-01

    Irradiation by light in the far-red to near-infrared (NIR) region of the spectrum (photobiomodulation, PBM) has been demonstrated to attenuate the severity of neurodegenerative disease in experimental and clinical studies. The purpose of this study was to test the hypothesis that 670 nm PBM would protect against the loss of retinal function and improve photoreceptor survival in a rodent model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated once per day with a 670 nm LED array (180 sec treatments at 50 mW/cm2; fluence 9 joules/cm2) (Quantum Devices Inc., Barneveld WI) from postnatal day (p) 16-20 or from p10-20. Sham-treated rats were restrained, but not exposed to NIR light. The status of the retina was determined at p22 by assessment of mitochondrial function, oxidative stress and cell death. In a second series of studies, retinal status was assessed at p30 by measuring photoreceptor function by ERG and retinal morphology by Spectral Domain Optical Coherence Tomography (SD-OCT). 670 nm PBM increased retinal mitochondrial cytochrome oxidase activity and upregulated the retina's production of the key mitochondrial antioxidant enzyme, MnSOD. PBM also attenuated photoreceptor cell loss and improved photoreceptor function. PBM protects photoreceptors in the developing P23H retina, by augmenting mitochondrial function and stimulating antioxidant protective pathways. Photobiomodulation may have therapeutic potential, where mitochondrial damage is a step in the death of photoreceptors.

  1. Migration, integration and maturation of photoreceptor precursors following transplantation in the mouse retina.

    Science.gov (United States)

    Warre-Cornish, Katherine; Barber, Amanda C; Sowden, Jane C; Ali, Robin R; Pearson, Rachael A

    2014-05-01

    Retinal degeneration leading to loss of photoreceptors is a major cause of untreatable blindness. Recent research has yielded definitive evidence for restoration of vision following the transplantation of rod photoreceptors in murine models of blindness, while advances in stem cell biology have enabled the generation of transplantable photoreceptors from embryonic stem cells. Importantly, the amount of visual function restored is dependent upon the number of photoreceptors that migrate correctly into the recipient retina. The developmental stage of the donor cells is important for their ability to migrate; they must be immature photoreceptor precursors. Little is known about how and when donor cell migration, integration, and maturation occurs. Here, we have performed a comprehensive histological analysis of the 6-week period following rod transplantation in mice. Donor cells migrate predominately as single entities during the first week undergoing a stereotyped sequence of morphological changes in their translocation from the site of transplantation, through the interphotoreceptor matrix and into the recipient retina. This includes initial polarization toward the outer nuclear layer (ONL), followed by formation of an apical attachment and rudimentary segment during migration into the ONL. Strikingly, acquisition of a nuclear architecture typical of mature rods was accelerated compared with normal development and a feature of migrating cells. Once within the ONL, precursors formed synaptic-like structures and outer segments in accordance with normal maturation. The restoration of visual function mediated by transplanted photoreceptors correlated with the later expression of rod α-transducin, achieving maximal function by 5 weeks.

  2. Vacuum Compatible Percussive Dynamic Cone Penetrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Honeybee Robotics proposes to develop a vacuum compatible percussive dynamic cone penetrometer (PDCP), for establishing soil bin characteristics, with the ultimate...

  3. Cone photopigments in nocturnal and diurnal procyonids.

    Science.gov (United States)

    Jacobs, G H; Deegan, J F

    1992-10-01

    Procyonids are small, New World carnivores distributed among some 6 genera. Electroretinogram (ERG) flicker photometry was used to measure the spectra of the cone photopigments for members of two nocturnal species, the raccoon (Procyon lotor) and the kinkajou (Potos flavus), and a diurnal species, the coati (Nasua nasua). Each of the 3 has a class of cone photopigment with maximum sensitivity in the middle to long wavelengths. The spectral positioning of this cone is different for the three. Whereas the raccoon and kinkajou are monochromatic, the diurnal coati is a dichromat having an additional class of cone photopigment with peak sensitivity close to 433 nm.

  4. Ionic emission from Taylor cones

    Science.gov (United States)

    Castro Reina, Sergio

    Electrified Taylor cones have been seen as an efficient way to generate thrust for space propulsion. Especially the pure ionic regime (PIR) combines a very high specific impulse (thrust per unit mass) and efficiency, which is very important to reduce fuel transportation costs. The PIR has been primarily based on electrosprays of liquid metals [Swatik and Hendricks 1968, Swatik 1969]. However, emissions dominated by or containing exclusively ions have also been observed from nonmetallic purely ionic substances, initially sulfuric acid [Perel et al. 1969], and more recently room temperature molten salts referred to as ionic liquids (ILs) [Romero-Sanz et al. 2003]. The recent use of the liquid metal ion source (LMIS) with ILs, becoming this "new" source to be known as ionic liquid ion source (ILIS) [Lozano and Martinez-Sanchez 2005], has shown important differences on the emission from Taylor cones with the traditional hollow capillary. This new source seems to be more flexible than the capillary [Paulo, Sergio, carlos], although its low emission level (low thrust) is an important drawback from the space propulsion point of view. Throughout the thesis I have studied some aspects of the ionic emission from ionic liquid Taylor cones and the influence of the properties of the liquids and the characteristic of source on the emission. I have unraveled the reason why ILIS emits such low currents (˜200 nA) and found a way to solve this problem increasing the current up to capillary levels (˜1000 nA) [Castro and Fernandez de la Mora 2009]. I have also tried to reduce ion evaporation while reducing the emitted droplet size in order to increase the thrust generated while keeping the efficiency relatively high and I have measured the energy of evaporation of several cations composing ionic liquids, mandatory step to understand ionic evaporation.

  5. Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Contestabile, Pasquale

    2009-01-01

    This paper discusses a new type of Wave Energy Converter (WEC) named Seawave Slot-Cone Generator (SSG). The SSG is a WEC of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level in which the water of incoming waves is stored...... on sloping walls constituting the structure. The research is intended to be of direct use to engineers analyzing design and stability of this peculiar kind of coastal structure....

  6. Nested-cone transformer antenna

    Science.gov (United States)

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  7. Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii.

    Science.gov (United States)

    Koenig, Kristen M; Sun, Peter; Meyer, Eli; Gross, Jeffrey M

    2016-09-01

    Photoreception is a ubiquitous sensory ability found across the Metazoa, and photoreceptive organs are intricate and diverse in their structure. Although the morphology of the compound eye in Drosophila and the single-chambered eye in vertebrates have elaborated independently, the amount of conservation within the 'eye' gene regulatory network remains controversial, with few taxa studied. To better understand the evolution of photoreceptive organs, we established the cephalopod Doryteuthis pealeii as a lophotrochozoan model for eye development. Utilizing histological, transcriptomic and molecular assays, we characterize eye formation in Doryteuthis pealeii Through lineage tracing and gene expression analyses, we demonstrate that cells expressing Pax and Six genes incorporate into the lens, cornea and iris, and the eye placode is the sole source of retinal tissue. Functional assays demonstrate that Notch signaling is required for photoreceptor cell differentiation and retinal organization. This comparative approach places the canon of eye research in traditional models into perspective, highlighting complexity as a result of both conserved and convergent mechanisms.

  8. Calcium-dependent potassium current in barnacle photoreceptor.

    Science.gov (United States)

    Bolsover, S R

    1981-12-01

    When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays to reach a steady value approximately 1 min after depolarization began. The increase in current to the maximum at 4-6s from the minimum at approximately 500 ms is termed the "late current." It is maximum for depolarizations to around +25 mV and is reduced in amplitude at more positive potentials. It is not observed when the membrane is depolarized to potentials more positive than +60 mV. The late current is inhibited by external cobaltous ion and external tetraethylammonium ion, and shows a requirement for external calcium ion. When the calcium-sequestering agent EGTA is injected, the late current is abolished. Illumination of a cell under voltage clamp reduces the amplitude of the late current recorded subsequently in the dark. On the basis of the voltage dependence and pharmacology of the late current, it is proposed that the current is a calcium-dependent potassium current.

  9. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  10. Avian malaria in New Zealand.

    Science.gov (United States)

    Schoener, E R; Banda, M; Howe, L; Castro, I C; Alley, M R

    2014-07-01

    Avian malaria parasites of the genus Plasmodium have the ability to cause morbidity and mortality in naïve hosts, and their impact on the native biodiversity is potentially serious. Over the last decade, avian malaria has aroused increasing interest as an emerging disease in New Zealand with some endemic avian species, such as the endangered mohua (Mohua ochrocephala), thought to be particularly susceptible. To date, avian malaria parasites have been found in 35 different bird species in New Zealand and have been diagnosed as causing death in threatened species such as dotterel (Charadrius obscurus), South Island saddleback (Philesturnus carunculatus carunculatus), mohua, hihi (Notiomystis cincta) and two species of kiwi (Apteryx spp.). Introduced blackbirds (Turdus merula) have been found to be carriers of at least three strains of Plasmodium spp. and because they are very commonly infected, they are likely sources of infection for many of New Zealand's endemic birds. The spread and abundance of introduced and endemic mosquitoes as the result of climate change is also likely to be an important factor in the high prevalence of infection in some regions and at certain times of the year. Although still limited, there is a growing understanding of the ecology and epidemiology of Plasmodium spp. in New Zealand. Molecular biology has played an important part in this process and has markedly improved our understanding of the taxonomy of the genus Plasmodium. This review presents our current state of knowledge, discusses the possible infection and disease outcomes, the implications for host behaviour and reproduction, methods of diagnosis of infection, and the possible vectors for transmission of the disease in New Zealand.

  11. Using EGEE against avian flu

    CERN Multimedia

    2006-01-01

    During April 2006 avian flu was spreading across the world with the potential of turning into a pandemic, a drug to treat the deadly H5N1 strain was needed. Such a task required the huge processing power provided by EGEE, which analysed 300 000 possible drug components for their suitability. This map shows the network of computer centres and their activity during this time.

  12. Gender determination of avian embryo

    Science.gov (United States)

    Daum, Keith A.; Atkinson, David A.

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  13. Avian zoonoses – a review

    Directory of Open Access Journals (Sweden)

    Kozdruń Wojciech

    2015-06-01

    Full Text Available Birds are one of the most interesting and most colourful groups of animals, but they can also be a source of zoonotic factors dangerous for humans. This paper describes the threats to human health from contact with birds. The most vulnerable occupational groups associated with birds are veterinarians, owners of poultry farms, breeders of ornamental birds, zoo personnel, and poultry slaughterhouse workers. Ornithosis is the most dangerous zoonosis of the avian bacterial diseases. Among other hazardous bacterial factors, Salmonella and Campylobacter are responsible for gastrointestinal diseases. Avian influenza is the most dangerous of the viral diseases. It should be noted, however, that avian influenza is a disease of birds, not humans. The recent threat which has appeared is infection with West Nile virus. The results of serological examinations of birds and humans indicate that the virus exists in our ecosystem. Allergic alveolitis connected with the pigeon tick and the Dermanyssus gallinae mite also merits mention. In any case, where people have contact with birds or their droppings and secretions, special precautions should be taken. This way the negative effects of birds on human health can be minimised or eliminated

  14. Cone Penetrometer N Factor Determination Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2014-03-05

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  15. Contribution of calpains to photoreceptor cell death in N-methyl-N-nitrosourea-treated rats.

    Science.gov (United States)

    Oka, Takayuki; Nakajima, Takeshi; Tamada, Yoshiyuki; Shearer, Thomas R; Azuma, Mitsuyoshi

    2007-03-01

    The purpose of the present study was to determine if proteolysis by the calcium-dependent enzyme calpains (EC 3.4.22.17) contributed to retinal cell death in a rat model of photoreceptor degeneration induced by intraperitoneal injection of N-methyl-N-nitrosourea (MNU). Retinal degeneration was evaluated by H&E staining, and cell death was determined by TUNEL assay. Total calcium in retina was measured by atomic absorption spectrophotometry. Activation of calpains was determined by casein zymography and immunoblotting. Proteolysis of alpha-spectrin and p35 (regulator of Cdk5) were evaluated by immunoblotting. Calpain inhibitor SNJ-1945 was orally administrated to MNU-treated rats to test drug efficacy. MNU decreased the thickness of photoreceptor cell layer, composed of the outer nuclear layer (ONL) and outer segment (OS). Numerous cells in the ONL showed positive TUNEL staining. Total calcium was increased in retina after MNU. Activation of calpains and calpain-specific proteolysis of alpha-spectrin were observed after MNU injection. Oral administration of SNJ-1945 to MNU-treated rats showed a significant protective effect against photoreceptor cell loss, confirming involvement of calpains in photoreceptor degeneration. Conversion of p35 to p25 was well correlated with calpain activation, suggesting prolonged activation of Cdk5/p25 as a possible downstream mechanism for MNU-induced photoreceptor cell death. SNJ-1945 reduced photoreceptor cells death, even though MNU is one of the most severe models of photoreceptor cell degeneration. Oral calpain inhibitor SNJ-1945 may be a candidate for testing as a medication against retinal degeneration in retinitis pigmentosa.

  16. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.

    Science.gov (United States)

    Saint-Charles, Alexandra; Michard-Vanhée, Christine; Alejevski, Faredin; Chélot, Elisabeth; Boivin, Antoine; Rouyer, François

    2016-10-01

    Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc.

  17. Presynaptic [Ca2+] and GCAPs: aspects on the structure and function of photoreceptor ribbon synapses

    Directory of Open Access Journals (Sweden)

    Frank eSchmitz

    2014-02-01

    Full Text Available Changes in intracellular calcium ions [Ca2+] play important roles in photoreceptor signalling. Consequently, intracellular [Ca2+] levels need to be tightly controlled. In the light-sensitive outer segments (OS of photoreceptors, Ca2+ regulates the activity of retinal guanylate cyclases (ret-GCs thus playing a central role in phototransduction and light-adaptation by restoring light-induced decreases in cGMP. In the synaptic terminals, changes of intracellular Ca2+ trigger various aspects of neurotransmission. Photoreceptors employ tonically active ribbon synapses that encode light-induced, graded changes of membrane potential into different rates of synaptic vesicle exocytosis. The active zones of ribbon synapses contain large electron-dense structures, synaptic ribbons, that are associated with large numbers of synaptic vesicles. Synaptic coding at ribbon synapses differs from synaptic coding at conventional (phasic synapses. Recent studies revealed new insights how synaptic ribbons are involved in this process. This review focuses on the regulation of [Ca2+] in presynaptic photoreceptor terminals and on the function of a particular Ca2+-regulated protein, the neuronal calcium sensor protein GCAP2 (guanylate cyclase-activating protein-2 in the photoreceptor ribbon synapse. GCAP2, an EF hand-containing protein plays multiple roles in the OS and in the photoreceptor synapse. In the OS, GCAP2 works as a Ca2+-sensor within a Ca2+-regulated feedback loop that adjusts cGMP levels. In the photoreceptor synapse, GCAP2 binds to RIBEYE, a component of synaptic ribbons, and mediates Ca2+-dependent plasticity at that site. Possible mechanisms are discussed.

  18. Protective gene expression changes elicited by an inherited defect in photoreceptor structure.

    Directory of Open Access Journals (Sweden)

    Yagya V Sharma

    Full Text Available Inherited defects in retinal photoreceptor structure impair visual transduction, disrupt relationship with the retinal pigment epithelium (RPE, and compromise cell viability. A variety of progressive retinal degenerative diseases can result, and knowledge of disease etiology remains incomplete. To investigate pathogenic mechanisms in such instances, we have characterized rod photoreceptor and retinal gene expression changes in response to a defined insult to photoreceptor structure, using the retinal degeneration slow (rds mouse model. Global gene expression profiling was performed on flow-sorted rds and wild-type rod photoreceptors immediately prior and subsequent to times at which OSs are normally elaborated. Dysregulated genes were identified via microarray hybridization, and selected candidates were validated using quantitative PCR analyses. Both the array and qPCR data revealed that gene expression changes were generally modest and dispersed amongst a variety of known functional networks. Although genes showing major (>5-fold differential expression were identified in a few instances, nearly all displayed transient temporal profiles, returning to WT levels by postnatal day (P 21. These observations suggest that major defects in photoreceptor cell structure may induce early homeostatic responses, which function in a protective manner to promote cell viability. We identified a single key gene, Egr1, that was dysregulated in a sustained fashion in rds rod photoreceptors and retina. Egr1 upregulation was associated with microglial activation and migration into the outer retina at times subsequent to the major peak of photoreceptor cell death. Interestingly, this response was accompanied by neurotrophic factor upregulation. We hypothesize that activation of Egr1 and neurotrophic factors may represent a protective immune mechanism which contributes to the characteristically slow retinal degeneration of the rds mouse model.

  19. Mechanochemical regulation of growth cone motility

    Directory of Open Access Journals (Sweden)

    Patrick C Kerstein

    2015-07-01

    Full Text Available Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis.

  20. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  1. Photoreceptor effects on plant biomass, resource allocation, and metabolic state.

    Science.gov (United States)

    Yang, Deyue; Seaton, Daniel D; Krahmer, Johanna; Halliday, Karen J

    2016-07-05

    Plants sense the light environment through an ensemble of photoreceptors. Members of the phytochrome class of light receptors are known to play a critical role in seedling establishment, and are among the best-characterized plant signaling components. Phytochromes also regulate adult plant growth; however, our knowledge of this process is rather fragmented. This study demonstrates that phytochrome controls carbon allocation and biomass production in the developing plant. Phytochrome mutants have a reduced CO2 uptake, yet overaccumulate daytime sucrose and starch. This finding suggests that even though carbon fixation is impeded, the available carbon resources are not fully used for growth during the day. Supporting this notion, phytochrome depletion alters the proportion of day:night growth. In addition, phytochrome loss leads to sizeable reductions in overall growth, dry weight, total protein levels, and the expression of CELLULOSE SYNTHASE-LIKE genes. Because cellulose and protein are major constituents of plant biomass, our data point to an important role for phytochrome in regulating these fundamental components of plant productivity. We show that phytochrome loss impacts core metabolism, leading to elevated levels of tricarboxylic acid cycle intermediates, amino acids, sugar derivatives, and notably the stress metabolites proline and raffinose. Furthermore, the already growth-retarded phytochrome mutants are less responsive to growth-inhibiting abiotic stresses and have elevated expression of stress marker genes. This coordinated response appears to divert resources from energetically costly biomass production to improve resilience. In nature, this strategy may be activated in phytochrome-disabling, vegetation-dense habitats to enhance survival in potentially resource-limiting conditions.

  2. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    The avian vocal organ, the syrinx, is a specialized structure located rather inaccessibly in an air sac close to the heart where the trachea bifurcates into the two primary bronchi. The syrinx of different avian taxa varies so much in position and morphology that it has been used for taxonomy. It...

  3. A role for prenylated rab acceptor 1 in vertebrate photoreceptor development

    Directory of Open Access Journals (Sweden)

    Dickison Virginia M

    2012-12-01

    Full Text Available Abstract Background The rd1 mouse retina is a well-studied model of retinal degeneration where rod photoreceptors undergo cell death beginning at postnatal day (P 10 until P21. This period coincides with photoreceptor terminal differentiation in a normal retina. We have used the rd1 retina as a model to investigate early molecular defects in developing rod photoreceptors prior to the onset of degeneration. Results Using a microarray approach, we performed gene profiling comparing rd1 and wild type (wt retinas at four time points starting at P2, prior to any obvious biochemical or morphological differences, and concluding at P8, prior to the initiation of cell death. Of the 143 identified differentially expressed genes, we focused on Rab acceptor 1 (Rabac1, which codes for the protein Prenylated rab acceptor 1 (PRA1 and plays an important role in vesicular trafficking. Quantitative RT-PCR analysis confirmed reduced expression of PRA1 in rd1 retina at all time points examined. Immunohistochemical observation showed that PRA1-like immunoreactivity (LIR co-localized with the cis-Golgi marker GM-130 in the photoreceptor as the Golgi translocated from the perikarya to the inner segment during photoreceptor differentiation in wt retinas. Diffuse PRA1-LIR, distinct from the Golgi marker, was seen in the distal inner segment of wt photoreceptors starting at P8. Both plexiform layers contained PRA1 positive punctae independent of GM-130 staining during postnatal development. In the inner retina, PRA1-LIR also colocalized with the Golgi marker in the perinuclear region of most cells. A similar pattern was seen in the rd1 mouse inner retina. However, punctate and significantly reduced PRA1-LIR was present throughout the developing rd1 inner segment, consistent with delayed photoreceptor development and abnormalities in Golgi sorting and vesicular trafficking. Conclusions We have identified genes that are differentially regulated in the rd1 retina at early

  4. Rapid cohort generation and analysis of disease spectrum of large animal model of cone dystrophy.

    Directory of Open Access Journals (Sweden)

    Corinne Kostic

    Full Text Available Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.

