Average resonance parameters evaluation for actinides
Energy Technology Data Exchange (ETDEWEB)
Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)
1997-03-01
New evaluated <{Gamma}{sub n}{sup 0}> and
Energy Technology Data Exchange (ETDEWEB)
Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.
1982-05-01
The influence of different representations of the unresolved resonances of /sup 238/U on the computed self-shielding factors is examined. It is shown that the evaluated infinitely diluted average capture cross section does not provide sufficient information to determine a unique set of unresolved resonance parameters; different sets of unresolved resonance parameters equally consistent with the evaluated average capture cross section yield significantly different computed self-shielding factors. In the conclusion it is recommended that the resolved resonance description of the evaluated /sup 238/U cross sections be extended to higher energies and that thick sample transmission data and self-indication data be used to improve the evaluation of the unresolved resonance region.
Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections
Tagliente, G; Fujii, K; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Bisterzo, S; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Goncalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tain, J.L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M.C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K
2011-01-01
The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.
Averaged controllability of parameter dependent conservative semigroups
Lohéac, Jérôme; Zuazua, Enrique
2017-02-01
We consider the problem of averaged controllability for parameter depending (either in a discrete or continuous fashion) control systems, the aim being to find a control, independent of the unknown parameters, so that the average of the states is controlled. We do it in the context of conservative models, both in an abstract setting and also analysing the specific examples of the wave and Schrödinger equations. Our first result is of perturbative nature. Assuming the averaging probability measure to be a small parameter-dependent perturbation (in a sense that we make precise) of an atomic measure given by a Dirac mass corresponding to a specific realisation of the system, we show that the averaged controllability property is achieved whenever the system corresponding to the support of the Dirac is controllable. Similar tools can be employed to obtain averaged versions of the so-called Ingham inequalities. Particular attention is devoted to the 1d wave equation in which the time-periodicity of solutions can be exploited to obtain more precise results, provided the parameters involved satisfy Diophantine conditions ensuring the lack of resonances.
Institute of Scientific and Technical Information of China (English)
李怡平
1995-01-01
How the averaging near-identity transformations are equivalent to multiple-scale expansions to O(1) is shown in solving strictly nonlinear oscillatory systems with slowly varying parameters in sustained resonance.
Distributed Weighted Parameter Averaging for SVM Training on Big Data
Das, Ayan; Bhattacharya, Sourangshu
2015-01-01
Two popular approaches for distributed training of SVMs on big data are parameter averaging and ADMM. Parameter averaging is efficient but suffers from loss of accuracy with increase in number of partitions, while ADMM in the feature space is accurate but suffers from slow convergence. In this paper, we report a hybrid approach called weighted parameter averaging (WPA), which optimizes the regularized hinge loss with respect to weights on parameters. The problem is shown to be same as solving...
Estimating a weighted average of stratum-specific parameters.
Brumback, Babette A; Winner, Larry H; Casella, George; Ghosh, Malay; Hall, Allyson; Zhang, Jianyi; Chorba, Lorna; Duncan, Paul
2008-10-30
This article investigates estimators of a weighted average of stratum-specific univariate parameters and compares them in terms of a design-based estimate of mean-squared error (MSE). The research is motivated by a stratified survey sample of Florida Medicaid beneficiaries, in which the parameters are population stratum means and the weights are known and determined by the population sampling frame. Assuming heterogeneous parameters, it is common to estimate the weighted average with the weighted sum of sample stratum means; under homogeneity, one ignores the known weights in favor of precision weighting. Adaptive estimators arise from random effects models for the parameters. We propose adaptive estimators motivated from these random effects models, but we compare their design-based performance. We further propose selecting the tuning parameter to minimize a design-based estimate of mean-squared error. This differs from the model-based approach of selecting the tuning parameter to accurately represent the heterogeneity of stratum means. Our design-based approach effectively downweights strata with small weights in the assessment of homogeneity, which can lead to a smaller MSE. We compare the standard random effects model with identically distributed parameters to a novel alternative, which models the variances of the parameters as inversely proportional to the known weights. We also present theoretical and computational details for estimators based on a general class of random effects models. The methods are applied to estimate average satisfaction with health plan and care among Florida beneficiaries just prior to Medicaid reform.
Neutron Resonance Parameters for Ra-226 (Radium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Volume 24 `Neutron Resonance Parameters' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides the neutron resonance parameters for the isotope Ra-226 (Radium).
Average radiation widths and the giant dipole resonance width
Energy Technology Data Exchange (ETDEWEB)
Arnould, M.; Thielemann, F.K.
1982-11-01
The average E1 radiation width can be calculated in terms of the energy Esub(G) and width GAMMAsub(G) of the Giant Dipole Resonance (GDR). While various models can predict Esub(G) quite reliably, the theoretical situation regarding ..lambda..sub(G) is much less satisfactory. We propose a simple phenomenological model which is able to provide GAMMAsub(G) values in good agreement with experimental data for spherical or deformed intermediate and heavy nuclei. In particular, this model can account for shell effects in GAMMAsub(G), and can be used in conjunction with the droplet model. The GAMMAsub(G) values derived in such a way are used to compute average E1 radiation widths which are quite close to the experimental values. The method proposed for the calculation of GAMMAsub(G) also appears to be well suited when the GDR characteristics of extended sets of nuclei are required, as is namely the case in nuclear astrophysics.
Neutron Resonance Parameters and Covariance Matrix of 239Pu
Energy Technology Data Exchange (ETDEWEB)
Derrien, Herve [ORNL; Leal, Luiz C [ORNL; Larson, Nancy M [ORNL
2008-08-01
In order to obtain the resonance parameters in a single energy range and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the code SAMMY. The most recent experimental data were analyzed or reanalyzed in the energy range thermal to 2.5 keV. The normalization of the fission cross section data was reconsidered by taking into account the most recent measurements of Weston et al. and Wagemans et al. A full resonance parameter covariance matrix was generated. The method used to obtain realistic uncertainties on the average cross section calculated by SAMMY or other processing codes was examined.
Rho resonance parameters from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael
2016-08-01
We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.
Quantum averaging and resonances: two-level atom in a one-mode classical laser field
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2007-06-01
Full Text Available We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.
Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties.
Beerepoot, Maarten T P; Steindal, Arnfinn Hykkerud; List, Nanna Holmgaard; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard
2016-04-12
We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges and isotropic polarizabilities averaged over a large number of geometries of solvent molecules. The use of averaged parameters reduces the computational cost to obtain the embedding potential, which can otherwise be a rate-limiting step in calculations involving large environments. The parameters are evaluated by analyzing the quality of the resulting molecular electrostatic potentials with respect to full QM potentials. We show that a combination of geometry-specific parameters for solvent molecules close to the QM region and averaged parameters for solvent molecules further away allows for efficient polarizable embedding multiscale modeling without compromising the accuracy. The results are promising for the development of general embedding parameters for biomolecules, where the reduction in computational cost can be considerable.
Partial Averaging and Resonance Trapping in a Restricted Three-Body System
Haghighipour, N
2002-01-01
Based on the value of the orbital eccentricity of a particle and also its proximity to the exact resonant orbit in a three-body system, the Pendulum Approximation (Dermott & Murray 1983) or the Second Fundamental Model of Resonance (Andoyer 1903; Henrard & Lemaitre 1983) are commonly used to study the motion of that particle near its resonance state. In this paper, we present the method of partial averaging as an analytical approach to study the dynamical evolution of a body near a resonance. To focus attention on the capabilities of this technique, a restricted, circular and planar three-body system is considered and the dynamics of its outer planet while captured in a resonance with the inner body is studied. It is shown that the first-order partially averaged system resembles a mathematical pendulum whose librational motion can be viewed as a geometrical interpretation of the resonance capture phenomenon. The driving force of this pendulum corresponds to the gravitational attraction of the inner bo...
Vibrational resonance: a study with high-order word-series averaging
Murua, Ander
2016-01-01
We study a model problem describing vibrational resonance by means of a high-order averaging technique based on so-called word series. With the tech- nique applied here, the tasks of constructing the averaged system and the associ- ated change of variables are divided into two parts. It is first necessary to build recursively a set of so-called word basis functions and, after that, all the required manipulations involve only scalar coefficients that are computed by means of sim- ple recursions. As distinct from the situation with other approaches, with word- series, high-order averaged systems may be derived without having to compute the associated change of variables. In the system considered here, the construction of high-order averaged systems makes it possible to obtain very precise approxima- tions to the true dynamics.
Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos
Institute of Scientific and Technical Information of China (English)
贺凯芬
2001-01-01
A time-averaged behaviour is found to be important for investigating the critical behaviour in parameter space for the transition from temporal chaos to spatiotemporal chaos by using an energy representation. Considering any wave solution as a superposition of the steady wave with its perturbation wave, we find that when approaching the critical parameter point the averaged positive interaction energy for the k = 1 mode becomes competitive with the negative one, with the summation displaying a scaling behaviour of power law.
On the ambiguity of determination of interfering resonances parameters
Malyshev, V M
2015-01-01
The general form of solutions for parameters of interfering Breit-Wigner resonances is found. The number of solutions is determined by the properties of roots of corresponding characteristic equation and does not exceed $2^{N-1}$, where $N$ is the number of resonances. For resonances of more complicated form, provided that their amplitudes satisfy certain conditions, for any $N\\ge2$ multiple solutions also exist.
Average H2 performance and maximal parameter pertubation radius for uncertain systems
DEFF Research Database (Denmark)
Zhao, K.-Y.; Grimble, M.J.; Stoustrup, Jakob
1999-01-01
In this paper methods are prsented for calculating the maximal parameter pertubation bounds under H2 performance constraints for a family of uncertain systems and for calculating the average H2 performance under such parameter variations. The uncertain systems are described by state space models ...
Parameter-induced stochastic resonance with a periodic signal
Institute of Scientific and Technical Information of China (English)
Li Jian-Long; Xu Bo-Hou
2006-01-01
In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameterinduced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.
Pastor, P
2013-01-01
Within the framework of the circular restricted three body problem we investigate the motion of a dust particle captured into a mean motion resonance with a planet under the action of non-gravitational effects. From equations of motion in a near-canonical form averaged resonant equations are derived. The averaged resonant equations describe secular variations of the particle orbit in the mean motion resonance. The secular variations of the particle orbit caused by the non-gravitational effects can depend on the orientation of the orbit in space. The averaged resonant equations are derived with this dependence taken into account. We also present an alternative way how the averaged resonant equations can be derived. We applied derived theory for the case when non-gravitational effects are the Poynting-Robertson effect, radial stellar wind and interstellar wind. Obtained analytical and numerical results are in excellent agreement in the Solar system. We found that types of orbits correspond to libration centers ...
Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties
DEFF Research Database (Denmark)
Beerepoot, Maarten; Steindal, Arnfinn Hykkerud; List, Nanna Holmgaard
2016-01-01
We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges and isotr......We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges...... embedding multiscale modeling without compromising the accuracy. The results are promising for the development of general embedding parameters for biomolecules, where the reduction in computational cost can be considerable....
Impact parameter dependent potentials and average transverse momentum in inclusive DIS
Alhalholy, Tareq; Burkardt, Matthias
2016-06-01
We exploit a connection between the Coulomb/Eikonal phase and the charge distribution in the transverse plane for a transversely polarized nucleon. The known deformation of the charge density in impact parameter space translates into an asymmetry in the Coulomb/Eikonal phase (or the impact parameter electromagnetic potential). The asymmetry in the transverse potential implies an azimuthal asymmetry in the scattering cross section of the scattered electrons in inclusive DIS. We use the transverse potential to calculate the average transverse momentum of the scattered electrons. The sign of the calculated average transverse momentum for a neutron target is consistent with recent Jefferson Lab data.
Alon, Leeor; Sodickson, Daniel K; Deniz, Cem M
2016-10-01
Deposition of radiofrequency (RF) energy can be quantified via electric field or temperature change measurements. Magnetic resonance imaging has been used as a tool to measure three dimensional small temperature changes associated with RF radiation exposure. When duration of RF exposure is long, conversion from temperature change to specific absorption rate (SAR) is nontrivial due to prominent heat-diffusion and conduction effects. In this work, we demonstrated a method for calculation of SAR via an inversion of the heat equation including heat-diffusion and conduction effects. This method utilizes high-resolution three dimensional magnetic resonance temperature images and measured thermal properties of the phantom to achieve accurate calculation of SAR. Accuracy of the proposed method was analyzed with respect to operating frequency of a dipole antenna and parameters used in heat equation inversion. Bioelectromagnetics. 37:493-503, 2016. © 2016 Wiley Periodicals, Inc.
Simulation of robust resonance parameters using information theory
Energy Technology Data Exchange (ETDEWEB)
Krishna Kumar, P.T. [Reactor Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)], E-mail: gstptk@yahoo.co.in; Phoha, V.V. [Department of Computer Science, Louisiana Tech University, Arizona Avenue, Ruston, LA 71270 (United States)], E-mail: phoha@latech.edu; Iyengar, S.S. [Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 (United States)], E-mail: iyengar@csc.lsu.edu
2008-08-15
Due to complex nature of resonance region interactions, significant effort has been devoted to quantify the resonance parameter uncertainty information through covariance matrices. Statistical uncertainties arising from measurements contribute only to the diagonal elements of the covariance matrix, but the off-diagonal contributions arise from multiple sources like systematic errors in cross-section measurement, correlation due to nuclear reaction formalism, etc. All the efforts have so far been devoted to minimize the statistical uncertainty by repeated measurements but systematic uncertainty cannot be reduced by mere repetition. The computer codes like SAMMY and KALMAN so far developed to generate resonance parameter covariance have no provision to improve upon the highly correlated experimental data and hence reduce the systematic uncertainty. We propose a new approach called entropy based information theory to reduce the systematic uncertainty in the covariance matrix element wise so that resonance parameters with minimum systematic uncertainty can be simulated. Our simulation approach will aid both the experimentalists and the evaluators to design the experimental facility with minimum systematic uncertainty and thus improve the quality of measurement and the associated instrumentation. We demonstrate, the utility of our approach in simulating the resonance parameters of Uranium-235 and Plutonium-239 with reduced systematic uncertainty.
Institute of Scientific and Technical Information of China (English)
SUN; Xiaomin; ZHU; Zhilin; XU; Jinping; YUAN; Guofu
2005-01-01
It is more and more popular to estimate the exchange of water vapor, heat and CO2fluxes between the land surface and the atmosphere using the eddy covariance technique. To get believable fluxes, it is necessary to correct the observations based on the different surface conditions and to determine relevant techinical parameters. The raw 10 Hz eddy covariance data observed in the Yucheng and Changbai Mountains stations were recalculated by various averaging periods (from 1 to 720 min) respectively, and the recalculated results were compared with the results calculated by the averaging period of 30 mins. Meanwhile, the distinctions of fluxes calculated by different averaging periods were analyzed. The continuous 15 days observations over wheat fields in the Yucheng station were mainly analyzed. The results are shown that: (i) In the Yucheng station, compared with the observations by 30 min, when the averaging period changes from 10 to 60 min, the variations of the eddy-covariance estimates of fluxes were less than 2%; when the averaging period changes less than 10 min, the estimate of fluxes reduced obviously with the reduction of the averaging period (the max relative error was -12%); and when the averaging period exceeds 120 min, the eddy covariance estimates of fluxes will be increased and become unsteady (the max relative error is over 10%); (ii) the eddy covariance estimates of fluxes over wheat field in the Yucheng station suggusted that it is much better to take 10 min as an averaging period in studying diurnal change of fluxes, and take 30min for a long-term flux observation; and (iii) normalized ratio was put forward to determine the range of averaging period of eddy covariance measurements. By comparing the observations over farmlands and those over forests, it is indicated that the increase of eddy covariance estimates over tall forest was more than that over short vegetation when the averaging period increased.
Studying the $\\rho$ resonance parameters with staggered fermions
Fu, Ziwen
2016-01-01
We deliver a lattice study of $\\rho$ resonance parameters with p-wave $\\pi\\pi$ scattering phases, which are extracted by finite-size methods at one center-of-mass frame and four moving frames for six MILC lattice ensembles with pion masses ranging from $346$ to $ 176$ MeV. The effective range formula is applied to describe the scattering phases as a function of the energy covering the resonance region, this allows us to extract $\\rho$ resonance parameters and to investigate the quark-mass dependence. Lattice studies with three flavors of the Asqtad-improved staggered fermions enable us to use the moving-wall source technique on large lattice spatial dimensions ($L=64$) and small light $u/d$ quarks. Numerical computations are carried out at two lattice spacings, $a \\approx 0.12$ and $0.09$ fm.
Studying the ρ resonance parameters with staggered fermions
Fu, Ziwen; Wang, Lingyun
2016-08-01
We deliver a lattice study of ρ resonance parameters with p -wave π π scattering phases, which are extracted by finite-size methods at one center-of-mass frame and four moving frames for six lattice ensembles from the MILC Collaboration with pion masses ranging from 346 to 176 MeV. The effective range formula is applied to describe the scattering phases as a function of the energy covering the resonance region; this allows us to extract ρ resonance parameters and to investigate the quark-mass dependence. Lattice studies with three flavors of Asqtad-improved staggered fermions enable us to use the moving-wall source technique on large lattice spatial dimensions (L =64 ) and small light u /d quarks. Numerical computations are carried out at two lattice spacings, a ≈0.12 and 0.09 fm.
Measurement of the Z Resonance Parameters at LEP
Barate, R; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Orteu, S; Pacheco, A; Park, I C; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Bazarko, A; Becker, U; Boix, G; Bird, F; Blucher, E; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Hagelberg, R; Halley, A W; Hansen, J B; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lazeyras, Pierre; Lehraus, Ivan; Maley, P; Mato, P; May, J; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Veenhof, R; Wiedenmann, W; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Bertelsen, H; Fernley, T; Hansen, F; Hansen, J D; Hansen, J R; Hansen, P H; Lindahl, A; Møllerud, R; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Tanaka, R; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Picchi, P; Colrain, P; ten Have, I; Hughes, I S; Knowles, I G; Lynch, J G; Morton, W T; Raine, C; Reeves, P; O'Shea, V; Scarr, J M; Smith, K; Thompson, A S; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Nash, J; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Keemer, N R; Robertson, N A; Sloan, Terence; Snow, S W; Williams, M I; Bauerdick, L A T; Van Gemmeren, P; Giehl, I; Jakobs, K; Kasemann, M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmelling, M; Wachsmuth, H W; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Edwards, M; Haywood, S J; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Barberio, E; Böhrer, A; Brandt, S; Burkhardt, H; Feigl, E; Grupen, Claus; Hess, J; Lutters, G; Meinhard, H; Minguet-Rodríguez, J A; Mirabito, L; Misiejuk, A; Neugebauer, E; Prange, G; Rivera, F; Saraiva, P; Schäfer, U; Sieler, U; Smolik, L; Stephan, F; Trier, H; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pitis, L; Kim, H; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Cinabro, D; Conway, J S; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; Jin, S; Johnson, R P; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Sharma, V; Walsh, A M; Walsh, J; Wear, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G
2000-01-01
The properties of the Z resonance are measured from the analysis of 4.5 million Z decays into fermion pairs collected with the \\Aleph\\ detector at L EP. The data are consistent with lepton universality. The resonance parameters are measured to be $\\MZ=(91.1885 \\pm 0.0031)~\\Gevcc$, $\\GZ= (2.4951 \\pm 0.0043)~\\GeV$, $\\spol=(41.559 \\pm 0.058)$~nb and, combining the three lepton flavours $\\Rl= 20.725\\pm 0.039$. The corresponding number of light neutrino species is $N_{\
DEFF Research Database (Denmark)
Wu, Yunqiu; Arslanagic, Samel
The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....
Parameters optimization for magnetic resonance coupling wireless power transmission.
Li, Changsheng; Zhang, He; Jiang, Xiaohua
2014-01-01
Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.
