WorldWideScience

Sample records for avian bornavirus infection

  1. Avian bornavirus in the urine of infected birds

    Directory of Open Access Journals (Sweden)

    Villalobos AR

    2012-06-01

    Full Text Available J Jill Heatley,1 Alice R Villalobos21Zoological Medicine, 2Department of Nutrition & Food Science, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USAAbstract: Avian bornavirus (ABV causes proventricular dilatation disease in multiple avian species. In severe clinical disease, the virus, while primarily neurotropic, can be detected in many organs, including the kidneys. We postulated that ABV could be shed by the kidneys and found in the urine of infected birds. Immunohistochemical staining demonstrated viral N and P proteins of ABV within the renal tubules. We adapted a nonsurgical method of urine collection for use in parrots known to be shedding ABV in their droppings. We obtained urine without feces, and results were compared with swabs of fresh voided feces. Reverse transcription–polymerase chain reaction assay performed on these paired samples from five birds indicated that ABV was shed in quantity in the urine of infected birds, and a single sample was urine-positive and fecal-negative. We suggest that urine sampling may be a superior sample for detection of birds shedding ABV, and advocate that additional birds, known to be shedding or infected with ABV, should be investigated via this method.Keywords: avian bornavirus, Psittaciformes, parrot, urine, proventricular dilatation disease

  2. Widespread avian bornavirus infection in mute swans in the Northeast United States

    Directory of Open Access Journals (Sweden)

    Payne SL

    2012-07-01

    Full Text Available Jianhua Guo,1 Lina Covaleda,1 J Jill Heatley,1 John A Baroch,2 Ian Tizard1, Susan L Payne,11Texas A&M University, College Station, TX, USA; 2USDA/APHIS Wildlife Services, Fort Collins, CO, USAAbstract: Avian bornavirus (ABV matrix (M genes were detected by RT-PCR on brain tissue obtained from 192 mute swans harvested from several Northeastern states. A RT-PCR product was detected in 45 samples. Sequencing of the PCR products confirmed the presence of ABV belonging to the ‘goose’ genotype. The prevalence of positive samples ranged from 28% in Michigan to 0% in northern New York State. Two Rhode Island isolates were cultured. Their M, N, and X-P gene sequences closely matched recently published sequences from Canada geese.Keywords: avian bornavirus, proventricular dilatation disease, reverse transcription, polymerase chain reaction, mute swans

  3. Avian Bornavirus in Free-Ranging Psittacine Birds, Brazil

    Science.gov (United States)

    Encinas-Nagel, Nuri; Enderlein, Dirk; Piepenbring, Anne; Herden, Christiane; Heffels-Redmann, Ursula; Felippe, Paulo A.N.; Arns, Clarice; Hafez, Hafez M.

    2014-01-01

    Avian bornavirus (ABV) has been identified as the cause of proventricular dilatation disease in birds, but the virus is also found in healthy birds. Most studies of ABV have focused on captive birds. We investigated 86 free-ranging psittacine birds in Brazil and found evidence for natural, long-term ABV infection. PMID:25417715

  4. Avian bornavirus in free-ranging waterfowl in North America and Europe

    DEFF Research Database (Denmark)

    Brinkmann, Jesper; Thomsen, Anders F.; Bertelsen, Mads Frost

    The first avian bornavirus (ABV) was identified in 2008 by researchers investigating the cause of proventricular dilation disease in psittacine birds 3,4. A distinctly separate genotype (ABV-CG) was discovered in 2009 in association with neurological disease in free-ranging Canada geese (Branta...... canadensis) and trumpeter swans (Cygnus buccinator) in Ontario, Canada 1. Since then this genotype, now identified as ABBV-1, has been identified from a variety of wild avian species 5, predominantly waterfowl, in North America at prevalences ranging from 10 to 50%, and in 2014 an additional genotype...... was identified in mallard ducks (Anas platyrhynchos) 2. In order to determine whether avian bornavirus was present in European waterfowl, the brains of 333 hunter killed geese in Denmark were examined by real time RT-PCR for the presence of avian bornavirus; seven birds (2.1%) were positive. Sequences were 98...

  5. Serological markers of Bornavirus infection found in horses in Iceland.

    Science.gov (United States)

    Björnsdóttir, Sigríður; Agustsdóttir, Elfa; Blomström, Anne-Lie; Oström, Inga-Lena Örde; Berndtsson, Louise Treiberg; Svansson, Vilhjálmur; Wensman, Jonas Johansson

    2013-11-01

    In a stable of eight horses in Northern Iceland, six horses presented with clinical signs, such as ataxia and reduced appetite, leading to euthanasia of one severely affected horse. Serological investigations revealed no evidence of active equine herpes virus type 1 infection, a common source of central nervous system disease in horses, nor equine arteritis virus and West Nile virus. Another neurotropic virus, Borna disease virus, was therefore included in the differential diagnosis list. Serological investigations revealed antibodies against Borna disease virus in four of five horses with neurological signs in the affected stable. One horse without clinical signs was seronegative. Four clinically healthy horses in the stable that arrived and were sampled one year after the outbreak were found seronegative, whereas one of four investigated healthy horses in an unaffected stable was seropositive. This report contains the first evidence of antibodies to Borna disease virus in Iceland. Whether Borna disease virus was the cause of the neurological signs could however not be confirmed by pathology or molecular detection of the virus. As Iceland has very restricted legislation regarding animal imports, the questions of how this virus has entered the country and to what extent markers of Bornavirus infection can be found in humans and animals in Iceland remain to be answered.

  6. Avian Influenza infection in Human

    Directory of Open Access Journals (Sweden)

    Mohan. M

    2008-08-01

    Full Text Available Outbreaks caused by the H5N1 strain are presently of the greatest concern for human health. In assessing risks to human health, it is important to know exactly which avian virus strains are causing the outbreaks in birds.All available evidence points to an increased risk of transmission to humans when outbreaks of highly pathogenic avian H5N1 influenza are widespread in poultry. There is mounting evidence that this strain has a unique capacity to jump the species barrier and cause severe disease, with high mortality, in humans. There is no evidence, to date that efficient human to human transmission of H5N1 strain has occurred and very often. Efficient transmission among humans is a key property of pandemic strains and a property that the avian H5N1 and H9N2 viruses apparently lacked. The biological and molecular basis for effective aerosol transmission among humans is not known. The virus can improve its transmissibility among humans via two principal mechanisms. The first is a “reassortment” event, in which genetic material is exchanged between human and avian viruses during co-infection of a human or pig.Reassortment could result in a fully transmissible pandemic virus, announced by a sudden surge of cases with explosive spread. The second mechanism is a more gradual process of adaptive mutation, whereby the capability of the virus to bind to human cells increases during subsequent infections of humans. Adaptive mutation, expressed initially as small clusters of human cases with some evidence of human-to-human transmission, would probably give the world some time to take defensive action, if detected sufficiently early. As the number of human infections grows, the risk increases that a new virus subtype could emerge, triggering an influenza pandemic. Humans as well as swine must now be considered a potential mixing vessel for the generation of such a virus. This link between widespread infection in poultry and increased risk of human

  7. A Case Report of Avian Polyomavirus Infection in a Blue Fronted Parrot (Amazona aestiva Associated with Anemia

    Directory of Open Access Journals (Sweden)

    Natalia Azevedo Philadelpho

    2015-01-01

    Full Text Available An adult Blue Fronted Amazon parrot (A. aestiva presenting with emesis, apathy, undigested seed in feces, and severe anemia was treated for approximately 2 months. Upon radiographic examination, an enlarged kidney was the only alteration. PCR for avian Bornavirus, Circovirus, and Polyomavirus was performed for the feces and blood. The results were positive for APV in both samples and negative for the other viruses. After 6 months, the feces from the same animal were negative for APV. Because the animal was positive for APV in both the feces and the blood, it is likely that these clinical symptoms were due to Polyomavirus infection. Severe anemia is an unusual clinical sign of Polyomavirus, and this study aims to identify novel differential diagnostic criteria for the disease.

  8. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  9. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes.

    Science.gov (United States)

    Gilbert, C; Meik, J M; Dashevsky, D; Card, D C; Castoe, T A; Schaack, S

    2014-09-22

    We report the discovery of endogenous viral elements (EVEs) from Hepadnaviridae, Bornaviridae and Circoviridae in the speckled rattlesnake, Crotalus mitchellii, the first viperid snake for which a draft whole genome sequence assembly is available. Analysis of the draft assembly reveals genome fragments from the three virus families were inserted into the genome of this snake over the past 50 Myr. Cross-species PCR screening of orthologous loci and computational scanning of the python and king cobra genomes reveals that circoviruses integrated most recently (within the last approx. 10 Myr), whereas bornaviruses and hepadnaviruses integrated at least approximately 13 and approximately 50 Ma, respectively. This is, to our knowledge, the first report of circo-, borna- and hepadnaviruses in snakes and the first characterization of non-retroviral EVEs in non-avian reptiles. Our study provides a window into the historical dynamics of viruses in these host lineages and shows that their evolution involved multiple host-switches between mammals and reptiles. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. The Avian Transcriptome Response to Malaria Infection

    OpenAIRE

    Videvall, Elin; Cornwallis, Charlie K.; Palinauskas, Vaidas; Valki?nas, Gediminas; Hellgren, Olof

    2015-01-01

    Malaria parasites are highly virulent pathogens which infect a wide range of vertebrates. Despite their importance, the way different hosts control and suppress malaria infections remains poorly understood. With recent developments in next-generation sequencing techniques, however, it is now possible to quantify the response of the entire transcriptome to infections. We experimentally infected Eurasian siskins (Carduelis spinus) with avian malaria parasites (Plasmodium ashfordi), and used hig...

  11. Avian metapneumovirus subgroup C infection in chickens, China.

    Science.gov (United States)

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-07-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  12. Avian Metapneumovirus Subgroup C Infection in Chickens, China

    OpenAIRE

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; Liu, Shuhang; She, Ruiping; Hu, Fengjiao; Quan, Rong; Liu, Jue

    2013-01-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences.

  13. The avian transcriptome response to malaria infection.

    Science.gov (United States)

    Videvall, Elin; Cornwallis, Charlie K; Palinauskas, Vaidas; Valkiūnas, Gediminas; Hellgren, Olof

    2015-05-01

    Malaria parasites are highly virulent pathogens which infect a wide range of vertebrates. Despite their importance, the way different hosts control and suppress malaria infections remains poorly understood. With recent developments in next-generation sequencing techniques, however, it is now possible to quantify the response of the entire transcriptome to infections. We experimentally infected Eurasian siskins (Carduelis spinus) with avian malaria parasites (Plasmodium ashfordi), and used high-throughput RNA-sequencing to measure the avian transcriptome in blood collected before infection (day 0), during peak parasitemia (day 21 postinfection), and when parasitemia was decreasing (day 31). We found considerable differences in the transcriptomes of infected and uninfected individuals, with a large number of genes differentially expressed during both peak and decreasing parasitemia stages. These genes were overrepresented among functions involved in the immune system, stress response, cell death regulation, metabolism, and telomerase activity. Comparative analyses of the differentially expressed genes in our study to those found in other hosts of malaria (human and mouse) revealed a set of genes that are potentially involved in highly conserved evolutionary responses to malaria infection. By using RNA-sequencing we gained a more complete view of the host response, and were able to pinpoint not only well-documented host genes but also unannotated genes with clear significance during infection, such as microRNAs. This study shows how the avian blood transcriptome shifts in response to malaria infection, and we believe that it will facilitate further research into the diversity of molecular mechanisms that hosts utilize to fight malaria infections. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Common Avian Infection Plagued the Tyrant Dinosaurs

    Science.gov (United States)

    Wolff, Ewan D. S.; Salisbury, Steven W.; Horner, John R.; Varricchio, David J.

    2009-01-01

    Background Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name ‘Sue’) has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. Methodology/Principal Findings We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. Conclusions/Significance This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation. PMID:19789646

  15. Common avian infection plagued the tyrant dinosaurs.

    Directory of Open Access Journals (Sweden)

    Ewan D S Wolff

    Full Text Available BACKGROUND: Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name 'Sue' has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. CONCLUSIONS/SIGNIFICANCE: This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation.

  16. Common avian infection plagued the tyrant dinosaurs.

    Science.gov (United States)

    Wolff, Ewan D S; Salisbury, Steven W; Horner, John R; Varricchio, David J

    2009-09-30

    Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name 'Sue') has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation.

  17. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  18. High prevalence of avian malaria infection to avifauna at Cape ...

    African Journals Online (AJOL)

    This investigation was undertaken during January and February 2004, to determine the epidemiological risk of avian malaria infection to seabirds at the proposed marine animal rehabilitation complex, to be sited at Cape Receife. Despite low numbers of mosquitoes trapped, the incidence of avian malaria infections was ...

  19. Aquatic Bird Bornavirus 1 in Wild Geese, Denmark

    DEFF Research Database (Denmark)

    Thomsen, Anders F.; Nielsen, Jesper B.; Hjulsager, Charlotte Kristiane

    2015-01-01

    To investigate aquatic bird bornavirus 1 in Europe, we examined 333 brains from hunter-killed geese in Denmark in 2014. Seven samples were positive by reverse transcription PCR and were 98.2%-99.8% identical; they were also 97.4%-98.1% identical to reference strains of aquatic bird bornavirus 1 f...

  20. Mosquito age and avian malaria infection.

    Science.gov (United States)

    Pigeault, Romain; Nicot, Antoine; Gandon, Sylvain; Rivero, Ana

    2015-09-30

    The immune system of many insects wanes dramatically with age, leading to the general prediction that older insects should be more susceptible to infection than their younger counterparts. This prediction is however challenged by numerous studies showing that older insects are more resistant to a range of pathogens. The effect of age on susceptibility to infections is particularly relevant for mosquitoes given their role as vectors of malaria and other diseases. Despite this, the effect of mosquito age on Plasmodium susceptibility has been rarely explored, either experimentally or theoretically. Experiments were carried out using the avian malaria parasite Plasmodium relictum and its natural vector in the field, the mosquito Culex pipiens. Both innate immune responses (number and type of circulating haemocytes) and Plasmodium susceptibility (prevalence and burden) were quantified in seven- and 17-day old females. Whether immunity or Plasmodium susceptibility are modulated by the previous blood feeding history of the mosquito was also investigated. To ensure repeatability, two different experimental blocks were carried out several weeks apart. Haemocyte numbers decrease drastically as the mosquitoes age. Despite this, older mosquitoes are significantly more resistant to a Plasmodium infection than their younger counterparts. Crucially, however, the age effect is entirely reversed when old mosquitoes have taken one previous non-infected blood meal. The results agree with previous studies showing that older insects are often more resistant to infections than younger ones. These results suggest that structural and functional alterations in mosquito physiology with age may be more important than immunity in determining the probability of a Plasmodium infection in old mosquitoes. Possible explanations for why the effect is reversed in blood-fed mosquitoes are discussed. The reversal of the age effect in blood fed mosquitoes implies that age is unlikely to have a

  1. Pathogenesis of avian pneumovirus infection in turkeys.

    Science.gov (United States)

    Jirjis, F F; Noll, S L; Halvorson, D A; Nagaraja, K V; Shaw, D P

    2002-05-01

    Avian pneumovirus (APV) is the cause of a respiratory disease of turkeys characterized by coughing, ocular and nasal discharge, and swelling of the infraorbital sinuses. Sixty turkey poults were reared in isolation conditions. At 3 weeks of age, serum samples were collected and determined to be free of antibodies against APV, avian influenza, hemorrhagic enteritis, Newcastle disease, Mycoplasma gallisepticum, Mycoplasma synoviae, Mycoplasma meleagridis, Ornithobacterium rhinotracheale, and Bordetella avium. When the poults were 4 weeks old, they were inoculated with cell culture-propagated APV (APV/Minnesota/turkey/2a/97) via the conjunctival spaces and nostrils. After inoculation, four poults were euthanatized every 2 days for 14 days, and blood, swabs, and tissues were collected. Clinical signs consisting of nasal discharge, swelling of the infraorbital sinuses, and frothy ocular discharge were evident by 2 days postinoculation (PI) and persisted until day 12 PI. Mild inflammation of the mucosa of the nasal turbinates and infraorbital sinuses was present between days 2 and 10 PI. Mild inflammatory changes were seen in tracheas of poults euthanatized between days 4 and 10 PI. Antibody to APV was detected by day 7 PI. The virus was detected in tissue preparations and swabs of nasal turbinates and infraorbital sinuses by reverse transcription polymerase chain reaction, virus isolation, and immunohistochemical staining methods between days 2 and 10 PI. Virus was detected in tracheal tissue and swabs between days 2 and 6 PI using the same methods. In this experiment, turkey poults inoculated with tissue culture-propagated APV developed clinical signs similar to those seen in field cases associated with infection with this virus.

  2. Spleen necrosis virus, an avian retrovirus, can infect primate cells.

    OpenAIRE

    Koo, H M; Brown, A M; Ron, Y; Dougherty, J P

    1991-01-01

    Spleen necrosis virus (SNV) is an avian retrovirus that can infect some mammalian cells such as dog cells as well as all avian cells tested to date. We were interested in testing whether SNV could also infect primate cells. For these experiments, we used HeLa and COS-7 cells. Initially, we determined whether the SNV long terminal repeat promoter was functional in HeLa and COS-7 cells. In transient transfection assays, the SNV promoter efficiently directed chloramphenicol acetyltransferase gen...

  3. Quantitative Risk Assessment of Avian Influenza Virus Infection via Water

    NARCIS (Netherlands)

    Schijven FJ; Teunis PFM; Roda Husman AM de; MGB

    2006-01-01

    Using literature data, daily infection risks of chickens and humans with H5N1 avian influenza virus (AIV) by drinking water consumption were estimated for the Netherlands. A highly infectious virus and less than 4 log10 drinking water treatment (reasonably inefficient) may lead to a high infection

  4. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  5. Avian influenza infection alters fecal odor in mallards.

    Directory of Open Access Journals (Sweden)

    Bruce A Kimball

    Full Text Available Changes in body odor are known to be a consequence of many diseases. Much of the published work on disease-related and body odor changes has involved parasites and certain cancers. Much less studied have been viral diseases, possibly due to an absence of good animal model systems. Here we studied possible alteration of fecal odors in animals infected with avian influenza viruses (AIV. In a behavioral study, inbred C57BL/6 mice were trained in a standard Y-maze to discriminate odors emanating from feces collected from mallard ducks (Anas platyrhynchos infected with low-pathogenic avian influenza virus compared to fecal odors from non-infected controls. Mice could discriminate odors from non-infected compared to infected individual ducks on the basis of fecal odors when feces from post-infection periods were paired with feces from pre-infection periods. Prompted by this indication of odor change, fecal samples were subjected to dynamic headspace and solvent extraction analyses employing gas chromatography/mass spectrometry to identify chemical markers indicative of AIV infection. Chemical analyses indicated that AIV infection was associated with a marked increase of acetoin (3-hydroxy-2-butanone in feces. These experiments demonstrate that information regarding viral infection exists via volatile metabolites present in feces. Further, they suggest that odor changes following virus infection could play a role in regulating behavior of conspecifics exposed to infected individuals.

  6. Mosquito age and avian malaria infection

    OpenAIRE

    Pigeault, Romain; Nicot, Antoine; Gandon, Sylvain; Rivero, Ana

    2015-01-01

    Background The immune system of many insects wanes dramatically with age, leading to the general prediction that older insects should be more susceptible to infection than their younger counterparts. This prediction is however challenged by numerous studies showing that older insects are more resistant to a range of pathogens. The effect of age on susceptibility to infections is particularly relevant for mosquitoes given their role as vectors of malaria and other diseases. Despite this, the e...

  7. Low frequency of paleoviral infiltration across the avian phylogeny

    DEFF Research Database (Denmark)

    Cui, Jie; Zhao, Wei; Huang, Zhiyong

    2014-01-01

    , although these have been purged in some cases. We also provide the first evidence for endogenous bornaviruses and circoviruses in avian genomes, although at very low copy numbers. A comparative analysis of vertebrate genomes revealed a simple linear relationship between endogenous viral element abundance...... are either less susceptible to viral invasions or purge them more effectively....

  8. Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi

    Science.gov (United States)

    Atkinson, Carter T.; Dusek, Robert J.; Woods, K.L.; Iko, W.M.

    2000-01-01

    The introduction of avian malaria (Plasmodium relictum) and mosquitoes (Culex quinquefasciatus) to the Hawaiian Islands (USA) is believed to have played a major role in the decline and extinction of native Hawaiian honeycreepers (Drepanidinae). This introduced disease is thought to be one of the primary factors limiting recovery of honeycreepers at elevations below 1,200 m where native forest habitats are still relatively intact. One of the few remaining species of honeycreepers with a wide elevational distribution is the Hawaii Amakihi (Hernignathus virens). We measured morbidity and mortality in experimentally-infected Hawaii Amakihi that were captured in a high elevation, xeric habitat that is above the current range of the mosquito vector. Mortality among amakihi exposed to a single infective mosquito bite was 65% (13/20). All infected birds had significant declines in food consumption and a corresponding loss in body weight over the 60 day course of the experiment. Gross and microscopic lesions in birds that succumbed to malaria included enlargement and discoloration of the spleen and liver and parasitemias as high as 50% of circulating erythrocytes. Mortality in experimentally-infected amakihi was similar to that observed in Apapane (Himnatione sanguinea) and lower than that observed in Iiwi (Vestiaria coccinea) infected under similar conditions with the same parasite isolate. We conclude that the current elevational and geographic distribution of Hawaiian honeycreepers is determined by relative susceptibility to avian malaria.

  9. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... response operations Diseases Biorisk reduction Disease outbreak news Human infection with avian influenza A(H7N9) virus – ... Region (SAR) notified WHO of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and ...

  10. Avian malaria infection intensity influences mosquito feeding patterns.

    Science.gov (United States)

    Yan, Jiayue; Martínez-de la Puente, Josué; Gangoso, Laura; Gutiérrez-López, Rafael; Soriguer, Ramón; Figuerola, Jordi

    2018-03-01

    Pathogen-induced host phenotypic changes are widespread phenomena that can dramatically influence host-vector interactions. Enhanced vector attraction to infected hosts has been reported in a variety of host-pathogen systems, and has given rise to the parasite manipulation hypothesis whereby pathogens may adaptively modify host phenotypes to increase transmission from host to host. However, host phenotypic changes do not always favour the transmission of pathogens, as random host choice, reduced host attractiveness and even host avoidance after infection have also been reported. Thus, the effects of hosts' parasitic infections on vector feeding behaviour and on the likelihood of parasite transmission remain unclear. Here, we experimentally tested how host infection status and infection intensity with avian Plasmodium affect mosquito feeding patterns in house sparrows (Passer domesticus). In separate experiments, mosquitoes were allowed to bite pairs containing (i) one infected and one uninfected bird and (ii) two infected birds, one of which treated with the antimalarial drug, primaquine. We found that mosquitoes fed randomly when exposed to both infected and uninfected birds. However, when mosquitoes were exposed only to infected individuals, they preferred to bite the non-treated birds. These results suggest that the malarial parasite load rather than the infection itself plays a key role in mosquito attraction. Our findings partially support the parasite manipulation hypothesis, which probably operates via a reduction in defensive behaviour, and highlights the importance of considering parasite load in studies on host-vector-pathogen interactions. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  11. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  12. Avian influenza virus infection dynamics in shorebird hosts.

    Science.gov (United States)

    Maxted, Angela M; Luttrell, M Page; Goekjian, Virginia H; Brown, Justin D; Niles, Lawrence J; Dey, Amanda D; Kalasz, Kevin S; Swayne, David E; Stallknecht, David E

    2012-04-01

    To gain insight into avian influenza virus (AIV) transmission, exposure, and maintenance patterns in shorebirds at Delaware Bay during spring migration, we examined temporal AIV prevalence trends in four Charadriiformes species with the use of serial cross-sectional data from 2000 through 2008 and generalized linear and additive models. Prevalence of AIV in Ruddy Turnstones (Arenaria interpres morinella) increased after arrival, peaked in mid-late May, and decreased prior to departure. Antibody prevalence also increased over this period; together, these results suggested local infection and recovery prior to departure. Red Knots (Calidris canutus rufa), Sanderlings (Calidris alba), and Laughing Gulls (Leucophaeus atricilla) were rarely infected, but dynamic changes in antibody prevalence differed among species. In Red Knots, declining antibody prevalence over the stopover period suggested AIV exposure prior to arrival at Delaware Bay with limited infection at this site. Antibody prevalence was consistently high in Laughing Gulls and low in Sanderlings. Both viral prevalence and antibody prevalence in Sanderlings varied directly with those in turnstones, suggesting virus spillover to Sanderlings. Results indicate that, although hundreds of thousands of birds concentrate at Delaware Bay during spring, dynamics of AIV infection differ among species, perhaps due to differences in susceptibility, potential for contact with AIV at this site, or prior exposure. Additionally, Ruddy Turnstones possibly act as a local AIV amplifying host rather than a reservoir.

  13. Orchitis in roosters with reduced fertility associated with avian infectious bronchitis virus and avian metapneumovirus infections.

    Science.gov (United States)

    Villarreal, L Y B; Brandão, P E; Chacón, J L; Assayag, M S; Maiorka, P C; Raffi, P; Saidenberg, A B S; Jones, R C; Ferreira, A J P

    2007-12-01

    The pathogenesis of infection involving both infectious bronchitis virus (IBV) and avian metapneumovirus (aMPV) causes reproductive damage in hens after viral replication in the epithelium of the oviduct, resulting in loss of cilia and degeneration and necrosis of the epithelial and glandular cells. Although IBV has been indicated as a possible cause of the formation of calcium stones in the epididymus of roosters, a definitive association has not been confirmed. This report describes the detection of IBV and aMPV in the testes of roosters from a Brazilian poultry broiler breeder's flock with epididymal stones and low fertility. Samples of testis, trachea, and lungs from breeder males aged 57 wk were positive for IBV by reverse transcriptase-polymerase chain reaction (RT-PCR), and virus isolation and testis samples were also positive for aMPV by RT-PCR. The inoculation of testis samples into embryonated chicken eggs via the allantoic cavity resulted in curled, hemorrhagic, and stunted embryos typical of IBV infection. The allantoic fluid was positive by RT-PCR aimed to amplify the region coding for the S1 subunit of the IBV S gene, but it was not positive for aMPV. Sequence analysis of the amplified fragment revealed a close relationship with European IBV genotype D274, previously unreported in Brazil. These results indicate that IBV and perhaps aMPV are likely to have played a role in the pathogenesis of the testicular disease described and should be regarded as factors that can influence male fertility disease in chickens.

  14. [Clinical aspects of human infection by the avian influenza virus].

    Science.gov (United States)

    Goubau, P

    2009-01-01

    The species barrier is not perfect for Influenza A and numerous transmissions of the virus from pigs or poultry to humans have been described these years. Appearing in 1997 and becoming epidemic in 2003, influenza A/H5N1 provoked many deadly enzootics in poultry batteries (highly pathogenic avian influenza of HPAI). Starting in Asia, many countries throughout Africa and Europe were affected. Sporadic human cases were described in direct contact with diseased chicken or other poultry. Half of the cases are lethal, but human to human transmission occurs with difficulty. From January 2003 to August 11th 2009, 438 cases were declared worldwide with 262 deaths. Many countries declared cases, but recently most cases occurred in Egypt. Measures in hospital were taken which were copied from the measures for SARS (Severe Acute Respiratory Syndrome), but these were probably excessive in this case, considering the low rate of secondary cases with A/H5N1. In many human infections, signs of severe respiratory distress develop and multi organ failure. It was feared that this deadly virus could become easily transmitted between humans, leading to a new pandemic. This was not the case up to now. The strong pathogenicity of the virus is still not completely explained, but the deep location of infection in the lungs and the deregulation of cytokine production by the target cells, particularly macrophages, may be part of the explanation.

  15. Chicken faeces garden fertilizer: possible source of human avian influenza H5N1 infection.

    Science.gov (United States)

    Kandun, I N; Samaan, G; Harun, S; Purba, W H; Sariwati, E; Septiawati, C; Silitonga, M; Dharmayanti, N P I; Kelly, P M; Wandra, T

    2010-06-01

    Avian influenza H5N1 infection in humans is typically associated with close contact with infected poultry or other infected avian species. We report on human cases of H5N1 infection in Indonesia where exposure to H5N1-infected animals could not be established, but where the investigation found chicken faeces contaminated with viable H5N1 virus in the garden fertilizer. Human cases of avian influenza H5N1 warrant extensive investigations to determine likely sources of illness and to minimize risk to others. Authorities should regulate the sale and transportation of chicken faeces as fertilizer from areas where H5N1 outbreaks are reported.

  16. Investigating avian influenza infection hotspots in old-world shorebirds.

    Directory of Open Access Journals (Sweden)

    Nicolas Gaidet

    Full Text Available Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May. This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered.

  17. Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses.

    Science.gov (United States)

    Hu, Xuming; Zhu, Wenqi; Chen, Shihao; Liu, Yangyang; Sun, Zhen; Geng, Tuoyu; Song, Chengyi; Gao, Bo; Wang, Xiaoyan; Qin, Aijian; Cui, Hengmi

    2017-01-01

    Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates and have been implicated in a variety of human diseases, including cancer. However, the characteristic expression patterns of ERVs, particularly in virus-induced tumours, is not fully clear. DNA methylation was analysed by bisulfite pyrosequencing, and gene expression was analysed by RT-qPCR. In this study, we first found that the endogenous avian retrovirus ALVE1 was highly expressed in some chicken tissues (including the heart, bursa, thymus, and spleen) at 2 days of age, but its expression was markedly decreased at 35 days of age. In contrast, the CpG methylation level of ALVE1 was significantly lower in heart and bursa at 2 days than at 35 days of age. Moreover, we found that the expression of ALVE1 was significantly inhibited in chicken embryo fibroblast cells (CEFs) and MSB1 cells infected with avian leukosis virus subgroup J (ALVJ) and reticuloendotheliosis virus (REV) at the early stages of infection. In contrast, the expression of the ALVE1 env gene was significantly induced in CEFs and MSB1 cells infected with Marek's disease virus (MDV). However, the methylation and expression levels of the ALVE1 long terminal repeat (LTR) did not show obvious alterations in response to viral infection. The present study revealed the expression patterns of ALVE1 in a variety of chicken organs and tissues and in chicken cells in response to avian tumour virus infection. These findings may be of significance for understanding the role and function of ERVs that are present in the host genome.

  18. A method to preserve low parasitaemia Plasmodium-infected avian blood for host and vector infectivity assays.

    Science.gov (United States)

    Carlson, Jenny S; Giannitti, Federico; Valkiūnas, Gediminas; Tell, Lisa A; Snipes, Joy; Wright, Stan; Cornel, Anthony J

    2016-03-11

    Avian malaria vector competence studies are needed to understand more succinctly complex avian parasite-vector-relations. The lack of vector competence trials may be attributed to the difficulty of obtaining gametocytes for the majority of Plasmodium species and lineages. To conduct avian malaria infectivity assays for those Plasmodium spp. and lineages that are refractory to in vitro cultivation, it is necessary to obtain and preserve for short periods sufficient viable merozoites to infect naïve donor birds to be used as gametocyte donors to infect mosquitoes. Currently, there is only one described method for long-term storage of Plasmodium spp.-infected wild avian blood and it is reliable at a parasitaemia of at least 1%. However, most naturally infected wild-caught birds have a parasitaemia of much less that 1%. To address this problem, a method for short-term storage of infected wild avian blood with low parasitaemia (even ≤ 0.0005%) has been explored and validated. To obtain viable infective merozoites, blood was collected from wild birds using a syringe containing the anticoagulant and the red blood cell preservative citrate phosphate dextrose adenine solution (CPDA). Each blood sample was stored at 4 °C for up to 48 h providing sufficient time to determine the species and parasitaemia of Plasmodium spp. in the blood by morphological examination before injecting into donor canaries. Plasmodium spp.--infected blood was inoculated intravenously into canaries and once infection was established, Culex stigmatosoma, Cx. pipiens and Cx. quinquefasciatus mosquitoes were then allowed to feed on the infected canaries to validate the efficacy of this method for mosquito vector competence assays. Storage of Plasmodium spp.--infected donor blood at 4 °C yielded viable parasites for 48 h. All five experimentally-infected canaries developed clinical signs and were infectious. Pathologic examination of three canaries that later died revealed splenic lesions typical of

  19. Experimental Infection of Dogs with Avian-Origin Canine Influenza A Virus (H3N2)

    OpenAIRE

    Song, Daesub; Lee, Chulseung; Kang, Bokyu; Jung, Kwonil; Oh, Taehoon; Kim, Hyekwon; Park, Bongkyun; Oh, Jinsik

    2009-01-01

    Susceptible dogs were brought into contact with dogs experimentally infected with an avian-origin influenza A virus (H3N2) that had been isolated from a pet dog with severe respiratory syndrome. All the experimentally infected and contact-exposed dogs showed elevated rectal temperatures, virus shedding, seroconversion, and severe necrotizing tracheobronchitis and bronchioalveolitis.

  20. Experimental infection of dogs with avian-origin canine influenza A virus (H3N2).

    Science.gov (United States)

    Song, Daesub; Lee, Chulseung; Kang, Bokyu; Jung, Kwonil; Oh, Taehoon; Kim, Hyekwon; Park, Bongkyun; Oh, Jinsik

    2009-01-01

    Susceptible dogs were brought into contact with dogs experimentally infected with an avian-origin influenza A virus (H3N2) that had been isolated from a pet dog with severe respiratory syndrome. All the experimentally infected and contact-exposed dogs showed elevated rectal temperatures, virus shedding, seroconversion, and severe necrotizing tracheobronchitis and bronchioalveolitis.

  1. Little evidence of subclinical avian influenza virus infections among rural villagers in Cambodia.

    Directory of Open Access Journals (Sweden)

    Gregory C Gray

    Full Text Available In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI. Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI virus infection and withdrew from the study. Ninety-seven ILI cases (22.1% were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0% had detectable antibody titers (≥ 1:10 against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6, 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1, 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up against an avian-like A/Hong Kong/1073/1999(H9N2, 6 (1 detected at both 12- and 24-month follow-up against an avian-like A/Duck/Memphis/546/74(H11N9, and 2 against an avian-like A/Duck/Alberta/60/76(H12N5. With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  2. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  3. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam

    NARCIS (Netherlands)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D.; Jeeninga, Rienk E.; Rogier van Doorn, H.; Farrar, Jeremy; Wertheim, Heiman F. L.

    2013-01-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern

  4. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity

    Science.gov (United States)

    Avian influenza (AI) viruses are transmitted within wild aquatic bird populations through an indirect fecal-oral route involving fecal-contaminated water. In this study, the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water was examined. A single cla...

  5. Two fatal human infections with avian influenza H5, Turkey, January 2006.

    NARCIS (Netherlands)

    Meijer, A.

    2006-01-01

    Based on initial test results, the Turkish health authorities had earlier ruled out the possibility of avian influenza infections in these patients, but further tests on lung specimens showed positive results. Patient samples have now been sent to the World Health Organization (WHO) collaborating

  6. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy

    OpenAIRE

    Márcia B. dos Santos; Matheus C. Martini; Helena L. Ferreira; Luciana H.A. da Silva; Paulo A. Fellipe; Fernando R. Spilki; Clarice W. Arns

    2012-01-01

    Santos M.B., Martini M.C., Ferreira H.L., Silva L.H.A., Fellipe P.A., Spilki F.R. & Arns C.W. 2012. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy. Pesquisa Veterinaria Brasileira 32(12):1257-1262. Laboratorio de Virologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato s/n, Cx. Postal 6109, Campinas, SP 13083-970, Brazil. E-mail: Avian metapneumovirus (aMPV) is a respirator...

  7. Avian Plasmodium infection in field-collected mosquitoes during 2012-2013 in Tarlac, Philippines.

    Science.gov (United States)

    Chen, Tien-Huang; Aure, Wilfredo E; Cruz, Estrella Irlandez; Malbas, Fedelino F; Teng, Hwa-Jen; Lu, Liang-Chen; Kim, Kyeong Soon; Tsuda, Yoshio; Shu, Pei-Yun

    2015-12-01

    Global warming threatens to increase the spread and prevalence of mosquito-transmitted diseases. Certain pathogens may be carried by migratory birds and transmitted to local mosquito populations. Mosquitoes were collected in the northern Philippines during bird migration seasons to detect avian malaria parasites as well as for the identification of potential vector species and the estimation of infections among local mosquito populations. We used the nested PCR to detect the avian malaria species. Culex vishnui (47.6%) was the most abundant species collected and Cx. tritaeniorhynchus (13.8%) was the second most abundant. Avian Plasmodium parasites were found in eight mosquito species, for which the infection rates were between 0.5% and 6.2%. The six Plasmodium genetic lineages found in this study included P. juxtanucleare -GALLUS02, Tacy7 (Donana04), CXBIT01, Plasmodium species LIN2 New Zealand, and two unclassified lineages. The potential mosquito vectors for avian Plasmodium parasites in the Philippines were Cq. crassipes, Cx. fuscocephala, Cx. quinquefasciatus, Cx. sitiens, Cx. vishnui, and Ma. Uniformis; two major genetic lineages, P. juxtanucleare and Tacy7, were identified. © 2015 The Society for Vector Ecology.

  8. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC).

    Science.gov (United States)

    Antão, Esther-Maria; Glodde, Susanne; Li, Ganwu; Sharifi, Reza; Homeier, Timo; Laturnus, Claudia; Diehl, Ines; Bethe, Astrid; Philipp, Hans-C; Preisinger, Rudolf; Wieler, Lothar H; Ewers, Christa

    2008-01-01

    E. coli infections in avian species have become an economic threat to the poultry industry worldwide. Several factors have been associated with the virulence of E. coli in avian hosts, but no specific virulence gene has been identified as being entirely responsible for the pathogenicity of avian pathogenic E. coli (APEC). Needless to say, the chicken would serve as the best model organism for unravelling the pathogenic mechanisms of APEC, an extraintestinal pathogen. Five-week-old white leghorn SPF chickens were infected intra-tracheally with a well characterized APEC field strain IMT5155 (O2:K1:H5) using different doses corresponding to the respective models of infection established, that is, the lung colonization model allowing re-isolation of bacteria only from the lung but not from other internal organs, and the systemic infection model. These two models represent the crucial steps in the pathogenesis of APEC infections, including the colonization of the lung epithelium and the spread of bacteria throughout the bloodstream. The read-out system includes a clinical score, pathomorphological changes and bacterial load determination. The lung colonization model has been established and described for the first time in this study, in addition to a comprehensive account of a systemic infection model which enables the study of severe extraintestinal pathogenic E. coli (ExPEC) infections. These in vivo models enable the application of various molecular approaches to study host-pathogen interactions more closely. The most important application of such genetic manipulation techniques is the identification of genes required for extraintestinal virulence, as well as host genes involved in immunity in vivo. The knowledge obtained from these studies serves the dual purpose of shedding light on the nature of virulence itself, as well as providing a route for rational attenuation of the pathogen for vaccine construction, a measure by which extraintestinal infections, including

  9. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC

    Directory of Open Access Journals (Sweden)

    Rong eLi

    2016-05-01

    Full Text Available Avian pathogenic Escherichia coli (APEC can cause severe disease in ducks, characterized by perihepatitis, pericarditis and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen and brain, with the highest bacteria content at 2 day post infection. The expression of Toll-like receptors (TLRs, avian β-defensins (AvBDs and major histocompatibility complex (MHC were tested in the liver, spleen and brain of infected ducks. TLR2, TLR4, TLR5 and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7 and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis.

  10. Avian Metapneumoviruses

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important virus that is the primary causal agent of turkey rhinotracheitis (TRT), also known as avian rhinotracheitis (ART). The virus causes an acute highly contagious infection of the upper respiratory tract in turkeys and was first isolated from tur...

  11. Mycobacterium genavense and avian polyomavirus co-infection in a European goldfinch (Carduelis carduelis).

    Science.gov (United States)

    Manarolla, G; Liandris, E; Pisoni, G; Moroni, P; Piccinini, R; Rampin, T

    2007-10-01

    Systemic mycobacteriosis associated with avian polyomavirus infection was diagnosed histologically in an 8-year-old, captive European goldfinch with a history of nervous signs. Severe mycobacterial lesions were observed in the central nervous system, lungs, cervical air sacs and adrenal glands, without involvement of the gastrointestinal tract. In addition to mycobacteriosis, intranuclear inclusions, typical of polyomavirus, were identified in the adrenal glands. Polymerase chain reaction assays were used to identify Mycobacterium genavense and finch polyomavirus as the causative agents. The absence of involvement of the gastrointestinal tract and the severity of the lesions in the respiratory tract suggested that inhalation may have been the primary route of infection with M. genavense.

  12. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring

    Directory of Open Access Journals (Sweden)

    I Davidson

    2009-09-01

    Full Text Available The large amounts of feathers produced by the poultry industry, that is considered as a waste was explored for possible uses in various industries, such as meals for animals, biofuels, biodegradable plastic materials, combating water pollution and more. That review mentions these uses, but concentrate on the utilization of feathers for the diagnosis of viral infections and for monitoring vaccine viruses in chickens after vaccination. The viral diseases in which diagnosis using nucleic acids extracted from the feather shafts was described are, Marek's disease virus, circoviruses, chicken anemia virus, fowlpox virus, avian retroviruses, avian influenza virus and infectious laryngotracheitis virus. In two cases, of Marek's disease virus and of infectious laryngotracheitis virus, the differentiation of vaccine and wild-type viruses from feather shafts was made possible, thus allowing for monitoring the vaccination efficacy. The present review demonstrates also the stability of DNA viruses in feather shafts, and the possible evaluation of environmental dissemination of pathogens. When viruses are transmitted vertically, like in the cases of the retrovirus REV, a teratogenic effect on the development of feathers of the day-old newly hatched chick might occur in the case of avian influenza and the chicken anemia virus, which might indicate on a viral infection.

  13. The infection of chicken tracheal epithelial cells with a H6N1 avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Ching-I Shen

    Full Text Available Sialic acids (SAs linked to galactose (Gal in α2,3- and α2,6-configurations are the receptors for avian and human influenza viruses, respectively. We demonstrate that chicken tracheal ciliated cells express α2,3-linked SA, while goblet cells mainly express α2,6-linked SA. In addition, the plant lectin MAL-II, but not MAA/MAL-I, is bound to the surface of goblet cells, suggesting that SA2,3-linked oligosaccharides with Galβ1-3GalNAc subterminal residues are specifically present on the goblet cells. Moreover, both α2,3- and α2,6-linked SAs are detected on single tracheal basal cells. At a low multiplicity of infection (MOI avian influenza virus H6N1 is exclusively detected in the ciliated cells, suggesting that the ciliated cell is the major target cell of the H6N1 virus. At a MOI of 1, ciliated, goblet and basal cells are all permissive to the AIV infection. This result clearly elucidates the receptor distribution for the avian influenza virus among chicken tracheal epithelial cells and illustrates a primary cell model for evaluating the cell tropisms of respiratory viruses in poultry.

  14. Avian influenza

    Science.gov (United States)

    ... develop flu-like symptoms within 10 days of handling infected birds or being in an area with ... your provider if you become sick after you return from your trip. Current information regarding avian flu ...

  15. Avian cathelicidins: Paradigms for the development of anti-infectives

    NARCIS (Netherlands)

    Dijk, A. van; Molhoek, E.M.; Bikker, F.J.; Yu, P.L.; Veldhuizen, E.J.A.; Haagsman, H.P.

    2011-01-01

    The broad-spectrum defense system based on host defense peptides (HDPs) is evolutionary very old and many invertebrates rely on this system for protection from bacterial infections. However, in vertebrates the system remained important in spite of the superposition of a very sophisticated adaptive

  16. Baicalin is an inhibitor of subgroup J avian leukosis virus infection.

    Science.gov (United States)

    Qian, Kun; Kong, Zheng-Ru; Zhang, Jie; Cheng, Xiao-Wei; Wu, Zong-Yi; Gu, Cheng-Xi; Shao, Hong-Xia; Qin, Ai-Jian

    2018-03-15

    Avian leukosis virus subgroup J (ALV-J) can cause great economic losses to the poultry industry worldwide. Baicalin, one of the flavonoids present in S.baicalensis Georgi, has been shown to have antiviral activities. To investigate whether baicalin has antiviral effects on the infection of ALV-J in DF-1 cells, the cells were treated with baicalin at different time points. We found that baicalin could inhibit viral mRNA, protein levels and overall virus infection in a dose- and time-dependent manner using a variety of assays. Baicalin specifically targeted virus internalization and reduced the infectivity of ALV-J particles, but had no effect on the levels of major ALV-J receptor and virus binding to DF-1 cells. Collectively, these results suggest that baicalin might have potential to be developed as a novel antiviral agent for ALV-J infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    NARCIS (Netherlands)

    A. Ramis (Antonio); G. van Amerongen (Geert); M.W.G. van de Bildt (Marco); L.M.E. Leijten (Lonneke); R. Vanderstichel (R.); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractHistorically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental

  18. Draft Genome Sequences of Four Salmonella enterica subsp. enterica Serovar Enteritidis Strains Implicated in Infections of Avian and Human Hosts

    KAUST Repository

    An, Ran

    2018-01-24

    Salmonella enterica subsp. enterica serovar Enteritidis is a wide-host-range pathogen. Occasionally, it is involved in invasive infections, leading to a high mortality rate. Here, we present the draft genome sequences of four S Enteritidis strains obtained from human and avian hosts that had been involved in bacteremia, gastroenteritis, and primary infections.

  19. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    OpenAIRE

    Ramis , Antonio; van Amerongen , Geert; van de Bildt , Marco; Leijten , Loneke; Vanderstichel , Raphael; Osterhaus , Albert; Kuiken , Thijs

    2014-01-01

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes a...

  20. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan.

    Science.gov (United States)

    Moriguchi, Sachiko; Onuma, Manabu; Goka, Koichi

    2016-08-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species.

  1. Avian pox infection in Spanish Imperial eagles (Aquila adalberti).

    Science.gov (United States)

    Hernandez, M; Sanchez, C; Galka, M E; Dominguez, L; Goyache, J; Oria, J; Pizarro, M

    2001-02-01

    A cutaneous lesion, previously known as "warts", affecting the featherless parts of face and legs has long been recognized in juvenile Spanish Imperial eagles (Aquila adalberti). This paper describes the presentation, microbiological, histopathological, and electron microscopic findings of lesions and diagnosis of poxvirus infection in nine juveniles. Lesions consisted of single or multiple nodules with a crust and surrounded by skin swelling. Seventy-eight percent of the swabs taken from lesions yielded bacterial growth, with Escherichia coli being the most common bacterium isolated. Histopathology revealed typical pox lesions in all cases. Histopathological changes found consisted of proliferative epithelium, with ballooning degeneration of keratinocytes and lymphocyte infiltrates extending into underlying dermis. Avianpox virus was confirmed by the presence of eosinophilic intracytoplasmatic inclusion bodies in the affected cells on light microscopy, and diagnosis confirmation was performed by electron microscopy of biopsies from all nine eagles.

  2. Prospective study of avian influenza virus infections among rural Thai villagers.

    Directory of Open Access Journals (Sweden)

    Whitney S Krueger

    Full Text Available In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV infections with H9N2 and H5N1 viruses.After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI. Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses.Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38% were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14% reported ILIs, and 11 (92% of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2 virus: 21 subjects (2.7% at 12-months and 40 subjects (5.1% at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80. While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2 at the 24-month encounter. One subject had an elevated titer (1:20 against H5N1 during follow-up.From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in

  3. Avian Adenoviruses Infections with Special Attention to Inclusion Body Hepatitis/ Hydropericardium Syndrome and Egg Drop Syndrome

    Directory of Open Access Journals (Sweden)

    Hafez Mohamed Hafez*

    2011-04-01

    Full Text Available The first avian adenovirus (AAV associated with clinical disease was isolated from an outbreak of respiratory disease in quail in 1950 (Olson, 1950. Since that time, AAVs have been found in all types and breeds of chickens and from a variety of other avian species. The infections may be asymptomatic or associated with several clinical and pathological conditions. Vertical transmission via the egg is the most common way of transmission. Also horizontal transmission through faeces, contaminated egg trays, crates and trucks play a role in the infection route. Studies have demonstrated the presence of antibodies in healthy poultry, and viruses have been isolated from normal birds. Avian adenoviruses in chickens are the etiological agents of 2 diseases known as inclusion body hepatitis (IBH and hydropericardium syndrome (HP. In some cases each condition is observed separately, however, recently the 2 conditions have frequently been observed as a single entity; therefore, the name hepatitis hydropericardium has been widely used to describe the pathologic condition. The syndrome is an acute disease of young chickens associated with anemia, haemorrhagic disorders, hydropericardium and high mortality. Egg-Drop-Syndrome (EDS is caused also by an adenovirus. The disease is characterised by a severe drop in egg production as well as the production of shell-less, thin-shelled, discoloured or misshapen eggs in apparently healthy birds. Ducks and geese are the natural host of the EDS virus. It was first described in chickens in the 1970s and spread to several countries world wide. The birds usually do not show any other signs of disease, and mortality is not expected. There is no specific treatment of the AAV infections. Active immunization by vaccination using an inactivated is wide spread.