  5. Schiff base protonation changes in Siberian hamster ultraviolet cone pigment photointermediates.

    Science.gov (United States)

    Mooney, Victoria L; Szundi, Istvan; Lewis, James W; Yan, Elsa C Y; Kliger, David S

    2012-03-27

    Molecular structure and function studies of vertebrate ultraviolet (UV) cone visual pigments are needed to understand the molecular evolution of these photoreceptors, which uniquely contain unprotonated Schiff base linkages between the 11-cis-retinal chromophore and the opsin proteins. In this study, the Siberian hamster ultraviolet cone pigment (SHUV) was expressed and purified in an n-dodecyl-β-D-maltoside suspension for optical characterization. Time-resolved absorbance measurements, over a spectral range from 300 to 700 nm, were taken for the purified pigment at time delays from 30 ns to 4.64 s after photoexcitation using 7 ns pulses of 355 nm light. The resulting data were fit globally to a sum of exponential functions after noise reduction using singular-value decomposition. Four exponentials best fit the data with lifetimes of 1.4 μs, 210 μs, 47 ms, and 1 s. The first photointermediate species characterized here is an equilibrated mixture similar to the one formed after rhodopsin's Batho intermediate decays into equilibrium with its successor, BSI. The extremely large red shift of the SHUV Batho component relative to the pigment suggests that SHUV Batho has a protonated Schiff base and that the SHUV cone pigment itself has an unprotonated Schiff base. In contrast to SHUV Batho, the portion of the equilibrated mixture's spectrum corresponding to SHUV BSI is well fit by a model spectrum with an unprotonated Schiff base. The spectra of the next two photointermediate species revealed that they both have unprotonated Schiff bases and suggest they are analogous to rhodopsin's Lumi I and Lumi II species. After decay of SHUV Lumi II, the correspondence with rhodopsin photointermediates breaks down and the next photointermediate, presumably including the G protein-activating species, is a mixture of protonated and unprotonated Schiff base photointermediate species.

  6. The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling.

    Science.gov (United States)

    Stenesen, Drew; Moehlman, Andrew T; Krämer, Helmut

    2015-12-14

    Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. Carcinine accumulates in the lamina of carT flies. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step to the histamine-carcinine cycle.

  7. The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling

    Science.gov (United States)

    Stenesen, Drew; Moehlman, Andrew T; Krämer, Helmut

    2015-01-01

    Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. Carcinine accumulates in the lamina of carT flies. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step to the histamine–carcinine cycle. DOI: http://dx.doi.org/10.7554/eLife.10972.001 PMID:26653853

  8. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells

    Directory of Open Access Journals (Sweden)

    Yukari Komuta

    2016-06-01

    Full Text Available Direct reprogramming is a promising, simple and low-cost approach to generate target cells from somatic cells without using induced pluripotent stem cells. Recently, peripheral blood mononuclear cells (PBMCs have attracted considerable attention as a somatic cell source for reprogramming. As a cell source, PBMCs have an advantage over dermal fibroblasts with respect to the ease of collecting tissues. Based on our studies involving generation of photosensitive photoreceptor cells from human iris cells and human dermal fibroblasts by transduction of photoreceptor-related transcription factors via retrovirus vectors, we transduced these transcription factors into PBMCs via Sendai virus vectors. We found that retinal disease-related genes were efficiently detected in CRX-transduced cells, most of which are crucial to photoreceptor functions. In functional studies, a light-induced inward current was detected in some CRX-transduced cells. Moreover, by modification of the culture conditions including additional transduction of RAX1 and NEUROD1, we found a greater variety of retinal disease-related genes than that observed in CRX-transduced PBMCs. These data suggest that CRX acts as a master control gene for reprogramming PBMCs into photoreceptor-like cells and that our induced photoreceptor-like cells might contribute to individualized drug screening and disease modeling of inherited retinal degeneration.

  9. Use of Hydrogen as a Novel Therapeutic Strategy Against Photoreceptor Degeneration in Retinitis Pigmentosa Patients.

    Science.gov (United States)

    Tao, Ye; Geng, Lei; Wang, Liqiang; Xu, Weiwei; Qin, Limin; Peng, Guanghua; Huang, Yi Fei; Yang, Ji xue

    2016-03-08

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterized by progressive photoreceptor apoptosis. Reactive oxygen species (ROS) have been recognized as critical initiators of the photoreceptor apoptosis in RP. Photoreceptor survival in RP mutants will not only require the inhibition of effectors of apoptotic machinery, but also the elimination of the initiating upstream signals, such as ROS. These cytotoxic ROS should be neutralized by the antioxidant defense system, otherwise they would interact with the macromolecules essential for photoreceptor survival. Hydrogen is a promising gaseous agent that has come to the forefront of therapeutic research over the last few years. It has been verified that hydrogen is capable of neutralizing the cytotoxic ROS selectively, rectifying abnormities in the apoptotic cascades, and attenuating the related inflammatory response. Hydrogen is so mild that it does not disturb the metabolic oxidation-reduction reactions or disrupt the physiologic ROS involved in cell signaling. Based on these findings, we hypothesize that hydrogen might be an effective therapeutic agent to slow or prevent photoreceptor degeneration in RP retinas. It is a logical step to test hydrogen for therapeutic use in multiple RP animal models, and ultimately in human RP patients.

  10. Whirling skirts and rotating cones

    CERN Document Server

    Guven, Jemal; Müller, Martin Michael

    2013-01-01

    Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, the second is the Noether current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented, which bear a suggestive resemblance to the observ...

  11. Associative Cones and Integrable Systems

    Institute of Scientific and Technical Information of China (English)

    Chuu-Lian TERNG; Shengli KONG; Erxiao WANG

    2006-01-01

    We identify R7 as the pure imaginary part of octonions. Then the multiplication in octonions gives a natural almost complex structure for the unit sphere S6. It is known that a cone over a surface M in S6 is an associative submanifold of R7 if and only if M is almost complex in S6. In this paper, we show that the Gauss-Codazzi equation for almost complex curves in S6 are the equation for primitive maps associated to the 6-symmetric space G2/T2, and use this to explain some of the known results. Moreover, the equation for S1-symmetric almost complex curves in S6 is the periodic Toda lattice, and a discussion of periodic solutions is given.

  12. Molecular patterns of avian influenza A viruses

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; LEI FuMin; WANG ShengYue; ZHOU YanHong; LI TianXian

    2008-01-01

    Avian influenza A viruses could get across the species barrier and be fatal to humans. Highly patho-genic avian influenza H5N1 virus was an example. The mechanism of interspecies transmission is not clear as yet. In this research, the protein sequences of 237 influenza A viruses with different subtypes were transformed into pseudo-signals. The energy features were extracted by the method of wavelet packet decomposition and used for virus classification by the method of hierarchical clustering. The clustering results showed that five patterns existed in avian influenza A viruses, which associated with the phenotype of interspecies transmission, and that avian viruses with patterns C and E could across species barrier and those with patterns A, B and D might not have the abilities. The results could be used to construct an early warning system to predict the transmissibility of avian influenza A viruses to humans.

  13. Analysis of Avian Hepatitis E Virus from Chickens, China

    OpenAIRE

    Zhao, Qin; Zhou, En Min; Dong, Shi Wei; Qiu, Hong Kai; Zhang, Lu; Hu, Shou Bin; Zhao, Fei Fei; Jiang, Shi Jin; Sun, Ya Ni

    2010-01-01

    Avian hepatitis E virus (HEV) has been identified in chickens; however, only 4 complete or near-complete genomic sequences have been reported. We found that the near-complete genomic sequence of avian HEV in chickens from China shared the highest identity (98.3%) with avian HEV from Europe and belonged to avian HEV genotype 3.

  14. Analysis of avian hepatitis E virus from chickens, China.

    Science.gov (United States)

    Zhao, Qin; Zhou, En Min; Dong, Shi Wei; Qiu, Hong Kai; Zhang, Lu; Hu, Shou Bin; Zhao, Fei Fei; Jiang, Shi Jin; Sun, Ya Ni

    2010-09-01

    Avian hepatitis E virus (HEV) has been identified in chickens; however, only 4 complete or near-complete genomic sequences have been reported. We found that the near-complete genomic sequence of avian HEV in chickens from China shared the highest identity (98.3%) with avian HEV from Europe and belonged to avian HEV genotype 3.

  15. An alternative approach for a distance inequality associated with the second-order cone and the circular cone

    Directory of Open Access Journals (Sweden)

    Xin-He Miao

    2016-11-01

    Full Text Available Abstract It is well known that the second-order cone and the circular cone have many analogous properties. In particular, there exists an important distance inequality associated with the second-order cone and the circular cone. The inequality indicates that the distances of arbitrary points to the second-order cone and the circular cone are equivalent, which is crucial in analyzing the tangent cone and normal cone for the circular cone. In this paper, we provide an alternative approach to achieve the aforementioned inequality. Although the proof is a bit longer than the existing one, the new approach offers a way to clarify when the equality holds. Such a clarification is helpful for further study of the relationship between the second-order cone programming problems and the circular cone programming problems.

  16. Physiologically driven avian vocal synthesizer

    Science.gov (United States)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  17. Shaggy Photoreceptors with Subfoveal Fluid Associated with a Distant Choroidal Melanoma

    Directory of Open Access Journals (Sweden)

    Ann Q. Tran

    2015-01-01

    Full Text Available Purpose. To describe the enhanced depth imaging optical coherence tomography (EDI-OCT findings in a patient with an extra macula choroidal melanoma before and after treatment. Methods. Observational case report. Results. A 45 year-old Caucasian male patient was referred to retina clinic for management of choroidal melanoma. Examination revealed a nasal choroidal melanoma while EDI-OCT illustrated subfoveal fluid pocket with elongated shaggy photoreceptors distant and separate from the tumor. The patient was treated with plaque brachytherapy and intravitreal bevacizumab. One week after plaque removal, there was a dramatic reduction in the shaggy photoreceptors. Conclusion. Choroidal melanomas have effects that are not localized to the area of the tumor. This loculated pocket of subretinal fluid and coinciding changes to photoreceptor morphology may be related to global changes in choroidal function or release of tumor related cytokines.

  18. Multiple elliptic gamma functions associated to cones

    CERN Document Server

    Winding, Jacob

    2016-01-01

    We define generalizations of the multiple elliptic gamma functions and the multiple sine functions, associated to good rational cones. We explain how good cones are related to collections of $SL_r(\\mathbb{Z})$-elements and prove that the generalized multiple sine and multiple elliptic gamma functions enjoy infinite product representations and modular properties determined by the cone. This generalizes the modular properties of the elliptic gamma function studied by Felder and Varchenko, and the results about the usual multiple sine and elliptic gamma functions found by Narukawa.

  19. Areas and volumes for null cones

    CERN Document Server

    Grant, James D E

    2010-01-01

    Motivated by recent work of Choquet-Bruhat, Chrusciel, and Martin-Garcia, we prove monotonicity properties and comparison results for the area of slices of the null cone of a point in a Lorentzian manifold. We also prove volume comparison results for subsets of the null cone analogous to the Bishop-Gromov relative volume monotonicity theorem and Guenther's volume comparison theorem. We briefly discuss how these estimates may be used to control the null second fundamental form of slices of the null cone in Ricci-flat Lorentzian four-manifolds with null curvature bounded above.

  20. Chuanshi Brand Tri-cone Roller Bit

    Institute of Scientific and Technical Information of China (English)

    Chen Xilong; Shen Zhenzhong; Yuan Xiaoyi

    1997-01-01

    @@ Compared with other types of bits, the tri-cone roller bit has the advantages of excellent comprehensive performance, low price, wide usage range. It is free of formation limits. The tri-cone roller bit accounts for 90% of the total bits in use. The Chengdu Mechanical Works, as a major manufacturer of petroleum mechanical products and one of the four major tri-cone roller bit factories in China,has produced 120 types of bits in seven series and 19 sizes since 1967. The bits manufactured by the factory are not only sold to the domestic oilfields, but also exported to Japan, Thailand, Indonesia, the Philippines and the Middle East.

  1. Parafoveal retinal cone mosaic imaging in children with ultra-compact switchable SLO/OCT handheld probe (Conference Presentation)

    Science.gov (United States)

    LaRocca, Francesco; Nankivil, Derek; DuBose, Theodore B.; Toth, Cynthia A.; Farsiu, Sina; Izatt, Joseph A.

    2016-03-01

    In vivo photoreceptor imaging has enhanced the way vision scientists and ophthalmologists understand the retinal structure, function, and etiology of numerous retinal pathologies. However, the complexity and large footprint of current systems capable of resolving photoreceptors has limited imaging to patients who are able to sit in an upright position and fixate for several minutes. Unfortunately, this excludes an important fraction of patients including bedridden patients, small children, and infants. Here, we show that our dual-modality, high-resolution handheld probe with a weight of only 94 g is capable of visualizing photoreceptors in supine children. Our device utilizes a microelectromechanical systems (MEMS) scanner and a novel telescope design to achieve over an order of magnitude reduction in size compared to similar systems. The probe has a 7° field of view and a lateral resolution of 8 µm. The optical coherence tomography (OCT) system has an axial resolution of 7 µm and a sensitivity of 101 dB. High definition scanning laser ophthalmoscopy (SLO) and OCT images were acquired from children ranging from 14 months to 12 years of age with and without pathology during examination under anesthesia in the operating room. Parafoveal cone imaging was shown using the SLO arm of this device without adaptive optics using a 3° FOV for the first time in children under 4 years old. This work lays the foundation for pediatric research, which will improve understanding of retinal development, maldevelopment and early onset of diseases at the cellular level during the beginning stages of human growth.

  2. Histochemical study of retinal photoreceptors development during pre- and postnatal period and their association with retinal pigment epithelium

    Directory of Open Access Journals (Sweden)

    Vahid Ebrahimi

    2014-07-01

    Conclusion: According to our findings, we suggest that the generation of the eye photoreceptors begins from pre- natal period and their final differentiations will continue to postnatal period. Glycoconjugates including (β-D-Gal [1–3]-D-GalNac and (β-D-Gal terminal sugars play a critical role in the pre- and postnatal development and differentiation of retinal photoreceptors.

  3. Coexpression of three middle wavelength-absorbing visual pigments in sexually dimorphic photoreceptors of the butterfly Colias erate

    NARCIS (Netherlands)

    Ogawa, Yuri; Awata, Hiroko; Wakakuwa, Motohiro; Kinoshita, Michiyo; Stavenga, Doekele G.; Arikawa, Kentaro

    2012-01-01

    The tiered ommatidia of the Eastern Pale Clouded yellow butterfly, Colias erate, contain nine photoreceptor cells, four of which contribute their rhabdomeral microvilli to the distal tier of the rhabdom. We analyzed the visual pigments and spectral sensitivities of these distal photoreceptors in bot

  4. Correlation Between Cone Penetration Rate And Measured Cone Penetration Parameters In Silty Soils

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2013-01-01

    penetration tests with varying penetration rates conducted at a test site where the subsoil primary consists of sandy silt. It is shown how a reduced penetration rate influences the cone penetration measurements e.g. the cone resistance, pore pressure, and sleeve friction.......This paper shows, how a change in cone penetration rate affects the cone penetration measurements, hence the cone resistance, pore pressure, and sleeve friction in silty soil. The standard rate of penetration is 20 mm/s, and it is generally accepted that undrained penetration occurs in clay while...... drained penetration occurs in sand. When lowering the penetration rate, the soil pore water starts to dissipate and a change in the drainage condition is seen. In intermediate soils such as silty soils, the standard cone penetration rate may result in a drainage condition that could be undrained...

  5. No evidence for a genetic blueprint: The case of the "complex" mammalian photoreceptor

    Directory of Open Access Journals (Sweden)

    G Kumaramanickavel

    2015-01-01

    Full Text Available Despite the intensity of the search for genes causing inherited retinal degenerations over the past 3 decades, of the approximately 200 disease genes identified to date, all appear to be ordinary housekeeping genes specifying proteins playing basic structural and functional roles in the mature photoreceptor cells. No genes or genetic elements have been identified which can be construed as having a specific morphogenic role, directing the development of the cytoarchitecture of any particular retinal cell. The evidence suggests that the cytoarchitecture of the retinal photoreceptors, although enormously complex, arises from the self-organization of the cells constituents without any regulation or direction from an external genetic blueprint.

  6. Einstein constraints on a characteristic cone

    CERN Document Server

    Choquet-Bruhat, Yvonne; Martín-García, José M

    2010-01-01

    We analyse the Cauchy problem on a characteristic cone, including its vertex, for the Einstein equations in arbitrary dimensions. We use a wave map gauge, solve the obtained constraints and show gauge conservation.

  7. Performance Analysis of Cone Detection Algorithms

    CERN Document Server

    Mariotti, Letizia

    2015-01-01

    Many algorithms have been proposed to help clinicians evaluate cone density and spacing, as these may be related to the onset of retinal diseases. However, there has been no rigorous comparison of the performance of these algorithms. In addition, the performance of such algorithms is typically determined by comparison with human observers. Here we propose a technique to simulate realistic images of the cone mosaic. We use the simulated images to test the performance of two popular cone detection algorithms and we introduce an algorithm which is used by astronomers to detect stars in astronomical images. We use Free Response Operating Characteristic (FROC) curves to evaluate and compare the performance of the three algorithms. This allows us to optimize the performance of each algorithm. We observe that performance is significantly enhanced by up-sampling the images. We investigate the effect of noise and image quality on cone mosaic parameters estimated using the different algorithms, finding that the estimat...

  8. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria.

    Science.gov (United States)

    Bussell, Adam N; Kehoe, David M

    2013-07-30

    Photoreceptors are biologically important for sensing changes in the color and intensity of ambient light and, for photosynthetic organisms, processing this light information to optimize food production through photosynthesis. Cyanobacteria are an evolutionarily and ecologically important prokaryotic group of oxygenic photosynthesizers that contain cyanobacteriochrome (CBCR) photoreceptors, whose family members sense nearly the entire visible spectrum of light colors. Some cyanobacteria contain 12 to 15 different CBCRs, and many family members contain multiple light-sensing domains. However, the complex interactions that must be occurring within and between these photoreceptors remain unexplored. Here we describe the regulation and photobiology of a unique CBCR called IflA (influenced by far-red light), demonstrating that a second CBCR called RcaE strongly regulates IflA abundance and that IflA uses two distinct photosensory domains to respond to four different light colors: blue, green, red, and far-red. The absorption of red or far-red light by one domain affects the conformation of the other domain, and the rate of relaxation of one of these domains is influenced by the conformation of the other. Deletion of iflA results in delayed growth at low cell density, suggesting that IflA accelerates growth under this condition, apparently by sensing the ratio of red to far-red light in the environment. The types of complex photobiological interactions described here, both between unrelated CBCR family members and within photosensory domains of a single CBCR, may be advantageous for species using these photoreceptors in aquatic environments, where light color ratios are influenced by many biotic and abiotic factors.

  9. Emerging and reemerging diseases of avian wildlife

    Science.gov (United States)

    Pello, Susan J.; Olsen, Glenn H.

    2013-01-01

    Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive.

  10. Crowding in the S-cone pathway.

    Science.gov (United States)

    Coates, Daniel R; Chung, Susana T L

    2016-05-01

    The spatial extent of interference from nearby object or contours (the critical spacing of "crowding") has been thoroughly characterized across the visual field, typically using high contrast achromatic stimuli. However, attempts to link this measure with known properties of physiological pathways have been inconclusive. The S-cone pathway, with its ease of psychophysical isolation and known anatomical characteristics, offers a unique tool to gain additional insights into crowding. In this study, we measured the spatial extent of crowding in the S-cone pathway at several retinal locations using a chromatic adaptation paradigm. S-cone crowding was evident and extensive, but its spatial extent changed less markedly as a function of retinal eccentricity than the extent found using traditional achromatic stimuli. However, the spatial extent agreed with that of low contrast achromatic stimuli matched for isolated resolvability. This suggests that common cortical mechanisms mediate the crowding effect in the S-cone and achromatic pathway, but contrast is an important factor. The low contrast of S-cone stimuli makes S-cone vision more acuity-limited than crowding-limited.

  11. Photonic Landau levels on cones

    Science.gov (United States)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  12. Montana 2006 Avian Influenza Surveillance Project Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the summer of 2006, the U.S. Department of Agriculture (USDA) and the U.S. Fish and Wildlife Service (USFWS) initiated a nationwide avian influenza...

  13. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys at...

  14. Avian models in teratology and developmental toxicology.

    Science.gov (United States)

    Smith, Susan M; Flentke, George R; Garic, Ana

    2012-01-01

    The avian embryo is a long-standing model for developmental biology research. It also has proven utility for toxicology research both in ovo and in explant culture. Like mammals, avian embryos have an allantois and their developmental pathways are highly conserved with those of mammals, thus avian models have biomedical relevance. Fertile eggs are inexpensive and the embryo develops rapidly, allowing for high-throughput. The chick genome is sequenced and significant molecular resources are available for study, including the ability for genetic manipulation. The absence of a placenta permits the direct study of an agent's embryotoxic effects. Here, we present protocols for using avian embryos in toxicology research, including egg husbandry and hatch, toxicant delivery, and assessment of proliferation, apoptosis, and cardiac structure and function.

  15. Avian protection plan : Lostwood National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Lostwood National Wildlife Refuge (LNWR) initiated this Avian Protection Plan (APP) in 2003 to protect birds from potential electrocution hazards on the...

  16. Immunizing Canada geese against avian cholera

    Science.gov (United States)

    Price, J.I.

    1985-01-01

    A small flock of captive giant Canada geese were vaccinated with the experimental bac- terin in Nebraska to test its efficacy under field conditions. Only 2 of 157 vaccinates died from avian cholera during an annual spring die-off.

  17. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... their saliva, mucous and feces. Human infections with bird flu viruses can happen when enough virus gets into ... Virus (CVV) for a Highly Pathogenic Avian Influenza (Bird Flu) Virus ” for more information on this process. ...

  18. Light dependence of calcium and membrane potential measured in blowfly photoreceptors in vivo

    NARCIS (Netherlands)

    Oberwinkler, J; Stavenga, DG

    1998-01-01

    Light adaptation in insect photoreceptors is caused by an increase in the cytosolic Ca2+ concentration. To better understand this process, we measured the cytosolic Ca2+ concentration in vivo as a function of adapting light intensity in the white-eyed blowfly mutant chalky. We developed a technique

  19. Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics

    NARCIS (Netherlands)

    Stavenga, D.G.