A method for the estimation of p-mode parameters from averaged solar oscillation power spectra
Reiter, J; Kosovichev, A G; Schou, J; Scherrer, P H; Larson, T P
2015-01-01
A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from $m$-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we ha...
Measurement of the semileptonic b branching fractions and average b mixing parameter in Z decays
Abreu, P.; Adye, T.; Adzic, P.; Ajinenko, I.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, Dmitri Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Gerdyukov, L.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanski, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kriznic, E.; Krumstein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Merle, E.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Morettini, P.; Morton, G.; Mueller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Mundim, L.M.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinertsen, P.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Sedykh, Y.; Segar, A.M.; Seibert, N.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Tchikilev, O.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Van den Boeck, W.; Van Doninck, Walter; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.
2001-01-01
The semileptonic branching fractions for primary and cascade b decays BR(b -> lepton-), BR(b -> c -> lepton+) and BR(b -> cbar -> lepton-) were measured in hadronic Z decays collected by the DELPHI experiment at LEP. The sample was enriched in b decays using the lifetime information and various techniques were used to separate leptons from direct or cascade b decays. By fitting the momentum spectra of di-leptons in opposite jets, the average b mixing parameter chi-bar was also extracted. The following results have been obtained: BR(b -> lepton-) = (10.70 +/- 0.08 (stat) +/- 0.21 (syst)_{+0.44}^{-0.30}(model))% BR(b -> c -> lepton+) = ( 7.98 +/- 0.22 (stat) +/- 0.21 (syst)^{+0.14}_{-0.20}(model))% BR(b -> cbar -> lepton-) = (1.61 +/- 0.20 (stat) +/- 0.17 (syst)^{+0.30}_{-0.44}(model))% chi-bar = 0.127 +/- 0.013 (stat) +/- 0.005 (syst) +/- 0.004(model)
Large-scale solar wind streams: Average temporal evolution of parameters
Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda
2016-07-01
In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR
Quantifying bone weathering stages using the average roughness parameter Ra measured from 3D data
Vietti, Laura A.
2016-09-01
Bone surface texture is known to degrade in a predictable fashion due to subaerial exposure, and can thus act as a relative proxy for estimating temporal information from modern and ancient bone assemblages. To date, the majority of bone weathering data is collected on a categorical scale based on descriptive terms. While this qualitative classification of weathering data is well established, textural analyses of bone surfaces may provide means to quantify weathering stages but have yet to be tested. Here, I examined the suitability of textural analyses for bone weathering studies by first establishing bone surface regions most appropriate for weathering analyses. I then measured and compared the roughness texture of weathered bones at different stages. To establish regions of bone most suitable for textural analyses, Ra was measured from 3D scans of dorsal ribs of four adult ungulate taxa. Results indicate that the rib-shafts from unweathered ungulate skeletons were similar and are likely good candidates because differences in surface texture will not be due to differences in initial bone texture. To test if textural measurements could reliably characterize weathering stages, the average roughness values (Ra) were measured from weathered ungulate rib-shafts assigned to four descriptive weathering stages. Results from analyses indicate that the Ra was statistically distinct for each weathering stage and that roughness positively correlates with the degree of weathering. As such, results suggest that textural analyses may provide the means for quantifying bone-weathering stages. Using Ra and other quantifiable texture parameters may enable more reliable and comparative taphonomic analyses by reducing inter-observer variations and by providing numerical data more compatible for multivariate statistics.
Comments on extracting the resonance strength parameter from yield data
Croft, Stephen; Favalli, Andrea
2015-10-01
The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to
Dinh Dang, N.; Ciemala, M.; Kmiecik, M.; Maj, A.
2013-05-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus 88Mo, which is formed after the fusion-evaporation reaction 48Ti + 40Ca at various excitation energies E* from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum J≥ 50 ℏ at T=4 MeV and at J≥ 70 ℏ at any T.
Dang, N Dinh; Kmiecik, M; Maj, A
2013-01-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus $^{88}$Mo, which is formed after the fusion-evaporation reaction $^{48}$Ti + $^{40}$Ca at various excitation energies $E^{*}$ from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular-momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum $J\\geq$ 50$\\hbar$ at $T=$ 4 MeV and at $J\\geq$ 70$\\hbar$ at any $T$.
Energy Technology Data Exchange (ETDEWEB)
Leal, L.C.
2001-02-27
The R-matrix resonance analysis of experimental neutron transmission and cross sections of {sup 233}U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k{sub eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.
Energy Technology Data Exchange (ETDEWEB)
Kock, A.
1996-05-01
The objectives of this research are: (1) to calculate and compare off site doses from atmospheric tritium releases at the Savannah River Site using monthly versus 5 year meteorological data and annual source terms, including additional seasonal and site specific parameters not included in present annual assessments; and (2) to calculate the range of the above dose estimates based on distributions in model parameters given by uncertainty estimates found in the literature. Consideration will be given to the sensitivity of parameters given in former studies.
Neutron resonance parameters of dysprosium isotopes using neutron capture yields
Energy Technology Data Exchange (ETDEWEB)
Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)
2015-10-15
Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.
DEFF Research Database (Denmark)
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...... function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes...
Institute of Scientific and Technical Information of China (English)
E.A.IZZHEUROV
2009-01-01
The first resonant(anti-resonant)frequency and sound absorption coefficient of metal rubber(MR) material are theoretically studied with hard backed samples and with air layer.The equations of the first resonant and anti-resonant frequencies of MR are deduced from the undamped propagation characteristics of porous material.The first resonant and anti-resonance sound absorption coefficients are induced according to the theoretical formula for the acoustic characteristic parameters of MR,and the former is modified while the energy consumption at resonance is taken into consideration.The good agreement between the calculation results of these resonant sound absorption parameters and the experimental results verifies the effectiveness of this calculation method for the performance evaluation of MR as a sound absorption material.
Institute of Scientific and Technical Information of China (English)
WU GuoQi; AO HongRui; JIANG HongYuan; E.A.IZZHEUROV
2009-01-01
The first resonant(anti-resonant)frequency and sound absorption coefficient of metal rubber(MR)material are theoretically studied with hard backed samples and with air layer.The equations of the first resonant and anti-resonant frequencies of MR are deduced from the undamped propagation characteristics of porous material.The first resonant and anti-resonance sound absorption coefficients are induced according to the theoretical formula for the acoustic characteristic parameters of MR,and the former is modified while the energy consumption at resonance is taken into consideration.The good agreement between the calculation results of these resonant sound absorption parameters and the experimental results verifies the effectiveness of this calculation method for the performance evaluation of MR as a sound absorption material.
Abdul Jameel, Abdul Gani
2016-04-22
Heavy fuel oil (HFO) is primarily used as fuel in marine engines and in boilers to generate electricity. Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for structure elucidation and in this study, 1H NMR and 13C NMR spectroscopy were used for the structural characterization of 2 HFO samples. The NMR data was combined with elemental analysis and average molecular weight to quantify average molecular parameters (AMPs), such as the number of paraffinic carbons, naphthenic carbons, aromatic hydrogens, olefinic hydrogens, etc. in the HFO samples. Recent formulae published in the literature were used for calculating various derived AMPs like aromaticity factor 〖(f〗_a), C/H ratio, average paraffinic chain length (¯n), naphthenic ring number 〖(R〗_N), aromatic ring number〖 (R〗_A), total ring number〖 (R〗_T), aromatic condensation index (φ) and aromatic condensation degree (Ω). These derived AMPs help in understanding the overall structure of the fuel. A total of 19 functional groups were defined to represent the HFO samples, and their respective concentrations were calculated by formulating balance equations that equate the concentration of the functional groups with the concentration of the AMPs. Heteroatoms like sulfur, nitrogen, and oxygen were also included in the functional groups. Surrogate molecules were finally constructed to represent the average structure of the molecules present in the HFO samples. This surrogate molecule can be used for property estimation of the HFO samples and also serve as a surrogate to represent the molecular structure for use in kinetic studies.
Conrad, Matthew S; Sutton, Bradley P; Dilger, Ryan N; Johnson, Rodney W
2014-01-01
Due to the fact that morphology and perinatal growth of the piglet brain is similar to humans, use of the piglet as a translational animal model for neurodevelopmental studies is increasing. Magnetic resonance imaging (MRI) can be a powerful tool to study neurodevelopment in piglets, but many of the MRI resources have been produced for adult humans. Here, we present an average in vivo MRI-based atlas specific for the 4-week-old piglet. In addition, we have developed probabilistic tissue classification maps. These tools can be used with brain mapping software packages (e.g. SPM and FSL) to aid in voxel-based morphometry and image analysis techniques. The atlas enables efficient study of neurodevelopment in a highly tractable translational animal with brain growth and development similar to humans.
Directory of Open Access Journals (Sweden)
Matthew S Conrad
Full Text Available Due to the fact that morphology and perinatal growth of the piglet brain is similar to humans, use of the piglet as a translational animal model for neurodevelopmental studies is increasing. Magnetic resonance imaging (MRI can be a powerful tool to study neurodevelopment in piglets, but many of the MRI resources have been produced for adult humans. Here, we present an average in vivo MRI-based atlas specific for the 4-week-old piglet. In addition, we have developed probabilistic tissue classification maps. These tools can be used with brain mapping software packages (e.g. SPM and FSL to aid in voxel-based morphometry and image analysis techniques. The atlas enables efficient study of neurodevelopment in a highly tractable translational animal with brain growth and development similar to humans.
Test of the universality of the three-body Efimov parameter at narrow Feshbach resonances.
Roy, Sanjukta; Landini, Manuele; Trenkwalder, Andreas; Semeghini, Giulia; Spagnolli, Giacomo; Simoni, Andrea; Fattori, Marco; Inguscio, Massimo; Modugno, Giovanni
2013-08-02
We measure the critical scattering length for the appearance of the first three-body bound state, or Efimov three-body parameter, at seven different Feshbach resonances in ultracold ^{39}K atoms. We study both intermediate and narrow resonances, where the three-body spectrum is expected to be determined by the nonuniversal coupling of two scattering channels. Instead, our observed ratio of the three-body parameter with the van der Waals radius is approximately the same universal ratio as for broader resonances. This unexpected observation suggests the presence of a new regime for three-body scattering at narrow resonances.
Institute of Scientific and Technical Information of China (English)
LIU Zong-Liang; ZHAO Fang; LI Shao-Hua; ZHAO Mei-Shan; CHEN Chang-Yong
2008-01-01
This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomie molecular predissoeiation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.
Energy Technology Data Exchange (ETDEWEB)
Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de; Feder, R.; Gerlach, J.W.; Neumann, H.
2014-01-31
Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles.
Analysis of the {sup 238}U resonance parameters using random-matrix theory
Energy Technology Data Exchange (ETDEWEB)
Courcelle, A. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Derrien, H.; Leal, L.C.; Larson, N.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2005-07-01
Random-matrix theories (RMTs) provide valuable statistical tools to analyze neutron-resonance data. The predictive power of the random-matrix theories, which do not contain any adjustable parameters, is striking, and the application is rather simple and fast. A new evaluation of {sup 238}U resonance parameters has recently been performed at the Oak Ridge National Laboratory; the objective of this paper is to illustrate the use of RMT in the field of resonance-parameter evaluation with the newly evaluated {sup 239}U energy levels and widths. Several statistics were computed using the s-wave resonances up to 20 keV and compared to the Gaussian Orthogonal Ensemble predictions. It is shown that a good agreement is observed between RMT and the experimental data up to 2.5 keV. The F-Dyson statistic was especially investigated because of its claimed ability to detect locally missed and spurious levels in the sample (p-resonances contamination or unresolved multiplets). As expected, the entire set of evaluated {sup 238}U s-wave resonances up to 20 keV disagrees significantly with the theory. There are two reasons for this: First, it is difficult to distinguish s- and p-wave resonances in the analysis. Secondly, especially above 10 keV, it is impossible to determine reliable resonance energies from the available experimental data. It is concluded that the use of RMT can help nuclear data specialists to improve their evaluations in the resonance range. (authors)
Directory of Open Access Journals (Sweden)
Xuefeng Li
2014-04-01
Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.
Energy Technology Data Exchange (ETDEWEB)
Li, Xuefeng, E-mail: lixfpost@163.com [School of Science, Xi' an University of Post and Telecommunications, Xi' an, 710121 (China); Cao, Guangzhan; Liu, Hongjun [Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an, 710119 (China)
2014-04-15
Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G
1998-01-01
Four of the Michel parameters and the average tau-neutrino helicity have been measured by analysing tau decay spectra in 147 \\pb ~of data collected by the L3 detector. The decays \\tte, ~\\ttm, ~\\ttp, ~\\ttr ~and their charge conjugates were considered. The results: $\\rho = 0.762 \\pm 0.035$, $\\eta = 0.27 \\pm 0.14$, $\\xi = 0.70 \\pm 0.16$, $\\xi\\delta = 0.70 \\pm0.11$ and $\\xi_{h} = -1.032 \\pm 0.031$ are consistent with a V$-$A structure for the weak charged current and lepton universality.
SAMDIST A Computer Code for Calculating Statistical Distributions for R-Matrix Resonance Parameters
Leal, L C
1995-01-01
The: SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.
Liu, Zheng; Lin, Zhifang; Chui, S T
2004-01-01
The Mie scattering of electromagnetic waves of wave vector k by spherical negative-refractive-index particles of radius a exhibits an unusual resonance at ka-->0. The scattering enhancement from the ka-->0 resonance is insensitive to the size of scatterers, distinct from the Mie scattering resonances from positive-refractive-index particles. For media consisting of a collection of the negative-refractive-index particles, the unusual resonance results in a significant reduction of the localization parameter, providing a possibility to reach the light localization transition by reducing the wave vector k, in analogy to electronic systems.
Resonance Parameters of the Rho-Meson from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Xu Feng, Karl Jansen, Dru Renner
2011-05-01
We perform a non-perturbative lattice calculation of the P-wave pion-pion scattering phase in the rho-meson decay channel using two flavors of maximally twisted mass fermions at pion masses ranging from 480 MeV to 290 MeV. Making use of finite-size methods, we evaluate the pion-pion scattering phase in the center-of-mass frame and two moving frames. Applying an effective range formula, we find a good description of our results for the scattering phase as a function of the energy covering the resonance region. This allows us to extract the rho-meson mass and decay width and to study their quark mass dependence.
Resonance parameters of the {rho}-meson from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Feng, Xu [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC
2010-12-15
We perform a non-perturbative lattice calculation of the P-wave pion-pion scattering phase in the {rho}-meson decay channel using two flavors of maximally twisted mass fermions at pion masses ranging from 480 MeV to 290 MeV. Making use of finite-size methods, we evaluate the pion-pion scattering phase in the center-of-mass frame and two moving frames. Applying an effective range formula, we find a good description of our results for the scattering phase as a function of the energy covering the resonance region. This allows us to extract the {rho}-meson mass and decay width and to study their quark mass dependence. (orig.)
Determination of Scaling Parameter and Dynamical Resonances in Complex-Rotated Hamiltonian Ⅰ: Theory
Institute of Scientific and Technical Information of China (English)
LI Heng-Mei; ZHAO Fang; YUAN Hong-Chun; ZHAO Mei-Shan
2008-01-01
In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = En(θ) - iF(θ)/2, as a function of the scaling parameter The condition dER(θR)/ dθ = 0 is merely a consequence of the Virial theorem and θⅠ = θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formalism for resonances in scattering over a potential barrier.
Energy Technology Data Exchange (ETDEWEB)
Krishna Kumar, P.T. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-Okayama, Meguro-Ku, Tokyo 152-8550 (Japan)], E-mail: gstptk@yahoo.co.in; Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, O-Okayama, Meguro-Ku, Tokyo 152-8550 (Japan)], E-mail: hsekimot@nr.titech.ac.jp
2009-02-15
Covariance matrix elements depict the statistical and systematic uncertainties in reactor parameter measurements. All the efforts have so far been devoted only to minimise the statistical uncertainty by repeated measurements but the dominant systematic uncertainty has either been neglected or randomized. In recent years efforts has been devoted to simulate the resonance parameter uncertainty information through covariance matrices in code SAMMY. But, the code does not have any provision to check the reliability of the simulated covariance data. We propose a new approach called entropy based information theory to reduce the systematic uncertainty in the correlation matrix element so that resonance parameters with minimum systematic uncertainty can be modelled. We apply our information theory approach in generating the resonance parameters of {sup 156}Gd with reduced systematic uncertainty and demonstrate the superiority of our technique over the principal component analysis method.
Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium
Energy Technology Data Exchange (ETDEWEB)
G. Leinweber; J.A. Burke; H.D. Knox; N.J. Drindak; D.W. Mesh; W.T. Haines; R.V. Ballad; R.C. Block; R.E. Slovacek; C.J. Werner; M.J. Trbovich; D.P. Barry; T. Sato
2001-07-16
The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is {sup 149}Sm, which has a large neutron absorption cross section at thermal energies and is a {sup 235}U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with {sup 6}Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D{sub 2}O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in {sup 149}Sm, present measurements agree within estimated
Efimov Resonance and Three-Body Parameter in a Lithium-Rubidium Mixture
Maier, R. A. W.; Eisele, M.; Tiemann, E.; Zimmermann, C.
2015-07-01
We study collisional heating in a cold 7Li-87Rb mixture near a broad Feshbach resonance at 661 G. At the high field slope of the resonance, we find an enhanced three-body recombination rate that we interpret as a heteronuclear Efimov resonance. With improved Feshbach spectroscopy of two further resonances, a model for the molecular potentials has been developed that now consistently explains all known Feshbach resonances of the various Li-Rb isotope mixtures. The model is used to determine the scattering length of the observed Efimov state. Its value of -1870 a0 Bohr radii supports the currently discussed assumption of universality of the three-body parameter also in heteronuclear mixtures.
Shevchenko, Vasilij G.; Belskaya, Irina N.; Muinonen, Karri; Penttilä, Antti; Krugly, Yurij N.; Velichko, Feodor P.; Chiorny, Vasilij G.; Slyusarev, Ivan G.; Gaftonyuk, Ninel M.; Tereschenko, Igor A.
2016-04-01
We present new observational data for selected main-belt asteroids of different compositional types. The detailed magnitude-phase dependences including small phase angles (Aurelia (0.1°, F-type), (596) Scheila (0.2°, D-type), (635) Vundtia (0.2°, B-type), (671) Carnegia (0.2°, P-type), (717) Wisibada (0.1°, T-type), (1021) Flammario (0.6°, B-type), and (1279) Uganda (0.5°, E-type). For several asteroids, the dependences of brightness on the phase angle were investigated in the BVRI bands. We found a great diversity in the opposition-effect behavior both in the magnitude and the width of the opposition surges, especially for low-albedo asteroids. Some low-albedo asteroids (e.g., (10) Hygiea) display a broad opposition effect with an amplitude of 0.15-0.20 mag relative to the extrapolation of the linear part of the phase curve. Other asteroids (e.g., (596) Scheila, (1021) Flammario) show linear magnitude-phase dependences down to small phase angles (0.1-0.2°). Using numerous data sets on the magnitude-phase dependences with extensive phase-angle coverage, we examined in more detail the new three-parameter H, G1, G2 magnitude system. We determined the values of the G1 and G2 parameters for magnitude phase dependences of individual asteroids and obtained the average parameters for main asteroid compositional types. The values obtained can be used for the estimation of the absolute magnitude of an asteroid from a single observed magnitude when the magnitude-phase dependency is unknown and/or to calculate a visible magnitude for the ephemerides.
Schille, Joerg; Schneider, Lutz; Loeschner, Udo
2015-09-01
In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.
Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters
Energy Technology Data Exchange (ETDEWEB)
Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto
1998-03-01
Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)
Coupling Influence on Signal Readout of a Dual-Parameter LC Resonant System
Directory of Open Access Journals (Sweden)
Jijun Xiong
2015-01-01
Full Text Available Dual-parameter inductive-capacitive (LC resonant sensor is gradually becoming the measurement trend in complex harsh environments; however, the coupling between inductors greatly affects the readout signal, which becomes very difficult to resolve by means of simple mathematical tools. By changing the values of specific variables in a MATLAB code, the influence of coupling between coils on the readout signal is analyzed. Our preliminary conclusions underline that changing the coupling to antenna greatly affects the readout signal, but it simultaneously influences the other signal. When f01=f02, it is better to broaden the difference between the two coupling coefficients k1 and k2. On the other side, when f01 is smaller than f02, it is better to decrease the coupling between sensor inductors k12, in order to obtain two readout signals averaged in strength. Finally, a test system including a discrete capacitor soldered to a printed circuit board (PCB based planar spiral coil is built, and the readout signals under different relative inductors positions are analyzed. All experimental results are in good agreement with the results of the MATLAB simulation.
Institute of Scientific and Technical Information of China (English)
Jiang Shi-Qi; Hou Min-Jie; Jia Chun-Hua; He Ji-Rong; Gu Tian-Xiang
2009-01-01
This paper investigates the parameter-induced stochastic resonance using experimental methods in an over-damped random linear system with asymmetric dichotomous noise. Non-monotonic dependence of signal-to-noise ratio on the system parameter is observed. Several potential applications of parameter-induced stochastic resonance are given in circuits.
Nuclear data project in Korea and resonance parameter evaluation of fission products
Energy Technology Data Exchange (ETDEWEB)
Chang, Jonghwa; Oh, Soo-Youl [Korea Atomic Energy Research Institute, Yusong, Taejon (Korea)
2000-03-01
Nuclear data activities in the fields of evaluation, processing, measurement, and service in Korea are presented in this paper. As one of the current activities, the neutron resonance parameters for stable or long-lived nineteen fission products have been evaluated and the results are presented here. (author)
Institute of Scientific and Technical Information of China (English)
穆莉莎
2014-01-01
Objective To establish cardiac magnetic resonance imaging(MRI)derived left ventricular(LV)global and region function parameters in normal adults.Methods Twenty normal adults were examined with fast imaging employing steady-state(Fiesta)acquisition sequence of cardiac MRI,LV global function and LV region function were measured at basal,middle,apical level and at 16
Indian Academy of Sciences (India)
HAIBIN ZHANG; WEI XIONG; SHANGBIN ZHANG; QINGBO HE; FANRANG KONG
2016-06-01
The nonlinear stochastic resonance system possesses the ability of taking advantage of background noise to enhance the weak signal. It provides a new approach to detect the weak signal embedded with heavy noise. This study proposes a new varying parameter stochastic resonance employing the fourth-order Runge–Kutta numerical method as well as the normalized transformation of a bistable stochastic resonance system. The model performs well in the detection of a time-varying signal with background noise for denoising and signal recovery. We take the fitness coefficient and cross-correlation coefficient as the criteria and analyze the influence of different parameters. The simulating results indicate its availability, validity and that it generates a betterperformance than the traditional stochastic resonance. The method develops the area of time-varying signal detection with stochastic resonance and presents new strategy for detection and denoising of a time-varying signal. It can be expected to be widely used in the areas of aperiodic signal processing, radar communication,etc
Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV
Energy Technology Data Exchange (ETDEWEB)
Derrien, H.
2002-09-30
The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.
Ablikim, M; Ban, Y; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; Guo, Z J; Harris, F A; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, G S; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Li, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Fang Liu; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, Jian; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Olsen, S L; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Ruan, X D; Shan, L Y; Shang, L; Shen, C P; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Varner, G S; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W F; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zheng; Wei, C L; Wei, D H; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Zhang, Yiyun; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S
2008-01-01
$R$ measurement data taken with the BESII detector at center-of-mass energies between 3.7 and 5.0 GeV is fitted to determine resonance parameters (mass, total width, electron width) of the high mass charmonium states, $\\psi(3770)$, $\\psi(4040)$, $\\psi(4160)$ and $\\psi(4415)$. Various effects, including the relative phases between the resonances, interferences, the energy-dependence of the full widths, and the initial state radiative correction, are examined. The results are compared to previous studies.
Stochastic Parameter Resonance of Road-Vehicle Systems and Related Bifurcation Problems
Wedig, Walter V.
The paper investigates stochastic dynamics of road-vehicle systems and related bifurcation problems. The ride on rough roads generates vertical car vibrations whose root-mean-squares are resonant for critical car speeds and vanish when the car velocity is increasing, infinitely. These investigations are extended to wheel suspensions with progressive spring characteristics. For weak but still positive damping, the car vibrations become unstable when the velocity reaches the parameter resonance near twice the critical speed bifurcating into stochastic chaos of larger non-stationary car vibrations.
Calculation of Stark resonance parameters for valence orbitals of the water molecule
Laso, Susana Arias
2016-01-01
An exterior complex scaling technique is applied to compute Stark resonance parameters for two molecular orbitals ($1b_{1}$ and $1b_{2}$) represented in the field-free limit in a single-center expansion. For electric DC field configurations that guarantee azimuthal symmetry of the solution the calculation is carried out by solving a two-dimensional partial differential equation in spherical polar coordinates using a finite-element method. The resonance positions and widths as a function of electric field strengths are shown for field strengths starting in the tunnelling ionization regime, and extending well into the over-barrier ionization region.
DEFF Research Database (Denmark)
Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei;
2016-01-01
In large wind farms, the mutual interactions between the power converter control systems and passive components may result in harmonic instability and resonance frequencies at a various frequency range. This paper presents an optimized parameter design of the power converter controllers in large...... wind farms in order to reduce the resonance probability and guarantee harmonic stability. In fact, a general multiobjective optimization procedure based on the genetic algorithm is proposed to set the poles of the wind farm in a desired location in order to minimize the number of the resonance...... frequencies and to improve the harmonic stability. Time-domain simulations of a 400-MW wind farm in the PSCAD/EMTDC environment demonstrate the effectiveness of the proposed design technique....
Kiełczyński, Piotr; Szalewski, Marek
2007-06-01
The electro-elastic behavior of a viscoelastically loaded layered cylindrical resonator (sensor) comprising two coupled hollow cylinders is presented. The inner cylinder is a piezoelectric ceramic tube. The outer cylinder is a non-piezoelectric (passive) metallic cylinder. An analytical formula for the electrical admittance of a compound layered cylindrical resonator loaded with a viscoelastic liquid is established. Admittance (conductance) diagrams were obtained using a continuum electromechanical model. The established analytical formulas enable the determination of the influence of the liquid viscosity, material, and geometrical parameters of a compound cylindrical resonator on the response characteristics of the compound sensor. In the paper, the sensor implications resulting from the performed analysis are described. Moreover, the algorithm of the method developed by the authors to evaluate the rheological parameters of a viscoelastic liquid is presented. Good agreement between the theoretical results and experimental data is shown. The analysis presented in this paper can be utilized for the design and construction of cylindrical piezoelectric viscosity sensors, annular accelerometers, filters, transducers, and multilayer resonators.
Evidence of parameter-induced aperiodic stochastic resonance with fixed noise
Institute of Scientific and Technical Information of China (English)
Li Jian-Long
2007-01-01
Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we show the evidence that by changing the system parameters and the signal intensity, a nonlinear system in the presence of an input aperiodic signal can yield the cooperative effect, with the noise fixed. To quantify the nonlinear system output,we determine the theoretical bit error rate (BER). By numerical simulation, the validity of the theoretical derivation is checked. Besides, we show that parameter-induced SR is more realizable than SR via adding noises, especially when the noise intensity exceeds the resonance level, or when the characteristic of the noise is not known.
Zhang, Jinjing; Zhang, Tao
2015-02-01
The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.
Energy Technology Data Exchange (ETDEWEB)
Llor, A.; Olejniczak, Z.; Pines, A. [Materials Sciences Division, Lawrence Berkeley Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720 (United States)
1995-09-08
We present a special case of the theory of coherent isotropic averaging in zero-field NMR, given in part I of this work. In a zero external field, combinations of the magnetic-field pulses restricted to {pi}/2 rotations along the three coordinate axes can selectively average internal spin Hamiltonians while preserving the intrinsic invariance of the spectrum with respect to the sample orientation. Compared with the general case, the limits of the allowed scaling factors of first- and second-rank interactions are slightly reduced. For instance, time reversal is possible for second-rank tensors with a {minus}1/5 scaling factor, instead of {minus}1/4 in general. Finite pulse compensations are analyzed and experimental illustrations are given for two optimum time-reversal sequences. The cubic sequences, though less efficient than the icosahedral sequences, are technically more feasible and may be used in zero-field experiments such as decoupling (by rank or nuclear species), time reversal or multipolar experiments (the zero-field equivalent of multiple-quantum NMR). {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Directory of Open Access Journals (Sweden)
ELIU HAZAEL MORALES-RANGEL
Full Text Available ABSTRACT Objective: To compare the morphological parameters of magnetic resonance in patients with congenital narrowing of the lumbar spinal canal with patients with low back pain. Methods: A descriptive, retrospective, observational study was conducted with measurements in the axial and sagittal magnetic resonance sections of the vertebral body and canal of the lumbar spine of 64 patients with diagnosis of low back pain, which were compared with resonance images taken from 31 Mexican patients with congenital narrowing of the lumbar spinal canal. Results: The results show that patients with congenital narrowing of the lumbar spinal canal in the axial sections have a difference in diameters, being L2<13.9 mm, L3<13.3 mm, L4<12.9 mm, L5<13.1 mm, compared with controls L2<20.5 mm, L3<20.5 mm, L4<19.3 mm, L5<18.1 mm with p = 0.000. Conclusions: We found different measurements in the Mexican population compared to those found by similar studies. With the parameters obtained, it would be possible to make the proper diagnosis, surgical planning, and treatment.
Wang, Lei; Nie, Jinsong; Wang, Xi; Hu, Yuze
2016-10-01
The 1064nm fundamental wave (FW) and the 532nm second harmonic wave (SHW) of Nd:YAG laser have been widely applied in many fields. In some military applications requiring interference in both visible and near-infrared spectrum range, the de-identification interference technology based on the dual wavelength composite output of FW and SHW offers an effective way of making the device or equipment miniaturized and low cost. In this paper, the application of 1064nm and 532nm dual-wavelength composite output technology in military electro-optical countermeasure is studied. A certain resonator configuration that can achieve composite laser output with high power, high beam quality and high repetition rate is proposed. Considering the thermal lens effect, the stability of this certain resonator is analyzed based on the theory of cavity transfer matrix. It shows that with the increase of thermal effect, the intracavity fundamental mode volume decreased, resulting the peak fluctuation of cavity stability parameter. To explore the impact the resonator parameters does to characteristics and output ratio of composite laser, the solid-state laser's dual-wavelength composite output models in both continuous and pulsed condition are established by theory of steady state equation and rate equation. Throughout theoretical simulation and analysis, the optimal KTP length and best FW transmissivity are obtained. The experiment is then carried out to verify the correctness of theoretical calculation result.
Directory of Open Access Journals (Sweden)
M. Charmi
2015-12-01
Full Text Available This paper presents the effects of structural parameters like Quantum well width, barrier width, spacer width, contact width and contact doping, on performance of Resonant Tunneling Diode using full quantum simulation. The simulation is based on a self-consistent solution of the Poisson equation and Schrodinger equation with open boundary conditions, within the non-equilibrium Green’s function formalism. The effects of varying the structural parameters is investigated in terms of the output current, peak current, valley current, peak to valley current ratio and the voltage associated with the peak current. Simulation results illustrate that the device performance can be improved by proper selection of the structural parameters.
Bobbili, Prasada Rao; Nayak, Jagannath; Pinnoji, Prerana Dabral; Rama Koti Reddy, D V
2016-03-10
The accuracy of the resonant frequency servo loop is a major concern for the high-performance operation of a resonant fiber optic gyro. For instance, a bias error as large as tens or even hundreds of degrees/hour has been observed at the demodulated output of the resonant frequency servo loop. The traditional frequency servo mechanism is not an efficient tool to address this problem. In our previous work, we proposed a novel method to minimize the laser frequency noise to the level of the shot noise by refractive index modulation by a thermally tunable resonator. In this paper, we performed the parameter optimization for the resonator coil, multifunction integrated-optics chip, and couplers by the transition matrix using the Jones matrix methodology to minimize the polarization error. With the optimized parameter values, we achieved the bias value of the resonator fiber optic gyro to 1.924°/h.
Institute of Scientific and Technical Information of China (English)
HAN Xiu-you; PANG Fu-fei; FANG Zu-jie; ZHAO Ming-shan
2008-01-01
Based on the measurement of the contrast ratios of the transmission spectra from the throughput and drop ports of ring resonator, an efficient method is proposed to extract the coupling ratio and round-trip loss of the integrated optical waveguide ring resonator. The parameters of a racetrack resonator prepared by ion-exchange technique in K9 optical glass substrate are examined, which demonstrates the validity of this method. The accuracy and applicable range of this method are also discussed.
Liu, Jian; Wang, You-Guo; Zhai, Qi-Qing; Liu, Jin
2016-10-01
In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system (P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated (BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate (BER) and maximize the channel capacity (CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio (SNR) environments. Project supported by the National Natural Science Foundation of China (Grant No. 61179027), the Qinglan Project of Jiangsu Province of China (Grant No. QL06212006), and the University Postgraduate Research and Innovation Project of Jiangsu Province (Grant Nos. KYLX15_0829, KYLX15_0831).
Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin
2014-07-25
The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.
Boreisho, A. S.; Lobachev, V. V.; Savin, A. V.; Strakhov, S. Yu; Trilis, A. V.
2007-07-01
The outlook is considered for the development of a high-power supersonic flowing chemical oxygen—iodine laser operating as an amplifier and controlled by radiation from a master oscillator by using an unstable resonator with a hole-coupled mirror. The influence of the seed radiation intensity, the coupling-hole diameter, the active-medium length, and the magnification factor on the parameters of laser radiation is analysed. It is shown that the use of such resonators is most advisable in medium-power oxygen—iodine lasers for which classical unstable resonators are inefficient because of their low magnification factors. The use of unstable resonators with a hole-coupled mirror and injection provides the control of radiation parameters and a considerable increase in the output power and brightness of laser radiation.
Directory of Open Access Journals (Sweden)
Liu Cheng
2016-01-01
Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.
Two-Parameter Stochastic Resonance in a Model of Electrodissolution of Fe in H2SO4
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Stochastic resonance (SR) is shown in a two-parameter system, a model of electrodissolution of Fe in H2SO4. Modulation of two different parameters by a periodic signal in one parameter and noise in the other parameter is found to give rise to SR. The result indicates that the noise can enlarge a weak periodic signal and lead the system to order. The scenario and novel aspects of SR in this system are discussed.
Directory of Open Access Journals (Sweden)
Michael B.C. Khoo
2013-11-01
Full Text Available The double sampling (DS X bar chart, one of the most widely-used charting methods, is superior for detecting small and moderate shifts in the process mean. In a right skewed run length distribution, the median run length (MRL provides a more credible representation of the central tendency than the average run length (ARL, as the mean is greater than the median. In this paper, therefore, MRL is used as the performance criterion instead of the traditional ARL. Generally, the performance of the DS X bar chart is investigated under the assumption of known process parameters. In practice, these parameters are usually estimated from an in-control reference Phase-I dataset. Since the performance of the DS X bar chart is significantly affected by estimation errors, we study the effects of parameter estimation on the MRL-based DS X bar chart when the in-control average sample size is minimised. This study reveals that more than 80 samples are required for the MRL-based DS X bar chart with estimated parameters to perform more favourably than the corresponding chart with known parameters.
Johnson, C. R., Jr.; Balas, M. J.
1980-01-01
A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.
Parameter analysis for a nuclear magnetic resonance gyroscope based on 133Cs–129Xe/131Xe
Zhang, Da-Wei; Xu, Zheng-Yi; Zhou, Min; Xu, Xin-Ye
2017-02-01
We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on 133Cs–129Xe/131Xe. For a cell containing a mixture of 133Cs at saturated pressure, we investigate the optimal quenching gas (N2) pressure and the corresponding pump laser intensity to achieve 30% 133Cs polarization at the center of the cell when the static magnetic field B 0 is 5 {{μ }}{{T}} with different 129Xe/131Xe pressure. The effective field produced by spin-exchange polarized 129Xe or 131Xe sensed by 133Cs can also be discussed in different 129Xe/131Xe pressure conditions. Furthermore, the relationship between the detected signal and the probe laser frequency is researched. We obtain the optimum probe laser detuning from the D2 (6{}2{{S}}1/2\\to 6{}2{{P}}3/2) resonance with different 129Xe/131Xe pressure owing to the pressure broadening. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA123401), the National Key Basic Research and Development Program of China (Grant Nos. 2016YFA0302103 and 2012CB821302), the National Natural Science Foundation of China (Grant 11134003), and Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400).
Resonance parameter and covariance evaluation for 16O up to 6 MeV
Directory of Open Access Journals (Sweden)
Leal Luiz
2016-01-01
Full Text Available A resolved resonance evaluation was performed for 16O in the energy range 0 eV to 6 MeV using the computer code SAMMY resulting in a set of resonance parameters (RPs that describes well the experimental data used in the evaluation. A RP covariance matrix (RPC was also generated. The RP were converted to the evaluated nuclear data file format using the R-Matrix Limited format and the compact format was used to represent the RPC. In contrast to the customary use of RP, which are frequently intended for the generation of total, capture, and scattering cross sections only, the present RP evaluation permits the computation of angle dependent cross sections. Furthermore, the RPs are capable of representing the (n, α cross section from the energy threshold (2.354 MeV of the (n, α reaction to 6 MeV. The intent of this paper is to describe the procedures used in the evaluation of the RP and RPC, the use of the RPC in benchmark calculations and to assess the impact of the 16O nuclear data uncertainties in the calculate dkeff for critical benchmark experiments.
The limits on the strong Higgs sector parameters in the presence of new vector resonances
Gintner, Mikuláš; Juráň, Josef
2016-12-01
In this paper, we investigate how the LHC data limit the Higgs-related couplings in the effective description of a strongly interacting extension of the Standard model. The Higgs boson is introduced as a scalar composite state and it is followed in the mass hierarchy by an SU(2) triplet of vector composites. The limits are calculated from the constraints obtained in the recent ATLAS+CMS combined analysis of the data from 2011 and 2012. We find that the data prefer the scenario where the Higgs couplings to the electroweak gauge bosons differ from its couplings to the vector triplet. We also investigate the unitarity limits of the studied effective model for the experimentally preferred values of the Higgs couplings. We find from the π π → π π scattering amplitudes that for the vector resonance masses between one and two TeV significant portions of the experimentally allowed regions are well below the unitarity limit. We also evaluate how the existing ATLAS and CMS Run-2 data restrict our model with the upper bounds on the resonance production cross section times its branching ratio for various decay channels. The masses in the range 1 TeV≤ M_ρ ≤ 2 TeV are not excluded in parts or even full parameter space of our theory.
Energy Technology Data Exchange (ETDEWEB)
Proskuryakov, K.N.; Yang Shan Afshar, E.; Polyakov, N.I. [Nuclear Power Plant Department of Moscow Power Engineering Institute Technical Univ., Moscow (Russian Federation)
2007-07-01
The experimental data that have been obtained from the measurements of noise signals in primary circuit of NPP with reactor of WWER-1000 are presented. The causes of resonant interaction between Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) and structure vibrations are discussed. An application-oriented approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Logarithmic Decrement {delta} is determined. The bigger damping ratio {zeta} provides bigger {delta} and correspondingly smaller values of Q-factor and amplitude X(t)max. All experimental units intended for NPP severe accident investigation must satisfy to the NPP Q-factor criterion of similarity. (authors)
Neutron total cross-sections and resonance parameters of Mo and Ta
Indian Academy of Sciences (India)
A K M Moinul Haque Meaze; K Devan; Y S Lee; Y D Oh; G N Kim; D Son
2007-02-01
Experimental results of transmissions for the samples of natural molybdenum with thickness 0.0192 atoms/barn and for the four samples of natural tantalum with thickness 0.0222, 0.0111, 0.0055 and 0.0025 atoms/barn are presented in this work. Measurements were carried out at the Pohang Neutron Facility which consists of a 100 MeV Linac, water-cooled tantalum target, and 12 m flight path length. Effective total cross-sections were extracted from the transmission data, and resonance parameters were obtained by using the code SAMMY. The present measurements were compared with other measurements and with the evaluated nuclear data file ENDF/B-VI.8.