  4. Efficacy of gamithromycin against Ornithobacterium rhinotracheale in turkey poults pre-infected with avian metapneumovirus.

    Science.gov (United States)

    Watteyn, Anneleen; Devreese, Mathias; Plessers, Elke; Wyns, Heidi; Garmyn, An; Reddy, Vishwanatha R A P; Pasmans, Frank; Martel, An; Haesebrouck, Freddy; De Backer, Patrick; Croubels, Siska

    2016-10-01

    Ornithobacterium rhinotracheale is an avian respiratory pathogen that affects turkeys. The objective of this study was to evaluate the clinical efficacy of gamithromycin (GAM) against O. rhinotracheale in turkeys. The birds were inoculated oculonasally with 10(8) colony-forming units (cfu) of O. rhinotracheale, preceded by infection with avian metapneumovirus. In addition to a negative (CONTR-) and a positive control group (CONTR+) there were two treated groups administered GAM (6 mg/kg) either subcutaneously (GAM SC) or orally (GAM PO) by administration as a single bolus at one-day post-bacterial infection (p.b.i.). From the start of the avian metapneumovirus infection until the end of the experiment, the turkeys were examined clinically and scored daily. In addition, tracheal swabs were collected at several days p.b.i. Necropsy was performed at 4, 8 and 12 days p.b.i. to evaluate the presence of gross lesions, and to collect trachea and lung tissue samples and air sac swabs for O. rhinotracheale quantification. The clinical score of the GAM SC group showed slightly lower values and birds recovered earlier than those in the GAM PO and CONTR+ groups. O. rhinotracheale cfus were significantly reduced in tracheal swabs of the SC group between 2 and 4 days p.b.i. At necropsy, CONTR+ showed higher O. rhinotracheale cfu in lung tissues compared to the treated groups. Moreover, at 8 days p.b.i. only the lung samples of CONTR+ were positive. In conclusion, the efficacy of GAM against O. rhinotracheale was demonstrated, especially in the lung tissue. However, the PO bolus administration of the commercially available product was not as efficacious as the SC bolus.

  5. Avian Influenza in Birds

    Science.gov (United States)

    ... However, some ducks can be infected without any signs of illness. Top of Page Avian Influenza in Wild Birds Avian influenza A viruses have ... hours. Some ducks can be infected without any signs of illness. Avian influenza outbreaks are of concern in domesticated birds for ...

  6. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species....

  7. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Subtypes Transmission of Avian Influenza A Viruses Between Animals and People Related Links Research Glossary of Influenza (Flu) Terms ...

  8. Experimental infection of hamsters with avian paramyxovirus serotypes 1 to 9

    Directory of Open Access Journals (Sweden)

    Samuel Arthur S

    2011-02-01

    Full Text Available Abstract Avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds throughout the world and are separated into nine serotypes (APMV-1 to -9. Only in the case of APMV-1, the infection of non-avian species has been investigated. The APMVs presently are being considered as human vaccine vectors. In this study, we evaluated the replication and pathogenicity of all nine APMV serotypes in hamsters. The hamsters were inoculated intranasally with each virus and monitored for clinical disease, pathology, histopathology, virus replication, and seroconversion. On the basis of one or more of these criteria, each of the APMV serotypes was found to replicate in hamsters. The APMVs produced mild or inapparent clinical signs in hamsters except for APMV-9, which produced moderate disease. Gross lesions were observed over the pulmonary surface of hamsters infected with APMV-2 & -3, which showed petechial and ecchymotic hemorrhages, respectively. Replication of all of the APMVs except APMV-5 was confirmed in the nasal turbinates and lungs, indicating a tropism for the respiratory tract. Histologically, the infection resulted in lung lesions consistent with bronchointerstitial pneumonia of varying severity and nasal turbinates with blunting or loss of cilia of the epithelium lining the nasal septa. The majority of APMV-infected hamsters exhibited transient histological lesions that self resolved by 14 days post infection (dpi. All of the hamsters infected with the APMVs produced serotype-specific HI or neutralizing antibodies, confirming virus replication. Taken together, these results demonstrate that all nine known APMV serotypes are capable of replicating in hamsters with minimal disease and pathology.

  9. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome.

    Directory of Open Access Journals (Sweden)

    Xiangmin Zhang

    Full Text Available Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF and Madin-Darby canine kidney (MDCK cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

  10. Viremia associated with fatal outcomes in ferrets infected with avian H5N1 influenza virus.

    Directory of Open Access Journals (Sweden)

    Xue Wang

    Full Text Available Avian H5N1 influenza viruses cause severe disease and high mortality in infected humans. However, tissue tropism and underlying pathogenesis of H5N1 virus infection in humans needs further investigation. The objective of this work was to study viremia, tissue tropism and disease pathogenesis of H5N1 virus infection in the susceptible ferret animal model. To evaluate the relationship of morbidity and mortality with virus loads, we performed studies in ferrets infected with the H5N1 strain A/VN/1203/04 to assess clinical signs after infection and virus load in lung, brain, ileum, nasal turbinate, nasal wash, and blood. We observed that H5N1 infection in ferrets is characterized by high virus load in the brain and and low levels in the ileum using real-time PCR. In addition, viral RNA was frequently detected in blood one or two days before death and associated with symptoms of diarrhea. Our observations further substantiate pathogenicity of H5N1 and further indicate that viremia may be a bio-marker for fatal outcomes in H5N1 infection.

  11. Bioluminescent avian pathogenic Escherichia coli for monitoring colibacillosis in experimentally infected chickens.

    Science.gov (United States)

    Oosterik, Leon H; Tuntufye, Huruma N; Tsonos, Jessica; Luyten, Tom; Noppen, Sam; Liekens, Sandra; Lavigne, Rob; Butaye, Patrick; Goddeeris, Bruno M

    2016-10-01

    Avian pathogenic Escherichia coli (APEC) are responsible for significant economic losses in the poultry industry. In this study, a model for investigating the pathogenesis of APEC infections was established. APEC strain CH2 (O78) was marked with the luciferase operon (luxCDABE) using a Tn7 transposon and tissues of experimentally infected chickens were analysed for a correlation between the bioluminescent signal and the number of bacteria. Transposition of the lux operon into the chromosome of the APEC isolate did not affect sensitivity to lytic bacteriophages and there was no effect on virulence in an intratracheal infection model in 1-day-old chicks, although results with a subcutaneous infection model were inconclusive. A correlation between the number of bacteria and the luminescent signal was found in liquid medium, as well as in homogenised heart, liver, spleen and lung of 4-week-old experimentally infected chickens. This study showed that lux could be used for identification of the infecting strain after experimental infection with APEC in poultry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Autoradiographic studies on proviral DNA synthesis in enucleated chick embryo fibroblasts infected with avian sarcoma virus

    International Nuclear Information System (INIS)

    Tanaka, Terukazu

    1977-01-01

    After infection of RNA tumor viruses to susceptible cells, viral RNA is reversely transcribed into proviral DNA. In order to disclose the site of proviral DNA synthesis in the cells, chick embryo fibroblasts (CEF) were enucleated by centrifugation in the presence of cytochalasin B, and the enucleated CEF (cytoplasts) were infected with B77 strain of avian sarcoma virus (B77-ASV). Incorporation of 3 H-thymidine into DNA in the cytoplasts was investigated autoradiography. Photopositive grains were observed in cytoplasts infected with B77-ASV, but not in mock-infected cytoplasts. The photpositive grains in the cytoplasts infected with B77-ASV disappeared almost completely by DNase I treatment. N-demethyl rifampicin, which is a specific inhibitor of reverse transcriptase, inhibited the appearance of photpositive grains. The B77-ASV-infected cytoplasts were ultrathinsectioned for electron microscopic autoradiography. The photopositive grains appeared in the cytoplasm without relation to mitochondria. These results indicate that the proviral DNA synthesis is initiated in the cytoplasm of B77-ASV-infected chick embryo fibroblast without the direct participation of nucleus. (auth.)

  13. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China.

    Directory of Open Access Journals (Sweden)

    Jinghong Shi

    Full Text Available We investigated avian influenza infections in wild birds, poultry, and humans at Eastern Dongting Lake, China. We analyzed 6,621 environmental samples, including fresh fecal and water samples, from wild birds and domestic ducks that were collected from the Eastern Dongting Lake area from November 2011 to April 2012. We also conducted two cross-sectional serological studies in November 2011 and April 2012, with 1,050 serum samples collected from people exposed to wild birds and/or domestic ducks. Environmental samples were tested for the presence of avian influenza virus (AIV using quantitative PCR assays and virus isolation techniques. Hemagglutination inhibition assays were used to detect antibodies against AIV H5N1, and microneutralization assays were used to confirm these results. Among the environmental samples from wild birds and domestic ducks, AIV prevalence was 5.19 and 5.32%, respectively. We isolated 39 and 5 AIVs from the fecal samples of wild birds and domestic ducks, respectively. Our analysis indicated 12 subtypes of AIV were present, suggesting that wild birds in the Eastern Dongting Lake area carried a diverse array of AIVs with low pathogenicity. We were unable to detect any antibodies against AIV H5N1 in humans, suggesting that human infection with H5N1 was rare in this region.

  14. Avian Flu

    International Nuclear Information System (INIS)

    Eckburg, Paul

    2006-01-01

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  15. Detection of Avian coronavirus infectious bronchitis virus type QX infection in Switzerland.

    Science.gov (United States)

    Sigrist, Brigitte; Tobler, Kurt; Schybli, Martina; Konrad, Leonie; Stöckli, René; Cattoli, Giovanni; Lüschow, Dörte; Hafez, Hafez M; Britton, Paul; Hoop, Richard K; Vögtlin, Andrea

    2012-11-01

    Infectious bronchitis, a disease of chickens caused by Avian coronavirus infectious bronchitis virus (IBV), leads to severe economic losses for the poultry industry worldwide. Various attempts to control the virus based on vaccination strategies are performed. However, due to the emergence of novel genotypes, an effective control of the virus is hindered. In 1996, a novel viral genotype named IBV-QX was reported for the first time in Qingdao, Shandong province, China. The first appearance of an IBV-QX isolate in Europe was reported between 2003 and 2004 in The Netherlands. Subsequently, infections with this genotype were found in several other European countries such as France, Italy, Germany, United Kingdom, Slovenia, and Sweden. The present report describes the use of a new set of degenerate primers that amplify a 636-bp fragment within the S1 gene by reverse transcription polymerase chain reaction to detect the occurrence of IBV-QX infection in Switzerland.

  16. Avian influenza A virus and Newcastle disease virus mono- and co-infections in birds

    Directory of Open Access Journals (Sweden)

    Iv. Zarkov

    2017-06-01

    Full Text Available The main features of avian influenza viruses (AIV and Newcastle disease virus (APMV-1, the possibilities for isolation and identification in laboratory conditions, methods of diagnostics, main hosts, clinical signs and virus shedding are reviewed in chronological order. The other part of the review explains the mechanisms and interactions in cases of co-infection of AIV and APMV-1, either between them or with other pathogens in various indicator systems – cell cultures, chick embryos or birds. The emphasis is placed on quantitative data on the virus present mainly in the first ten days following experimental infection of birds, the periods of virus carrier ship and shedding, clinical signs, pathological changes, diagnostic challenges

  17. Experimental infection of mice with avian paramyxovirus serotypes 1 to 9.

    Directory of Open Access Journals (Sweden)

    Sunil K Khattar

    2011-02-01

    Full Text Available The nine serotypes of avian paramyxoviruses (APMVs are frequently isolated from domestic and wild birds worldwide. APMV-1, also called Newcastle disease virus, was shown to be attenuated in non-avian species and is being developed as a potential vector for human vaccines. In the present study, we extended this evaluation to the other eight serotypes by evaluating infection in BALB/c mice. Mice were inoculated intranasally with a prototype strain of each of the nine serotypes and monitored for clinical disease, gross pathology, histopathology, virus replication and viral antigen distribution, and seroconversion. On the basis of multiple criteria, each of the APMV serotypes except serotype 5 was found to replicate in mice. Five of the serotypes produced clinical disease and significant weight loss in the following order of severity: 1, 2>6, 9>7. However, disease was short-lived. The other serotypes produced no evident clinical disease. Replication of all of the APMVs except APMV-5 in the nasal turbinates and lungs was confirmed by the recovery of infectious virus and by substantial expression of viral antigen in the epithelial lining detected by immunohistochemistry. Trace levels of infectious APMV-4 and -9 were detected in the brain of some animals; otherwise, no virus was detected in the brain, small intestine, kidney, or spleen. Histologically, infection with the APMVs resulted in lung lesions consistent with broncho-interstitial pneumonia of varying severity that were completely resolved at 14 days post infection. All of the mice infected with the APMVs except APMV-5 produced serotype-specific HI serum antibodies, confirming a lack of replication of APMV-5. Taken together, these results demonstrate that all APMV serotypes except APMV-5 are capable of replicating in mice with minimal disease and pathology.

  18. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Chen

    Full Text Available BACKGROUND: Avian reovirus (ARV is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS: The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05 occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE: This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton

  19. Virus-specific antibodies interfere with avian influenza infection in peripheral blood mononuclear leukocytes from young or aged chickens

    Science.gov (United States)

    Avian influenza virus (AIV) infection was examined in peripheral blood mononuclear leukocyte cultures (PBMC) that were collected from 1-day-old chicks or from 52-week-old chickens. Virus-specific antibodies were incubated with AIV to model maternal antibody interference in vitro. Interferon-alpha (I...

  20. Avian metapneumovirus subtype B experimental infection and tissue distribution in chickens, sparrows, and pigeons.

    Science.gov (United States)

    Gharaibeh, S; Shamoun, M

    2012-07-01

    Avian metapneumovirus (aMPV) is a respiratory virus that infects a range of avian hosts, including chickens and turkeys. Migratory and local wild birds are implicated in aMPV spread among farms, countries, and seasonal outbreaks of the disease. A subtype B aMPV isolate from commercial chicken flocks suffering from respiratory disease was experimentally inoculated oculonasally into 7-week old chickens, young pigeons, and sparrows. Chickens showed minimal tracheal rales, whereas pigeons and sparrows were asymptomatic. Shedding of aMPV was detected by reverse transcription polymerase chain reaction on homogenates from nasal turbinates. At 5 days postinfection, 5 of 5 chickens, 2 of 5 pigeons, and 1 of 5 sparrows were positive; at 10 or 15 days, none were positive. At 2 and 5 days, aMPV antigens were localized at the ciliated boarder of respiratory epithelium in nasal cavity and trachea of chickens, as well as to the conjunctival epithelium. Pigeons had detectable viral antigens in only the trachea at 2 and 5 days; sparrow tissues did not show any positive staining. At the end of the experiment, at 21 days postinfection, 14 of 15 inoculated chickens seroconverted against aMPV, but none of the inoculated pigeons or sparrows did. The authors believe that pigeons and sparrows have the ability to transmit the virus between chicken farms, although they do not consider pigeons and sparrows as natural hosts for aMPV, given that they failed to seroconvert. In conclusion, pigeons and sparrows are partially susceptible to aMPV infection, probably acting more as mechanical vectors because infection is only temporary and short-lived.

  1. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Spackman, Erica

    2012-06-01

    In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.

  2. Avian metapneumovirus infection of chicken and turkey tracheal organ cultures: comparison of virus-host interactions.

    Science.gov (United States)

    Hartmann, Sandra; Sid, Hicham; Rautenschlein, Silke

    2015-01-01

    Avian metapneumovirus (aMPV) is a pathogen with worldwide distribution, which can cause high economic losses in infected poultry. aMPV mainly causes infection of the upper respiratory tract in both chickens and turkeys, although turkeys seem to be more susceptible. Little is known about virus-host interactions at epithelial surfaces after aMPV infection. Tracheal organ cultures (TOC) are a suitable model to investigate virus-host interaction in the respiratory epithelium. Therefore, we investigated virus replication rates and lesion development in chicken and turkey TOC after infection with a virulent aMPV subtype A strain. Aspects of the innate immune response, such as interferon-α and inducible nitric oxide synthase mRNA expression, as well as virus-induced apoptosis were determined. The aMPV-replication rate was higher in turkey (TTOC) compared to chicken TOC (CTOC) (P < 0.05), providing circumstantial evidence that indeed turkeys may be more susceptible. The interferon-α response was down-regulated from 2 to 144 hours post infection in both species compared to virus-free controls (P < 0.05); this was more significant for CTOC than TTOC. Inducible nitric oxide synthase expression was significantly up-regulated in aMPV-A-infected TTOC and CTOC compared to virus-free controls (P < 0.05). However, the results suggest that NO may play a different role in aMPV pathogenesis between turkeys and chickens as indicated by differences in apoptosis rate and lesion development between species. Overall, our study reveals differences in innate immune response regulation and therefore may explain differences in aMPV - A replication rates between infected TTOC and CTOC, which subsequently lead to more severe clinical signs and a higher rate of secondary infections in turkeys.

  3. Investigation of avian influenza infection in wild birds in Ismailia and Damietta cities, Egypt.

    Science.gov (United States)

    Fadel, Hanaa Mohamed; Afifi, Rabab

    2017-06-01

    This study was carried out to monitor avian influenza (AI) infection in wild birds in Egypt. A total of 135 wild birds were examined for the presence of H5, H7, and H9 hemagglutination inhibition antibodies. Organs and swab samples of 75 birds were screened by multiplex real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) to detect AI subtypes H5, H7, and H9 matrix genes. The highest seropositive result was recorded in cattle egrets (90.9%) followed by crows (88.6%), semi-captive pigeons (44.8%), and moorhens (39.1%). In cattle egrets, semi-captive pigeons and moorhens, H5 antibodies predominated. In crows, H9 antibodies predominated. Multiple infections with two or three virus subtypes were highest in crows (6/39, 15.4%) followed by cattle egrets (3/30, 10%) and moorhens' (1/9, 11.1%) positive samples. Multiplex RRT-PCR results revealed two positive samples in cattle egrets and moorhens. The results indicated high seropositive rates against AI virus subtypes H5 and H9 in the examined wild birds. Multiple infections with more than one AI virus (AIV) subtypes were detected in some birds. This requires a collaboration of efforts to monitor AIV infection in wild birds and implement suitable early intervention measures.

  4. Serologic evidence of avian metapneumovirus infection among adults occupationally exposed to Turkeys.

    Science.gov (United States)

    Kayali, Ghazi; Ortiz, Ernesto J; Chorazy, Margaret L; Nagaraja, Kakambi V; DeBeauchamp, Jennifer; Webby, Richard J; Gray, Gregory C

    2011-11-01

    Genetically similar, the avian metapneumovirus (aMPV) and the human MPV (hMPV) are the only viruses in the Metapneumovirus genus. Previous research demonstrated the ability of hMPV to cause clinical disease in turkeys. In this controlled, cross-sectional, seroepidemiological study, we examined the hypothesis that aMPV might infect humans. We enrolled 95 adults occupationally exposed to turkeys and 82 nonexposed controls. Sera from study participants were examined for antibodies against aMPV and hMPV. Both in bivariate (OR=3.2; 95% CI: 1.1-9.2) and in multivariate modelling adjusting for antibody to hMPV (OR=4.1; 95% CI: 1.3-13.1), meat-processing workers were found to have an increased odds of previous infection with aMPV compared to controls. While hMPV antibody cross-reactivity is evident, these data suggest that occupational exposure to turkeys is a risk factor for human infection with aMPV. More studies are needed to validate these findings, to identify modes of aMPV transmission, and to determine risk factors associated with infection.

  5. Avian influenza

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Bicout, Dominique

    2017-01-01

    Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become...... infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non...

  6. Comparative Analysis of Avian and Swine Influenza Viruses Infections of Well Differentiated Lung Epithelial Cells of Turkey

    Directory of Open Access Journals (Sweden)

    Sahar Abd El Rahman

    2015-07-01

    Full Text Available Influenza viruses initiate infection by binding of the viral hemagglutinin to the cellular sialic acid residues. The precision-cut lung slice, as a valuable cultural tool of differentiated respiratory epithelial cells, is characterized by its ability to be viable for at least six days in-vitro, mimic in-vivo original cells and simply monitored by an inverted microscope. The aims of the study were to analyse the distribution of different sialic acid types in bronchus and parabronchial tissues of Turkey Precision Lung Slices (TPCLS, investigate the infection susceptibility of TPCLS by avian influenza (H9N2 and H7N7 and swine influenza (H3N2 viruses and evaluate the infection expression of TPCLS by different influenza viruses in correlation to the cellular sialic acids distribution after infection. The lectin stains and monoclonal antibodies prepared against nucleoprotein of influenza virus were used for analysing sialic acids distributions and viral antigen detection of TPCLS by immunoflourescent technique. The viral infective particles released from infected TPCLS by different avian and swine influenza viruses were titrated at different time intervals after infection. Both α2,3-linked and α2,6-linked sialic acids were expressed in the bronchus of TPCLS, while only α2,6-linked sialic acid was expressed in the parabronchial tissues. The indirect immunoflourescent technique showed variation of infection susceptibility of TPCLS parts by avian and swine influenza viruses. Infection was expressed in the bronchial epithelium by H9N2, H7N7 and H3N2, while in the parabronchial tissue by H9N2 and H3N2. Titration of the released infective viruses in the supernatant of infected TPCLS revealed that H9N2 could replicate faster than the other influenza viruses. TPCLS is a promising in-vitro model for viral infection study of turkey.

  7. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    Science.gov (United States)

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  8. Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections.

    Directory of Open Access Journals (Sweden)

    Erik A Karlsson

    Full Text Available Astroviruses (AstVs are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.

  9. Avian malaria in Hawaiian forest birds: Infection and population impacts across species and elevations

    Science.gov (United States)

    Samuel, Michael D.; Woodworth, Bethany L.; Atkinson, Carter T.; Hart, P. J.; LaPointe, Dennis

    2015-01-01

    Wildlife diseases can present significant threats to ecological systems and biological diversity, as well as domestic animal and human health. However, determining the dynamics of wildlife diseases and understanding the impact on host populations is a significant challenge. In Hawai‘i, there is ample circumstantial evidence that introduced avian malaria (Plasmodium relictum) has played an important role in the decline and extinction of many native forest birds. However, few studies have attempted to estimate disease transmission and mortality, survival, and individual species impacts in this distinctive ecosystem. We combined multi-state capture-recapture (longitudinal) models with cumulative age-prevalence (cross-sectional) models to evaluate these patterns in Apapane, Hawai‘i Amakihi, and Iiwi in low-, mid-, and high-elevation forests on the island of Hawai‘i based on four longitudinal studies of 3–7 years in length. We found species-specific patterns of malaria prevalence, transmission, and mortality rates that varied among elevations, likely in response to ecological factors that drive mosquito abundance. Malaria infection was highest at low elevations, moderate at mid elevations, and limited in high-elevation forests. Infection rates were highest for Iiwi and Apapane, likely contributing to the absence of these species in low-elevation forests. Adult malaria fatality rates were highest for Iiwi, intermediate for Amakihi at mid and high elevations, and lower for Apapane; low-elevation Amakihi had the lowest malaria fatality, providing strong evidence of malaria tolerance in this low-elevation population. Our study indicates that hatch-year birds may have greater malaria infection and/or fatality rates than adults. Our study also found that mosquitoes prefer feeding on Amakihi rather than Apapane, but Apapane are likely a more important reservoir for malaria transmission to mosquitoes. Our approach, based on host abundance and infection rates, may be an

  10. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses.

    Science.gov (United States)

    Spickler, Anna R; Trampel, Darrell W; Roth, James A

    2008-12-01

    Some avian influenza viruses may be transmissible to mammals by ingestion. Cats and dogs have been infected by H5N1 avian influenza viruses when they ate raw poultry, and two human H5N1 infections were linked to the ingestion of uncooked duck blood. The possibility of zoonotic influenza from exposure to raw poultry products raises concerns about flocks with unrecognized infections. The present review examines the onset of virus shedding and the development of clinical signs for a variety of avian influenza viruses in chickens. In experimentally infected birds, some high-pathogenicity avian influenza (HPAI) and low-pathogenicity avian influenza (LPAI) viruses can occur in faeces and respiratory secretions as early as 1 to 2 days after inoculation. Some HPAI viruses have also been found in meat 1 day after inoculation and in eggs after 3 days. There is no evidence that LPAI viruses can be found in meat, and the risk of their occurrence in eggs is poorly understood. Studies in experimentally infected birds suggest that clinical signs usually develop within a few days of virus shedding; however, some models and outbreak descriptions suggest that clinical signs may not become evident for a week or more in some H5 or H7 HPAI-infected flocks. During this time, avian influenza viruses might be found in poultry products. LPAI viruses can be shed in asymptomatically infected or minimally affected flocks, but these viruses are unlikely to cause significant human disease.

  11. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection

    OpenAIRE

    Wu, Donglin; Zou, Shumei; Bai, Tian; Li, Jing; Zhao, Xiang; Yang, Lei; Liu, Hongmin; Li, Xiaodan; Yang, Xianda; Xin, Li; Xu, Shuang; Zou, Xiaohui; Li, Xiyan; Wang, Ao; Guo, Junfeng

    2015-01-01

    Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-Oc...

  12. Hemato-biochemical and pathological changes on avian influenza in naturally infected domestic ducks in Egypt

    Directory of Open Access Journals (Sweden)

    Essam A. Mahmoud

    2015-10-01

    Full Text Available Aim: Few studies have been made in regard to avian influenza (AI in ducks, thus the aim of this work was planned to investigate the hematological, biochemical, and pathological changes in domestic Egyptian ducks naturally infected with AI. Materials and Methods: 30 duck from private backyards 3-month-old 15 were clinically healthy (Group 1 and the other fifteen (Group 2 were naturally diseased with AI (H5N1. The disease was diagnosed by polymerase chain reaction as H5N1. Results: Duck showed cyanosis, subcutaneous edema of head and neck with nervous signs (torticollis. Hematological studies revealed a microcytic hypochromic anemia. Biochemical studies revealed a significant decrease in total protein, albumin and globulin concentration with significant increase of activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, Υ-glutamyl transpeptidase, lactic acid dehydrogenase and creatine phsphokinase. Prominent increase in creatinine and uric acid in addition to hypocalcemia and hyperphosphatemia were significantly detected in the infected ducks. Histopathological finding confirm these investigations. Conclusion: The highly pathogenic AIV (A/H5N1 became more severe infectious to ducks than before and causes nervous manifestations and blindness which were uncommon in ducks. Besides the significant increases of hepatic enzymes, brain, heart, and renal markers as a response to virus damage to these organs.

  13. Investigations on the protective role of passively transferred antibodies against avian metapneumovirus infection in turkeys.

    Science.gov (United States)

    Rubbenstroth, Dennis; Rautenschlein, Silke

    2009-12-01

    The avian metapneumovirus (aMPV) is the causative agent of an acute respiratory disease in turkeys, which causes considerable economic losses to the poultry industry. Currently attenuated live and inactivated vaccines are widely used to control the disease, but vaccine breaks are frequently observed. For improvement of current vaccination strategies it is necessary to gain enhanced knowledge of the immune mechanisms against aMPV infection. Field observations suggest that vaccine-induced aMPV-specific antibodies are not indicative for protection. In the present study we investigated the role of antibodies in protection of turkeys against aMPV. In two experiments, commercial turkey poults received aMPV-specific antibodies by intravenous injection. The antibody transfer resulted in increased antibody levels in the sera. Virus-specific antibodies were also detected on mucosal surfaces such as the trachea, conjunctivae and gall bladder. Turkeys were subsequently challenged with a virulent aMPV subtype A strain. Development of clinical signs, virus detection by polymerase chain reaction and histopathological changes of tracheal mucosa in challenged turkeys with and without passively transferred antibodies were comparable with each other. Our results suggest that humoral immunity does not provide sufficient protection against aMPV infection. Thus, the measurement of vaccine-induced aMPV antibody response may not be considered as an adequate indicator of vaccine efficacy. Further research on the protective role of cell-mediated immune mechanisms is necessary to improve current vaccine strategies.

  14. Transcriptome Analysis of Avian Pathogenic Escherichia coli O1 in Chicken Serum Reveals Adaptive Responses to Systemic Infection

    OpenAIRE

    Li, Ganwu; Tivendale, Kelly A.; Liu, Peng; Feng, Yaping; Wannemuehler, Yvonne; Cai, Wentong; Mangiamele, Paul; Johnson, Timothy J.; Constantinidou, Chrystala; Penn, Charles W.; Nolan, Lisa K.

    2011-01-01

    Infections of avian pathogenic Escherichia coli (APEC) result in annual multimillion-dollar losses to the poultry industry. Despite this, little is known about the mechanisms by which APEC survives and grows in the bloodstream. Thus, the aim of this study was to identify molecular mechanisms enabling APEC to survive and grow in this critical host environment. To do so, we compared the transcriptome of APEC O1 during growth in Luria-Bertani broth and chicken serum. Several categories of genes,...

  15. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    Science.gov (United States)

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, John Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  16. Bloodmeal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae vectors.

    Directory of Open Access Journals (Sweden)

    Diego Santiago-Alarcon

    Full Text Available Changing environmental conditions and human encroachment on natural habitats bring human populations closer to novel sources of parasites, which might then develop into new emerging diseases. Diseases transmitted by host generalist vectors are of special interest due to their capacity to move pathogens into novel hosts. We hypothesize that humans using forests for recreation are exposed to a broad range of parasites from wild animals and their vectors. A corollary of this is that new vector-host, parasite-host, and vector-parasite associations could eventually develop. Thus, we expect to observe atypical vector-host associations. Using molecular bloodmeal analysis via amplification of the mtDNA COI gene we identified the vertebrate hosts of Culicoides (Diptera: Ceratopogonidae species in a sub-urban forest of Southwestern Germany. Bloodmeals were also checked for haemosporidian infections by amplifying a fragment of the mtDNA cyt b gene. We identified a total of 20 Culicoides species, thirteen of which fed on humans. From 105 screened bloodmeals we obtained high quality sequences for 77 samples, 73 (94.8% originated from humans, two from livestock (Bos taurus and Equus caballus, and two from wild birds (Sylvia atricapilla and Turdus merula. We found that four Culicoides species previously assumed to feed exclusively on either birds (C. kibunensis or domestic mammals (C. chiopterus, C. deltus, C. scoticus fed also on humans. A total of six Culicoides abdomens were infected with avian haemosporidian parasites (Plasmodium or Haemoproteus, four of those abdomens contained blood derived from humans. Our results suggest that parasites of wild animals may be transferred to humans through infectious bites of Culicoides vectors. Further, we show that Culicoides vectors believed to be a specialist on specific vertebrate groups can have plastic feeding preferences, and that Culicoides are susceptible to infection by Plasmodium parasites, though vector

  17. Altered expression of the mismatch repair genes in DF-1 cells infected with the avian leukosis virus subgroup A.

    Science.gov (United States)

    Yao, Da-Wei; Zhan, Li; Hong, Yu-Fang; Liu, Jian-Xin; Xu, Jia-Rong; Yang, De-Ji

    2016-01-01

    The absence or deficiency of DNA mismatch repair (MMR) activity results in microsatellite instability (MSI) in cancer. The avian leukosis virus (ALV) causes neoplastic disease in chickens. In this study, the status of MMR, MSI, the cell cycle and apoptosis were detected in DF-1 cells after avian leukosis virus subgroup A infection. Flow cytometry analysis results indicated that there was no significant difference in cell apoptosis between the control and infected groups. The percentage of cells in S and G2 phases were increased in the infected group. MSI and mutation of MSH2 and MLH1 gene exons were absent in DF-1 cells after infection. Levels of MSH2 and MLH1 mRNA were dramatically increased in DF-1 cells after infection. These results demonstrated that ALV RAV-1 infection may promote the expression of MSH2 and MLH1 genes rather than resulting in gene mutations. Mismatch repair functions were normal and may be have relationships with the arrest of S phase and G2 phase.

  18. Effects of closing and reopening live poultry markets on the epidemic of human infection with avian influenza A virus

    OpenAIRE

    Lu, Jian; Liu, Wendong; Xia, Rui; Dai, Qigang; Bao, Changjun; Tang, Fenyang; Zhu, yefei; Wang, Qiao

    2015-01-01

    Abstract Live poultry markets (LPMs) are crucial places for human infection of influenza A (H7N9 virus). In Yangtze River Delta, LPMs were closed after the outbreak of human infection with avian influenza A (H7N9) virus, and then reopened when no case was found. Our purpose was to quantify the effect of LPMs? operations in this region on the transmission of influenza A (H7N9) virus. We obtained information about dates of symptom onset and locations for all human influenza A (H7N9) cases repor...

  19. Antibiotic resistance pattern of different Escherichia coli phylogenetic groups isolated from human urinary tract infection and avian colibacillosis.

    Science.gov (United States)

    Kazemnia, Ali; Ahmadi, Malahat; Dilmaghani, Mahdi

    2014-01-01

    The emergence and propagation of different phylogenetic groups of antimicrobial-resistant E. coli have become a worldwide health concern in human and veterinary medicine. Therefore, the evaluation of the phylogenetic distribution of antibiotic-resistant E. coli is important for therapeutic and economic purposes. The aims of this study were to determine phylogenetic groups and patterns of antibiotic resistance of E. coli strains isolated from human urinary tract infection and avian colibacillosis. A total of 50 E. coli isolates (25 from human urinary tract infection and 25 from avian colibacillosis) were characterized by culture and assigned as different phylogenetic groups (A, B1, B2, and D) by triplex PCR assay. Kirby-Bauer disk diffusion method was used to assess the susceptibility of all isolates to ten antibiotics. RESULTS showed that the majority of the human and poultry isolates belonged to phylogenetic groups A and B2 and phylogenetic group B1 of the avian pathogenic strain isolates were the most drug-resistant isolates. Most of the isolates were resistant to at least five antibiotics, and multiple drug resistance was observed in 98% of E. coli isolates. A high degree of resistance was seen against penicillin and erythromycin. According to the results of this study, multidrug-resistance among isolates and high relation between phylogenetic groups and resistance in both human and poultry isolates were observed.

  20. First evidence of avian metapneumovirus subtype A infection in turkeys in Egypt.

    Science.gov (United States)

    Abdel-Azeem, Abdel-Azeem Sayed; Franzo, Giovanni; Dalle Zotte, Antonella; Drigo, Michele; Catelli, Elena; Lupini, Caterina; Martini, Marco; Cecchinato, Mattia

    2014-08-01

    Although avian metapneumovirus (aMPV) infection has been reported in most regions of the world, to date, only subtype B has been detected in Egypt. At the end of November 2013, dry oropharyngeal swabs were collected during an outbreak of respiratory diseases in a free-range, multi-age turkey dealer farm in Northern Upper Egypt. The clinical signs that appeared when turkeys were 3 weeks-old were characterized by ocular and nasal discharge and swelling of sinuses. aMPV of subtype A was detected by real-time reverse transcription-polymerase chain reaction. In order to confirm the results and obtain more information on the molecular characteristics of the virus, F and G protein genes were partially sequenced and compared with previously published sequences deposited in GenBank by using BLAST. Subtype of the strain was confirmed by sequencing of partial F and G protein genes. The highest percentages of identity were observed when G sequence of the Egyptian strain was compared with the sequence of an aMPV-A isolated in Nigeria (96.4 %) and when the F sequence was compared with strains isolated respectively in Italy and in UK (97.1 %). Moreover, the alignment of the sequences with commercial subtype A vaccine or vaccine-derived strains showed differences in the Egyptian strain that indicate its probable field origin. The detection of aMPV in the investigated turkey flock highlights some relevant epidemiological issues regarding the role that multi-age farms and dealers may play in perpetuating aMPV infection within and among farms. To our knowledge, this is the first report of aMPV subtype A in Egypt.

  1. Evaluating surveillance strategies for the early detection of low pathogenicity avian influenza infections.

    Science.gov (United States)

    Comin, Arianna; Stegeman, Arjan; Marangon, Stefano; Klinkenberg, Don

    2012-01-01

    In recent years, the early detection of low pathogenicity avian influenza (LPAI) viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms) was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (R(h)). The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas R(h) reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control). Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier), whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus introduction

  2. Evaluating surveillance strategies for the early detection of low pathogenicity avian influenza infections.

    Directory of Open Access Journals (Sweden)

    Arianna Comin

    Full Text Available In recent years, the early detection of low pathogenicity avian influenza (LPAI viruses in poultry has become increasingly important, given their potential to mutate into highly pathogenic viruses. However, evaluations of LPAI surveillance have mainly focused on prevalence and not on the ability to act as an early warning system. We used a simulation model based on data from Italian LPAI epidemics in turkeys to evaluate different surveillance strategies in terms of their performance as early warning systems. The strategies differed in terms of sample size, sampling frequency, diagnostic tests, and whether or not active surveillance (i.e., routine laboratory testing of farms was performed, and were also tested under different epidemiological scenarios. We compared surveillance strategies by simulating within-farm outbreaks. The output measures were the proportion of infected farms that are detected and the farm reproduction number (R(h. The first one provides an indication of the sensitivity of the surveillance system to detect within-farm infections, whereas R(h reflects the effectiveness of outbreak detection (i.e., if detection occurs soon enough to bring an epidemic under control. Increasing the sampling frequency was the most effective means of improving the timeliness of detection (i.e., it occurs earlier, whereas increasing the sample size increased the likelihood of detection. Surveillance was only effective in preventing an epidemic if actions were taken within two days of sampling. The strategies were not affected by the quality of the diagnostic test, although performing both serological and virological assays increased the sensitivity of active surveillance. Early detection of LPAI outbreaks in turkeys can be achieved by increasing the sampling frequency for active surveillance, though very frequent sampling may not be sustainable in the long term. We suggest that, when no LPAI virus is circulating yet and there is a low risk of virus

  3. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    Science.gov (United States)

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  4. Highly (H5N1 and low (H7N2 pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    Directory of Open Access Journals (Sweden)

    Kateri Bertran

    Full Text Available An experimental infection with highly pathogenic avian influenza (HPAI and low pathogenic avian influenza (LPAI viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006 or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009, both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR, which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds

  5. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    Directory of Open Access Journals (Sweden)

    Sean G. Young

    2016-09-01

    Full Text Available Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC curve (AUC 0.991.

  6. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus

    Directory of Open Access Journals (Sweden)

    Kong Xiangang

    2011-03-01

    Full Text Available Abstract Background Avian infectious bronchitis (IB is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV. Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS. Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection.

  7. Multiple detection of zoonotic variegated squirrel bornavirus 1 RNA in different squirrel species suggests a possible unknown origin for the virus.

    Science.gov (United States)

    Schlottau, Kore; Hoffmann, Bernd; Homeier-Bachmann, Timo; Fast, Christine; Ulrich, Rainer G; Beer, Martin; Hoffmann, Donata

    2017-09-01

    The recently discovered variegated squirrel bornavirus 1 (VSBV-1) caused the death of three squirrel breeders in Germany. Subsequent first screening of squirrels with in vivo collected swab samples and a VSBV-1-specific RT-qPCR revealed not only variegated squirrel infections (Sciurus variegatoides), but also Prevost's squirrels (Callosciurus prevostii) as positive for VSBV-1 genome. In this study, 328 squirrels were tested using the established RT-qPCR assays. In 16 individual animals VSBV-1 RNA could be detected; 15 individuals were from small breedings and zoological gardens in Germany, with the remaining individual being from a zoological garden in Croatia. Positive animals belonged to the species C. prevostii, C. finlaysonii, and Tamiops swinhoei within the subfamily Callosciurinae and Sciurus granatensis within the subfamily Sciurinae. Repeated non-invasive oral swab sampling in one holding indicated positive animals months after a first negative result. Besides the oral swabs, VSBV-1 was also detected in fecal (pool) samples allowing the future monitoring of squirrel holdings based on RT-qPCR investigation of such samples. The detection in zoological gardens emphasizes the need for further investigations into the transmission route to humans in order to develop rational public health measures for prevention of transmission. Finally, the detection of several closely related VSBV-1 sequences in squirrels from different subfamilies raises questions as to the origin of the virus.

  8. Seroevidence for a High Prevalence of Subclinical Infection With Avian Influenza A(H5N1) Virus Among Workers in a Live-Poultry Market in Indonesia.

    Science.gov (United States)

    Shimizu, Kazufumi; Wulandari, Laksmi; Poetranto, Emmanuel D; Setyoningrum, Retno A; Yudhawati, Resti; Sholikhah, Amelia; Nastri, Aldise M; Poetranto, Anna L; Candra, Adithya Y R; Puruhito, Edith F; Takahara, Yusuke; Yamagishi, Yoshiaki; Yamaoka, Masaoki; Hotta, Hak; Ustumi, Takako; Lusida, Maria I; Soetjipto; Shimizu, Yohko K; Soegiarto, Gatot; Mori, Yasuko

    2016-12-15

     In Indonesia, highly pathogenic avian influenza A(H5N1) virus has become endemic in poultry and has caused sporadic deadly infections in human. Since 2012, we have conducted fixed-point surveillance of avian influenza viruses at a live-poultry market in East Java, Indonesia. In this study, we examined the seroprevalence of avian influenza A(H5N1) virus infection among market workers.  Sera were collected from 101 workers in early 2014 and examined for antibody activity against avian A(H5N1) Eurasian lineage virus by a hemagglutination-inhibition (HI) assay.  By the HI assay, 84% of the sera tested positive for antibody activity against the avian virus. Further analysis revealed that the average HI titer in 2014 was 2.9-fold higher than in 2012 and that seroconversion occurred in 44% of paired sera (11 of 25) between 2012 and 2014. A medical history survey was performed in 2016; responses to questionnaires indicated that none of workers had had severe acute respiratory illness during 2013.  This study provides evidence of a high prevalence of avian A(H5N1) virus infection in 2013 among workers at a live-poultry market. However, because no instances of hospitalizations were reported, we can conclude the virus did not manifest any clinical symptoms in workers. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  9. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Parida, Satya; Rasmussen, Thomas Bruun

    2010-01-01

    for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry.......The prophylactic use of vaccines against exotic viral infections in production animals is undertaken exclusively in regions where the disease concerned is endemic. In such areas, the infection pressure is very high and so, to assure optimal protection, the most efficient vaccines are used. However......, in areas considered to be free from these diseases and in which there is the possibility of only limited outbreaks, the use of Differentiation of Infected from Vaccinated Animals (DIVA) or marker vaccines allows for vaccination while still retaining the possibility of serological surveillance...

  10. Effects of Cyclosporin A induced T-lymphocyte depletion on the course of avian Metapneumovirus (aMPV) infection in turkeys

    DEFF Research Database (Denmark)

    Rubbenstroth, Dennis; Dalgaard, Tina S; Kothlow, Sonja

    2010-01-01

    The avian Metapneumovirus (aMPV) causes an economically important acute respiratory disease in turkeys (turkey rhinotracheitis, TRT).While antibodies were shownto be insufficient for protection against a MPV-infection, the role of T-lymphocytes in the control of aMPV-infection is not clear...

  11. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl.

    Directory of Open Access Journals (Sweden)

    Nicolas Gaidet

    Full Text Available The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  12. Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea)

    Science.gov (United States)

    Atkinson, C.T.; Woods, K.L.; Dusek, Robert J.; Sileo, L.S.; Iko, W.M.

    1995-01-01

    Native Hawaiian forest birds are facing a major extinction crisis with more than 75% of species recorded in historical times either extinct or endangered. Reasons for this catastrophe include habitat destruction, competition with non-native species, and introduction of predators and avian diseases. We tested susceptibility of Iiwi (Vestiaria coccinea), a declining native species, and Nutmeg Mannikins (Lonchura punctulata), a common non-native species, to an isolate of Plasmodium relictum from the island of Hawaii. Food consumption, weight, and parasitaemia were monitored in juvenile Iiwi that were infected by either single (low-dose) or multiple (high-dose) mosquito bites. Mortality in both groups was significantly higher than in uninfected controls, reaching 100% of high-dose birds and 90% of low-dose birds. Significant declines in food consumption and a corresponding loss of body weight occurred in malaria-infected birds. Both sex and body weight had significant effects on survival time, with males more susceptible than females and birds with low initial weights more susceptible than those with higher initial weights. Gross and microscopic lesions in malaria fatalities included massive enlargement of the spleen and liver, hyperplasia of the reticuloendothelial system with extensive deposition of malarial pigment, and overwhelming anaemia in which over 30% of the circulating erythrocytes were parasitized. Nutmeg Mannikins, by contrast, were completely refractory to infection. Our findings support previous studies documenting high susceptibility of native Hawaiian forest birds to avian malaria. This disease continues to threaten remaining high elevation populations of endangered native birds.

  13. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    Science.gov (United States)

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Strong concordance between transcriptomic patterns of spleen and peripheral blood leukocytes in response to avian pathogenic Escherichia coli infection.

    Science.gov (United States)

    Sandford, Erin E; Orr, Megan; Li, Xianyao; Zhou, Huaijun; Johnson, Timothy J; Kariyawasam, Subhashinie; Liu, Peng; Nolan, Lisa K; Lamont, Susan J

    2012-12-01

    Avian pathogenic Escherichia coli (APEC) causes morbidity in chickens and exhibits zoonotic potential. Understanding host transcriptional responses to infection aids the understanding of protective mechanisms and serves to inform future colibacillosis control strategies. Transcriptomes of spleen and peripheral blood leukocytes (PBLs) of the same individual birds in response to APEC infection were compared to identify common response patterns and connecting pathways. More than 100 genes in three contrasts examining pathology and infection status were significantly differentially expressed in both tissues and similarly regulated. Tissue-specific differences in catalytic activity, however, appear between birds with mild and severe pathology responses. Early expression differences, between birds with severe pathology and uninfected controls, in the mitogen-activated protein kinase pathway in PBLs precede spleen responses in the p53 and cytokine-cytokine receptor pathways. Tissue bianalysis is useful in identifying genes and pathways important to the response to APEC, whose role might otherwise be underestimated in importance.

  15. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    OpenAIRE

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antoni; Abad, Francesc Xavier; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-01-01

    Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in bot...

  16. Avian Influenza.

    Science.gov (United States)

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  17. Avian cholera

    Science.gov (United States)

    Friend, Milton

    1999-01-01

    Avian cholera is a contagious disease resulting from infection by the bacterium Pasteurella multocida. Several subspecies of bacteria have been proposed for P. multocida, and at least 16 different P. multocida serotypes or characteristics of antigens in bacterial cells that differentiate bacterial variants from each other have been recognized. The serotypes are further differentiated by other methods, including DNA fingerprinting. These evaluations are useful for studying the ecology of avian cholera (Fig. 7.1), because different serotypes are generally found in poultry and free-ranging migratory birds. These evaluations also show that different P. multocida serotypes are found in wild birds in the eastern United States than those that are found in the birds in the rest of the Nation (Fig. 7.2).

  18. Transcriptome analysis of avian pathogenic Escherichia coli O1 in chicken serum reveals adaptive responses to systemic infection.