    2003-01-01

    Three optical components of a fly’s eye determine the angular sensitivity of the photoreceptors: the light diffracting facet lens, the wave-guiding rhabdomere and the light-absorbing visual pigment in the rhabdomere. How the integrated optical system of the fly eye shapes the angular sensitivity cur

  20. Temperature Dependence of Receptor Potential and Noise in Fly (Calliphora erythrocephala) Photoreceptor Cells

    NARCIS (Netherlands)

    Roebroek, J.G.H.; Tjonger, M. van; Stavenga, D.G.

    1990-01-01

    We investigated the effect of temperature on the response to light of photoreceptors of the blowfly Calliphora erythrocephala. The latency and the time-to-peak of the responses become shorter as the temperature increases; Q10 = 2.8 ± 0.6. The response amplitude is independent of the temperature in t

  1. Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors

    NARCIS (Netherlands)

    Oberwinkler, J; Stavenga, DG; Stevens, Charles F.

    2000-01-01

    During illumination. Ca2+ enters fly photoreceptor cells through light-activated channels that are located in the rhabdomere, the compartment specialized for phototransduction. From the rhabdomere. Ca2+ diffuses into the cell body. We visualize this process by rapidly imaging the fluorescence in a c

  2. Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors.

    Science.gov (United States)

    Rister, Jens; Heisenberg, Martin

    2006-10-01

    Neuronal synaptobrevin (n-Syb, alias VAMP2), a synaptic vesicle membrane protein with a central role in neurotransmission, is specifically cleaved by the light chain of tetanus neurotoxin (TNT) that is known to reliably block neuroexocytosis. Here, we study fly photoreceptors transmitting continuous, graded signals to first order interneurons in the lamina, and report consequences of targeted expression of TNT in these cells using the UAS/GAL4 driver/effector system. Expressing the toxin throughout photoreceptor development causes developmental, electrophysiological, and behavioral defects. These can be differentiated by confining toxin expression to shorter developmental periods. Applying a method for controlled temporal and spatial TNT expression, we found that in the early pupa it impaired the development of the retina; in the midpupa, during synapse formation TNT caused a severe hypoplasia of the lamina that persisted into adulthood and left the photoreceptor-interneuron synapses of the lamina without function. Finally, during adulthood TNT neither blocks synaptic transmission in photoreceptors nor depletes the cells of n-Syb. Our study suggests a novel, cell type-specific function of n-Syb in synaptogenesis and it distinguishes between two synapse types: TNT resistant and TNT sensitive ones. These results need to be taken into account if TNT is used for neural circuit analysis.

  3. Förster resonance energy transfer as a tool to study photoreceptor biology

    Science.gov (United States)

    Hovan, Stephanie C.; Howell, Scott; Park, Paul S.-H.

    2010-11-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context.

  4. Förster resonance energy transfer as a tool to study photoreceptor biology.

    Science.gov (United States)

    Hovan, Stephanie C; Howell, Scott; Park, Paul S-H

    2010-01-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context.

  5. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles

    Energy Technology Data Exchange (ETDEWEB)

    Asteriti, Sabrina [Dept. of Translational Research, University of Pisa, Pisa (Italy); Dal Cortivo, Giuditta [Dept. of Life Sciences and Reproduction, University of Verona, Strada Le Grazie 8, Verona (Italy); Pontelli, Valeria [Dept. of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona (Italy); Cangiano, Lorenzo [Dept. of Translational Research, University of Pisa, Pisa (Italy); Buffelli, Mario, E-mail: mario.buffelli@univr.it [Dept. of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona (Italy); Center for Biomedical Computing, University of Verona, Strada le Grazie 8, 37134 Verona (Italy); Dell’Orco, Daniele, E-mail: daniele.dellorco@univr.it [Dept. of Life Sciences and Reproduction, University of Verona, Strada Le Grazie 8, Verona (Italy); Center for Biomedical Computing, University of Verona, Strada le Grazie 8, 37134 Verona (Italy)

    2015-06-12

    The potential of liposomes to deliver functional proteins in retinal photoreceptors and modulate their physiological response was investigated by two experimental approaches. First, we treated isolated mouse retinas with liposomes encapsulating either recoverin, an important endogenous protein operating in visual phototransduction, or antibodies against recoverin. We then intravitrally injected in vivo liposomes encapsulating either rhodamin B or recoverin and we investigated the distribution in retina sections by confocal microscopy. The content of liposomes was found to be released in higher amount in the photoreceptor layer than in the other regions of the retina and the functional effects of the release were in line with the current model of phototransduction. Our study sets the basis for quantitative investigations aimed at assessing the potential of intraocular protein delivery via biocompatible nanovesicles, with promising implications for the treatment of retinal diseases affecting the photoreceptor layer. - Highlights: • Recombinant proteins encapsulated in nano-sized liposomes injected intravitreally reach retinal photoreceptors. • The phototransduction cascade in rods is modulated by the liposome content. • Mathematical modeling predicts the alteration of the photoresponses following liposome fusion.

  6. An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate

    NARCIS (Netherlands)

    Pirih, Primoz; Arikawa, Kentaro; Stavenga, Doekele G.; Pirih, Primož

    2010-01-01

    We studied the spectral and polarisation sensitivities of photoreceptors of the butterfly Colias erate by using intracellular electrophysiological recordings and stimulation with light pulses. We developed a method of response waveform comparison (RWC) for evaluating the effective intensity of the l

  7. Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Angueyra

    Full Text Available Melanopsin, the receptor molecule that underlies light sensitivity in mammalian 'circadian' receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A G(q was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP₃ receptor antagonists, highlighting the importance of IP₃ receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG, as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP₃-sensitive channels may fulfill a key role in conveying--directly or indirectly--the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.

  8. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Manish Jaiswal

    2015-07-01

    Full Text Available Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

  9. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    Science.gov (United States)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  10. AA/12-lipoxygenase signaling contributes to inhibitory learning in Hermissenda Type B photoreceptors

    Directory of Open Access Journals (Sweden)

    Tony L Walker

    2010-08-01

    Full Text Available Conditioned inhibition (CI is a major category of associative learning that occurs when an organism learns that one stimulus predicts the absence of another. In addition to being important in its own right, CI is interesting because its occurrence implies that the organism has formed an association between stimuli that are non-coincident. In contrast to other categories of associative learning that are dependent upon temporal contiguity (pairings of stimuli, the neurobiology of CI is virtually unexplored. We have previously described a simple form of CI learning in Hermissenda, whereby animals’ phototactic behavior is increased by repeated exposures to explicitly unpaired (EU presentations of light and rotation. EU conditioning also produces characteristic reductions in the excitability and light response, and increases several somatic K+ currents in Type B photoreceptors. Type B photoreceptors are a major site of plasticity for classical conditioning in Hermissenda. Because arachidonic acid (AA and/or its metabolites open diverse K+ channels in many cell types, we examined the potential contribution of AA to CI. Our results indicate that AA contributes to one of the major effects of EU-conditioning on Type B photoreceptors: decreases in light-evoked spike activity. We find that AA increases the transient (IA somatic K+ current in Type B photoreceptors, further mimicking CI training. In addition, our results indicate that metabolism of AA by a 12-lipoxygenase enzyme is critical for these effects of AA, and further that 12-lipoxygenase metabolites are apparently generated during CI training.

  11. The genetics of some planthormones and photoreceptors in Arabidopsis thaliana (L.) Heynh

    NARCIS (Netherlands)

    Koornneef, M.

    1982-01-01

    This thesis describes the isolation and characterization in Arabidopsis thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), abscisic acid (ABA) and photoreceptors.These compounds are known to regulate various facets of plant growth and differentiation, so mutants lacking one

  12. Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora

    NARCIS (Netherlands)

    Arikawa, K; Wakakuwa, M; Qiu, XD; Kurasawa, M; Stavenga, DG; Qiu, Xudong

    2005-01-01

    The eyes of the female small white butterfly, Pieris rapae crucivora, are furnished with three classes of short-wavelength photoreceptors, with sensitivity peaks in the ultraviolet (UV) (lambda(max) = 360 nm), violet (V) (lambda max = 425 nm), and blue (B) (lambda(max) = 453 nm) wavelength range. An

  13. Cell killing by avian leukosis viruses.

    OpenAIRE

    Weller, S K; Temin, H M

    1981-01-01

    Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with c...

  14. Report of the Avian Development Working Group

    Science.gov (United States)

    Fallon, J. F.

    1985-01-01

    The anteroposterior axis of the avian embryo is established before it is laid. Baer's rule states that the cephalic end of the avian embryo will be away from the observer when the pointed end of the shell is on the observer's right. There are experimental data available which indicate gravity has a role in the establishment of the anteroposterior axis while the egg is in the uterus; this results in Baer's rule. The influence of gravity on egg development is studied.

  15. Clinical Course, Genetic Etiology, and Visual Outcome in Cone and Cone-Rod Dystrophy

    NARCIS (Netherlands)

    Thiadens, Alberta A. H. J.; Phan, T. My Lan; Zekveld-Vroon, Renate C.; Leroy, Bart P.; van den Born, L. Ingeborgh; Hoyng, Carel B.; Klaver, Caroline C. W.; Roosing, Susanne; Pott, Jan-Willem R.; van Schooneveld, Mary J.; van Moll-Ramirez, Norka; van Genderen, Maria M.; Boon, Camiel J. F.; den Hollander, Anneke I.; Bergen, Arthur A. B.; De Baere, Elfride; Cremers, Frans P. M.; Lotery, Andrew J.

    2012-01-01

    Objective: To evaluate the clinical course, genetic etiology, and visual prognosis in patients with cone dystrophy (CD) and cone-rod dystrophy (CRD). Design: Clinic-based, longitudinal, multicenter study. Participants: Consecutive probands with CD (N = 98), CRD (N = 83), and affected relatives (N =

  16. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy

    NARCIS (Netherlands)

    Thiadens, A.A.; Phan, T.M.; Zekveld-Vroon, R.C.; Leroy, B.P.; Born, L.I. van den; Hoyng, C.B.; Klaver, C.C.; Writing Committee for the Cone Disorders Study Group, C.; Roosing, S.; Pott, J.W.; Schooneveld, M.J. van; Moll-Ramirez, N. van; Genderen, M.M. van; Boon, C.J.F.; Hollander, A.I. den; Bergen, A.A.; Baere, E. de; Cremers, F.P.; Lotery, A.J.

    2012-01-01

    OBJECTIVE: To evaluate the clinical course, genetic etiology, and visual prognosis in patients with cone dystrophy (CD) and cone-rod dystrophy (CRD). DESIGN: Clinic-based, longitudinal, multicenter study. PARTICIPANTS: Consecutive probands with CD (N = 98), CRD (N = 83), and affected relatives (N =

  17. Differential dimerization of variants linked to enhanced S-cone sensitivity syndrome (ESCS) located in the NR2E3 ligand-binding domain.

    Science.gov (United States)

    von Alpen, Désirée; Tran, Hoai Viet; Guex, Nicolas; Venturini, Giulia; Munier, Francis L; Schorderet, Daniel F; Haider, Neena B; Escher, Pascal

    2015-06-01

    NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.

  18. Maps of cone opsin input to mouse V1 and higher visual areas.

    Science.gov (United States)

    Rhim, Issac; Coello-Reyes, Gabriela; Ko, Hee-Kyoung; Nauhaus, Ian

    2017-04-01

    Studies in the mouse retina have characterized the spatial distribution of an anisotropic ganglion cell and photoreceptor mosaic, which provides a solid foundation to study how the cortex pools from afferent parallel color channels. In particular, the mouse's retinal mosaic exhibits a gradient of wavelength sensitivity along its dorsoventral axis. Cones at the ventral extreme mainly express S opsin, which is sensitive to ultraviolet (UV) wavelengths. Then, moving toward the retina's dorsal extreme, there is a transition to M-opsin dominance. Here, we tested the hypothesis that the retina's opsin gradient is recapitulated in cortical visual areas as a functional map of wavelength sensitivity. We first identified visual areas in each mouse by mapping retinotopy with intrinsic signal imaging (ISI). Next, we measured ISI responses to stimuli along different directions of the S- and M-color plane to quantify the magnitude of S and M input to each location of the retinotopic maps in five visual cortical areas (V1, AL, LM, PM, and RL). The results illustrate a significant change in the S:M-opsin input ratio along the axis of vertical retinotopy that is consistent with the gradient along the dorsoventral axis of the retina. In particular, V1 populations encoding the upper visual field responded to S-opsin contrast with 6.1-fold greater amplitude than to M-opsin contrast. V1 neurons encoding lower fields responded with 4.6-fold greater amplitude to M- than S-opsin contrast. The maps in V1 and higher visual areas (HVAs) underscore the significance of a wavelength sensitivity gradient for guiding the mouse's behavior.NEW & NOTEWORTHY Two elements of this study are particularly novel. For one, it is the first to quantify cone inputs to mouse visual cortex; we have measured cone input in five visual areas. Next, it is the first study to identify a feature map in the mouse visual cortex that is based on well-characterized anisotropy of cones in the retina; we have identified

  19. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  20. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina.

    Science.gov (United States)

    Gonzalez-Cordero, Anai; West, Emma L; Pearson, Rachael A; Duran, Yanai; Carvalho, Livia S; Chu, Colin J; Naeem, Arifa; Blackford, Samuel J I; Georgiadis, Anastasios; Lakowski, Jorn; Hubank, Mike; Smith, Alexander J; Bainbridge, James W B; Sowden, Jane C; Ali, Robin R

    2013-08-01

    Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.

  1. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available BACKGROUND: Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we investigated the molecular effects of exogenous phyto-hormones to photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of some (IAA or most (GA photoreceptor genes is down regulated by these hormones. CONCLUSIONS/SIGNIFICANCE: Our results highlight the presence of molecular relationships among cryptochrome 1a protein, hormones, and photoreceptors' gene expression in tomato, suggesting that manipulation of cryptochromes could represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive mechanism.

  2. Otx2 gene deletion in adult mouse retina induces rapid RPE dystrophy and slow photoreceptor degeneration.

    Directory of Open Access Journals (Sweden)

    Francis Béby

    Full Text Available BACKGROUND: Many developmental genes are still active in specific tissues after development is completed. This is the case for the homeobox gene Otx2, an essential actor of forebrain and head development. In adult mouse, Otx2 is strongly expressed in the retina. Mutations of this gene in humans have been linked to severe ocular malformation and retinal diseases. It is, therefore, important to explore its post-developmental functions. In the mature retina, Otx2 is expressed in three cell types: bipolar and photoreceptor cells that belong to the neural retina and retinal pigment epithelium (RPE, a neighbour structure that forms a tightly interdependent functional unit together with photoreceptor cells. METHODOLOGY/PRINCIPAL FINDINGS: Conditional self-knockout was used to address the late functions of Otx2 gene in adult mice. This strategy is based on the combination of a knock-in CreERT2 allele and a floxed allele at the Otx2 locus. Time-controlled injection of tamoxifen activates the recombinase only in Otx2 expressing cells, resulting in selective ablation of the gene in its entire domain of expression. In the adult retina, loss of Otx2 protein causes slow degeneration of photoreceptor cells. By contrast, dramatic changes of RPE activity rapidly occur, which may represent a primary cause of photoreceptor disease. CONCLUSIONS: Our novel mouse model uncovers new Otx2 functions in adult retina. We show that this transcription factor is necessary for long-term maintenance of photoreceptors, likely through the control of specific activities of the RPE.

  3. Coexpression of spectrally distinct rhodopsins in Aedes aegypti R7 photoreceptors.

    Directory of Open Access Journals (Sweden)

    Xiaobang Hu

    Full Text Available The retina of the mosquito Aedes aegypti can be divided into four regions based on the non-overlapping expression of a UV sensitive Aaop8 rhodopsin and a long wavelength sensitive Aaop2 type rhodopsin in the R7 photoreceptors. We show here that another rhodopsin, Aaop9, is expressed in all R7 photoreceptors and a subset of R8 photoreceptors. In the dorsal region, Aaop9 is expressed in both the cell body and rhabdomere of R7 and R8 cells. In other retinal regions Aaop9 is expressed only in R7 cells, being localized to the R7 rhabdomere in the central and ventral regions and in both the cell body and rhabdomere within the ventral stripe. Within the dorsal-central transition area ommatidia do not show a strict pairing of R7-R8 cell types. Thus, Aaop9 is coexpressed in the two classes of R7 photoreceptors previously distinguished by the non-overlapping expression of Aaop8 and Aaop2 rhodopsins. Electroretinogram analysis of transgenic Drosophila shows that Aaop9 is a short wavelength rhodopsin with an optimal response to 400-450 nm light. The coexpressed Aaop2 rhodopsin has dual wavelength sensitivity of 500-550 nm and near 350 nm in the UV region. As predicted by the spectral properties of each rhodopsin, Drosophila photoreceptors expressing both Aaop9 and Aaop2 rhodopsins exhibit a uniform sensitivity across the broad 350-550 nm light range. We propose that rhodopsin coexpression is an adaptation within the R7 cells to improve visual function in the low-light environments in which Ae. aegypti is active.

  4. Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration.

    Directory of Open Access Journals (Sweden)

    Esther Gramage

    Full Text Available Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod

  5. Down regulation of pRb in cultures of avian neuroretina cells promotes proliferation of reactive Müller-like cells and emergence of retinal stem/progenitors.

    Science.gov (United States)

    Marx, Maria; Lebuhotel, Céline; Laugier, Danielle; Chapelle, Audrey; Calothy, Georges; Saule, Simon

    2010-06-01

    The aim of this work was to define the role of pRb depletion in the proliferation and differentiation of avian retinoblasts in vitro. For this purpose vectors expressing pRb short hairpin RNA were used to deplete pRb in cultures of avian neuroretinal cells. Down regulation of pRb was observed by Western blot and quantification of nuclear pRb. Cell proliferation and differentiation were studied following BrdU labeling and immunostaining. Transfection significantly down-regulated pRb in neuroretinal cells. Long-term effect of pRb depletion mainly induced proliferation of epithelial-like cells that expressed markers of reactive Müller glial cells. A minority of these cells that survived passaging could be maintained as neurosphere-like aggregates with low pRb, not observed in control cultures. BrdU labeling followed by a two week chase showed the presence of cells still remained labelled, indicating low cell cycling. Under appropriate conditions, these aggregates differentiate in precursors of amacrine interneurons shown by the expression of AP2, in absence of the photoreceptors marker visinin and the late neuronal marker MAP2. Taken together these data show that decrease pRb level in cultures of avian neuroretinal cells promotes the emergence and proliferation of stem cell/progenitors from reactive-like Muller cells.

  6. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  7. Hygroscopic motions of fossil conifer cones

    Science.gov (United States)

    Poppinga, Simon; Nestle, Nikolaus; Šandor, Andrea; Reible, Bruno; Masselter, Tom; Bruchmann, Bernd; Speck, Thomas

    2017-01-01

    Conifer cones represent natural, woody compliant structures which move their scales as passive responses to changes in environmental humidity. Here we report on water-driven opening and closing motions in coalified conifer cones from the Eemian Interglacial (approx. 126,000–113,000 years BP) and from the Middle Miocene (approx. 16.5 to 11.5 million years BP). These cones represent by far the oldest documented evidence of plant parts showing full functionality of such passive hydraulically actuated motion. The functional resilience of these structures is far beyond the biological purpose of seed dispersal and protection and is because of a low level of mineralization of the fossils. Our analysis emphasizes the functional-morphological integrity of these biological compliant mechanisms which, in addition to their biological fascination, are potentially also role models for resilient and maintenance-free biomimetic applications (e.g., adaptive and autonomously moving structures including passive hydraulic actuators).

  8. Hygroscopic motions of fossil conifer cones

    Science.gov (United States)

    Poppinga, Simon; Nestle, Nikolaus; Šandor, Andrea; Reible, Bruno; Masselter, Tom; Bruchmann, Bernd; Speck, Thomas

    2017-01-01

    Conifer cones represent natural, woody compliant structures which move their scales as passive responses to changes in environmental humidity. Here we report on water-driven opening and closing motions in coalified conifer cones from the Eemian Interglacial (approx. 126,000–113,000 years BP) and from the Middle Miocene (approx. 16.5 to 11.5 million years BP). These cones represent by far the oldest documented evidence of plant parts showing full functionality of such passive hydraulically actuated motion. The functional resilience of these structures is far beyond the biological purpose of seed dispersal and protection and is because of a low level of mineralization of the fossils. Our analysis emphasizes the functional-morphological integrity of these biological compliant mechanisms which, in addition to their biological fascination, are potentially also role models for resilient and maintenance-free biomimetic applications (e.g., adaptive and autonomously moving structures including passive hydraulic actuators). PMID:28074936

  9. Avian cholera in Nebraska's Rainwater Basin

    Science.gov (United States)

    Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.

    1984-01-01

    The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.

  10. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  11. Avian Point Count Locations - Dahomey NWR 2007-2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Map depicts locations of avian point counts conducted on Dahomey in 2007 and 2008. Actual point count data are contained in the avian knowledge network database

  12. Determination and analysis of the complete genomic sequence of avian hepatitis E virus (avian HEV) and attempts to infect rhesus monkeys with avian HEV.