Trifirò, Daniele; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich
2015-01-01
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" $\\xi$ and resonant family $\\Delta\\Phi=0,\\pi$ (which uniquely label the source); the inclination $\\theta_{JN}$ of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables t...
Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters
Institute of Scientific and Technical Information of China (English)
杨定新; 谷丰收; 冯国金; 杨拥民
2015-01-01
The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.
Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.
2016-11-01
While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.
Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters
Yang, Ding-Xin; Gu, Feng-Shou; Feng, Guo-Jin; Yang, Yong-Min; Ball, Andrew
2015-11-01
The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications. Project supported by the National Natural Science Foundation of China (Grant No. 51379526).
Extracting the resonance parameters from experimental data on scattering of charged particles
Vaandrager, P
2016-01-01
A new parametrization of the multi-channel S-matrix is used to fit scattering data and then to locate the resonances as its poles. The S-matrix is written in terms of the corresponding "in" and "out" Jost matrices which are expanded in the Taylor series of the collision energy E around an appropriately chosen energy E0. In order to do this, the Jost matrices are written in a semi-analytic form where all the factors (involving the channel momenta and Sommerfeld parameters) responsible for their "bad behaviour" (i.e. responsible for the multi-valuedness of the Jost matrices and for branching of the Riemann surface of the energy) are given explicitly. The remaining unknown factors in the Jost matrices are analytic and single-valued functions of the variable E and are defined on a simple energy plane. The expansion is done for these analytic functions and the expansion coefficients are used as the fitting parameters. The method is tested on a two-channel model, using a set of artificially generated data points wi...
Institute of Scientific and Technical Information of China (English)
Qing-Gang Xu; Jun-Fang Xian
2015-01-01
Objective:To elaborate the role of quantitative magnetic resonance imaging (MRI) parameters in the evaluation of treatment response in malignant tumors.Data Sources:Data cited in this review were obtained mainly from PubMed in English from 1999 to 2014,with keywords "dynamic contrast-enhanced (DCE)-MRI," "diffusion-weighted imaging (DWI)," "microcirculation," "apparent diffusion coefficient (ADC)," "treatment response" and "oncology."Study Selection:Articles regarding principles of DCE-MRI,principles of DWI,clinical applications as well as opportunity and aspiration were identified,retrieved and reviewed.Results:A significant correlation between ADC values and treatment response was reported in most DWI studies.Most quantitative DCE-MRI studies showed a significant correlation between K~s values and treatment response.However,in different tumors and studies,both high and low pretreatment ADC or K~s values were found to be associated with response rate.Both DCE-MRI and DWI demonstrated changes in their parameters hours to days after treatment,showing a decrease in K~ns or an increase in ADC associated with response in most cases.Conclusions:Combinations of quantitative MRI play an important role in the evaluation of treatment response of malignant tumors and hold promise for use as a cancer treatment response biomarker.However,validation is hampered by the lack of reproducibility and standardization.MRI acquisition protocols and quantitative image analysis approaches should be properly addressed prior to further testing the clinical use of quantitative MRI parameters in the assessment of treatments.
U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...
Energy Technology Data Exchange (ETDEWEB)
Blaise, P.
1996-12-18
Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.).
Directory of Open Access Journals (Sweden)
H. Shamsan
2016-07-01
Full Text Available Nowadays, cardiac magnetic resonance (CMR imaging is considered the gold standard for quantification of RV size and function. Multiple 2D Echocardiography (echo parameters are recommended for quantification of systolic RV function including Fractional Area Change (FAC%, tricuspid annular plane systolic excursion (TAPSE and Tissue Doppler velocity (TDI of tricuspid annulus. The aim of our study was to compare the conventional 2-D echocardiographic parameters of RV systolic function with CMR derived RVEF and stroke volume (SV. The echo and cardiac magnetic parameters to assess the right ventricular function are different. Consecutive patients referred to CMR for RV assessment from January 2011 to December 2014 were screened. 69 patients with CMR and adequate echo were selected. 20 subjects with normal CMR were enrolled as a control group. Quantitative 2-D echo measures were compared with CMR RVEF (% and SV (ml. The comparison was made using linear correlation for the echo variables with CMR variables. The mean age of patients was 38.2 + 5.4 (51% females were enrolled. 84.1% of patients had normal RVEF by CMR. In patients, FAC% but not TAPSE or annular TDI, correlated with CMR derived RVEF (R = 0.45, p = 0.0001 with fair agreement (kappa 0.43. However, FAC% did not correlate with CMR RV stroke volume. In contrast, in normal subjects, TAPSE had the best correlation with CMR derived RVEF (R = 0.67, p = 0.0001. In patients, CMR reclassified RV function assessed by FAC% in 11 (16%. 6 (8% patients who had abnormal RV function by FAC% were reclassified as normal while 5 (7% with normal RV function by FAC% were reclassified as abnormal. In normal subjects, however, only one with abnormal RV function by TAPSE was reclassified as normal by CMR. The current quantitative 2-D echo parameters of RV systolic function assessment correlate poorly with CMR measured RVEF and SV and behave differently in comparison with CMR in patients with normal and
Electron paramagnetic resonance parameters and local structure for Gd3+ in KY3F10
Indian Academy of Sciences (India)
Shao-Yi Wu; Hua-Ming Zhang; Guang-Duo Lu; Zhi-Hong Zhang
2007-09-01
The electron paramagnetic resonance parameters, zero-ﬁeld splittings (ZFSs) b$_{2}^{0}$, b$_{4}^{0}$, b$_{4}^{4}$, b$_{6}^{0}$, b$_{6}^{4}$ and the factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the factor containing the admixture of the ground 8S7/2 and the excited 6L7/2 (L=P, D, F, G) states via the spin–orbit coupling interactions, respectively. By analysing the above ZFSs, the local structure information for the impurity Gd3+ is obtained, i.e., the impurity–ligand bonding angles related to the four-fold (C4) axis for the impurity Gd3+ center are found to be about 0.6° larger than those for the host Y3+ site in KY3F10. The calculated ZFSs based on the above angular distortion as well as the factors are in reasonable agreement with the observed values. The present studies on the ZFSs and the local structure would be helpful to understand the optical and magnetic properties of this material with Gd dopants.
A Mathematical Assessment of the Precision of Parameters in Measuring Resonance Spectra
Golding, Elke M.; Golding, Raymund M.
1998-12-01
The accurate interpretation ofin vivomagnetic resonance spectroscopy (MRS) spectra requires a complete understanding of the associated noise-induced errors. In this paper, we address the effect of complex correlated noise patterns on the measurement of a set ofpeakparameters. This is examined initially at the level of a single spectral analysis followed by addressing the noise-induced errors associated with determining thesignalparameters from thepeakparameters. We describe a relatively simple method for calculating these errors for any correlated noise pattern in terms of the noise standard deviation and correlation length. The results are presented in such a way that an estimate of the errors may be made from a single MRS spectrum. We also explore how, under certain circumstances, the lineshape of the signal may be determined. We then apply these results to reexamine a set ofin vivo31P MRS spectra obtained from rat brain prior to and following moderate fluid percussion injury. The approach outlined in this paper will demonstrate how meaningful results may be obtained from spectra where the signal-to-noise ratio (SNR) is quite small and where knowledge of the precise shape of the signal and the detail of the noise pattern is unknown. In essence, we show how to determine the expected errors in the spectral parameters from an estimate of the SNR from a single spectrum, thereby allowing a more discriminative interpretation of the data.
The limits on the strong Higgs sector parameters in the presence of new vector resonances
Gintner, Mikulas
2016-01-01
In this paper, we investigate how the LHC data limit the Higgs related couplings in the effective description of a strongly interacting extension of the Standard model. The Higgs boson is introduced as a scalar composite state and it is followed in the mass hierarchy by an $SU(2)$ triplet of vector composites. The limits are calculated from the constraints on the parameters of the interim kappa framework obtained in the recent ATLAS+CMS combined analysis of the data from 2011 and 2012. In our work, we find that the data prefer the scenario where the Higgs couplings to the electroweak gauge bosons differ from its couplings to the vector triplet. We calculate the experimentally preferred values for these couplings along with the preferred value for the Higgs coupling to the top quark. We also investigate the unitarity limits of the studied effective model for these experimentally preferred values. We find from the $\\pi\\pi\\rightarrow\\pi\\pi$ scattering amplitudes that for the vector resonance masses between one a...
Measurement of resonance parameters of orbitally excited narrow B0 mesons.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S
2009-03-13
We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-05-01
Uncertainties have been estimated for the resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U contained in JENDL-3.2. Errors of the parameters were determined from the measurements which the evaluation was based on. The estimated errors have been compiled in the MF32 of the ENDF format. The numerical results are given in tables. (author)
Uilhoorn, F. E.
2016-10-01
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...
Energy Technology Data Exchange (ETDEWEB)
Derrien, H
2005-12-05
The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.
Directory of Open Access Journals (Sweden)
H. M. Worden
2013-07-01
Full Text Available A current obstacle to the observation system simulation experiments (OSSEs used to quantify the potential performance of future atmospheric composition remote sensing systems is a computationally efficient method to define the scene-dependent vertical sensitivity of measurements as expressed by the retrieval averaging kernels (AKs. We present a method for the efficient prediction of AKs for multispectral retrievals of carbon monoxide (CO and ozone (O3 based on actual retrievals from MOPITT (Measurements Of Pollution In The Troposphere on the Earth Observing System (EOS-Terra satellite and TES (Tropospheric Emission Spectrometer and OMI (Ozone Monitoring Instrument on EOS-Aura, respectively. This employs a multiple regression approach for deriving scene-dependent AKs using predictors based on state parameters such as the thermal contrast between the surface and lower atmospheric layers, trace gas volume mixing ratios (VMRs, solar zenith angle, water vapor amount, etc. We first compute the singular value decomposition (SVD for individual cloud-free AKs and retain the first three ranked singular vectors in order to fit the most significant orthogonal components of the AK in the subsequent multiple regression on a training set of retrieval cases. The resulting fit coefficients are applied to the predictors from a different test set of test retrievals cased to reconstruct predicted AKs, which can then be evaluated against the true retrieval AKs from the test set. By comparing the VMR profile adjustment resulting from the use of the predicted vs. true AKs, we quantify the CO and O3 VMR profile errors associated with the use of the predicted AKs compared to the true AKs that might be obtained from a computationally expensive full retrieval calculation as part of an OSSE. Similarly, we estimate the errors in CO and O3 VMRs from using a single regional average AK to represent all retrievals, which has been a common approximation in chemical OSSEs
Energy Technology Data Exchange (ETDEWEB)
Borella, A.; Gunsing, F. [CEA DAPNIA/SPhN, F-91911 Gif-sur-Yvette Cedex (France); Kopecky, S. [EC-JRC-IRMM, Retieseweg 111, B-2440 Geel (Belgium); Mutti, P. [Institut Laue-Langevin, rue Jules Horowitz 6, F-38042 Grenoble (France); Schillebeeckx, P.; Siegler, P.; Wynants, R. [EC-JRC-IRMM, Retieseweg 111, B-2440 Geel (Belgium)
2006-07-01
High resolution neutron total and capture cross section measurements have been performed to determine the resonance parameters for {sup 209}Bi + n. The transmission and capture measurements were carried out at the time-of-flight facility GELINA of the IRMM in Geel (Belgium). The transmission measurements were carried out at a 30 m and a 50 m flight path using Li-glass scintillators. The capture measurements were performed at a 30 m and 60 m flight path based on the total energy detection principle. The capture detection system consisted of four C6D6 detectors and a {sup 10}B ionization chamber, which was used to determine the shape of the neutron flux. A special analysis procedure, including a sample dependent pulse height weighting function, was applied to ensure that the efficiency for a neutron capture event was independent from the {gamma}-ray cascade. From a simultaneous resonance shape analysis of the transmission and capture data we deduced the neutron width for 10 resonances and the capture area for 43 resonances up to a neutron energy of 40 keV. The resonance shape analysis was performed with the most recent version of the REFIT code. This latest version includes a direct correction for the neutron sensitivity of the capture detection system and accounts for the influence of the neutron attenuation in the sample on the weighted response. (authors)
Institute of Scientific and Technical Information of China (English)
李玉叶; 贾冰; 古华光; 安书成
2012-01-01
Diversity in the neurons and noise are inevitable in the real neuronal network.In this paper,parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated.The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified.The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased.The results suggest that natural nervous system might profit from both parameter diversity and noise,provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise.
Energy Technology Data Exchange (ETDEWEB)
Lepretre, A.; Herault, N. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Brusegan, A.; Noguere, G.; Siegler, P. [Institut des Materiaux et des Metrologies - IRMM, Joint Research Centre, Gell (Belgium)
2002-12-01
This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)
Cho, Herman
2016-09-01
Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.
Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard
2014-11-01
We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and
Wimberger, S M; Parkins, S; Leonhardt, R; Wimberger, Sandro; Sadgrove, Mark; Parkins, Scott; Leonhardt, Rainer
2005-01-01
We present experimental measurements of the mean energy in the vicinity of the first and second quantum resonances of the atom optics kicked rotor for a number of different experimental parameters. Our data is rescaled and compared with the one parameter epsilon--classical scaling function developed to describe the quantum resonance peaks. Additionally, experimental data is presented for the ``classical'' resonance which occurs in the limit as the kicking period goes to zero. This resonance is found to be analogous to the quantum resonances, and a similar one-parameter classical scaling function is derived, and found to match our experimental results. The width of the quantum and classical resonance peaks is compared, and their Sub-Fourier nature examined.
DEFF Research Database (Denmark)
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav;
2007-01-01
Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...
Energy Technology Data Exchange (ETDEWEB)
Aerts, Hugo J W L [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht (Netherlands); Jaspers, K; Backes, Walter H, E-mail: w.backes@mumc.nl [Department of Radiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht (Netherlands)
2011-09-07
Dynamic contrast-enhanced magnetic resonance imaging is increasingly applied for tumour diagnosis and early evaluation of therapeutic responses over time. However, the reliability of pharmacokinetic parameters derived from DCE-MRI is highly dependent on the experimental settings. In this study, the effect of sampling frequency (f{sub s}) and duration on the precision of pharmacokinetic parameters was evaluated based on system identification theory and computer simulations. Both theoretical analysis and simulations showed that a higher value of the pharmacokinetic parameter K{sup trans} required an increasing sampling frequency. For instance, for similar results, a relatively low f{sub s} of 0.2 Hz was sufficient for a low K{sup trans} of 0.1 min{sup -1}, compared to a high f{sub s} of 3 Hz for a high K{sup trans} of 0.5 min{sup -1}. For the parameter v{sub e}, a decreasing value required a higher sampling frequency. A sampling frequency below 0.1 Hz systematically resulted in imprecise estimates for all parameters. For the K{sup trans} and v{sub e} parameters, the sampling duration should be above 2 min, but durations of more than 7 min do not further improve parameter estimates.
Aerts, Hugo J. W. L.; Jaspers, K.; Backes, Walter H.
2011-09-01
Dynamic contrast-enhanced magnetic resonance imaging is increasingly applied for tumour diagnosis and early evaluation of therapeutic responses over time. However, the reliability of pharmacokinetic parameters derived from DCE-MRI is highly dependent on the experimental settings. In this study, the effect of sampling frequency (fs) and duration on the precision of pharmacokinetic parameters was evaluated based on system identification theory and computer simulations. Both theoretical analysis and simulations showed that a higher value of the pharmacokinetic parameter Ktrans required an increasing sampling frequency. For instance, for similar results, a relatively low fs of 0.2 Hz was sufficient for a low Ktrans of 0.1 min-1, compared to a high fs of 3 Hz for a high Ktrans of 0.5 min-1. For the parameter ve, a decreasing value required a higher sampling frequency. A sampling frequency below 0.1 Hz systematically resulted in imprecise estimates for all parameters. For the Ktrans and ve parameters, the sampling duration should be above 2 min, but durations of more than 7 min do not further improve parameter estimates.
Lai, Zhi-Hui; Leng, Yong-Gang
2015-08-28
A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.
Directory of Open Access Journals (Sweden)
Zhi-Hui Lai
2015-08-01
Full Text Available A two-dimensional Duffing oscillator which can produce stochastic resonance (SR is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.
Electrostatic Generation of Bulk Acoustic Waves and Electrical Parameters of Si-MEMS Resonators.
Dulmet, Bernard; Ivan, Mihaela Eugenia; Ballandras, Sylvain
2016-02-01
This paper proposes an analytical approach to model the generation of bulk acoustic waves in an electrostatically excited silicon MEMS structure, as well as its electromechanical response in terms of static and dynamic displacements, electromechanical coupling, and motional current. The analysis pertains to the single-port electrostatic drive of trapped-energy thickness-extensional (TE) modes in thin plates. Both asymmetric single-side and symmetric double-side electrostatic gap configurations are modeled. Green's function is used to describe the characteristic of the static displacement of the driven surface of the structure versus the dc bias voltage, which allows us to determine the electrical response of the resonator. Optical and electrical characterizations have been performed on resonator samples operating at 10.3 MHz on the fundamental of TE mode under single-side electrostatic excitation. The various figures of merit depend on the dc bias voltage. Typical values of 9000 for the Q-factor, and of 10(-5) for the electromechanical coupling factor k(2) have been obtained with [Formula: see text] for [Formula: see text]-thick gaps. Here-considered modes have a typical temperature coefficients of frequency (TCF) close to -30 ppm/(°)C. We conclude that the practical usability of such electrostatically excited bulk acoustic waves (BAW) resonators essentially depends on the efficiency of the compensation of feed-through capacitance.
Energy Technology Data Exchange (ETDEWEB)
Myers, S C; Rodgers, A J; Schultz, C A; Walter, W R
1998-06-18
Short-period regional P/S amplitude ratios hold much promise for discriminating low magnitude explosions from earthquakes in a Comprehensive Test Ban Treaty monitoring context. However, propagation effects lead to variability in regional phase amplitudes that if not accounted for can reduce or eliminate the ability of P/S ratios to discriminate the seismic source. lo this study, several representations of short-period regional P/S amplitude ratios are compared in order to determine which methodology best accounts for the effect of heterogeneous structure on P/S amplitudes. These methodologies are: I) distance corrections, including azimuthal subdivision of the data; 2) path specific crustal waveguide parameter regressions; 3) cap-averaging (running mean smoothing); and 4) kriging. The "predictability" of each method is established by cross-validation (leave-one-out) analysis. We apply these techniques to represent Pn/Lg, Pg/Lg and Pn/Sn observations in three frequency bands (0.75-6.0 Hz) at station ABKT (Alibek, Turkmenistan), site of a primary seismic station of the It~temational Monitoring System (IMS). Paths to ABKT sample diverse crustal stmctores (e.g. various topographic, sedimentary and geologic structures), leading to great variability in the observed P/S amplitude ratios. Subdivision of the data be back-azimuth leads to stronger distance trends than that for the entire data set. This observation alone indicates that path propagation effects due to laterally varying shucture are important for the P/S ratios recorded at ABKT. For these data to be useful for isolating source characteristics, the scatter needs to be reduced by accounting for the path effects and the resulting P/S ratio distribution needs to Gaussian for spatial interpolation and discrimination strategies to be most effective. Each method reduces the scatter of the P/S ratios with varying degrees of success, however kriging has the distinct advantages of providing the greatest variance
Energy Technology Data Exchange (ETDEWEB)
Cho, Herman
2016-09-01
Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program.
An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal
Cataldo, Giuseppe
2014-01-01
A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.