    Science.gov (United States)

    Li, Ganwu; Tivendale, Kelly A; Liu, Peng; Feng, Yaping; Wannemuehler, Yvonne; Cai, Wentong; Mangiamele, Paul; Johnson, Timothy J; Constantinidou, Chrystala; Penn, Charles W; Nolan, Lisa K

    2011-05-01

    Infections of avian pathogenic Escherichia coli (APEC) result in annual multimillion-dollar losses to the poultry industry. Despite this, little is known about the mechanisms by which APEC survives and grows in the bloodstream. Thus, the aim of this study was to identify molecular mechanisms enabling APEC to survive and grow in this critical host environment. To do so, we compared the transcriptome of APEC O1 during growth in Luria-Bertani broth and chicken serum. Several categories of genes, predicted to contribute to adaptation and growth in the avian host, were identified. These included several known virulence genes and genes involved in adaptive metabolism, protein transport, biosynthesis pathways, stress resistance, and virulence regulation. Several genes with unknown function, which were localized to pathogenicity islands or APEC O1's large virulence plasmid, pAPEC-O1-ColBM, were also identified, suggesting that they too contribute to survival in serum. The significantly upregulated genes dnaK, dnaJ, phoP, and ybtA were subsequently subjected to mutational analysis to confirm their role in conferring a competitive advantage during infection. This genome-wide analysis provides novel insight into processes that are important to the pathogenesis of APEC O1.

  19. Differential modulation of avian β-defensin and Toll-like receptor expression in chickens infected with infectious bronchitis virus.

    Science.gov (United States)

    Xu, Yang; Zhang, Tingting; Xu, Qianqian; Han, Zongxi; Liang, Shuling; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2015-11-01

    The host innate immune response either clears invading viruses or allows the adaptive immune system to establish an effective antiviral response. In this study, both pathogenic (passage 3, P3) and attenuated (P110) infectious bronchitis virus (IBV) strains were used to study the immune responses of chicken to IBV infection. Expression of avian β-defensins (AvBDs) and Toll-like receptors (TLRs) in 16 tissues of chicken were compared at 7 days PI. The results showed that P3 infection upregulated the expression of AvBDs, including AvBD2, 4, 5, 6, 9, and 12, while P110 infection downregulated the expression of AvBDs, including AvBD3, 4, 5, 6, and 9 in most tissues. Meanwhile, the expression level of several TLRs showed a general trend of upregulation in the tissues of P3-infected chickens, while they were downregulated in the tissues of P110-infected chickens. The result suggested that compared with the P110 strain, the P3 strain induced a more pronounced host innate immune response. Furthermore, we observed that recombinant AvBDs (including 2, 6, and 12) demonstrated obvious anti-viral activity against IBV in vitro. Our findings contribute to the proposal that IBV infection induces an increase in the messenger RNA (mRNA) expression of some AvBDs and TLRs, which suggests that AvBDs may play significant roles in the resistance of chickens to IBV replication.

  20. Avian influenza virus infection in apparently healthy domestic birds in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Innocent Okwundu Nwankwo

    2012-09-01

    Full Text Available The study was conducted among apparently healthy birds brought from different local government areas, neighbouring states and across international boundaries to the Sokoto central live bird market between October 2008 and March 2009. Tracheal and cloacal swabs were collected from 221 apparently healthy birds comprising 182 chickens, 3 turkeys, 11 guineafowl, 17 ducks and 8 pigeons. These samples were analysed using nested polymerase chain reaction (nPCR to check for the presence of avian influenza virus. An overall prevalence of 1.4% (3 positive cases was detected with two cases observed in chickens and one in a pigeon. The findings indicate the circulation of avian influenza in the study area. This raises concern for human and animal health due to zoonotic and economic implications of this virus.

  1. Co-infection of turkeys with Escherichia coli (O78) and H6N1 avian influenza virus.

    Science.gov (United States)

    Umar, Sajid; Delverdier, Maxence; Delpont, Mattias; Belkasmi, Sakhia F Z; Teillaud, Angélique; Bleuart, Céline; Pardo, Isabelle; El Houadfi, Mohammed; Guérin, Jean-Luc; Ducatez, Mariette F

    2018-03-28

    Respiratory diseases are responsible for major economic losses in poultry farms. While in most cases a single pathogen is not alone responsible for the clinical outcome, the impact of co-infections is not well known, especially in turkeys. The purpose of this study was to assess the possible synergism between Escherichia coli (O78) and low pathogenic avian influenza virus (LPAIV, H6N1), in the turkey model. Four-week-old commercial turkeys were inoculated with either H6N1, O78 or both agents simultaneously or three days apart. We have established an experimental infection model of turkeys using aerosolization that better mimics field infections. Birds were observed clinically and swabbed on a daily basis. Necropsies were performed at 4 and 14 days post single or dual inoculation and followed by histological and immunohistochemical analyses. Combined LPAIV/E. coli infections resulted in more severe clinical signs, were associated with higher mortality and respiratory organ lesions (mucous or fibrinous exudative material in lungs and air sacs), in comparison with the groups given single infections (P  0.05) respiratory signs were observed in turkeys of the E. coli followed by H6N1 inoculated group. Microscopic lesions and immunohistochemical staining supported clinical and macroscopic findings. Efficient virus and bacteria replication was observed in all inoculated groups. E. coli and H6N1 thus exercise an additive or synergistic pathogenic effect in the reproduction of respiratory disease.

  2. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    Science.gov (United States)

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  3. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals

    NARCIS (Netherlands)

    Lee, Laurel Yong-Hwa; Anh, Ha Do Lien; Simmons, Cameron; de Jong, Menno D.; Chau, Nguyen Van Vinh; Schumacher, Reto; Peng, Yan Chun; McMichael, Andrew J.; Farrar, Jeremy J.; Smith, Geoffrey L.; Townsend, Alain R. M.; Askonas, Brigitte A.; Rowland-Jones, Sarah; Dong, Tao

    2008-01-01

    The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to

  4. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions.

    Directory of Open Access Journals (Sweden)

    Aruna Amarasinghe

    Full Text Available Infectious bronchitis virus (IBV causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41 and Connecticut A5968 (Conn A5968 strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens.

  5. Notes from the field: Highly pathogenic avian influenza A (H7N3) virus infection in two poultry workers--Jalisco, Mexico, July 2012.

    Science.gov (United States)

    2012-09-14

    During June-August 2012, Mexico's National Service for Health, Safety, and Food Quality reported outbreaks of highly pathogenic avian influenza (HPAI) A (H7N3) virus in poultry on farms throughout the state of Jalisco. This report describes two cases of conjunctivitis without fever or respiratory symptoms caused by HPAI A (H7N3) virus infection in humans associated with exposure to infected poultry.

  6. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing

    NARCIS (Netherlands)

    Jonges, Marcel; Welkers, Matthijs R. A.; Jeeninga, Rienk E.; Meijer, Adam; Schneeberger, Peter; Fouchier, Ron A. M.; de Jong, Menno D.; Koopmans, Marion

    2014-01-01

    Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus

  7. Serological evidence of avian encephalomyelitis virus and Pasteurella multocida infections in free-range indigenous chickens in Southern Mozambique.

    Science.gov (United States)

    Taunde, Paula; Timbe, Palmira; Lucas, Ana Felicidade; Tchamo, Cesaltina; Chilundo, Abel; Dos Anjos, Filomena; Costa, Rosa; Bila, Custodio Gabriel

    2017-06-01

    A total of 398 serum samples from free-range indigenous chickens originating from four villages in Southern Mozambique were tested for the presence of avian encephalomyelitis virus (AEV) and Pasteurella multocida (PM) antibodies through commercial enzyme-linked immunosorbent assay (ELISA) kits. AEV and PM antibodies were detected in all villages surveyed. The proportion of positive samples was very high: 59.5% (95% confidence interval (CI) 51.7-67.7%) for AEV and 71.5% (95% CI 67.7-77.3%) for PM. Our findings revealed that these pathogens are widespread among free-range indigenous chickens in the studied villages and may represent a threat in the transmission of AEV and PM to wild, broiler or layer chickens in the region. Further research is warranted on epidemiology of circulating strains and impact of infection on the poultry industry.

  8. Avian influenza

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2006-06-01

    Full Text Available Avian influenza, or “bird flu”, is a contagious disease of animals which crossed the species barrier to infect humans and gave a quite impact on public health in the world since 2004, especially due to the threat of pandemic situation. Until 1st March 2006, laboratory-confirmed human cases have been reported in seven countries: Cambodia, Indonesia, Thailand, Viet Nam, China, Iraq and Turkey with a total of 174 cases and 94 dead (54.02%. Indonesia has 27 cases, 20 were dead (74.07%. AI cases in Indonesia are more in male (62.5% and all have a symptom of fever. An influenza pandemic is a rare but recurrent event. An influenza pandemic happens when a new subtype emerges that has not previously circulated in humans. For this reason, avian H5N1 is a strain with pandemic potential, since it might ultimately adapt into a strain that is contagious among humans. Impact of the pandemic could include high rates of illness and worker absenteeism are expected, and these will contribute to social and economic disruption. Historically, the number of deaths during a pandemic has varied greatly. Death rates are largely determined by four factors: the number of people who become infected, the virulence of the virus, the underlying characteristics and vulnerability of affected populations, and the effectiveness of preventive measures. Accurate predictions of mortality cannot be made before the pandemic virus emerges and begins to spread. (Med J Indones 2006; 15:125-8Keywords: Avian Influenza, Pandemic

  9. Sparse serological evidence of H5N1 avian influenza virus infections in domestic cats, northeastern China.

    Science.gov (United States)

    Sun, Lingshuang; Zhou, Pei; He, Shuyi; Luo, Yongfeng; Jia, Kun; Fu, Cheng; Sun, Yao; He, Huamei; Tu, Liqing; Ning, Zhangyong; Yuan, Ziguo; Wang, Heng; Li, Shoujun; Yuan, Liguo

    2015-05-01

    Today the cross-species transmission of avian influenza viruses (AIV) are a great concern. A number of AIV strains are now enzootic among poultry, with H9N2 and highly pathogenic H5N1 AIV strains prevalent in China. H5N1 strains have been recognized to infect zoo and domestic feline species. In this serological study we sought to examine evidence that H5N1 strains have infected domestic cats in northeastern China. In 2013, we conducted a cross-sectional serological study of 916 healthy cats in Heilongjian, Jilin, and Liaonin Provinces. Sera were screened with a hemagglutinin inhibition (HI) assay and seropositive specimens (HI ≥ 1:20) were further evaluated with a microneutralization (MN) assay against a clade 2.3.2 H5N1 AIV, a H9N2 AIV, A (H1N1)pdm09, and a canine H3N2 virus. While ∼2% of cats had elevated HI assays against H5N1, no elevations were confirmed (MN ≥ 1:80). These data serve as baseline for future surveillance for AIV infections among domestic cats. Conducting such surveillance seems important for geographical areas recognized as endemic for AIVs. This is especially true for countries such as China where domestic cats and poultry are often in close contact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction.

    Science.gov (United States)

    Elhafi, G; Naylor, C J; Savage, C E; Jones, R C

    2004-06-01

    A method is described for enabling safe transit of denatured virus samples for polymerase chain reaction (PCR) identification without the risk of unwanted viable viruses. Cotton swabs dipped in avian infectious bronchitis virus (IBV) or avian pneumovirus (APV) were allowed to dry. Newcastle disease virus and avian influenza viruses were used as controls. Autoclaving and microwave treatment for as little as 20 sec destroyed the infectivity of all four viruses. However, both IBV and APV could be detected by reverse transcriptase (RT)-PCR after autoclaving and as long as 5 min microwave treatment (Newcastle disease virus and avian influenza viruses were not tested). Double microwave treatment of IBV and APV with an interval of 2 to 7 days between was tested. After the second treatment, RT-PCR products were readily detected in all samples. Swabs from the tracheas and cloacas of chicks infected with IBV shown to contain infectious virus were microwaved. Swabs from both sources were positive by RT-PCR. Microwave treatment appears to be a satisfactory method of inactivating virus while preserving nucleic acid for PCR identification.

  11. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus).

    Science.gov (United States)

    Ramis, Antonio; van Amerongen, Geert; van de Bildt, Marco; Leijten, Loneke; Vanderstichel, Raphael; Osterhaus, Albert; Kuiken, Thijs

    2014-08-19

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 10(4) median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

  12. Local and systemic immune responses following infection of broiler-type chickens with avian Metapneumovirus subtypes A and B.

    Science.gov (United States)

    Rautenschlein, Silke; Aung, Ye Htut; Haase, Christine

    2011-03-15

    Infections with avian Metapneumovirus (aMPV) are often associated with swollen head syndrome in meat type chickens. Previous studies in turkeys have demonstrated that local humoral and cell-mediated immunity plays a role in aMPV-infection. Previous experimental and field observations indicated that the susceptibility of broilers and their immune reactions to aMPV may differ from turkeys. In the presented study local and systemic immune reactions of broilers were investigated after experimental infections with subtypes A and B aMPV of turkey origin. Both virus subtypes induced a mild respiratory disease. The recovery from respiratory signs correlated with the induction of local and systemic aMPV virus-neutralizing antibodies, which began to rise at 6 days post infection (dpi), when the peak of clinical signs was observed. In a different manner to the virus neutralizing (VN) and IgG-ELISA serum antibody titres, which showed high levels until the end of the experiments between 24 and 28 dpi, the specific IgA-ELISA and VN-antibody levels in tracheal washes decreased by 10 and 14 dpi, respectively, which may explain the recurring aMPV-infections in the field. Ex vivo cultured spleen cells from aMPV-infected broilers released at 3 and 6 dpi higher levels of IFN-γ after stimulation with Concanavalin A as compared to virus-free birds. In agreement with studies in turkeys, aMPV-infected broilers showed a clear CD4+ T cell accumulation in the Harderian gland (HG) at 6 dpi (P<0.05). In contrast to other investigations in turkeys aMPV-infected broilers showed an increase in the number of CD8alpha+ cells at 6 dpi compared to virus-free birds (P<0.05). The numbers of local B cells in the Harderian gland were not affected by the infection. Both aMPV A and B induced up-regulation of interferon (IFN)-γ mRNA-expression in the nasal turbinates, while in the Harderian gland only aMPV-A induced enhanced IFN-γ expression at 3 dpi. The differences in systemic and local T cell and

  13. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Vladimir A Belyi

    2010-07-01

    Full Text Available Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected, later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important

  14. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC.

    Directory of Open Access Journals (Sweden)

    Jung Seok Lee

    Full Text Available Avian pathogenic Escherichia coli (APEC is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein-sharing networks, the Markov clustering (MCL algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3 competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR endolysin pathway to trigger host cell lysis.

  15. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect.

    Directory of Open Access Journals (Sweden)

    John P Swaddle

    Full Text Available Recent infectious disease models illustrate a suite of mechanisms that can result in lower incidence of disease in areas of higher disease host diversity--the 'dilution effect'. These models are particularly applicable to human zoonoses, which are infectious diseases of wildlife that spill over into human populations. As many recent emerging infectious diseases are zoonoses, the mechanisms that underlie the 'dilution effect' are potentially widely applicable and could contribute greatly to our understanding of a suite of diseases. The dilution effect has largely been observed in the context of Lyme disease and the predictions of the underlying models have rarely been examined for other infectious diseases on a broad geographic scale. Here, we explored whether the dilution effect can be observed in the relationship between the incidence of human West Nile virus (WNV infection and bird (host diversity in the eastern US. We constructed a novel geospatial contrasts analysis that compares the small differences in avian diversity of neighboring US counties (where one county reported human cases of WNV and the other reported no cases with associated between-county differences in human disease. We also controlled for confounding factors of climate, regional variation in mosquito vector type, urbanization, and human socioeconomic factors that are all likely to affect human disease incidence. We found there is lower incidence of human WNV in eastern US counties that have greater avian (viral host diversity. This pattern exists when examining diversity-disease relationships both before WNV reached the US (in 1998 and once the epidemic was underway (in 2002. The robust disease-diversity relationships confirm that the dilution effect can be observed in another emerging infectious disease and illustrate an important ecosystem service provided by biodiversity, further supporting the growing view that protecting biodiversity should be considered in public

  16. Pathogenesis of Riemerella anatipestifer in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus.

    Science.gov (United States)

    Rubbenstroth, Dennis; Ryll, Martin; Behr, Klaus-Peter; Rautenschlein, Silke

    2009-12-01

    Riemerella anatipestifer (RA) is the causative agent of septicaemic and exudative diseases in a variety of bird species. Despite numerous outbreaks, little is known about the pathogenicity of RA for turkeys. We investigated the development of RA-induced disease in commercial turkey poults following RA inoculation via different respiratory routes. Inoculation by aerosol or injection into the abdominal air sac led to systemic infection and mild gross lesions, including pericarditis, epicarditis and airsacculitis, which were less pronounced compared with field outbreaks. It was speculated, that viral pathogens, such as the avian metapneumovirus (aMPV), may exacerbate RA pathogenesis under field conditions. We inoculated turkey poults with virulent aMPV. Subsequently, aMPV-infected and virus-free birds were exposed 3 to 5 days later to a high dose of RA by aerosol (>10(10) colony-forming units/ml in 8 ml aerosol per 11 or 12 birds) or were inoculated 4 days later with a low RA dose (10(4.9) colony-forming units per bird) via the intranasal route. Intranasal RA inoculation with the low bacterial dose led to a respiratory and systemic RA infection in aMPV-infected birds, while virus-free birds remained RA-negative. Following exposure to a high RA dose by aerosol, aMPV-infected groups showed slightly enhanced incidences of gross lesions and RA re-isolation. The present study clearly confirms that RA is pathogenic for turkeys after experimental inoculation via respiratory routes, which are speculated to be the natural route of infection. However, experimental models in this study did not reproduce the severity of RA-related disease as observed under field conditions, which emphasizes the importance of other contributing factors. aMPV-induced respiratory lesions may serve as a predisposing factor for the establishment of RA infection, since they favour colonization of the bacterium.

  17. Field Investigation on the Prevalence of Avian Influenza Virus Infection in Some Localities in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdullah N. Alkhalaf

    2010-07-01

    Full Text Available The objective of this study was to find out prevalence and types of avian influenza virus (AIV among broilers, native chickens, ducks and pigeons in Saudi Arabia. Field investigation was carried out in four localities including Al-Qassim, Hail, Al-Jouf and Northern Border regions. Serum sample, tracheal and cloacal swabs were collected from broilers (n=1561, layers (n=988, ducks (n=329 and pigeons (n=450 from these localities and tested for three different avian influenza viruses (H9, H5 and H3 using Enzyme linked immunosorbent (ELISA test, hamagglutination inhibition (HI test and polymerase chain reaction (PCR. All tested samples were negative for H5 and H3 viruses. In contrast, all positive results were found to be for H9 AI virus using PCR, ELISA and HI test. Chicken sera tested by ELISA for AIV revealed the highest positive samples in Northern Border regions (45.71%, followed by Al-Jouf (29.65%, Al-Qassim (23.98% and Hial (20.94% with non-significant difference (χ2=5.983; P=0.112. HI test carried out on duck sera revealed 35.90% prevalence of antibodies against AIV. PCR amplification resulted in 34.28 and 21.36% positive samples in ducks and chickens, respectively. The highest (45.71% PCR positive chicken samples were from Northern Border regions, followed by Al-Jouf (24.13%, Al-Qassim (19.30% and Hail (16.69% with significant difference (χ2=7.620; P=0.055. All tested pigeons samples were negative for the three virus serotypes included in the study.

  18. Little evidence of avian or equine influenza virus infection among a cohort of Mongolian adults with animal exposures, 2010-2011.

    Directory of Open Access Journals (Sweden)

    Nyamdavaa Khurelbaatar

    Full Text Available Avian (AIV and equine influenza virus (EIV have been repeatedly shown to circulate among Mongolia's migrating birds or domestic horses. In 2009, 439 Mongolian adults, many with occupational exposure to animals, were enrolled in a prospective cohort study of zoonotic influenza transmission. Sera were drawn upon enrollment and again at 12 and 24 months. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI. Cohort members confirmed to have acute influenza A infections, permitted respiratory swab collections which were studied with rRT-PCR for influenza A. Serologic assays were performed against equine, avian, and human influenza viruses. Over the 2 yrs of follow-up, 100 ILI investigations in the cohort were conducted. Thirty-six ILI cases (36% were identified as influenza A infections by rRT-PCR; none yielded evidence for AIV or EIV. Serological examination of 12 mo and 24 mo annual sera revealed 37 participants had detectable antibody titers (≥1∶10 against studied viruses during the course of study follow-up: 21 against A/Equine/Mongolia/01/2008(H3N8; 4 against an avian A/Teal/Hong Kong/w3129(H6N1, 11 against an avian-like A/Hong Kong/1073/1999(H9N2, and 1 against an avian A/Migrating duck/Hong Kong/MPD268/2007(H10N4 virus. However, all such titers were <1∶80 and none were statistically associated with avian or horse exposures. A number of subjects had evidence of seroconversion to zoonotic viruses, but the 4-fold titer changes were again not associated with avian or horse exposures. As elevated antibodies against seasonal influenza viruses were high during the study period, it seems likely that cross-reacting antibodies against seasonal human influenza viruses were a cause of the low-level seroreactivity against AIV or EIV. Despite the presence of AIV and EIV circulating among wild birds and horses in Mongolia, there was little evidence of AIV or EIV infection in this

  19. Vertical transmission of avian leukosis virus subgroup J (ALV-J) from hens infected through artificial insemination with ALV-J infected semen.

    Science.gov (United States)

    Li, Yang; Cui, Shuai; Li, Weihua; Wang, Yixin; Cui, Zhizhong; Zhao, Peng; Chang, Shuang

    2017-06-29

    Avian leukosis virus (ALV) is one of the main causes of tumour development within the poultry industry in China. The subgroup J avian leukosis viruses (ALV-J), which induce erythroblastosis and myelocytomatosis, have the greatest pathogenicity and transmission ability within this class of viruses. ALV can be transmitted both horizontally and vertically; however, the effects of ALV infection in chickens-especially roosters-during the propagation, on future generations is not clear. Knowing the role of the cock in the transmission of ALV from generation to generation might contribute to the eradication programs for ALV. The results showed that two hens inseminated with ALV-J-positive semen developed temporary antibody responses to ALV-J at 4-5 weeks post insemination. The p27 antigen was detected in cloacal swabs of six hens, and in 3 of 26 egg albumens at 1-6 weeks after insemination. Moreover, no viremia was detected at 6 weeks after insemination even when virus isolation had been conducted six times at weekly intervals for each of the 12 females. However, ALV-J was isolated from 1 of their 34 progeny chicks at 1 week of age, and its gp85 had 98.4%-99.2% sequence identity with the gp85 of ALV-J isolated from semen samples of the six cocks. Our findings indicated that females that were late horizontally infected with ALV-J by artificial insemination might transmit the virus to progeny through eggs, which amounts to vertical transmission.

  20. Experimental infection of a North American raptor, American Kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1).

    OpenAIRE

    Jeffrey S Hall; Hon S Ip; J Christian Franson; Carol Meteyer; Sean Nashold; Joshua L TeSlaa; John French; Patrick Redig; Christopher Brand

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral sh...

  1. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys

    OpenAIRE

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-01

    International audience; Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (l NDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a l NDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultan...

  2. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans

    International Nuclear Information System (INIS)

    Wang, S.-F.; Huang, Jason C.; Lee, Y.-M.; Liu, S.-J.; Chan, Yu-Jiun; Chau, Y.-P.; Chong, P.; Chen, Y.-M.A.

    2008-01-01

    DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing α-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capable of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans

  3. The dynamics of avian influenza in western Arctic snow geese: implications for annual and migratory infection patterns

    Science.gov (United States)

    Samuel, Michael D.; Hall, Jeffrey S.; Brown, Justin D.; Goldberg, Diana R.; Ip, Hon S.; Baranyuk, Vasily V.

    2015-01-01

    Wild water birds are the natural reservoir for low-pathogenic avian influenza viruses (AIV). However, our ability to investigate the epizootiology of AIV in these migratory populations is challenging, and despite intensive worldwide surveillance, remains poorly understood. We conducted a cross-sectional, retrospective analysis in Pacific Flyway lesser snow geese Chen caerulescens to investigate AIV serology and infection patterns. We collected nearly 3,000 sera samples from snow geese at 2 breeding colonies in Russia and Canada during 1993-1996 and swab samples from > 4,000 birds at wintering and migration areas in the United States during 2006-2011. We found seroprevalence and annual seroconversion varied considerably among years. Seroconversion and infection rates also differed between snow goose breeding colonies and wintering areas, suggesting that AIV exposure in this gregarious waterfowl species is likely occurring during several phases (migration, wintering and potentially breeding areas) of the annual cycle. We estimated AIV antibody persistence was longer (14 months) in female geese compared to males (6 months). This relatively long period of AIV antibody persistence suggests that subtype-specific serology may be an effective tool for detection of exposure to subtypes associated with highly-pathogenic AIV. Our study provides further evidence of high seroprevalence in Arctic goose populations, and estimates of annual AIV seroconversion and antibody persistence for North American waterfowl. We suggest future AIV studies include serology to help elucidate the epizootiological dynamics of AIV in wild bird populations.

  4. Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger.

    Science.gov (United States)

    He, Shang; Shi, Jianzhong; Qi, Xian; Huang, Guoqing; Chen, Hualan; Lu, Chengping

    2015-01-01

    In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Avian anemia's

    Directory of Open Access Journals (Sweden)

    Raukar Jelena

    2005-01-01

    Full Text Available This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematological parameters for every single avian species.

  6. Global Emerging Infection Surveillance and Response (GEIS)- Avian Influenza Pandemic Influenza (AI/PI) Program

    Science.gov (United States)

    2014-10-01

    resistant Acinetobacter baumannii infection and a young male with a non-healing ulcer on his foot (both in AFMH, Nairobi). The MHK arranged for...identified as an MDR strain of Acinetobacter baumannii infection. Subsequent to the report, the MHK was asked to provide AFMH with continuing medical...infection: Acinetobacter baumannii and Pseudomonas aeruginosa. Drug susceptibility patterns indicated that although the Acinetobacter baumannii was

  7. Mycobacterium genavense and Avian Polyomavirus co-infection in a European Goldfinch (Carduelis carduelis)

    OpenAIRE

    2008-01-01

    Abstract Systemic mycobacteriosis associated with avian polyomavirus infection was diagnosed histologically in an 8-year-old, captive European goldfinch with a history of nervous signs. Severe mycobacterial lesions were observed in central nervous system, lungs, cervical air sacs and adrenal glands, without involvement of the gastrointestinal tract. In addition to mycobacteriosis, intranuclear inclusions, typical of polyomavirus, were identified in the adrenal glands. Polymerase ch...

  8. Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii Amakihi

    Science.gov (United States)

    Atkinson, Carter T.; Dusek, Robert J.; Lease, Julie K.

    2001-01-01

    Six of seven Hawaii Amakihi (Hemignathus virens) with chronic malarial infections had no increases in peripheral parasitemia, declines in food consumption, or loss of body weight when rechallenged with the homologous isolate of Plasmodium relictum 61 to 62 days after initial infection. Five uninfected control amakihi exposed at the same time to infective mosquito bites developed acute infections with high parasitemias. Reductions in food consumption and loss of body weight occurred in all control birds and three of these individuals eventually died. When surviving birds were rechallenged >2 yr later with either the same parasite isolate or an isolate of P. relictum collected on the island of Kauai, all individuals were immune to superinfection. Chronically infected birds developed antibodies to a common suite of malarial antigens ranging in size from 22 to 170 kDa that were detectable as early as 8 days post infection on immunoblots of SDS-polyacrylamide gels. Antibodies to this suite of malarial antigens persisted as long as 1,248 days after initial infection and were consistently detectable at times when parasites were not easily found by microscopy on Giemsa-stained blood smears. The immunoblotting method that is described here appears to be an effective technique for identifying birds with chronic, low-intensity malarial infections when circulating parasites are not easily detectable by microscopy. Hawaiian honeycreepers that are capable of recovering from acute infections develop concomitant immunity to superinfection, making them functionally immune in areas where malaria transmission has become endemic.

  9. Avian influenza surveillance and diagnosis

    Science.gov (United States)

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  10. Brazilian avian metapneumovirus subtypes A and B: experimental infection of broilers and evaluation of vaccine efficacy

    Directory of Open Access Journals (Sweden)

    Márcia B. dos Santos

    2012-12-01

    Full Text Available Avian metapneumovirus (aMPV is a respiratory pathogen associated with the swollen head syndrome (SHS in chickens. In Brazil, live aMPV vaccines are currently used, but subtypes A and, mainly subtype B (aMPV/A and aMPV/B are still circulating. This study was conducted to characterize two Brazilian aMPV isolates (A and B subtypes of chicken origin. A challenge trial to explore the replication ability of the Brazilian subtypes A and B in chickens was performed. Subsequently, virological protection provided from an aMPV/B vaccine against the same isolates was analyzed. Upon challenge experiment, it was shown by virus isolation and real time PCR that aMPV/B could be detected longer and in higher amounts than aMPV/A. For the protection study, 18 one-day-old chicks were vaccinated and challenged at 21 days of age. Using virus isolation and real time PCR, no aMPV/A was detected in the vaccinated chickens, whereas one vaccinated chicken challenged with the aMPV/B isolate was positive. The results showed that aMPV/B vaccine provided a complete heterologous virological protection, although homologous protection was not complete in one chicken. Although only one aMPV/B positive chicken was detected after homologous vaccination, replication in vaccinated animals might allow the emergence of escape mutants.

  11. Shedding light on avian influenza H4N6 infection in mallards: modes of transmission and implications for surveillance.

    Directory of Open Access Journals (Sweden)

    Kaci K VanDalen

    Full Text Available BACKGROUND: Wild mallards (Anas platyrhychos are considered one of the primary reservoir species for avian influenza viruses (AIV. Because AIV circulating in wild birds pose an indirect threat to agriculture and human health, understanding the ecology of AIV and developing risk assessments and surveillance systems for prevention of disease is critical. METHODOLOGY/PRINCIPAL FINDINGS: In this study, mallards were experimentally infected with an H4N6 subtype of AIV by oral inoculation or contact with an H4N6 contaminated water source. Cloacal swabs, oropharyngeal swabs, fecal samples, and water samples were collected daily and tested by real-time RT-PCR (RRT-PCR for estimation of viral shedding. Fecal samples had significantly higher virus concentrations than oropharyngeal or cloacal swabs and 6 month old ducks shed significantly more viral RNA than 3 month old ducks regardless of sample type. Use of a water source contaminated by AIV infected mallards, was sufficient to transmit virus to naïve mallards, which shed AIV at higher or similar levels as orally-inoculated ducks. CONCLUSIONS: Bodies of water could serve as a transmission pathway for AIV in waterfowl. For AIV surveillance purposes, water samples and fecal samples appear to be excellent alternatives or additions to cloacal and oropharyngeal swabbing. Furthermore, duck age (even within hatch-year birds may be important when interpreting viral shedding results from experimental infections or surveillance. Differential shedding among hatch-year mallards could affect prevalence estimates, modeling of AIV spread, and subsequent risk assessments.

  12. Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis

    Directory of Open Access Journals (Sweden)

    Bailey R Hartford

    2009-07-01

    Full Text Available Abstract Background Salmonella enterica serovar Enteritidis (SE colonizes the ovary and oviduct of chickens without causing overt clinical signs which can lead to SE-contamination of the content and membrane of shell-eggs as well as hatchery eggs. The organism utilizes the Salmonella Pathogenicity Island-2 encoded type III secretion system (T3SS-2 to promote persistence in the oviduct of laying hens. In this study, reverse transcriptase-polymerase chain reaction (RT-PCR was carried out to determine the expression profiles of 14 known avian beta defensins (AvBDs in primary chicken oviduct epithelial cells (COEC before and after infections with a wild type SE strain and T3SS mutant SE strains carrying an inactivated sipA or pipB gene. Results Based on the expression levels in uninfected COEC, AvBDs can be loosely grouped into three categories with AvBD4-5 and AvBD9-12 being constitutively expressed at high levels; AvBD1, AvBD3, and AvBD13-14 at moderate levels; and AvBD2 and AvBD6-8 at minimal levels. Infection with the wild type SE strain temporarily repressed certain highly expressed AvBDs and induced the expression of minimally expressed AvBDs. The pipB mutant, compared to the wild type strain, had reduced suppressive effect on the expression of highly expressed AvBDs. Moreover, the pipB mutant elicited significantly higher levels of the minimally expressed AvBDs than the wild type SE or the sipA mutant did. Conclusion Chicken oviduct epithelial cells express most of the known AvBD genes in response to SE infection. PipB, a T3SS-2 effector protein, plays a role in dampening the β-defensin arm of innate immunity during SE invasion of chicken oviduct epithelium.

  13. Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis.

    Science.gov (United States)

    Ebers, Katie L; Zhang, C Yan; Zhang, M Zhenyu; Bailey, R Hartford; Zhang, Shuping

    2009-07-30

    Salmonella enterica serovar Enteritidis (SE) colonizes the ovary and oviduct of chickens without causing overt clinical signs which can lead to SE-contamination of the content and membrane of shell-eggs as well as hatchery eggs. The organism utilizes the Salmonella Pathogenicity Island-2 encoded type III secretion system (T3SS-2) to promote persistence in the oviduct of laying hens. In this study, reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out to determine the expression profiles of 14 known avian beta defensins (AvBDs) in primary chicken oviduct epithelial cells (COEC) before and after infections with a wild type SE strain and T3SS mutant SE strains carrying an inactivated sipA or pipB gene. Based on the expression levels in uninfected COEC, AvBDs can be loosely grouped into three categories with AvBD4-5 and AvBD9-12 being constitutively expressed at high levels; AvBD1, AvBD3, and AvBD13-14 at moderate levels; and AvBD2 and AvBD6-8 at minimal levels. Infection with the wild type SE strain temporarily repressed certain highly expressed AvBDs and induced the expression of minimally expressed AvBDs. The pipB mutant, compared to the wild type strain, had reduced suppressive effect on the expression of highly expressed AvBDs. Moreover, the pipB mutant elicited significantly higher levels of the minimally expressed AvBDs than the wild type SE or the sipA mutant did. Chicken oviduct epithelial cells express most of the known AvBD genes in response to SE infection. PipB, a T3SS-2 effector protein, plays a role in dampening the beta-defensin arm of innate immunity during SE invasion of chicken oviduct epithelium.

  14. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  15. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    Directory of Open Access Journals (Sweden)

    Hendra Wibawa

    Full Text Available Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15, which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40. Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks. However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10 and contact ducks (n = 9 when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5 than inoculation-infected ducks (1 of 15. We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  16. Mortality and pathology in birds due to Plasmodium (Giovannolaia) homocircumflexum infection, with emphasis on the exoerythrocytic development of avian malaria parasites.

    Science.gov (United States)

    Ilgūnas, Mikas; Bukauskaitė, Dovilė; Palinauskas, Vaidas; Iezhova, Tatjana A; Dinhopl, Nora; Nedorost, Nora; Weissenbacher-Lang, Christiane; Weissenböck, Herbert; Valkiūnas, Gediminas

    2016-05-04

    Species of avian malaria parasites (Plasmodium) are widespread, but their virulence has been insufficiently investigated, particularly in wild birds. During avian malaria, several cycles of tissue merogony occur, and many Plasmodium spp. produce secondary exoerythrocytic meronts (phanerozoites), which are induced by merozoites developing in erythrocytic meronts. Phanerozoites markedly damage organs, but remain insufficiently investigated in the majority of described Plasmodium spp. Avian malaria parasite Plasmodium (Giovannolaia) homocircumflexum (lineage pCOLL4) is virulent and produces phanerozoites in domestic canaries Serinus canaria, but its pathogenicity in wild birds remains unknown. The aim of this study was to investigate the pathology caused by this infection in species of common European birds. One individual of Eurasian siskin Carduelis spinus, common crossbill Loxia curvirostra and common starling Sturnus vulgaris were exposed to P. homocircumflexum infection by intramuscular sub-inoculation of infected blood. The birds were maintained in captivity and parasitaemia was monitored until their death due to malaria. Brain, heart, lungs, liver, spleen, kidney, and a piece of breast muscle were examined using histology and chromogenic in situ hybridization (ISH) methods. All exposed birds developed malaria infection, survived the peak of parasitaemia, but suddenly died between 30 and 38 days post exposure when parasitaemia markedly decreased. Numerous phanerozoites were visible in histological sections of all organs and were particularly easily visualized after ISH processing. Blockage of brain capillaries with phanerozoites may have led to cerebral ischaemia, causing cerebral paralysis and is most likely the main reason of sudden death of all infected individuals. Inflammatory response was not visible around the brain, heart and muscle phanerozoites, and it was mild in parenchymal organs. The endothelial damage likely causes dysfunction and failure of

  17. Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels.

    Science.gov (United States)

    Ferraguti, Martina; Martínez-de la Puente, Josué; Bensch, Staffan; Roiz, David; Ruiz, Santigo; Viana, Duarte S; Soriguer, Ramón C; Figuerola, Jordi

    2018-03-01

    Vector and host communities, as well as habitat characteristics, may have important but different impacts on the prevalence, richness and evenness of vector-borne parasites. We investigated the relative importance of (1) the mosquito community composition, (2) the vertebrate community composition and (3) landscape characteristics on the prevalence, richness and evenness of avian Plasmodium. We hypothesized that parasite prevalence will be more affected by vector-related parameters, while host parameters should be also important to explain Plasmodium richness and evenness. We sampled 2,588 wild house sparrows (Passer domesticus) and 340,829 mosquitoes, and we performed vertebrate censuses at 45 localities in the Southwest of Spain. These localities included urban, rural and natural landscapes that were characterized by several habitat variables. Twelve Plasmodium lineages were identified in house sparrows corresponding to three major clades. Variation partitioning showed that landscape characteristics explained the highest fraction of variation in all response variables (21.0%-44.8%). Plasmodium prevalence was in addition explained by vector-related variables (5.4%) and its interaction with landscape (10.2%). Parasite richness and evenness were mostly explained by vertebrate community-related variables. The structuring role of landscape characteristics in vector and host communities was a key factor in determining parasite prevalence, richness and evenness, although the role of each factor differed according to the parasite parameters studied. These results show that the biotic and abiotic contexts are important to explain the transmission dynamics of mosquito-borne pathogens in the wild. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  18. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    L?ndt, Brandon Z.; N??ez, Alejandro.; Banks, Jill; Alexander, Dennis J.; Russell, Christine; Richard? L?ndt, Angela C.; Brown, Ian H.

    2009-01-01

    Background? Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives? To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods? Pekin ducks in two age?matched groups (n?=?18), 8 and 12?weeks old (wo) were each infected with 106 EID50/0?1?ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2?2). Each day for 5?days, birds were monitored clinically, and cloacal ...

  19. Comparison of the efficacy of four antimicrobial treatment schemes against experimental Ornithobacterium rhinotracheale infection in turkey poults pre-infected with avian pneumovirus.

    Science.gov (United States)

    Marien, Maja; Nauwynck, Hans; Duchateau, Luc; Martel, An; Chiers, Koen; Devriese, Luc; Froyman, Robrecht; Decostere, Annemie

    2006-06-01

    The clinical efficacy of drinking-water administration of enrofloxacin for 3 and 5 days, amoxicillin for 5 days and florfenicol for 5 days for the treatment of respiratory disease induced by an experimental Ornithobacterium rhinotracheale infection in turkeys pre-infected with avian pneumovirus (APV) was assessed based on clinical, bacteriological and histopathological examinations. Experimental groups of 15 susceptible 3-week-old turkeys were each inoculated oculonasally with APV subtype A and 3 days later with susceptible O. rhinotracheale bacteria. Antimicrobial treatment started 1 day after O. rhinotracheale inoculation. After infection, the birds were examined and scored for clinical signs, swabbed daily and weighed at different times. Five birds were euthanized and examined for macroscopic lesions at necropsy at 5 days post bacterial inoculation, and the remainder at 15 days post bacterial inoculation. Samples of the turbinates, trachea, lungs, air sacs, heart and pericardium were collected for bacteriological and/or histological examination. Recovery from respiratory disease caused by an APV/O. rhinotracheale dual infection was most successful after enrofloxacin treatment, irrespective of treatment duration, followed by florfenicol. Amoxicillin treatment was not efficacious. Clinical signs and the number of O. rhinotracheale organisms re-isolated from the trachea and the different respiratory organs were significantly reduced by enrofloxacin treatment for 3 and 5 days. O. rhinotracheale bacteria were not re-isolated from the tracheas of the birds treated with enrofloxacin except for one bird in the 5-day group, as early as 1 day after medication onset. In the group treated with enrofloxacin for 5 days, O. rhinotracheale organisms with a higher minimal inhibitory concentration value (x8) were isolated starting 2 days following treatment onset, initially from a single turkey and subsequently from the other animals.

  20. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    Science.gov (United States)

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  1. Avian blood parasite infection during the non-breeding season: an overlooked issue in declining populations?

    Science.gov (United States)

    2013-01-01

    Background Pathogens and parasites can have major impacts on host population dynamics, both through direct mortality and via indirect effects. Both types of effect may be stronger in species whose populations are already under pressure. We investigated the potential for blood parasites to impact upon their hosts at the immunological, physiological and population level during the non-breeding season using a declining population of yellowhammers Emberiza citrinella as a model. Results Yellowhammers infected by Haemoproteus spp. showed both a reduced heterophil to lymphocyte (H:L) ratio, and an elevated standardised white blood cell (WBC) count compared to uninfected birds, indicating an immunological response to infection. Infected birds had shorter wings during the first winter of sampling but not during the second, colder, winter; survival analysis of 321 birds sampled across four winters indicated that increased wing length conferred a survival advantage. Conclusions We suggest that the potential impacts of blood parasite infections on over-wintering birds may have been underestimated. Further research should consider the potential impacts of sub-clinical parasite infections on the dynamics of vulnerable populations, and we suggest using declining populations as model systems within which to investigate these relationships as well as examining interactions between sub-clinical disease and other environmental stressors. JEL Code Q5 PMID:24011390

  2. Use of ovotransferrin as an antimicrobial in turkeys naturally infected with Chlamydia psittaci, avian metapneumovirus and Ornithobacterium rhinotracheale.

    Science.gov (United States)

    Van Droogenbroeck, Caroline; Dossche, Liesbeth; Wauman, Toon; Van Lent, Sarah; Phan, Thao T T; Beeckman, Delphine S A; Vanrompay, Daisy

    2011-12-15

    Respiratory pathogens are difficult to control in large-scale turkey production. This report describes a clinical trial of antimicrobial ovoTF aerosol on a large Belgian turkey farm. ovoTF was administered to reduce Chlamydia psittaci (C. psittaci) infections and to study the impact of this action on the occurrence of Ornithobacterium rhinotracheale (O. rhinotracheale) and avian metapneumovirus (aMPV) infections. Two subsequent broods were included; (i) a control brood receiving no ovoTF and (ii) an ovoTF brood receiving ovoTF aerosol (5mg/animal) at the age of 2 weeks, continuing daily for 12 days. Twenty-four one-day-old toms of the control and ovoTF brood were tagged and monitored for 15 weeks. The control brood experienced two periods of respiratory disease, the first (2-3 weeks of age) due to C. psittaci and the second (8-17 weeks of age) in the presence of C. psittaci, O. rhinotracheale and maybe aMPV. Extensive antibiotic treatment was needed in 2, 8 and 9 week-old toms. In the ovoTF brood, toms stayed healthy until the age of 9 weeks, whereafter respiratory disease occurred in the presence of C. psittaci, O rhinotracheale and aMPV. OvoTF administration: (i) reduced the amount of C. psittaci in the air as demonstrated by bioaerosol monitoring, (ii) prevented respiratory disease during the first half of the brood period, (iii) was associated with 46% reduction of mortality, and (iv) reduced the antibiotic cost. Our results justify additional clinical trials to explore the use of this innovative antimicrobial strategy for poultry. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens.

    Science.gov (United States)

    Wang, Y; Lupiani, B; Reddy, S M; Lamont, S J; Zhou, H

    2014-02-01

    Avian influenza virus (AIV) is a type A virus of the family Orthomyxoviridae. Avian influenza virus infection can cause significant economic losses to the poultry industry, and raises a great public health threat due to potential host jump from animals to humans. To develop more effective intervention strategies to prevent and control AIV infection in poultry, it is essential to elucidate molecular mechanisms of host response to AIV infection in chickens. The objective of this study was to identify genes and signal pathways associated with resistance to AIV infection in 2 genetically distinct highly inbred chicken lines (Fayoumi, relatively resistant to AIV infection, and Leghorn, susceptible to AIV infection). Three-week-old chickens were inoculated with 10(7) EID50 of low pathogenic H5N3 AIV, and lungs and trachea were harvested 4 d postinoculation. Four cDNA libraries (1 library each for infected and noninfected Leghorn, and infected and noninfected Fayoumi) were prepared from the lung samples and sequenced by Illumina Genome Analyzer II, which yielded a total of 116 million, 75-bp single-end reads. Gene expression levels of all annotated chicken genes were analyzed using CLC Genomics Workbench. DESeq was used to identify differentially expressed transcripts between infected and noninfected birds and between genetic lines (false discovery rate change > 2). Of the expressed transcripts in a total of 17,108 annotated chicken genes in Ensembl database, 82.44 and 81.40% were identified in Leghorn and Fayoumi birds, respectively. The bioinformatics analysis suggests that the hemoglobin family genes, the functional involvements for oxygen transportation and circulation, and cell adhesion molecule signaling pathway play significant roles in disease resistance to AIV infection in chickens. Further investigation of the roles of these candidate genes and signaling pathways in the regulation of host-AIV interaction can lead new directions for the development of antiviral

  4. Pathogenesis and transmissibility of highly (H7N1 and low (H7N9 pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa

    Directory of Open Access Journals (Sweden)

    Bertran Kateri

    2011-02-01

    Full Text Available Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV and low pathogenic avian influenza virus (LPAIV was carried out in red-legged partridges (Alectoris rufa in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999 and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008. Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR, respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  5. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    Science.gov (United States)

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  6. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    Directory of Open Access Journals (Sweden)

    Ibrahim Thabet Hagag

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA and nonstructural proteins (NS among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF in the cleavage site in HA and glutamate at position 92 (D92E in NS1. This is the first report of the pathogenicity

  7. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... consultations Fact sheets Fact files Questions & answers Features Multimedia Contacts Influenza (Avian and other zoonotic) Fact sheet ... respiratory tract infection (fever and cough), early sputum production and rapid progression to severe pneumonia, sepsis with ...

  8. Co-infection of broilers with Ornithobacterium rhinotracheale and H9N2 avian influenza virus

    Directory of Open Access Journals (Sweden)

    Pan Qing

    2012-07-01

    Full Text Available Abstract Background Since 2008, a progressive pneumonia has become prevalent in broilers and laying hens. This disease occurrs the first day after hatching and lasts more than 30 days, resulting in approximately 70% morbidity and 30% mortality in broilers. The objective of this study was to isolate and identify the pathogens that are responsible for the progressive pneumonia and establish an animal model for drug screening. Results 193 serum samples were collected from 8 intensive farms from 5 provinces in China and analysed in the current research. Our clinical survey showed that 65.2% to 100% of breeding broilers, breeding layers, broilers and laying hens were seropositive for ORT antibodies. From 8 intensive farms, six ORT isolates were identified by PCR and biochemical assays, and two H9N2 viruses were isolated. Newcastle Disease Virus (NDV and Infectious BronchitisVirus (IBV were excluded. Typical pneumonia and airsacculitis were observed both in broilers inoculated intraperitoneally with an ORT isolate alone and in those co-infected with ORT and H9N2 virus isolates. Specifically, the survival rate was 30%, 20%, 70%, 50% and 90% in birds inoculated with ORT+H9N2 virus, ORT followed by H9N2 virus, H9N2 virus followed by ORT, and ORT or H9N2 virus alone, respectively. Conclusions The results of this study suggest that ORT infections of domestic poultry have been occurring frequently in China. ORT infection can induce higher economic losses and mortality if H9N2 AIV is also present. Although the isolation of ORT and H9N2 virus has been reported previously, there have been no reported co-infections of poultry with these two pathogens. This is the first report of co-infection of broilers with ORT and H9N2 virus, and this co-infection is probably associated with the outbreak of broiler airsacculitis in China, which has caused extensive economic losses.