    Science.gov (United States)

    Huang, F F; Sun, Z F; Emerson, S U; Purcell, R H; Shivaprasad, H L; Pierson, F W; Toth, T E; Meng, X J

    2004-06-01

    Avian hepatitis E virus (avian HEV), recently identified from a chicken with hepatitis-splenomegaly syndrome in the United States, is genetically and antigenically related to human and swine HEVs. In this study, sequencing of the genome was completed and an attempt was made to infect rhesus monkeys with avian HEV. The full-length genome of avian HEV, excluding the poly(A) tail, is 6654 bp in length, which is about 600 bp shorter than that of human and swine HEVs. Similar to human and swine HEV genomes, the avian HEV genome consists of a short 5' non-coding region (NCR) followed by three partially overlapping open reading frames (ORFs) and a 3'NCR. Avian HEV shares about 50 % nucleotide sequence identity over the complete genome, 48-51 % identity in ORF1, 46-48 % identity in ORF2 and only 29-34 % identity in ORF3 with human and swine HEV strains. Significant genetic variations such as deletions and insertions, particularly in ORF1 of avian HEV, were observed. However, motifs in the putative functional domains of ORF1, such as the helicase and methyltransferase, were relatively conserved between avian HEV and mammalian HEVs, supporting the conclusion that avian HEV is a member of the genus Hepevirus. Phylogenetic analysis revealed that avian HEV represents a branch distinct from human and swine HEVs. Swine HEV infects non-human primates and possibly humans and thus may be zoonotic. An attempt was made to determine whether avian HEV also infects across species by experimentally inoculating two rhesus monkeys with avian HEV. Evidence of virus infection was not observed in the inoculated monkeys as there was no seroconversion, viraemia, faecal virus shedding or serum liver enzyme elevation. The results from this study confirmed that avian HEV is related to, but distinct from, human and swine HEVs; however, unlike swine HEV, avian HEV is probably not transmissible to non-human primates.

  13. Algebraic boundaries of Hilbert's SOS cones

    CERN Document Server

    Blekherman, Grigoriy; Ottem, John Christian; Ranestad, Kristian; Sturmfels, Bernd

    2011-01-01

    We study the geometry underlying the difference between non-negative polynomials and sums of squares. The hypersurfaces that discriminate these two cones for ternary sextics and quaternary quartics are shown to be Noether-Lefschetz loci of K3 surfaces. The projective duals of these hypersurfaces are defined by rank constraints on Hankel matrices. We compute their degrees using numerical algebraic geometry, thereby verifying results due to Maulik and Pandharipande. The non-SOS extreme rays of the two cones of non-negative forms are parametrized respectively by the Severi variety of plane rational sextics and by the variety of quartic symmetroids.

  14. Resonance in a Cone-Topped Tube

    Directory of Open Access Journals (Sweden)

    Angus Cheng-Huan Chia

    2011-06-01

    Full Text Available The relationship between ratio of the upper opening diameter of a cone-topped cylinder to the cylinder diameter,and the ratio of the length of the air column to resonant period was examined. Plastic cones with upper openings ranging from 1.3 cm to 3.6 cm and tuning forks with frequencies ranging from 261.6 Hz to 523.3 Hz were used. The transition from a standing wave in a cylindrical column to a Helmholtz-type resonance in a resonant cavity with a narrow opening was observed.

  15. A Cone Pseudo-differential Calculus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@  The calculus of pseudo-differential operators on singular spaces and theconcept of ellipti-city in operator algebras on manifolds with singularitieshave become an enormous challenge for analysists. The so-called cone algebras(with discrete and continuous asymptotics) are investigated by manymathematicians, especially by B. W. Schulze, who developed and enrichedcone and edge pseudo-differential calculus, see Schulze[4-7], Rempel and Schulze [2, 3]. In this note,we construct a cone pseudo-differentialcalculus for operators which respect conormal asymptotics of a prescribedasymptotic type.

  16. Photoreceptor Differentiation following Transplantation of Allogeneic Retinal Progenitor Cells to the Dystrophic Rhodopsin Pro347Leu Transgenic Pig

    DEFF Research Database (Denmark)

    Klassen, H; Kiilgaard, Jens Folke; Warfvinge, K;

    2012-01-01

    Purpose. Transplantation of stem, progenitor, or precursor cells has resulted in photoreceptor replacement and evidence of functional efficacy in rodent models of retinal degeneration. Ongoing work has been directed toward the replication of these results in a large animal model, namely, the pig....... Methods. Retinal progenitor cells were derived from the neural retina of GFP-transgenic pigs and transplanted to the subretinal space of rhodopsin Pro347Leu-transgenic allorecipients, in the early stage of the degeneration and the absence of immune suppression. Results. Results confirm the survival...... of allogeneic porcine RPCs without immune suppression in the setting of photoreceptor dystrophy. The expression of multiple photoreceptor markers by grafted cells included the rod outer segment-specific marker ROM-1. Further evidence of photoreceptor differentiation included the presence of numerous...

  17. Proceedings of National Avian-Wind Power Planning Meeting IV

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  18. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the...

  19. Calcium regulates vesicle replenishment at the cone ribbon synapse

    OpenAIRE

    Babai, Norbert; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2010-01-01

    Cones release glutamate-filled vesicles continuously in darkness and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording post-synaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attain...

  20. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods.

    Science.gov (United States)

    Mathes, Tilo; van Stokkum, Ivo H M; Kennis, John T M

    2014-01-01

    Flavin-binding photoreceptor proteins use the isoalloxazine moiety of flavin cofactors to absorb light in the blue/UV-A wavelength region and subsequently translate it into biological information. The underlying photochemical reactions and protein structural dynamics are delicately tuned by the protein environment and represent fundamental reactions in biology and chemistry. Due to their photo-switchable nature, these proteins can be studied efficiently with laser-flash induced transient absorption and emission spectroscopy with temporal precision down to the femtosecond time domain. Here, we describe the application of both visible and mid-IR ultrafast transient absorption and time-resolved fluorescence methods in combination with sophisticated global analysis procedures to elucidate the photochemistry and signal transduction of BLUF (Blue light receptors using FAD) and LOV (Light oxygen voltage) photoreceptor domains.

  1. A Riesz representation theorem for cone-valued functions

    Directory of Open Access Journals (Sweden)

    Walter Roth

    1999-01-01

    whose values are linear functionals on a locally convex cone. We define integrals for cone-valued functions and verify that continuous linear functionals on certain spaces of continuous cone-valued functions endowed with an inductive limit topology may be represented by such integrals.

  2. THE TANGENT CONES ON CONSTRAINT QUALIFICATIONS IN OPTIMIZATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Huang Longguang

    2008-01-01

    This article proposes a few tangent cones, which are relative to the constraint qualifications of optimization problems. With the upper and lower directional derivatives of an objective function, the characteristics of cones on the constraint qualifications are presented. The interrelations among the constraint qualifications, a few cones involved,and level sets of upper and lower directional derivatives are derived.

  3. The incenter of a triangle as a cone isoperimetric center

    CERN Document Server

    O'Hara, Jun

    2010-01-01

    We show that the the image of the regular projection of a vertex of a cone over a triangle that minimizes the ratio of the cube of the area of the boundary of the cone and the square of the volume of the cone coincides with the incenter.

  4. Geodesics in the space of K\\"ahler cone metrics

    CERN Document Server

    Calama, Simone

    2012-01-01

    In this paper, we prove the existence and uniqueness of the weak cone geodesics in the space of K\\"ahler cone metrics by solving the singular, homogeneous complex Monge-Amp\\`{e}re equation. As an application, we prove the metric space structure of the appropriate subspace of the space of K\\"ahler cone metrics.

  5. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.

    Science.gov (United States)

    Reidel, Boris; Goldmann, Tobias; Giessl, Andreas; Wolfrum, Uwe

    2008-10-01

    In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin and microtubule cytoskeleton and the light dependent distribution of signaling molecules were subsequently analyzed by light and electron microscopy. The application of cytoskeletal drugs differentially affected the cytoskeleton in photoreceptor compartments. During dark adaptation the depolymerization of microtubules as well as actin filaments disrupted the translocation of arrestin and transducin in rod photoreceptor cells. During light adaptation only the delivery of arrestin within the outer segment was impaired after destabilization of microtubules. Movements of transducin and arrestin required intact cytoskeletal elements in dark adapting cells. However, diffusion might be sufficient for the fast molecular movements observed as cells adapt to light. These findings indicate that different molecular translocation mechanisms are responsible for the dark and light associated translocations of arrestin and transducin in rod photoreceptor cells.

  6. Retbindin is an extracellular riboflavin-binding protein found at the photoreceptor/retinal pigment epithelium interface.

    Science.gov (United States)

    Kelley, Ryan A; Al-Ubaidi, Muayyad R; Naash, Muna I

    2015-02-20

    Retbindin is a novel retina-specific protein of unknown function. In this study, we have used various approaches to evaluate protein expression, localization, biochemical properties, and function. We find that retbindin is secreted by the rod photoreceptors into the inter-photoreceptor matrix where it is maintained via electrostatic forces. Retbindin is predominantly localized at the interface between photoreceptors and retinal pigment epithelium microvilli, a region critical for retinal function and homeostasis. Interestingly, although it is associated with photoreceptor outer segments, retbindin's expression is not dependent on their presence. In vitro, retbindin is capable of binding riboflavin, thus implicating the protein as a metabolite carrier between the retina and the retinal pigment epithelium. Altogether, our data show that retbindin is a novel photoreceptor-specific protein with a unique localization and function. We hypothesize that retbindin is an excellent candidate for binding retinal flavins and possibly participating in their transport from the extracellular space to the photoreceptors. Further investigations are warranted to determine the exact function of retbindin in retinal homeostasis and disease.

  7. Cav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice.

    Directory of Open Access Journals (Sweden)

    Christian Schön

    Full Text Available Retinitis pigmentosa is an inherited blinding disorder characterized by progressive degeneration and loss of photoreceptors. The exact mechanism of degeneration and cell death of photoreceptors is not known, but is thought to involve disturbed Ca2+-signaling. Ca2+ can enter the photoreceptor cell via outer segment cyclic nucleotide-gated (CNG channels or synaptic Cav1.4 L-type voltage-gated calcium channels (VGCC. Previously, we have shown that genetic ablation of the Cngb1 gene encoding the B subunit of the rod CNG channel delays the fast progressing degeneration in the rd1 mutant mouse model of retinitis pigmentosa. In this study, we crossbred rd1 mice with the Cacna1f-deficient mouse lacking the Cav1.4 α1 subunit of the L-type VGCC. Longitudinal in vivo examinations of photoreceptor layer thickness by optical coherence tomography revealed a significant, but not sustained delay of retinal degeneration in Cacna1f x rd1 double mutant mice compared to rd1 mice. This was accompanied by a reduction of TUNEL positive cells in the early phase of rod degeneration. Remarkably, Cacna1f x rd1 double mutant mice displayed a strong decrease in the activation of the Ca2+-dependent protease calpain during photoreceptor loss. Our results show that genetic deletion of the synaptic Cav1.4 L-type VGCCs impairs calpain activation and leads to a short-term preservation of photoreceptors in the rd1 mouse.

  8. Transcriptional analysis of rat photoreceptor cells reveals daily regulation of genes important for visual signaling and light damage susceptibility.

    Science.gov (United States)

    Kunst, Stefanie; Wolloscheck, Tanja; Hölter, Philip; Wengert, Alexander; Grether, Markus; Sticht, Carsten; Weyer, Veronika; Wolfrum, Uwe; Spessert, Rainer

    2013-03-01

    Photoreceptor cells face the challenge of adjusting their function and, possibly, their susceptibility to light damage to the marked daily changes in ambient light intensity. To achieve a better understanding of photoreceptor adaptation at the transcriptional level, this study aimed to identify genes which are under daily regulation in photoreceptor cells using microarray analysis and quantitative PCR. Included in the gene set obtained were a number of genes which up until now have not been shown to be expressed in photoreceptor cells, such as Atf3 (activating transcription factor 3) and Pde8a (phosphodiesterase 8A), and others with a known impact on phototransduction and/or photoreceptor survival, such as Grk1 (G protein-coupled receptor kinase 1) and Pgc-1α (peroxisome proliferator-activated receptor γ, coactivator 1alpha). According to their daily dynamics, the genes identified could be clustered in two groups: those with peak expression during the second part of the day which are uniformly promoted to cycle by light/dark transitions and those with peak expression during the second part of the night which are predominantly driven by a clock. Since Grk1 and Pgc-1α belong in the first group, the present results support a concept in which transcriptional regulation of genes by ambient light contributes to the functional adjustment of photoreceptor cells over the 24-h period.

  9. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway.

    Science.gov (United States)

    Forkwa, Tembei K; Neumann, Inga D; Tamm, Ernst R; Ohlmann, Andreas; Reber, Stefan O

    2014-02-01

    Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway.

  10. Lagrangian duality and cone convexlike functions

    NARCIS (Netherlands)

    J.B.G. Frenk (Hans); G. Kassay

    2005-01-01

    textabstractIn this paper we will show that the closely K-convexlike vector-valued functions with K Rm a nonempty convex cone and related classes of vector-valued functions discussed in the literature arise naturally within the theory of biconjugate functions applied to the Lagrangian perturbation s

  11. Cone beam computed tomography in veterinary dentistry

    NARCIS (Netherlands)

    van Thielen, B.; Siguenza, F.; Hassan, B.

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstruc

  12. Cone beam CT, wat moet ik ermee?

    NARCIS (Netherlands)

    R. Hoogeveen

    2013-01-01

    De cone beam-ct-scan (cbct-scan) maakt een opmars in de tandheelkunde vanwege de toegevoegde waarde van de derde dimensie in de diagnostiek. Deze extra informatie wordt verkregen ten koste van een hogere stralenbelasting en een daarmee gepaard gaand hoger risico voor de patiënt. Om de clinicus te he

  13. The role of carcinine in signaling at the Drosophila photoreceptor synapse.

    Directory of Open Access Journals (Sweden)

    Brendan A Gavin

    2007-12-01

    Full Text Available The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downstream of the photoreceptor cell, and it is now clear that photoreceptor cell signaling is dependent upon the proper release and recycling of the neurotransmitter histamine. While the neurotransmitter transporters responsible for clearing histamine, and its metabolite carcinine, from the synaptic cleft have remained unknown, a strong candidate for a transporter of either substrate is the uncharacterized inebriated protein. The inebriated gene (ine encodes a putative neurotransmitter transporter that has been localized to photoreceptor cells in Drosophila and mutations in ine result in an abnormal ERG phenotype in Drosophila. Loss-of-function mutations in ebony, a gene required for the synthesis of carcinine in Drosophila, suppress components of the mutant ine ERG phenotype, while loss-of-function mutations in tan, a gene necessary for the hydrolysis of carcinine in Drosophila, have no effect on the ERG phenotype in ine mutants. We also show that by feeding wild-type flies carcinine, we can duplicate components of mutant ine ERGs. Finally, we demonstrate that treatment with H(3 receptor agonists or inverse agonists rescue several components of the mutant ine ERG phenotype. Here, we provide pharmacological and genetic epistatic evidence that ine encodes a carcinine neurotransmitter transporter. We also speculate that the oscillations observed in mutant ine ERG traces are the result of the aberrant activity of a putative H(3 receptor.

  14. Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina.

    Directory of Open Access Journals (Sweden)

    Carolina Beltrame Del Debbio

    Full Text Available BACKGROUND: Evidence emerging from a variety of approaches used in different species suggests that Müller cell function may extend beyond its role of maintaining retinal homeostasis to that of progenitors in the adult retina. Enriched Müller cells in vitro or those that re-enter cell cycle in response to neurotoxin-damage to retina in vivo display multipotential and self-renewing capacities, the cardinal features of stem cells. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that Notch and Wnt signaling activate Müller cells through their canonical pathways and that a rare subset of activated Müller cells differentiates along rod photoreceptor lineage in the outer nuclear layer. The differentiation of activated Müller cells along photoreceptor lineage is confirmed by multiple approaches that included Hoechst dye efflux analysis, genetic analysis using retina from Nrl-GFP mice, and lineage tracing using GS-GFP lentivirus in wild type and rd mice in vitro and S334ter rats in vivo. Examination of S334ter rats for head-neck tracking of visual stimuli, a behavioral measure of light perception, demonstrates a significant improvement in light perception in animals treated to activate Müller cells. The number of activated Müller cells with rod photoreceptor phenotype in treated animals correlates with the improvement in their light perception. CONCLUSION/SIGNIFICANCE: In summary, our results provide a proof of principle for non-neurotoxin-mediated activation of Müller cells through Notch and Wnt signaling toward the regeneration of rod photoreceptors.

  15. Ectopic scute induces Drosophila ommatidia development without R8 founder photoreceptors

    OpenAIRE

    Sun, Yan; Jan, Lily Yeh; Jan, Yuh Nung

    2000-01-01

    During development of the Drosophila peripheral nervous system, different proneural genes encoding basic helix–loop–helix transcription factors are required for different sensory organs to form. atonal (ato) is the proneural gene required for chordotonal organs and R8 photoreceptors, whereas the achaete-scute complex contains proneural genes for external sensory organs such as the macrochaetae, large sensory bristles. Whereas ectopic ato expression induces chordotonal organ formation, ectopic...

  16. Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons

    OpenAIRE

    Giovanna De Palo; Giuseppe Facchetti; Monica Mazzolini; Anna Menini; Vincent Torre; Claudio Altafini

    2013-01-01

    Sensory systems adapt, i.e., they adjust their sensitivity to external stimuli according to the ambient level. In this paper we show that single cell electrophysiological responses of vertebrate olfactory receptors and of photoreceptors to different input protocols exhibit several common features related to adaptation, and that these features can be used to investigate the dynamical structure of the feedback regulation responsible for the adaptation. In particular, we point out that two diffe...

  17. In vivo knockdown of Piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses

    Directory of Open Access Journals (Sweden)

    Hanna eRegus-Leidig

    2014-09-01

    Full Text Available Piccolo is the largest known cytomatrix protein at active zones of chemical synapses. A growing number of studies on conventional chemical synapses assign Piccolo a role in the recruitment and integration of molecules relevant for both endo- and exocytosis of synaptic vesicles, the dynamic assembly of presynaptic F-actin, as well as the proteostasis of presynaptic proteins, yet a direct function in the structural organization of the active zone has not been uncovered in part due to the expression of multiple alternatively spliced isoforms. We recently identified Piccolino, a Piccolo splice variant specifically expressed in sensory ribbon synapses of the eye and ear. Here we down regulated Piccolino in vivo via an adeno-associated virus-based RNA interference approach and explored the impact on the presynaptic structure of mouse photoreceptor ribbon synapses. Detailed immunocytochemical light and electron microscopical analysis of Piccolino knockdown in photoreceptors revealed a hitherto undescribed photoreceptor ribbon synaptic phenotype with striking morphological changes of synaptic ribbon ultrastructure.

  18. Distinct roles of Bazooka and Stardust in the specification of Drosophila photoreceptor membrane architecture.

    Science.gov (United States)

    Hong, Yang; Ackerman, Larry; Jan, Lily Yeh; Jan, Yuh-Nung

    2003-10-28

    Photoreceptors form during Drosophila pupal development and acquire elaborate membrane structures, including the rhabdomeres and stalk membranes. Here, we show that the development of these cellular structures involves two distinct processes: the establishment of apical-basal polarity that requires Bazooka (Baz), and the regionalization of apical membrane into stalk membranes and rhabdomeres that requires Stardust (Sdt). In the absence of Baz, the apical-basal polarity is compromised in early pupal photoreceptors, and no identifiable apical membrane domain is formed. Sdt, in contrast, plays a more limited role in apical-basal polarity but is essential for the proper localization of transmembrane protein Crumbs (Crb), known to be required in the biogenesis of stalk membrane. Loss of Sdt causes strong defects in stalk membrane and rhabdomere resembling crb mutant phenotype. Thus, proteins required for establishing the early embryonic epithelial polarity are used later for the morphogenesis of photoreceptors, with Baz and Sdt functioning in different aspects of the formation of the apical-basal cellular architecture.

  19. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina.

    Science.gov (United States)

    Esteve-Rudd, Julián; Fernández-Sánchez, Laura; Lax, Pedro; De Juan, Emilio; Martín-Nieto, José; Cuenca, Nicolás

    2011-10-01

    Rotenone is a widely used pesticide and a potent inhibitor of mitochondrial complex I (NADH-quinone reductase) that elicits the degeneration of dopaminergic neurons and thereby the appearance of a parkinsonian syndrome. Here we have addressed the alterations induced by rotenone at the functional, morphological and molecular levels in the retina, including those involving both dopaminergic and non-dopaminergic retinal neurons. Rotenone-treated rats showed abnormalities in equilibrium, postural instability and involuntary movements. In their outer retina we observed a loss of photoreceptors, and a reduced synaptic connectivity between those remaining and their postsynaptic neurons. A dramatic loss of mitochondria was observed in the inner segments, as well as in the axon terminals of photoreceptors. In the inner retina we observed a decrease in the expression of dopaminergic cell molecular markers, including loss of tyrosine hydroxylase immunoreactivity, associated with a reduction of the dopaminergic plexus and cell bodies. An increase in immunoreactivity of AII amacrine cells for parvalbumin, a Ca(2+)-scavenging protein, was also detected. These abnormalities were accompanied by a decrease in the amplitude of scotopic and photopic a- and b-waves and an increase in the b-wave implicit time, as well as by a lower amplitude and greater latency in oscillatory potentials. These results indicate that rotenone induces loss of vision by promoting photoreceptor cell death and impairment of the dopaminergic retinal system.

  20. Perturbation theory in light-cone quantization

    Energy Technology Data Exchange (ETDEWEB)

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  1. Thermal emissivity of avian eggshells.