Schwarm, F -W; Falkner, S; Pottschmidt, K; Wolff, M T; Becker, P A; Sokolova-Lapa, E; Klochkov, D; Ferrigno, C; Fuerst, F; Hemphill, P B; Marcu-Cheatham, D M; Dauser, T; Wilms, J
2016-01-01
Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron...
Energy Technology Data Exchange (ETDEWEB)
Roettgen, Rainer; Christiani, Robert; Freyhardt, Patrick; Hamm, Bernd [Charite Universitaetsmedizin Berlin, Klinik fuer Strahlenheilkunde, Campus Virchow-Klinikum, Berlin (Germany); Gutberlet, Matthias [Herzzentrum Leipzig, Abteilung fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany); Schultheiss, Hans Peter; Kuehl, Uwe [Charite Universitaetsmedizin Berlin, Klinik fuer Herz-, Kreislauf- und Gefaessmedizin, Campus Benjamin-Franklin, Berlin (Germany)
2011-06-15
To evaluate the role of MRI in diagnosing acute myocarditis by correlation with immunohistological parameters. A total of 131 patients (85 men, 46 women; mean age, 44.9 years) with suspected acute myocarditis were examined by MRI. The relative water content of the left ventricular myocardium as well as relative and late enhancement was correlated with the immunohistological results in biopsy specimens. Myocardial inflammation was confirmed by immunohistology in 82 of the 131 patients investigated and ruled out in 49 patients. The sensitivity, specificity and accuracy for diagnosing myocarditis in patients with immunohistologically proven disease were 48.8%, 73.8% and 57.3%, respectively, for relative enhancement, 58.3%, 57.1% and 57.9% for relative water content, and 30.6%, 88.1% and 49.6% for late enhancement. A combination of all three parameters had 39,3% sensitivity and 91,3% specificity and 62,7% accuracy. Relative enhancement and late enhancement significantly correlated with the presence of myocarditis but relative oedema did not. Relative and late enhancement significantly correlate with the presence of myocarditis, while there is no significant correlation for relative oedema. Myocarditis cannot be reliably diagnosed using any of the three MRI parameters alone but combinations of parameters will improve specificity. (orig.)
Broer, H.W.; Lunter, G.A.; Vegter, G.
1998-01-01
We consider Hamiltonian systems near equilibrium that can be (formally) reduced to one degree of freedom. Spatiotemporal symmetries play a key role. The planar reduction is studied by equivariant singularity theory with distinguished parameters. The method is illustrated on the conservative spring-p
Directory of Open Access Journals (Sweden)
Gustavo A. Aucar
2002-08-01
Full Text Available Abstract: A theory for the calculation of self-energy corrections to the nuclear magnetic parameters is given in this paper. It is based on the S-matrix formulation of bound-state quantum electrodynamics (QED. Explicit expressions for the various terms of the S-matrix are given. The interpretation of the self-energy, one- and two-vertex terms and some perspective for possible future developments are discussed.
Schwarm, F.-W.; Schönherr, G.; Falkner, S.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Sokolova-Lapa, E.; Klochkov, D.; Ferrigno, C.; Fürst, F.; Hemphill, P. B.; Marcu-Cheatham, D. M.; Dauser, T.; Wilms, J.
2017-01-01
Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. Aims: We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. Methods: The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. Results: We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 × 1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1). The electronic tables described here are available at http://www.sternwarte.uni-erlangen.de/research/cyclo
Abdullah, Osama Mahmoud
Myocardial microstructure plays an important role in sustaining the orchestrated beating motion of the heart. Several microstructural components, including myocytes and auxiliary cells, extracellular space, and blood vessels provide the infrastructure for normal heart function, including excitation propagation, myocyte contraction, delivery of oxygen and nutrients, and removing byproduct wastes. Cardiac diseases cause deleterious changes to some or all of these microstructural components in the detrimental process of cardiac remodeling. Since heart failure is among the leading causes of death in the world, new and novel tools to noninvasively characterize heart microstructure are needed for monitoring and staging of cardiac disease. In this regards, diffusion magnetic resonance imaging (MRI) provides a promising framework to probe and quantify tissue microstructure without the need for exogenous contrast agent. As diffusion in 3-dimensional space is characterized by the diffusion tensor, MR diffusion tensor imaging (DTI) is being used to noninvasively measure anisotropic diffusion, and thus the magnitude and spatial orientation of microstructural organization of tissues, including the heart. However, even though in vivo cardiac DTI has become more clinically available, to date the origin and behavior of different microstructural components on the measured DTI signal remain to be explicitly specified. The presented studies in this work demonstrate that DTI can be used as a noninvasive and contrast-free imaging modality to characterize myocyte size and density, extracellular collagen content, and the directional magnitude of blood flow. The identified applications are expected to provide metrics to enable physicians to detect, quantify, and stage different microstructural components during progression of cardiac disease.
Manning, Robert M.; Vyhnalek, Brian E.
2015-01-01
The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.
Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine
Nouh, Mostafa A.
2014-01-01
A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.
Directory of Open Access Journals (Sweden)
Handa H
1999-02-01
Full Text Available The aim of this study was to determine suitable image parameters and an analytical method for phase-contrast magnetic resonance imaging (PC-MRI as a means of measuring cerebral blood flow volume. This was done by constructing an experimental model and applying the results to a clinical application. The experimental model was constructed from the aorta of a bull and circulating isotonic saline. The image parameters of PC-MRI (repetition time, flip angle, matrix, velocity rate encoding, and the use of square pixels were studied with percent flow volume (the ratio of actual flow volume to measured flow volume. The most suitable image parameters for accurate blood flow measurement were as follows: repetition time, 50 msec; flip angle, 20 degrees; and a 512 x 256 matrix without square pixels. Furthermore, velocity rate encoding should be set ranging from the maximum flow velocity in the vessel to five times this value. The correction in measuring blood flow was done with the intensity of the region of interest established in the background. With these parameters for PC-MRI, percent flow volume was greater than 90%. Using the image parameters for PC-MRI and the analytical method described above, we evaluated cerebral blood flow volume in 12 patients with occlusive disease of the major cervical arteries. The results were compared with conventional xenon computed tomography. The values found with both methods showed good correlation. Thus, we concluded that PC-MRI was a noninvasive method for evaluating cerebral blood flow in patients with occlusive disease of the major cervical arteries.
Tripodi, D; Dupas, B; Potiron, M; Louvet, S; Geraut, C
2004-11-01
The aim of the study was to evaluate the presence of cerebral lesions in asymptomatic scuba divers and explain the causes of them: potential risk factors associating cardiovascular risk factors, low aerobic capacity, or characteristics of diving (maximum depth, ascent rate). Experienced scuba divers, over 40 years of age, without any decompression sickness (DCS) history were included. We studied 30 scuba divers (instructors) without any clinical symptoms. For all of them, we carried out a clinical examination with fatty body mass determination and we questioned them about their diving habits. A brain Magnetic Resonance imaging (MRI), an assessment of maximal oxygen uptake, glycemia, triglyceridemia, and cholesterolemia were systematically carried out. Cerebral spots of high intensity were found at 33 % in the scuba diving group and 30 % in the control group. In the diving group, abnormalities were related to unsafe scuba-diving or metabolic abnormalities. In our study, we did not find a significant relationship between the lesions of the central nervous system, and the age, depth of the dives, number of dives, and ergometric performances (maximal oxygen uptake, V.O (2max), serum level of blood lactate). Nevertheless, we found a significant relationship between the lesions of the central nervous system and ascent rate faster than 10 meters per minute (r = 0.57; p = 0.003) or presence of high level of cholesterolemia (r = 0.6; p = 0.001). We found concordant results using the Cochran's Test: meaningful link between the number of brain lesions and the speed of decompression (Uexp = 14 < Utable = 43; alpha = 0.05, p < 0.01). We concluded that hyperintensities can be explained by preformed nitrogen gas microbubbles and particularly in presence of cholesterol, when the ascent rate is up to 10 meters per minute. So, it was remarkable to note that asymptomatic patients practicing scuba diving either professionally or recreationally, presented lesions of the central nervous
Directory of Open Access Journals (Sweden)
GO CHIBA
2014-06-01
Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.
Ashasi-Sorkhabi, Ali; Malekghasemi, Hadi; Ghaemmaghami, Amirreza; Mercan, Oya
2017-02-01
As structures are constructed more slender and taller, their vibrational response and its mitigation become challenging design considerations. Tuned liquid dampers (TLDs) are cost effective and low maintenance vibration absorbers that can be used to suppress structural vibrations. A TLD dissipates energy through liquid boundary layer friction, free surface contamination, and wave breaking. The dynamic characteristics of the TLD and its interaction with the structure is quite complex. In this paper, using a state-of-the-art experimental testing method, namely real-time hybrid simulation (RTHS), a comprehensive parametric study is conducted to investigate the effectiveness of TLDs. During RTHS the TLD response is obtained experimentally while the structure is modeled in a computer, thus capturing the TLD-structure interaction in real-time. By keeping the structure as the analytical model, RTHS offers a unique flexibility in which a wide range of influential parameters can be investigated without modifying the experimental setup. The parameters considered in this study with a wide range of variation include TLD/structure mass ratio, TLD/structure frequency ratio, and structural damping ratio. Additionally, the accuracy of FVM/FEM method that couples the finite volume and finite element approaches to model the liquid and solid domains to capture TLD- structure interaction is assessed experimentally. Results obtained in this study, will not only lead to a better understanding of TLDs and their interaction with the structures but also, contribute to the enhanced design of these devices which will in turn result in their wide-spread application.
Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alpat, B.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; Anderhub, H.; Andreev, V. P.; Angelescu, T.; Antreasyan, D.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Bartalini, P.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Buijs, A.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Campanelli, M.; Capell, M.; Cara Romeo, G.; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Castello, R.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chan, A.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Cohn, H. O.; Coignet, G.; Colijn, A. P.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; De Boeck, H.; Degré, A.; Deiters, K.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; van Dierendonck, D.; Di Lodovico, F.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; Efremenko, Yu.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Ernenwein, J. P.; Extermann, P.; Fabre, M.; Faccini, R.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Furetta, C.; Ferguson, T.; Fernandez, D.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Galaktionov, Yu.; Ganguli, S. N.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gougas, A.; Gratta, G.; Gruenewald, M. W.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Hangarter, K.; Hartmann, B.; Hasan, A.; Hebbeker, T.; Hervé, A.; van Hoek, W. C.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Köngeter, A.; Korolko, I.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krenz, W.; Kuijten, H.; Kunin, A.; de Guevara, P. Ladron; Landi, G.; Lapoint, C.; Lassila-Perini, K.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, J. S.; Lee, K. Y.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; Macchiolo, A.; Maity, M.; Majumder, G.; Malgeri, L.; Malinin, A.; Maña, C.; Mangla, S.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McNally, D.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; von der Mey, M.; Mi, Y.; Mihul, A.; van Mil, A. J. W.; Mirabelli, G.; Mnich, J.; Möller, M.; Monteleoni, B.; Moore, R.; Morganti, S.; Mount, R.; Müller, S.; Muheim, F.; Nagy, E.; Nahn, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Park, H. K.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Peach, D.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Petrak, S.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Ren, D.; Rescigno, M.; Reucroft, S.; van Rhee, T.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Ro, S.; Robohm, A.; Rodin, J.; Rodriguez, F. J.; Roe, B. P.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Sanchez, E.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schoeneich, B.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sciarrino, D.; Sens, J. C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shukla, J.; Shumilov, E.; Siedenburg, T.; Son, D.; Sopczak, A.; Soulimov, V.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Stoyanov, B.; Straessner, A.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Tang, X. W.; Tauscher, L.; Taylor, L.; Ting, Samuel C. C.; Ting, S. M.; Toker, O.; Tonisch, F.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tully, C.; Tuchscherer, H.; Tung, K. L.; Ulbricht, J.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Völkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Wittgenstein, F.; Wu, S. X.; Wynhoff, S.; Xu, J.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yao, X. Y.; Ye, J. B.; Yeh, S. C.; You, J. M.; Zaccardelli, C.; Zalite, An.; Zemp, P.; Zeng, Y.; Zhang, Z.; Zhang, Z. P.; Zhou, B.; Zhou, Y.; Zhu, G. Y.; Zhu, R. Y.; Zichichi, A.; L3 Collaboration
1996-02-01
The Michel parameters ϱ, η, ξ, and ξδ, the chirality parameter ξh and the τ polarization Pτ are measured using 32012 τ pair decays. Their values are extracted from the energy spectra of leptons and hadrons in τ - → l -overlineνlν τ and τ- → π-ντ decays, the energy and decay angular distributions in τ- → ϱ-ντ decays, and the correlations in the energy spectra and angular distributions of the decay products. Assuming universality in leptonic and semileptonic τ decays, the results are ϱ = 0.794±0.039±0.031, η = 0.25±0.17±0.11, ξ = 0.94±0.21±0.07, ξδ = 0.81±0.14±0.06, ξh = -0.970±0.053±0.011, and Pτ = -0.154±0.018±0.012. The measurement is in agreement with the V-A hypothesis for the weak charged current.
Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation.
Kutzelnigg, Werner; Liu, Wenjian
2009-07-28
The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.
Energy Technology Data Exchange (ETDEWEB)
Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)
2011-09-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of ^{235}U/^{238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.
Wang, Yong; Hong, Yan; Goh, Wang Ling; Mu, Xiaojing
2016-10-01
Dual-mode Lamb-wave resonator has become a powerful component for clock reference and sensing applications, enabling efficient compensations of temperature effects, concurrent measurements of multiple environmental parameters, etc. An equivalent circuit model for the dual-mode Lamb-wave resonator is indispensable as it provides a means as well as being an effective tool for evaluating device characteristics and to aid the designing of circuitry for the resonators. This could be the first time ever that an efficient equivalent-circuit model, i.e., modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonators is reported. Evaluated by experiments, this model attains noteworthy agreements on both the magnitudes and phases of Y11 and Y21 of the measurement results. Compared to literature, the proposed model is capable of modeling the dual resonances efficiently. Moreover, this work also proves more accurate when viewing the Y-parameters across a wide frequency range. The gained features of this model are most beneficial for the analysis of the dual-mode Lamb-wave resonator and also for the designing of circuits.
Wang, Yong; Hong, Yan; Goh, Wang Ling; Mu, Xiaojing
2016-10-01
Dual-mode Lamb-wave resonator has become a powerful component for clock reference and sensing applications, enabling efficient compensations of temperature effects, concurrent measurements of multiple environmental parameters, etc. An equivalent circuit model for the dual-mode Lamb-wave resonator is indispensable as it provides a means as well as being an effective tool for evaluating device characteristics and to aid the designing of circuitry for the resonators. This could be the first time ever that an efficient equivalent-circuit model, i.e., modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonators is reported. Evaluated by experiments, this model attains noteworthy agreements on both the magnitudes and phases of Y11 and Y21 of the measurement results. Compared to literature, the proposed model is capable of modeling the dual resonances efficiently. Moreover, this work also proves more accurate when viewing the Y-parameters across a wide frequency range. The gained features of this model are most beneficial for the analysis of the dual-mode Lamb-wave resonator and also for the designing of circuits.
Energy Technology Data Exchange (ETDEWEB)
Braeunlich, R. [Fachkommission fuer Hochspannungsfragen, Zuerich (Switzerland); Daeumling, H. [Ritz Messwandler GmbH, Hamburg (Germany); Hofstetter, M. [Elektrizitaetswerk der Stadt Zuerich (EWZ), Zuerich (Switzerland); Prucker, U.; Schmid, J.; Minkner, R. [Trench-Germany GmbH, Bamberg (Germany); Schlierf, H.-W. [RWE Transportnetz Strom GmbH, Dortmund (Germany)
2008-07-01
This illustrated article is part of a series of four articles that examine ferro-resonance oscillations that can occur under certain operational conditions that involve inductive and capacitive elements. The authors take a look at the criteria involved with reference to the dangers posed by ferro-resonance oscillations and describe how the presence of such oscillations can be detected. Installations that can be endangered by ferro-resonance are described and the components of the installations that are involved are examined. Single-phase and three-phase resonance are examined and the detection of resonance in the electricity mains is discussed. Modeling and simulation of ferro-resonance oscillations are examined. Magnetization characteristics and circuit losses are discussed and the results of simulations are presented and discussed.
Stoica, Petre; Selén, Yngve; Sandgren, Niclas; Van Huffel, Sabine
2004-09-01
We introduce the knowledge-based singular value decomposition (KNOB-SVD) method for exploiting prior knowledge in magnetic resonance (MR) spectroscopy based on the SVD of the data matrix. More specifically, we assume that the MR data are well modeled by the superposition of a given number of exponentially damped sinusoidal components and that the dampings alphakappa, frequencies omegakappa, and complex amplitudes rhokappa of some components satisfy the following relations: alphakappa = alpha (alpha = unknown), omegakappa = omega + (kappa- 1)delta (omega = unknown, delta = known), and rhokappa = Ckapparho (rho = unknown, ckappa = known real constants). The adenosine triphosphate (ATP) complex, which has one triple peak and two double peaks whose dampings, frequencies, and amplitudes may in some cases be known to satisfy the above type of relations, is used as a vehicle for describing our SVD-based method throughout the paper. By means of numerical examples, we show that our method provides more accurate parameter estimates than a commonly used general-purpose SVD-based method and a previously suggested prior knowledge-based SVD method.
Lubbers, Daniel D.; Willems, Tineke P.; van der Vleuten, Pieter A.; Overbosch, Jelle; Goette, Marco J. W.; van Veldhuisen, Dirk J.; Oudkerk, Matthijs
2008-01-01
The purpose of this study was to assess whether accurate global left-ventricular (LV) functional parameters can be obtained by analyzing every second short-axis magnetic resonance imaging cine series instead of consecutive slices, in order to reduce post-processing time. Forty patients, were scanned
Olsen, Seth
2015-01-01
This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed ("microcanonical") SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with "more diabatic than adiabatic" states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse "temperature," unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence
Energy Technology Data Exchange (ETDEWEB)
Olsen, Seth, E-mail: seth.olsen@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072 (Australia)
2015-01-28
This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space
Energy Technology Data Exchange (ETDEWEB)
Brienne-Raepsaet, C. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee]|[Aix-Marseille-1 Univ., 13 - Marseille (France)
1999-04-01
In order to improve nuclear data for nuclear waste transmutation cross-sections of Tc{sup 99} in the resonance energy region have been performed using the time-of-flight method at the pulsed white neutron source GELINA of the Institute for Reference Materials and Measurements, Geel, Belgium. The energy range studied spreads from 3 eV to 100 KeV. 2 kinds of measurements have been performed: capture and transmission measurements. In the energy range between 0 and 2 KeV, more than 220 resonances have been analyzed. About 130 resonances which had stayed previously undiscovered, have been detected and analyzed. Because of instability problems concerning the process of measuring itself, the systematic error is not yet determined. The accuracy which takes into account statistical and systematic errors is expected to be between 4 and 5%.