  9. Avian anemia's

    OpenAIRE

    Raukar Jelena

    2005-01-01

    This paper deals with avian anemia's classified by MCHC/MCV and with types of anemia's. Father hematological and immunological research is needed to secure information on hematological parameters in different avian species at their earliest age. Anemia is a common clinical finding in birds because the avian erythrocyte half - life is much shorter than the mammalian. Therefore anemia should be determined as soon as possible. Researchers should standardize hematologica...

  10. Patterns of Midichloria infection in avian-borne African ticks and their trans-Saharan migratory hosts

    OpenAIRE

    Di Lecce, Irene; Bazzocchi, Chiara; Cecere, Jacopo G.; Epis, Sara; Sassera, Davide; Villani, Barbara M.; Bazzi, Gaia; Negri, Agata; Saino, Nicola; Spina, Fernando; Bandi, Claudio; Rubolini, Diego

    2018-01-01

    Background Ticks are obligate haematophagous ectoparasites of vertebrates and frequently parasitize avian species that can carry them across continents during their long-distance migrations. Ticks may have detrimental effects on the health state of their avian hosts, which can be either directly caused by blood-draining or mediated by microbial pathogens transmitted during the blood meal. Indeed, ticks host complex microbial communities, including bacterial pathogens and symbionts. Midichlori...

  11. Field-based estimates of avian mortality from West Nile virus infection.

    Science.gov (United States)

    Ward, Michael P; Beveroth, Tara A; Lampman, Richard; Raim, Arlo; Enstrom, David; Novak, Robert

    2010-11-01

    One of the unique characteristics of West Nile virus (WNV) in North America is the large number of bird species for which the virus can be fatal. WNV mortality has been documented through experimental infections of captive birds and necropsies of free-ranging birds. Investigations of WNV-related mortality in wild birds often focus on species with dramatic population declines (e.g., American Crow, Corvus brachyrhynchos); however, few studies have addressed WNV-related mortality in species not exhibiting marked population declines since the arrival of WNV. We conducted a mark-recapture study of 204 Northern Cardinals (Cardinalis cardinalis) in an area with endemic WNV activity to estimate WNV-related mortality. Previous research has shown that once a bird is infected and recovers from WNV it develops antibodies making it resistant to future infection. Assuming that mortality risks from non-WNV causes were the same for individuals with (had been exposed to WNV) and without antibodies (had not been exposed to WNV), we compared the survival rates of birds with and without WNV antibodies to estimate the impact of WNV on wild birds. An information theoretic approach was used, and the apparent survival was found to be 34.6% lower for individuals without antibodies during the period when WNV was most active (July-September). However, the apparent survival rate was 9.0% higher for individuals without antibodies over the rest of the year. These differences in apparent survival suggest that WNV increases mortality during the WNV season and that chronic effects of WNV infection may also be contributing to mortality. Although WNV appears to have increased mortality rates within the population, population trend data do not indicate declines, suggesting that some cardinal populations can compensate for WNV-related mortality.

  12. Gene expression profile and long non-coding RNA analysis, using RNA-Seq, in chicken embryonic fibroblast cells infected by avian leukosis virus J.

    Science.gov (United States)

    Hu, Xuming; Chen, Shihao; Jia, Chongxin; Xue, Songlei; Dou, Chunfeng; Dai, Zhenqing; Xu, Hui; Sun, Zhen; Geng, Tuoyu; Cui, Hengmi

    2018-03-01

    Avian leukosis virus J (ALVJ) infection induces hematopoietic malignancy in myeloid leukemia and hemangioma in chickens. However, little is known about the mechanisms underpinning the unique pathogenesis of ALVJ. In this study, we investigated the gene expression profiles of ALVJ-infected chicken cells and performed a comprehensive analysis of the long non-coding RNAs (lncRNAs) in CEF cells using RNA-Seq. As a result, 36 differentially expressed lncRNAs and 91 genes (FC > 2 and q-values IL4I1, and IRF1 (FC > 2 and correlation > 0.95), were highly correlated with the upregulation of several lncRNAs, including MG066618, MG066617, MG066601, MG066629, MG066609 and MG066616. These findings identify the expression profile of lncRNAs in chicken CEF cells infected by ALVJ virus and provide new insights into the molecular mechanisms of ALVJ infection.

  13. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    Science.gov (United States)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  14. Protocatechuic acid, a novel active substance against avian influenza virus H9N2 infection.

    Directory of Open Access Journals (Sweden)

    Changbo Ou

    Full Text Available Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2 inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry.

  15. Factors Associated With Prolonged Viral Shedding in Patients With Avian Influenza A(H7N9) Virus Infection.

    Science.gov (United States)

    Wang, Yeming; Guo, Qiang; Yan, Zheng; Zhou, Daming; Zhang, Wei; Zhou, Shujun; Li, Yu-Ping; Yuan, Jing; Uyeki, Timothy M; Shen, Xinghua; Wu, Wenjuan; Zhao, Hui; Wu, Yun-Fu; Shang, Jia; He, Zhengguang; Yang, Yi; Zhao, Hongsheng; Hong, Yongqing; Zhang, Zehua; Wu, Min; Wei, Tiemin; Deng, Xilong; Deng, Yijun; Cai, Li-Hua; Lu, Weihua; Shu, Hongmei; Zhang, Lin; Luo, Hong; Ing Zhou, Y; Weng, Heng; Song, Keyi; Yao, Li; Jiang, Mingguang; Zhao, Boliang; Chi, Ruibin; Guo, Boqi; Fu, Lin; Yu, Long; Min, Haiyan; Chen, Pu; Chen, Shuifang; Hong, Liang; Mao, Wei; Huang, Xiaoping; Gu, Lijun; Li, Hui; Wang, Chen; Cao, Bin

    2018-04-10

    Data are limited on the impact of neuraminidase inhibitor (NAI) treatment on avian influenza A(H7N9) virus RNA shedding. In this multicenter, retrospective study, data were collected from adults hospitalized with A(H7N9) infection during 2013-2017 in China. We compared clinical features and A(H7N9) shedding among patients with different NAI doses and combination therapies and evaluated factors associated with A(H7N9) shedding, using Cox proportional hazards regression. Among 478 patients, the median age was 56 years, 71% were male, and 37% died. The median time from illness onset to NAI treatment initiation was 8 days (interquartile range [IQR], 6-10 days), and the median duration of A(H7N9) RNA detection from onset was 15.5 days (IQR, 12-20 days). A(H7N9) RNA shedding was shorter in survivors than in patients who died (P < .001). Corticosteroid administration (hazard ratio [HR], 0.62 [95% confidence interval {CI}, .50-.77]) and delayed NAI treatment (HR, 0.90 [95% CI, .91-.96]) were independent risk factors for prolonged A(H7N9) shedding. There was no significant difference in A(H7N9) shedding duration between NAI combination treatment and monotherapy (P = .65) or between standard-dose and double-dose oseltamivir treatment (P = .70). Corticosteroid therapy and delayed NAI treatment were associated with prolonged A(H7N9) RNA shedding. NAI combination therapy and double-dose oseltamivir treatment were not associated with a reduced A(H7N9) shedding duration as compared to standard-dose oseltamivir.

  16. Evidence of avian metapneumovirus subtype C infection of wild birds in Georgia, South Carolina, Arkansas and Ohio, USA.

    Science.gov (United States)

    Turpin, E A; Stallknecht, D E; Slemons, R D; Zsak, L; Swayne, D E

    2008-06-01

    Metapneumoviruses (MPVs) were first reported in avian species (aMPVs) in the late 1970s and in humans in 2001. Although aMPVs have been reported in Europe and Asia for over 20 years, the virus first appeared in the United States in 1996, leaving many to question the origin of the virus and why it proved to be a different subtype from those found elsewhere. To examine the potential role of migratory waterfowl and other wild birds in aMPV spread, our study focused on determining whether populations of wild birds have evidence of aMPV infection. Serum samples from multiple species were initially screened using a blocking enzyme-linked immunosorbent assay. Antibodies to aMPVs were identified in five of the 15 species tested: American coots, American crows, Canada geese, cattle egrets, and rock pigeons. The presence of aMPV-specific antibodies was confirmed with virus neutralization and western blot assays. Oral swabs were collected from wild bird species with the highest percentage of aMPV-seropositive serum samples: the American coots and Canada geese. From these swabs, 17 aMPV-positive samples were identified, 11 from coots and six from geese. Sequence analysis of the matrix, attachment gene and short hydrophobic genes revealed that these viruses belong to subtype C aMPV. The detection of aMPV antibodies and the presence of virus in wild birds in Georgia, South Carolina, Arkansas and Ohio demonstrates that wild birds can serve as a reservoir of subtype C aMPV, and may provide a potential mechanism to spread aMPVs to poultry in other regions of the United States and possibly to other countries in Central and South America.

  17. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    Directory of Open Access Journals (Sweden)

    Ying-Hen Hsieh

    Full Text Available From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  18. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    Science.gov (United States)

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  19. Demographic and spatiotemporal patterns of avian influenza infection at the continental scale, and in relation to annual life cycle of a migratory host

    Science.gov (United States)

    Nallar, Rodolfo; Papp, Zsuzsanna; Epp, Tasha; Leighton, Frederick A.; Swafford, Seth R.; DeLiberto, Thomas J.; Dusek, Robert J.; Ip, Hon S.; Hall, Jeffrey S.; Berhane, Yohannes; Gibbs, Samantha E.J.; Soos, Catherine

    2015-01-01

    Since the spread of highly pathogenic avian influenza (HPAI) H5N1 in the eastern hemisphere, numerous surveillance programs and studies have been undertaken to detect the occurrence, distribution, or spread of avian influenza viruses (AIV) in wild bird populations worldwide. To identify demographic determinants and spatiotemporal patterns of AIV infection in long distance migratory waterfowl in North America, we fitted generalized linear models with binominal distribution to analyze results from 13,574 blue-winged teal (Anas discors, BWTE) sampled in 2007 to 2010 year round during AIV surveillance programs in Canada and the United States. Our analyses revealed that during late summer staging (July-August) and fall migration (September-October), hatch year (HY) birds were more likely to be infected than after hatch year (AHY) birds, however there was no difference between age categories for the remainder of the year (winter, spring migration, and breeding period), likely due to maturing immune systems and newly acquired immunity of HY birds. Probability of infection increased non-linearly with latitude, and was highest in late summer prior to fall migration when densities of birds and the proportion of susceptible HY birds in the population are highest. Birds in the Central and Mississippi flyways were more likely to be infected compared to those in the Atlantic flyway. Seasonal cycles and spatial variation of AIV infection were largely driven by the dynamics of AIV infection in HY birds, which had more prominent cycles and spatial variation in infection compared to AHY birds. Our results demonstrate demographic as well as seasonal, latitudinal and flyway trends across Canada and the US, while illustrating the importance of migratory host life cycle and age in driving cyclical patterns of prevalence.

  20. Virus shedding in co-infections of low pathogenic avian influenza virus ( H6N2 and lentogenic newcastle disease virus (La Sota in Numida Meleagris

    Directory of Open Access Journals (Sweden)

    Iv. Zarkov

    2017-06-01

    Full Text Available An experiment was conducted to evaluate the effect of a low-pathogenic H6N2 avian influenza A viral strain (LPAIV strain H6N2 on subsequent (after 3 days vaccination with a lentogenic avian paramyxovirus serotype 1 strain La Sota (APMV-1 strain La Sota in guinea fowl. The effects were monitored by detection of the presence of viruses in cloacal and oropharyngeal samples, as well as by the presence of humoral immune response. The obtained results were compared to birds with monoinfections. Replication and virus shedding of LPAIV strain H6N2 from the cloaca and the oropharynx were established, while APMV-1 La Sota was reisolated only from the oropharynx. The reisolation of LPAIV strain H6N2 was similar in both monoinfection and co-infection. The dynamics of virus replication of APMV-1 strain La Sota was affected in the beginning of the co-infection, later occurrence of the peak which matched the period of decline of LPAIV strain H6N2 reisolates. The LPAIV strain H6N2 and APMV-1 strain La Sota co-infection did not exert any influence on humoral immune response to both viruses.

  1. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    Science.gov (United States)

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  2. Avian Haemosporidian blood parasite infections at a migration hotspot in Eilat, Israel

    Directory of Open Access Journals (Sweden)

    Paperna Ilan

    2016-06-01

    Full Text Available Haemosporidian blood parasites are frequent amongst passerines. Though they often do not cause detectable consequences to host health, however, their presence or absence and also their prevalence across host populations may potentially carry meaningful information about the health, stress, body condition and viability of bird individuals or populations. The study of migratory birds captured in Eilat, Israel, allowed us to evaluate the prevalence of blood parasite infections in a wide range of both migrant and resident species in spring (N = 1,950 and autumn (N = 538 of 2004 and 2005. According to blood film microscopy, Haemoproteus spp. and Leucocytozoon spp. were more prevalent in the spring than in the autumn (0.289, 0.082 vs. 0.132, 0.033, respectively, whilst Plasmodium spp. exhibited a slight opposite trend (0.034, 0.056. All other parasites (such as trypanosomes, microfilaria and haemococcidians were rare. During the spring seasons, prevalences were significantly higher in migrant than in resident species, whilst this difference was only marginally significant in the autumn. Given that Eilat is a migration hotspot for several Palearctic passerine species, the present descriptive study may hopefully serve to set the baseline values for future long-term epidemiological monitoring.

  3. Pathological alterations in respiratory system during co-infection with low pathogenic avian influenza virus (H9N2 and Escherichia coli in broiler chickens

    Directory of Open Access Journals (Sweden)

    Jaleel Shahid

    2017-09-01

    Full Text Available Introduction: Despite the advancements in the field, there is a lack of data when it comes to co-infections in poultry. Therefore, this study was designed to address this issue. Material and Methods: Broiler birds were experimentally infected with E. coli (O78 and low pathogenic avian influenza (LPAI strain, alone or in combination. The experimental groups were negative control. Results: The infected birds showed most severe clinical signs in E. coli+LPAI group along with a significant decrease in weight and enhanced macroscopic and microscopic pathological lesions. The survival rate was 60%, 84%, and 100% in birds inoculated with E. coli+LPAI, E. coli, and LPAI virus alone, respectively. The results showed that experimental co-infection with E. coli and H9N2 strain of LPAI virus increased the severity of clinical signs, mortality rate, and gross lesions. The HI titre against LPAI virus infection in the co-infected group was significantly higher than the HI titre of LPAI group, which may indicate that E. coli may promote propagation of H9N2 LPAI virus by alteration of immune response. Conclusion: The present study revealed that co-infection with E. coli and H9N2 LPAI virus caused more serious synergistic pathogenic effects and indicates the role of both pathogens as complicating factors in poultry infections.

  4. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  5. Vaccination against H9N2 avian influenza virus reduces bronchus-associated lymphoid tissue formation in cynomolgus macaques after intranasal virus challenge infection.

    Science.gov (United States)

    Nakayama, Misako; Ozaki, Hiroichi; Itoh, Yasushi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Park, Chun-Ho; Tsuchiya, Hideaki; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-12-01

    H9N2 avian influenza virus causes sporadic human infection. Since humans do not possess acquired immunity specific to this virus, we examined the pathogenicity of an H9N2 virus isolated from a human and then analyzed protective effects of a vaccine in cynomolgus macaques. After intranasal challenge with A/Hong Kong/1073/1999 (H9N2) (HK1073) isolated from a human patient, viruses were isolated from nasal and tracheal swabs in unvaccinated macaques with mild fever and body weight loss. A formalin-inactivated H9N2 whole particle vaccine derived from our virus library was subcutaneously inoculated to macaques. Vaccination induced viral antigen-specific IgG and neutralization activity in sera. After intranasal challenge with H9N2, the virus was detected only the day after inoculation in the vaccinated macaques. Without vaccination, many bronchus-associated lymphoid tissues (BALTs) were formed in the lungs after infection, whereas the numbers of BALTs were smaller and the cytokine responses were weaker in the vaccinated macaques than those in the unvaccinated macaques. These findings indicate that the H9N2 avian influenza virus HK1073 is pathogenic in primates but seems to cause milder symptoms than does H7N9 influenza virus as found in our previous studies and that a formalin-inactivated H9N2 whole particle vaccine induces protective immunity against H9N2 virus. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  6. Selection of reference genes for gene expression analysis by real-time qPCR in avian cells infected with infectious bronchitis virus.

    Science.gov (United States)

    Batra, Ambalika; Maier, Helena J; Fife, Mark S

    2017-04-01

    Infectious bronchitis virus (IBV) causes infectious bronchitis in poultry, a respiratory disease that is a source of major economic loss to the poultry industry. Detection and the study of the molecular pathogenesis of the virus often involve the use of real-time quantitative PCR assays (qPCR). To account for error within the experiments, the levels of target gene transcription are normalized to that of suitable reference genes. Despite publication of the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines in 2009, single un-tested reference genes are often used for normalization of qPCR assays in avian research studies. Here, we use the geNorm algorithm to identify suitable reference genes in different avian cell types during infection with apathogenic and pathogenic strains of IBV. We discuss the importance of selecting an appropriate experimental sample subset for geNorm analysis, and show the effect that this selection can have on resultant reference gene selection. The effects of inappropriate normalization on the transcription pattern of a cellular signalling gene, AKT1, and the interferon-inducible, MX1, were studied. We identify the possibility of the misinterpretation of qPCR data when an inappropriate normalization strategy is employed. This is most notable when measuring the transcription of AKT1, where changes are minimal during infection.

  7. Highly Pathogenic Avian Influenza Virus (H5N8) Clade 2.3.4.4 Infection in Migratory Birds, Egypt.

    Science.gov (United States)

    Selim, Abdullah A; Erfan, Ahmed M; Hagag, Naglaa; Zanaty, Ali; Samir, Abdel-Hafez; Samy, Mohamed; Abdelhalim, Ahmed; Arafa, Abdel-Satar A; Soliman, Mohamed A; Shaheen, Momtaz; Ibraheem, Essam M; Mahrous, Ibrahim; Hassan, Mohamed K; Naguib, Mahmoud M

    2017-06-01

    We isolated highly pathogenic avian influenza virus (H5N8) of clade 2.3.4.4 from the common coot (Fulica atra) in Egypt, documenting its introduction into Africa through migratory birds. This virus has a close genetic relationship with subtype H5N8 viruses circulating in Europe. Enhanced surveillance to detect newly emerging viruses is warranted.

  8. Experimental infection with highly pathogenic H5N8 avian influenza viruses in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica).

    Science.gov (United States)

    Kwon, Jung-Hoon; Noh, Yun Kyung; Lee, Dong-Hun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon; Nahm, Sang-Soep

    2017-05-01

    Wild birds play a major role in the evolution, maintenance, and dissemination of highly pathogenic avian influenza viruses (HPAIV). Sub-clinical infection with HPAI in resident wild birds could be a source of dissemination of HPAIV and continuous outbreaks. In this study, the pathogenicity and infectivity of two strains of H5N8 clade 2.3.4.4 virus were evaluated in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica). None of the birds experimentally infected with H5N8 viruses showed clinical signs or mortality. The H5N8 viruses efficiently replicated in the virus-inoculated Mandarin ducks and transmitted to co-housed Mandarin ducks. Although relatively high levels of viral shedding were noted in pigeons, viral shedding was not detected in some of the pigeons and the shedding period was relatively short. Furthermore, the infection was not transmitted to co-housed pigeons. Immunohistochemical examination revealed the presence of HPAIV in multiple organs of the infected birds. Histopathological evaluation showed the presence of inflammatory responses primarily in HPAIV-positive organs. Our results indicate that Mandarin ducks and pigeons can be infected with H5N8 HPAIV without exhibiting clinical signs; thus, they may be potential healthy reservoirs of the H5N8 HPAIV. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys.

    Science.gov (United States)

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-06

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.

  10. Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses

    Science.gov (United States)

    Koçer, Zeynep A.; Fan, Yiping; Huether, Robert; Obenauer, John; Webby, Richard J.; Zhang, Jinghui; Webster, Robert G.; Wu, Gang

    2014-01-01

    Most influenza pandemics have been caused by H1N1 viruses of purely or partially avian origin. Here, using Cox proportional hazard model, we attempt to identify the genetic variations in the whole genome of wild-type North American avian H1N1 influenza A viruses that are associated with their virulence in mice by residue variations, host origins of virus (Anseriformes-ducks or Charadriiformes-shorebirds), and host-residue interactions. In addition, through structural modeling, we predicted that several polymorphic sites associated with pathogenicity were located in structurally important sites, especially in the polymerase complex and NS genes. Our study introduces a new approach to identify pathogenic variations in wild-type viruses circulating in the natural reservoirs and ultimately to understand their infectious risks to humans as part of risk assessment efforts towards the emergence of future pandemic strains. PMID:25503687

  11. Case-control study of risk factors for human infection with avian influenza A(H7N9) virus in Shanghai, China, 2013.

    Science.gov (United States)

    Li, J; Chen, J; Yang, G; Zheng, Y X; Mao, S H; Zhu, W P; Yu, X L; Gao, Y; Pan, Q C; Yuan, Z A

    2015-07-01

    The first human infection with avian influenza A(H7N9) virus was reported in Shanghai, China in March 2013. An additional 32 cases of human H7N9 infection were identified in the following months from March to April 2013 in Shanghai. Here we conducted a case-control study of the patients with H7N9 infection (n = 25) using controls matched by age, sex, and residence to determine risk factors for H7N9 infection. Our findings suggest that chronic disease and frequency of visiting a live poultry market (>10 times, or 1-9 times during the 2 weeks before illness onset) were likely to be significantly associated with H7N9 infection, with the odds ratios being 4.07 [95% confidence interval (CI) 1.32-12.56], 10.61 (95% CI 1.85-60.74), and 3.76 (95% CI 1.31-10.79), respectively. Effective strategies for live poultry market control should be reinforced and ongoing education of the public is warranted to promote behavioural changes that can help to eliminate direct or indirect contact with influenza A(H7N9) virus.

  12. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  13. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  14. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Directory of Open Access Journals (Sweden)

    Charles Nfon

    Full Text Available There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI. In addition, heterologous cell mediated immunity (CMI was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  15. Avian influenza : a review article

    Directory of Open Access Journals (Sweden)

    A. Yalda

    2006-07-01

    Full Text Available The purpose of this paper is to provides general information about avian influenza (bird flu and specific information about one type of bird flu, called avian influenza A (H5N1, that has caused infections in birds in Asia and Europe and in human in Asia. The main materials in this report are based on the World Health Organization (WHO , world organization for animal health (OIE , food and agriculture organization of the united nations (FAO information and recommendations and review of the published literature about avian influenza. Since December 2003, highly pathogenic H5N1 avian influenza viruses have swept through poultry populations across Asia and parts of Europe. The outbreaks are historically unprecedented in scale and geographical spread. Their economic impact on the agricultural sector of the affected countries has been large. Human cases, with an overall fatality rate around 50%, have also been reported and almost all human infections can be linked to contact with infected poultry. Influenza viruses are genetically unstable and their behaviour cannot be predicted so the risk of further human cases persists. The human health implications have now gained importance, both for illness and fatalities that have occurred following natural infection with avian viruses, and for the potential of generating a re-assortant virus that could give rise to the next human influenza pandemic.

  16. Avian Flu Epidemic 2003: Public health consequences. Executive summary

    NARCIS (Netherlands)

    Bosman A; Mulder YM; Leeuw JRJ de; Meijer A; Du Ry van Beest Holle M; Kamst RA; Velden PG van der; Conyn-van Spaendonck MAE; Koopmans MPG; Ruijten MWMM; Instituut voor Psychotrauma; CIE; MGO; LIS

    2004-01-01

    Executive summary Avian flu epidemic 2003: public health consequences.Risk factors, health, well-being, health care needs and preventive measures during the H7N7 avian flu outbreak control in the Netherlands.An estimated thousand people, possibly more have been infected with avian flu during the

  17. Experimental infection of a North American raptor, American Kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1).

    Science.gov (United States)

    Hall, Jeffrey S; Ip, Hon S; Franson, J Christian; Meteyer, Carol; Nashold, Sean; TeSlaa, Joshua L; French, John; Redig, Patrick; Brand, Christopher

    2009-10-22

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  18. Protective efficacy of passive immunization with monoclonal antibodies in animal models of H5N1 highly pathogenic avian influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Yasushi Itoh

    2014-06-01

    Full Text Available Highly pathogenic avian influenza (HPAI viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.

  19. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    Science.gov (United States)

    Hall, Jeffrey S.; Ip, Hon S.; Franson, J.C.; Meteyer, C.; Nashold, Sean W.; Teslaa, Joshua L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  20. Experimental infection of a North American raptor, American Kestrel (Falco sparverius, with highly pathogenic avian influenza virus (H5N1.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Hall

    2009-10-01

    Full Text Available Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV subtype H5N1. Should HPAIV (H5N1 reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1 infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1. All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1 is introduced into North America.

  1. Karyotype analysis of the acute fibrosarcoma from chickens infected with subgroup J avian leukosis virus associated with v-src oncogene.

    Science.gov (United States)

    Dong, Xuan; Ju, Sidi; Chen, Junxia; Meng, Fanfeng; Sun, Peng; Li, Yang; Wang, Xin; Wang, Yixin; Liu, Juan; Chang, Shuang; Zhao, Peng; Cui, Zhizhong

    2016-01-01

    To understand the cytogenetic characteristics of acute fibrosarcoma in chickens infected with the subgroup J avian leukosis virus associated with the v-src oncogene, we performed a karyotype analysis of fibrosarcoma cell cultures. Twenty-nine of 50 qualified cell culture spreads demonstrated polyploidy of some macrochromosomes, 21 of which were trisomic for chromosome 7, and others were trisomic for chromosomes 3, 4, 5 (sex chromosome w), and 10. In addition, one of them was trisomic for both chromosome 7 and the sex chromosome 5 (w). In contrast, no aneuploidy was found for 10 macrochromosomes of 12 spreads of normal chicken embryo fibroblast cells, although aneuploidy for some microchromosomes was demonstrated in five of the 12 spreads. The cytogenetic mosaicism or polymorphism of the aneuploidy in the acute fibrosarcoma described in this study suggests that the analysed cells are polyclonal.

  2. Standardization of an inactivated H17N1 avian influenza vaccine and efficacy against A/Chicken/Italy/13474/99 high-pathogenicity virus infection.

    Science.gov (United States)

    Di Trani, L; Cordioli, P; Falcone, E; Lombardi, G; Moreno, A; Sala, G; Tollis, M

    2003-01-01

    The minimum requirements for assessing the immunogenicity of an experimental avian influenza (AI) vaccine prepared from inactivated A/Turkey/Italy/2676/99 (H7N1) low-pathogenicity (LP) AI (LPAI) virus were determined in chickens of different ages. A correlation between the amount of hemagglutinin (HA) per dose of vaccine and the protection against clinical signs of disease and infection by A/Chicken/Italy/13474/99 highly pathogenic (HP) AI (HPAI) virus was established. Depending on the vaccination schedule, one or two administrations of 0.5 microg of hemagglutinin protected chickens against clinical signs and death and completely prevented virus shedding from birds challenged at different times after vaccination.

  3. Host cytokine responses of pigeons infected with highly pathogenic Thai avian influenza viruses of subtype H5N1 isolated from wild birds.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05 isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection.

  4. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy.

    Science.gov (United States)

    Liu, Y; Mundt, E; Mundt, A; Sylte, M; Suarez, D L; Swayne, D E; García, M

    2010-03-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus, purified, recombinant N1 protein from A/chicken/Indonesia/PA7/2003 (H5N1) virus. The N1-ELISA showed high selectivity for detection of N1 antibodies, with no cross-reactivity with other neuraminidase subtypes, and broad reactivity with sera to N1 subtype isolates from North American and Eurasian lineages. Sensitivity of the N1-ELISA to detect N1 antibodies in turkey sera, collected 3 wk after H1N1 vaccination, was comparable to detection of avian influenza antibodies by the commercial, indirect ELISAs ProFLOK AIV Plus ELISA Kit (Synbiotics, Kansas City, MO) and Avian Influenza Virus Antibody Test Kit (IDEXX, Westbrook, ME). However, 6 wk after vaccination, the Synbiotics ELISA kit performed better than the N1-ELISA and the IDEXX ELISA kit. An evaluation was made of the ability of the N1-ELISA to discriminate vaccinated chickens from subsequently challenged chickens. Two experiments were conducted, chickens were vaccinated with inactivated H5N2 and H5N9 viruses and challenged with highly pathogenic H5N1 virus, and chickens were vaccinated with recombinant poxvirus vaccine encoding H7 and challenged with highly pathogenic H7N1 virus. Serum samples were collected at 14 days postchallenge and tested by hemagglutination inhibition (HI), quantitative neuraminidase inhibition (NI), and N1-ELISA. At 2 days postchallenge, oropharyngeal swabs were collected for virus isolation (VI) to confirm infection. The N1-ELISA was in fair agreement with VI and HI results. Although the N1-ELISA showed a lower sensitivity than the NI assay, it was demonstrated that detection of N1 antibodies by ELISA was an effective and rapid assay to identify exposure to the challenge virus in vaccinated chickens. Therefore, N1-ELISA can facilitate a vaccination strategy with differentiation of infected from vaccinated animals using a neuraminidase heterologous approach.

  5. Development of rapid immunochromatographic test for hemagglutinin antigen of H7 subtype in patients infected with novel avian influenza A (H7N9 virus.

    Directory of Open Access Journals (Sweden)

    Keren Kang

    Full Text Available BACKGROUND: Since human infection with the novel H7N9 avian influenza virus was identified in China in March 2013, the relatively high mortality rate and possibility of human-to-human transmission have highlighted the urgent need for sensitive and specific assays for diagnosis of H7N9 infection. METHODOLOGY/PRINCIPAL FINDINGS: We developed a rapid diagnostic test for the novel avian influenza A (H7N9 virus using anti-hemagglutinin (HA monoclonal antibodies specifically targeting H7 in an immunochromatographic assay system. The assay limit of detection was 103.5 pfu/ml or 103TCID50 of H7N9 virus. The assay specifically detected H7N9 viral isolates and recombinant HA proteins of H7 subtypes including H7N7 and H7N9, but did not react with non-H7 subtypes including H1N1, H3N2, H5N1, H5N9, and H9N2. The detection sensitivity was 59.4% (19/32 for H7N9 patients confirmed by RT-PCR. Moreover, the highest sensitivity of 61.5% (16/26 was obtained when testing H7N9 positive sputum samples while 35.7% (5/14 of nasopharyngeal swabs and 20% (2/10 of fecal samples tested positive. No false positive detection was found when testing 180 H7N9 negative samples. CONCLUSIONS/SIGNIFICANCE: Our novel rapid assay can specifically detect H7 HA antigen, facilitating rapid diagnosis for prevention and control of the on-going H7N9 epidemic.

  6. Avian and human metapneumovirus.

    Science.gov (United States)

    Broor, Shobha; Bharaj, Preeti

    2007-04-01

    Pneumovirus infection remains a significant problem for both human and veterinary medicine. Both avian pneumovirus (aMPV, Turkey rhinotracheitis virus) and human metapneumovirus (hMPV) are pathogens of birds and humans, which are associated with respiratory tract infections. Based on their different genomic organization and low level of nucleotide (nt) and amino acid (aa) identity with paramyxoviruses in the genus Pneumovirus, aMPV and hMPV have been classified into a new genus referred to as Metapneumovirus. The advancement of our understanding of pneumovirus biology and pathogenesis of pneumovirus disease in specific natural hosts can provide us with strategies for vaccine formulations and combined antiviral and immunomodulatory therapies.

  7. Activation of type I and III interferon signalling pathways occurs in lung epithelial cells infected with low pathogenic avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Richard Sutejo

    Full Text Available The host response to the low pathogenic avian influenza (LPAI H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture.

  8. Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Muramoto, Yukiko; Shoemaker, Jason E; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki; Kawaoka, Yoshihiro

    2014-08-01

    Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We

  9. Effects of cyclosporin A induced T-lymphocyte depletion on the course of avian Metapneumovirus (aMPV) infection in turkeys.

    Science.gov (United States)

    Rubbenstroth, Dennis; Dalgaard, Tina S; Kothlow, Sonja; Juul-Madsen, Helle R; Rautenschlein, Silke

    2010-05-01

    The avian Metapneumovirus (aMPV) causes an economically important acute respiratory disease in turkeys (turkey rhinotracheitis, TRT). While antibodies were shown to be insufficient for protection against aMPV-infection, the role of T-lymphocytes in the control of aMPV-infection is not clear. In this study we investigated the role of T-lymphocytes in aMPV-pathogenesis in a T-cell-suppression model in turkeys. T-cell-intact turkeys and turkeys partly depleted of functional CD4(+) and CD8(+) T-lymphocytes by Cyclosporin A (CsA) treatment were inoculated with the virulent aMPV subtype A strain BUT 8544. CsA-treatment resulted in a significant reduction of absolute numbers of circulating CD4(+) and CD8alpha(+) T-lymphocytes by up to 82 and 65%, respectively (P<0.05). Proportions of proliferating T-cells within mitogen-stimulated peripheral blood mononuclear cells were reduced by similar levels in CsA-treated birds compared to untreated controls (P<0.05). CsA-treated turkeys showed delayed recovery from aMPV-induced clinical signs and histopathological lesions and a prolonged detection of aMPV in choanal swabs. The results of this study show that T-lymphocytes play an important role in the control of primary aMPV-infection in turkeys. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-08

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection*

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-01-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  12. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation.

    Science.gov (United States)

    Qi, Xuefeng; Liu, Caihong; Li, Ruiqiao; Zhang, Huizhu; Xu, Xingang; Wang, Jingyu

    2017-04-01

    Macrophages play important roles in mediating virus-induced innate immune responses and are thought to be involved in the pathogenesis of bacterial superinfections. The innate immune response initiated by both low pathogenicity AIV and bacterial superinfection in their avian host is not fully understood. We therefore determine the transcripts of innate immune-related genes following avian H9N2 AIV virus infection and E. coli LPS co-stimulation of avian macrophage-like cell line HD11 cells. More pronounced expression of pro-inflammatory cytokines (IL-6 and IL-1β) as well as the inflammatory chemokines (CXCLi1 and CXCLi2) was observed in virus infected plus LPS treated HD11 cells compared to H9N2 virus solely infected control. For two superinfection groups, the levels of genes examined in a prior H9N2 virus infection before secondary LPS treatment group were significantly higher as compared with simultaneous virus infection plus LPS stimulation group. Interestingly, similar high levels of IL-6 gene were observed between LPS sole stimulation group and two superinfection groups. Moreover, IL-10 and TGF-β3 mRNA levels in both superinfection groups were moderately upregulated compared to sole LPS stimulation group or virus alone infection group. Although TLR4 and MDA5 levels in virus alone infection group were significantly lower compared to that in both superinfection groups, TLR4 upregulation respond more rapid to virus sole infection compared to LPS plus virus superinfection. Collectively, innate immune-related genes respond more pronounced in LPS stimulation plus H9N2 virus infection HD11 cells compared to sole virus infection or LPS alone stimulation control cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Multimeric recombinant M2e protein-based ELISA: a significant improvement in differentiating avian influenza infected chickens from vaccinated ones.

    Directory of Open Access Journals (Sweden)

    Farshid Hadifar

    Full Text Available Killed avian influenza virus (AIV vaccines have been used to control H5N1 infections in countries where the virus is endemic. Distinguishing vaccinated from naturally infected birds (DIVA in such situations however, has become a major challenge. Recently, we introduced the recombinant ectodomain of the M2 protein (M2e of H5N1 subtype as a novel tool for an ELISA based DIVA test. Despite being antigenic in natural infection the monomer form of the M2e used in ELISA had limited antigenicity and consequently poor diagnostic capability. To address this shortcoming, we evaluated the use of four tandem copies of M2e (tM2e for increased efficiency of M2e antibody detection. The tM2e gene of H5N1 strain from Indonesia (A/Indonesia/CDC540/2006 was cloned into a pMAL- p4x expression vector and expressed in E.coli as a recombinant tM2e-MBP or M2e-MBP proteins. Both of these, M2e and tM2e antigens reacted with sera obtained from chickens following live H5N1 infection but not with sera from vaccinated birds. A significantly stronger M2e antibody reaction was observed with the tM2e compared to M2e antigen. Western blotting also supported the superiority of tM2e over M2e in detection of specific M2e antibodies against live H5N1 infection. Results from this study demonstrate that M2e tetramer is a better antigen than single M2e and could be more suitable for an ELISA based DIVA test.

  14. Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus.

    Science.gov (United States)

    Liu, Liqi; Lu, Jian; Zhou, Jianfang; Li, Zi; Zhang, Heng; Wang, Dayan; Shu, Yuelong

    2017-12-01

    Human infections with Eurasian avian-like swine influenza H1N1 viruses have been reported in China in past years. One case resulted in death and others were mild case. In 2016, the World Health Organization recommended the use of A/Hunan/42443/2015(H1N1) virus to construct the first candidate vaccine strain for Eurasian avian-like swine influenza H1N1 viruses. Previous reports showed that the neuraminidase of A/Puerto Rico/8/34(H1N1) might improve the viral yield of reassortant viruses. Therefore, we constructed two reassortant candidate vaccine viruses of A/Hunan/42443/2015(H1N1) by reverse genetic technology, with (6+2) and (7+1) gene constitution, respectively. The (6+2) virus had hemagglutinin and neuraminidase from A/Hunan/42443/2015, and the (7+1) one had hemagglutinin from A/Hunan/42443/2015, while all the other genes were from A/Puerto Rico/8/34. Our data revealed that although the neuraminidase of the (7+1) virus was from high yield A/Puerto Rico/8/34, the hemagglutination titer and the hemagglutinin protein content of the (7+1) virus was not higher than that of the (6+2) virus. Both of the (7+1) and (6+2) viruses reached a similar level to that of A/Puerto Rico/8/34 at the usual harvest time in vitro. Therefore, both reassortant viruses are potential candidate vaccine viruses, which could contribute to pandemic preparedness. Copyright © 2017. Published by Elsevier Masson SAS.

  15. An overview on avian influenza

    Directory of Open Access Journals (Sweden)

    Nelson Rodrigo da Silva Martins

    2012-06-01

    Full Text Available Avian influenza (AI is considered an exotic disease in the Brazilian poultry industry, according to the National Avian Health Program (PNSA, with permanent monitoring of domestic, exotic and native avian species. Brazil presents privileged environmental conditions of reduced risk. In addition, all commercial poultry and conservation holdings are registered in state or national inventories and geographically located (GPS for health control. Poultry health standards are adopted for the conformity to the international market, mostly for the intensified poultry destined for exportation, but also for companion exotic and native conservation facilities. Guidelines for monitoring and the diagnosis of AI are published by the PNSA and follow the standards proposed by the international health code (World Organization for Animal Health, Organization International des Epizooties - OIE and insure the free of status for avian influenza virus (AIV of LPAIV-low pathogenicity AIV and HPAIV-high pathogenicity AIV. In addition, the infections by mesogenic and velogenic Newcastle disease virus, Mycoplasma gallisepticum, M. synoviae and M. meleagridis, Salmonella enteric subspecies enterica serovar Gallinarum biovars Gallinarum and Pullorum are eradicated from reproduction. Controlled infections by S.enterica subspecies enterica serovars Enteritidis and Typhimurium are monitored for breeders. The vaccination of chickens in ovo or at hatch against Marek's disease is mandatory. Broiler production is an indoor activity, confinement which insures biosecurity, with safe distances from the potential AIV reservoir avian species. Worldwide HPAIV H5N1 notifications to the OIE, in March 2011, included 51 countries.

  16. Avian metapneumovirus in the USA

    Science.gov (United States)

    In the United States of America (USA), avian metapneumovirus (aMPV) causes an upper respiratory tract infection in turkeys; no outbreaks have been reported in commercial chicken flocks. Typical clinical signs of the disease in turkey poults include coughing, sneezing, nasal discharge, tracheal rale...

  17. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  18. Induction of local and systemic immune reactions following infection of turkeys with avian Metapneumovirus (aMPV) subtypes A and B.

    Science.gov (United States)

    Liman, Martin; Rautenschlein, Silke

    2007-02-15

    Most of the studies regarding the immunopathogenesis of avian Metapneumovirus (aMPV) have been done with subtype C of aMPV. Not much is known about the immunopathogenesis of aMPV subtypes A and B in turkeys. Specifically, local immune reactions have not been investigated yet. We conducted two experiments in commercial turkeys. We investigated local and systemic humoral and cell mediated immune reactions following infection with an attenuated vaccine strain of aMPV subtype B (Experiment I) and virulent strains of aMPV subtypes A and B (Experiment II). Turkeys infected with virulent aMPV strains developed mild respiratory signs while birds inoculated with the attenuated aMPV did not show any clinical signs. Virus neutralizing antibodies were detected locally in tracheal washes and systemically in serum as soon as 5-7 days post aMPV infection (PI) independent of the strain used. Virus neutralizing antibody titres peaked at 7 days PI and then antibody levels declined. The peak of serum ELISA antibody production varied between infected groups and ranged from 14 and 28 days PI. All aMPV strains induced an increase in the percentage of CD4+ T cell populations in spleen and Harderian gland at days 7 or 14 PI. Furthermore, as shown in Experiment I, infection with the attenuated aMPV-B strain stimulated spleen leukocytes to release significantly higher levels of interferons (IFNs), interleukin-6 and nitric oxide in ex vivo culture in comparison to virus-free controls up to 7 days PI (P<0.05). As detected by quantitative real time RT-PCR in Experiment II, infection with virulent aMPV induced an increased IFNgamma expression in the Harderian gland in comparison to virus-free controls. IFNgamma expression in the spleen varied between aMPV strains and days PI. Overall, our study demonstrates that aMPV subtypes A and B infection induced humoral and cell mediated immune reactions comparable to subtype C infections. We observed only temporary stimulation of serum virus neutralizing

  19. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally

    Science.gov (United States)

    Löndt, Brandon Z.; Núñez, Alejandro.; Banks, Jill; Alexander, Dennis J.; Russell, Christine; Richard‐ Löndt, Angela C.; Brown, Ian H.

    2009-01-01

    Background  Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives  To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods  Pekin ducks in two age‐matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 106 EID50/0·1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2·2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post‐mortem examination. Tissue samples were collected for examination by real‐time RT‐PCR, histopathology and immunohistochemistry (IHC). Results  Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real‐time RT‐PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. Conclusions  These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age‐related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus. PMID:20021503

  20. Infection studies with two highly pathogenic avian influenza strains (Vietnamese and Indonesian) in Pekin ducks (Anas platyrhynchos), with particular reference to clinical disease, tissue tropism and viral shedding.

    Science.gov (United States)

    Bingham, John; Green, Diane J; Lowther, Sue; Klippel, Jessica; Burggraaf, Simon; Anderson, Danielle E; Wibawa, Hendra; Hoa, Dong Manh; Long, Ngo Thanh; Vu, Pham Phong; Middleton, Deborah J; Daniels, Peter W

    2009-08-01

    Pekin ducks were infected by the mucosal route (oral, nasal, ocular) with one of two strains of Eurasian lineage H5N1 highly pathogenic avian influenza virus: A/Muscovy duck/Vietnam/453/2004 and A/duck/Indramayu/BBVW/109/2006 (from Indonesia). Ducks were killed humanely on days 1, 2, 3, 5 and 7 after challenge, or whenever morbidity was severe enough to justify euthanasia. Morbidity was recorded by observation of clinical signs and cloacal temperatures; the disease was characterized by histopathology; tissue tropism was studied by immunohistochemistry and virus titration on tissue samples; and viral shedding patterns were determined by virus isolation and titration of oral and cloacal swabs. The Vietnamese strain caused severe morbidity with fever and depression; the Indonesian strain caused only transient fever. Both viruses had a predilection for a similar range of tissue types, but the quantity of tissue antigen and tissue virus titres were considerably higher with the Vietnamese strain. The Vietnamese strain caused severe myocarditis and skeletal myositis; both strains caused non-suppurative encephalitis and a range of other inflammatory reactions of varying severity. The principal epithelial tissue infected was that of the air sacs, but antigen was not abundant. Epithelium of the turbinates, trachea and bronchi had only rare infection with virus. Virus was shed from both the oral and cloacal routes; it was first detected 24 h after challenge and persisted until day 5 after challenge. The higher prevalence of virus from swabs from ducks infected with the Vietnamese strain indicates that this strain may be more adapted to ducks than the Indonesia strain.

  1. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Núñez, Alejandro; Banks, Jill; Alexander, Dennis J; Russell, Christine; Richard-Löndt, Angela C; Brown, Ian H

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Pekin ducks in two age-matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 10(6) EID(50)/0.1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post-mortem examination. Tissue samples were collected for examination by real-time RT-PCR, histopathology and immunohistochemistry (IHC). Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real-time RT-PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age-related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus.

  2. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    Science.gov (United States)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  3. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission.

    Science.gov (United States)

    Hiono, Takahiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Ogasawara, Kohei; Endo, Mayumi; Kuribayashi, Saya; Shichinohe, Shintaro; Motohashi, Yurie; Chu, Duc-Huy; Suzuki, Mizuho; Ichikawa, Takaya; Nishi, Tatsuya; Abe, Yuri; Matsuno, Keita; Tanaka, Kazuyuki; Tanigawa, Tsutomu; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A modeling study of human infections with avian influenza A H7N9 virus in mainland China

    Directory of Open Access Journals (Sweden)

    Zhifei Liu

    2015-12-01

    Conclusions: Screening and culling infected poultry is a critical measure for preventing human H7N9 infections in the long term. This model may provide important insights for decision-making on a national intervention strategy for the long-term control of the H7N9 virus epidemic.

  5. Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Nunez, Alejandro; Banks, Jill; Nili, Hassan; Johnson, Linda K; Alexander, Dennis J

    2008-12-01

    Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild-bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about either the dissemination of this H5N1 within the organs or the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks were infected with 10(6.7) median egg infectious doses of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2) in 0.1ml via the intranasal and intraocular routes. Cloacal and oropharyngeal swabs were taken daily before three animals were selected randomly and killed humanely for postmortem examination, when samples of tissues were taken for real-time reverse transcriptase-polymerase chain reaction, histopathological examination and immunohistochemistry. Clinical signs were first observed 4 days post infection (d.p.i.) and included depression, reluctance to feed, in-coordination and torticollis resulting in the death of all the birds remaining on 5d.p.i. Higher levels of virus shedding were detected from oropharyngeal swabs than from cloacal swabs. Real-time reverse transcriptase-polymerase chain reaction and immunohistochemistry identified peak levels of virus at 2d.p.i. in several organs. In the spleen, lung, kidney, caecal tonsils, breast muscle and thigh muscle the levels were greatly reduced at 3d.p.i. However, the highest viral loads were detected in the heart and brain from 3d.p.i. and coincided with the appearance of clinical signs and death. Our experimental results demonstrate the systemic spread of this HPAI H5N1 virus in Pekin ducks, and the localization of virus in the brain and heart tissue preceding death.

  6. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states.

    Science.gov (United States)

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Buehler, Debbie M; Osterhaus, Albert D M E; Jenni-Eiermann, Susi; Piersma, Theunis; Kuiken, Thijs

    2011-01-01

    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers--before the onset of clinical disease--than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of

  7. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states.

    Directory of Open Access Journals (Sweden)

    Leslie A Reperant

    Full Text Available Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV H5N1. The red knot (Calidris canutus islandica displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6, fueling (N = 5, migration (N = 9 and post-migration periods (N = 6. Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi, peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate may be more susceptible to acquisition of infection and shed higher viral titers--before the onset of clinical disease--than birds with low concentration of corticosterone (not ready for take-off. Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the

  8. Drug susceptibility testing of Mycobacterium Avium subsp. Avium isolates from naturally infected domestic pigeons to avian tuberculosis

    Directory of Open Access Journals (Sweden)

    Kaveh Parvandar

    2016-01-01

    Conclusion: We suggest drug susceptibility testing for more nontuberculous mycobateria, particularly M. avium complex isolated from infected birds and humans, as well as molecular basics of drug sensitivity in order to detect resistance genes of pathogenic M. avium subsp. avium.

  9. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    Science.gov (United States)

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  10. Analysis of immune responses induced by avian pathogenic Escherichia coli infection in turkeys and their association with resistance to homologous re-challenge.