    Science.gov (United States)

    Björn, Lars Olof; Bengtson, Sven-Axel; Li, Shaoshan; Hecker, Christoph; Ullah, Saleem; Roos, Arne; Nilsson, Annica M

    2016-04-01

    The hypothesis has been tested that evolution has resulted in lower thermal emissivity of eggs of birds breeding openly in cold climates than of eggs of birds that nest under protective covering or in warmer climates. Directional thermal emissivity has been estimated from directional-hemispherical reflectance spectra. Due to several methodological difficulties the absolute emissivity is not accurately determined, but differences between species are obvious. Most notably, small waders of the genus Calidris, breeding in cold climates on the tundra, and in most cases with uniparental nest attendance, have low directional emissivity of their eggshells, about 0.92 when integration is carried out for wavelengths up to 16μm. Species belonging to Galloanserinae have the highest directional emissivity, about 0.96, of their eggs. No differences due to climate or breeding conditions were found within this group. Eggs of most other birds tested possess intermediate emissivity, but the values for Pica pica and Corvus corone cornix are as low as for Calidris. Large species-dependent differences in spectral reflectance were found at specific wavelengths. For instance, at 4.259μm the directional-hemispherical reflectance for galliforms range from 0.05 to 0.09, while for Fratercula arctica and Fulmarus glacialis it is about 0.3. The reflection peaks at 6.5 and 11.3μm due to calcite are differentially attenuated in different species. In conclusion, the hypothesis that evolution has resulted in lower thermal emissivity of bird eggs being exposed in cold climates is not supported by our results. The emissivity is not clearly related to nesting habits or climate, and it is unlikely that the small differences observed are ecologically important. The spectral differences between eggs that nevertheless exist should be taken into account when using infrared thermometers for estimating the surface temperature of avian eggs.

  2. Unpaired Dirac cones in photonic lattices and networks (Conference Presentation)

    Science.gov (United States)

    Chong, Yidong; Leykam, Daniel; Rechtsman, Mikael C.

    2016-09-01

    Unpaired Dirac cones are bandstructures with two bands crossing at a single point in the Brillouin zone. It is known that photonic bandstructures can exhibit pairs of Dirac cones, similar to graphene; unpaired cones, however, have not observed in photonics, and have been observed in condensed-matter systems only among topological insulator surface states. We show that unpaired Dirac cones occur in a 2D photonic lattice that is not the surface of a 3D system. These modes have unusual properties, including conical diffraction and antilocalization immune to short-range disorder, due to the absence of "intervalley" scattering between Dirac cones.

  3. Gradient angle estimation by uniform directional simulation on a cone

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    A sample of uniformly distributed unit vectors on an n-dimensional spherical cone is generated. The distances to a given limit state surface in the directions of the unit vectors of the sample are calculated and each of these distances are projected on the cone axis. The theoretical distribution...... of these projections is derived assuming the limit-state surface to be a hyperplane. This distribution depends on the angle between the cone axis and the normal vector to the hyperplane. Assuming sufficient flatness of the actual limit-state surface within a neighbourhood of the cut point with the cone axis, the cone...

  4. Economic effects of avian influenza on egg producers in Turkey

    Directory of Open Access Journals (Sweden)

    V Demircan

    2009-09-01

    Full Text Available This study determined the economic effects of avian influenza on the egg-production sector of Afyon Province, Turkey. Economic indicators were compared before and during the avian influenza outbreak. A questionnaire was conducted with 75 poultry farmers. Farms were divided into three groups according to their size. The profitability of the three farm size groups was compared during two study periods: before and during the avian influenza outbreak. The results indicate that, as compared to previous levels, farms experienced significantly reduced incomes during the avian influenza episode. While net income and profit margin were found to be negative in all three farm groups during the avian influenza period, only group I showed economic loss prior to avian influenza. Average net income per group was -19,576.14, -39,810.11, and -112,035.33 YTL respectively during the avian influenza outbreak, compared with prior incomes of -5,665.51, 8,422.92, and 16,3873.71 YTL (1 USD=1.43 YTL. The profit margin per egg during avian influenza was -0.029, -0.016, -0.010 YTL in group I, II, III, respectively, as compared to -0.007, 0.003, and 0.014 YTL/egg before avian influenza. It was found that, whereas larger farms were more profitable than small farms prior to the avian influenza period, larger farms suffered greater economic losses than small farms during avian influenza outbreak in the participating farms.

  5. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina.

    Science.gov (United States)

    Zhou, Liang; Wang, Wei; Liu, Yongqing; Fernandez de Castro, Juan; Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Roberts, R Michael; Kaplan, Henry J; Dean, Douglas C

    2011-06-01

    Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments using stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with induced pluripotent stem cells (iPSCs) of swine. Here, we subjected iPSCs of swine to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real-time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG, and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO, and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of rhodopsin (RHO) and rod outer segment-specific membrane protein 1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that iPSCs of swine can differentiate into photoreceptors in culture, and these cells can integrate into the damaged swine neural retina, thus, laying a foundation for future studies using the pig as a model for retinal stem cell transplantation.

  6. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage.

    Directory of Open Access Journals (Sweden)

    Shoji Notomi

    Full Text Available Photoreceptor degeneration is the most critical cause of visual impairment in age-related macular degeneration (AMD. In neovascular form of AMD, severe photoreceptor loss develops with subretinal hemorrhage due to choroidal neovascularization (CNV, growth of abnormal blood vessels from choroidal circulation. However, the detailed mechanisms of this process remain elusive. Here we demonstrate that neovascular AMD with subretinal hemorrhage accompanies a significant increase in extracellular ATP, and that extracellular ATP initiates neurodegenerative processes through specific ligation of Purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7; P2X7 receptor. Increased extracellular ATP levels were found in the vitreous samples of AMD patients with subretinal hemorrhage compared to control vitreous samples. Extravascular blood induced a massive release of ATP and photoreceptor cell apoptosis in co-culture with primary retinal cells. Photoreceptor cell apoptosis accompanied mitochondrial apoptotic pathways, namely activation of caspase-9 and translocation of apoptosis-inducing factor (AIF from mitochondria to nuclei, as well as TUNEL-detectable DNA fragmentation. These hallmarks of photoreceptor cell apoptosis were prevented by brilliant blue G (BBG, a selective P2RX7 antagonist, which is an approved adjuvant in ocular surgery. Finally, in a mouse model of subretinal hemorrhage, photoreceptor cells degenerated through BBG-inhibitable apoptosis, suggesting that ligation of P2RX7 by extracellular ATP may accelerate photoreceptor cell apoptosis in AMD with subretinal hemorrhage. Our results indicate a novel mechanism that could involve neuronal cell death not only in AMD but also in hemorrhagic disorders in the CNS and encourage the potential application of BBG as a neuroprotective therapy.

  7. Integration and Validation of Avian Radars (IVAR)

    Science.gov (United States)

    2011-08-01

    operations; 1-year visual census; multiple eBirdRad radars; fiber- optic wired LAN (planned) NAS Patuxent River, MD X B X Medium-sized air station...introduced a multibeam avian radar antenna that purports to double the beam width (from 4° to 8°), while at the same time increasing the precision of the

  8. Avian influenza virus and Newcastle disease virus

    Science.gov (United States)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  9. Serological diagnosis of avian influenza in poultry

    DEFF Research Database (Denmark)

    Comin, Arianna; Toft, Nils; Stegeman, Arjan;

    2013-01-01

    Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the gold standard' for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy...

  10. Measuring steroid hormones in avian eggs

    NARCIS (Netherlands)

    Von Engelhardt, N; Groothuis, TGG; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little attention

  11. Avian Disease & Oncology Lab (ADOL) Research Update

    Science.gov (United States)

    Employing Genomics, Epigenetics, and Immunogenetics to Control Diseases Induced by Avian Tumor Viruses - Gene expression is a major factor accounting for phenotypic variation. Taking advantage of allele-specific expression (ASE) screens, we found the use of genetic markers was superior to traditiona...

  12. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James Seymour; McLay, Emma

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful...

  13. Measuring Steroid Hormones in Avian Eggs

    NARCIS (Netherlands)

    Engelhardt, Nikolaus von; Groothuis, Ton G.G.

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little attention

  14. Website for avian flu information and bioinformatics

    Institute of Scientific and Technical Information of China (English)

    GAO; George; Fu

    2009-01-01

    Highly pathogenic influenza A virus H5N1 has spread out worldwide and raised the public concerns. This increased the output of influenza virus sequence data as well as the research publication and other reports. In order to fight against H5N1 avian flu in a comprehensive way, we designed and started to set up the Website for Avian Flu Information (http://www.avian-flu.info) from 2004. Other than the influenza virus database available, the website is aiming to integrate diversified information for both researchers and the public. From 2004 to 2009, we collected information from all aspects, i.e. reports of outbreaks, scientific publications and editorials, policies for prevention, medicines and vaccines, clinic and diagnosis. Except for publications, all information is in Chinese. Till April 15, 2009, the cumulative news entries had been over 2000 and research papers were approaching 5000. By using the curated data from Influenza Virus Resource, we have set up an influenza virus sequence database and a bioinformatic platform, providing the basic functions for the sequence analysis of influenza virus. We will focus on the collection of experimental data and results as well as the integration of the data from the geological information system and avian influenza epidemiology.

  15. [Avian influenza and oseltamivir; a retrospective view

    NARCIS (Netherlands)

    Galama, J.M.D.

    2003-01-01

    The outbreak of avian influenza A due to an H7N7 virus in Dutch poultry farms turned out to have public-health effects for those who were involved in the management of the epidemic and who were thus extensively exposed to contaminated excreta and dust. An outbreak-management team (OMT) of experts in

  16. Website for avian flu information and bioinformatics

    Institute of Scientific and Technical Information of China (English)

    LIU Di; LIU Quan-He; WU Lin-Huan; LIU Bin; WU Jun; LAO Yi-Mei; LI Xiao-Jing; GAO George Fu; MA Jun-Cai

    2009-01-01

    Highly pathogenic influenza A virus H5N1 has spread out worldwide and raised the public concerns. This increased the output of influenza virus sequence data as well as the research publication and other reports. In order to fight against H5N1 avian flu in a comprehensive way, we designed and started to set up the Website for Avian Flu Information (http://www.avian-flu.info) from 2004. Other than the influenza virus database available, the website is aiming to integrate diversified information for both researchers and the public. From 2004 to 2009, we collected information from all aspects, i.e. reports of outbreaks, scientific publications and editorials, policies for prevention, medicines and vaccines, clinic and diagnosis. Except for publications, all information is in Chinese. Till April 15, 2009, the cumulative news entries had been over 2000 and research papers were approaching 5000. By using the curated data from Influenza Virus Resource, we have set up an influenza virus sequence database and a bioin-formatic platform, providing the basic functions for the sequence analysis of influenza virus. We will focus on the collection of experimental data and results as well as the integration of the data from the geological information system and avian influenza epidemiology.

  17. On Krasnoselskii's Cone Fixed Point Theorem

    Directory of Open Access Journals (Sweden)

    Man Kam Kwong

    2008-04-01

    Full Text Available In recent years, the Krasnoselskii fixed point theorem for cone maps and its many generalizations have been successfully applied to establish the existence of multiple solutions in the study of boundary value problems of various types. In the first part of this paper, we revisit the Krasnoselskii theorem, in a more topological perspective, and show that it can be deduced in an elementary way from the classical Brouwer-Schauder theorem. This viewpoint also leads to a topology-theoretic generalization of the theorem. In the second part of the paper, we extend the cone theorem in a different direction using the notion of retraction and show that a stronger form of the often cited Leggett-Williams theorem is a special case of this extension.

  18. k-cones and kirigami metamaterials

    Science.gov (United States)

    Seffen, Keith A.

    2016-09-01

    We are inspired by the tensile buckling of a thin sheet with a slit to create a foldable planar metamaterial. The buckled shape comprises two pairs of identical e-cones connected to the slit, which we refer to as a k-cone. We approximate this shape as discrete vertices that can be folded out of plane as the slit is pulled apart. We determine their kinematics and we calculate generic shape properties using a simple elastic model of the folded shape. We then show how the folded sheet may be tessellated as a unit cell within a larger sheet, which may be constructed a priori by cutting and folding the latter in a regular way, in order to form a planar kirigami structure with a single degree of freedom.

  19. Hollow Cone Spray Characterization and Integral Modeling

    OpenAIRE

    Bollweg, Peter

    2013-01-01

    The thesis presents a computationally efficient spray model for hollow cone sprays suitable for engine system simulation of direct injecting gasoline internal combustion engines. The model describes the transient evolution of the spray as a two-phase jet. Spatial gradients are resolved along the main injection direction. Momentum exchange, droplet heat-up, and fuel evaporation are accounted for. Diffusive transport of momentum, energy, and fuel species mass between the dense spray zone an...

  20. Cone beam computed tomography use in orthodontics.

    Science.gov (United States)

    Nervina, J M

    2012-03-01

    Cone beam computed tomography (CBCT) is widely used by orthodontists to obtain three-dimensional (3-D) images of their patients. This is of value as malocclusion results from discrepancies in three planes of space. This review tracks the use of CBCT in orthodontics, from its validation as an accurate and reliable tool, to its use in diagnosing and treatment planning, and in assessing treatment outcomes in orthodontics.

  1. Wavefronts and Light Cones for Kerr Spacetimes

    CERN Document Server

    Frutos-Alfaro, Francisco; Mueller, Thomas; Adis, Daria

    2014-01-01

    We investigate the light propagation by means of simulations of wavefronts and light cones for Kerr spacetimes. Simulations of this kind give us a new insight to better understand the light propagation in presence of massive rotating black holes. A relevant result is that wavefronts are back scattered with winding around the black hole. To generate these visualizations, an interactive computer program with a graphical user interface, called JWFront, was written in Java.

  2. Instantons on Calabi–Yau cones

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, Marcus, E-mail: marcus.sperling@itp.uni-hannover.de

    2015-12-15

    The Hermitian Yang–Mills equations on certain vector bundles over Calabi–Yau cones can be reduced to a set of matrix equations; in fact, these are Nahm-type equations. The latter can be analysed further by generalising arguments of Donaldson and Kronheimer used in the study of the original Nahm equations. Starting from certain equivariant connections, we show that the full set of instanton equations reduce, with a unique gauge transformation, to the holomorphicity condition alone.

  3. Instantons on Calabi–Yau cones

    Directory of Open Access Journals (Sweden)

    Marcus Sperling

    2015-12-01

    Full Text Available The Hermitian Yang–Mills equations on certain vector bundles over Calabi–Yau cones can be reduced to a set of matrix equations; in fact, these are Nahm-type equations. The latter can be analysed further by generalising arguments of Donaldson and Kronheimer used in the study of the original Nahm equations. Starting from certain equivariant connections, we show that the full set of instanton equations reduce, with a unique gauge transformation, to the holomorphicity condition alone.

  4. Cone Beam Computed Tomography - Know its Secrets

    OpenAIRE

    Kumar, Mohan; Shanavas, Muhammad; Sidappa, Ashwin; Kiran, Madhu

    2015-01-01

    Cone-beam computed tomography (CBCT) is an advanced imaging modality that has high clinical applications in the field of dentistry. CBCT proved to be a successful investigative modality that has been used for dental and maxillofacial imaging. Radiation exposure dose from CBCT is 10 times less than from conventional CT scans during maxillofacial exposure. Furthermore, CBCT is highly accurate and can provide a three-dimensional volumetric data in axial, sagittal and coronal planes. This article...

  5. The Geometry of Small Causal Cones

    CERN Document Server

    Jubb, Ian

    2016-01-01

    We derive a formula for the spacetime volume of a small causal cone. We use this formula within the context of causal set theory to construct causal set expressions for certain geometric quantities relating to a spacetime with a spacelike hypersurface. We also consider a scalar field on the causal set, and obtain causal set expressions relating to its normal derivatives with respect to the hypersurface.

  6. The NLO jet vertex in the small-cone approximation for kt and cone algorithms

    CERN Document Server

    Colferai, Dimitri

    2015-01-01

    We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet "radius" R=0.5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.

  7. Long polymers near wedges and cones

    Science.gov (United States)

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N -step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d =2 ), or the tip of an impenetrable cone in d =3 , of sizes ranging up to N =106 steps. We find that the critical exponent γα, which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α , is in good agreement with the theory for d =2 . We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γα, as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions.

  8. Cusp formation in drops inside Taylor cones

    Science.gov (United States)

    Marin, Alvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2005-11-01

    Here, we report the formation of cusp in insulating drops inside compound Taylor cones. The action of the electrical shear stress acting on the outer interface, which is transmitted by viscous forces inside the Taylor cone, tends to deform the drop of insulating liquid placed inside. For appropriate values of the capillary number, the insulating drop develops a steady cusp angle which depends on both the capillary number and the conducting to insulating viscosity ratio. A self-similar analysis has been developed to qualitatively describe the flow inside these compounds Taylor cones. Any perturbation of the cusp gives rise to an intermittent emission of tiny droplets; this effect may recall the tip-streaming observed by G.I. Taylor in his four-roll mill device. This emission can be stabilized by an appropriate control of the injected flow rate of the insulating liquid. When the capillary number increases, the cusped interface turns into a spout which flows coated by the conducting liquid forming the electrified coaxial jet which has been successfully employed for the production of nanocapsules, coaxial nanofibers and nanotubes (Science 295, n. 5560, 1695, 2002; JACS 126, 5376, 2004).

  9. A Coning Theory of Bullet Motions

    CERN Document Server

    Boatright, James A

    2012-01-01

    Each observable ballistic phenomenon of a spin-stabilized rifle bullet can be explained in terms of the acceleration of gravity and the total aerodynamic force acting on that bullet. In addition to the coning motion itself, Coning Theory explains the spinning bullet's aerodynamic jump and its steadily increasing yaw of repose together with its resulting spin-drift. The total aerodynamic force on the bullet comprises its drag and lift rectangular components and produces an associated overturning moment acting upon the rigid bullet. The coning motion of the bullet includes two distinct but synchronized aspects: 1) the well-known gyroscopic precession of the spin-axis of the bullet, and 2) the previously little-known orbiting of the center of gravity of the bullet around its mean trajectory with the nose of the bullet angled inward toward that trajectory. New equations are developed governing the orbital motion of the CG as a circular, isotropic harmonic oscillation driven by the lift and drag forces as they rev...

  10. Local mechanosensing by neuronal growth cones

    Science.gov (United States)

    Lakadamyali, Melike; Bayer, Johannes; Park, Soyeun; Mahaffy, Rachel; Kas, Josef; Shih, Chih-Kang Ken

    2003-03-01

    Knowledge of cell locomotion and response to surrounding obstacles is of key importance for understanding motility-based processes such as neuronal growth and nerve regeneration. We used a modified AFM probe as well as a small glass fiber tip as obstacles to investigate the response of PC12 cells, a model for rat nerve cells, to a wide range of resisting stresses (10-2000 Pa). The growth cone of the PC12 cells retracts and grows forward again in a random direction when stimulated by the stresses. Surprisingly, this response can be triggered by a mechanical stress that lasts as short as one second and does not require a permanent stimulus. The retraction from the applied stress takes place at time scales too short for changes in protein expression to occur. We can understand these fast time responses by examining the dynamic cytoskeletal processes that take place at the leading edge of the nerve growth cone. Our result shows that the observed local mechanotransduction event at the nerve cell's growth cone produces local elastic changes triggered by stress induced Ca2+ influx. This is consistent with the previous observations that Ca2+ signals impact the actin cytoskeleton by inducing gel-sol transitions.

  11. A Class of Cone Bounded Quasiconvex Mappings in Topological Vector Spaces

    Institute of Scientific and Technical Information of China (English)

    Yu-da Hu; Chen Ling

    2003-01-01

    Within the context of cone-ordered topological vector spaces, this paper introduces the concepts of cone bounded point and cone bounded set for vector set. With their aid, a class of new cone quasiconvex mappings in topological vector spaces is defined, and their fundamental properties are presented. The relationships between the cone bounded quasiconvex mapping defined in this paper and cone convex mapping, and other known cone quasiconvex mapping are also discussed.

  12. G-quartet oligonucleotide mediated delivery of proteins into photoreceptors and retinal pigment epithelium via intravitreal injection.

    Science.gov (United States)

    Leaderer, Derek; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2016-04-01

    There is currently no available method to efficiently deliver proteins across the plasma membrane of photoreceptor or retinal pigment epithelium (RPE) cells in vivo. Thus, current clinical application of recombinant proteins in ophthalmology is limited to the use of proteins that perform their biological function extracellularly. The ability to traverse biological membranes would enable the mobilization of a significantly larger number of proteins with previously well characterized properties. Nucleolin is abundantly present on the surface of rapidly dividing cells including cancer cells. Surprisingly, nucleolin is also present on the surface of photoreceptor cell bodies. Here we investigated whether nucleolin can be utilized as a gateway for the delivery of proteins into retinal cells following intravitreal injection. AS1411 is a G-quartet aptamer capable of targeting nucleolin. Subsequent to intravitreal injection, fluorescently labeled AS1411 localized to various retinal cell types including the photoreceptors and RPE. AS1411 linked to streptavidin (a ∼50 kDa protein) via a biotin bridge enabled the uptake of Streptavidin into photoreceptors and RPE. AS1411-Streptavidin conjugate applied topically to the cornea allowed for uptake of the conjugate into the nucleus and cytoplasm of corneal endothelial cells. Clinical relevance of AS1411 as a delivery vehicle was strongly indicated by demonstration of the presence of cell surface nucleolin on the photoreceptors, inner neurons and ganglion cells of human retina. These data support exploration of AS1411 as a means of delivering therapeutic proteins to diseased retina.