Institute of Scientific and Technical Information of China (English)
Katarzyna; Jadwiga; Macura; Richard; Eugene; Thompson; David; Alan; Bluemke; Rene; Genadry
2015-01-01
AIM: To define the magnetic resonance imaging(MRI) parameters differentiating urethral hypermobility(UH) and intrinsic sphincter deficiency(ISD) in women with stress urinary incontinence(SUI).METHODS: The static and dynamic MR images of 21 patients with SUI were correlated to urodynamic(UD) findings and compared to those of 10 continent controls. For the assessment of the urethra and integrity of the urethral support structures, we applied the highresolution endocavitary MRI, such as intraurethral MRI, endovaginal or endorectal MRI. For the functional imaging of the urethral support, we performed dynamic MRI with the pelvic phased array coil. We assessed the following MRI parameters in both the patient and thevolunteer groups:(1) urethral angle;(2) bladder neck descent;(3) status of the periurethral ligaments,(4) vaginal shape;(5) urethral sphincter integrity, length and muscle thickness at mid urethra;(6) bladder neck funneling;(7) status of the puborectalis muscle;(8) pubo-vaginal distance. UDs parameters were assessed in the patient study group as follows:(1) urethral mobility angle on Q-tip test;(2) Valsalva leak point pressure(VLPP) measured at 250 cc bladder volume; and(3) maximum urethral closure pressure(MUCP). The UH type of SUI was defined with the Q-tip test angle over 30 degrees, and VLPP pressure over 60 cm H2 O. The ISD incontinence was defined with MUCP pressure below 20 cm H2 O, and VLPP pressure less or equal to 60 cm H2 O. We considered the associations between the MRI and clinical data and UDs using a variety of statistical tools to include linear regression, multivariate logistic regression and receiver operating characteristic(ROC) analysis. All statistical analyses were performed using STATA version 9.0(Stata Corp LP, College Station, TX).RESULTS: In the incontinent group, 52% have history of vaginal delivery trauma as compared to none in control group(P < 0.001). There was no difference between the continent volunteers and incontinent
Directory of Open Access Journals (Sweden)
Shi Jack J
2012-10-01
Full Text Available Abstract Background A one-parameter model was previously proposed to characterize the short axis motion of the LV wall at the mid-ventricle level. The single parameter of this model was associated with the radial contraction of myocardium, but more comprehensive model was needed to account for the rotation at the apex and base levels. The current study developed such model and demonstrated its merits and limitations with examples. Materials and methods The hearts of five healthy individuals were visualized using cardiac tagged magnetic resonance imaging (tMRI covering the contraction and relaxation phases. Based on the characteristics of the overall dynamics of the LV wall, its motion was represented by a combination of two components - radial and rotational. Each component was represented by a transformation matrix with a time-dependent variable α or β. Image preprocessing step and model fitting algorithm were described and applied to estimate the temporal profiles of α and β within a cardiac cycle at the apex, mid-ventricle and base levels. During this process, the tagged lines of the acquired images served as landmark reference for comparing against the model prediction of the motion. Qualitative and quantitative analyses were performed for testing the performance of the model and thus its validation. Results The α and β estimates exhibited similarities in values and temporal trends once they were scaled by the radius of the epicardium (repiand plotted against the time scaled by the period of the cardiac cycle (Tcardiac of each heart measured during the data acquisition. α/repi peaked at about Δt/Tcardiac=0.4 and with values 0.34, 0.4 and 0.3 for the apex, mid-ventricle and base level, respectively. β/repi similarly maximized in amplitude at about Δt/Tcardiac=0.4, but read 0.2 for the apex and - 0.08 for the base level. The difference indicated that the apex twisted more than the base. Conclusion It is feasible to empirically model
Energy Technology Data Exchange (ETDEWEB)
Gressier, V
1999-10-01
For studies of future nuclear reactors dedicated to nuclear waste transmutation, an improvement of the accuracy of the neutron radiative capture cross section of {sup 237}Np appears necessary. In the framework of a collaboration between the Commissariat a l'Energie atomique (CEA) and Institute for Reference Materials and Measurement (IRMM, Geel, Bergium), a new determination of the resonance parameters of {sup 237}Np has been performed. Two types of experiments are carried out at GELINA, the IRMM pulsed neutron source, using the time of flight method: a transmission experiment which is related to the neutron total cross section and a capture experiment which gives the neutron radiative capture cross section. The resonance parameters presented in this work are extracted from the transmission data between 0 and 500 eV with the least square code REFIT, using the Reich-Moore formalism. In parallel, the Doppler effect is investigated. The commonly used free gas model appears inadequate below 20 eV for neptunium dioxide at room temperature. By the use of the program DOPUSH, which calculates the Doppler broadening with a harmonic crystal model according to Lamb's theory, we are able to produce abetter fit of the experimental data for the resonances of {sup 237}Np in NpO{sub 2} at low energy or temperatures. In addition to the resonance parameters, a study of their mean value and distribution is included in this work. (authors)
Phase diagram distortion from traffic parameter averaging.
Stipdonk, H. Toorenburg, J. van & Postema, M.
2010-01-01
Motorway traffic congestion is a major bottleneck for economic growth. Therefore, research of traffic behaviour is carried out in many countries. Although well describing the undersaturated free flow phase as an almost straight line in a (k,q)-phase diagram, congested traffic observations and theori
Directory of Open Access Journals (Sweden)
Haishan Deng
2014-01-01
Full Text Available Simultaneous determination of multiple weak chromatographic peaks via stochastic resonance algorithm attracts much attention in recent years. However, the optimization of the parameters is complicated and time consuming, although the single-well potential stochastic resonance algorithm (SSRA has already reduced the number of parameters to only one and simplified the process significantly. Even worse, it is often difficult to keep amplified peaks with beautiful peak shape. Therefore, multiobjective genetic algorithm was employed to optimize the parameter of SSRA for multiple optimization objectives (i.e., S/N and peak shape and multiple chromatographic peaks. The applicability of the proposed method was evaluated with an experimental data set of Sudan dyes, and the results showed an excellent quantitative relationship between different concentrations and responses.
Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus
2016-09-05
Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.
Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki
2012-02-01
In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.
Byoun, T. Y.; Block, R. C.; Semler, T. T.
1972-01-01
A series of average transmission and average self-indication ratio measurements were performed in order to investigate the temperature dependence of the resonance self-shielding effect in the unresolved resonance region of depleted uranium and tantalum. The measurements were carried out at 77 K, 295 K and approximately 1000 K with sample thicknesses varying from approximately 0.1 to 1.0 mean free path. The average resonance parameters as well as the temperature dependence were determined by using an analytical model which directly integrates over the resonance parameter distribution functions.
Indian Academy of Sciences (India)
Y-X Hu; S-Y Wu; X-F Wang; P Xu
2010-04-01
The electron paramagnetic resonance (EPR) parameters (the factors, hyperfine structure constants and the superhyperfine parameters) for the tetragonal Ir2+ centre in NaCl are theoretically investigated from the perturbation formulas of these parameters for a 5d7 ion in tetragonally elongated octahedra. This impurity centre is attributed to the substitutional [IrCl6]4- cluster on host Na+ site, associated with the 4% relative elongation along the 4-axis due to the Jahn–Teller effect. Despite the ionicity of host NaCl, the [IrCl6]4- cluster still exhibits moderate covalency and then the ligand orbital and spin-orbit coupling contributions should be taken into account. In addition, the theoretical EPR parameters based on the Jahn–Teller elongation show good agreement with the observed values.
Indian Academy of Sciences (India)
S Ravi; P Subramanian
2007-08-01
The EPR parameters, anisotropic -factors , and for Cu2+ ion and hyperfine structure constants , and for Cu2+ in LiNbO3 crystal are calculated by the method of diagonalizing the full Hamiltonian matrix. The crystal-field parameters contact with the crystal structure by the aid of the superposition model. The optical transition parameters are calculated using Zhao crystal-field model. The calculated results are in good agreement with the observed values. The results are discussed.
Directory of Open Access Journals (Sweden)
Adam Dubik
2014-03-01
Full Text Available Theoretical and numerical analyses are presented concerning the conditions at which the charged particles of different masses can be accelerated to significant kinetic energy in the circularly polarized laser or maser beams and a static magnetic field. The studies are carried out using the analytical derivations of the particles dynamics and theirs kinetic energy. The presented illustrations enabled interpretation of the complex motion of particles and the possibilities of their acceleration. At the examples of an electron, proton and deuteron, the velocity, kinetic energy and trajectory as a function of the acceleration time at the resonance condition are illustrated in the appropriate graphs. The particles with larger masses require the application of enhanced magnetic field intensity at the resonance condition. However, this field intensity can be significantly reduced if the particles are preaccelerated. [b]Keywords[/b]: optoelectronics, acceleration of charged particles, laser, maser, relativistic dynamics, kinetic energy of a particle, electron, proton, deuteron
Indian Academy of Sciences (India)
M K Maurya; T K Yadav; R A Yadav
2009-04-01
The steady-state amplification of light beam during two-wave mixing in photorefractive materials has been analysed in the strong nonlinear regime. The oscillation conditions for unidirectional ring resonator have been studied. The signal beam can be amplified in the presence of material absorption, provided the gain due to the beam coupling is large enough to overcome the cavity losses. Such amplification is responsible for the oscillations. The gain bandwidth is only a few Hz. In spite of such an extremely narrow bandwidth, unidirectional oscillation can be observed easily at any cavity length in ring resonators by using photorefractive crystals as the medium and this can be explained in terms of the photorefractive phase-shift. The presence of such a phase-shift allows the possibility of the non-reciprocal steady-state transfer of energy between the two light beams. Dependence of gain bandwidth on coupling constant, absorption coefficient of the material's cavity length (crystal length) and modulation ratio have also been studied.
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeo Eun [Dept. of Radiology, Seoul Medical Center, Seoul (Korea, Republic of); Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong [Yonsei University Health System, Seoul (Korea, Republic of); Kim, Dae Hong [Molecular Imaging and Therapy Branch, National Cancer Center, Goyang (Korea, Republic of); Myoung, Sung Min [Dept. of Medical Information, Jungwon University, Goesan (Korea, Republic of)
2013-12-15
To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K{sup trans}) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K{sup trans}, Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K{sup trans}; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K{sup trans}; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K{sup trans} and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.
Energy Technology Data Exchange (ETDEWEB)
Jia, Qian-Jun; Zhang, Shui-Xing; Chen, Wen-Bo; Liang, Long; Zhou, Zheng-Gen; Liu, Zai-Yi; Zeng, Qiong-Xin; Liang, Chang-Hong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Qiu, Qian-Hui [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Otolaryngology, Guangzhou, Guangdong Province (China)
2014-12-15
To determine the correlation between intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters. Thirty-eight newly diagnosed NPC patients were prospectively enrolled. Diffusion-weighted images (DWI) at 13 b-values were acquired using a 3.0-T MRI system. IVIM parameters including the pure molecular diffusion (D), perfusion-related diffusion (D*), perfusion fraction (f), DCE-MRI parameters including maximum slope of increase (MSI), enhancement amplitude (EA) and enhancement ratio (ER) were calculated by two investigators independently. Intra- and interobserver agreement were evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Relationships between IVIM and DCE-MRI parameters were evaluated by calculation of Spearman's correlation coefficient. Intra- and interobserver reproducibility were excellent to relatively good (ICC = 0.887-0.997; narrow width of 95 % limits of agreement). The highest correlation was observed between f and EA (r = 0.633, P < 0.001), with a strong correlation between f and MSI (r = 0.598, P = 0.001). No correlation was observed between f and ER (r = -0.162; P = 0.421) or D* and DCE parameters (r = 0.125-0.307; P > 0.119). This study suggests IVIM perfusion imaging using 3.0-T MRI is feasible in NPC, and f correlates significantly with EA and MSI. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Kyushu University, Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka (Japan); Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2002-08-01
A simple method to estimate covariances for resolved resonance parameters was developed. Although a large number of resolved resonances are observed for major actinides, uncertainties in averaged cross sections are more important than those in resonance parameters in reactor calculations. The method developed here derives a covariance matrix for the resolved resonance parameters which gives an appropriate uncertainty of the averaged cross sections. The method was adopted to evaluate the covariance data for {sup 235}U, {sup 238}U, and {sup 239}Pu resonance parameters in JENDL-3.2, with the Reich-Moore R-matrix formula. (author)
Energy Technology Data Exchange (ETDEWEB)
Riches, S.F.; Payne, G.S.; Morgan, V.A.; DeSouza, N.M. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Dearnaley, D. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Department of Urology and Department of Academic Radiotherapy, Sutton, Surrey (United Kingdom); Morgan, S. [The Ottawa Hospital Cancer Centre and the University of Ottawa, Division of Radiation Oncology, Ottawa, Ontario (Canada); Partridge, M. [The Institute of Cancer Research, Section of Radiotherapy and Imaging, Sutton, Surrey (United Kingdom); University of Oxford, The Gray Institute for Radiation Oncology and Biology, Oxford (United Kingdom); Livni, N. [Royal Marsden NHS Foundation Trust Chelsea, Department of Histopathology, London (United Kingdom); Ogden, C. [Royal Marsden NHS Foundation Trust Chelsea, Department of Urology, London (United Kingdom)
2015-05-01
The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T{sub 2}-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T{sub 2,} Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K{sup trans},K{sub ep},V{sub e}), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. (orig.)
Lin, Li-feng; Yu, Lei; Wang, Huiqi; Zhong, Suchuan
2017-02-01
In order to improve the system performance for moving target detection and localization, this paper presents a new aperiodic chirp signal and additive noise driving stochastic dynamical system, in which the internal frequency has the linear variation matching with the driving frequency. By using the fractional Fourier transform (FrFT) operator with the optimal order, the proposed time-domain dynamical system is transformed into the equivalent FrFT-domain system driven by the periodic signal and noise. Therefore, system performance is conveniently analyzed from the view of output signal-to-noise ratio (SNR) in optimal FrFT domain. Simulation results demonstrate that the output SNR, as a function of system parameter, shows the different generalized SR behaviors in the case of various internal parameters of driving chirp signal and external parameters of the moving target.
DEFF Research Database (Denmark)
Li, Zipeng; Jiang, Aiting; Shen, Pan;
2016-01-01
, this paper presents a systematic design method for the LCL-LC filtered grid-connected photovoltaic (PV) system. With this method, controller parameters and the active damping feedback coefficient are easily obtained by specifying the system stability and dynamic performance indices, and it is more convenient...
Energy Technology Data Exchange (ETDEWEB)
Ghrayeb, Shadi Z. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Ougouag, Abderrafi M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Ouisloumen, Mohamed [Westinghouse Electric Company, Cranberry Township, PA (United States); Ivanov, Kostadin N. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering
2014-01-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.
Koo, Sukmo; Mason, Daniel R.; Kim, Yunjung; Park, Namkyoo
2017-02-01
A meta-atom platform providing decoupled tuning for the constitutive wave parameters remains as a challenging problem, since the proposition of Pendry. Here we propose an electromagnetic meta-atom design of internal anisotropy (εr ≠ εθ), as a pathway for decoupling of the effective- permittivity εeff and permeability μeff. Deriving effective parameters for anisotropic meta-atom from the first principles, and then subsequent inverse-solving the obtained decoupled solution for a target set of εeff and μeff, we also achieve an analytic, top-down determination for the internal structure of a meta-atom. To realize the anisotropy from isotropic materials, a particle of spatial permittivity modulation in r or θ direction is proposed. As an application example, a matched zero index dielectric meta-atom is demonstrated, to enable the super-funneling of a 50λ-wide flux through a sub-λ slit; unharnessing the flux collection limit dictated by the λ-zone.
Koo, Sukmo; Mason, Daniel R.; Kim, Yunjung; Park, Namkyoo
2017-01-01
A meta-atom platform providing decoupled tuning for the constitutive wave parameters remains as a challenging problem, since the proposition of Pendry. Here we propose an electromagnetic meta-atom design of internal anisotropy (εr ≠ εθ), as a pathway for decoupling of the effective- permittivity εeff and permeability μeff. Deriving effective parameters for anisotropic meta-atom from the first principles, and then subsequent inverse-solving the obtained decoupled solution for a target set of εeff and μeff, we also achieve an analytic, top-down determination for the internal structure of a meta-atom. To realize the anisotropy from isotropic materials, a particle of spatial permittivity modulation in r or θ direction is proposed. As an application example, a matched zero index dielectric meta-atom is demonstrated, to enable the super-funneling of a 50λ-wide flux through a sub-λ slit; unharnessing the flux collection limit dictated by the λ-zone. PMID:28186157
Bertram, Hanne Christine; Duus, Jens Ø; Petersen, Bent O; Hoppe, Camilla; Larnkjaer, Anni; Schack-Nielsen, Lene; Mølgaard, Christian; Michaelsen, Kim F
2009-07-01
Nuclear magnetic resonance (NMR)-based metabonomics was carried out on plasma samples from a total of seventy-five 17-year-old Danes to investigate the impact of key parameters such as sex, height, weight, and body mass index on the plasma metabolite profile in a normal, healthy population. Principal component analysis identified sex to have a large impact on the NMR plasma metabolome, whereas no apparent effects of height, weight, and body mass index were found. Partial least square regression discriminant analysis and quantification of relative metabolite concentrations by integration of NMR signals revealed that the sex effect included differences in plasma lipoproteins (mainly high-density lipoprotein), glucose, choline, and amino acid content. Accordingly, the present study suggests a higher lipid synthesis in young women than young men and a higher protein turnover in young men compared with women. Data on plasma content of triglyceride, lipoprotein fractions, and cholesterol at an age of 9 months were available for selected individuals (n = 40); and partial least square regressions revealed correlations between these infant parameters and the NMR plasma metabolome at an age of 17 years. In conclusion, the present study demonstrates the feasibility of NMR-based metabonomics for obtaining a deeper insight into interindividual differences in metabolism and for exploring relationships between parameters measured early in life and metabolic status at a later stage.
Endo, Shimpei; Castin, Yvan
2016-11-01
We give exact integral expressions of the third cluster or virial coefficients of binary mixtures of ideal Bose or Fermi gases, with interspecies interactions of zero range and infinite s-wave scattering length. In general the result depends on three-body parameters Rt appearing in three-body contact conditions, because an Efimov effect is present or because the mixture is in a preefimovian regime with a mass ratio close to an Efimov-effect threshold. We give a new, exact integral expression of Rt for the microscopic narrow Feshbach resonance model. A divergence of Rt in the preefimovian regime at a scaling exponent s = 1 / 2 is predicted and physically discussed. The analytical results are applied to typical species used in cold atom experiments.
Spectral averaging techniques for Jacobi matrices
del Rio, Rafael; Schulz-Baldes, Hermann
2008-01-01
Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.
Stochastic averaging of quasi-Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
朱位秋
1996-01-01
A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.
微弱核四极矩共振信号参数估计新方法%New parameters estimation method for weak nuclear quadrupole resonance signals
Institute of Scientific and Technical Information of China (English)
朱凯然; 吴兆平; 何学辉; 苏涛; 王文卿
2012-01-01
Nuclear quadrupole resonance (NQR) is a solid-state radio frequency spectroscopic technique, allowing the detection of many high explosives. Unfortunately, NQR signals are inherently weak and vulnerable both to the thermal noise of the coil and any radio frequency interference, and the precise estimation of the NQR signal parameters becomes a difficult problem. A residual signal iterative analysis algorithm based on improved fast maximum likelihood estimation is proposed to estimate the parameters of the NQR signal. The proposed method turns the multidimensional search problem into multiple one-dimensional searches to effectively solve the mask problem of the interference to the NQR signal, which simultaneously reduces the computational complexity and improves the estimated precision. The effectiveness of the proposed algorithm is demonstrated by the processing results of both simulated data and experimental data.%核四极矩共振(nuclear quadrupole resonance,NQR)是一种固态射频谱分析技术,可用于检测高危险爆炸物.然而,核四极矩共振信号本身非常弱,并且易受线圈热噪声和射频干扰的影响,精确估计NQR信号参数成为难题.提出基于改进的快速最大似然估计的残余信号迭代分解算法估计NQR信号参数,该算法将多维搜索问题转化为多个一维搜索,在降低计算复杂度的同时提高了参数估计精度,有效地解决了干扰信号对NQR信号的遮蔽问题.仿真和实测数据的结果证明了该算法的有效性.
Energy Technology Data Exchange (ETDEWEB)
Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)
2013-09-15
Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.
Berthier, Laure
2016-01-01
We calculate the double pole contribution to two to four fermion scattering through $W^{\\pm}$ currents at tree level in the Standard Model Effective Field Theory (SMEFT). We assume all fermions to be massless, $\\rm U(3)^5$ flavour and $\\rm CP$ symmetry. Using this result, we update the global constraint picture on SMEFT parameters including LEPII data on these charged current processes, and also include modifications to our fit procedure motivated by a companion paper focused on $W^{\\pm}$ mass extractions. The fit reported is now to 177 observables and emphasises the need for a consistent inclusion of theoretical errors, and a consistent treatment of observables. Including charged current data lifts the two-fold degeneracy previously encountered in LEP (and lower energy) data, and allows us to set simultaneous constraints on 20 of 53 Wilson coefficients in the SMEFT, consistent with our assumptions. This allows the model independent inclusion of LEP data in SMEFT studies at LHC, which are projected into the S...
Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; Dutta, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Innocente, Vincenzo; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Koffeman, E; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lu, W; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Merk, M; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paoloni, A; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zöller, M
2000-01-01
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years $1993-95$.A total luminosity of 103 pb$^{-1}$ was collected at centre-of-mass energies $\\sqrt{s} \\approx m_\\mathrm{Z}$ and $\\sqrt{s} \\approx m_\\mathrm{Z} \\pm 1.8$ GeVwhich corresponds to 2.5 million hadronic and 245 thousand leptonic events selected.These data lead to a significantly improved determination of Z parameters.From the total cross sections, combined with our measurements in $1990-92$,we obtain the final results:%%%\\begin{eqnarr ay*} m_\\mathrm{Z} = 91189.8 \\pm 3.1\\ \\mathrm{MeV} \\, , & & \\Gamma_\\mathrm{Z} = 2502.4 \\pm 4.2\\ \\mathrm{MeV} \\, , \\\\ \\Gamma_\\mathrm{had} = 1741.1 \\pm 3.8\\ \\mathrm{MeV} \\, , & & \\Gamma_\\ell = 84.14 \\pm 0.17\\ \\mathrm{MeV} \\,. \\label{eq:Zpara_abstract}\\end{eqnarray*}%%%An invisible width of $\\Gamma_\\mathrm{inv} = 499.1 \\pm 2.9$ MeV is derived which in the Standard Model yields for the numberof light neutrino spec...
Energy Technology Data Exchange (ETDEWEB)
Heyerdahl, Helen, E-mail: Helen.Heyerdahl@rr-research.no [Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo (Norway); Røe, Kathrine [Department of Oncology, Division of Medicine, Akershus University Hospital, Lørenskog (Norway); Brevik, Ellen Mengshoel [Department of Research and Development, Algeta ASA, Oslo (Norway); Dahle, Jostein [Nordic Nanovector AS, Oslo (Norway)
2013-09-01
Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.
Siegel, Irving H.
The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)
DEFF Research Database (Denmark)
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...
Dziuda, Łukasz
2015-01-01
The issues involved with recording vital functions in the magnetic resonance imaging (MRI) environment using fiber-optic sensors are considered in this paper. Basic physiological parameters, such as respiration and heart rate, are fundamental for predicting the risk of anxiety, panic, and claustrophobic episodes in patients undergoing MRI examinations. Electronic transducers are generally hazardous to the patient and are prone to erroneous operation in heavily electromagnetically penetrated MRI environments; however, nonmetallic fiber-optic sensors are inherently immune to electromagnetic effects and will be crucial for acquiring the above-mentioned physiological parameters. Forty-seven MRI-tested or potentially MRI-compatible sensors have appeared in the literature over the last 20 years. The author classifies these sensors into several categories and subcategories, depending on the sensing element placement, method of application, and measurand type. The author includes five in-house-designed fiber Bragg grating based sensors and shares experience in acquiring physiological measurements during MRI scans. This paper aims to systematize the knowledge of fiber-optic techniques for recording life functions and to indicate the current directions of development in this area.
Pritychenko, B.; Mughabghab, S. F.
2012-12-01
We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.
Young, Vershawn Ashanti
2004-01-01
"Your Average Nigga" contends that just as exaggerating the differences between black and white language leaves some black speakers, especially those from the ghetto, at an impasse, so exaggerating and reifying the differences between the races leaves blacks in the impossible position of either having to try to be white or forever struggling to…
DEFF Research Database (Denmark)
Gramkow, Claus
2001-01-01
In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ping [Chongqing Jiaotong Univ. (China). School of Science; Li, Ling [Sichuan University of Arts and Science, Dazhou (China). Dept. of Maths and Finance-Economics
2015-07-01
The optical spectra, electron paramagnetic resonance parameters (i.e., the spin Hamiltonian parameters, including paramagnetic g factors and the hyperfine structure constants A{sub i}) and the local distortion structure for the tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7} are theoretically studied based on the crystal-field theory and three-order perturbation formulas of a 3d{sup 1} centre in tetragonal site. The magnitude of orbital reduction factor, core polarisation constant κ, and local structure parameters are obtained by fitting the calculated optical spectra and electron paramagnetic resonance parameters to the experimental values. The theoretical results are in reasonable agreement with the experimental values.
Directory of Open Access Journals (Sweden)
Christian Nasel
Full Text Available Assessment of cerebral ischemia often employs dynamic susceptibility contrast enhanced magnetic resonance imaging (DSC-MRI with evaluation of various peak enhancement time parameters. All of these parameters use a single time threshold to judge the maximum tolerable peak enhancement delay that is supposed to reliably differentiate sufficient from critical perfusion. As the validity of this single threshold approach still remains unclear, in this study, (1 the definition of a threshold on an individual patient-basis, nevertheless (2 preserving the comparability of the data, was investigated.The histogram of time-to-peak (TTP values derived from DSC-MRI, the so-called TTP-distribution curve (TDC, was modeled using a double-Gaussian model in 61 patients without severe cerebrovascular disease. Particular model-based zf-scores were used to describe the arterial, parenchymal and venous bolus-transit phase as time intervals Ia,p,v. Their durations (delta Ia,p,v, were then considered as maximum TTP-delays of each phase.Mean-R2 for the model-fit was 0.967. Based on the generic zf-scores the proposed bolus transit phases could be differentiated. The Ip-interval reliably depicted the parenchymal bolus-transit phase with durations of 3.4 s-10.1 s (median = 4.3s, where an increase with age was noted (∼30 ms/year.Individual threshold-adjustment seems rational since regular bolus-transit durations in brain parenchyma obtained from the TDC overlap considerably with recommended critical TTP-thresholds of 4 s-8 s. The parenchymal transit time derived from the proposed model may be utilized to individually correct TTP-thresholds, thereby potentially improving the detection of critical perfusion.
Reass, W A; Gribble, R F; Lynch, M T; Tallerico, P J; Reass, William A.; Doss, James D.; Gribble, Robert F.; Lynch, Michael T.; Tallerico, Paul J.
2000-01-01
This paper describes electrical design and operational characteristics of a zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three "H-Bridge" IGBT switching networks are used to generate the polyphase 20 kHz transformers primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to ...
Measurement of the CP-Violation Parameter sin2ϕ1 with a New Tagging Method at the Υ(5S) Resonance
Sato, Y.; Yamamoto, H.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Aziz, T.; Bakich, A. M.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M.; Bondar, A.; Bozek, A.; Bračko, M.; Browder, T. E.; Chang, P.; Chen, P.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, I.-S.; Cho, K.; Choi, S.-K.; Choi, Y.; Dalseno, J.; Doležal, Z.; Drásal, Z.; Eidelman, S.; Epifanov, D.; Fast, J. E.; Gaur, V.; Gabyshev, N.; Goh, Y. M.; Golob, B.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Horii, Y.; Hoshi, Y.; Hou, W.-S.; Hyun, H. J.; Ishikawa, A.; Itoh, R.; Iwabuchi, M.; Iwasaki, Y.; Iwashita, T.; Julius, T.; Kapusta, P.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, H. J.; Kim, H. O.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, S. K.; Kim, Y. J.; Kinoshita, K.; Ko, B. R.; Kobayashi, N.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kuhr, T.; Kumar, R.; Kumita, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, S.-H.; Li, J.; Li, Y.; Liu, C.; Liu, Z. Q.; Louvot, R.; McOnie, S.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Muramatsu, N.; Nakano, E.; Nakao, M.; Nakazawa, H.; Natkaniec, Z.; Nishida, S.; Nishimura, K.; Nitoh, O.; Ogawa, S.; Ohshima, T.; Okuno, S.; Olsen, S. L.; Onuki, Y.; Ostrowicz, W.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Petrič, M.; Piilonen, L. E.; Poluektov, A.; Röhrken, M.; Ryu, S.; Sahoo, H.; Sakai, Y.; Sanuki, T.; Schneider, O.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Senyo, K.; Seon, O.; Sevior, M. E.; Shapkin, M.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Smerkol, P.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Stypula, J.; Sumihama, M.; Sumiyoshi, T.; Tanaka, S.; Tatishvili, G.; Teramoto, Y.; Trabelsi, K.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Varner, G.; Varvell, K. E.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, M.; Watanabe, Y.; Wicht, J.; Won, E.; Yabsley, B. D.; Yamashita, Y.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.
2012-04-01
We report a measurement of the CP-violation parameter sin2ϕ1 at the Υ(5S) resonance using a new tagging method, called “B-π tagging.” In Υ(5S) decays containing a neutral B meson, a charged B, and a charged pion, the neutral B is reconstructed in the J/ψKS0 CP-eigenstate decay channel. The initial flavor of the neutral B meson at the moment of the Υ(5S) decay is opposite to that of the charged B and may thus be inferred from the charge of the pion without reconstructing the charged B. From the asymmetry between B-π+ and B-π- tagged J/ψKS0 yields, we determine sin2ϕ1=0.57±0.58(stat)±0.06(syst). The results are based on 121fb-1 of data recorded by the Belle detector at the KEKB e+e- collider.
Sato, Y; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bondar, A; Bozek, A; Bračko, M; Browder, T E; Chang, P; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I -S; Cho, K; Choi, S -K; Choi, Y; Dalseno, J; Doležal, Z; Drásal, Z; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Goh, Y M; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W -S; Hyun, H J; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Julius, T; Kapusta, P; Kawasaki, T; Kichimi, H; Kiesling, C; Kim, H J; Kim, H O; Kim, J B; Kim, J H; Kim, K T; Kim, M J; Kim, S K; Kim, Y J; Kinoshita, K; Ko, B R; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kumar, R; Kumita, T; Kuzmin, A; Kwon, Y -J; Lange, J S; Lee, S -H; Li, J; Li, Y; Liu, C; Liu, Z Q; Louvot, R; McOnie, S; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Muramatsu, N; Nakano, E; Nakao, M; Natkaniec, Z; Nishida, S; Nishimura, K; Nitoh, O; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Ostrowicz, W; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Ryu, S; Sahoo, H; Sakai, Y; Sanuki, T; Schneider, O; Schwanda, C; Schwartz, A J; Seidl, R; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y -S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Tanaka, S; Tatishvili, G; Teramoto, Y; Trabelsi, K; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Varner, G; Varvell, K E; Wang, C H; Wang, M -Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wicht, J; Won, E; Yabsley, B D; Yamashita, Y; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A
2012-01-01
We report a measurement of the CP-violation parameter sin2$\\phi_1$ at the $\\Upsilon(5S)$ resonance using a new tagging method, called "$B$-$\\pi$ tagging." In $\\Upsilon(5S)$ decays containing a neutral $B$ meson, a charged $B$, and a charged pion, the neutral $B$ is reconstructed in the $J/\\psi K_S^0$ CP-eigenstate decay channel. The initial flavor of the neutral $B$ meson at the moment of the $\\Upsilon(5S)$ decay is opposite to that of the charged $B$ and may thus be inferred from the charge of the pion without reconstructing the charged $B$. From the asymmetry between $B$-$\\pi^+$ and $B$-$\\pi^-$ tagged $J/\\psi K_S^0$ yields, we determine sin2$\\phi_1$ = 0.57 $\\pm$ 0.58(stat) $\\pm$ 0.06(syst). The results are based on 121 fb$^{-1}$ of data recorded by the Belle detector at the KEKB $e^+ e^-$ collider.
Measurement of the CP-violation parameter sin2φ1 with a new tagging method at the Υ(5S) resonance.
Sato, Y; Yamamoto, H; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bondar, A; Bozek, A; Bračko, M; Browder, T E; Chang, P; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I-S; Cho, K; Choi, S-K; Choi, Y; Dalseno, J; Doležal, Z; Drásal, Z; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Goh, Y M; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W-S; Hyun, H J; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Julius, T; Kapusta, P; Kawasaki, T; Kichimi, H; Kiesling, C; Kim, H J; Kim, H O; Kim, J B; Kim, J H; Kim, K T; Kim, M J; Kim, S K; Kim, Y J; Kinoshita, K; Ko, B R; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kumar, R; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, S-H; Li, J; Li, Y; Liu, C; Liu, Z Q; Louvot, R; McOnie, S; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Muramatsu, N; Nakano, E; Nakao, M; Nakazawa, H; Natkaniec, Z; Nishida, S; Nishimura, K; Nitoh, O; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Ostrowicz, W; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Ryu, S; Sahoo, H; Sakai, Y; Sanuki, T; Schneider, O; Schwanda, C; Schwartz, A J; Seidl, R; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Tanaka, S; Tatishvili, G; Teramoto, Y; Trabelsi, K; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Varner, G; Varvell, K E; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wicht, J; Won, E; Yabsley, B D; Yamashita, Y; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A
2012-04-27
We report a measurement of the CP-violation parameter sin2φ1 at the Υ(5S) resonance using a new tagging method, called "B-π tagging." In Υ(5S) decays containing a neutral B meson, a charged B, and a charged pion, the neutral B is reconstructed in the J/ψK(S)(0) CP-eigenstate decay channel. The initial flavor of the neutral B meson at the moment of the Υ(5S) decay is opposite to that of the charged B and may thus be inferred from the charge of the pion without reconstructing the charged B. From the asymmetry between B-π(+) and B-π(-) tagged J/ψK(S)(0) yields, we determine sin2φ1=0.57±0.58(stat)±0.06(syst). The results are based on 121 fb(-1) of data recorded by the Belle detector at the KEKB e(+)e(-) collider.
Indian Academy of Sciences (India)
S Dev; Jyoti Dhar Sharma; U C Pandey; S P Sud; B C Chauhan
2003-07-01
Resonant spin-ﬂavor precession (RSFP) scenario with twisting solar magnetic ﬁelds has been confronted with the solar neutrino data from various ongoing experiments. The anticorrelation apparent in the Homestake solar neutrino data has been taken seriously to constrain ( 2,') parameter space and the twisting proﬁles of the magnetic ﬁeld in the convective zone of the Sun. The twisting proﬁles, thus derived, have been used to calculate the variation of the neutrino detection rates with the solar magnetic activity for the Homestake, Super-Kamiokande and the gallium experiments. It is found that the presence of twisting reduces the degree of anticorrelation in all the solar neutrino experiments. However, the anticorrelation in the Homestake experiment is expected to be more pronounced in this scenario. Moreover, the anticorrelation of the solar neutrino ﬂux emerging from the southern solar hemisphere is expected to be stronger than that for the neutrinos emerging from the northern solar hemispheres.
Average Annual Precipitation (PRISM model) 1961 - 1990
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1961-1990. Parameter-elevation...
Controlling Parametric Resonance
DEFF Research Database (Denmark)
Galeazzi, Roberto; Pettersen, Kristin Ytterstad
2012-01-01
Parametric resonance is a resonant phenomenon which takes place in systems characterized by periodic variations of some parameters. While seen as a threatening condition, whose onset can drive a system into instability, this chapter advocates that parametric resonance may become an advantage if t...
Negative Average Preference Utilitarianism
Directory of Open Access Journals (Sweden)
Roger Chao
2012-03-01
Full Text Available For many philosophers working in the area of Population Ethics, it seems that either they have to confront the Repugnant Conclusion (where they are forced to the conclusion of creating massive amounts of lives barely worth living, or they have to confront the Non-Identity Problem (where no one is seemingly harmed as their existence is dependent on the “harmful” event that took place. To them it seems there is no escape, they either have to face one problem or the other. However, there is a way around this, allowing us to escape the Repugnant Conclusion, by using what I will call Negative Average Preference Utilitarianism (NAPU – which though similar to anti-frustrationism, has some important differences in practice. Current “positive” forms of utilitarianism have struggled to deal with the Repugnant Conclusion, as their theory actually entails this conclusion; however, it seems that a form of Negative Average Preference Utilitarianism (NAPU easily escapes this dilemma (it never even arises within it.
Resonant interactions of perturbations in MHD flows
Energy Technology Data Exchange (ETDEWEB)
Sagalakov, A.M.; Shtern, V.N.
1977-01-17
The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.
Wang, Yong; Goh, Wang Ling; Chai, Kevin T-C; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu
2016-04-01
The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators.
Updated Chinese Evaluated Nuclear Parameter Library (CENPL - 2)
Institute of Scientific and Technical Information of China (English)
2002-01-01
In nuclear model calculations, besides the need of advanced theoretical models, a large volume ofprecise nuclear basic data and reliable nuclear model parameters are also very important. Therefore theChinese Evaluated Nuclear Parameter Library (CENPL) for the model calculations of nuclear reactionswas developed in the past ten years. The CENPL include (1) atomic masses and deformations (AMD);(2)discrete level schemes (DLS); (3) average neutron resonance parameters (ARP); (4) level density
Averaged Lema\\^itre-Tolman-Bondi dynamics
Isidro, Eddy G Chirinos; Piattella, Oliver F; Zimdahl, Winfried
2016-01-01
We consider cosmological backreaction effects in Buchert's averaging formalism on the basis of an explicit solution of the Lema\\^itre-Tolman-Bondi (LTB) dynamics which is linear in the LTB curvature parameter and has an inhomogeneous bang time. The volume Hubble rate is found in terms of the volume scale factor which represents a derivation of the simplest phenomenological solution of Buchert's equations in which the fractional densities corresponding to average curvature and kinematic backreaction are explicitly determined by the parameters of the underlying LTB solution at the boundary of the averaging volume. This configuration represents an exactly solvable toy model but it does not adequately describe our "real" Universe.
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)
2012-04-01
Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and
Resonance and Fractal Geometry
Broer, Henk W.
2012-01-01
The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena oc
Energy Technology Data Exchange (ETDEWEB)
Derrien, H
2004-05-27
Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.
Institute of Scientific and Technical Information of China (English)
董小闵; 王小龙; 古晓科
2014-01-01
The output damping force of a magneto-rheological (MR)damper is reduced with increase in working temperature.As a result,the performance of a MR suspension system is degraded.On the basis of the theory of heat transfer and nonlinear vibration,the main resonance of a MR suspension dynamic system with slowly varying parameters was analyzed here.The energy differential equations at the working area of the MR damper were established and solved with the numerical method.The modified Bingham model was applied to calculate the output damping force of the MR damper.The nonlinear dynamic equation of the MR suspension system with slowly varying parameters was formulated.The steady amplitude response of the MR suspension system under the excitation of main resonance was solved with the averaging method.The calculated results showed that the working temperature rises with increase in running time of the MR damper,consequently,the output damping force of the MR damper decreases significantly and the vibration amplitude variation of the suspension system increases,the performance of the MR suspension system is degraded.%针对磁流变阻尼器随工作温度变化导致阻尼力发生改变，进而降低磁流变悬架系统性能的问题，基于传热学方程和参数慢变非线性振动理论研究温度变化对磁流变非线性悬架系统的主共振动力学行为的影响。根据传热学理论建立磁流变阻尼器工作区域能量微分方程，用数值方法求出温度变化规律，用改进的Bingham模型计算磁流变阻尼力；建立慢变参数磁流变非线性悬架系统动力学方程，利用平均法求解主共振激励下的悬架动行程的稳态幅值响应。研究表明：随着运行时间增加，磁流变阻尼器的温度逐渐升高，导致磁流变阻尼力大幅降低，悬架动行程稳态振幅及其变化量越大，从而使得悬架系统的性能偏离设计目标。
High Average Power Yb:YAG Laser
Energy Technology Data Exchange (ETDEWEB)
Zapata, L E; Beach, R J; Payne, S A
2001-05-23
We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.