    Science.gov (United States)

    Sadeyen, Jean-Rémy; Kaiser, Pete; Stevens, Mark P; Dziva, Francis

    2014-02-14

    Avian pathogenic Escherichia coli (APEC) cause severe respiratory and systemic disease in poultry yet the nature and consequences of host immune responses to infection are poorly understood. Here, we describe a turkey sub-acute respiratory challenge model and cytokine, cell-mediated and humoral responses associated with protection against homologous re-challenge. Intra-airsac inoculation of turkeys with 105 colony-forming units of APEC O78:H9 strain χ7122nalR induced transient and mild clinical signs of colibacillosis followed by clearance of the bacteria from the lungs and visceral organs. Upon re-challenge with 107 χ7122nalR, primed birds were solidly protected against clinical signs and exhibited negligible bacterial loads in visceral organs, whereas age-matched control birds exhibited high lesion scores and bacterial loads in the organs. Levels of mRNA for signature cytokines suggested induction of a Th1 response in the lung, whereas a distinct anti-inflammatory cytokine profile was detected in the liver. Proliferative responses of splenocytes to either Concanavalin A or soluble χ7122nalR antigens were negligible prior to clearance of bacteria, but APEC-specific responses were significantly elevated at later time intervals and at re-challenge relative to control birds. Primary infection also induced significantly elevated χ7122nalR-specific serum IgY and bile IgA responses which were bactericidal against χ7122nalR and an isogenic Δrfb mutant. Bactericidal activity was observed in the presence of immune, but not heat-inactivated immune serum, indicating that the antibodies can fix complement and are not directed solely at the lipopolysaccharide O-antigen. Such data inform the rational design of strategies to control a recalcitrant endemic disease of poultry.

  11. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    Science.gov (United States)

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. Isolation of avian influenza virus in Texas.

    Science.gov (United States)

    Glass, S E; Naqi, S A; Grumbles, L C

    1981-01-01

    An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.

  13. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  14. West Nile Virus Infection in American Singer Canaries: An Experimental Model in a Highly Susceptible Avian Species.

    Science.gov (United States)

    Hofmeister, Erik K; Lund, Melissa; Shearn Bochsler, Valerie

    2018-01-01

    This study investigated the susceptibility of American singer canaries ( Serinus canaria) to West Nile virus (WNV) infection. Adult canaries were inoculated with 10 5 , 10 2 , and 10 1 plaque forming units (PFU) of WNV. All birds became infected and mortality occurred by 5 days postinoculation. The load of viral RNA as determined by RT-qPCR was dose dependent, and was higher at all doses than the level of viral RNA detected in American crows ( Corvus brachyrhynchos) challenged with 10 5 PFU of WNV. In a subset of birds, viremia was detected by virus isolation; canaries inoculated with 10 1 PFU of WNV developed viremia exceeding 10 10 PFU/mL serum, a log higher than American crows inoculated with 10 5 PFU of virus. In canaries euthanized at 3 days postinoculation, WNV was isolated at >10 7 PFU of virus/100 mg of lung, liver, heart, spleen, and kidney tissues. Pallor of the liver and splenomegaly were the most common macroscopic observations and histologic lesions were most severe in liver, spleen, and kidney, particularly in canaries challenged with 10 2 and 10 1 PFU. Immunoreactivity to WNV was pronounced in the liver and spleen. IgG antibodies to WNV were detected in serum by enzyme immunoassay in 11 of 21 (52%) challenged canaries and, in 4 of 5 (20%) of these sera, neutralization antibodies were detected at a titer ≥ 1:20. American singer canaries provide a useful model as this bird species is highly susceptible to WNV infection.

  15. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  16. Depressed Hypoxic and Hypercapnic Ventilatory Responses at Early Stage of Lethal Avian Influenza A Virus Infection in Mice.

    Directory of Open Access Journals (Sweden)

    Jianguo Zhuang

    Full Text Available H5N1 virus infection results in ~60% mortality in patients primarily due to respiratory failure, but the underlying causes of mortality are unclear. The goal of this study is to reveal respiratory disorders occurring at the early stage of infection that may be responsible for subsequent respiratory failure and death. BALB/c mice were intranasally infected with one of two H5N1 virus strains: HK483 (lethal or HK486 (non-lethal virus. Pulmonary ventilation and the responses to hypoxia (HVR; 7% O2 for 3 min and hypercapnia (HCVR; 7% CO2 for 5 min were measured daily at 2 days prior and 1, 2, and 3 days postinfection (dpi and compared to mortality typically by 8 dpi. At 1, 2, and 3 dpi, immunoreactivities (IR of substance P (SP-IR in the nodose ganglion or tyrosine hydroxylase (TH-IR in the carotid body coupled with the nucleoprotein of influenza A (NP-IR was examined in some mice, while arterial blood was collected in others. Our results showed that at 2 and 3 dpi: 1 both viral infections failed to alter body temperature and weight, [Formula: see text], or induce viremia while producing similarly high lung viral titers; 2 HK483, but not HK486, virus induced tachypnea and depressed HVR and HCVR without changes in arterial blood pH and gases; and 3 only HK483 virus led to NP-IR in vagal SP-IR neurons, but not in the carotid body, and increased density of vagal SP-IR neurons. In addition, all HK483, rather than HK486, mice died at 6 to 8 dpi and the earlier death was correlated with more severe depression of HVR and HCVR. Our data suggest that tachypnea and depressed HVR/HCVR occur at the early stage of lethal H5N1 viral infection associated with viral replication and increased SP-IR density in vagal neurons, which may contribute to the respiratory failure and death.

  17. DIVA vaccination strategies for avian influenza virus.

    Science.gov (United States)

    Suarez, David L

    2012-12-01

    Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical.

  18. West Nile virus infection in American singer canaries: An experimental model in a highly susceptible avian species

    Science.gov (United States)

    Hofmeister, Erik K.; Lund, Melissa; Shearn-Bochsler, Valerie I.

    2018-01-01

    This study investigated the susceptibility of American singer canaries (Serinus canaria) to West Nile virus (WNV) infection. Adult canaries were inoculated with 105, 102, and 101plaque forming units (PFU) of WNV. All birds became infected and mortality occurred by 5 days postinoculation. The load of viral RNA as determined by RT-qPCR was dose dependent, and was higher at all doses than the level of viral RNA detected in American crows (Corvus brachyrhynchos) challenged with 105 PFU of WNV. In a subset of birds, viremia was detected by virus isolation; canaries inoculated with 101 PFU of WNV developed viremia exceeding 1010 PFU/mL serum, a log higher than American crows inoculated with 105 PFU of virus. In canaries euthanized at 3 days postinoculation, WNV was isolated at >107 PFU of virus/100 mg of lung, liver, heart, spleen, and kidney tissues. Pallor of the liver and splenomegaly were the most common macroscopic observations and histologic lesions were most severe in liver, spleen, and kidney, particularly in canaries challenged with 102 and 101 PFU. Immunoreactivity to WNV was pronounced in the liver and spleen. IgG antibodies to WNV were detected in serum by enzyme immunoassay in 11 of 21 (52%) challenged canaries and, in 4 of 5 (20%) of these sera, neutralization antibodies were detected at a titer ≥ 1:20. American singer canaries provide a useful model as this bird species is highly susceptible to WNV infection.

  19. Risk Reduction Modeling of High Pathogenicity Avian Influenza Virus Titers in Nonpasteurized Liquid Egg Obtained from Infected but Undetected Chicken Flocks.

    Science.gov (United States)

    Weaver, J Todd; Malladi, Sasidhar; Spackman, Erica; Swayne, David E

    2015-11-01

    Control of highly pathogenic avian influenza (HPAI) outbreaks in poultry has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a zone under permit. Nonpasteurized liquid egg (NPLE) is one such commodity for which movements may be permitted, considering inactivation of HPAI virus via pasteurization. Active surveillance testing at the flock level, using targeted matrix gene real-time reversed transcriptase-polymerase chain reaction testing (RRT-PCR) has been incorporated into HPAI emergency response plans as the primary on-farm diagnostic test procedure to detect HPAI in poultry and is considered to be a key risk mitigation measure. To inform decisions regarding the potential movement of NPLE to a pasteurization facility, average HPAI virus concentrations in NPLE produced from a HPAI virus infected, but undetected, commercial table-egg-layer flock were estimated for three HPAI virus strains using quantitative simulation models. Pasteurization under newly proposed international design standards (5 log10 reduction) is predicted to inactivate HPAI virus in NPLE to a very low concentration of less than 1 embryo infectious dose (EID)50 /mL, considering the predicted virus titers in NPLE from a table-egg flock under active surveillance. Dilution of HPAI virus from contaminated eggs in eggs from the same flock, and in a 40,000 lb tanker-truck load of NPLE containing eggs from disease-free flocks was also considered. Risk assessment can be useful in the evaluation of commodity-specific risk mitigation measures to facilitate safe trade in animal products from countries experiencing outbreaks of highly transmissible animal diseases. © 2015 Society for Risk Analysis.

  20. Characterizing the histopathology of natural co-infection with Marek's disease virus and subgroup J avian leucosis virus in egg-laying hens.

    Science.gov (United States)

    Wen, Yawen; Huang, Qi; Yang, Chengcheng; Pan, Ling; Wang, Guijun; Qi, Kezong; Liu, Hongmei

    2018-02-01

    Marek's disease virus (MDV) and avian leucosis virus (ALV) are known to cause tumours in egg-laying hens. Here, we investigated the aetiology of tumours in a flock of egg-laying hens vaccinated against MDV. We carried out gross pathology and histopathological examinations of the diseased tissues, identified virus antigen and sequenced viral oncogenes to elucidate the cause of death in 21-22-week-old hens. At necropsy, diseased hens had distinctly swollen livers, spleens, and proventriculus, and white tumour nodules in the liver. The spleen and liver had been infiltrated by lymphoid tumour cells, while the proventriculus had been infiltrated by both lymphoid tumour cells and myeloblastic cells. Subtype J ALV (ALV-J) and MDV were widely distributed in the proventricular gland cells, and the lymphoid tumour cells in the liver and the spleen. In addition, positive ALV-J signals were also observed in parts of the reticular cells in the spleen. MDV and ALV-J antigens were observed in the same foci of the proventricular gland cells; however, the two antigens were not observed in the same foci from the spleen and liver. The amino acid sequence of the AN-1 (the representative liver tumour tissue that was positive for both ALV-J and MDV) Meq protein was highly similar to the very virulent MDV QD2014 from China. Compared to the ALV-J HPRS-103 reference strain, 10 amino acids (224-CTTEWNYYAY-233) were deleted from the gp85 protein of AN-1. We concluded that concurrent infection with MDV and ALV-J contributed to the tumorigenicity observed in the flock.

  1. Epidemiological and clinical characteristics of humans with avian influenza A (H7N9 infection in Guangdong, China, 2013–2017

    Directory of Open Access Journals (Sweden)

    Yuwei Yang

    2017-12-01

    Full Text Available Objective: To describe the demographics and clinical characteristics of patients with A (H7N9 infection, to test the differences in the distribution of demographics and clinical characteristics by clinical severity, and to explore potential factors associated with clinical severity. Methods: This retrospective study was conducted to collect epidemiological and clinical information regarding the confirmed cases in Guangdong through field investigation and review of medical records. Results: Of the 256 cases, 100 (39.0% patients died, and 168 (65.6% patients were admitted to ICUs. The male-to-female ratio was approximately 2.0:1, and the median age was 56 years (range, 1 to 88. Among the 215 patients accepting oseltamivir treatment, the median time from the onset of illness to oseltamivir treatment was 5 days (range, 0 to 16; 35 patients received zanamivir treatment after a median of 8 days (range, 0 to 23. The univariable logistic regression models demonstrated that time from the onset of illness to oseltamivir treatment (OR = 1.10, 95% CI = 1.01–1.10 and zanamivir treatment (OR = 1.05, 95% CI = 1.02–1.07 were associated with the death of patients. Conclusions: Preventive measures should focus on high-risk populations, such as the elderly and the groups with high frequency exposure to live poultry. Earlier oseltamivir and zanamivir treatment were recommended. Keywords: Epidemiological characteristics, Clinical characteristics, Avian influenza, H7N9 subtype

  2. Reproducibility of swollen sinuses in broilers by experimental infection with avian metapneumovirus subtypes A and B of turkey origin and their comparative pathogenesis.

    Science.gov (United States)

    Aung, Ye Htut; Liman, Martin; Neumann, Ulrich; Rautenschlein, Silke

    2008-02-01

    Swollen head syndrome (SHS) associated with avian metapneumovirus (aMPV) subtype A or subtype B in broilers and broiler breeders has been reported worldwide. Data about pathogenesis of aMPV subtypes A and B in broilers are scarce. It has been difficult to reproduce swollen sinuses in chickens with aMPV under experimental conditions. In the field, SHS in broilers is suspected to be induced by combined infections with different respiratory pathogens. The objectives of the present study were to compare the pathogenesis of subtypes A and B aMPV in commercial broilers and to investigate the reproducibility of clinical disease. In two repeat experiments, commercial broilers free of aMPV maternal antibodies were inoculated with aMPV subtypes A and B of turkey origin. The clinical signs such as depression, coughing, nasal exudates, and frothy eyes appeared at 4 days post inoculation, followed by swelling of periorbital sinuses at 5 days post inoculation. Higher numbers of broilers showed clinical signs in subtype-B-inoculated compared with subtype-A-inoculated groups. Seroconversion to aMPV was detectable from 10 to 11 days post inoculation. The appearance of serum aMPV enzyme-linked immunosorbent assay antibodies and the clearance of the aMPV genome coincided. Subtype B aMPV showed a broader tissue distribution and longer persistence than subtype A. Histopathological changes were observed in the respiratory tract tissues of aMPV-inoculated broilers, and also in paraocular glands, such as the Harderian and lachrymal glands. Overall, our study shows that representative strains of both aMPV turkey isolates induced lesions in the respiratory tract, accompanied by swelling of infraorbital sinuses, indicating the role of aMPV as a primary pathogen for broilers.

  3. Clinical, virological and immunological features from patients infected with re-emergent avian-origin human H7N9 influenza disease of varying severity in Guangdong province.

    Directory of Open Access Journals (Sweden)

    Zi Feng Yang

    Full Text Available The second wave of avian influenza H7N9 virus outbreak in humans spread to the Guangdong province of China by August of 2013 and this virus is now endemic in poultry in this region.Five patients with H7N9 virus infection admitted to our hospital during August 2013 to February 2014 were intensively investigated. Viral load in the respiratory tract was determined by quantitative polymerase chain reaction (Q-PCR and cytokine levels were measured by bead-based flow cytometery.Four patients survived and one died. Viral load in different clinical specimens was correlated with cytokine levels in plasma and broncho-alveolar fluid (BALF, therapeutic modalities used and clinical outcome. Intravenous zanamivir appeared to be better than peramivir as salvage therapy in patients who failed to respond to oseltamivir. Higher and more prolonged viral load was found in the sputum or endotracheal aspirates compared to throat swabs. Upregulation of proinflammatory cytokines IP-10, MCP-1, MIG, MIP-1α/β, IL-1β and IL-8 was found in the plasma and BALF samples. The levels of cytokines in the plasma and viral load were correlated with disease severity. Reactivation of herpes simplex virus type 1(HSV-1 was found in three out of five patients (60%.Expectorated sputum or endotracheal aspirate specimens are preferable to throat swabs for detecting and monitoring H7N9 virus. Severity of the disease was correlated to the viral load in the respiratory tract as well as the extents of cytokinemia. Reactivation of HSV-1 may contribute to clinical outcome.

  4. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  5. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  6. Avian Influenza a (H5N1 Infection with Respiratory Failure and Meningoencephalitis in a Canadian Traveller

    Directory of Open Access Journals (Sweden)

    Naheed Rajabali

    2015-01-01

    Full Text Available In an urban centre in Alberta, an otherwise healthy 28-year-old woman presented to hospital with pleuritic chest and abdominal pain after returning from Beijing, China. After several days, this was followed by headache, confusion and, ultimately, respiratory failure, coma and death. Microbiology yielded influenza A subtype H5N1 from various body sites and neuroimaging was consistent with meningoencephalitis. While H5N1 infections in humans have been reported in Asia since 1997, this is the first documented case of H5N1 influenza in the Western Hemisphere. The present case demonstrated the typical manifestation of H5N1 influenza but, for the first time, also confirmed previous suggestions from human and animal studies that H5N1 is neurotropic and can manifest with neurological symptoms and meningoencephalitis.

  7. Identification of a truncated nucleoprotein in avian metapneumovirus-infected cells encoded by a second AUG, in-frame to the full-length gene

    Science.gov (United States)

    Alvarez, Rene; Seal, Bruce S

    2005-01-01

    Background Avian metapneumoviruses (aMPV) cause an upper respiratory disease with low mortality, but high morbidity primarily in commercial turkeys. There are three types of aMPV (A, B, C) of which the C type is found only in the United States. Viruses related to aMPV include human, bovine, ovine, and caprine respiratory syncytial viruses and pneumonia virus of mice, as well as the recently identified human metapneumovirus (hMPV). The aMPV and hMPV have become the type viruses of a new genus within the Metapneumovirus. The aMPV nucleoprotein (N) amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. Based on predicted antigenicity of consensus protein sequences, five aMPV-specific N peptides were synthesized for development of peptide-antigens and antisera. Results The presence of two aMPV nucleoprotein (N) gene encoded polypeptides was detected in aMPV/C/US/Co and aMPV/A/UK/3b infected Vero cells. Nucleoprotein 1 (N1) encoded from the first open reading frame (ORF) was predicted to be 394 amino acids in length for aMPV/C/US/Co and 391 amino acids in length for aMPV/A/UK/3b with approximate molecular weights of 43.3 kilodaltons and 42.7 kilodaltons, respectively. Nucleoprotein 2 (N2) was hypothesized to be encoded by a second downstream ORF in-frame with ORF1 and encoded a protein predicted to contain 328 amino acids for aMPV/C/US/Co or 259 amino acids for aMPV/A/UK/3b with approximate molecular weights of 36 kilodaltons and 28.3 kilodaltons, respectively. Peptide antibodies to the N-terminal and C-terminal portions of the aMPV N protein confirmed presence of these products in both aMPV/C/US/Co- and aMPV/A/UK/3b-infected Vero cells. N1 and N2 for aMPV/C/US/Co ORFs were molecularly cloned and expressed in Vero cells utilizing eukaryotic expression vectors to confirm identity of the aMPV encoded proteins. Conclusion This is the first reported identification of potential, accessory in-frame N2 ORF gene products among members of the

  8. Identification of a truncated nucleoprotein in avian metapneumovirus-infected cells encoded by a second AUG, in-frame to the full-length gene

    Directory of Open Access Journals (Sweden)

    Alvarez Rene

    2005-04-01

    Full Text Available Abstract Background Avian metapneumoviruses (aMPV cause an upper respiratory disease with low mortality, but high morbidity primarily in commercial turkeys. There are three types of aMPV (A, B, C of which the C type is found only in the United States. Viruses related to aMPV include human, bovine, ovine, and caprine respiratory syncytial viruses and pneumonia virus of mice, as well as the recently identified human metapneumovirus (hMPV. The aMPV and hMPV have become the type viruses of a new genus within the Metapneumovirus. The aMPV nucleoprotein (N amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. Based on predicted antigenicity of consensus protein sequences, five aMPV-specific N peptides were synthesized for development of peptide-antigens and antisera. Results The presence of two aMPV nucleoprotein (N gene encoded polypeptides was detected in aMPV/C/US/Co and aMPV/A/UK/3b infected Vero cells. Nucleoprotein 1 (N1 encoded from the first open reading frame (ORF was predicted to be 394 amino acids in length for aMPV/C/US/Co and 391 amino acids in length for aMPV/A/UK/3b with approximate molecular weights of 43.3 kilodaltons and 42.7 kilodaltons, respectively. Nucleoprotein 2 (N2 was hypothesized to be encoded by a second downstream ORF in-frame with ORF1 and encoded a protein predicted to contain 328 amino acids for aMPV/C/US/Co or 259 amino acids for aMPV/A/UK/3b with approximate molecular weights of 36 kilodaltons and 28.3 kilodaltons, respectively. Peptide antibodies to the N-terminal and C-terminal portions of the aMPV N protein confirmed presence of these products in both aMPV/C/US/Co- and aMPV/A/UK/3b-infected Vero cells. N1 and N2 for aMPV/C/US/Co ORFs were molecularly cloned and expressed in Vero cells utilizing eukaryotic expression vectors to confirm identity of the aMPV encoded proteins. Conclusion This is the first reported identification of potential, accessory in-frame N2 ORF gene products among

  9. Pathogenesis of Highly Pathogenic Avian Influenza (HPAI) A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    Löndt , Brandon Z.; Nunez , Alejandro; Banks , Jill; Nili , Hassan; Johnson , Linda K; Alexander , Dennis

    2008-01-01

    Abstract Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about the dissemination of this H5N1 within the organs and the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks...

  10. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  11. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Influenza A (H5N1) H5N1 in Birds and Other Animals H5N1 in People Public Health Threat of Highly Pathogenic Asian Avian ...

  12. Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods.

    Science.gov (United States)

    Ganapathy, Kannan; Bufton, Andrew; Pearson, Andrew; Lemiere, Stephane; Jones, Richard C

    2010-05-21

    Avian metapneumovirus (aMPV) has become an important cause of viral respiratory infections in turkey and chickens. Live and inactivated vaccinations are available worldwide for prevention of disease and economic losses caused by this pathogen. The efficacy of these vaccines is vigorously tested under laboratory conditions prior to use in the field. In this study, a live subtype B aMPV vaccine was administered by spray, drinking water or oculo-oral methods to separate groups of broiler chicks under field conditions. Following this, the chicks were immediately transferred to separate rooms in an experimental isolation house, monitored and challenged with virulent subtype B aMPV. No clinical signs were recorded following the vaccination methods. In the oculo-oral vaccinated chicks, 40-60% of the birds were vaccine virus positive by RT-PCR. In addition, in comparison to other groups, statistically higher levels of aMPV ELISA antibodies were detected. After spray vaccination, the number of chicks positive for the vaccine virus increased gradually from 10% at one week to 30% by 3 weeks post vaccination. Following drinking water vaccination, 30% of chicks were aMPV positive at 1 week but negative by 3 weeks post vaccination. In both, spray and drinking water vaccinated groups, no ELISA antibodies were detected, but when challenged all chicks were protected against disease. At 5 days post challenge, 100% of chicks in the unvaccinated and those vaccinated by spray or drinking water routes but only 20% of the oculo-oral-vaccinated chicks were aMPV positive by RT-PCR. At 10 days post challenge, 10% of chicks in each group were aMPV RT-PCR positive. On challenge, all vaccinated chicks were protected against disease. It appears that when aMPV vaccine is accurately applied to chicks by spray or drinking water routes, both are capable of giving protection against clinical disease equal to that induced in those chicks vaccinated individually by the oculo-oral route. Copyright 2010

  13. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Plachý, Jiří; Trejbalová, Kateřina; Šenigl, Filip; Kučerová, Dana; Geryk, Josef; Svoboda, Jan; Hejnar, Jiří

    2012-01-01

    Roč. 86, č. 4 (2012), s. 2021-2030 ISSN 1098-5514 R&D Projects: GA ČR GAP502/10/1651 Institutional research plan: CEZ:AV0Z50520514 Keywords : avian sarcoma and leukosis virus * virus- host coevolution * resistance to retroviruses Subject RIV: EB - Genetics ; Molecular Biology

  14. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Plachý, Jiří; Trejbalová, Kateřina; Šenigl, Filip; Kučerová, Dana; Geryk, Josef; Svoboda, Jan; Hejnar, Jiří

    2012-01-01

    Roč. 86, č. 4 (2012), s. 2021-2030 ISSN 1098-5514 R&D Projects: GA ČR GAP502/10/1651 Institutional research plan: CEZ:AV0Z50520514 Keywords : avian sarcoma and leukosis virus * virus-host coevolution * resistance to retroviruses Subject RIV: EB - Genetics ; Molecular Biology

  15. Naturally occurred frame-shift mutations in the tvb receptor gene are responsible for decreased susceptibility to subgroups B, D, and E avian leukosis virus infection in chicken

    Science.gov (United States)

    The group of highly related avian leukosis viruses (ALVs) in chickens were thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells...

  16. Systemic Virus distribution and host responses in brain and intestine of chickens infected with low pathogenic and high pathogenic avian influenza virus

    NARCIS (Netherlands)

    Post, J.; Burt, D.W.; Cornelissen, J.B.W.J.; Broks, V.C.M.; Zoelen, van D.; Peeters, B.P.H.; Rebel, J.M.J.

    2012-01-01

    Background: Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic ( HP), based on virulence in chickens. Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host

  17. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Bertran, Kateri; DeJesus, Eric; Smith, Diane; Swayne, David E

    2017-06-07

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory waterfowl into North America reassorting with low pathogenicity AI viruses to produce a H5N2 HPAI virus. Since domestic waterfowl are common backyard poultry frequently in contact with wild waterfowl, the infectivity, transmissibility, and pathogenicity of the United States H5 HPAI index viruses (H5N8 and H5N2) was investigated in domestic ducks and geese. Ducks infected with the viruses had an increase in body temperature but no or mild clinical signs. Infected geese did not show increase in body temperature and most only had mild clinical signs; however, some geese presented severe neurological signs. Ducks became infected and transmitted the viruses to contacts when inoculated with high virus doses [(10 4 and 10 6 50% embryo infective dose (EID 50 )], but not with a lower dose (10 2 EID 50 ). Geese inoculated with the H5N8 virus became infected regardless of the virus dose given, and transmitted the virus to direct contacts. Only geese inoculated with the higher doses of the H5N2 and their contacts became infected, indicating differences in infectivity between the two viruses and the two waterfowl species. Geese shed higher titers of virus and for a longer period of time than ducks. In conclusion, the H5 HPAI viruses can infect domestic waterfowl and easily transmit to contact birds, with geese being more susceptible to infection and disease than ducks. The disease is mostly asymptomatic, but infected birds shed virus for several days representing a risk to other poultry species.

  18. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Humans may be infected by different influenza A viruses--seasonal, pandemic, and zoonotic--which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these infections are poorly understood. Therefore, we inoculated ferrets with seasonal H3N2, pandemic H1N1 (pH1N1, and highly pathogenic avian H5N1 influenza virus and performed detailed virological and pathological analyses at time points from 0.5 to 14 days post inoculation (dpi, as well as describing clinical signs and hematological parameters. H3N2 infection was restricted to the nose and peaked at 1 dpi. pH1N1 infection also peaked at 1 dpi, but occurred at similar levels throughout the respiratory tract. H5N1 infection occurred predominantly in the alveoli, where it peaked for a longer period, from 1 to 3 dpi. The associated lesions followed the same spatial distribution as virus infection, but their severity peaked between 1 and 6 days later. Neutrophil and monocyte counts in peripheral blood correlated with inflammatory cell influx in the alveoli. Of the different parameters used to measure lower respiratory tract disease, relative lung weight and affected lung tissue allowed the best quantitative distinction between the virus groups. There was extra-respiratory spread to more tissues--including the central nervous system--for H5N1 infection than for pH1N1 infection, and to none for H3N2 infection. This study shows that seasonal, pandemic, and zoonotic influenza viruses differ strongly in the spatial and temporal dynamics of infection in the respiratory tract and extra-respiratory tissues of ferrets.

  19. Human infection and environmental contamination with Avian Influenza A (H7N9) Virus in Zhejiang Province, China: risk trend across the three waves of infection.

    Science.gov (United States)

    He, Fan; Chen, En-Fu; Li, Fu-Dong; Wang, Xin-Yi; Wang, Xiao-Xiao; Lin, Jun-Fen

    2015-09-21

    The third wave of H7N9 cases in China emerged in the second half of 2014. This study was conducted to identify the risk trends of H7N9 virus in human infections and environment contamination. A surveillance program for H7N9 virus has been conducted in all 90 counties in Zhejiang since March 2013. All H7N9 cases were reported by hospitals through the China Information System for Disease Control and Prevention. Sampling sites for environment specimens were randomly selected by a multi-stage sampling strategy. Poultry-related workers for serological surveillance were randomly selected from the sampling sites for environmental specimens in the first quarter of each year. rRT-PCR and viral isolation were performed to identify H7N9 virus. A hemagglutination inhibition assay was conducted to detect possible H7N9 infection among poultry-related workers. A total of 170 H7N9 cases were identified in Zhejiang from 20 March 2013 to 28 February 2015. The proportion of rural cases increased from 42.2% (19/45) to 67.7% (21/31) with progression of the three epidemics (P environmental specimens was 6.1% (868/14207). In addition, 912 poultry-related workers were recruited and 3.7% (34) of them tested positive for H7N9 antibodies. Positive detection of H7N9 virus during environmental surveillance increased from the first to third wave (P environmental surveillance were higher in urban than rural in the second wave (P environmental contamination by H7N9 virus is intensifying. We strongly recommend that the local government stop illegal trading immediately and close live poultry markets in the territory. Poultry operations in slaughtering plants must be supervised rigorously. Prior to the closure of live poultry markets, daily cleaning and disinfecting of areas potentially contaminated by H7N9 virus, centralized collection and disposal of trash, designating certain days as market rest days, banning overnight poultry storage and other measures should be strictly carried out in

  20. Avian mycoplasmosis update

    Directory of Open Access Journals (Sweden)

    ER Nascimento

    2005-03-01

    Full Text Available Avian mycoplasmas occur in a variety of bird species. The most important mycoplasmas for chickens and turkeys are Mycoplasma gallisepticum (MG, M. synoviae (MS, and M. meleagridis. Besides, M. iowe (MI is an emerging pathogen in turkeys, but of little concern for chickens. Mycoplasmas are bacteria that lack cell wall and belong to the class Mollicutes. Although they have been considered extracellular agents, scientists admit nowadays that some of them are obligatory intracellular microorganisms, whereas all other mycoplasmas are considered facultative intracellular organisms. Their pathogenic mechanism for disease include adherence to host target cells, mediation of apoptosis, innocent bystander damage to host cell due to intimate membrane contact, molecular (antigen mimicry that may lead to tolerance, and mitotic effect for B and/or T lymphocytes, which could lead to suppressed T-cell function and/or production of cytotoxic T cell, besides mycoplasma by-products, such as hydrogen peroxide and superoxide radicals. Moreover, mycoplasma ability to stimulate macrophages, monocytes, T-helper cells and NK cells, results in the production of substances, such as tumor necrosing factor (TNF-alpha, interleukin (IL-1, 2, 6 and interferon (a, b, g. The major clinical signs seen in avian mycoplasmosis are coughing, sneezing, snicks, respiratory rales, ocular and nasal discharge, decreased feed intake and egg production, increased mortality, poor hatchability, and, primarily in turkeys, swelling of the infraorbital sinus(es. Nevertheless, chronic and unapparent infections are most common and more threatening. Mycoplasmas are transmitted horizontally, from bird to bird, and vertically, from dam to offspring through the eggs. Losses attributed to mycoplasmosis, mainly MG and MS infections, result from decreased egg production and egg quality, poor hatchability (high rate of embryonic mortality and culling of day-old birds, poor feed efficiency, increase in

  1. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  2. Genetic analysis of avian influenza A viruses isolated from domestic waterfowl in live-bird markets of Hanoi, Vietnam, preceding fatal H5N1 human infections in 2004.

    Science.gov (United States)

    Jadhao, Samadhan J; Nguyen, Doan C; Uyeki, Timothy M; Shaw, Michael; Maines, Taronna; Rowe, Thomas; Smith, Catherine; Huynh, Lien P T; Nghiem, Ha K; Nguyen, Diep H T; Nguyen, Hang K L; Nguyen, Hanh H T; Hoang, Long T; Nguyen, Tung; Phuong, Lien S; Klimov, Alexander; Tumpey, Terrence M; Cox, Nancy J; Donis, Ruben O; Matsuoka, Yumiko; Katz, Jacqueline M

    2009-01-01

    The first known cases of human infection with highly pathogenic avian influenza (HPAI) H5N1 viruses in Vietnam occurred in late 2003. However, HPAI H5N1 and low-pathogenic avian influenza (LPAI) H5N2 and H9N3 viruses were isolated from domestic waterfowl during live-bird market (LBM) surveillance in Vietnam in 2001 and 2003. To understand the possible role of these early viruses in the genesis of H5N1 strains infecting people, we performed sequencing and molecular characterization. Phylogenetic analysis revealed that the hemagglutinin (HA) genes of two geese HPAI H5N1 strains belonged to clade 3, and their surface glycoprotein and replication complex genes were most closely related (98.5-99.7% homologous) to A/duck/Guangxi/22/01 (H5N1) virus, detected contemporarily in southern China, whilst the M and NS genes were derived from an A/duck/Hong Kong/2986.1/00 (H5N1)-like virus. The H5 HA gene of the duck HPAI H5N1 strain belonged to clade 5 and acquired a gene constellation from A/quail/Shantou/3846/02 (H5N1), A/teal/China/2978.1/02 (H5N1) and A/partridge/Shantou/2286/03 (H5N1)-like viruses. The phylogenetic analysis further indicated that all eight gene segments of goose and duck HPAI H5N1 and LPAI H5N2 viruses were distinct from those of H5N1 clade-1 viruses known to have caused fatal human infections in Vietnam since late 2003. The duck H9N3 isolates derived genes from aquatic-bird influenza viruses, and their H9 HA belonged to the Korean lineage. The PB2 gene of A/duck/Vietnam/340/01 (H9N3) virus had lysine at position 627. Based on the molecular characterization of specific amino acid residues in the surface and relevant internal protein-coding genes, the Vietnamese H5N1 and H9N3 virus isolates indicated specificity to avian cell surface receptor and susceptibility for currently licensed anti-influenza A virus chemotherapeutics. Our findings suggest that the H5N1 and H5N2 viruses that circulated among geese and ducks in LBMs in Hanoi, Vietnam, during 2001 and

  3. Tissue interactions of avian viral attachment proteins

    OpenAIRE

    Ambepitiya Wickramasinghe, I.N.

    2015-01-01

    Viruses can infect a wide range of hosts; varying from bacteria and plants to animals and humans. While many viral infections may pass unnoticed, some are of major importance due to their implications on health and welfare of plants, animals and/or humans. In particular, viruses that can infect avian hosts have been studied intensively due the occurrence of the pandemics of highly pathogenic influenza A virus infection or “bird flu’’. Viral infections in domesticated birds can result in huge ...

  4. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  5. Avian mycobacteriosis in companion birds: 20-year survey.

    Science.gov (United States)

    Manarolla, Giovanni; Liandris, Emmanouil; Pisoni, Giuliano; Sassera, Davide; Grilli, Guido; Gallazzi, Daniele; Sironi, Giuseppe; Moroni, Paolo; Piccinini, Renata; Rampin, Tiziana

    2009-02-02

    The causative agents of avian mycobacteriosis in pet birds are rarely identified. The aim of this study is to add information about the etiology of avian mycobacteriosis. The identification of mycobacterium species in 27 cases of avian mycobacteriosis in pet birds was investigated by polymerase chain reaction (PCR) and sequencing of a rRNA hypervariable region. Avian mycobacteriosis appeared to be an infrequent diagnosis. Interestingly, a few cases of avian mycobacteriosis were recorded in very young birds. The most commonly affected species were the canary (Serinus canarius), the Eurasian goldfinch (Carduelis carduelis) and the red siskin (Spinus cucullatus). All but one bird were infected with Mycobacterium genavense. Mycobacterium avium was identified only in one case.

  6. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  7. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    OpenAIRE

    Hadipour,MM

    2010-01-01

    Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known ab...

  8. Avian influenza in birds and mammals.

    Science.gov (United States)

    Cardona, Carol J; Xing, Zheng; Sandrock, Christian E; Davis, Cristina E

    2009-07-01

    The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).

  9. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus.

    Science.gov (United States)

    Liman, Martin; Peiser, Lieselotte; Zimmer, Gert; Pröpsting, Marcus; Naim, Hassan Y; Rautenschlein, Silke

    2007-11-14

    In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.

  10. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R G; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  11. Gambaran Sel Eosinofil, Monosit, dan Basofil Setelah Pemberian Spirulina pada Ayam yang Diinfeksi Virus Flu Burung (OBSERVATION OF EOSINOPHILS, MONOCYTES, AND BASOPHILS AFTER TREATED WITH SPIRULINA IN CHICKENS THAT INFECTED WITH AVIAN INFLUENZA VIRUS

    Directory of Open Access Journals (Sweden)

    Widya Paramita Lokapirnasari

    2015-05-01

    Full Text Available High Pathogenecity Avian Influenza (HPAI viruses have high virulence and can frequently causesudden death on birds. The aims of this research was to know the role of Spirulina to a number ofmonocytes and lymphocytes in the blood of chickens which infected with the H5N1 virus. This researchconsisted of three levels of treatment in which each level given Spirulina 0%, 10%, 20% in the fresh wateralgae as drinking water. Each treatment consisted of seven replicates, and the treatment was done sincethe chickens at age 19 until 44 days ( for 25 days. Artificial infection of the chickens with the virus waschallenged by using AI (H5N1 104 EID 50 (A/Ck/Indonesia/BL/03 with route to the respiratory tract (nosedrops 0,1 mL starting on day 19. The results showed that there were a significant difference (p<0.05 ontreatment that given Spirulina at doses of 0%, 10% and 20% for the number ofn monocytes, eosinophils,whereas no significant difference (p > 0.05 was observed in basophils.

  12. Protection against H5N1 Highly Pathogenic Avian and Pandemic (H1N1) 2009 Influenza Virus Infection in Cynomolgus Monkeys by an Inactivated H5N1 Whole Particle Vaccine

    Science.gov (United States)

    Nakayama, Misako; Shichinohe, Shintaro; Itoh, Yasushi; Ishigaki, Hirohito; Kitano, Mitsutaka; Arikata, Masahiko; Pham, Van Loi; Ishida, Hideaki; Kitagawa, Naoko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ichikawa, Takaya; Tsuchiya, Hideaki; Nakamura, Shinichiro; Le, Quynh Mai; Ito, Mutsumi; Kawaoka, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2013-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3), in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1) 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3. PMID:24376571

  13. Protection against H5N1 highly pathogenic avian and pandemic (H1N1 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine.

    Directory of Open Access Journals (Sweden)

    Misako Nakayama

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3, in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3.

  14. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens.

    Science.gov (United States)

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R S; Pierson, F William; Huang, Yao-Wei; Dryman, Barbara A; Meng, Xiang-Jin

    2011-01-27

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Ducks as sentinels for avian influenza in wild birds.

    Science.gov (United States)

    Globig, Anja; Baumer, Anette; Revilla-Fernández, Sandra; Beer, Martin; Wodak, Eveline; Fink, Maria; Greber, Norbert; Harder, Timm C; Wilking, Hendrik; Brunhart, Iris; Matthes, Doris; Kraatz, Ulf; Strunk, Peter; Fiedler, Wolfgang; Fereidouni, Sasan R; Staubach, Christoph; Conraths, Franz J; Griot, Chris; Mettenleiter, Thomas C; Stärk, Katharina D C

    2009-10-01

    To determine the effectiveness of ducks as sentinels for avian influenza virus (AIV) infection, we placed mallards in contact with wild birds at resting sites in Germany, Austria, and Switzerland. Infections of sentinel birds with different AIV subtypes confirmed the value of such surveillance for AIV monitoring.

  16. Avian And Other Zoonotic Influenza

    Science.gov (United States)

    ... outbreaks in poultry have seriously impacted livelihoods, the economy and international trade in affected countries. Other avian influenza A( ... outbreaks in poultry have seriously impacted livelihoods, the economy and international trade in affected countries. Other avian influenza A( ...

  17. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  18. Flying over an infected landscape: Distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl

    Science.gov (United States)

    Gilbert, Marius; Newman, Scott H.; Takekawa, John Y.; Loth, Leo; Biradar, Chandrashekhar; Prosser, Diann J.; Balachandran, Sivananinthaperumal; Rao, Mandava Venkata Subba; Mundkur, Taej; Yan, Baoping; Xing, Zhi; Hou, Yuansheng; Batbayar, Nyambayar; Tseveenmayadag, Natsagdorj; Hogerwerf, Lenny; Slingenbergh, Jan; Xiao, Xiangming

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May,June,July 2009 in China(Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.

  19. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M.C.M.; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  20. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load,

  1. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Science.gov (United States)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  2. Emergence of a Novel Avian Pox Disease in British Tit Species

    OpenAIRE

    Lawson, Becki; Lachish, Shelly; Colvile, Katie M.; Durrant, Chris; Peck, Kirsi M.; Toms, Mike P.; Sheldon, Ben C.; Cunningham, Andrew A.

    2012-01-01

    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Br...

  3. Avian Influenza A(H5N1) Virus in Egypt.

    Science.gov (United States)

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  4. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Directory of Open Access Journals (Sweden)

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  5. In Vivo Transfer and Microevolution of Avian Native IncA/C2blaNDM-1-Carrying Plasmid pRH-1238 during a Broiler Chicken Infection Study.

    Science.gov (United States)

    Hadziabdic, Sead; Fischer, Jennie; Malorny, Burkhard; Borowiak, Maria; Guerra, Beatriz; Kaesbohrer, Annemarie; Gonzalez-Zorn, Bruno; Szabo, Istvan

    2018-04-01

    The emergence and spread of carbapenemase-producing Enterobacteriaceae (CPE) in wildlife and livestock animals pose an important safety concern for public health. With our in vivo broiler chicken infection study, we investigated the transfer and experimental microevolution of the bla NDM-1 -carrying IncA/C 2 plasmid (pRH-1238) introduced by avian native Salmonella enterica subsp. enterica serovar Corvallis without inducing antibiotic selection pressure. We evaluated the dependency of the time point of inoculation on donor ( S Corvallis [12-SA01738]) and plasmid-free Salmonella recipient [d-tartrate-fermenting (d-Ta + ) S Paratyphi B (13-SA01617), referred to here as S Paratyphi B (d-Ta + )] excretion by quantifying their excretion dynamics. Using plasmid profiling by S1 nuclease-restricted pulsed-field gel electrophoresis, we gained insight into the variability of the native plasmid content among S Corvallis reisolates as well as plasmid acquisition in S Paratyphi B (d-Ta + ) and the enterobacterial gut microflora. Whole-genome sequencing enabled us to gain an in-depth insight into the microevolution of plasmid pRH-1238 in S Corvallis and enterobacterial recipient isolates. Our study revealed that the fecal excretion of avian native carbapenemase-producing S Corvallis is significantly higher than that of S Paratyphi (d-Ta + ) and is not hampered by S Paratyphi (d-Ta + ). Acquisition of pRH-1238 in other Enterobacteriaceae and several events of plasmid pRH-1238 transfer to different Escherichia coli sequence types and Klebsiella pneumoniae demonstrated an interspecies broad host range. Regardless of the microevolutionary structural deletions in pRH-1238, the single carbapenem resistance marker bla NDM-1 was maintained on pRH-1238 throughout the trial. Furthermore, we showed the importance of the gut E. coli population as a vector of pRH-1238. In a potential scenario of the introduction of NDM-1-producing S Corvallis into a broiler flock, the pRH-1238 plasmid could

  6. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1 and Low (H7N9 and H9N2 Pathogenicity Avian Influenza A Viruses

    Directory of Open Access Journals (Sweden)

    Zu-Qun Wu

    2017-03-01

    Full Text Available This study aimed to assess the mortality risks for human infection with high (HPAI and low (LPAI pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR was far higher than the LPAI CFR [66.0% (293/444 vs. 68.75% (11/16 vs. 40.4% (265/656 vs. 0.0% (0/18 in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43 vs. 43.3% (42/97, p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80 vs. 8.33% (9/108 for H5N1, p = 0.046; 58.6% (156/266 vs. 34.8% (135/388 for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43 vs. 45.2% (19/42, p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections.

  7. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli

    DEFF Research Database (Denmark)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili

    2017-01-01

    multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli......Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy...... and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded...

  8. Highly Pathogenic Avian Influenza (HPAI H5N1 is endemic in Indonesia especially in unvaccinated sector-4 poultry. Considering that vaccination against influenza viruses does not induce sterilizing immunity and the source of infection is prevalent around the vaccinated farms, infection in the commercial layers and breeders may be common. Because infection in vaccinated birds is usually subclinical, its presence is unnoticable. The virus in such farms may be circulated persistently and become the source of infection to the surrounding areas. The test, Differentiation Infected from Vaccinated Animals (DIVA that can be used to identify subclinically infected farms is not available yet in Indonesia. Observation on sentinel chicken among vaccinated birds is a sensitive and accurate method but unsafe for HPAI. The DIVA method based on heterologous neuraminidase has been successfully used in Italy, but it is difficult to be applied in Indonesia. The DIVA method based on Ectodomain protein M2 virus Influenza (M2e uses antibody against M2e as infection marker and does not limit the subtype of vaccine used. This method is potential to be used in Indonesia because the M2e is very conserved across all avian influenza viruses and has high proportion of post-infected seroconverted birds.

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2015-06-01

    Full Text Available Highly Pathogenic Avian Influenza (HPAI H5N1 is endemic in Indonesia especially in unvaccinated sector-4 poultry. Considering that vaccination against influenza viruses does not induce sterilizing immunity and the source of infection is prevalent around the vaccinated farms, infection in the commercial layers and breeders may be common. Because infection in vaccinated birds is usually subclinical, its presence is unnoticable. The virus in such farms may be circulated persistently and become the source of infection to the surrounding areas. The test, Differentiation Infected from Vaccinated Animals (DIVA that can be used to identify subclinically infected farms is not available yet in Indonesia. Observation on sentinel chicken among vaccinated birds is a sensitive and accurate method but unsafe for HPAI. The DIVA method based on heterologous neuraminidase has been successfully used in Italy, but it is difficult to be applied in Indonesia. The DIVA method based on Ectodomain protein M2 virus Influenza (M2e uses antibody against M2e as infection marker and does not limit the subtype of vaccine used. This method is potential to be used in Indonesia because the M2e is very conserved across all avian influenza viruses and has high proportion of post-infected seroconverted birds.

  9. The pathogenecity of H5N1 highly pathogenic Avian Influenza (HPAI virus clade 2.3.2. in Indonesian indigenous chicken by contact tranmission with infected duck

    Directory of Open Access Journals (Sweden)

    R. Damayanti

    2017-05-01

    Full Text Available An experimental transmission study was conducted using nine healthy Indonesian indigenous chickens placed together with two 30 days old ducks which were experimentally infected with H5N1 HPAI clade 2.3.2 virus in the Biosafety Laboratory Level 3 (BSL-3 facilities. The aim of the study was to find out the pathogenicity of H5N1 HPAI virus clade 2.3.2 in Indonesian indigenous chickens. The study showed that within twenty four hours rearing, the chickens were exhibited mild clinical signs and by 48 hours, all of the chickens died, whereas the ducks survived but with severe clinical signs. The H5N1 HPAI virus has been successfully isolated from chickens and ducks swabs, confirming that those animals were infected by the virus. Histologically, the infected chicken encountered with severe inflammation reaction namely non suppuratives encephalitis, tracheitis, myocarditis, interstitial pneumonia, hepatitis, proventriculitis, enteritis, pancreatitis, nephritis and bursitis. Necrotizing spleen and pancreas were also prominent. Viral antigen was detected by immunohistochemistry staining in various affected visceral organs. This suggests that Indonesian indigenous chickens were susceptible to H5N1 HPAI virus clade 2.3.2 and it can be transmitted easily to Indonesian indigenous chickens by contact transmission with infected ducks.

  10. Will Wallace's Line Save Australia from Avian Influenza?

    Directory of Open Access Journals (Sweden)

    Hamish I. McCallum

    2008-12-01

    Full Text Available Australia is separated from the Asian faunal realm by Wallace's Line, across which there is relatively little avian migration. Although this does diminish the risk of high pathogenicity avian influenza of Asian origin arriving with migratory birds, the barrier is not complete. Migratory shorebirds, as well as a few landbirds, move through the region on annual migrations to and from Southeast Asia and destinations further north, although the frequency of infection of avian influenza in these groups is low. Nonetheless, high pathogenicity H5N1 has recently been recorded on the island of New Guinea in West Papua in domestic poultry. This event increases interest in the movements of birds between Wallacea in eastern Indonesia, New Guinea, and Australia, particularly by waterbirds. There are frequent but irregular movements of ducks, geese, and other waterbirds across Torres Strait between New Guinea and Australia, including movements to regions in which H5N1 has occurred in the recent past. Although the likelihood of avian influenza entering Australia via an avian vector is presumed to be low, the nature and extent of bird movements in this region is poorly known. There have been five recorded outbreaks of high pathogenicity avian influenza in Australian poultry flocks, all of the H7 subtype. To date, Australia is the only inhabited continent not to have recorded high pathogenicity avian influenza since 1997, and H5N1 has never been recorded. The ability to map risk from high pathogenicity avian influenza to Australia is hampered by the lack of quantitative data on the extent of bird movements between Australia and its northern neighbors. Recently developed techniques offer the promise to fill this knowledge gap.