  13. Causal Cones, Cone Preserving Transformations and Causal Structure in Special and General Theory of Relativity

    CERN Document Server

    Janardhan, Sujatha

    2012-01-01

    We present a short review of geometric and algebraic approach to causal cones and describe cone preserving transformations and their relationship with causal structure related to special and general theory of relativity. We describe Lie groups, especially matrix Lie groups, homogeneous and symmetric spaces and causal cones and certain implications of these concepts in special and general theory of relativity related to causal structure and topology of space-time. We compare and contrast the results on causal relations with those in the literature for general space-times and compare these relations with K-causal maps. We also describe causal orientations and their implications for space-time topology and discuss some more topologies on space-time which arise as an application of domain theory.

  14. Exploring the active site structure of photoreceptor proteins by Raman optical activity

    Science.gov (United States)

    Unno, Masashi

    2015-03-01

    Understanding protein function at the atomic level is a major challenge in a field of biophysics and requires the combined efforts of structural and functional methods. We use photoreceptor proteins as a model system to understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal. A potential technique for investigating molecular structures is Raman optical activity (ROA), which is a spectroscopic method with a high sensitivity to the structural details of chiral molecules. However, its application to photoreceptor proteins has not been reported. Thus we have constructed ROA spectrometer using near-infrared (NIR) laser excitation at 785 nm. The NIR excitation enables us to measure ROA spectra for a variety of biological samples, including photoreceptor proteins, without fluorescence from the samples. In the present study, we have applied the NIR-ROA to bacteriorhodopsin (BR) and photoactive yellow protein (PYP). BR is a light-driven proton pump and contains a protonated Schiff base of retinal as a chromophore. PYP is a blue light receptor, and this protein has the 4-hydroxycinnamyl chromophore, which is covalently linked to Cys69 through a thiolester bond. We have successfully obtained the ROA spectra of the chromophore within a protein environment. Furthermore, calculations of the ROA spectra utilizing density functional theory provide detailed structural information, such as data on out-of-plane distortions of the chromophore. The structural information obtained from the ROA spectra includes the positions of hydrogen atoms, which are usually not detected in the crystal structures of biological samples.

  15. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism.

    Science.gov (United States)

    Sanz, Catalina; Rodríguez-Romero, Julio; Idnurm, Alexander; Christie, John M; Heitman, Joseph; Corrochano, Luis M; Eslava, Arturo P

    2009-04-28

    The fungus Phycomyces blakesleeanus reacts to environmental signals, including light, gravity, touch, and the presence of nearby objects, by changing the speed and direction of growth of its fruiting body (sporangiophore). Phototropism, growth toward light, shares many features in fungi and plants but the molecular mechanisms remain to be fully elucidated. Phycomyces mutants with altered phototropism were isolated approximately 40 years ago and found to have mutations in the mad genes. All of the responses to light in Phycomyces require the products of the madA and madB genes. We showed that madA encodes a protein similar to the Neurospora blue-light photoreceptor, zinc-finger protein WC-1. We show here that madB encodes a protein similar to the Neurospora zinc-finger protein WC-2. MADA and MADB interact to form a complex in yeast 2-hybrid assays and when coexpressed in E. coli, providing evidence that phototropism and other responses to light are mediated by a photoresponsive transcription factor complex. The Phycomyces genome contains 3 genes similar to wc-1, and 4 genes similar to wc-2, many of which are regulated by light in a madA or madB dependent manner. We did not detect any interactions between additional WC proteins in yeast 2-hybrid assays, which suggest that MADA and MADB form the major photoreceptor complex in Phycomyces. However, the presence of multiple wc genes in Phycomyces may enable perception across a broad range of light intensities, and may provide specialized photoreceptors for distinct photoresponses.

  16. Freeze-fracture studies of photoreceptor membranes: new observations bearing upon the distribution of cholesterol.

    Science.gov (United States)

    Andrews, L D; Cohen, A I

    1983-09-01

    We performed electron microscopy of replicas from freeze-fractured retinas exposed during or after fixation to the cholesterol-binding antibiotic, filipin. We observed characteristic filipin-induced perturbations throughout the disk and plasma membranes of retinal rod outer segments of various species. It is evident that a prolonged exposure to filipin in fixative enhances rather than reduces presumptive cholesterol detection in the vertebrate photoreceptor cell. In agreement with the pattern seen in our previous study (Andrews, L.D., and A. I. Cohen, 1979, J. Cell Biol., 81:215-228), filipin-binding in membranes exhibiting particle-free patches seemed largely confined to these patches. Favorably fractured photoreceptors exhibited marked filipin-binding in apical inner segment plasma membrane topologically confluent with and proximate to the outer segment plasma membrane, which was comparatively free of filipin binding. A possible boundary between these differing membrane domains was suggested in a number of replicas exhibiting lower filipin binding to the apical plasma membrane of the inner segment in the area surrounding the cilium. This area contains a structure (Andrews, L. D., 1982, Freeze-fracture studies of vertebrate photoreceptors, In Structure of the Eye, J. G. Hollyfield and E. Acosta Vidrio, editors, Elsevier/North-Holland, New York, 11-23) that resembles the active zones of the nerve terminals for the frog neuromuscular junction. These observations lead us to hypothesize that these structures may function to direct vesicle fusion to occur near them, in a domain of membrane more closely resembling outer than inner segment plasma membrane. The above evidence supports the views that (a) all disk membranes contain cholesterol, but the particle-free patches present in some disks trap cholesterol from contiguous particulate membrane regions; (b) contiguous inner and outer segment membranes may greatly differ in cholesterol content; and (c) the suggested

  17. Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration.

    Science.gov (United States)

    González-Sastre, Alejandro; Molina, Ma Dolores; Saló, Emili

    2012-01-01

    Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea.

  18. Muller cell reactivity in response to photoreceptor degeneration in rats with defective polycystin-2.

    Directory of Open Access Journals (Sweden)

    Stefanie Vogler

    Full Text Available BACKGROUND: Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703HA is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328. It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2. METHODS: Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution. FINDINGS: Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators. INTERPRETATION: Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress

  19. Deteksi Antibodi Serum Terhadap Virus Avian influenza pada Ayam Buras

    Directory of Open Access Journals (Sweden)

    Darmawi Darmawi

    2012-04-01

    Full Text Available Detection on Serum Antibodies of Native Chickens to Avian influenza Virus ABSTRACT.  An important approach of controlling against Avian Influenza should be determined to detect the antibody titres of bird flu caused by Influenza virus H5N1 in Indonesia. The aim of the present study was to detect the antibodies to Avian Influenza in serum of native chickens. This study utilized 123 serum samples collected from the axilaris vein (left or right of native chickens. Antibody titres were examined using Hemaglutination Inhibition (HI. The result showed that indication of natural infection by Avian Influenza (H5N1 in native chickens, as shown that out of 123 serum samples, 16 (13,01% were tested positive by HI, while only 10 (8,13% were tested protective to Avian influenza infection. Based on the results we obtained, a conclusion that natural infection by Avian influenza virus stimulated variety level of formation antibody titres in native chickens.

  20. Tantalum cones and bone defects in revision total knee arthroplasty.

    Science.gov (United States)

    Boureau, F; Putman, S; Arnould, A; Dereudre, G; Migaud, H; Pasquier, G

    2015-04-01

    Management of bone loss is a major challenge in revision total knee arthroplasty (TKA). The development of preformed porous tantalum cones offers new possibilities, because they seem to have biological and mechanical qualities that facilitate osseointegration. Compared to the original procedure, when metaphyseal bone defects are too severe, a single tantalum cone may not be enough and we have developed a technique that could extend the indications for this cone in these cases. We used 2 cones to fill femoral bone defects in 7 patients. There were no complications due to wear of the tantalum cones. Radiological follow-up did show any migration or loosening. The short-term results confirm the interest of porous tantalum cones and suggest that they can be an alternative to allografts or megaprostheses in case of massive bone defects.

  1. Pulsar average waveforms and hollow cone beam models

    Science.gov (United States)

    Backer, D. C.

    1975-01-01

    An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects.

  2. Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images

    DEFF Research Database (Denmark)

    Christensen, U.C.; Krøyer, K.; Thomadsen, Jakob

    2008-01-01

    Aim: To present normative data of outer photoreceptor layer thickness obtained by a new semiautomatic image analysis algorithm operating on contrast-enhanced optical coherence tomography (OCT) images. Methods: Eight Stratus OCT3 scans from identical retinal locations from 25 normal eyes were...... registered and combined to form a contrast-enhanced average image. Utilising the vertical intensity gradients of the enhanced OCT images to demarcate retinal layers, thickness measurements of the outer photoreceptor- and retinal pigment epithelium layer (RPE-OScomplex) were obtained. Additionally...... in the superior macula 0.5-3 mm of the centre was significantly increased as compared with the corresponding inferior retina. In healthy subjects, the I-ratio-ONL was 1.06. Conclusions: Contrast-enhanced OCT images enable quantification of outer photoreceptor layer thickness, and normative values may help...

  3. Closed Graph and Open Mapping Theorems for Normed Cones

    Indian Academy of Sciences (India)

    Oscar Valero

    2008-05-01

    A quasi-normed cone is a pair (, ) such that is a (not necessarily cancellative) cone and is a quasi-norm on . The aim of this paper is to prove a closed graph and an open mapping type theorem for quasi-normed cones. This is done with the help of appropriate notions of completeness, continuity and openness that arise in a natural way from the setting of bitopological spaces.

  4. Dynamical Structure of the Fields in the Light Cone Coordinates

    CERN Document Server

    Kargar, Kianoosh

    2016-01-01

    It is well-known that additional constraints emerge in light cone coordinates. We enumerate the number of physical modes in light cone coordinates and compare it with conventional coordinates. We show that the number of Schrodinger modes is divided by two in light cone coordinates. We study the effect of this reduction in the number ladder operators acting on physical states of a system. We analyse the scaler, spinor and vector field theories carefully to see the effect of changes in the dynamical structure of these theories from the view point of the reduction of Schrodinger modes in light-cone coordinates.

  5. Fractional quantum Hall states of bosons on cones

    CERN Document Server

    Wu, Ying-Hai; Sreejith, G J

    2016-01-01

    Motivated by a recent experiment which synthesizes Landau levels for photons on cones (Schine {\\em et al.}, arXiv: 1511.07381), and more generally the interest in understanding gravitational responses of quantum Hall systems, we study fractional quantum Hall states of bosons on cones. We construct several trial wave functions and compare them with exact diagonalization results. The tip of a cone is a localized geometrical defect with singular curvature around which excessive charges accumulate. We study the density profiles of some states on cones and show that the excessive charges agree with analytical predictions.

  6. The trip of the tip: understanding the growth cone machinery.

    Science.gov (United States)

    Lowery, Laura Anne; Van Vactor, David

    2009-05-01

    The central component in the road trip of axon guidance is the growth cone, a dynamic structure that is located at the tip of the growing axon. During its journey, the growth cone comprises both 'vehicle' and 'navigator'. Whereas the 'vehicle' maintains growth cone movement and contains the cytoskeletal structural elements of its framework, a motor to move forward and a mechanism to provide traction on the 'road', the 'navigator' aspect guides this system with spatial bias to translate environmental signals into directional movement. The understanding of the functions and regulation of the vehicle and navigator provides new insights into the cell biology of growth cone guidance.

  7. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  8. Avian influenza virus and free-ranging wild birds

    Science.gov (United States)

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  9. Seasonal change in the avian hippocampus.

    Science.gov (United States)

    Sherry, David F; MacDougall-Shackleton, Scott A

    2015-04-01

    The hippocampus plays an important role in cognitive processes, including memory and spatial orientation, in birds. The hippocampus undergoes seasonal change in food-storing birds and brood parasites, there are changes in the hippocampus during breeding, and further changes occur in some species in association with migration. In food-storing birds, seasonal change in the hippocampus occurs in fall and winter when the cognitively demanding behaviour of caching and retrieving food occurs. The timing of annual change in the hippocampus of food-storing birds is quite variable, however, and appears not to be under photoperiod control. A variety of factors, including cognitive performance, exercise, and stress may all influence seasonal change in the avian hippocampus. The causal processes underlying seasonal change in the avian hippocampus have not been extensively examined and the more fully described hormonal influences on the mammalian hippocampus may provide hypotheses for investigating the control of hippocampal seasonality in birds.

  10. Morphologic evidence for differentiation of pinealocytes from photoreceptor cells in the adult noctule bat (Nyctalus noctula, Schreber).

    Science.gov (United States)

    Pevet, P; Ariëns Kappers, J; Voûte, A M

    1977-07-26

    An electron microscopical investigation of the pineal gland of the adult noctule bat revealed the presence of some peculiar ciliary derivatives, similar to the club-shaped outer segment of rudimentary photoreceptor cells in the pineal organ of nonmammalian vertebrates. The pinealocytes of population I can be classified in several morphological types, one of them displaying morphological features resembling those of rudimentary photoreceptor cells. These results reconfirm the concept of the sensory cell line in the vertebrate pineal organ. The question whether the pinealocytes of population II belong to the same sensory cell line is discussed.

  11. En face optical coherence tomography of transient light response at photoreceptor outer segments in living frog eyecup.

    Science.gov (United States)

    Wang, Benquan; Lu, Rongwen; Zhang, Qiuxiang; Jiang, Yuqiang; Yao, Xincheng

    2013-11-15

    This study was designed to test the feasibility of en face mapping of the transient intrinsic optical signal (IOS) response at photoreceptor outer segments and to assess the effect of spatial resolution on functional IOS imaging of retinal photoreceptors. A line-scan optical coherence tomography (LS-OCT) was constructed to achieve depth-resolved functional IOS imaging of living frog eyecups. Rapid en face OCT revealed transient IOS almost immediately (IOS kinetics may reflect dynamics of G-protein binding and releasing in early phases of visual transduction, and high resolution is essential to differentiate positive and negative IOS changes in adjacent locations.

  12. Avian Interferons and Their Antiviral Effectors

    OpenAIRE

    Santhakumar, Diwakar; Rubbenstroth, Dennis; Martinez-Sobrido, Luis; Munir, Muhammad

    2017-01-01

    Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of I...

  13. The avian fossil record in Insular Southeast Asia and its implications for avian biogeography and palaeoecology.

    Science.gov (United States)

    Meijer, Hanneke J M

    2014-01-01

    Excavations and studies of existing collections during the last decades have significantly increased the abundance as well as the diversity of the avian fossil record for Insular Southeast Asia. The avian fossil record covers the Eocene through the Holocene, with the majority of bird fossils Pleistocene in age. Fossil bird skeletal remains represent at least 63 species in 54 genera and 27 families, and two ichnospecies are represented by fossil footprints. Birds of prey, owls and swiftlets are common elements. Extinctions seem to have been few, suggesting continuity of avian lineages since at least the Late Pleistocene, although some shifts in species ranges have occurred in response to climatic change. Similarities between the Late Pleistocene avifaunas of Flores and Java suggest a dispersal route across southern Sundaland. Late Pleistocene assemblages of Niah Cave (Borneo) and Liang Bua (Flores) support the rainforest refugium hypothesis in Southeast Asia as they indicate the persistence of forest cover, at least locally, throughout the Late Pleistocene and Holocene.

  14. Seroprevalence of avian hepatitis E virus and avian leucosis virus subgroup J in chicken flocks with hepatitis syndrome, China

    OpenAIRE

    Sun, Yani; Du, Taofeng; Liu, Baoyuan; Syed, Shahid Faraz; Chen, Yiyang; Li, Huixia; Wang, Xinjie; Zhang, Gaiping; Zhou, En-Min; Zhao, Qin

    2016-01-01

    Background From 2014 to 2015 in China, many broiler breeder and layer hen flocks exhibited a decrease in egg production and some chickens developed hepatitis syndrome including hepatomegaly, hepatic necrosis and hemorrhage. Avian hepatitis E virus (HEV) and avian leucosis virus subgroup J (ALV-J) both cause decreasing in egg production, hepatomegaly and hepatic hemorrhage in broiler breeder and layer hens. In the study, the seroprevalence of avian HEV and ALV-J in these flocks emerging the di...

  15. A spectral isoperimetric inequality for cones

    Science.gov (United States)

    Exner, Pavel; Lotoreichik, Vladimir

    2016-11-01

    In this note, we investigate three-dimensional Schrödinger operators with δ -interactions supported on C^2 -smooth cones, both finite and infinite. Our main results concern a Faber-Krahn-type inequality for the principal eigenvalue of these operators. The proofs rely on the Birman-Schwinger principle and on the fact that circles are unique minimizers for a class of energy functionals. The main novel idea consists in the way of constructing test functions for the Birman-Schwinger principle.

  16. Rapid heuristic projection on simplicial cones

    CERN Document Server

    Ekárt, A; Németh, S Z

    2010-01-01

    A very fast heuristic iterative method of projection on simplicial cones is presented. It consists in solving two linear systems at each step of the iteration. The extensive experiments indicate that the method furnishes the exact solution in more then 99.7 percent of the cases. The average number of steps is 5.67 (we have not found any examples which required more than 13 steps) and the relative number of steps with respect to the dimension decreases dramatically. Roughly speaking, for high enough dimensions the absolute number of steps is independent of the dimension.

  17. Avian Interferons and Their Antiviral Effectors

    Science.gov (United States)

    Santhakumar, Diwakar; Rubbenstroth, Dennis; Martinez-Sobrido, Luis; Munir, Muhammad

    2017-01-01

    Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds. PMID:28197148

  18. Avian cytokines in health and disease

    Directory of Open Access Journals (Sweden)

    P Wigley

    2003-04-01

    Full Text Available Cytokines are proteins secreted by cells that play an important role in the activation and regulation of other cells and tissues during inflammation and immune responses. Although well described in several mammalian species, the role of cytokines and other related proteins is poorly understood in avian species. Recent advances in avian genetics and immunology have begun to allow the exploration of cytokines in health and disease. Cytokines may be classified in a number of ways, but may be conveniently arranged into four broad groups on the basis of their function. Proinflammatory cytokines such as interleukin-6 and interleukin-1beta play a role in mediating inflammation during disease or injury. Th1 cytokines, including interleukin-12 and interferon-gamma, are involved in the induction of cell-mediated immunity, whereas Th2 cytokines such as interleukin-4 are involved in the induction of humoral immunity. The final group Th3 or Tr cytokines play a role in regulation of immunity. The role of various cytokines in infectious and non-infectious diseases of chickens and turkeys is now being investigated. Although there are only a few reliable ELISAs or bioassays developed for avian cytokines, the use of molecular techniques, and in particular quantitative RT-PCR (Taqman has allowed investigation of cytokine responses in a number of diseases including salmonellosis, coccidiosis and autoimmune thyroiditis. In addition the use of recombinant cytokines as therapeutic agents or as vaccine adjuvants is now being explored.

  19. Avian Interferons and Their Antiviral Effectors.

    Science.gov (United States)

    Santhakumar, Diwakar; Rubbenstroth, Dennis; Martinez-Sobrido, Luis; Munir, Muhammad

    2017-01-01

    Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.

  20. Niflumic acid reduces the hyperpolarization-activated current (I(h)) in rod photoreceptor cells.

    Science.gov (United States)

    Satoh, T O; Yamada, M

    2001-08-01

    We examined the effects of niflumic acid (NFA), a chloride channel blocker, on the hyperpolarization-activated current (I(h)) in newt rod photoreceptors. At 100 microM, NFA delayed the activation of I(h) induced by hyperpolarizing voltage pulses to -83 mV from a holding potential of -43 mV, and reduced the steady-state current. However, reduction by NFA was weakened when I(h) was activated by hyperpolarizing steps to -123 mV, suggesting that these effects were voltage-dependent. The suppressive effects of NFA on I(h) were accompanied by a negative shift in activation voltage. NFA also delayed the relaxation of I(h) tail currents, showing that this drug also inhibited deactivation of the current. The reversal potential and the fully activated conductance were not affected. These observations suggest that NFA reduces I(h) by modifying the gating kinetics of the underlying channels. The suppressive actions of NFA remained when intracellular Ca2+ was strongly chelated, and the failure of suppression by NFA in inside-out patches suggests that the agent may act on the I(h) channel from the extracellular side. These results, obtained in rod photoreceptors, are consistent with similar effects of NFA on I(f) in cardiac myocytes, suggesting that both currents share similar pharmacological properties.

  1. IGF-I maintains calpastatin expression and attenuates apoptosis in several models of photoreceptor cell death.

    Science.gov (United States)

    Arroba, Ana I; Wallace, Deborah; Mackey, Ashley; de la Rosa, Enrique J; Cotter, Thomas G

    2009-09-01

    Retinitis pigmentosa is a heterogeneous group of inherited retinal dystrophies in which the loss of photoreceptor cells via apoptosis leads to blindness. In this study we have experimentally mimicked this condition by treating 661W cells and wild-type mouse retinal explants with a Ca(2+) ionophore. Ca(2+) overload induced apoptosis, which was correlated with calpain-2 activation, loss of calpastatin, its endogenous inhibitor, as well as the loss of its transcriptional activator, phospho-cAMP response element binding (CREB). All are similar changes to those observed in the rd1 mouse model of retinitis pigmentosa. Insulin like-growth factor-I (IGF-I) attenuated this Ca(2+)-induced apoptosis, as well as decreased the activation of calpain-2 and maintained calpastatin levels through the activation of the Akt-CREB pathway. Similarly, IGF-I decreased photoreceptor apoptosis in rd1 mouse retinal explants in parallel with reduced activation of calpain-2 and increased levels of calpastatin and activation of phospho-CREB. In conclusion, IGF-I seems to protect neural cells following a physiopathological or an experimental increase in intracellular Ca(2+), an observation that may have therapeutic consequences in neurodegenerative diseases such as retinitis pigmentosa.

  2. Structural basis for gene regulation by a B12-dependent photoreceptor

    Science.gov (United States)

    Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; Ortiz-Guerrero, Juan Manuel; Chen, Percival Yang-Ting; Kang, Gyunghoon; Padmanabhan, S.; Elías-Arnanz, Montserrat; Drennan, Catherine L.

    2015-01-01

    Summary Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide a visualization of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter −35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation. PMID:26416754

  3. Characterization and function of stentorin, the photoreceptor protein in Stentor coeruleus

    Energy Technology Data Exchange (ETDEWEB)

    Huh, J.W.

    1987-01-01

    Stentorin is a photoreceptor protein that is responsible for the step-up photophobic response and the negative phototaxis of an aneural unicellular ciliate protozoan, Stentor coeruleus. This protein was solubilized from the membrane of pigment granules and purified by the combination of gel filtration, hydroxylapatite chromatography, and DEAE-sepharose anionic exchange chromatography. SDS polyacrylamide gel electrophoresis revealed two red fluorescent bands for the purified stentorin reflecting the microheterogeneity of stentorin. The fluorescence lifetime study of stentorin employing the deuterium solvent isotope effect was conducted to confirm the proton dissociation from the chromophore at the excited state as a primary signal in the photosensory transduction in S. coeruleus. The increase of the amplitude of the anionic lifetime component in going from H/sub 2/O buffer to D/sub 2/O buffer is suggestive of the existence of the conjugate acid-base network of the photoreceptor protein for fast proton transfer. ATP-involvement in the photoresponse of S. coeruleus was investigated by using the firefly bioluminescence for ATP assay and the incorporation of /sup 32/Pi into ATP. Light-induced ATP level variation was detected only when cellular ATP was extracted by the boiling water method. The cellular ATP level was constant regardless of light illumination when extracted by trichloroacetic acid (TCA).

  4. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor.

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-10-24

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.

  5. A role for the extracellular domain of Crumbs in morphogenesis of Drosophila photoreceptor cells.

    Science.gov (United States)

    Richard, Mélisande; Muschalik, Nadine; Grawe, Ferdi; Ozüyaman, Susann; Knust, Elisabeth

    2009-12-01

    Morphogenesis of Drosophila photoreceptor cells includes the subdivision of the apical membrane into the photosensitive rhabdomere and the associated stalk membrane, as well as a considerable elongation of the cell. Drosophila Crumbs (Crb), an evolutionarily conserved transmembrane protein, organizes an apical protein scaffold, which is required for elongation of the photoreceptor cell and extension of the stalk membrane. To further elucidate the role played by different Crb domains during eye morphogenesis, we performed a structure-function analysis in the eye. The analysis showed that the three variants tested, namely full-length Crb, the membrane-bound intracellular domain and the extracellular domain were able to rescue the elongation defects of crb mutant rhabdomeres. However, only full-length Crb and the membrane-bound intracellular domain could partially restore the length of the stalk membrane, while the extracellular domain failed to do so. This failure was associated with the inability of the extracellular domain to recruit beta(Heavy)-spectrin to the stalk membrane. These results highlight the functional importance of the extracellular domain of Crb in the Drosophila eye. They are in line with previous observations, which showed that mutations in the extracellular domain of human CRB1 are associated with retinitis pigmentosa 12 and Leber congenital amaurosis, two severe forms of retinal dystrophy.

  6. Thermally stimulated current measurements on a UV irradiated organic photoreceptor layer

    Science.gov (United States)

    Webb, D. P.; Chan, Y. C.; Wong, C. K. H.; Lam, Y. W.; Leung, K. M.; Chrp, D. S.

    1997-05-01

    Thermally stimulated current (TSC) measurements have been performed on a xerographic photoreceptor which has been treated with ultraviolet (UV) radiation. The charge transport layer of the photoreceptor consists of a polyester molecularly doped with an arylamine substituted hydrazone which was observed to undergo UV induced rearrangement to an indazole derivative. The indazole derivative is transparent to the wavelength component inducing the photo-reaction so that the depth of converted material gradually extends farther into the CTL with UV exposure time. The xerographic residual potential variation with irradiation time is attributed to the formation of a potential barrier to transfer of charge from hydrazone hopping states to indazole hopping states. The mobility activation energy obtained from TSC measurements is 0.22 eV for unirradiated material, which decreases to 0.12 eV after 1200 s of irradiation. The latter energy is identified as a signature of the potential barrier. This identification is corroborated by the correlation between the decrease of the residual potential and the increase of the TSC activation energy after 3600 s of irradiation.

  7. Knockout of Ccr2 alleviates photoreceptor cell death in rodent retina exposed to chronic blue light.

    Science.gov (United States)

    Hu, Zizhong; Zhang, Yi; Wang, Junling; Mao, Pingan; Lv, Xuehua; Yuan, Songtao; Huang, Zhengru; Ding, Yuzhi; Xie, Ping; Liu, Qinghuai

    2016-11-10

    Age-related macular degeneration (AMD), the leading cause of visual loss after the age of 60 years, is a degenerative retinal disease involving a variety of environmental and hereditary factors. Although it has been implicated that immune system is involved in the disease progression, the exact role that microglia has is still unclear. Here we demonstrated that knockout of Ccr2 gene could alleviate photoreceptor cell death in mice retinas exposed to chronic blue light. In Ccr2(-/-) mice, a damaged microglia recruitment was shown in retina and this could protect the visual function in electroretinogram and alleviate the photoreceptor apoptosis, which thus helped attenuate the blue light-induced retinopathy. We further found an increased co-location of NLRP3, Iba-1, and IL-1β in fluorescence and a concomitant increased protein expression of NLRP3, caspase-1, and IL-1β in western blotting in chronic blue light-induced retinopathy. Moreover, the activation of microglia and their cellular NLRP3 inflammasomes occurred as an earlier step before the structural and functional damage of the mice retinas, which collectively supported that microglial NLRP3 inflammasome might be the key to the chronic blue light-induced retinopathy.

  8. Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9

    Science.gov (United States)

    Lv, Ji-Neng; Zhou, Gao-Hui; Chen, Xuejiao; Chen, Hui; Wu, Kun-Chao; Xiang, Lue; Lei, Xin-Lan; Zhang, Xiao; Wu, Rong-Han; Jin, Zi-Bing

    2017-01-01

    Precursor messenger RNA (Pre-mRNA) splicing is an essential biological process in eukaryotic cells. Genetic mutations in many spliceosome genes confer human eye diseases. Mutations in the pre-mRNA splicing factor, RP9 (also known as PAP1), predispose autosomal dominant retinitis pigmentosa (adRP) with an early onset and severe vision loss. However, underlying molecular mechanisms of the RP9 mutation causing photoreceptor degeneration remains fully unknown. Here, we utilize the CRISPR/Cas9 system to generate both the Rp9 gene knockout (KO) and point mutation knock in (KI) (Rp9, c.A386T, P.H129L) which is analogous to the reported one in the retinitis pigmentosa patients (RP9, c.A410T, P.H137L) in 661 W retinal photoreceptor cells in vitro. We found that proliferation and migration were significantly decreased in the mutated cells. Gene expression profiling by RNA-Seq demonstrated that RP associated genes, Fscn2 and Bbs2, were down-regulated in the mutated cells. Furthermore, pre-mRNA splicing of the Fscn2 gene was markedly affected. Our findings reveal a functional relationship between the ubiquitously expressing RP9 and the disease-specific gene, thereafter provide a new insight of disease mechanism in RP9-related retinitis pigmentosa. PMID:28216641

  9. Patterns of cell proliferation and rod photoreceptor differentiation in shark retinas.

    Science.gov (United States)

    Ferreiro-Galve, Susana; Rodríguez-Moldes, Isabel; Anadón, Ramón; Candal, Eva

    2010-01-01

    We studied the pattern of cell proliferation and its relation with photoreceptor differentiation in the embryonic and postembryonic retina of two elasmobranchs, the lesser spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus). Cell proliferation was studied with antibodies raised against proliferating cell nuclear antigen (PCNA) and phospho-histone-H3, and early photoreceptor differentiation with an antibody raised against rod opsin. As regards the spatiotemporal distribution of PCNA-immunoreactive cells, our results reveal a gradual loss of PCNA that coincides in a spatiotemporal sequence with the gradient of layer maturation. The presence of a peripheral growth zone containing pure-proliferating retinal progenitors (the ciliary marginal zone) in the adult retina matches with the general pattern observed in other groups of gnathostomous fishes. However, in the shark retina the generation of new cells is not restricted to the ciliary marginal zone but also occurs in retinal areas that contain differentiated cells: (1) in a transition zone that lies between the pure-proliferating ciliary marginal zone and the central (layered) retina; (2) in the differentiating central area up to prehatching embryos where large amounts of PCNA-positive cells were observed even in the inner and outer nuclear layers; (3) and in the retinal pigment epithelium of prehatching embryos. Rod opsin immunoreactivity was observed in both species when the outer plexiform layer begins to be recognized in the central retina and, as we previously observed in trout, coincided temporally with the weakening in PCNA labelling.

  10. Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium.

    Science.gov (United States)

    Cork, Karlene M; Thoreson, Wallace B

    2014-05-01

    Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (C m) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels.

  11. Volume of intersection of two cones

    CERN Document Server

    Balogun, F A; Cesareo, R

    2000-01-01

    Radiation measurements utilising collimated source and detector systems invariably result in a target volume described by the overlap of their fields of view. When these collimators are cylindrical, this is derived from the volume of intersection of two cones. In general, analysis of this volume does not lend itself to a direct analytical process. Here, numerical methods of estimating the common volume of two intersecting right cones are presented. These include methods which employ, (a) a sequential scanning of an elemental volume with a predetermined size across a defined space containing the volume of interest and (b) a Monte Carlo technique. The accuracy obtainable and the execution time in the first type of algorithm depend on the size of the elemental volume (bin-size). On the other hand, these two parameters are independent of the bin-size but dependent on the number of histories sampled, for the Monte Carlo technique. At 0 deg. angle of inclination, where an analytical estimation is easily obtained, t...

  12. Implosion of indirectly driven reentrant cone shell target

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Stephens; S.P. Hatchett; R.E. Turner; K.A. Tanaka; R. Kodama

    2003-10-31

    In an x-ray driven reentrant cone fast ignition target the x-ray spectrum contains a high energy component that casuses preheating of the reentrant cone and mixing of the gold into the collapsing shell. Direct laser drive might avoid this problem.

  13. The Double Cone: A Mechanical Paradox or a Geometrical Constraint?

    Science.gov (United States)

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    In the framework of the Italian National Plan "Lauree Scientifiche" (PLS) in collaboration with secondary schools, we have investigated the mechanical paradox of the double cone. We have calculated the geometric condition for obtaining an upward movement. Based on this result, we have built a mechanical model with a double cone made of aluminum…

  14. FRACTURE LIMIT LOAD OF CONE SHAPE PART IN DRAWING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Xu Jisheng; Gao Shiyou

    2005-01-01

    The deformation characters and load status of the blank's potential fracture zone are analyzed at the moment when blank is approaching to punch corner in drawing process of cone shape part. Based on tension instability theory, the formula for calculating fracture limit load of cone shape part in drawing process is derived. Also, the formula is analyzed and verified by experiment.

  15. Numerical Modeling of Shatter Cones Development in Impact Craters

    Science.gov (United States)

    Baratoux, D.; Melosh, H. J.

    2003-03-01

    We present a new model for the formation of shatter cones in impact craters. Our model has been tested by means of numerical simulations. Our results are consistent with the observations of shatter cones in natural impact craters and explosions experiments.

  16. OPTMIZATION AND DUALITY OF CONE-D.C.PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    YINZHIWEN; LIYUANXI

    1995-01-01

    This paper gives the definitions and some properties of ε-directional derivate and ε-subgradients of cone-convex function.From them,the optimality conditions of local and global optimal point of unconstrained cone-d.c. programming are gained.At last,the duality theorems of this programming are presented.

  17. Scoria Cone Construction Mechanism, Lathrop Wells Volcano, Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine; D. Krier; F. Perry; G. Heiken

    2005-01-18

    Scoria cones are commonly assumed to have been constructed by the accumulation of ballistically-ejected clasts from discrete and relatively coarse-grained Strombolian bursts and subsequent avalanching such that the cone slopes are at or near the angle of repose for loose scoria. The cone at the hawaiitic Lathrop Wells volcano, southern Nevada, contains deposits that are consistent with the above processes during early cone-building phases; these early deposits are composed mainly of coarse lapilli and fluidal bombs and are partially welded, indicating relatively little cooling during flight. However, the bulk of the cone is comprised of relatively fine-grained (ash and lapilli), planar beds with no welding, even within a few tens of meters of the vent. This facies is consistent with deposition by direct fallout from sustained eruption columns of relatively well-fragmented material, primarily mantling cone slopes and with a lesser degree of avalanching than is commonly assumed. A laterally extensive fallout deposit (up to 20 km from the vent) is inferred to have formed contemporaneously with these later cone deposits. This additional mechanism for construction of scoria cones may also be important at other locations, particularly where the magmas are relatively high in volatile content and where conditions promote the formation of abundant microlites in the rising mafic magma.

  18. Molecular cloning and functional characterization of avian interleukin-19

    Science.gov (United States)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  19. 9 CFR 113.326 - Avian Pox Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... this section shall be used for preparing the production seed virus for vaccine production. All...

  20. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  1. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  2. Putative Novel Genotype of Avian Hepatitis E Virus, Hungary, 2010

    OpenAIRE

    Bányai, Krisztián; Tóth, Ádám György; Ivanics, Éva; Glávits, Róbert; Szentpáli-Gavallér, Katalin; Dán, Ádám

    2012-01-01

    To explore the genetic diversity of avian hepatitis E virus strains, we characterized the near-complete genome of a strain detected in 2010 in Hungary, uncovering moderate genome sequence similarity with reference strains. Public health implications related to consumption of eggs or meat contaminated by avian hepatitis E virus, or to poultry handling, require thorough investigation.

  3. Putative novel genotype of avian hepatitis E virus, Hungary, 2010.

    Science.gov (United States)

    Bányai, Krisztián; Tóth, Ádám György; Ivanics, Éva; Glávits, Róbert; Szentpáli-Gavallér, Katalin; Dán, Ádám

    2012-08-01

    To explore the genetic diversity of avian hepatitis E virus strains, we characterized the near-complete genome of a strain detected in 2010 in Hungary, uncovering moderate genome sequence similarity with reference strains. Public health implications related to consumption of eggs or meat contaminated by avian hepatitis E virus, or to poultry handling, require thorough investigation.

  4. China's Cool Handling of Avian Flu

    Institute of Scientific and Technical Information of China (English)

    LIWUZHOU

    2004-01-01

    ON January 27, 2004,the China National Avian Flu Reference Lab confirmed that in Dingdang Town, Long'an County,Guangxi Zhuang Autonomous Region a duck had died of the highly pathogenic H5N1 avian influenza. In contrast to the SARS epidemic last year, this occurrence has been handled coolly and efficiently by the Chinese government and people in general.

  5. Avian Influenza Viruses in Water Birds, Africa 1

    OpenAIRE

    Gaidet, Nicolas; Dodman, Tim; Caron, Alexandre; Balança, Gilles; Desvaux, Stephanie; Goutard, Flavie; Cattoli, Giovanni; Lamarque, François; Hagemeijer, Ward; Monicat, François

    2007-01-01

    We report the first large-scale surveillance of avian influenza viruses in water birds conducted in Africa. This study shows evidence of avian influenza viruses in wild birds, both Eurasian and Afro-tropical species, in several major wetlands of Africa.

  6. Poultry-handling Practices during Avian Influenza Outbreak, Thailand

    OpenAIRE

    Sonja J Olsen; Laosiritaworn, Yongjua; Pattanasin, Sarika; Prapasiri, Prabda; Scott F Dowell

    2005-01-01

    With poultry outbreaks of avian influenza H5N1 continuing in Thailand, preventing human infection remains a priority. We surveyed residents of rural Thailand regarding avian influenza knowledge, attitudes, and practices. Results suggest that public education campaigns have been effective in reaching those at greatest risk, although some high-risk behavior continues.

  7. Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images

    DEFF Research Database (Denmark)

    Christensen, U.C.; Kroyer, K.; Thomadsen, J.

    2008-01-01

    Aim: To present normative data of outer photoreceptor layer thickness obtained by a new semiautomatic image analysis algorithm operating on contrast-enhanced optical coherence tomography (OCT) images. Methods: Eight Stratus OCT3 scans from identical retinal locations from 25 normal eyes were regi...

  8. In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Magdalena Czekaj

    Full Text Available Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs' can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.

  9. In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

    Science.gov (United States)

    Czekaj, Magdalena; Haas, Jochen; Gebhardt, Marlen; Müller-Reichert, Thomas; Humphries, Peter; Farrar, Jane; Bartsch, Udo; Ader, Marius

    2012-01-01

    Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs') can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.

  10. Difference in dynamic properties of photoreceptors in a butterfly, Papilio xuthus: possible segregation of motion and color processing.

    Science.gov (United States)

    Kawasaki, Masashi; Kinoshita, Michiyo; Weckström, Matti; Arikawa, Kentaro

    2015-12-01

    The eyes of the Japanese yellow swallowtail butterfly, Papilio xuthus, contain six spectral classes of photoreceptors, each sensitive either in the ultraviolet, violet, blue, green, red or broadband wavelength regions. The green-sensitive receptors can be divided into two subtypes, distal and proximal. Previous behavioral and anatomical studies have indicated that the distal subtype appears to be involved in motion vision, while the proximal subtype is important for color vision. Here, we studied the dynamic properties of Papilio photoreceptors using light stimulation with randomly modulated intensity and light pulses. Frequency response (gain) of all photoreceptor classes shared a general profile-a broad peak around 10 Hz with a declining slope towards higher frequency range. At 100 Hz, the mean relative gain of the distal green receptors was significantly larger than any other receptor classes, indicating that they are the fastest. Photoreceptor activities under dim light were higher in the ultraviolet and violet receptors, suggesting higher transduction sensitivities. Responses to pulse stimuli also distinguished the green receptors from others by their shorter response latencies. We thus concluded that the distal green receptors carry high frequency information in the visual system of Papilio xuthus.

  11. Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Hardie, Roger C.

    2011-01-01

    The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determin

  12. Visual acuity of fly photoreceptors in natural conditions - dependence on UV sensitizing pigment and light-controlling pupil

    NARCIS (Netherlands)

    Stavenga, DG

    2004-01-01

    The effect of the UV-absorbing sensitizing pigment fly photoreceptors on absolute, spectral and angular sensitivity was investigated with a wave-optics model for the facet lens-rhabdomere system. When sky light was used as a UV-rich light source, one sensitizing pigment molecule per rhodopsin increa

  13. The hydrogen atom confined by one and two hard cones

    Science.gov (United States)

    Sarsa, A.; Alcaraz-Pelegrina, J. M.; Le Sech, C.

    2017-02-01

    The bound states of the H atom in a semi-infinite space limited by one or two conical boundaries are studied. The exact solution when the nucleus is located at the apex of the conical boundaries is obtained. A rapid increase of the energy when the cone angle opens and tends to π / 2 is found. A second situation with the atom separated from the summit of the cone is considered. The changes on the energy and the electronic structure are analyzed. The quantum force is evaluated by calculating the energy derivative versus the distance to the cone vertex. One of the forces exerted on the tip of an Atomic Force Microscope can be modelized by a hard cone probing the electron cloud in the contact mode. Our numerical results show that the quantum force present an important dependence with the cone angle and it vanishes rapidly as the distance increases.

  14. The cone penetration test in unsaturated silty sands

    Directory of Open Access Journals (Sweden)

    Yang Hongwei

    2016-01-01

    Full Text Available Very little is known about how to interpret the cone penetration test (CPT when performed in unsaturated soils. The few published studies on the CPT in unsaturated soils have focused on either clean sands or a silt. In this study new results of laboratory-controlled CPTs in an unsaturated silty sand are presented. The silty sand exhibits hydraulic hysteresis and suction hardening. Suction is observed to have a pronounced affect on measured cone penetration resistance. For an isotropic net confining stress of 60 kPa it is observed that higher suctions give rise to cone penetration resistances that are 50% larger than those for lower suctions. A semi-theoretical correlation is presented that links measured cone penetration resistances to initial relative density and mean effective stress. For this silty sand it is shown that failing to account for suction may result in significant overestimations and unsafe predictions of soil properties from measured cone penetration resistances.

  15. Conceptual Design of Deployment Structure of Morphing Nose Cone

    Directory of Open Access Journals (Sweden)

    Junlan Li

    2013-01-01

    Full Text Available For a reusable space vehicle or a missile, the shape of the nose cone has a significant effect on the drag of the vehicle. In this paper, the concept of morphing nose cone is proposed to reduce the drag when the reentry vehicle flies back into the atmosphere. The conceptual design of the structure of morphing nose cone is conducted. Mechanical design and optimization approach are developed by employing genetic algorithm to find the optimal geometric parameters of the morphing structure. An example is analyzed by using the proposed method. The results show that optimal solution supplies the minimum position error. The concept of morphing nose cone will provide a novel way for the drag reduction of reentry vehicle. The proposed method could be practically used for the design and optimization of the deployable structure of morphing nose cone.