  11. Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages

    OpenAIRE

    Friesenhagen, Judith; Boergeling, Yvonne; Hrincius, Eike; Ludwig, Stephan; Roth, Johannes; Viemann, Dorothee

    2012-01-01

    Human blood-derived macrophages are non-permissive for influenza virus propagation, and fail to elicit inflammatory and antiviral responses upon infection with high pathogenic avian influenza viruses.

  12. Access to health information may improve behavior in preventing Avian influenza among women

    Directory of Open Access Journals (Sweden)

    Ajeng T. Endarti

    2011-02-01

    Full Text Available Background: Improving human behavior toward Avian influenza may lessen the chance to be infected by Avian influenza. This study aimed to identify several factors influencing behavior in the community.Method: A cross-sectional study was conducted in July 2008. Behavior regarding Avian influenza was measured by scoring the variables of knowledge, attitude, and practice. Subjects were obtained from the sub district of Limo, in Depok, West Java, which was considered a high risk area for Avian influenza. The heads of household as the sample unit were chosen by multi-stage sampling.Results: Among 387 subjects, 29.5% of them was had good behavior toward Avian influenza. The final model revealed that gender and access to health information were two dominant factors for good behavior in preventing Avian influenza. Compared with men, women had 67% higher risk to have good behavior [adjusted relative risk (RRa = 1.67; 95% confidence interval (CI = 0.92-3.04; P = 0.092]. Compared to those with no access to health information, subjects with access to health information had 3.4 fold increase to good behavior (RRa = 3.40; 95% CI =  0.84-13.76; P = 0.087.Conclusion: Acces to health information concerning Avian influenza was more effective among women in promoting good behavior toward preventing Avian influenza. (Med J Indones 2011; 20:56-61Keywords: avian influenza, behavior, gender, health promotion

  13. Prevalence of Antibodies to H9N2 Avian Influenza Virus in Backyard Chickens around Maharlou Lake in Iran

    OpenAIRE

    Mohammad Mehdi Hadipour*, Gholamhossein Habibi and Amir Vosoughi

    2011-01-01

    Backyard chickens play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 500 backyard chickens from villages around Maharlou lake in Iran, using the ...

  14. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts.

    OpenAIRE

    2008-01-01

    Abstract Avian colibacillosis is caused by a group of pathogens designated avian pathogenic Escherichia coli (APEC). Despite being known for over a century, avian colibacillosis remains one of the major endemic diseases afflicting the poultry industry worldwide. Autologous bacterins provide limited serotype-specific protection, yet multiple serogroups are associated with disease, especially O1, O2 and O78 among many others. Experimental infection models have facilitated the identif...

  15. Avian and Human Influenza Pandemic, How Prepared is the ...

    African Journals Online (AJOL)

    How much the perennial flight patterns of wild bird had on its spread is another question for consideration? The avian influenza virus does not readily cross the species barrier, though there is a potential for genetic re-assortment and cross infection. The main finding of this review suggest a lack of historic epidemiological ...

  16. Prevention And Control Of Highly Pathogenic Avian Influenza In Africa

    African Journals Online (AJOL)

    Highly Pathogenic Avian Influenza (HPAI) is a zoonotic trans-boundary disease. Its occurrence in a country constitutes a major constraint to profitable livestock operations and poses a high public health risk at regional and global levels. Since February 2006, HPAI has infected eleven African countries (Nigeria, Egypt, Niger, ...

  17. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  18. New oligonucleotide microarray for rapid diagnosis of avian viral diseases.

    Science.gov (United States)

    Sultankulova, Kulyaisan T; Kozhabergenov, Nurlan S; Strochkov, Vitaliy M; Burashev, Yerbol D; Shorayeva, Kamshat A; Chervyakova, Olga V; Rametov, Nurkuisa M; Sandybayev, Nurlan T; Sansyzbay, Abylay R; Orynbayev, Mukhit B

    2017-04-05

    We developed a new oligonucleotide microarray comprising 16 identical subarrays for simultaneous rapid detection of avian viruses: avian influenza virus (AIV), Newcastle disease virus (NDV), infection bronchitis virus (IBV), and infectious bursal disease virus (IBDV) in single- and mixed-virus infections. The objective of the study was to develop an oligonucleotide microarray for rapid diagnosis of avian diseases that would be used in the course of mass analysis for routine epidemiological surveillance owing to its ability to test one specimen for several infections. The paper describes the technique for rapid and simultaneous diagnosis of avian diseases such as avian influenza, Newcastle disease, infectious bronchitis and infectious bursal disease with use of oligonucleotide microarray, conditions for hybridization of fluorescent-labelled viral cDNA on the microarray and its specificity tested with use of AIV, NDV, IBV, IBDV strains as well as biomaterials from poultry. Sensitivity and specificity of the developed microarray was evaluated with use of 122 specimens of biological material: 44 cloacal swabs from sick birds and 78 tissue specimens from dead wild and domestic birds, as well as with use of 15 AIV, NDV, IBV and IBDV strains, different in their origin, epidemiological and biological characteristics (RIBSP Microbial Collection). This microarray demonstrates high diagnostic sensitivity (99.16% within 95% CI limits 97.36-100%) and specificity (100%). Specificity of the developed technique was confirmed by direct sequencing of NP and M (AIV), VP2 (IBDV), S1 (IBV), NP (NDV) gene fragments. Diagnostic effectiveness of the developed DNA microarray is 99.18% and therefore it can be used in mass survey for specific detection of AIV, NDV, IBV and IBDV circulating in the region in the course of epidemiological surveillance. Rather simple method for rapid diagnosis of avian viral diseases that several times shortens duration of assay versus classical diagnostic

  19. [Epidemiological perspectives on SARS and avian influenza].

    Science.gov (United States)

    del Rey Calero, Juan

    2004-01-01

    SARS is a respiratory infection caused by Coronavirus (Nidoviruses, RNA) from which 3 groups are known. Group 1 affects dogs, cats, pigs, and the human agent is 229 E. Group 2 affects bovines or rodents, and the human agent is OC43. And group 3 corresponds to the avian pathology.... The epidemics emerged on February 2003 in Guangdong, South China, due to consumption of exotic animals (Civeta, etc.), and it spread through interperson contagion to other regions in Asia, America and Europe. Incubation period is about 2-7 days. Transmission Of the virus is person-to person, but also by excretions and residual water. Basic reproductive rate is 2 to 4, and it is considered that 2.7 persons are infected from the initial case. In June 2003, SARS affected over 8,000 people and 774 were killed. Mortality approaches to 10%, and it is higher among older people rising up to 50% in those aged over 65 years. It is important to quickly establish action protocols regarding clinical, epidemiological and prevention aspects. Avian influenza is an infection caused by type A Influenza Orthomixovirus, in which migration birds and wild ducks are the main reservoir. Avian viruses correspond to H5, H7, H9. In 1997 it was observed that type AH5N1 jumped interspecies barrier and affected 18 humans, and 6 of them died. At the end of 2003 and in 2004 this type of poultry flu was described in Asia. FAO has emphasized that sacrifice of chicken in affected farms is the most effective measure to fight against the disease. It has also been established suppression of imports from these countries. There is no evidence on interperson contagion from chicken contagion, nor on food-borne contagion to humans.

  20. Metapneumovirus infections

    Science.gov (United States)

    Avian metapneumovirus (aMPV) causes turkey rhinotracheitis (TRT), an acute upper respiratory tract infection of turkeys, and is also associated with swollen head syndrome (SHS) in chickens and egg production losses in layers. Since the first TRT reported in the late 1970s in South Africa, the virus...

  1. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly Pathogenic H5 Avian Influenza Viruses

    OpenAIRE

    Dybing, Jody K.; Schultz-Cherry, Stacey; Swayne, David E.; Suarez, David L.; Perdue, Michael L.

    2000-01-01

    In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian in...

  2. Adaptation to thermotolerance in Rhizopus coincides with virulence as revealed by avian and invertebrate infection models, phylogeny, physiological and metabolic flexibility.

    Science.gov (United States)

    Kaerger, Kerstin; Schwartze, Volker U; Dolatabadi, Somayeh; Nyilasi, Ildikó; Kovács, Stella A; Binder, Ulrike; Papp, Tamás; Hoog, Sybren de; Jacobsen, Ilse D; Voigt, Kerstin

    2015-01-01

    Mucormycoses are fungal infections caused by the ancient Mucorales. They are rare, but increasingly reported. Predisposing conditions supporting and favoring mucormycoses in humans and animals include diabetic ketoacidosis, immunosuppression and haematological malignancies. However, comprehensive surveys to elucidate fungal virulence in ancient fungi are limited and so far focused on Lichtheimia and Mucor. The presented study focused on one of the most important causative agent of mucormycoses, the genus Rhizopus (Rhizopodaceae). All known clinically-relevant species are thermotolerant and are monophyletic. They are more virulent compared to non-clinically, mesophilic species. Although adaptation to elevated temperatures correlated with the virulence of the species, mesophilic strains showed also lower virulence in Galleria mellonella incubated at permissive temperatures indicating the existence of additional factors involved in the pathogenesis of clinical Rhizopus species. However, neither specific adaptation to nutritional requirements nor stress resistance correlated with virulence, supporting the idea that Mucorales are predominantly saprotrophs without a specific adaptation to warm blooded hosts.

  3. The seroprevalence of avipoxvirus and its association with avian malaria (Plasmodium spp.) infection in introduced passerine birds in the southern regions of the North Island of New Zealand.

    Science.gov (United States)

    Ha, H J; Banda, M; Alley, M R; Howe, L; Gartrell, B D

    2013-03-01

    Blood samples were collected from 65 free-ranging birds from six species in the southern North Island of New Zealand. Sera from the birds were tested for the presence of avipoxvirus (APV) antibodies by enzyme-linked immunosorbent assay (ELISA), and blood cells from 55 birds were also tested for Plasmodium spp. by PCR. Forty-five birds (69.2%) tested seropositive to APV. Song thrushes (Turdus philomelos) presented the highest seroprevalence at 100% (4/4), followed by Eurasian blackbirds (Turdus merula) (96.86%, 31/32), chaffinches (Fringilla coelebs) (54.55%, 6/11), starlings (Sturnus vulgaris) (25%, 3/12), greenfinches (Carduelis chloris) (25%, 1/4), and European goldfinches (Carduelis carduelis) (0%, 0/2). Plasmodium spp. DNA was detected in 15/55 birds (27.3%), including 11 Eurasian blackbirds, one song thrush, and three starlings. Eight Eurasian blackbird isolates (73%) grouped within the subgenus Novyella. Two Eurasian blackbird isolates and the song thrush isolate clustered within a different group with previously reported lineages LINN1 and AFTRU5. In addition, all three starling isolates clustered within the well-characterized lineage Plasmodium (Huffia) elongatum GRW06. All Plasmodium-positive Eurasian blackbirds and the song thrush were seropositive to APV, whereas only 67% of Plasmodium-positive starlings showed evidence of previous exposure to APV. A significant relationship between birds seropositive to APV and birds infected by Plasmodium spp. was observed (chi2 = 5.69, df = 1, P = 0.0086). To the authors' knowledge this is the first report describing the seroprevalence of APV and its association with Plasmodium spp. infection in introduced bird species in New Zealand.

  4. Avian influenza overview September–November 2017

    DEFF Research Database (Denmark)

    Brown, Ian; Kuiken, Thijs; Mulatti, Paolo

    2017-01-01

    the outbreaks, no transmission to humans has been identified in the EU. The report includes an update of the list of wild bird target species for passive surveillance activities that is based on reported AI-infected wild birds since 2006. The purpose of this list is to provide information on which bird species...... the continuing threat of this avian influenza virus to human health and possible introduction via migratory wild birds into Europe. Close monitoring is required of the situation in Africa with regards to HPAI of the subtypes A(H5N1) and A(H5N8), given the rapidity of the evolution and the uncertainty...

  5. Milestones in avian coccidiosis research: a review.

    Science.gov (United States)

    Chapman, H D

    2014-03-01

    This article describes some of the milestones in research concerned with protozoan parasites of the genus Eimeria that infect birds and cause the disease coccidiosis. The time period covered is from 1891, when oocysts were first found in the ceca of diseased chickens, to the present. Progress in our understanding has lagged behind that of other protozoan parasites such as Toxoplasma and Plasmodium despite the enormous importance of Eimeria to animal livestock production. Nevertheless, applied research by universities, government agencies, and private industry has resulted in the successful development of methods of control, research that continues today. The topics covered and the references provided are selective and include life cycles and biology, pathology, ultrastructure, biochemistry, immunity, genetics, host cell invasion, species identification, taxonomy, chemotherapy, vaccination, and literature concerned with avian coccidiosis. This review is primarily concerned with the avian species of Eimeria that infect poultry, but some important advances, principally in immunology, have been made using species that infect rodents and rabbits. These are included where appropriate.

  6. Protection of avian influenza (AI vaccines for poultry against infection of field isolates A/Chicken/West Java/Smi-Pat/2006 and A/Chicken/West Java/Smi-Mae/2008 under laboratory condition

    Directory of Open Access Journals (Sweden)

    Risa Indriani

    2011-06-01

    Full Text Available The aim of this research was to study level of protection of avian influenza (AI commercial vaccines available in Indonesia (subtipe H5N1, H5N2 and H5N9 against infection of HPAI field isolates of A/Chicken/West Java/Smi-Pat/2006 and A/Chicken/West Java/Smi-Mae/2008. There were 7 commercial vaccines used in this study, the each vaccines were injected in to 3 weeks old of layer chichickenen intramuscularly. At 3 weeks after vaccination, ten chichickenens from each group were challenged separately with the A/Chicken/West Java/Smi-Pat/2006 and A/Chicken/West Java/Smi-Mae/2008 isolates intranasaly with dose 106 ELD50 per 0,1 ml per chicken. Ten unvaccinated chicken were included in the challenge test as control. The study demonstrate that the AI vaccines with subtipe H5N1 protected chicken (100% against virus of A/Chicken/West Java/Smi-Pat/2006 and 90-100% against virus A/Chicken/West Java/Smi-Mae/2008. Viral shedding were not seen by 2 days post challenge. The AI vaccines with subtipe H5N2 protected chicken at 20-30% against virus of A/Chicken/West Java/Smi-Pat/2006 and protected chicken at 70-100% against virus of A/Chicken/West Java/Smi-Mae/2008. Viral shedding still detected at 8 days post challenge. The AI vaccines AI with subtipe H5N9 did not protect chicken (0% against virus A/Chicken/West Java/Smi-Pat/2006 and protected chicken at 50% against virus A/Chicken/West Java/Smi-Mae/2008. Viral shedding still detected by 8 days post challenge. This study concluded that AI vaccines with subtipe H5N1 are better than other AI subtipe vaccines in preventing HPAI virus A/Chicken/West Java/Smi-Pat/2006 dan A/Chicken/West Java/Smi-Mae/2008 infections under laboratory condition.

  7. Public health risk from avian influenza viruses.

    Science.gov (United States)

    Perdue, Michael L; Swayne, David E

    2005-09-01

    Since 1997, avian influenza (AI) virus infections in poultry have taken on new significance, with increasing numbers of cases involving bird-to-human transmission and the resulting production of clinically severe and fatal human infections. Such human infections have been sporadic and are caused by H7N7 and H5N1 high-pathogenicity (HP) and H9N2 low-pathogenicity (LP) AI viruses in Europe and Asia. These infections have raised the level of concern by human health agencies for the potential reassortment of influenza virus genes and generation of the next human pandemic influenza A virus. The presence of endemic infections by H5N1 HPAI viruses in poultry in several Asian countries indicates that these viruses will continue to contaminate the environment and be an exposure risk with human transmission and infection. Furthermore, the reports of mammalian infections with H5N1 AI viruses and, in particular, mammal-to-mammal transmission in humans and tigers are unprecedented. However, the subsequent risk for generating a pandemic human strain is unknown. More international funding from both human and animal health agencies for diagnosis or detection and control of AI in Asia is needed. Additional funding for research is needed to understand why and how these AI viruses infect humans and what pandemic risks they pose.

  8. Comparative analysis of chest radiological findings between avian human influenza and SARS

    International Nuclear Information System (INIS)

    Cai Mingjin; Mai Weiwen; Xian Jianxing; Zhang Jiayun; Lin Wenjian; Wei Liping; Chen Jincheng

    2008-01-01

    Objective: To study the chest radiological findings of a mortal avian human influenza case. Methods: One patient in our hospital was proved to be infected avian human influenza in Guangdong province on March 1, 2006. The Clinical appearances and chest radiological findings of this case were retrospectively analyzed and compared with that of 3 mortal SARS cases out of 16 cases in 2003. Results: Large consolidated areas in left lower lobe was showed in pulmonary radiological findings of this patient and soon developed into ARDS (adult respiratory distress syndrome). However, the pulmonary radiological findings had no characteristic. Characteristics of soaring size and number during short term appeared in SARS instead of avian human influenza. Final diagnosis was up to the etiology and serology examination. Conclusion: Bronchial dissemination was not observed in this avian human influenza case. Pay attention to the avian human influenza in spite of no history of contract with sick or dead poultry in large city. (authors)

  9. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced...

  10. Thermal inactivation of avian influenza virus and Newcastle disease virus in a fat-free egg product

    Science.gov (United States)

    Avian influenza (AI) and Avian Paramyxovirus Type-1 (AMPV-1) viruses can survive on the carcasses, in organ tissue of infected birds, on fomites, and have the potential for egg transmission and egg product contamination. With the increase in global trade, there are concerns that egg products could ...

  11. USGS highly pathogenic avian influenza research strategy

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  12. Troop education and avian influenza surveillance in military barracks in Ghana, 2011.

    Science.gov (United States)

    Odoom, John Kofi; Bel-Nono, Samuel; Rodgers, David; Agbenohevi, Prince G; Dafeamekpor, Courage K; Sowa, Roland M L; Danso, Fenteng; Tettey, Reuben; Suu-Ire, Richard; Bonney, Joseph H K; Asante, Ivy A; Aboagye, James; Abana, Christopher Zaab-Yen; Frimpong, Joseph Asamoah; Kronmann, Karl C; Oyofo, Buhari A; Ampofo, William K

    2012-11-08

    Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance and prevention in military barracks.

  13. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    Directory of Open Access Journals (Sweden)

    Odoom John

    2012-11-01

    Full Text Available Abstract Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65% showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen

  14. Avian Primordial Germ Cells.

    Science.gov (United States)

    Tagami, Takahiro; Miyahara, Daichi; Nakamura, Yoshiaki

    2017-01-01

    Germ cells transmit genetic information to the next generation through gametogenesis. Primordial germ cells (PGCs) are the first germ-cell population established during development, and are the common origins of both oocytes and spermatogonia. Unlike in other species, PGCs in birds undergo blood circulation to migrate toward the genital ridge, and are one of the major biological properties of avian PGCs. Germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. In chicken, gonadal sex differentiation occurs as early as embryonic day 6, but meiotic initiation of female germ cells starts from a relatively late stage (embryonic day 15.5). Retinoic acid controls meiotic entry in developing chicken gonads through the expressions of retinaldehyde dehydrogenase 2, a major retinoic acid synthesizing enzyme, and cytochrome P450 family 26, subfamily B member 1, a major retinoic acid-degrading enzyme. The other major biological property of avian PGCs is that they can be propagated in vitro for the long term, and this technique is useful for investigating proliferation mechanisms. The main factor involved in chicken PGC proliferation is fibroblast growth factor 2, which activates the signaling of MEK/ERK and thus promotes the cell cycle and anti-apoptosis. Furthermore, the activation of PI3K/Akt signaling is indispensable for the proliferation and survival of chicken PGCs.

  15. Avian colibacillosis: still many black holes.

    Science.gov (United States)

    Guabiraba, Rodrigo; Schouler, Catherine

    2015-08-01

    Avian pathogenic Escherichia coli (APEC) strains cause severe respiratory and systemic diseases, threatening food security and avian welfare worldwide. Intensification of poultry production and the quick expansion of free-range production systems will increase the incidence of colibacillosis through greater exposure of birds to pathogens and stress. Therapy is mainly based on antibiotherapy and current vaccines have poor efficacy. Serotyping remains the most frequently used diagnostic method, only allowing the identification of a limited number of APEC strains. Several studies have demonstrated that the most common virulence factors studied in APEC are all rarely present in the same isolate, showing that APEC strains constitute a heterogeneous group. Different isolates may harbor different associations of virulence factors, each one able to induce colibacillosis. Despite its economical relevance, pathogenesis of colibacillosis is poorly understood. Our knowledge on the host response to APEC is based on very descriptive studies, mostly restricted to bacteriological and histopathological analysis of infected organs such as lungs. Furthermore, only a small number of APEC isolates have been used in experimental studies. In the present review, we discuss current knowledge on APEC diversity and virulence, including host response to infection and the associated inflammatory response with a focus on pulmonary colibacillosis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  17. Isolation strategy of a two-strain avian influenza model using optimal control

    Science.gov (United States)

    Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul

    2017-08-01

    Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.

  18. Ecology and diagnosis of introduced avian malaria in Hawaiian forest birds

    Science.gov (United States)

    Atkinson, Carter T.

    2005-01-01

    Avian malaria is a disease caused by species of protozoan parasites (Plasmodium) that infect birds. Related species commonly infect reptiles, birds and mammals in tropical and temperate regions of the world. Transmitted by mosquitoes, the parasites spend part of their lives in the red blood cells of birds (Figure 1). Avian malaria is common in continental areas, but is absent from the most isolated island archipelagos where mosquitoes do not naturally occur. More than 40 different species of avian Plasmodium have been described, but only one, P. relictum, has been introduced to the Hawaiian Islands. Because they evolved without natural exposure to avian malaria, native Hawaiian honeycreepers are extremely susceptible to this disease. Malaria currently limits the geographic distribution of native species, has population level impacts on survivorship, and is limiting the recovery of threatened and endangered species of forest birds.

  19. Public Health and Epidemiological Considerations For Avian Influenza Risk Mapping and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Joseph P. Dudley

    2008-12-01

    Full Text Available Avian influenza viruses are now widely recognized as important threats to agricultural biosecurity and public health, and as the potential source for pandemic human influenza viruses. Human infections with avian influenza viruses have been reported from Asia (H5N1, H5N2, H9N2, Africa (H5N1, H10N7, Europe (H7N7, H7N3, H7N2, and North America (H7N3, H7N2, H11N9. Direct and indirect public health risks from avian influenzas are not restricted to the highly pathogenic H5N1 "bird flu" virus, and include low pathogenic as well as high pathogenic strains of other avian influenza virus subtypes, e.g., H1N1, H7N2, H7N3, H7N7, and H9N2. Research has shown that the 1918 Spanish Flu pandemic was caused by an H1N1 influenza virus of avian origins, and during the past decade, fatal human disease and human-to-human transmission has been confirmed among persons infected with H5N1 and H7N7 avian influenza viruses. Our ability to accurately assess and map the potential economic and public health risks associated with avian influenza outbreaks is currently constrained by uncertainties regarding key aspects of the ecology and epidemiology of avian influenza viruses in birds and humans, and the mechanisms by which highly pathogenic avian influenza viruses are transmitted between and among wild birds, domestic poultry, mammals, and humans. Key factors needing further investigation from a risk management perspective include identification of the driving forces behind the emergence and persistence of highly pathogenic avian influenza viruses within poultry populations, and a comprehensive understanding of the mechanisms regulating transmission of highly pathogenic avian influenza viruses between industrial poultry farms and backyard poultry flocks. More information is needed regarding the extent to which migratory bird populations to contribute to the transnational and transcontinental spread of highly pathogenic avian influenza viruses, and the potential for wild bird

  20. Planning for avian flu disruptions on global operations: a DMAIC case study.

    Science.gov (United States)

    Kumar, Sameer

    2012-01-01

    The author aims to assess the spread of avian flu, its impact on businesses operating in the USA and overseas, and the measures required for corporate preparedness. Six Sigma DMAIC process is used to analyze avian flu's impact and how an epidemic could affect large US business operations worldwide. Wal-Mart and Dell Computers were chosen as one specializes in retail and the other manufacturing. The study identifies avian flu pandemic risks including failure modes on Wal-Mart and Dell Computers global operations. It reveals the factors that reinforce avian-flu pandemic's negative impact on company global supply chains. It also uncovers factors that balance avian-flu pandemic's impact on their global supply chains. Avian flu and its irregularity affect the research outcomes because its spread could fluctuate based on so many factors that could come into play. Further, the potential cost to manufacturers and other supply chain partners is relatively unknown. As a relatively new phenomenon, quantitative data were not available to determine immediate costs. In this decade, the avian influenza H5N1 virus has killed millions of poultry in Asia, Europe and Africa. This flu strain can infect and kill humans who come into contact with this virus. An avian influenza H5N1 outbreak could lead to a devastating effect on global food supply, business services and business operations. The study provides guidance on what global business operation managers can do to prepare for such events, as well as how avian flu progression to a pandemic can disrupt such operations. This study raises awareness about avian flu's impact on businesses and humans and also highlights the need to create contingency plans for corporate preparedness to avoid incurring losses.

  1. A Cross-Sectional Study of Avian Influenza in One District of Guangzhou, 2013

    Science.gov (United States)

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; Zheng, Lilan; Yang, Jianyu; Zhang, Zhen; Zhou, Zhiwei; Li, Wenhua; Hu, Mailing; Zhong, Jinhui; Chen, Yuhua

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area. PMID:25356738

  2. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Directory of Open Access Journals (Sweden)

    Haiming Zhang

    Full Text Available Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  3. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    Science.gov (United States)

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; Zheng, Lilan; Yang, Jianyu; Zhang, Zhen; Zhou, Zhiwei; Li, Wenhua; Hu, Mailing; Zhong, Jinhui; Chen, Yuhua

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.

  4. Occurrence of avian Plasmodium and West Nile virus in culex species in Wisconsin

    Science.gov (United States)

    Hughes, T.; Irwin, P.; Hofmeister, E.; Paskewitz, S.M.

    2010-01-01

    The occurrence of multiple pathogens in mosquitoes and birds could affect the dynamics of disease transmission. We collected adult Culex pipiens and Cx. restuans (Cx. pipiens/restuans hereafter) from sites in Wisconsin and tested them for West Nile virus (WNV) and for avian malaria (Plasmodium). Gravid Cx. pipiens/restuans were tested for WNV using a commercial immunoassay, the RAMP?? WNV test, and positive results were verified by reverse transcriptasepolymerase chain reaction. There were 2 WNV-positive pools of Cx. pipiens/restuans in 2006 and 1 in 2007. Using a bias-corrected maximum likelihood estimation, the WNV infection rate for Cx. pipiens/restuans was 5.48/1,000 mosquitoes in 2006 and 1.08/1,000 mosquitoes in 2007. Gravid Cx. pipiens or Cx. restuans were tested individually for avian Plasmodium by a restriction enzymebased assay. Twelve mosquitoes were positive for avian Plasmodium (10.0), 2 were positive for Haemoproteus, and 3 were positive for Leucocytozoon. There were 4 mixed infections, with mosquitoes positive for >1 of the hemosporidian parasites. This work documents a high rate of hemosporidian infection in Culex spp. and illustrates the potential for co-infections with other arboviruses in bird-feeding mosquitoes and their avian hosts. In addition, hemosporidian infection rates may be a useful tool for investigating the ecological dynamics of Culex/avian interactions. ?? 2010 by The American Mosquito Control Association, Inc.

  5. Experimental induced avian E. coli salpingitis

    DEFF Research Database (Denmark)

    Olsen, Rikke Heidemann; Thøfner, Ida; Pors, Susanne Elisabeth

    2016-01-01

    Several types of Escherichia coli have been associated with extra-intestinal infections in poultry, however, they may vary significantly in their virulence potential. The aim of the present study was to investigate the virulence of five strains of E. coli obtained from different disease manifesta......Several types of Escherichia coli have been associated with extra-intestinal infections in poultry, however, they may vary significantly in their virulence potential. The aim of the present study was to investigate the virulence of five strains of E. coli obtained from different disease...... manifestations or from the cloacae of a healthy chicken. The virulence potential of the strains were evaluated in an avian experimental model for ascending infections, and experiments were conducted in both layers and broiler breeders. The clinical outcome of infection was highly depending on the challenge......) had a distinct ability to cause disease. Results of the study shows major differences in virulence of different strains of E. coli in ascending infections; however, there was no indication of tissue-specific adaptation, since strains obtained from lesions unrelated to the reproductive system were...

  6. Infections

    Science.gov (United States)

    ... Type b) How to Take Your Child's Temperature Impetigo Infant Botulism Infections That Pets Carry Influenza (Flu) ... Herpes Hand, Foot, and Mouth Disease Hives (Urticaria) Impetigo Infections That Pets Carry Lyme Disease Measles Molluscum ...

  7. Avian pox in blue-fronted Amazon parrots.

    Science.gov (United States)

    McDonald, S E; Lowenstine, L J; Ardans, A A

    1981-12-01

    During a 1-month period at a quarantine station, an epornitic of avian pox occurred in blue-fronted Amazon parrots (Amazona aestiva). Clinical signs included conjunctivitis, blepharitis, and varying degrees of anorexia and respiratory distress. Lesions included periocular ulcerations and scabs and necrotic plaques in the oral cavity. Histologically, the lesions consisted of epithelial hyperplasia, secondary inflammatory changes, and eosinophilic inclusions which, by electron microscopy, were shown to contain poxvirus. When chicken embryos were inoculated with material from eyelid scabs and pharyngeal plaques, lesions of avian pox developed on the chorioallantoic membrane. The death rate of infected birds was high because of secondary bacterial and fungal infections, but uncomplicated cases were usually self-limiting. Periocular lesions also developed in 2 other species of psittacine birds housed in the same facility.

  8. Emergence of fatal avian influenza in New England harbor seals.

    Science.gov (United States)

    Anthony, S J; St Leger, J A; Pugliares, K; Ip, H S; Chan, J M; Carpenter, Z W; Navarrete-Macias, I; Sanchez-Leon, M; Saliki, J T; Pedersen, J; Karesh, W; Daszak, P; Rabadan, R; Rowles, T; Lipkin, W I

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission. The emergence of new strains of influenza virus is always of great public concern, especially when the infection of a new mammalian host has the potential to result in a widespread outbreak of disease. Here we report the emergence of an avian influenza virus (H3N8) in New England harbor seals which caused an outbreak of pneumonia and contributed to a U.S. federally recognized unusual mortality event (UME). This outbreak is particularly significant, not only because of the disease it caused in seals but also because the virus has naturally acquired mutations that are known to increase transmissibility and virulence in mammals. Monitoring the spillover and adaptation of avian viruses in mammalian species is critically important if we are to understand the factors that lead to both epizootic and zoonotic emergence.

  9. Validation of diagnostic tests for detection of avian influenza in vaccinated chickens using Bayesian analysis

    NARCIS (Netherlands)

    Goot, van der J.A.; Engel, B.; Water, van de S.G.P.; Buist, W.G.; Jong, de M.C.M.; Koch, G.; Boven, van M.; Stegeman, J.A.

    2010-01-01

    Vaccination is an attractive tool for the prevention of outbreaks of highly pathogenic avian influenza in domestic birds. It is known, however, that under certain circumstances vaccination may fail to prevent infection, and that the detection of infection in vaccinated birds can be problematic.

  10. Surveillance for early detection of low pathogenicity avian influenza in poultry

    NARCIS (Netherlands)

    Comin, A.

    2012-01-01

    Infection with low pathogenicity avian influenza (LPAI) virus is widespread and has led to outbreaks in domestic birds in many countries. Although infection does not pose a serious concern for animal heath, LPAI virus subtypes H5 and H7 can mutate into the highly pathogenic form (HPAI), which can

  11. Cross-clade immunity in cats vaccinated with a canarypox-vectored avian influenza vaccine

    Science.gov (United States)

    Several felid species have been shown to be susceptible to infection with highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype. Infection of felids by H5N1 HPAI virus is often fatal, and cat-to-cat transmission has been documented. Domestic cats may then be involved in the transmis...

  12. Large-scale avian influenza surveillance in wild birds throughout the United States.

    Directory of Open Access Journals (Sweden)

    Sarah N Bevins

    Full Text Available Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies.

  13. Avian malaria, ecological host traits and mosquito abundance in southeastern Amazonia.

    Science.gov (United States)

    Fecchio, Alan; Ellis, Vincenzo A; Bell, Jeffrey A; Andretti, Christian B; D'Horta, Fernando M; Silva, Allan M; Tkach, Vasyl V; Weckstein, Jason D

    2017-07-01

    Avian malaria is a vector transmitted disease caused by Plasmodium and recent studies suggest that variation in its prevalence across avian hosts is correlated with a variety of ecological traits. Here we examine the relationship between prevalence and diversity of Plasmodium lineages in southeastern Amazonia and: (1) host ecological traits (nest location, nest type, flocking behaviour and diet); (2) density and diversity of avian hosts; (3) abundance and diversity of mosquitoes; and (4) season. We used molecular methods to detect Plasmodium in blood samples from 675 individual birds of 120 species. Based on cytochrome b sequences, we recovered 89 lineages of Plasmodium from 136 infected individuals sampled across seven localities. Plasmodium prevalence was homogeneous over time (dry season and flooding season) and space, but heterogeneous among 51 avian host species. Variation in prevalence among bird species was not explained by avian ecological traits, density of avian hosts, or mosquito abundance. However, Plasmodium lineage diversity was positively correlated with mosquito abundance. Interestingly, our results suggest that avian host traits are less important determinants of Plasmodium prevalence and diversity in southeastern Amazonia than in other regions in which they have been investigated.

  14. PATHOMORPHOLOGICAL AND HISTOPATHOLOGICAL CHANGES OF AVIAN CHLAMYDIOSIS

    Directory of Open Access Journals (Sweden)

    Edin Šatrović

    2013-01-01

    Full Text Available Avian chlamydiosis is an infectious disease of birds caused by gram-negative bacterium Chlamydophila psittaci. However, this disease can occure among other mammals including humans. Chlamydiosis often presents as an inapparent infection, especially in older birds. During stressful conditions (deficient diet, transportation, great population density in small spaces, etc. and comorbidity, however, the birds usually begin to either present with the clinical signs of chlamydiosis, or secrete many causative agents to the environment. Depending on the serotype of the causative agent, and the type and age of the host, the disease usually causes systemic disorders, and is often fatal. The affected birds present with lethargy, fever, typical yellow-green discharge from the eyes and nose, diarrhea, anorexia and the weight lost. Bearing capacity is reduced. Autopsy findings show hepatomegaly with necrotic foci, splenomegaly and fibrinous inflammation of the pericardium, peritoneum and air sacs. Pathohistological findings reveal elementary bodies in the intercellular space dyed red to reddish purple using the Gimenez technique.Key words: avian chlamydiosis, pathomorphological changes, histopathological changes

  15. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  16. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype of...

  17. [Epidemics of conjunctivitis caused by avian influenza virus and molecular basis for its ocular tropism].

    Science.gov (United States)

    Yang, Chao; Jin, Ming

    2014-07-01

    Avian influenza virus (AIV) has caused several outbreaks in humans, leading to disasters to human beings. The outbreak of H7N9 avian influenza in China in 2003 re-attracted our close attention to this disease. More and more evidences demonstrated that eye is one of invasion portals of AIV, leading to conjunctivitis. The current studies showed that only subtypes H7 and H5 could cause severe systemic infections. Abundant distribution of α-2, 3 siliac acid receptor in conjunctiva and cornea as well as specific activiation of NF-κB signal transduction pathway by subtype H7 virus may contribute to the ocular tropism of the virus. These studies suggest that avian influenza conjunctivitis should be considered as a differential diagnosis during influenza epidemic seasons, and eyes should be well protected for disease control personnel when handling avian influenza epidemics. This review focused on AIV conjunctivitis and the molecular basis of ocular tropism.

  18. Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America

    Science.gov (United States)

    Avian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health. In this study we sequenced the fusion gen...

  19. Oluwayelu et al., Afr J. Infect. Dis.

    African Journals Online (AJOL)

    PROF ADEWUNMI

    Keywords: Low pathogenic avian influenza, Surveillance, Antibodies, Breeders, Layers. Introduction. Avian influenza viruses (AIV) continue to be a global problem because they are potential highly infectious, can rapidly spread and cause disease in domestic poultry, and some viruses may also infect other animal hosts, ...

  20. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  1. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    Science.gov (United States)

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  2. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Science.gov (United States)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  3. Worldwide phylogenetic relationship of avian poxviruses

    Science.gov (United States)

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  4. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  5. Control strategies against avian influenza

    Science.gov (United States)

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  6. The Influence of Ecological Factors on the Transmission and Stability of Avian Influenza Virus in the Environment

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2014-09-01

    Full Text Available Ecology is a science studying the correlation among organisms and some environmental factors. Ecological factors play an important role to transmit Avian Influenza (AI virus and influence its stability in the environment. Avian Influenza virus is classified as type A virus and belong to Orthomyxoviridae family. The virus can infect various vertebrates, mainly birds and mammals, including human. Avian Influenza virus transmission can occur through bird migration. The bird migration patterns usually occur in the large continent covers a long distance area within a certain periode hence transmit the virus from infected birds to other birds and spread to the environment. The biotic (normal flora microbes and abiotic (physical and chemical factors play important role in transmitting the virus to susceptible avian species and influence its stability in the environment. Disinfectant can inactivate the AI virus in the environment but its effectivity is influenced by the concentration, contact time, pH, temperature and organic matter.

  7. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  8. Bird Flu (Avian Influenza)

    Science.gov (United States)

    ... domesticated birds. If possible, avoid rural areas, small farms and open-air markets. Wash your hands. This is one of the simplest and best ways to prevent infections of all kinds. Use an alcohol-based hand sanitizer containing at least 60 percent alcohol ...

  9. Antigenic characterization of H3 subtypes of avian influenza A viruses from North America

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Pong; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A; Nolting, Jaqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  10. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells.

    Directory of Open Access Journals (Sweden)

    Xinquan Zhang

    Full Text Available The infection of chickens with avian Hepatitis E virus (avian HEV can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 - ORF2-4 with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507 was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.

  11. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin.

    Science.gov (United States)

    Boyle, D B; Selleck, P; Heine, H G

    2000-01-01

    To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.

  12. Avian Influenza: Potential Impact on Sub-Saharan Military Populations with High Rates of Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome

    National Research Council Canada - National Science Library

    Feldman, Robert L; Nickell, Kent

    2007-01-01

    ...)/acquired immunodeficiency syndrome. With the arrival of avian influenza in Africa, the potential exists that some of those soldiers might also become infected with H5N1, the virus responsible for the disease...

  13. Transmission and immunopathology of the avian influenza virus A/Anhui/1/2013 (H7N9) human isolate in three commonly commercialized avian species.

    Science.gov (United States)

    Vidaña, B; Dolz, R; Busquets, N; Ramis, A; Sánchez, R; Rivas, R; Valle, R; Cordón, I; Solanes, D; Martínez, J; Majó, N

    2018-05-01

    H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 10 5 embryo infectious dose (EID) 50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL-6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection. © 2017 Blackwell Verlag GmbH.

  14. Avian Influenza: a global threat needing a global solution

    Directory of Open Access Journals (Sweden)

    Koh GCH

    2008-11-01

    Full Text Available Abstract There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical.

  15. Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses.

    Science.gov (United States)

    Slater, Tessa; Eckerle, Isabella; Chang, Kin-Chow

    2018-04-10

    With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.

  16. Infection

    Science.gov (United States)

    2010-09-01

    Klebsiella pneumoniae ). Staphylococcus species is by far the most studied pathogen in musculoskeletal infections and can produce a multilayered biofilm...the immune system and may be involved in both the response to sepsis and malignancy. For example, in neonatal mice, BMP signaling is a normal part of

  17. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  18. Evidence-Based Advances in Avian Medicine.

    Science.gov (United States)

    Summa, Noémie M; Guzman, David Sanchez-Migallon

    2017-09-01

    This article presents relevant advances in avian medicine and surgery over the past 5 years. New information has been published to improve clinical diagnosis in avian diseases. This article also describes new pharmacokinetic studies. Advances in the understanding and treatment of common avian disorders are presented in this article, as well. Although important progress has been made over the past years, there is still much research that needs to be done regarding the etiology, pathophysiology, diagnosis, and treatment of avian diseases and evidence-based information is still sparse in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Using EGEE against avian flu

    CERN Multimedia

    2006-01-01

    During April 2006 avian flu was spreading across the world with the potential of turning into a pandemic, a drug to treat the deadly H5N1 strain was needed. Such a task required the huge processing power provided by EGEE, which analysed 300 000 possible drug components for their suitability. This map shows the network of computer centres and their activity during this time.

  20. Gender determination of avian embryo

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Keith A. (Idaho Falls, ID); Atkinson, David A. (Idaho Falls, ID)

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  1. Slaughter of poultry during the epidemic of avian influenza in the Netherlands in 2003

    NARCIS (Netherlands)

    Gerritzen, M.A.; Lambooij, E.; Stegeman, J.A.; Spruijt, B.M.

    2006-01-01

    During an outbreak of avian influenza in the Netherlands in spring 2003, the disease was controlled by destroying all the poultry on the infected farms and on all the farms within a radius of 3 km. In total, 30 million birds were killed on 1242 farms and in more than 8000 hobby flocks, by using

  2. RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza

    DEFF Research Database (Denmark)

    Dybkær, Karen; Munch, Mette; Handberg, Kurt

    2003-01-01

    A one-tube reverse transcriptase/polymerase chain reaction coupled with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) was developed for the rapid detection of avian influenza virus (AIV) in clinical specimens. A total of 419 swab pools were analyzed from chickens experimentally infected...

  3. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    Science.gov (United States)

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  4. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Science.gov (United States)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  5. No evidence that migratory geese disperse avian influenza viruses from breeding to wintering ground.

    Directory of Open Access Journals (Sweden)

    Shenglai Yin

    Full Text Available Low pathogenic avian influenza virus can mutate to a highly pathogenic strain that causes severe clinical signs in birds and humans. Migratory waterfowl, especially ducks, are considered the main hosts of low pathogenic avian influenza virus, but the role of geese in dispersing the virus over long-distances is still unclear. We collected throat and cloaca samples from three goose species, Bean goose (Anser fabalis, Barnacle goose (Branta leucopsis and Greater white-fronted goose (Anser albifrons, from their breeding grounds, spring stopover sites, and wintering grounds. We tested if the geese were infected with low pathogenic avian influenza virus outside of their wintering grounds, and analysed the spatial and temporal patterns of infection prevalence on their wintering grounds. Our results show that geese were not infected before their arrival on wintering grounds. Barnacle geese and Greater white-fronted geese had low prevalence of infection just after their arrival on wintering grounds in the Netherlands, but the prevalence increased in successive months, and peaked after December. This suggests that migratory geese are exposed to the virus after their arrival on wintering grounds, indicating that migratory geese might not disperse low pathogenic avian influenza virus during autumn migration.

  6. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers

    NARCIS (Netherlands)

    Poetri, O.N.; Boven, M.; Claassen, I.J.T.M.; Koch, G.; Wibawan, I.W.; Stegeman, A.; Broek, van den J.; Bouma, A.

    2014-01-01

    The aim of this study was to determine whether a single vaccination of commercial layer type chickens with an inactivated vaccine containing highly pathogenic avian influenza virus strain H5N1 A/chicken/Legok/2003, carried out on the farm, was sufficient to protect against infection with the

  7. Respiratory immune responses in the chicken; Towards development of mucosal avian influenza virus vaccines

    NARCIS (Netherlands)

    de Geus, E.D.

    2012-01-01

    Several important poultry pathogens, including avian influenza virus (AIV), enter the host through the mucosae of the respiratory tract (RT) and subsequently disseminate towards other organs in the body. Therefore, animal health significantly depends on the control of infection in the lung tissue by

  8. Transfer of maternal antibodies against avian influenza virus in mallards (Anas platyrhynchos)

    NARCIS (Netherlands)

    Van Dijk, J. G.B.; Mateman, A.C.; Klaassen, M.R.J.

    2014-01-01

    Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV

  9. Metapneumovirus aviar: diagnóstico y control (Avian Metapneumovirus: diagnosis and control)

    OpenAIRE

    Acevedo Beiras, Ana María.

    2011-01-01

    ResumenEl Metapneumovirus aviar (aMPV) causa una infección aguda, altamente contagiosa del tracto respiratorio superior principalmente en pavos y pollos.SummaryAvian metapneumovirus (aMPV) causes an acute highly contagious upper respiratory tract infection primarily of turkeys and chickens.

  10. Avian Malaria ( Plasmodium spp.) in Captive Magellanic Penguins ( Spheniscus magellanicus ) from Northern Argentina, 2010.

    Science.gov (United States)

    Vanstreels, Ralph Eric Thijl; Capellino, Félix; Silveira, Patricia; Braga, Érika M; Rodríguez-Heredia, Sergio Andres; Loureiro, Julio; Catão-Dias, José Luiz

    2016-07-01

    We report two cases of lethal avian malaria in Magellanic Penguins (Spheniscus magellanicus) captive at San Clemente del Tuyú, Argentina, approximately 560 km north of Argentinean breeding colonies of Magellanic Penguins. Blood smears revealed both penguins were concurrently infected by Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) sp., and Plasmodium (Novyella) sp.

  11. Mapping the risk of avian influenza in wild birds in the US

    Science.gov (United States)

    Trevon L. Fuller; Sassan S. Saatchi; Emily E. Curd; Erin Toffelmier; Henri A. Thomassen; Wolfgang Buermann; David F. DeSante; Mark P. Nott; James F. Saracco; C. J. Ralph; John D. Alexander; John P. Pollinger; Thomas B. Smith.

    2010-01-01

    Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur...

  12. Active Surveillance for Avian Influenza Virus, Egypt, 2010–2012

    Science.gov (United States)

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Gomaa, Mokhtar M.; Maatouq, Asmaa M.; Shehata, Mahmoud M.; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A.; McKenzie, Pamela P.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.

    2014-01-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed. PMID:24655395

  13. The role of environmental transmission in recurrent avian influenza epidemics.

    Directory of Open Access Journals (Sweden)

    Romulus Breban

    2009-04-01

    Full Text Available Avian influenza virus (AIV persists in North American wild waterfowl, exhibiting major outbreaks every 2-4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host-pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size. Second, environmental transmission offers a parsimonious explanation of the 2-4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year are sufficient for avian influenza to persist in populations where it would otherwise vanish.

  14. Cross reactive cytotoxic T lymphocytes from MHC-defined birds against homologous and heterologous avian influenza subtypes

    Science.gov (United States)

    Numerous reports have implicated a role of the major-histocompatibility complex (MHC) in genetic resistance of chickens to bacterial infection and viral diseases. However, little is known about the role of MHC in generating protective immunity following avian influenza (AI) infection. Because vacc...