  16. Accuracy Analysis of Attitude Computation Based on Optimal Coning Algorithm

    Directory of Open Access Journals (Sweden)

    Jianfeng Chen

    2012-09-01

    Full Text Available To accurately evaluate the applicability of optimal coning algorithms, the direct influence of their periodic components on attitude accuracy is investigated. The true value of the change of the rotation vector is derived from the classical coning motion for analytic comparison. The analytic results show that the influence of periodic components is mostly dominant in two types of optimal coning algorithms. Considering that the errors of periodic components cannot be simply neglected, these algorithms are categorized with simplified forms. A variety of simulations are done under the classical coning motion. The numerical results are in good agreement with the analytic deductions. Considering their attitude accuracy, optimal coning algorithms of the 4-subinterval and 5-subinterval algorithms optimized with angular increments are not recommended for use for real application.

  17. Accuracy Analysis of Attitude Computation Based on Optimal Coning Algorithm

    Directory of Open Access Journals (Sweden)

    Xiyuan Chen

    2012-11-01

    Full Text Available To accurately evaluate the applicability of optimal coning algorithms, the direct influence of their periodic components on attitude accuracy is investigated. The true value of the change of the rotation vector is derived from the classical coning motion for analytic comparison. The analytic results show that the influence of periodic components is mostly dominant in two types of optimal coning algorithms. Considering that the errors of periodic components cannot be simply neglected, these algorithms are categorized with simplified forms. A variety of simulations are done under the classical coning motion. The numerical results are in good agreement with the analytic deductions. Considering their attitude accuracy, optimal coning algorithms of the 4-subinterval and 5-subinterval algorithms optimized with angular increments are not recommended for use for real application.Defence Science Journal, 2012, 62(6, pp.361-368, DOI:http://dx.doi.org/10.14429/dsj.62.1430

  18. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  19. Exploring the avian gut microbiota: current trends and future directions.

    Science.gov (United States)

    Waite, David W; Taylor, Michael W

    2015-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill crucial roles in providing the host with nutrition and protection from pathogens. Across the field of avian microbiology knowledge is extremely uneven, with several species accounting for an overwhelming majority of all microbiological investigations. These include agriculturally important birds, such as chickens and turkeys, as well as birds of evolutionary or conservation interest. In our previous study we attempted the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available data sets. We have now extended our analysis to explore the microbiology of several key species in detail, to consider the avian microbiota within the context of what is known about other vertebrates, and to identify key areas of interest in avian microbiology for future study.

  20. Infection of Avian Pox Virus in Oriental Turtle-Doves

    Directory of Open Access Journals (Sweden)

    Kyung-Yeon Eo1, Young-Hoan Kim2, Kwang-Hyun Cho3, Jong-Sik Jang4, Tae-Hwan Kim5, Dongmi Kwak5 and Oh-Deog Kwon5*

    2011-10-01

    Full Text Available Three Oriental Turtle-doves (Streptopelia orientalis exhibiting lethargy, dyspnea, poor physical condition, and poor flight endurance, were rescued and referred to the Animal Health Center, Seoul Zoo, Korea. The doves had wart-like lesions on the legs and head. All of them died the following day after arrival, with the exception of one that survived for 6 days. Diphtheritic membranes on the tongue and oral mucosa were apparent at necropsy. Avian pox virus infection was suspected based on the proliferative skin lesions and oral diphtheritic lesions. Infection of the avian pox virus was confirmed by PCR using primers specific to the 4b core protein gene of avian pox virus. All cases were diagnosed with avian pox virus infection. This is believed to be the first description on natural infection of avian pox in Oriental Turtle-doves in Korea.

  1. THE RELATIONSHIP BETWEEN THE CONE-WEAK SUBDIFFERENTIAL AND CONE-WEAK DIRECTION DERIVATIVE FOR CONVEX SET-VALUED MAPPING

    Institute of Scientific and Technical Information of China (English)

    MENG Zhiqing; HU Yuda

    2000-01-01

    In this paper, we introduce the concepts of the cone-weak subdifferential and the cone-weak direction derivative of convex set-valued mapping in a locally convex topological vector space. We study the relationship between them and obtain some important results.

  2. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation.

    Science.gov (United States)

    Oonuma, Kouhei; Tanaka, Moeko; Nishitsuji, Koki; Kato, Yumiko; Shimai, Kotaro; Kusakabe, Takehiro G

    2016-12-01

    The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.

  3. Both the anterior and posterior eyes function as photoreceptors for photoperiodic termination of diapause in the two-spotted spider mite.

    Science.gov (United States)

    Hori, Yuichi; Numata, Hideharu; Shiga, Sakiko; Goto, Shin G

    2014-02-01

    Photoreceptors involved in photoperiodism in insects and mites can be either the retinal photoreceptors in the visual system or nonvisual extraretinal photoreceptors. Mites with no eyes have a clear photoperiodic response, suggesting the involvement of extraretinal photoreceptors in mite photoperiodism. In mites equipped with eyes, however, it is not known whether the retinal or extraretinal photoreceptors are involved in photoperiodism. The two-spotted spider mite Tetranychus urticae possesses two pairs of eyes. Adult females of this species terminate diapause in response to long days. To investigate whether the eyes function as photoperiodic photoreceptors in T. urticae, their eyes were ablated using a laser ablation system. Mites with their eyes intact terminated diapause under long days after low temperature exposure, whereas they remained in diapause under short days. Under constant darkness, they did not terminate diapause. When all eyes were removed, the mites remained in diapause even when they were maintained under long days. In contrast, the mites showed clear photoperiodic response when only the anterior or posterior eyes were removed. These results indicate that both the anterior and posterior eyes function as photoreceptors in photoperiodic termination of diapause in T. urticae.

  4. Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modeling of retinogenesis in vitro.

    Science.gov (United States)

    Garita-Hernández, Marcela; Diaz-Corrales, Francisco; Lukovic, Dunja; González-Guede, Irene; Diez-Lloret, Andrea; Valdés-Sánchez, M Lourdes; Massalini, Simone; Erceg, Slaven; Bhattacharya, Shomi S

    2013-05-01

    Retinitis pigmentosa (RP), a genetically heterogeneous group of diseases together with age-related macular degeneration (AMD), are the leading causes of permanent blindness and are characterized by the progressive dysfunction and death of the light sensing photoreceptors of the retina. Due to the limited regeneration capacity of the mammalian retina, the scientific community has invested significantly in trying to obtain retinal progenitor cells from embryonic stem cells (ESC). These represent an unlimited source of retinal cells, but it has not yet been possible to achieve specific populations, such as photoreceptors, efficiently enough to allow them to be used safely in the future as cell therapy of RP or AMD. In this study, we generated a high yield of photoreceptors from directed differentiation of mouse ESC (mESC) by recapitulating crucial phases of retinal development. We present a new protocol of differentiation, involving hypoxia and taking into account extrinsic and intrinsic cues. These include niche-specific conditions as well as the manipulation of the signaling pathways involved in retinal development. Our results show that hypoxia promotes and improves the differentiation of mESC toward photoreceptors. Different populations of retinal cells are increased in number under the hypoxic conditions applied, such as Crx-positive cells, S-Opsin-positive cells, and double positive cells for Rhodopsin and Recoverin, as shown by immunofluorescence analysis. For the first time, this manuscript reports the high efficiency of differentiation in vivo and the expression of mature rod photoreceptor markers in a large number of differentiated cells, transplanted in the subretinal space of wild-type mice.

  5. Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse.

    Science.gov (United States)

    Mercer, Aaron J; Szalewski, Robert J; Jackman, Skyler L; Van Hook, Matthew J; Thoreson, Wallace B

    2012-06-01

    Synaptic communication requires proper coupling between voltage-gated Ca(2+) (Ca(V)) channels and synaptic vesicles. In photoreceptors, L-type Ca(V) channels are clustered close to synaptic ribbon release sites. Although clustered, Ca(V) channels move continuously within a confined domain slightly larger than the base of the ribbon. We hypothesized that expanding Ca(V) channel confinement domains should increase the number of channel openings needed to trigger vesicle release. Using single-particle tracking techniques, we measured the expansion of Ca(V) channel confinement domains caused by depletion of membrane cholesterol with cholesterol oxidase or methyl-β-cyclodextrin. With paired whole cell recordings from cones and horizontal cells, we then determined the number of Ca(V) channel openings contributing to cone Ca(V) currents (I(Ca)) and the number of vesicle fusion events contributing to horizontal cell excitatory postsynaptic currents (EPSCs) following cholesterol depletion. Expansion of Ca(V) channel confinement domains reduced the peak efficiency of release, decreasing the number of vesicle fusion events accompanying opening of each Ca(V) channel. Cholesterol depletion also inhibited exocytotic capacitance increases evoked by brief depolarizing steps. Changes in efficiency were not due to changes in I(Ca) amplitude or glutamate receptor properties. Replenishing cholesterol restored Ca(V) channel domain size and release efficiency to control levels. These results indicate that cholesterol is important for organizing the cone active zone. Furthermore, the finding that cholesterol depletion impairs coupling between channel opening and vesicle release by allowing Ca(V) channels to move further from release sites shows that changes in presynaptic Ca(V) channel mobility can be a mechanism for adjusting synaptic strength.

  6. Interphotoreceptor matrix-poly(ϵ-caprolactone composite scaffolds for human photoreceptor differentiation

    Directory of Open Access Journals (Sweden)

    Petr Baranov

    2014-10-01

    Full Text Available Tissue engineering has been widely applied in different areas of regenerative medicine, including retinal regeneration. Typically, artificial biopolymers require additional surface modification (e.g. with arginine–glycine–aspartate-containing peptides or adsorption of protein, such as fibronectin, before cell seeding. Here, we describe an alternative approach for scaffold design: the manufacture of hybrid interphotoreceptor matrix-poly (ϵ-caprolactone scaffolds, in which the insoluble extracellular matrix of the retina is incorporated into a biodegradable polymer well suited for transplantation. The incorporation of interphotoreceptor matrix did not change the topography of polycaprolactone film, although it led to a slight increase in hydrophilic properties (water contact angle measurements. This hybrid scaffold provided sufficient stimuli for human retinal progenitor cell adhesion and inhibited proliferation, leading to differentiation toward photoreceptor cells (expression of Crx, Nrl, rhodopsin, ROM1. This scaffold may be used for transplantation of retinal progenitor cells and their progeny to treat retinal degenerative disorders.

  7. Two-color in vivo imaging of photoreceptor apoptosis and development in Drosophila.

    Science.gov (United States)

    Gambis, Alexis; Dourlen, Pierre; Steller, Hermann; Mollereau, Bertrand

    2011-03-01

    We report a new two-color fluorescent imaging system to visualize the mosaic adult photoreceptor neurons (PRs) in real-time. Using this method, we examined a collection of 434 mutants and identified genes required for PR survival, planar cell polarity (PCP), patterning and differentiation. We could track the progression of PR degeneration in living flies. By introducing the expression of p35, a caspase inhibitor, we found mutations that specifically activate caspase-dependent death. Moreover, we showed that grh is required in R3 for correct PCP establishment. The "Tomato/GFP-FLP/FRT" method allows high-throughput, rapid and precise identification of survival and developmental pathways in living adult PRs at single-cell resolution.

  8. Unusual crystalline structures in photoreceptors of Lonchoplanella axi (Plathelminthes, Rhabdocoela, 'Typhloplanoida'): functional aspects and phylogenetic implications.

    Science.gov (United States)

    Sopott-Ehlers, B

    2000-10-01

    Lonchoplanella axi has a pair of small dot-like pigment-cup ocelli. Each eye is composed of a single cup cell and two sensory cells of the rhabdomeric type. The most conspicuous differentiations in the sensory cells are spindle-shaped crystalline structures accompanying the nuclei. These structures flank the dorsolateral, respectively ventrolateral side of the nucleus. It is supposed that these 'spindles' serve rather as an additional shading device than as dioptrics. Since such structures in photoreceptors have hitherto not been reported for representatives of the Plathelminthes, it is concluded that the spindle-shaped crystalline bodies in the eyes of Lonchoplanella axi are an autapomorphic feature of this species or even an autapomorphy of the taxon Mariplanellinae.

  9. Flow Lines Under Perturbation within Section Cones

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    that a point is greater than or equal to a point if there exists a flow line from to corresponding to some vector field in . The partial order that - under a certain condition - arises from the transitive closure of that relation -- gives rise to (the concept of) a di-path (directed path). That is a continuous......We want to examine a closed smooth manifold together with a certain partial order: In the set of vector fields on , , we define a section cone - a convex subset of characterized by the property that if is a singular point for some vector field in then this is the case for all members of . We say...

  10. Cone beam computed tomography in endodontics.

    Science.gov (United States)

    Durack, Conor; Patel, Shanon

    2012-01-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillo-facial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontics. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice.

  11. The Southern Cone Initiative against Chagas disease.

    Science.gov (United States)

    Schofield, C J; Dias, J C

    1999-01-01

    Chagas disease (also known as American trypanosomiasis) is now ranked as the most serious parasitic disease of the Americas, with an economic impact far outranking the combined effects of other parasitic diseases such as malaria, schistosomiasis and leishmaniasis. Although the chronic infection remains virtually incurable, transmission can be halted by eliminating the domestic insect vectors and screening blood donors to avoid transfusional transmission. In line with this strategy, governments of the six Southern Cone countries (Argentina, Bolivia, Brazil, Chile, Paraguay and Uruguay) launched in 1991 an ambitious initiative to control Chagas disease through elimination of the main vector, Triatoma infestans, and large-scale screening of blood donors. Now at its mid-point, the programme has achieved remarkable success, with transmission halted over vast areas of the previously endemic regions. Well over 2 million rural houses have been sprayed to eliminate T. infestans, and the programme has already shown significant economic rates of return in addition to the medical and social benefits.

  12. Recurrence Metrics and Time Varying Light Cones

    CERN Document Server

    Singh-Modgil, M

    2005-01-01

    It is shown by explicit construction of new metrics, that General Relativity can solve the exact Poinc$\\acute{a}$re recurrence problem. In these solutions, the light cone, flips periodically between past and future, due to a periodically alternating arrow of the proper time. The geodesics in these universes show periodic Loschmidt's velocity reversion $v \\to -v$, at critical points, which leads to recurrence. However, the matter tensors of some of these solutions exhibit unusual properties - such as, periodic variations in density and pressure. While this is to be expected in periodic models, the physical basis for such a variation is not clear. Present paper therefore can be regarded as an extension of Tipler's "no go theorem for recurrence in an expanding universe", to other space-time geometries.

  13. Cone beam computed tomography in endodontic

    Energy Technology Data Exchange (ETDEWEB)

    Durack, Conor; Patel, Shanon, E-mail: conordurack1@hotmail.com [Unit of Endodontology, Department of Conservative Dentistry, King' s College London, London (United Kingdom)

    2012-07-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  14. Current genomic editing approaches in avian transgenesis.

    Science.gov (United States)

    Park, Tae Sub; Kang, Kyung Soo; Han, Jae Yong

    2013-09-01

    The chicken was domesticated from Red Jungle Fowl over 8000years ago and became one of the major food sources worldwide. At present, the poultry industry is one of the largest industrial animal stocks in the world, and its economic scale is expanding significantly with increasing consumption. Additionally, since Aristotle used chicken eggs as a model to provide remarkable insights into how life begins, chickens have been used as invaluable and powerful experimental materials for studying embryo development, immune systems, biomedical processes, and hormonal regulation. Combined with advancements in efficient transgenic technology, avian models have become even more important than would have been expected.

  15. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  16. Avian artificial insemination and semen preservation

    Science.gov (United States)

    Gee, G.F.; Risser, Arthur C.; Todd, Frank S.

    1983-01-01

    Summary: Artificial insemination is a practical propagation tool that has been successful with a variety of birds. Cooperative, massage, and electroejaculation and modifications of these three basic methods of semen collection are described for a variety of birds. Semen color and consistency and sperm number, moti!ity, and morphology, as discussed, are useful indicators of semen quality, but the most reliable test of semen quality is the production of fertile eggs. Successful cryogenic preservation of avian semen with DMSO or glycerol as the cryoprotectant has been possible. Although the methods for preservation require special equipment, use of frozen semen requires only simple insemination supplies

  17. Stochastic de-repression of Rhodopsins in single photoreceptors of the fly retina.

    Directory of Open Access Journals (Sweden)

    Pranidhi Sood

    2012-02-01

    Full Text Available The photoreceptors of the Drosophila compound eye are a classical model for studying cell fate specification. Photoreceptors (PRs are organized in bundles of eight cells with two major types - inner PRs involved in color vision and outer PRs involved in motion detection. In wild type flies, most PRs express a single type of Rhodopsin (Rh: inner PRs express either Rh3, Rh4, Rh5 or Rh6 and outer PRs express Rh1. In outer PRs, the K(50 homeodomain protein Dve is a key repressor that acts to ensure exclusive Rh expression. Loss of Dve results in de-repression of Rhodopsins in outer PRs, and leads to a wide distribution of expression levels. To quantify these effects, we introduce an automated image analysis method to measure Rhodopsin levels at the single cell level in 3D confocal stacks. Our sensitive methodology reveals cell-specific differences in Rhodopsin distributions among the outer PRs, observed over a developmental time course. We show that Rhodopsin distributions are consistent with a two-state model of gene expression, in which cells can be in either high or basal states of Rhodopsin production. Our model identifies a significant role of post-transcriptional regulation in establishing the two distinct states. The timescale for interconversion between basal and high states is shown to be on the order of days. Our results indicate that even in the absence of Dve, the Rhodopsin regulatory network can maintain highly stable states. We propose that the role of Dve in outer PRs is to buffer against rare fluctuations in this network.

  18. Whole-cell clamp of dissociated photoreceptors from the eye of Lima scabra.

    Science.gov (United States)

    Nasi, E

    1991-01-01

    Voltage-dependent membrane currents were investigated in enzymatically dissociated photoreceptors of Lima scabra using the whole-cell clamp technique. Depolarizing steps to voltages more positive than -10 mV elicit a transient inward current followed by a delayed, sustained outward current. The outward current is insensitive to replacement of a large fraction of extracellular Cl- with the impermeant anion glucuronate. Superfusion with tetraethylammonium and 4-aminopyridine reversibly abolishes the outward current, and internal perfusion with cesium also suppresses it, indicating that it is mediated by potassium channels. Isolation of the inward current reveals a fast activation kinetics, the peak amplitude occurring as early as 4-5 ms after stimulus onset, and a relatively rapid, though incomplete inactivation. Within the range of voltages examined, spanning up to +90 mV, reversal was not observed. The inward current is not sensitive to tetrodotoxin at concentrations up to 10 microM, and survives replacement of extracellular Na with tetramethylammonium. On the other hand, it is completely eliminated by calcium removal from the perfusing solution, and it is partially blocked by submillimolar concentrations of cadmium, suggesting that it is entirely due to voltage-dependent calcium channels. Analysis of the kinetics and voltage dependence of the isolated calcium current indicates the presence of two components, possibly reflecting the existence of separate populations of channels. Barium and strontium can pass through these channels, though less easily than calcium. Both the activation and the inactivation become significantly more sluggish when these ions serve as the charge carrier. A large fraction of the outward current is activated by preceding calcium influx. Suppression of this calcium-dependent potassium current shows a small residual component resembling the delayed rectifier. In addition, a transient outward current sensitive to 4-aminopyridine (Ia) could

  19. Cadmium Removal from Aqueous Solutions by Ground Pine Cone

    Directory of Open Access Journals (Sweden)

    H Izanloo, S Nasseri

    2005-01-01

    Full Text Available A study on the removal of cadmium ions from aqueous solutions by pine cone was conducted in batch conditions. Kinetic data and equilibrium removal isotherms were obtained. The influence of different experimental parameters such as contact time, initial concentration of cadmium, pine cone mass and particle size, and temperature on the kinetics of cadmium removal was studied. Results showed that the main parameters that played an important role in removal phenomenon were initial cadmium concentration, particle size and pine cone mass. The necessary time to reach equilibrium was between 4 and 7 hours based on the initial concentration of cadmium. The capacity of cadmium adsorption at equilibrium increased with the decrease of pine cone particle size. The capacity of cadmium adsorption at equilibrium by pine cone increased with the quantity of pine cone introduced (1–4 g/L. Temperature in the range of 20-30°C showed a restricted effect on the removal kinetics (13.56 mg/g at 20°C and a low capacity of adsorption about 11.48 mg/g at 30°C. The process followed pseudo second-order kinetics. The cadmium uptake of pine cone was quantitatively evaluated using adsorption isotherms. Results indicated that the Langmuir model gave a better fit to the experimental data in comparison with the Freundlich equation.

  20. Output characteristics of right angle cone mirror cavity laser

    Institute of Scientific and Technical Information of China (English)

    Hongqi Li; Zuhai Cheng

    2005-01-01

    The anti-misalignment stability and output characteristics of the right angle cone cavity laser are experimentally studied. When the misalignment angle of the cone mirror turns to 46.8 minutes, the single-pulse output energy of the plano-cone cavity laser decreases 24% and the near-field beam patterns have little change; as for the beam directional stability, when the measuring place stands 3.12 m in front of the output mirror, the near-field beam patterns of the plano-cone laser are located at the primary places until the misalignment angle of the cone mirror turns to 18 minutes. These results show that the plano-cone cavity laser has better performances in comparison with the plano-concave cavity laser. The analytical results of the mode instrument are also obtained, which show that the near-field beam intensity distribution of the plano-cone mirror cavity laser is near to the plane wave.