  15. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms

    NARCIS (Netherlands)

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry

  16. Wind-mediated spread of low-pathogenic avian influenza virus into the environment during outabreaks at commercial poultry farms

    NARCIS (Netherlands)

    Jonges, Marcel; Leuken, Van Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne

  17. Avian pathogenic Escherichia coli MT78 invades chicken fibroblasts.

    Science.gov (United States)

    Matter, Letícia Beatriz; Barbieri, Nicolle Lima; Nordhoff, Marcel; Ewers, Christa; Horn, Fabiana

    2011-02-24

    Avian pathogenic Escherichia coli (APEC) are responsible for extraintestinal diseases, called colibacillosis, in avian species. The most severe manifestation of the disease is colisepticemia that usually starts at the respiratory tract and may result in bird death. However, it is not yet clear how APEC cross the respiratory epithelium and get into the bloodstream. In this work, we studied the interaction between 8 APEC strains (UEL31, UEL17, UEL13, UEL29, MT78, IMT5155, IMT2470, A2363) and a chicken non-phagocytic cell, the fibroblast CEC-32 cell line. We investigated the association profile, the invasion capability, the cytotoxicity effect and the induction of caspase-3/7 activation in an attempt to understand the way the pathogen gains access to the host bloodstream. Association to cells was determined after 1 h of infection, while cell invasion was determined after 4 and 24 h of infection. The cytotoxic effect of bacterial infection was measured by lactate dehydrogenase (LDH) release and the activation of the apoptotic program was verified by caspase-3/7 activation. Also, the presence of genes for adhesins, invasins and other related virulence-associated factors was verified by PCR. All bacterial strains showed similarity in relation to adhesion, LDH release and caspase-3/7 activation. However, one APEC strain, MT78, showed high invasion capability, comparable to the invasive Salmonella typhimurium strain SL1344. Since an APEC strain was capable of invading non-phagocytic cells in vitro, the same may be happening with the epithelial cells of the avian respiratory tract in vivo. CEC-32 monolayers can also provide a useful experimental model to study the molecular mechanisms used by APEC to invade non-phagocytic cells. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Poultry slaughtering practices in rural communities of Bangladesh and risk of avian influenza transmission

    DEFF Research Database (Denmark)

    Rimi, Nadia Ali; Sultana, Rebeca; Ishtiak-Ahmed, Kazi

    2014-01-01

    Slaughtering sick poultry is a risk factor for human infection with highly pathogenic avian influenza and is a common practice in Bangladesh. This paper describes human exposures to poultry during slaughtering process and the customs and rituals influencing these practices in two Bangladeshi rural...... people gathered and participated in the slaughtering of poultry. Exposure to poultry slaughtering created numerous opportunities for potential avian influenza transmission. Strategies that can be further tested to determine if they reduce the risk of transmission include skinning the carcasses of sick...

  19. Population dynamics and rates of molecular evolution of a recently emerged paramyxovirus, avian metapneumovirus subtype C.

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-02-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 x 10(-3) to 7 x 10(-3) substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present.

  20. Environmental and demographic determinants of avian influenza viruses in waterfowl across the contiguous United States.

    Directory of Open Access Journals (Sweden)

    Matthew L Farnsworth

    Full Text Available Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic

  1. Understanding of and possible strategies to avian influenza outbreak.

    Science.gov (United States)

    Shen, Junkang; Zhang, Andy; Xu, Huifen; Sirois, Pierre; Zhang, Jia; Li, Kai; Xiao, Li

    2013-01-01

    Swine flu and avian flu outbreaks have occurred in recent years in addition to seasonal flu. As mortality rate records are not available at the early stage of an outbreak, two parameters may be useful to assess the viral virulence : 1. the time required for the first domestic case in a newly involved region, and 2. the doubling time of new infected cases. Viral virulence is one of the most important factors in guiding short term and immediate responses. Although routine surveillance and repeated vaccination are useful efforts, some novel strategies that may be relevant to prevent and control the spread of influenza among human beings and domestic animals are discussed.

  2. Seasonality, distribution and taxonomic status of avian ...

    African Journals Online (AJOL)

    Description of a new species is based upon morphology of gametocyte development in the peripheral blood of the avian host. This does not distinguish between morphologically identical gametocytes from different avian host families, nor is species or family level a valid taxonomic character. Thus, Haemoproteus and ...

  3. Mechanisms of avian songs and calls

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye

    2008-01-01

    The avian vocal organ, the syrinx, is a specialized structure located rather inaccessibly in an air sac close to the heart where the trachea bifurcates into the two primary bronchi. The syrinx of different avian taxa varies so much in position and morphology that it has been used for taxonomy. It...

  4. Avian Influenza Policy Analysis | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Governments in Southeast Asia have adopted a range of policies aimed at controlling the disease in animals, preventing its spread to humans and strengthening national preparedness for an avian influenza pandemic. The Asia Partnership for Avian Influenza Research (APAIR) brings together national research agencies ...

  5. MANAGING AVIAN FLU, CARCASS MANAGEMENT & BIOSOLIDS

    Science.gov (United States)

    The avian influenza virus is discussed with emphasis on the impact to poultry and possible movement of the highly pathogenic H5N 1 virus to humans. A review is made of the worldwide effects to date of the avian influenza viruses; methods for the viruses to enter recreational wate...

  6. Avian colibacillosis caused by an intestinal pathogenic Escherichia coli isolate from calf diarrhea.

    Science.gov (United States)

    Matsuda, Kiku; Chaudhari, Atul A; Lee, John Hwa

    2010-10-01

    An intestinal pathogenic Escherichia coli isolate from calf diarrhea, containing the iutA, f17A, afa-8D, and cnf2 genes, was able to cause avian colibacillosis after experimental infection in chickens. Intra-tracheal inoculation and spray of this strain caused 10% of mortality and gross lesions, including airsacculitis, pericarditis, and perihepatitis. These results suggest that some bovine pathogenic E. coli can cause extra-intestinal infections in other animal species. 2010 Elsevier Ltd. All rights reserved.

  7. Drop of egg production in chickens by experimental infection with an avian metapneumovirus strain PLE8T1 derived from swollen head syndrome and the application to evaluate vaccine.

    Science.gov (United States)

    Sugiyama, Miki; Koimaru, Hiroyuki; Shiba, Masahiro; Ono, Eriko; Nagata, Tadashi; Ito, Toshihiro

    2006-08-01

    Decreases in egg production and increased incidence of abnormal eggs due to malformation of egg shells were observed in specific pathogen free (SPF) 173-day-old laying hens inoculated intravenously with an avian metapneumovirus (aMPV) strain PLE8T1. This strain was derived from an isolate from broiler birds exhibiting swollen head syndrome (SHS). Some SPF birds inoculated with the virus showed, slight diarrhea without any respiratory symptoms. Thus, the PLE8T1 strain was used as a challenge virus to evaluate efficacy of aMPV vaccines. SPF chickens which received a live attenuated aMPV vaccine (NEMOVAC; Merial) at 7 or 77 days old and an inactivated aMPV vaccine (OVO-4; Merial) at 105 days old were protected against poor egg production caused by the challenge with the PLE8T1 strain. Thus, aMPV, the PLE8T1 strain passaged 22 times after isolation, from birds exhibiting SHS, could induce a drop in egg production in laying hens accompanied by malformation of egg shells. It was suggested that this challenge system could be applied to evaluate the efficacy of aMPV vaccine.

  8. Emergence of a novel avian pox disease in British tit species.

    Science.gov (United States)

    Lawson, Becki; Lachish, Shelly; Colvile, Katie M; Durrant, Chris; Peck, Kirsi M; Toms, Mike P; Sheldon, Ben C; Cunningham, Andrew A

    2012-01-01

    Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major) from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006-2010. Reports of affected Paridae (211 incidents) outnumbered reports in non-Paridae (91 incidents). The majority (90%) of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3%) than were incidents in non-Paridae hosts (31.9%). Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.

  9. Emergence of a novel avian pox disease in British tit species.

    Directory of Open Access Journals (Sweden)

    Becki Lawson

    Full Text Available Avian pox is a viral disease with a wide host range. In Great Britain, avian pox in birds of the Paridae family was first diagnosed in a great tit (Parus major from south-east England in 2006. An increasing number of avian pox incidents in Paridae have been reported each year since, indicative of an emergent infection. Here, we utilise a database of opportunistic reports of garden bird mortality and morbidity to analyse spatial and temporal patterns of suspected avian pox throughout Great Britain, 2006-2010. Reports of affected Paridae (211 incidents outnumbered reports in non-Paridae (91 incidents. The majority (90% of Paridae incidents involved great tits. Paridae pox incidents were more likely to involve multiple individuals (77.3% than were incidents in non-Paridae hosts (31.9%. Unlike the small wart-like lesions usually seen in non-Paridae with avian pox in Great Britain, lesions in Paridae were frequently large, often with an ulcerated surface and caseous core. Spatial analyses revealed strong clustering of suspected avian pox incidents involving Paridae hosts, but only weak, inconsistent clustering of incidents involving non-Paridae hosts. There was no spatial association between Paridae and non-Paridae incidents. We documented significant spatial spread of Paridae pox from an origin in south-east England; no spatial spread was evident for non-Paridae pox. For both host clades, there was an annual peak of reports in August/September. Sequencing of the avian poxvirus 4b core protein produced an identical viral sequence from each of 20 great tits tested from Great Britain. This sequence was identical to that from great tits from central Europe and Scandinavia. In contrast, sequence variation was evident amongst virus tested from 17 non-Paridae hosts of 5 species. Our findings show Paridae pox to be an emerging infectious disease in wild birds in Great Britain, apparently originating from viral incursion from central Europe or Scandinavia.

  10. [The primordial reservoir in the infectious contagion cicle. The avian influenza model].

    Science.gov (United States)

    Suárez Fernández, Guillermo

    2006-01-01

    An update of the role of the primordial reservoir in the biological cycle of the process of infection and contagion is made, using diseases of very frequent incidence at the present moment in the Mediterranean Area and the Iberian Peninsula. These diseases are, amongst others Severe and Acute Respiratory Syndrome (SARS), Rabies, Lyme disease, African Horse Sickness, Blue Tongue, African Swine Fever, Ebola Hemorrhagic Fever, Hantavirosis, and Avian Influenza. The zoonoses classification proposed by the WHO Control Center in Athens in 1994 for the Mediterranean Area, based on the type of reservoir, the importance of the process and the type of transmission, and not focusing on the etiological agent, is very positively valued. Finally, the problem of Avian Influenza and the real risk posed by aquatic migratory birds in the diffusion and contagion of the present Avian Influence epidemics is reviewed.

  11. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v...... into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion......-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes...

  12. Avian polymavirus in wild birds: genome analysis of isolates from Falconiformes and Psittaciformes.

    Science.gov (United States)

    Johne, R; Müller, H

    1998-01-01

    Avian polyomavirus (APV) infections have been reported to cause fatal disease in a wide range of psittacine species. Here we demonstrate APV infections in buzzards (Buteo buteo) and in a falcon (Falco tinnunculus) found dead in Germany, and in lovebirds (Agapornis pullaria) with fatal disease, wild-caught in Moçambique. APV infection in buzzards was determined by PCR amplification of parts of the viral genome followed by Southern blot hybridisation. The genomes of the isolates obtained from the falcon and one of the lovebirds proved to be very closely related to those of Budgerigar Fledgling Disease Virus (BFDV)-1, BFDV-2 and BFDV-3, isolated from budgerigar, chicken, and parakeet, respectively. A consensus sequence was delineated from the known nucleotide sequences of APV isolates. The significance of some nucleotide changes is discussed. Infectivity of all of these isolates was neutralized by antibodies directed against BFDV-1. Data presented in this investigation show that the polyomavirus isolates obtained from different avian species so far all belong to one genotype and one serotype within the proposed subgenus Avipolyomavirus of the family Papovaviridae. The designation Budgerigar Fledgling Disease Virus (BFDV) is, therefore, misleading as this virus type infects different species of birds. The name Avian Polymavirus and the abreviation APV should be adopted to all of the isolates investigated in detail at present. The possible role of birds of passage in the epidemiology in APV infections is discussed.

  13. Avian trichomonosis in spotted owls (Strix occidentalis: Indication of opportunistic spillover from prey

    Directory of Open Access Journals (Sweden)

    Krysta H. Rogers

    2016-12-01

    Full Text Available Avian trichomonosis, caused by the flagellated protozoan parasite Trichomonas gallinae, has variable pathogenicity among bird species ranging from asymptomatic infections to severe disease periodically manifesting in epidemic mortality. Traditionally, columbids are identified as highly susceptible to infection with occasional spillover into raptors that prey on infected birds. We identified avian trichomonosis in two dead California spotted owls (Strix occidentalis occidentalis and three dead northern spotted owls (S. o. caurina in California during 2011–2015; infection was confirmed in four owls by PCR. Pathologic lesions associated with trichomonosis in the owls included caseonecrotic lesions of the upper palate accompanied by oropharyngitis, cellulitis, myositis, and/or sinusitis. Spotted owls are known to mainly feed on small mammals; therefore, the source of infection as well as the significance of the disease in spotted owls is unclear. These owl trichomonosis cases coincided temporally and spatially with three trichomonosis epidemics in band-tailed pigeons (Patagioenas fasciata monilis. The same parasite, T. gallinae subtype A2, was isolated from the spotted owls and band-tailed pigeons, suggesting the owls became infected when opportunistically feeding on pigeons during mortality events. Avian trichomonosis is an important factor in the decline of the Pacific Coast band-tailed pigeon population with near-annual mortality events during the last 10 years and could have conservation implications for raptor species at risk, particularly those that are facing multiple threats.

  14. Transmission of Avian Influenza Virus (H3N2) to Dogs

    Science.gov (United States)

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAα 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus. PMID:18439355

  15. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo

    Czech Academy of Sciences Publication Activity Database

    Reinišová, Markéta; Šenigl, Filip; Yin, X.; Plachý, Jiří; Geryk, Josef; Elleder, Daniel; Svoboda, Jan; Federspiel, M. J.; Hejnar, Jiří

    2008-01-01

    Roč. 82, č. 5 (2008), s. 2097-2105 ISSN 0022-538X R&D Projects: GA ČR GA523/07/1171; GA ČR GA523/07/1282 Grant - others:NIH(US) AI48682 Institutional research plan: CEZ:AV0Z50520514 Keywords : retrovirus receptors * avian sarcoma and leukosis virus * resistance to retrovirus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.308, year: 2008

  16. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    Science.gov (United States)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  17. USGS role and response to highly pathogenic avian influenza

    Science.gov (United States)

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  18. Genetic applications in avian conservation

    Science.gov (United States)

    Haig, Susan M.; Bronaugh, Whitcomb M.; Crowhurst, Rachel S.; D'Elia, Jesse; Eagles-Smith, Collin A.; Epps, Clinton W.; Knaus, Brian; Miller, Mark P.; Moses, Michael L.; Oyler-McCance, Sara; Robinson, W. Douglas; Sidlauskas, Brian

    2011-01-01

    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond (Table 1; Ryder 1986, Moritz 1994, Mayden and Wood 1995, Haig and Avise 1996, Hazevoet 1996, Palumbi and Cipriano 1998, Hebert et al. 2004, Mace 2004, Wheeler et al. 2004, Armstrong and Ball 2005, Baker 2008, Ellis et al. 2010, Winker and Haig 2010). Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic information. Here, we outline conservation topics for which genetic information can be helpful, provide examples of where genetic techniques have been used best in avian conservation, and point to current technical bottlenecks that prevent better use of genomics to resolve conservation issues related to birds. We hope this review will provide geneticists and avian ecologists with a mutually beneficial dialogue on how this integrated field can solve current and future problems.

  19. Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings.

    Science.gov (United States)

    Samy, Ahmed; Naguib, Mahmoud M

    2018-02-24

    The avian respiratory system hosts a wide range of commensal and potential pathogenic bacteria and/or viruses that interact with each other. Such interactions could be either synergistic or antagonistic, which subsequently determines the severity of the disease complex. The intensive rearing methods of poultry are responsible for the marked increase in avian respiratory diseases worldwide. The interaction between avian influenza with other pathogens can guarantee the continuous existence of other avian pathogens, which represents a global concern. A better understanding of the impact of the interaction between avian influenza virus and other avian respiratory pathogens provides a better insight into the respiratory disease complex in poultry and can lead to improved intervention strategies aimed at controlling virus spread.

  20. Avian influenza: The tip of the iceberg

    Directory of Open Access Journals (Sweden)

    Balkhy Hanan

    2008-01-01

    Full Text Available For some years now, we have been living with the fear of an impending pandemic of avian influenza (AI. Despite the recognition, in 1996, of the global threat posed by the highly pathogenic H5N1 influenza virus found in farmed geese in Guangdong Province, China, planning for the anticipated epidemic remains woefully inadequate; this is especially true in developing countries such as Saudi Arabia. These deficiencies became obvious in 1997, with the outbreak of AI in the live animal markets in Hong Kong that led to the transmission of infection to 18 humans with close contact with diseased birds; there were six reported deaths. [1] In 2003, with the reemergence of H5N1 (considered the most likely AI virus in the Republic of Korea and its subsequent spread to Thailand, Vietnam, Hong Kong and China. Many countries started aggressively making preparations to meet the threat. [2] The pressure for real action from governments has increased. Most developed countries have requested increased funding for the search for a more effective vaccine, for stockpiling possibly helpful antiviral drugs, and for intensifying domestic and global surveillance. [3] Most countries, however, continue to be inadequately prepared for such an epidemic, especially with regard to animal surveillance in the farm market and surveillance among migratory birds. Even now, most countries do not have the ability to detect disease among humans in the early stages of an outbreak nor do most hospitals comply with effective infection control measures that could curtail the spread of the virus in the early stages of an epidemic. In Saudi Arabia we are rapidly implementing many of these measures. [4

  1. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  2. Differences in the detection of highly pathogenic avian influenza H5N1 virus in feather samples from 4-week-old and 24-week-old infected Pekin ducks (Anas platyrhynchos var. domestica).

    Science.gov (United States)

    Aiello, Roberta; Beato, Maria Serena; Mancin, Marzia; Rigoni, Michela; Tejeda, Aurora Romero; Maniero, Silvia; Capua, Ilaria; Terregino, Calogero

    2013-08-30

    Previous studies have reported the detection of H5N1 HPAI virus in feathers from ducks naturally and experimentally infected and suggested that feather calami (FC) could be used as diagnostic samples for the early detection of H5N1 HPAI infections. Ducks are readily infected with H5N1 HPAI viruses although the development of clinical signs and deaths were reported as age-related with younger birds being more susceptible. The correlation between age and virus localisation in FC of infected ducks has not been studied to date. In the present study juvenile (4-week-old) and adult (24-week-old) Pekin ducks (Anas platyrhynchos var. domestica) were infected experimentally with a clade 2.2 H5N1 HPAI virus (A/duck/Nigeria/1071-23/2007). Tracheal (Tr) and cloacal (Cl) swabs and FC were collected at 3, 5, 7 and 10 days post infection and tested by RRT-PCR and a double antibody sandwich-ELISA (DAS-ELISA) developed in house. Virus was detected in swabs and FC of challenged ducks with a higher rate of detection in juvenile ducks. In this age group virus was detected over a longer period of time in FC compared to swabs. Our study showed that FC samples collected from young ducks are a valid diagnostic specimen for H5N1 HPAI virus detection. The DAS-ELISA on FC proved to be a suitable alternative diagnostic test when molecular and/or virus isolation techniques are not available therefore it could be useful in the diagnosis of H5N1 HPAI infections in under-resourced countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA

    DEFF Research Database (Denmark)

    Munch, M.; Nielsen, L.P.; Handberg, Kurt

    2001-01-01

    Avian influenza virus infections are a major cause of morbidity and rapid identification of the virus has important clinical, economical and epidemiological implications. We have developed a one-tube Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for the rapid diagnosis of avian influenza...... A. A panel of reference influenza strains from various hosts including avian species, human, swine and horse were evaluated in a one tube RT-PCR using primers designed for the amplification of a 218 bp fragment of the NP gene. The PCR products were detected by PCR-ELISA by use of an internal...

  4. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith); K.J. Stittelaar (Koert); G. van Amerongen (Geert); L.A. Reperant (Leslie); L. de Waal (Leon); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2012-01-01

    textabstractHumans may be infected by different influenza A viruses-seasonal, pandemic, and zoonotic-which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these

  5. Avian Habitat Data; Seward Peninsula, Alaska, 2012

    Data.gov (United States)

    Department of the Interior — This data product contains avian habitat data collected on the Seward Peninsula, Alaska, USA, during 21 May – 10 June 2012. We conducted replicated 10-min surveys...

  6. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  7. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses

    Science.gov (United States)

    Arai, Yasuha; Kawashita, Norihito; Daidoji, Tomo; Ibrahim, Madiha S.; El-Gendy, Emad M.; Takagi, Tatsuya; Takahashi, Kazuo; Suzuki, Yasuo; Ikuta, Kazuyoshi; Nakaya, Takaaki; Shioda, Tatsuo; Watanabe, Yohei

    2016-01-01

    A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation. PMID:27097026

  8. Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation.

    Science.gov (United States)

    Nam, Jeong-Hyun; Kim, Eun-Ha; Song, Daesub; Choi, Young Ki; Kim, Jeong-Ki; Poo, Haryoung

    2011-12-01

    The migratory waterfowl of the world are considered to be the natural reservoir of influenza A viruses. Of the 16 hemagglutinin subtypes of avian influenza viruses, the H6 subtype is commonly perpetuated in its natural hosts and is of concern due to its potential to be a precursor of highly pathogenic influenza viruses by reassortment. During routine influenza surveillance, we isolated an unconventional H6N5 subtype of avian influenza virus. Experimental infection of mice revealed that this isolate replicated efficiently in the lungs, subsequently spread systemically, and caused lethality. The isolate also productively infected ferrets, with direct evidence of contact transmission, but no disease or transmission was seen in pigs. Although the isolate possessed the conserved receptor-binding site sequences of avian influenza viruses, it exhibited relatively low replication efficiencies in ducks and chickens. Our genetic and molecular analyses of the isolate revealed that its PB1 sequence showed the highest evolutionary relationship to those of highly pathogenic H5N1 avian influenza viruses and that its PA protein had an isoleucine residue at position 97 (a representative virulence marker). Further studies will be required to examine why our isolate has the virologic characteristics of mammalian influenza viruses but the archetypal receptor binding profiles of avian influenza viruses, as well as to determine whether its potential virulence markers (PB1 analogous to those of H5N1 viruses or isoleucine residue at position 97 within PA) could render it highly pathogenic in mice.

  9. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Yasuha Arai

    2016-04-01

    Full Text Available A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  10. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  11. The Potential of Avian H1N1 Influenza A Viruses to Replicate and Cause Disease in Mammalian Models

    Science.gov (United States)

    Koçer, Zeynep A.; Krauss, Scott; Stallknecht, David E.; Rehg, Jerold E.; Webster, Robert G.

    2012-01-01

    H1N1 viruses in which all gene segments are of avian origin are the most frequent cause of influenza pandemics in humans; therefore, we examined the disease-causing potential of 31 avian H1N1 isolates of American lineage in DBA/2J mice. Thirty of 31 isolates were very virulent, causing respiratory tract infection; 22 of 31 resulted in fecal shedding; and 10 of 31 were as pathogenic as the pandemic 2009 H1N1 viruses. Preliminary studies in BALB/cJ mice and ferrets showed that 1 of 4 isolates tested was more pathogenic than the pandemic 2009 H1N1 viruses in BALB/cJ mice, and 1 of 2 strains transmitted both by direct and respiratory-droplet contact in ferrets. Preliminary studies of other avian subtypes (H2, H3, H4, H6, H10, H12) in DBA/2J mice showed lower pathogenicity than the avian H1N1 viruses. These findings suggest that avian H1N1 influenza viruses are unique among influenza A viruses in their potential to infect mammals. PMID:22848544

  12. Comparative pathogenesis in specific-pathogen-free chickens of two strains of avian hepatitis E virus recovered from a chicken with Hepatitis-Splenomegaly syndrome and from a clinically healthy chicken.

    Science.gov (United States)

    Billam, P; LeRoith, T; Pudupakam, R S; Pierson, F W; Duncan, R B; Meng, X J

    2009-11-18

    Avian hepatitis E virus (avian HEV) is the primary causative agent of Hepatitis-Splenomegaly (HS) syndrome in chickens. Recently, a genetically unique strain of avian HEV, designated avian HEV-VA, was recovered from healthy chickens in Virginia. The objective of this study was to experimentally compare the pathogenicity of the prototype strain recovered from a chicken with HS syndrome and the avian HEV-VA strain in specific-pathogen-free chickens. An infectious stock of the avian HEV-VA strain was first generated and its infectivity titer determined in chickens. For the comparative pathogenesis study, 54 chickens of 6-week-old were assigned to 3 groups of 18 chickens each. The group 1 chickens were each intravenously inoculated with 5x10(2.5) 50% chicken infectious dose of the prototype strain. The group 2 received the same dose of the avian HEV-VA strain, and the group 3 served as negative controls. Six chickens from each group were necropsied at 2, 3 and 4 weeks post-inoculation (wpi). Most chickens in both inoculated groups seroconverted by 3wpi, and the mean anti-avian HEV antibody titers were higher for the prototype strain group than the avian HEV-VA strain group. There was no significant difference in the patterns of viremia and fecal virus shedding. Blood analyte profiles did not differ between treatment groups except for serum creatine phosphokinase levels which were higher for prototype avian HEV group than avian HEV-VA group. The hepatic lesion score was higher for the prototype strain group than the other two groups. The results indicated that the avian HEV-VA strain is only slightly attenuated compared to the prototype strain, suggesting that the full spectrum of HS syndrome is likely associated with other co-factors.

  13. Avian Influenza: Myth or Mass Murder?

    Directory of Open Access Journals (Sweden)

    Carol Louie

    2005-01-01

    Full Text Available The purpose of the present article was to determine whether avian influenza (AI is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  14. Avian influenza in Chile: a successful experience.

    Science.gov (United States)

    Max, Vanessa; Herrera, José; Moreira, Rubén; Rojas, Hernán

    2007-03-01

    Avian influenza (AI) was diagnosed in May 2002 for the first time in Chile and South America. The epidemic was caused by the highly pathogenic AI (HPAI) virus subtype H7N3 that emerged from a low pathogenic virus. The index farm was a broiler breeder, located in San Antonio, V Region, which at the time was a densely populated poultry area. Stamping of 465,000 breeders, in 27 sheds, was immediately conducted. Surveillance activities detected a second outbreak, 1 wk later, at a turkey breeding farm from the same company. The second farm was located 4 km from the index case. Only 25% of the sheds were infected, and 18,500 turkeys were destroyed. In both outbreaks, surveillance zones and across-country control measures were established: prediagnosis quarantine, depopulation, intensive surveillance, movement control, and increased biosecurity. Other measures included cleaning, disinfection, and controlling the farms with sentinels to detect the potential presence of the virus. Zoning procedures were implemented to allow the international trade of poultry products from unaffected areas. Positive serologic results to H5N2 virus also were detected in other poultry farms, but there was no evidence of clinical signs or virus isolation. Epidemiological investigation and laboratory confirmation determined that positive serology was related to a contaminated imported batch of vaccine against inclusion body hepatitis. All actions taken allowed the control of the epidemic, and within 7 mo, Chile was free of AI. Epidemic and control measures that prevented further spread are described in this article, which illustrates the importance of a combination of control measures during and after an outbreak of AI. This study is a good example of how veterinary services need to respond if their country is affected by HPAI.

  15. Evolution of Plastic Transmission Strategies in Avian Malaria

    Science.gov (United States)

    Cornet, Stéphane; Nicot, Antoine; Rivero, Ana; Gandon, Sylvain

    2014-01-01

    Malaria parasites have been shown to adjust their life history traits to changing environmental conditions. Parasite relapses and recrudescences—marked increases in blood parasite numbers following a period when the parasite was either absent or present at very low levels in the blood, respectively—are expected to be part of such adaptive plastic strategies. Here, we first present a theoretical model that analyses the evolution of transmission strategies in fluctuating seasonal environments and we show that relapses may be adaptive if they are concomitant with the presence of mosquitoes in the vicinity of the host. We then experimentally test the hypothesis that Plasmodium parasites can respond to the presence of vectors. For this purpose, we repeatedly exposed birds infected by the avian malaria parasite Plasmodium relictum to the bites of uninfected females of its natural vector, the mosquito Culex pipiens, at three different stages of the infection: acute (∼34 days post infection), early chronic (∼122 dpi) and late chronic (∼291 dpi). We show that: (i) mosquito-exposed birds have significantly higher blood parasitaemia than control unexposed birds during the chronic stages of the infection and that (ii) this translates into significantly higher infection prevalence in the mosquito. Our results demonstrate the ability of Plasmodium relictum to maximize their transmission by adopting plastic life history strategies in response to the availability of insect vectors. PMID:25210974

  16. The role of the legal and illegal trade of live birds and avian products in the spread of avian influenza.

    Science.gov (United States)

    van den Berg, T

    2009-04-01

    The panzootic of the H5N1 strain of highly pathogenic avian influenza has become an international crisis. All parts of the world are now considered at risk due to trade globalisation, with the worldwide movement of animals, products and humans, and because of the possible spread of the virus through the migration of wild birds. The risk of introducing notifiable avian influenza (NAI) through trade depends on several factors, including the disease status of the exporting country and the type of products. The highest risk occurs in the trade of live birds. It is important to assess and manage these risks to ensure that global trade does not result in the dissemination of NAI. However, it is also important that the risk of infection is not used as an unjustified trade barrier. The role of the regulatory authorities is thus to facilitate the safe trade of animal products according to international guidelines. Nevertheless, the balance between acceptable risk and safe trade is difficult to achieve. Since the movements of poultry and birds are sometimes difficult to trace, the signature or 'identity card' of each isolated virus can be very informative. Indeed, sequencing the genes of H5N1 and other avian influenza viruses has assisted greatly in establishing links and highlighting differences between isolates from different countries and tracing the possible source of introduction. Recent examples from Asia, Europe and Africa, supported by H5N1 molecular fingerprinting, have demonstrated that the sources of introduction can be many and no route should be underestimated.

  17. A Simple Stochastic Model with Environmental Transmission Explains Multi-Year Periodicity in Outbreaks of Avian Flu

    NARCIS (Netherlands)

    Wang, R.H.; Jin, Z.; Liu, Q.X.; van de Koppel, J.; Alonso, D.

    2012-01-01

    Avian influenza virus reveals persistent and recurrent outbreaks in North American wild waterfowl, and exhibits major outbreaks at 2-8 years intervals in duck populations. The standard susceptible-infected-recovered (SIR) framework, which includes seasonal migration and reproduction, but lacks

  18. A simple stochastic model with environmental transmission explains multi-year periodicity in outbreaks of avian flu

    NARCIS (Netherlands)

    Wang, R.H.; Jin, Z.; Liu, Q.X.; Van de Koppel, J.; Alonso, D.

    2012-01-01

    Avian influenza virus reveals persistent and recurrent outbreaks in North American wild waterfowl, and exhibits major outbreaks at 2–8 years intervals in duck populations. The standard susceptible-infected- recovered (SIR) framework, which includes seasonal migration and reproduction, but lacks

  19. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017.

    Science.gov (United States)

    Beerens, Nancy; Koch, Guus; Heutink, Rene; Harders, Frank; Vries, D P Edwin; Ho, Cynthia; Bossers, Alex; Elbers, Armin

    2018-04-17

    A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

  20. Highly pathogenic avian influenza A (H5N1) virus in wildlife: diagnostics, epidemiology and molecular characteristics

    NARCIS (Netherlands)

    Keawcharoen, J.

    2010-01-01

    Since 2003, highly pathogenic avian influenza virus subtype H5N1 outbreaks have been reported in Southeast Asia causing high mortality in poultry and have also been found to cross the species barrier infecting human and other mammalian species. Thailand is one of the countries severely affected by

  1. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens

    NARCIS (Netherlands)

    Johnson, Timothy J.; Wannemuehler, Yvonne; Johnson, Sara J.; Stell, Adam L.; Doetkott, Curt; Johnson, James R.; Kim, Kwang S.; Spanjaard, Lodewijk; Nolan, Lisa K.

    2008-01-01

    Since extraintestinal pathogenic Escherichia coli (ExPEC) strains from human and avian hosts encounter similar challenges in establishing infection in extraintestinal locations, they may share similar contents of virulence genes and capacities to cause disease. In the present study, 1,074 ExPEC

  2. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface

    Science.gov (United States)

    Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of mos...

  3. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    Science.gov (United States)

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China.

    NARCIS (Netherlands)

    Zhang, Y.; Mao, H.; Yan, J.; Zhang, L.; Sun, Y.; Wang, X.; Chen, Y.; Lu, Y.; Chen, E.; Lv, H.; Gong, L.; Li, Z.; Gao, J.; Xu, C.; Feng, Y.; Ge, Q.; Xu, B.; Xu, F.; Yang, Z.; Zhao, C.; Han, J.; Koch, G.; Li, H.; Shu, Y.L.; Chen, Z.

    2014-01-01

    In 2013, the novel reassortant avian-origin influenza A (H7N9) virus was reported in China. Through enhanced surveillance, infection by the H7N9 virus in humans was first identified in Zhejiang Province. Real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was used to confirm the

  5. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    Science.gov (United States)

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  6. A Single Immunization with Soluble Recombinant Trimeric Hemagglutinin Protects Chickens against Highly Pathogenic Avian Influenza Virus H5N1

    NARCIS (Netherlands)

    Cornelissen, A.H.M.; Vries, de R.P.; Boer-Luijtze, de E.A.; Rigter, A.; Rottier, P.J.M.; Haan, de C.A.M.

    2010-01-01

    Background: The highly pathogenic avian influenza (HPAI) virus H5N1 causes multi-organ disease and death in poultry, resulting in significant economic losses in the poultry industry. In addition, it poses a major public health threat as it can be transmitted directly from infected poultry to humans

  7. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Science.gov (United States)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  8. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.

    2011-01-01

    Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform

  9. Towards the conservation of endangered avian species: a recombinant West Nile Virus vaccine results in increased humoral and cellular immune responses in Japanese Quail (Coturnix japonica.

    Directory of Open Access Journals (Sweden)

    Jay A Young

    Full Text Available West Nile Virus (WNV arrived in North America in 1999 and is now endemic. Many families of birds, especially corvids, are highly susceptible to WNV and infection often results in fatality. Avian species susceptible to WNV infection also include endangered species, such as the Greater Sage-Grouse (Centrocercus uropbasianuts and the Eastern Loggerhead Shrike (Lanius ludovicianus migrans. The virus has been shown to contribute towards the likelihood of their extinction. Although a clear and present threat, there exists no avian WNV vaccine available to combat this lethal menace. As a first step in establishing an avian model for testing candidate WNV vaccines, avian antibody based reagents were assessed for cross-reactivity with Japanese quail (Coturnix japonica T cell markers CD4 and CD8; the most reactive were found to be the anti-duck CD8 antibody, clone Du-CD8-1, and the anti-chicken/turkey CD4 antibody, clone CT4. These reagents were then used to assess vaccine performance as well as to establish T cell populations in quail, with a novel population of CD4/CD8 double positive T cells being identified in Japanese quail. Concurrently, non-replicating recombinant adenoviruses, expressing either the WNV envelope or NS3 'genes' were constructed and assessed for effectiveness as avian vaccines. Japanese Quail were selected for testing the vaccines, as they provide an avian model that parallels the population diversity of bird species in the wild. Both the level of WNV specific antibodies and the number of T cells in vaccinated birds were increased compared to unvaccinated controls. The results indicate the vaccines to be effective in increasing both humoral and cellular immune responses. These recombinant vaccines therefore may find utility as tools to protect and maintain domestic and wild avian populations. Their implementation may also arrest the progression towards extinction of endangered avian species and reduce the viral reservoir that

  10. Towards the Conservation of Endangered Avian Species: A Recombinant West Nile Virus Vaccine Results in Increased Humoral and Cellular Immune Responses in Japanese Quail (Coturnix japonica)

    Science.gov (United States)

    Young, Joanne A.; Jefferies, Wilfred

    2013-01-01

    West Nile Virus (WNV) arrived in North America in 1999 and is now endemic. Many families of birds, especially corvids, are highly susceptible to WNV and infection often results in fatality. Avian species susceptible to WNV infection also include endangered species, such as the Greater Sage-Grouse (Centrocercus uropbasianuts) and the Eastern Loggerhead Shrike (Lanius ludovicianus migrans). The virus has been shown to contribute towards the likelihood of their extinction. Although a clear and present threat, there exists no avian WNV vaccine available to combat this lethal menace. As a first step in establishing an avian model for testing candidate WNV vaccines, avian antibody based reagents were assessed for cross-reactivity with Japanese quail (Coturnix japonica) T cell markers CD4 and CD8; the most reactive were found to be the anti-duck CD8 antibody, clone Du-CD8-1, and the anti-chicken/turkey CD4 antibody, clone CT4. These reagents were then used to assess vaccine performance as well as to establish T cell populations in quail, with a novel population of CD4/CD8 double positive T cells being identified in Japanese quail. Concurrently, non-replicating recombinant adenoviruses, expressing either the WNV envelope or NS3 ‘genes’ were constructed and assessed for effectiveness as avian vaccines. Japanese Quail were selected for testing the vaccines, as they provide an avian model that parallels the population diversity of bird species in the wild. Both the level of WNV specific antibodies and the number of T cells in vaccinated birds were increased compared to unvaccinated controls. The results indicate the vaccines to be effective in increasing both humoral and cellular immune responses. These recombinant vaccines therefore may find utility as tools to protect and maintain domestic and wild avian populations. Their implementation may also arrest the progression towards extinction of endangered avian species and reduce the viral reservoir that potentiates

  11. Prevalence of avian haemosporidia among injured wild birds in Tokyo and environs, Japan

    Directory of Open Access Journals (Sweden)

    Mizue Inumaru

    2017-12-01

    Full Text Available Avian haemosporidia have been reported in various birds of Japan, which is part of the East Asian-Australian flyway and is an important stopover site for migratory birds potentially carrying new pathogens from other areas. We investigated the prevalence of avian malaria in injured wild birds, rescued in Tokyo and surrounding areas. We also evaluated the effects of migration by examining the prevalence of avian malaria for each migratory status. 475 birds of 80 species were sampled from four facilities. All samples were examined for haemosporidian infection via nested polymerase chain reaction (PCR of the cytochrome b (cytb gene. 100 birds (21.1% of 43 species were PCR positive for avian haemosporidia. Prevalence in wintering birds, migratory breeders, and resident birds was 46.0%, 19.3%, 17.3% respectively. There was a bias in wintering birds due to Eurasian coot (Fulica atra and Anseriformes. In wintering birds, lineages which are likely to be transmitted by Culiseta sp. in Northern Japan and lineages from resident species of Northern Japan or continental Asia were found, suggesting that wintering birds are mainly infected at their breeding sites. Meanwhile, there were numerous lineages found from resident and migratory breeders, suggesting that they are transmitted in Japan, some possibly unique to Japan. Although there are limits in studying rescued birds, rehabilitation facilities make sampling of difficult-to-catch migratory species possible and also allow for long-term monitoring within areas. Keywords: Avian haemosporidia, Japan, Rescued wild birds, Migratory birds, Parasite diversity, Cytochrome b

  12. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus.

    NARCIS (Netherlands)

    Peeters, B.P.H.; Tonnis, W.F.; Murugappan, S.; Rottier, P.; Koch, G.; Frijlink, H.W.; Huckriede, A.; Hinrichs, W.L.J.

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is,

  13. An avian, oncogenic retrovirus replicates in vivo in more than 50% of CD4+ and CD8+ T lymphocytes from an endangered grouse

    Science.gov (United States)

    Reoccurring infection of reticuloendotheliosis virus (REV), an avian oncogenic retrovirus, has been a major obstacle in attempts to breed and release an endangered grouse, the Attwater's prairie chicken (Tympanicus cupido attwateri). REV infection of these birds in breeding facilities was found to r...

  14. Avian cholera in Nebraska's Rainwater Basin

    Science.gov (United States)

    Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.

    1984-01-01

    The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.

  15. Novel Picornavirus Associated with Avian Keratin Disorder in Alaskan Birds

    Directory of Open Access Journals (Sweden)

    Maxine Zylberberg

    2016-07-01

    Full Text Available Avian keratin disorder (AKD, characterized by debilitating overgrowth of the avian beak, was first documented in black-capped chickadees (Poecile atricapillus in Alaska. Subsequently, similar deformities have appeared in numerous species across continents. Despite the widespread distribution of this emerging pathology, the cause of AKD remains elusive. As a result, it is unknown whether suspected cases of AKD in the afflicted species are causally linked, and the impacts of this pathology at the population and community levels are difficult to evaluate. We applied unbiased, metagenomic next-generation sequencing to search for candidate pathogens in birds affected with AKD. We identified and sequenced the complete coding region of a novel picornavirus, which we are calling poecivirus. Subsequent screening of 19 AKD-affected black-capped chickadees and 9 control individuals for the presence of poecivirus revealed that 19/19 (100% AKD-affected individuals were positive, while only 2/9 (22% control individuals were infected with poecivirus. Two northwestern crows (Corvus caurinus and two red-breasted nuthatches (Sitta canadensis with AKD-consistent pathology also tested positive for poecivirus. We suggest that poecivirus is a candidate etiological agent of AKD.

  16. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  17. Detection and subtyping avian metapneumovirus from turkeys in Iran.

    Science.gov (United States)

    Mayahi, Mansour; Momtaz, Hassan; Jafari, Ramezan Ali; Zamani, Pejman

    2017-01-01

    Avian metapneumovirus (aMPV) causes diseases like rhinotracheitis in turkeys, swollen head syndrome in chickens and avian rhinotracheitis in other birds. Causing respiratory problems, aMPV adversely affects production and inflicts immense economic losses and mortalities, especially in turkey flocks. In recent years, several serological and molecular studies have been conducted on this virus, especially in poultry in Asia and Iran. The purpose of the present study was detecting and subtyping aMPV by reverse transcriptase polymerase chain reaction (RT-PCR) from non-vaccinated, commercial turkey flocks in Iran for the first time. Sixty three meat-type unvaccinated turkey flocks from several provinces of Iran were sampled in major turkey abattoirs. Samples were tested by RT-PCR for detecting and subtyping aMPV. The results showed that 26 samples from three flocks (4.10%) were positive for viral RNA and all of the viruses were found to be subtype B of aMPV. As a result, vaccination especially against subtype B of aMPV should be considered in turkey flocks in Iran to control aMPV infections.

  18. Spatial characteristics and the epidemiology of human infections with avian influenza A(H7N9 virus in five waves from 2013 to 2017 in Zhejiang Province, China.

    Directory of Open Access Journals (Sweden)

    Haocheng Wu

    Full Text Available The five-wave epidemic of H7N9 in China emerged in the second half of 2016. This study aimed to compare the epidemiological characteristics among the five waves, estimating the possible infected cases and inferring the extent of the possible epidemic in the areas that have not reported cases before.The data for the H7N9 cases from Zhejiang Province between 2013 and 2017 was obtained from the China Information Network System of Disease Prevention and Control. The start date of each wave was 16 March 2013, 1 July 2013, 1 July 2014, 1 July 2015 and 1 July 2016. The F test or Pearson's chi-square test were used to compare the characteristics of the five waves. Global and local autocorrelation analysis was carried out to identify spatial autocorrelations. Ordinary kriging interpolation was analyzed to estimate the number of human infections with H7N9 virus and to infer the extent of infections in the areas with no cases reported before.There were 45, 94, 45, 34 and 80 cases identified from the first wave to the fifth, respectively. The death rate was significantly different among the five waves of epidemics (χ2 = 10.784, P = 0.029. The age distribution (F = 0.903, P = 0.462, gender (χ2 = 2.674, P = 0.614 and occupation(χ2 = 19.764, P = 0.407 were similar in each period. Most of the cases were males and farmers. A significant trend (χ2 = 70.328, P<0.001 was identified that showed a growing proportion of rural cases. There were 31 high-high clusters and 3 high-low clusters at the county level among the five waves and 12, 8, 2, 9 and 3 clusters in each wave, respectively. The total cases infected with the H7N9 virus were far more than those that have been reported now, and the affected areas continue to expand. The epidemic in the north of Zhejiang Province persisted in all five waves. Since the second wave, the virus spread to the south areas and central areas. There was an obvious decline in the infected cases in the urban areas, and the epidemics

  19. A comparative molecular and 3-dimensional structural investigation into cross-continental and novel avian Trypanosoma spp. in Australia.

    Science.gov (United States)

    Cooper, Crystal; Thompson, R C Andrew; Botero, Adriana; Kristancic, Amanda; Peacock, Christopher; Kirilak, Yaowanuj; Clode, Peta L

    2017-05-12

    Molecular and structural information on avian Trypanosoma spp. throughout Australia is limited despite their intrinsic value in understanding trypanosomatid evolution, diversity, and structural biology. In Western Australia tissue samples (n = 429) extracted from 93 birds in 25 bird species were screened using generic PCR primers to investigate the diversity of Trypanosoma spp. To investigate avian trypanosome structural biology the first 3-dimensional ultrastructural models of a Trypanosoma spp. (Trypanosoma sp. AAT) isolated from a bird (currawong, Strepera spp.) were generated using focussed ion beam milling combined with scanning electron microscopy (FIB-SEM). Here, we confirm four intercontinental species of avian trypanosomes in native Australian birds, and identify a new avian Trypanosoma. Trypanosome infection was identified in 18 birds from 13 different bird species (19%). A single new genotype was isolated and found to be closely related to T. culicavium (Trypanosoma sp. CC2016 B002). Other Trypanosoma spp. identified include T. avium, T. culicavium, T. thomasbancrofti, Trypanosoma sp. TL.AQ.22, Trypanosoma sp. AAT, and an uncharacterised Trypanosoma sp. (group C-III sensu Zidková et al. (Infect Genet Evol 12:102-112, 2012)), all previously identified in Australia or other continents. Serially-sectioning Trypanosoma sp. AAT epimastigotes using FIB-SEM revealed the disc-shaped kinetoplast pocket attached perpendicular to the branching mitochondrion. Additionally, the universal minicircle sequence within the kinetoplast DNA and the associated binding protein were determined in Trypanosoma sp. AAT. These results indicate that bird trypanosomes are relatively conserved across continents, while being locally diverse, which supports the hypothesis that bird trypanosomes exist as fewer species than described in the literature. Evidence exists that avian Trypanosoma spp. are infecting mammals and could be transmitted by haemadipsid leeches. Trypanosoma sp

  20. Effect of housing arrangement on fecal-oral transmission of avian hepatitis E virus in chicken flocks.

    Science.gov (United States)

    Liu, Baoyuan; Sun, Yani; Chen, Yiyang; Du, Taofeng; Nan, Yuchen; Wang, Xinjie; Li, Huixia; Huang, Baicheng; Zhang, Gaiping; Zhou, En-Min; Zhao, Qin

    2017-09-07

    Avian hepatitis E virus (HEV) infection is common in chicken flocks in China, as currently no measures exist to prevent the spread of the disease. In this study, we analyzed the effect of caged versus cage-free housing arrangements on avian HEV transmission. First, 127 serum and 110 clinical fecal samples were collected from 4 chicken flocks including the two arrangements in Shaanxi Province, China and tested for HEV antibodies and/or virus. Concurrently, 36 specific-pathogen-free chickens were divided equally into four experimental living arrangement groups, designated cage-free (Inoculated), caged (Inoculated), cage-free (Negative) and caged (Negative) groups. In caged groups, three cages contained 3 chickens each. Three chickens each from cage-free (Inoculated) and caged (Inoculated) groups (one chicken of each cage) were inoculated by cutaneous ulnar vein with the same dose of avian HEV, respectively. The cage-free (Negative) and caged (Negative) groups served as negative control. Serum and fecal samples were collected at 1 to 7 weeks post-inoculation (wpi) and liver lesions were scored at 7 wpi. The results of serology showed that the avian HEV infection rate (54.10%) of the cage-free chickens was significantly higher than the one (12.12%) for caged chickens (P chickens (6) was significantly higher than the one for the uninoculated caged birds (2), as evidenced by seroconversion, fecal virus shedding, viremia and gross and microscopic liver lesions. These results suggest that reduction of contact with feces as seen in the caged arrangement of housing chickens can reduce avian HEV transmission. This study provides insights for prevention and control of avian HEV infection in chicken flocks.

  1. Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production

    DEFF Research Database (Denmark)

    Ronco, Troels; Stegger, Marc; Olsen, Rikke Heidemann

    2017-01-01

    Escherichia coli infections known as colibacillosis constitute a considerable challenge to poultry farmers worldwide, in terms of decreased animal welfare and production economy. Colibacillosis is caused by avian pathogenic E. coli (APEC). APEC strains are extraintestinal pathogenic E. coli...... diseased broilers and breeders. The data indicate that the closely related ST117 O78:H4 strains have been transferred vertically through the broiler breeding pyramid into distantly located farms across the Nordic countries....

  2. Cases of mortality in little penguins (Eudyptula minor) in New Zealand associated with avian malaria.

    Science.gov (United States)

    Sijbranda, D C; Hunter, S; Howe, L; Lenting, B; Argilla, L; Gartrell, B D

    2017-11-01

    CASE HISTORY A little penguin (Eudyptula minor) of wild origin, in captivity at Wellington Zoo, became inappetent and lethargic in March 2013. Despite supportive care in the zoo's wildlife hospital, the bird died within 24 hours. CLINICAL FINDINGS Weight loss, dehydration, pale mucous membranes, weakness, increased respiratory effort and biliverdinuria were apparent on physical examination. Microscopic evaluation of blood smears revealed intra-erythrocytic stages of Plasmodium spp. and a regenerative reticulocytosis in the absence of anaemia. PATHOLOGICAL FINDINGS Post-mortem findings included reduced body condition, dehydration, pulmonary congestion and oedema, hepatomegaly, splenomegaly, hydropericardium and subcutaneous oedema. Histopathological findings included protozoal organisms in sections of lung, liver and spleen. A marked, diffuse, sub-acute interstitial histiocytic pneumonia was present. Accumulation of haemosiderin was noted in the Kupffer cells of the liver and in histiocytic-type cells in the spleen. MOLECULAR TESTING DNA was extracted from frozen portions of the liver. Nested PCR results and DNA sequencing confirmed infection of the deceased little penguin with Plasmodium (Huffia) elongatum lineage GRW06. DIAGNOSIS Avian malaria due to Plasmodium (Huffia) elongatum GRW06 RETROSPECTIVE INVESTIGATION A retrospective analysis of 294 little penguin cases in the Massey University post-mortem database revealed three other potential avian malaria cases. Analysis of archived tissues using a nested PCR for Plasmodium spp. followed by DNA sequencing revealed that a little penguin which died at Auckland Zoo was infected with P. elongatum GRW06 and two wild little penguins found dead on New Zealand beaches were infected with P. relictum SGS1 and Plasmodium. sp. lineage LINN1. Therefore, the overall frequency of deaths in little penguins associated with avian malaria was 4/295 (1.36%). CLINICAL RELEVANCE Our results suggest that avian malaria is associated with

  3. H9N2 avian influenza virus antibody titers in human population in fars province, Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-09-01

    Full Text Available Among the avian influenza A virus subtypes, H5N1 and H9N2 viruses have the potential to cause an influenza pandemic because they are widely prevalent in avian species in Asia and have demonstrated the ability to infect humans. This study was carried out to determined the seroprevalence of H9N2 avian influenza virus in different human populations in Fars province, which is situated in the south of Iran. Antibodies against H9N2 avian influenza virus were measured using hemagglutination-inhibition (HI test in sera from 300 individuals in five different population in Fars province, including poultry-farm workers, slaughter-house workers, veterinarians, patients with clinical signs of respiratory disease, and clinically normal individuals, who were not or rarely in contact with poultry. Mean antibody titers of 7.3, 6.8, 6.1, 4.5, and 2.9 and seroprevalences of 87%, 76.2%, 72.5%, 35.6%, and 23% were determined in those groups, respectively. Higher prevalences were detected in poultry-farm workers, slaughter-house workers, and veterinarians, possibly due to their close and frequent contact with poultry.

  4. Mixed species flock, nest height, and elevation partially explain avian haemoparasite prevalence in Colombia.

    Directory of Open Access Journals (Sweden)

    Angie D González

    Full Text Available The high avian biodiversity present in the Neotropical region offers a great opportunity to explore the ecology of host-parasite relationships. We present a survey of avian haemoparasites in a megadiverse country and explore how parasite prevalences are related to physical and ecological host characteristics. Using light microscopy, we documented the presence of haemoparasites in over 2000 individuals belonging to 246 species of wild birds, from nine localities and several ecosystems of Colombia. We analysed the prevalence of six avian haemoparasite taxa in relation to elevation and the following host traits: nest height, nest type, foraging strata, primary diet, sociality, migratory behaviour, and participation in mixed species flocks. Our analyses indicate significant associations between both mixed species flocks and nest height and Haemoproteus and Leucocytozoon prevalence. The prevalence of Leucocytozoon increased with elevation, whereas the prevalence of Trypanosoma and microfilariae decreased. Plasmodium and Haemoproteus prevalence did not vary significantly with elevation; in fact, both parasites were found up to 3300 m above sea level. The distribution of parasite prevalence across the phylogeny of bird species included in this study showed little host phylogenetic signal indicating that infection rates in this system are evolutionarily labile. Vector distribution as well as the biology of transmission and the maintenance of populations of avian haemoparasites deserve more detailed study in this system.

  5. Influenza A virus infections in marine mammals and terrestrial carnivores.

    Science.gov (United States)

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  6. Urgent request on avian influenza

    DEFF Research Database (Denmark)

    More, Simon J.; Bicout, Dominique; Bøtner, Anette

    2016-01-01

    HPAI H5N8 is currently causing an epizootic in Europe, infecting many poultry holdings as well as captive and wild bird species in more than ten countries. Given the clear clinical manifestation, passive surveillance is considered the most effective means of detecting infected wild and domestic b...

  7. An evaluation of biosecurity compliance levels and assessment of associated risk factors for highly pathogenic avian influenza H5N1 infection of live-bird-markets, Nigeria and Egypt.

    Science.gov (United States)

    Fasanmi, Olubunmi G; Ahmed, Syed Sayeem U; Oladele-Bukola, Mutiu O; El-Tahawy, Abdelgawad S; Elbestawy, Ahmed R; Fasina, Folorunso O

    2016-12-01

    Live bird market (LBM) is integral component in the perpetuation of HPAI H5N1, while biosecurity is crucial and key to the prevention and control of infectious diseases. Biosecurity compliance level and risk factor assessments in 155LBMs was evaluated in Nigeria and Egypt through the administration of a 68-item biosecurity checklist, scored based on the modifications of previous qualitative data, and analysed for degree of compliance. LBMs were scored as "complied with a biosecurity item" if they had good-very good scores (4). All scores were coded and analysed using descriptive statistics and risk or protective factors were determined using univariable and multivariable logistic regression at p≤0.05. Trading of wild birds and other animal in the LBMs (Odd Ratio (OR)=34.90; p=0.01) and claims of hand disinfection after slaughter (OR=31.16; p=0.03) were significant risk factors while mandatory routine disinfection of markets (OR=0.13; p≤0.00), fencing and gates for live bird market (OR=0.02; p≤0.01) and hand washing after slaughter (OR=0.41; p≤0.05) were protective factors for and against the infection of Nigerian and Egyptian LBMs with the HPAI H5N1 virus. Almost all the LBMs complied poorly with most of the variables in the checklist (p≤0.05), but pathways to improved biosecurity in the LBMs existed. We concluded that the LBM operators play a critical role in the disruption of transmission of H5N1 virus infection through improved biosecurity and participatory epidemiology and multidisciplinary approach is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    OpenAIRE

    Padhi, Abinash; Poss, Mary

    2008-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes exam...

  9. Population Dynamics and Rates of Molecular Evolution of a Recently Emerged Paramyxovirus, Avian Metapneumovirus Subtype C▿ †

    Science.gov (United States)

    Padhi, Abinash; Poss, Mary

    2009-01-01

    We report the existence of two distinct sublineages of avian metapneumovirus (MPV) subtype C, a virus which has caused serious economic loss in commercial turkey farms in the United States. This subtype is closely related to human MPV, infects multiple avian species, and is globally distributed. The evolutionary rates of this virus are estimated to be 1.3 × 10−3 to 7 × 10−3 substitutions per site per year, and coalescent estimates place its emergence between 1991 and 1996. The four genes examined show a concordant demographic pattern which is characterized by a rapid increase in population size followed by stable population grown until the present. PMID:19052092

  10. Proceedings of National Avian-Wind Power Planning Meeting IV

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  11. Deforestation and avian infectious diseases

    Science.gov (United States)

    Sehgal, R. N. M.

    2010-01-01

    In this time of unprecedented global change, infectious diseases will impact humans and wildlife in novel and unknown ways. Climate change, the introduction of invasive species, urbanization, agricultural practices and the loss of biodiversity have all been implicated in increasing the spread of infectious pathogens. In many regards, deforestation supersedes these other global events in terms of its immediate potential global effects in both tropical and temperate regions. The effects of deforestation on the spread of pathogens in birds are largely unknown. Birds harbor many of the same types of pathogens as humans and in addition can spread infectious agents to humans and other wildlife. It is thought that avifauna have gone extinct due to infectious diseases and many are presently threatened, especially endemic island birds. It is clear that habitat degradation can pose a direct threat to many bird species but it is uncertain how these alterations will affect disease transmission and susceptibility to disease. The migration and dispersal of birds can also change with habitat degradation, and thus expose populations to novel pathogens. Some recent work has shown that the results of landscape transformation can have confounding effects on avian malaria, other haemosporidian parasites and viruses. Now with advances in many technologies, including mathematical and computer modeling, genomics and satellite tracking, scientists have tools to further research the disease ecology of deforestation. This research will be imperative to help predict and prevent outbreaks that could affect avifauna, humans and other wildlife worldwide. PMID:20190120

  12. Deforestation and avian infectious diseases.

    Science.gov (United States)

    Sehgal, R N M

    2010-03-15

    In this time of unprecedented global change, infectious diseases will impact humans and wildlife in novel and unknown ways. Climate change, the introduction of invasive species, urbanization, agricultural practices and the loss of biodiversity have all been implicated in increasing the spread of infectious pathogens. In many regards, deforestation supersedes these other global events in terms of its immediate potential global effects in both tropical and temperate regions. The effects of deforestation on the spread of pathogens in birds are largely unknown. Birds harbor many of the same types of pathogens as humans and in addition can spread infectious agents to humans and other wildlife. It is thought that avifauna have gone extinct due to infectious diseases and many are presently threatened, especially endemic island birds. It is clear that habitat degradation can pose a direct threat to many bird species but it is uncertain how these alterations will affect disease transmission and susceptibility to disease. The migration and dispersal of birds can also change with habitat degradation, and thus expose populations to novel pathogens. Some recent work has shown that the results of landscape transformation can have confounding effects on avian malaria, other haemosporidian parasites and viruses. Now with advances in many technologies, including mathematical and computer modeling, genomics and satellite tracking, scientists have tools to further research the disease ecology of deforestation. This research will be imperative to help predict and prevent outbreaks that could affect avifauna, humans and other wildlife worldwide.

  13. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model.

    Science.gov (United States)

    Zanin, Mark; Koçer, Zeynep A; Poulson, Rebecca L; Gabbard, Jon D; Howerth, Elizabeth W; Jones, Cheryl A; Friedman, Kimberly; Seiler, Jon; Danner, Angela; Kercher, Lisa; McBride, Ryan; Paulson, James C; Wentworth, David E; Krauss, Scott; Tompkins, Stephen M; Stallknecht, David E; Webster, Robert G

    2017-02-01

    H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild avian species in the

  14. Prospective study of avian influenza transmission to humans in egypt

    Directory of Open Access Journals (Sweden)

    Sherif Lobna S

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic avian influenza (HPAI H5N1 virus remains a public health threat and continues to cause outbreaks among poultry as well as human infections. Since its appearance, the virus has spread to numerous geographic areas and is now considered endemic in Egypt and other countries. Most studies on human H5N1 cases were conducted to investigate outbreak situations and were not designed to address fundamental questions about the epidemiology of human infection with H5N1 viruses. Our objective for this study is to answer these questions by estimating the prevalence and incidence rates of human cases and determine associated risk and protective factors in areas where H5N1 viruses are endemic. Methods/Design We designed a 3-year prospective cohort study of 1000 individuals of various exposure levels to poultry in Egypt. At onset, we will collect sera to estimate baseline antibody titers against AI viruses H4-H16. Two follow-up visits are scheduled at 1-year intervals following initial enrollment. At follow-up, we will also collect sera to measure changes in antibody titers over time. Thus, annual prevalence rates as well as incidence rates of infection will be calculated. At each visit, exposure and other data will be collected using a specifically tailored questionnaire. This data will be used to measure risk and protective factors associated with infection. Subjects will be asked to contact the study team any time they have influenza-like illness (ILI. In this case, the study team will verify infection by rapid influenza A test and obtain swabs from the subject's contacts to isolate and characterize viruses causing acute infection. Discussion Epidemiologic studies at the influenza human-animal interface are rare, hence many questions concerning transmission, severity, and extent of infection at the population level remain unanswered. We believe that our study will help tackle and clarify some of these issues.

  15. From SARS to Avian Influenza Preparedness in Hong Kong.

    Science.gov (United States)

    Wong, Andrew T Y; Chen, Hong; Liu, Shao-Haei; Hsu, Enoch K; Luk, Kristine S; Lai, Christopher K C; Chan, Regina F Y; Tsang, Owen T Y; Choi, K W; Kwan, Y W; Tong, Anna Y H; Cheng, Vincent C C; Tsang, Dominic N C

    2017-05-15

    The first human H5N1 case was diagnosed in Hong Kong in 1997. Since then, experience in effective preparedness strategies that target novel influenza viruses has expanded. Here, we report on avian influenza preparedness in public hospitals in Hong Kong to illustrate policies and practices associated with control of emerging infectious diseases. The Hong Kong government's risk-based preparedness plan for influenza pandemics includes 3 response levels for command, control, and coordination frameworks for territory-wide responses. The tiered levels of alert, serious, and emergency response enable early detection based on epidemiological exposure followed by initiation of a care bundle. Information technology, laboratory preparedness, clinical and public health management, and infection control preparedness provide a comprehensive and generalizable preparedness plan for emerging infectious diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. Physio-chemical and morphological characteristics of avian encephalomyelitis virus

    Science.gov (United States)

    Gosting, L.H.; Grinnell, B.W.; Matsumoto, M.

    1980-01-01

    Avian encephalomyelitis virus (AEV) was purified from infected chick embryos by a gradient centrifugation in cesium chloride. The virus had a buoyant density of 1.31 to 1.32 g/ml and a sedimentation coefficient of 148 S. The purified AEV was resistant to treatments with chloroform, acid pH or trypsin. The presence of Mg++ stabilized the virus against heat inactivation (56°C, 1 h). Electron microscopic study showed the virus to be 24 to 32 nm in diameter. The surface structure of the purified virus was not easily discernable. Nevertheless, with uranyl acetate-stained particles, Markham's rotation technique revealed that AEV has five-fold symmetry with 32 or 42 capsomers. Exact classification of AEV awaits characterization of the viral nucleic acid.

  17. Zoonosis Update on H9N2 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Abdul Ahad*, Masood Rabbani, Altaf Mahmood1, Zulfiqar Hussan Kuthu2, Arfan Ahmad and Muhammad Mahmudur Rahman3

    2013-07-01

    Full Text Available Influenza A viruses infect various mammals like human, horse, pig and birds as well. A total of 16 hemagglutinin (HA and 9 neuraminidase (NA subtypes have been identified. Most of the combinations are found in birds and relatively few have been isolated from mammals. Although there is no report of human to human transmission till to date, several cases of H5N1, H7N7 and H9N2 identified in humans since 1997 raised serious concern for health and veterinary profession. This review paper will focus H9N2 avian influenza virus (AIV with special emphasis on zoonosis. The virus H9N2 though not highly pathogenic like H5N1 but can be virulent through antigenic drift and shift.

  18. Prevalence of Antibodies to H9N2 Avian Influenza Virus in Backyard Chickens around Maharlou Lake in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Hadipour*, Gholamhossein Habibi and Amir Vosoughi

    2011-06-01

    Full Text Available Backyard chickens play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 500 backyard chickens from villages around Maharlou lake in Iran, using the hemagglutination-inhibition (HI test. The studied backyard chickens had not been previously vaccinated and showed no clinical signs of disease. The overall HI titer and seroprevalence against H9N2 were 7.73 and 81.6%, respectively.

  19. Origin and evolution of avian microchromosomes.

    Science.gov (United States)

    Burt, D W

    2002-01-01

    The origin of avian microchromosomes has long been the subject of much speculation and debate. Microchromosomes are a universal characteristic of all avian species and many reptilian karyotypes. The typical avian karyotype contains about 40 pairs of chromosomes and usually 30 pairs of small to tiny microchromosomes. This characteristic karyotype probably evolved 100-250 million years ago. Once the microchromosomes were thought to be a non-essential component of the avian genome. Recent work has shown that even though these chromosomes represent only 25% of the genome; they encode 50% of the genes. Contrary to popular belief, microchromosomes are present in a wide range of vertebrate classes, spanning 400-450 million years of evolutionary history. In this paper, comparative gene mapping between the genomes of chicken, human, mouse and zebrafish, has been used to investigate the origin and evolution of avian microchromosomes during this period. This analysis reveals evidence for four ancient syntenies conserved in fish, birds and mammals for over 400 million years. More than half, if not all, microchromosomes may represent ancestral syntenies and at least ten avian microchromosomes are the product of chromosome fission. Birds have one of the smallest genomes of any terrestrial vertebrate. This is likely to be the product of an evolutionary process that minimizes the DNA content (mostly through the number of repeats) and maximizes the recombination rate of microchromosomes. Through this process the properties (GC content, DNA and repeat content, gene density and recombination rate) of microchromosomes and macrochromosomes have diverged to create distinct chromosome types. An ancestral genome for birds likely had a small genome, low in repeats and a karyotype with microchromosomes. A "Fission-Fusion Model" of microchromosome evolution based on chromosome rearrangement and minimization of repeat content is discussed. Copyright 2002 S. Karger AG, Basel

  20. Ribosomal RNA gene functioning in avian oogenesis.

    Science.gov (United States)

    Koshel, Elena; Galkina, Svetlana; Saifitdinova, Alsu; Dyomin, Alexandr; Deryusheva, Svetlana; Gaginskaya, Elena

    2016-12-01

    Despite long-term exploration into ribosomal RNA gene functioning during the oogenesis of various organisms, many intriguing problems remain unsolved. In this review, we describe nucleolus organizer region (NOR) activity in avian oocytes. Whereas oocytes from an adult avian ovary never reveal the formation of the nucleolus in the germinal vesicle (GV), an ovary from juvenile birds possesses both nucleolus-containing and non-nucleolus-containing oocytes. The evolutionary diversity of oocyte NOR functioning and the potential non-rRNA-related functions of the nucleolus in oocytes are also discussed.

  1. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-03-01

    Full Text Available Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 700 backyard chickens from villages around the Caspian Sea, Northern Iran, using the hemagglutination-inhibition (HI test. The studied backyard chickens had not been previously vaccinated and showed no clinical signs of disease. The mean antibody titers found were 6.8, 7.5, 5.9, 7.2, 5.7, 6.4, 6.2 and the seroprevalence was 76.2%, 79.5%, 68.18%, 78.27%, 65%, 72.31% and 71.4% as found in seven villages. Overall HI titer and seroprevalence against H9N2 were 6.52 and 72.98%, respectively.

  2. RfaH promotes the ability of the avian pathogenic Escherichia coli O2 strain E058 to cause avian colibacillosis.

    Science.gov (United States)

    Gao, Qingqing; Xu, Huiqing; Wang, Xiaobo; Zhang, Debao; Ye, Zhengqin; Gao, Song; Liu, Xiufan

    2013-06-01

    Avian pathogenic Escherichia coli (APEC) infection causes avian colibacillosis, which refers to any localized or systemic infection, such as acute fatal septicemia or subacute pericarditis and airsacculitis. The RfaH transcriptional regulator in E. coli is known to regulate a number of phenotypic traits. The direct effect of RfaH on the virulence of APEC has not been investigated yet. Our results showed that the inactivation of rfaH significantly decreased the virulence of APEC E058. The attenuation was assessed by in vivo and in vitro assays, including chicken infection assays, an ingestion and intracellular survival assay, and a bactericidal assay with serum complement. The virulence phenotype was restored to resemble that of the wild type by complementation of the rfaH gene in trans. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) analysis and animal system infection experiments indicated that the deletion of rfaH correlated with decreased virulence of the APEC E058 strain.

  3. Lack of exposure of H10N8 avian influenza virus among veterinarians in Guangdong Province, China.

    Science.gov (United States)

    Sun, Lingshuang; Wang, Lifang; Zhang, Weidong; Sun, Yankuo; Luo, Yongfeng; Sun, Yao; Yuan, Ziguo; Wang, Heng; Ning, Zhangyong; Jia, Kun; Yuan, Li-Guo

    2015-12-01

    We conducted a retrospective seroepidemiological study for H10N8 avian influenza infection among 400 veterinarians sampled from February 2013 to August 2013 in Guangdong Province, China. None of the veterinarians had evidence of previous infection with the emergent H10N8 AIV. Although there is no evidence of H10N8-infected veterinarian before the first human index case of H10N8 infection in southern China, a more rigorous and long-term surveillance remained essential for early warning of novel reassortant viruses and interspecies transmission events. © 2015 Wiley Periodicals, Inc.

  4. Lower Detection Probability of Avian Plasmodium in Blood Compared to Other Tissues.

    Science.gov (United States)

    Svensson-Coelho, M; Silva, G T; Santos, S S; Miranda, L S; Araújo-Silva, L E; Ricklefs, R E; Miyaki, C Y; Maldonado-Coelho, M

    2016-10-01

    We tested whether the probability of detecting avian haemosporidia (Plasmodium and Haemoproteus) using molecular techniques differs among blood, liver, heart, and pectoral muscle tissues. We used a paired design, sampling the 4 tissue types in 55 individuals of a wild South American suboscine antbird, the white-shouldered fire-eye (Pyriglena leucoptera). We also identified parasites to cytochrome b lineage. Detection probability was significantly lower in blood compared to the other 3 tissue types combined. Eight of 22 infections were not detected in blood samples; 4-7 infections were not detected in the other individual tissues. The same parasite lineage was recovered from different tissues.

  5. Synergy between avian pneumovirus and Ornithobacterium rhinotracheale in turkeys.

    Science.gov (United States)

    Marien, Maja; Decostere, Annemie; Martel, An; Chiers, Koen; Froyman, Robrecht; Nauwynck, Hans

    2005-06-01

    The purpose of this study was to assess the possible synergism between Ornithobacterium rhinotracheale (ORT) and avian pneumovirus (APV), inoculated into turkeys via the natural route, for the reproduction of respiratory disease. Three-week-old specific pathogen free turkeys were inoculated oculonasally with either APV subtype A, ORT or both agents using two different time intervals (3 and 5 days) between APV and ORT. The birds were observed clinically on a daily basis and swabbed intratracheally at short, regular intervals. They were killed at 1, 3, 5, 8 and 15 days post single or dual inoculation and examined for gross lesions at necropsy. Samples of the turbinates, trachea, lungs, air sacs, heart, pericardium and liver were taken for bacteriological and/or histological examination. Combined APV/ORT infections resulted in overt clinical signs and a longer persistence of ORT in the respiratory tract and aggravated the macroscopic and histological lesions in comparison with the groups given single infections. In all ORT-challenged turkeys, ORT was isolated from the turbinates, trachea and lungs, but in turkeys infected with both agents ORT was frequently found in the air sacs and on a single occasion in the heart and pericardium. The time interval between APV and ORT inoculation did not have a significant effect on the outcome of the dual infection. A conspicuous important feature was the attachment of ORT to the cilia of the epithelium of the turbinates and trachea of both ORT-infected and APV/ORT-infected birds. In conclusion, the results show that ORT is able to adhere to and colonize the respiratory tract but, under the circumstances used in this study, is not capable of inducing respiratory disease without viral priming.

  6. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  7. A transmission model for the ecology of an avian blood parasite in a temperate ecosystem.

    Directory of Open Access Journals (Sweden)

    Courtney C Murdock

    Full Text Available Most of our knowledge about avian haemosporidian parasites comes from the Hawaiian archipelago, where recently introduced Plasmodiumrelictum has contributed to the extinction of many endemic avian species. While the ecology of invasive malaria is reasonably understood, the ecology of endemic haemosporidian infection in mainland systems is poorly understood, even though it is the rule rather than the exception. We develop a mathematical model to explore and identify the ecological factors that most influence transmission of the common avian parasite, Leucocytozoonfringillinarum (Apicomplexa. The model was parameterized from White-crowned Sparrow (Zonotrichialeucophrys and S. silvestre / craigi black fly populations breeding in an alpine ecosystem. We identify and examine the importance of altricial nestlings, the seasonal relapse of infected birds for parasite persistence across breeding seasons, and potential impacts of seasonal changes in black fly emergence on parasite prevalence in a high elevation temperate system. We also use the model to identify and estimate the parameters most influencing transmission dynamics. Our analysis found that relapse of adult birds and young of the year birds were crucial for parasite persistence across multiple seasons. However, distinguishing between nude nestlings and feathered young of the year was unnecessary. Finally, due to model sensitivity to many black fly parameters, parasite prevalence and sparrow recruitment may be most affected by seasonal changes in environmental temperature driving shifts in black fly emergence and gonotrophic cycles.

  8. Production of monoclonal antibodies for Avian Metapneumovirus (SHS-BR-121 isolated in Brazil

    Directory of Open Access Journals (Sweden)

    LT Coswig

    2007-12-01

    Full Text Available Avian Metapneumovirus (aMPV, also called Turkey Rhinotracheitis Virus (TRTV, is an upper respiratory tract infection of turkeys, chickens and other avian species. Five monoclonal antibodies (MAbs were created against the Brazilian isolate (SHS-BR-121 of aMPV, MAbs 1A5B8; 1C1C4; 2C2E9 and 2A4C3 of IgG1 and MAb 1C1F8 of IgG2a. Four Mabs (1A5B8; 1C1C4; 2C2E9 and 2A4C3 showed neutralizing activity and three (1A5B8; 1C1C4 and 2A4C3 inhibited cellular fusion in vitro. These MAbs were used to investigate antigenic relationship among three strains (SHS-BR-121, STG 854/88 and TRT 1439/91 of aMPV subtypes A and B using cross-neutralization test. The results confirm that the monoclonal antibodies described can be used as a valuable tool in the epizootiological and serological studies, and also for the specific diagnosis of the subtypes in the infection for Avian Metapneumovirus.

  9. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus.

    Science.gov (United States)

    Lupini, C; Cecchinato, M; Scagliarini, A; Graziani, R; Catelli, E

    2009-12-01

    Field evidences have suggested that a natural extract, containing tannins, could be effective against poultry enteric viral infections. Moreover previous studies have shown that vegetable tannins can have antiviral activity against human viruses. Based on this knowledge three different Chestnut (Castanea spp.) wood extracts and one Quebracho (Schinopsis spp.) wood extract, all containing tannins and currently used in the animal feed industry, were tested for in vitro antiviral activity against avian reovirus (ARV) and avian metapneumovirus (AMPV). The MTT assay was used to evaluate the 50% cytotoxic compounds concentration (CC(50)) on Vero cells. The antiviral properties were tested before and after the adsorption of the viruses to Vero cells. Antiviral activities were expressed as IC(50) (concentration required to inhibit 50% of viral cytopathic effect). CC(50)s of tested compounds were > 200 microg/ml. All compounds had an extracellular antiviral effect against both ARV and AMPV with IC(50) values ranging from 25 to 66 microg/ml. Quebracho extract had also evident intracellular anti-ARV activity (IC(50) 24 microg/ml). These preliminary results suggest that the examined vegetable extracts might be good candidates in the control of some avian virus infections. Nevertheless further in vivo experiments are required to confirm these findings.

  10. Effects of drought on avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Brian D. Wardlow; Volker C. Radeloff

    2010-01-01

    Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most...

  11. Serological diagnosis of avian influenza in poultry

    DEFF Research Database (Denmark)

    Comin, Arianna; Toft, Nils; Stegeman, Arjan

    2013-01-01

    Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the gold standard' for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy...

  12. New Avian Hepadnavirus in Palaeognathous Bird, Germany

    NARCIS (Netherlands)

    Jo, Wendy K; Pfankuche, Vanessa M; Petersen, Henning; Frei, Samuel; Kummrow, Maya; Lorenzen, Stephan; Ludlow, Martin; Metzger, Julia; Baumgärtner, Wolfgang; Osterhaus, Albert; van der Vries, Erhard

    2017-01-01

    In 2015, we identified an avian hepatitis B virus associated with hepatitis in a group of captive elegant-crested tinamous (Eudromia elegans) in Germany. The full-length genome of this virus shares <76% sequence identity with other avihepadnaviruses. The virus may therefore be considered a new

  13. Avian Disease & Oncology Lab (ADOL) Research Update

    Science.gov (United States)

    Employing Genomics, Epigenetics, and Immunogenetics to Control Diseases Induced by Avian Tumor Viruses - Gene expression is a major factor accounting for phenotypic variation. Taking advantage of allele-specific expression (ASE) screens, we found the use of genetic markers was superior to traditiona...

  14. Viral vectors for avian influenza vaccines

    Science.gov (United States)

    Prior to 2003, vaccines against avian influenza (AI) had limited, individual country or regional use in poultry. In late 2003, H5N1 high pathogenicity (HP) AI spread from China to multiple Southeast Asian countries, and to Europe during 2005 and Africa during 2006, challenging governments and all p...

  15. the Avian Park Service Learning Centre story

    African Journals Online (AJOL)

    The Ukwanda Centre for Rural Health (UCRH) opened in 2001, followed 10 years later by the establishment of the Ukwanda Rural Clinical School in one of the rural health districts of the Western Cape. This paper relates the journey of the Faculty with the underserviced community of Avian Park through the provision of ...

  16. Presumptive diagnosis of Avian encephalomyelitis in Japanese ...

    African Journals Online (AJOL)

    A report of Avian encephalomyelitis outbreak in two flocks of adult Japanese quail is presented. High mortalities, tremor, ataxia and lateral recumbency were the prominent clinical signs observed. Absence of gross pathology and microscopic lesions of gliosis, neuronal degeneration, meningitis, congested blood vessel with ...

  17. The genetics and evolution of avian migration

    NARCIS (Netherlands)

    Pulido, F.

    2007-01-01

    One of the characteristics of avian migration is its variability within and among species. Variation in migratory behavior, and in physiological and morphological adaptations to migration, is to a large extent due to genetic differences. Comparative studies suggest that migratory behavior has

  18. Solar activity affects avian timing of reproduction

    NARCIS (Netherlands)

    Visser, M.E.; Sanz, J.J.

    2009-01-01

    Avian timing of reproduction is strongly affected by ambient temperature. Here we show that there is an additional effect of sunspots on laying date, from five long-term population studies of great and blue tits (Parus major and Cyanistes caeruleus), demonstrating for the first time that solar

  19. Vocal communication in an avian hybrid zone

    NARCIS (Netherlands)

    Hartog, Paula Maria den

    2008-01-01

    Avian vocalizations function in mate attraction and territorial defence. Vocalizations can act as behavioural barriers and play an important role in speciation processes. Hybrid zones illustrate behavioural barriers are not always impermeable and provide a natural laboratory to examine the role of

  20. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James Seymour; McLay, Emma

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful...

  1. Measuring Steroid Hormones in Avian Eggs

    NARCIS (Netherlands)

    Engelhardt, Nikolaus von; Groothuis, Ton G.G.

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  2. Measuring steroid hormones in avian eggs

    NARCIS (Netherlands)

    Von Engelhardt, Nikolaus; Groothuis, Ton G. G.; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  3. Awareness regarding preventive measures of avian influenza among the adult people of Thimi Municipality, Nepal.

    Science.gov (United States)

    Manandhar, K; Chataut, J; Khanal, K; Shrestha, A; Shrestha, S; Shrestha, S

    2013-01-01

    Avian influenza is considered as a threat to global public health. Prevention and control depends on the awareness of the general population as well as high risk-groups. The avian influenza should be viewed more seriously because it may lead to pandemic influenza when the virus mutates its strain with the common human influenza. Thus, this study aims to explore the awareness regarding preventive measures of avian influenza among the adult population of Thimi Municipality. The objective of this study was to explore awareness regarding preventive measures of avian influenza among the adult population of Thimi Municipality. It is a cross-sectional, population based study. It was carried out in Thimi Municipality from May 15 to June 15, 2012. Pre tested structured questionnaire was used for face to face interview with randomly selected 250 subjects. Out of 250 subjects, 123 (49.2 %) were males. The mean age of subjects was 36 ± 11.8 year. Among total subjects, 94.4 percent had heard about avian influenza. The main source of information was television (94.1%). Majority of subjects (84.9 %) thought that keeping infected birds and poultry as the mode of transmission followed by eating not well cooked poultry meat (82.8 %). Out of total study subjects, 165 (66.0 percent) mentioned fever and 138 (55.2 percent) thought fatigue as the signs and symptoms. As for knowledge about preventive measures, majority (85.6%) stated that cleaning the surfaces that had come in contact with the poultry could prevent the disease and 83.2 % had knowledge that the infection could be prevented by washing hands with soap and water after poultry handling. Awareness regarding preventive measures was found significantly low in females, middle adults, illiterates, and house wives. The awareness regarding avian influenza was quite satisfactory among the adult people of Thimi Municipality. However level of awareness was seen lower in female, illiterate and middle adult. So that along with large

  4. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Liu, Huifang; Chen, Liping; Si, Wei; Wang, Chunlai; Zhu, Fangna; Li, Guangxing; Liu, Siguo

    2017-04-01

    Avian colibacillosis is one of the most common infectious diseases caused partially or entirely by avian pathogenic Escherichia coli (APEC) in birds. In addition to spontaneous infection, APEC can also cause secondary infections that result in greater severity of illness and greater losses to the poultry industry. In order to assess the role of 2', 3'-cyclic phosphodiesterase (cpdB) in APEC on disease physiology and pathogenicity, an avian pathogenic Escherichia coli-34 (APEC-34) cpdB mutant was obtained using the Red system. The cpdB mutant grew at a slower rate than the natural strain APEC-34. Scanning electron microscopy (SEM) indicated that the bacteria of the cpdB mutant were significantly longer than the bacteria observed in the natural strain (P<0.01), and that the width of the cpdB mutant was significantly smaller than its natural counterpart (P<0.01). In order to evaluate the role of cpdB in APEC in the colonization of internal organs (lung, liver and spleen) in poultry, seven-day-old SPF chicks were infected with 10 9 CFU/chick of the cpdB mutant or the natural strain. No colonizations of cpdB mutants were observed in the internal organs 10days following the infection, though numerous natural strains were observed at 20days following infection. Additionally, the relative expression of division protein ftsZ, outer membrane protein A ompA, ferric uptake regulator fur and tryptophanase tnaA genes in the mutant strain were all significantly lower than in the natural strain (P<0.05 or P<0.01). These results suggested that cpdB is involved in the long-term colonization of APEC in the internal organs of the test subjects. The deletion of the cpdB gene also significantly affected the APEC growth and morphology. Copyright © 2016. Published by Elsevier Ltd.

  5. Avian Paramyxovirus Serotype-1: A Review of Disease Distribution, Clinical Symptoms, and Laboratory Diagnostics

    Directory of Open Access Journals (Sweden)

    Nichole L. Hines

    2012-01-01

    Full Text Available Avian paramyxovirus serotype-1 (APMV-1 is capable of infecting a wide range of avian species leading to a broad range of clinical symptoms. Ease of transmission has allowed the virus to spread worldwide with varying degrees of virulence depending on the virus strain and host species. Classification systems have been designed to group isolates based on their genetic composition. The genetic composition of the fusion gene cleavage site plays an important role in virulence. Presence of multiple basic amino acids at the cleavage site allows enzymatic cleavage of the fusion protein enabling virulent viruses to spread systemically. Diagnostic tests, including virus isolation, real-time reverse-transcription PCR, and sequencing, are used to characterize the virus and identify virulent strains. Genetic diversity within APMV-1 demonstrates the need for continual monitoring for changes that may arise requiring modifications to the molecular assays to maintain their usefulness for diagnostic testing.

  6. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    Science.gov (United States)

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  7. Production of monoclonal antibodies for Avian Metapneumovirus (SHS-BR-121) isolated in Brazil

    OpenAIRE

    Coswig,LT; Stach-Machado,DR; Arns,CW

    2007-01-01

    Avian Metapneumovirus (aMPV), also called Turkey Rhinotracheitis Virus (TRTV), is an upper respiratory tract infection of turkeys, chickens and other avian species. Five monoclonal antibodies (MAbs) were created against the Brazilian isolate (SHS-BR-121) of aMPV, MAbs 1A5B8; 1C1C4; 2C2E9 and 2A4C3 of IgG1 and MAb 1C1F8 of IgG2a. Four Mabs (1A5B8; 1C1C4; 2C2E9 and 2A4C3) showed neutralizing activity and three (1A5B8; 1C1C4 and 2A4C3) inhibited cellular fusion in vitro. These MAbs were used to ...

  8. Incidence of Avian Mycoplasmosis in the region of Batna, Eastern Algeria

    Directory of Open Access Journals (Sweden)

    Heleili

    2011-06-01

    Full Text Available Avian mycoplasmosis is infectious and contagious disease which affects chicken and turkey as well as many other species with many economics losses. The absence of data on avian mycoplasmosis in Algeria and the importance of the poultry breeding in Batna encouraged us to undertake the prevalence of the most pathogenic mycoplasmas in broiler and layer chickens in this area, Mycoplasma gallisepticum (MG. 143 Mycoplasmas were isolate from 237 samples, at a rate of 60.33%. MG was isolate at a rate of 21.67% (2.09% in layer hens and 19.58% in broiler chickens. The serological screening using of breedings showed a sensitivity of 83.10%. This study shows that mycoplasmosis and in particular MG infection, represent a serious problem in chickens in Algeria in the absence of hygiene conditions and vaccination especially. [Vet. World 2011; 4(3.000: 101-105

  9. H7N9 avian influenza A virus and the perpetual challenge of potential human pandemicity.

    Science.gov (United States)

    Morens, David M; Taubenberger, Jeffery K; Fauci, Anthony S

    2013-07-09

    ABSTRACT The ongoing H7N9 influenza epizootic in China once again presents us questions about the origin of pandemics and how to recognize them in early stages of development. Over the past ~135 years, H7 influenza viruses have neither caused pandemics nor been recognized as having undergone human adaptation. Yet several unusual properties of these viruses, including their poultry epizootic potential, mammalian adaptation, and atypical clinical syndromes in rarely infected humans, suggest that they may be different from other avian influenza viruses, thus questioning any assurance that the likelihood of human adaptation is low. At the same time, the H7N9 epizootic provides an opportunity to learn more about the mammalian/human adaptational capabilities of avian influenza viruses and challenges us to integrate virologic and public health research and surveillance at the animal-human interface.

  10. Feral Swine in the United States Have Been Exposed to both Avian and Swine Influenza A Viruses.

    Science.gov (United States)

    Martin, Brigitte E; Sun, Hailiang; Carrel, Margaret; Cunningham, Fred L; Baroch, John A; Hanson-Dorr, Katie C; Young, Sean G; Schmit, Brandon; Nolting, Jacqueline M; Yoon, Kyoung-Jin; Lutman, Mark W; Pedersen, Kerri; Lager, Kelly; Bowman, Andrew S; Slemons, Richard D; Smith, David R; DeLiberto, Thomas; Wan, Xiu-Feng

    2017-10-01

    Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs. IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs

  11. The Relationship of Avian Influenza and Waterbirds in Creating Genetic Diversity and the Role of Waterbirds as Reservoir for Avian Influenza

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-03-01

    Full Text Available Outbreaks of Avian Influenza (AI has enormous implications for poultry and human health.These outbreaks are caused by influenza A virus that belongS to the family of Orthomyxoviridae. These viruses are RNA viruses, negative polarity, and the envelope has segmented genom. Generally, Avian Influenza is a disease which originally occurred in birds with complex ecology including reassortment and transmission among different species of birds and mammals. The gene of AI virus can be transmitted among human and avian species as shown by the virus reasortantment that caused pandemic human influenza in 1957 and 1968. Pandemi in 1957 and 1968 were different from previously human viruses because the substitution of several genes are derived from avian viruses. Wild waterfowls especially Anseriformes (duck, muscovy duck and geese and Charadriiformes (gulls, seabirds, wild birds are the natural reservoirs for influenza type A viruses and play important role on the ecology and propagation of the virus. From this reservoir, influenza type A virus usually can be transmitted to other birds, mammals (including human and caused outbreak of lethal diseases. Waterfowl that is infected with influenza A virus usually does not show any clinical symptoms. However, several reports stated that HPAI viruses can cause severe disease with neurogical disorders led to death in waterfowl. Migration of birds including waterfowls have active role in transmitting and spreading the disease. Movement of wild birds and inappropriate poultry trade transportation play a greater role as vector in spreading HPAI to humans. Ecological change of environment has also a great effect in spreading AI viruses. The spreading pattern of AI viruses is usually influenced by seasons, where the prevalence of AI was reported to be in the fall, winter and rainy seasons. Finally, the effective control strategies against the spreading of AI viruses is required. Programs of monitoring, surveilence and

  12. Outbreak of Avian Malaria Associated to Multiple Species of Plasmodium in Magellanic Penguins Undergoing Rehabilitation in Southern Brazil

    Science.gov (United States)

    Vanstreels, Ralph Eric Thijl; Kolesnikovas, Cristiane K. M.; Sandri, Sandro; Silveira, Patrícia; Belo, Nayara O.; Ferreira Junior, Francisco C.; Epiphanio, Sabrina; Steindel, Mário; Braga, Érika M.; Catão-Dias, José Luiz

    2014-01-01

    Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28) of the penguins, including Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) elongatum, a Plasmodium (Haemamoeba) sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus) sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18) of the hemosporidian-infected penguins, and in 89% (8/9) of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba) sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28) penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to prevent avian

  13. Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in southern Brazil.

    Science.gov (United States)

    Vanstreels, Ralph Eric Thijl; Kolesnikovas, Cristiane K M; Sandri, Sandro; Silveira, Patrícia; Belo, Nayara O; Ferreira Junior, Francisco C; Epiphanio, Sabrina; Steindel, Mário; Braga, Érika M; Catão-Dias, José Luiz

    2014-01-01

    Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28) of the penguins, including Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) elongatum, a Plasmodium (Haemamoeba) sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus) sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18) of the hemosporidian-infected penguins, and in 89% (8/9) of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba) sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28) penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to prevent avian

  14. Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in southern Brazil.

    Directory of Open Access Journals (Sweden)

    Ralph Eric Thijl Vanstreels

    Full Text Available Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28 of the penguins, including Plasmodium (Haemamoeba tejerai, Plasmodium (Huffia elongatum, a Plasmodium (Haemamoeba sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18 of the hemosporidian-infected penguins, and in 89% (8/9 of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28 penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to

  15. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes.

    Science.gov (United States)

    Palinauskas, Vaidas; Žiegytė, Rita; Ilgūnas, Mikas; Iezhova, Tatjana A; Bernotienė, Rasa; Bolshakov, Casimir; Valkiūnas, Gediminas

    2015-01-01

    For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms

  16. Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains.

    Science.gov (United States)

    Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard

    2015-03-28

    Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.

  17. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Driskell

    Full Text Available Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA residues with α 2,3 linkage [Neu5Ac(α2,3Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  18. Construction of an infectious cDNA clone of genotype 1 avian hepatitis E virus: characterization of its pathogenicity in broiler breeders and demonstration of its utility in studying the role of the hypervariable region in virus replication.

    Science.gov (United States)

    Park, Soo-Jeong; Lee, Byung-Woo; Moon, Hyun-Woo; Sung, Haan Woo; Yoon, Byung-Il; Meng, Xiang-Jin; Kwon, Hyuk Moo

    2015-05-01

    A full-length infectious cDNA clone of the genotype 1 Korean avian hepatitis E virus (avian HEV) (pT11-aHEV-K) was constructed and its infectivity and pathogenicity were investigated in leghorn male hepatoma (LMH) chicken cells and broiler breeders. We demonstrated that capped RNA transcripts from the pT11-aHEV-K clone were translation competent when transfected into LMH cells and infectious when injected intrahepatically into the livers of chickens. Gross and microscopic pathological lesions underpinned the avian HEV infection and helped characterize its pathogenicity in broiler breeder chickens. The avian HEV genome contains a hypervariable region (HVR) in ORF1. To demonstrate the utility of the avian HEV infectious clone, several mutants with various deletions in and beyond the known HVR were derived from the pT11-aHEV-K clone. The HVR-deletion mutants were replication competent in LMH cells, although the deletion mutants extending beyond the known HVR were non-viable. By using the pT11-aHEV-K infectious clone as the backbone, an avian HEV luciferase reporter replicon and HVR-deletion mutant replicons were also generated. The luciferase assay results of the reporter replicon and its mutants support the data obtained from the infectious clone and its derived mutants. To further determine the effect of HVR deletion on virus replication, the capped RNA transcripts from the wild-type pT11-aHEV-K clone and its mutants were injected intrahepatically into chickens. The HVR-deletion mutants that were translation competent in LMH cells displayed in chickens an attenuation phenotype of avian HEV infectivity, suggesting that the avian HEV HVR is important in modulating the virus infectivity and pathogenicity. © 2015 The Authors.

  19. EPIZOOTIOLOGICAL CHART OF AVIAN CHLAMYDIOSIS IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Edin Šatrović

    2013-03-01

    Full Text Available In the period from 2003 to 2008 we conducted a research on avian chlamydiosis in Bosnia and Herzegovina on a great number of domestic and wild birds from different localities. Diagnostic material from the wild birds was provided by the hunting societies during the hunting season while material from the domestic poultry was taken indiscriminately. Chicken samples are taken from the facilities for intensive production, namely parent flocks. Turkey samples are taken from the individual households keeping and breeding turkey on extensive basis (half – open type of breeding. Pigeon samples are provided from the central parts of Sarajevo where the pigeons live in a close contact with people. Also, pigeon samples are provided from around the town's bakery and a farm for intensive poultry breeding because the pigeons are considered a potential source of infection for other birds, primarily domestic ones, and also for the people. We also took samples of the breeding pheasants from a pheasant farm in Orašje, which is oriented toward breeding and releasing pheasants into their natural habitat, but also breeding for the needs of hunting industry. Samples from the wild/hunting birds (ducks and wild pheasants were provided in the proximity of watercourses as their residence, and where the hunting is of a greater extent. To obtain valid diagnostic results we have used multiple diagnostic methods and tests: bacteriological examination to exclude cross reactions, IIF (indirect immunofluorescence to confirm antibodies in the blood serum, ELISA (immunoesay and EIA (quick immunoessay to detect antigen, and conventional PCR and rRT – PCR to detect antigen as sensitive and sophisticated diagnostics methods.Key words: avian chlamydiosis, epizootiological chart, Bosnia and Herzegovina

  20. Can lowland dry forests represent a refuge from avian malaria for native Hawaiian birds?

    Science.gov (United States)

    Tucker-Mohl, Katherine; Hart, Patrick; Atkinson, Carter T.

    2010-01-01

    Hawaii's native birds have become increasingly threatened over the past century. Introduced mosquito borne diseases such as avian malaria may be responsible for the near absence of endemic Hawaiian forest birds in low-elevation habitats. The recent recognition that some native Hawaiian forest birds may be repopulating moist lowland habitats as a result of evolved resistance to this disease has increased the conservation value of these areas. Here, we investigate whether remnant low elevation dry forests on Hawaii Island provide natural 'refuges' from mosquito-transmitted malaria by nature of their low rainfall and absence of suitable natural sources of water for mosquito breeding. Unlike lowland wet forests where high rates of disease transmission may be selecting for disease resistance, lowland dry forests may provide some refuge for native forest birds without natural resistance to malaria. We mistnetted forest birds in two lowland dry forests and tested all native birds by microscopy and serology for avian malaria caused by the Plasmodium relictum parasite. We also conducted surveys for standing water and mosquito larvae. Overall prevalence of infections with Plasmodium relictum in the Hawaii Amakihi Hemignathus virens virens was 15%. Most infected birds had lowlevel parasitemias, suggesting chronic infections. Although avian malaria is present in these lowland dry forest Amakihi populations, infection rates are significantly lower than in wet forest populations at similar elevations. Sources of breeding mosquitoes in these forests appeared to be largely anthropogenic; thus, there is potential to manage dry forests as mosquito-free habitat for Hawaii Amakihi and other Hawaiian forest birds.