Hoshino, Masamitsu; Ishijima, Yohei; Kato, Hidetoshi; Mogi, Daisuke; Takahashi, Yoshinao; Fukae, Katsuya; Limão-Vieira, Paulo; Tanaka, Hiroshi; Shimamura, Isao
2016-04-01
Inelastic and superelastic electron-impact vibrational excitation functions of hot carbonyl sulphide COS (and hot CO2) are measured for electron energies from 0.5 to 3.0 eV (1.5 to 6.0 eV) and at a scattering angle of 90°. Based on the vibrational populations and the principle of detailed balance, these excitation functions are decomposed into contributions from state-to-state vibrational transitions involving up to the second bending overtone (030) in the electronically ground state. Both the 2Π resonance for COS around 1.2 eV and the 2Πu resonance for CO2 around 3.8 eV are shifted to lower energies as the initial vibrational state is excited in the bending mode. The width of the resonance hump for COS changes only little as the molecule bends, whereas that of the overall boomerang resonance for CO2 becomes narrower. The angular distribution of the electrons resonantly scattered by hot COS and hot CO2 is also measured. The different shapes depending on the vibrational transitions and gas temperatures are discussed in terms of the symmetry of the vibrational wave functions. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Energy Technology Data Exchange (ETDEWEB)
Monroy Anton, J. L.; Solar Tortosa, M.; Lopez Munoz, M.; Navarro Bergada, A.; Estornell Gualde, M. A.; Melchor Iniguez, M.
2013-07-01
Our objective was to evaluate the V20 parameters and dose average compared to a single lung volume designed with a CT study in normal breathing of the patient and the corresponding to a lung volume composed, designed from three studies of CT in different phases of the respiratory cycle. Check if there are important differences in these cases that determine the necessity of creating a composite lung volume to evaluate dose volume histogram. (Author)
Formalism for neutron cross section covariances in the resonance region using kernel approximation
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.
2010-04-09
We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).
Bayesian Averaging is Well-Temperated
DEFF Research Database (Denmark)
Hansen, Lars Kai
2000-01-01
Bayesian predictions are stochastic just like predictions of any other inference scheme that generalize from a finite sample. While a simple variational argument shows that Bayes averaging is generalization optimal given that the prior matches the teacher parameter distribution the situation...
Physical Theories with Average Symmetry
Alamino, Roberto C.
2013-01-01
This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...
Average Convexity in Communication Situations
Slikker, M.
1998-01-01
In this paper we study inheritance properties of average convexity in communication situations. We show that the underlying graph ensures that the graphrestricted game originating from an average convex game is average convex if and only if every subgraph associated with a component of the underlyin
Sampling Based Average Classifier Fusion
Directory of Open Access Journals (Sweden)
Jian Hou
2014-01-01
fusion algorithms have been proposed in literature, average fusion is almost always selected as the baseline for comparison. Little is done on exploring the potential of average fusion and proposing a better baseline. In this paper we empirically investigate the behavior of soft labels and classifiers in average fusion. As a result, we find that; by proper sampling of soft labels and classifiers, the average fusion performance can be evidently improved. This result presents sampling based average fusion as a better baseline; that is, a newly proposed classifier fusion algorithm should at least perform better than this baseline in order to demonstrate its effectiveness.
Physical Theories with Average Symmetry
Alamino, Roberto C
2013-01-01
This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.
Energy Technology Data Exchange (ETDEWEB)
Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material forschung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: klaus.seemann@imf.fzk.de; Leiste, H.; Klever, Ch. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material forschung I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)
2009-10-15
Ferromagnetic Fe-Co-Hf-N nanocomposite films were investigated concerning their microstructure-dependent frequency behaviour. To modify the composition, the films were deposited by reactive RF magnetron sputtering by using three different 6 in. targets with various Hf fractions. The films were post-annealed up to 600 deg. C in a static magnetic field to induce an in-plane uniaxial anisotropy and to obtain different crystal sizes. Depending on the annealing temperature, high-frequency losses were investigated by considering the full-width at half-maximum (FWHM) {delta}f{sub eff} of the imaginary part of the frequency-dependent permeability which showed a resonance frequency f{sub FMR} of 2.3 GHz for an in-plane uniaxial anisotropy field H{sub u} of 4 mT. The FWHM in correlation with the damping parameter {alpha}{sub eff} is discussed, e.g., in terms of two-magnon scattering. Damping occurs due to film inhomogeneity in magnetisation and uniaxial anisotropy caused by a magnetocrystalline anisotropy H{sub a} and/or non-magnetic phases. This will result in homogenous or even inhomogeneous resonance line broadening if additional and resonance as well as precession frequencies of independent grains arise.
Institute of Scientific and Technical Information of China (English)
张瑞军; 司鑫鑫; 杨围围; 董明晓
2015-01-01
针对高速电梯轿厢系统制造安装过程中误差使系统设计参数具有随机性问题，以实现轿厢系统共振可靠性灵敏度分析为目标，基于摄动技术导出轿厢系统固有频率与随机参数间关系式，分析参数随机性对固有频率影响；据振动稳定性准则构建基于激振频率变化的高速电梯轿厢系统共振失效功能函数，采用灵敏度技术导出轿厢系统共振可靠性灵敏度表达式，并进行灵敏度分析。结果表明，考虑参数随机性时轿厢系统固有频率存在分散性；取相同变异系数时导靴系统刚度及导轮安装位置对轿厢系统共振可靠性影响较大。该结果可为高速电梯轿厢系统防共振设计、安全评估提供参考。%The errors in the process of manufacture and installation for a high-speed elevator cabin system made design parameters of the system posses randomness.To realize the analysis of resonance reliability sensitivity for the high-speed elevator cabin system,the relationship expressions between the natural frequencies of the system and the random parameters were derived with the perturbation technique to analyze the influence of the parametric randomness on the natural frequencies.According to the stability criterion of vibration for mechanical systems,the performance function of the resonance failure based on the variation of the exciting frequency for the system was built.Utilizing the sensitivity technique,the expressions of the resonance reliability sensitivity of the system were deduced to analyze the sensitivity.The results showed that the natural frequencies of the system have dispersibility considering the parametric randomness;the guide shoe stiffness and guide wheel mounting position have greater effects on the resonance reliability of the system with the same exciting frequency variation coefficient.The results provided a reference for anti-resonance design and safety assessment of high-speed elevator
Quantized average consensus with delay
Jafarian, Matin; De Persis, Claudio
2012-01-01
Average consensus problem is a special case of cooperative control in which the agents of the network asymptotically converge to the average state (i.e., position) of the network by transferring information via a communication topology. One of the issues of the large scale networks is the cost of co
Indian Academy of Sciences (India)
Wu Xiao-Xuan; Fang Wang; Feng Wen-Lin; Zheng Wen-Chen
2009-03-01
The EPR parameters ( factors ∥, ⊥ and zero-field splitting ) of Mn4+ ion in h-BaTiO3 crystal are calculated from the complete high-order perturbation formulas based on a two-mechanism model for the EPR parameters of 33 ions in trigonal symmetry. In the model, not only the widely used crystal-field mechanism, but also the charge-transfer mechanism (which is not considered in crystal-field theory) are included. The calculated results are in reasonable agreement with the experimental values. The relative importance of charge-transfer mechanism to EPR parameters and the defect structure of Mn4+ centre in h-BaTiO3 crystal obtained from the calculations are discussed.
Nanofibrous Resonant Membrane for Acoustic Applications
Directory of Open Access Journals (Sweden)
K. Kalinová
2011-01-01
Full Text Available Because the absorption of lower-frequency sound is problematic with fibrous material made up of coarser fibers, highly efficient sound absorption materials must be developed. The focus of this paper is on the development of a new material with high acoustic absorption characteristics. For low-frequency absorption, structures based upon the resonance principle of nanofibrous layers are employed in which the resonance of some elements allows acoustic energy to be converted into thermal energy. A nanofibrous membrane was produced by an electrostatic spinning process from an aqueous solution of polyvinyl alcohol and the acoustic characteristics of the material measured. The resonant frequency prediction for the nanofibrous membrane is based on research into its production parameters. The distance between electrodes during the electrostatic spinning process determines the average diameter of the nanofibers, and the outlet velocity of the material determines its area density. The average diameter of nanofibers was measured using the Lucia software package directly from an electron microscope image. The resonant frequency of nanofibrous membranes was determined from the sound absorption coefficient and transmission loss measurement.
Cong, Jiawei; Yun, Binfeng; Cui, Yiping
2013-08-26
By introducing the frequency tuning sensitivity, an analytical model based on equivalent LC circuit is developed for the relative frequency tuning range of THz semiconductor split-ring resonator (SRR). And the model reveals that the relative tuning range is determined by the ratio of the kinetic inductance to the geometric inductance (RKG). The results show that under the same carrier density variation, a larger RKG results in a larger relative tuning range. Based on this model, a stacked SRR-dimer structure with larger RKG compared to the single SRR due to the inductive coupling is proposed, which improves the relative tuning range effectively. And the results obtained by the simple analytical model agree well with the numerical FDTD results. The presented analytical model is robust and can be used to analyze the relative frequency tuning of other tunable THz devices.
Averaging in Parametrically Excited Systems – A State Space Formulation
Directory of Open Access Journals (Sweden)
Pfau Bastian
2016-01-01
Full Text Available Parametric excitation can lead to instabilities as well as to an improved stability behavior, depending on whether a parametric resonance or anti-resonance is induced. In order to calculate the stability domains and boundaries, the method of averaging is applied. The problem is reformulated in state space representation, which allows a general handling of the averaging method especially for systems with non-symmetric system matrices. It is highlighted that this approach can enhance the first order approximation significantly. Two example systems are investigated: a generic mechanical system and a flexible rotor in journal bearings with adjustable geometry.
Model averaging and muddled multimodel inferences.
Cade, Brian S
2015-09-01
Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the t
Model averaging and muddled multimodel inferences
Cade, Brian S.
2015-01-01
Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the
Adak, Rama Prasad; Ghosh, Sanjay K; Ray, Rajarshi; Samanta, Subhasis
2016-01-01
We extract chemical freeze-out parameters in HRG and EVHRG model, analysing the experimental information of net-proton and net-charge fluctuations measured in Au + Au collisions by the STAR collaboration at RHIC. We observe that chemical freeze-out parameters extracted from lower and higher order fluctuations are though almost same for $\\sqrt{s_{NN}} > 27$ GeV, they tend to deviate from each other at lower $\\sqrt{s_{NN}}$. Moreover, these separations increase with decrease of $\\sqrt{s_{NN}}$ and for a fixed $\\sqrt{s_{NN}}$ increase towards central collisions. This may be an indication of approach of critical region at lower $\\sqrt{s_{NN}}$. Furthermore, we observe an approximate scaling behaviour of $(\\mu_B/T)/(\\mu_B/T)_{central}$ with $(N_{part})/(N_{part})_{central}$ for the parameters extracted from lower order fluctuations for 11.5 GeV $\\le \\sqrt{s_{NN}} \\le$ 200 GeV. Scaling is violated for the parameters extracted from higher order fluctuations for $\\sqrt{s_{NN}}= 11.5$ and 19.6 GeV. It is observed that...
Gaussian moving averages and semimartingales
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas
2008-01-01
In the present paper we study moving averages (also known as stochastic convolutions) driven by a Wiener process and with a deterministic kernel. Necessary and sufficient conditions on the kernel are provided for the moving average to be a semimartingale in its natural filtration. Our results...... are constructive - meaning that they provide a simple method to obtain kernels for which the moving average is a semimartingale or a Wiener process. Several examples are considered. In the last part of the paper we study general Gaussian processes with stationary increments. We provide necessary and sufficient...
Indian Academy of Sciences (India)
Q Fu; S Y Wu; J Z Lin; J S Yao
2007-03-01
The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic factors) for a 3d5 (with high spin = 5/2) and a 4d5 (with low spin = 1/2) ion in trigonal symmetry, respectively. According to the investigations, the nd5 ( = 3 and 4) impurity ions may not locate at the ideal Al3+ site but undergo axial displacements by about 0.132 Å and 0.170 Å for Fe3+ and Ru3+, respectively, away from the center of the ligand octahedron along the C3 axis. The calculated spin Hamiltonian parameters based on the above axial displacements show good agreement with the observed values. The validity of the results is discussed.
Average life of oxygen vacancies of quartz in sediments
Institute of Scientific and Technical Information of China (English)
DIAO; Shaobo(刁少波); YE; Yuguang(业渝光)
2002-01-01
Average life of oxygen vacancies of quartz in sediments is estimated by using the ESR (electron spin resonance) signals of E( centers from the thermal activation technique. The experimental results show that the second-order kinetics equation is more applicable to the life estimation compared with the first order equation. The average life of oxygen vacancies of quartz from 4895 to 4908 deep sediments in the Tarim Basin is about 1018 a at 27℃.
Vibration-induced displacement using high-frequency resonators and friction layers
DEFF Research Database (Denmark)
Thomsen, Jon Juel
1998-01-01
A mathematical model is set up to quantify vibration-induced motions of a slider with an imbedded resonator. A simple approximate expression is presented for predicting average velocities of the slider, agreeing fairly well with numerical integration of the full equations of motion. The simple...... expression can be used to the estimate influence of system parameters, and to plan and interpret laboratory experiments....
Energy Technology Data Exchange (ETDEWEB)
Soares, T. A. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Daura, X. [Universitat Autonoma de Barcelona, InstitucioCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i Biomedicina (Spain); Oostenbrink, C. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Smith, L. J. [University of Oxford, Oxford Centre for Molecular Sciences, Central Chemistry Laboratory (United Kingdom); Gunsteren, W. F. van [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland)], E-mail: wfvgn@igc.phys.chem.ethz.ch
2004-12-15
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, {sup 3}J{sub NH{alpha}} and {sup 3}J{sub {alpha}}{sub {beta}} coupling constants, and {sup 1}5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone {sup 3}J{sub HN{alpha}}-coupling constants and {sup 1}H- {sup 1}5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain {sup 3}J{sub {alpha}}{sub {beta}}-coupling constants and {sup 1}H- {sup 1}5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the
Vocal attractiveness increases by averaging.
Bruckert, Laetitia; Bestelmeyer, Patricia; Latinus, Marianne; Rouger, Julien; Charest, Ian; Rousselet, Guillaume A; Kawahara, Hideki; Belin, Pascal
2010-01-26
Vocal attractiveness has a profound influence on listeners-a bias known as the "what sounds beautiful is good" vocal attractiveness stereotype [1]-with tangible impact on a voice owner's success at mating, job applications, and/or elections. The prevailing view holds that attractive voices are those that signal desirable attributes in a potential mate [2-4]-e.g., lower pitch in male voices. However, this account does not explain our preferences in more general social contexts in which voices of both genders are evaluated. Here we show that averaging voices via auditory morphing [5] results in more attractive voices, irrespective of the speaker's or listener's gender. Moreover, we show that this phenomenon is largely explained by two independent by-products of averaging: a smoother voice texture (reduced aperiodicities) and a greater similarity in pitch and timbre with the average of all voices (reduced "distance to mean"). These results provide the first evidence for a phenomenon of vocal attractiveness increases by averaging, analogous to a well-established effect of facial averaging [6, 7]. They highlight prototype-based coding [8] as a central feature of voice perception, emphasizing the similarity in the mechanisms of face and voice perception.
Energy Technology Data Exchange (ETDEWEB)
Valentini, Anna Lia, E-mail: alvalentini@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Gui, Benedetta, E-mail: bgui@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Cina, Alessandro, E-mail: acina@sirm.org [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Pinto, Francesco, E-mail: francesco.pinto@libero.it [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Totaro, Angelo, E-mail: dr.atotaro@gmail.com [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Pierconti, Francesco, E-mail: francescopierconti@rm.unicatt.it [Department of Pathology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Bassi, Pier Francesco, E-mail: bassipf@gmail.com [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Bonomo, Lorenzo, E-mail: lbonomo@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy)
2012-11-15
Background and aims: Dynamic contrast enhanced magnetic resonance improves prostate cancer detection. The aims of this paper are to verify whether wash-in-rate parameter (speed of contrast uptake in dynamic contrast enhanced magnetic resonance) can help to differentiate prostate cancer from non-neoplastic T2-weighted hypointense lesions within prostate gland and to assess a cut-off for prostate cancer diagnosis. Methods: Prospective, monocentric, multi-departmental study. Thirty consecutive patients underwent T2-weighted and dynamic contrast enhanced magnetic resonance, and re-biopsy. T2-weighted hypointense lesions, >5 mm in size, were noted. Lesions were assessed as cancerous (showing mass effect, or no defined margin within transitional zone) and non cancerous (no mass effect) and were compared with histopathology by 2 Multiplication-Sign 2 tables. Wash-in-rate of each lesion was calculated and was correlated with histopathology. Student's t-test was adopted to assess significant differences. Receiver operating characteristic (ROC) analysis was employed to identify the best cut-off for wash-in-rate in detecting prostate cancer. Results: At re-biopsy, cancer was proven in 43% of patients. On T2-weighted MRI, 111 hypointense lesions {>=}5 mm in size were found. Sensitivity, specificity and accuracy of T2-weighted MRI were 80% ({+-}12.4 CI 95%), 74.6% ({+-}10.1 CI 95%), and 76.5% ({+-}7.9 CI 95%), respectively. Mean WR was 5.8 {+-} 1.9/s for PCa zones and 2.96 {+-} 1.44/s for non-PCa zones (p < 0.00000001). At ROC analysis, the best area under curve (AUC) for wash-in-rate parameter was associated to 4.2/s threshold with 82.5% sensitivity (CI {+-} 7.07), 97.2% specificity (CI {+-} 4.99) and 91.2% accuracy (CI {+-} 5.27). Eighteen false positive lesions on T2-weighted MRI showed low wash-in-rate values suggesting non-cancer lesions, while in 5/8 false negative cases high wash-in-rate values correctly suggested prostate cancer. Nine lesions with surgically proven
A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter
Tsai, Fu-Sheng; Lee, Fred C.
1988-01-01
The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.
Mirzaei, Mahmoud; Elmi, Fatemeh; Hadipour, Nasser L
2006-06-08
A systematic computational study was carried out to characterize the 17O, 14N, and 2H nuclear quadrupole resonance (NQR) parameters in the anhydrous and monohydrated cytosine crystalline structures. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the central molecule in the crystalline phase were considered in the pentameric clusters of both structures. To calculate the parameters, couples of the methods B3LYP and B3PW91 and the basis sets 6-311++G** and CC-pVTZ were employed. The mentioned methods calculated reliable values of 17O, 14N, and 2H NQR tensors in the pentameric clusters, which are in good agreements with the experiment. The different influences of various hydrogen-bonding interactions types, N-H...N, N-H...O, and O-H...O, were observed on the 17O, 14N, and 2H NQR tensors. Lower values of quadrupole coupling constants and higher values of asymmetry parameters in the crystalline monohydrated cytosine indicate the presence of stronger hydrogen-bonding interactions in the monohydrated form rather than that of crystalline anhydrous cytosine.
Averaged Electroencephalic Audiometry in Infants
Lentz, William E.; McCandless, Geary A.
1971-01-01
Normal, preterm, and high-risk infants were tested at 1, 3, 6, and 12 months of age using averaged electroencephalic audiometry (AEA) to determine the usefulness of AEA as a measurement technique for assessing auditory acuity in infants, and to delineate some of the procedural and technical problems often encountered. (KW)
Ergodic averages via dominating processes
DEFF Research Database (Denmark)
Møller, Jesper; Mengersen, Kerrie
2006-01-01
We show how the mean of a monotone function (defined on a state space equipped with a partial ordering) can be estimated, using ergodic averages calculated from upper and lower dominating processes of a stationary irreducible Markov chain. In particular, we do not need to simulate the stationary ...
Directory of Open Access Journals (Sweden)
Pelaez J. R.
2012-12-01
Full Text Available The long-standing puzzle in the parameters of the f0(500, as well as the f0(980, is finally being settled [1] thanks to precise dispersive analyses carried out during the last years. Here we report on our very recent dispersive data analysis which allowed for a precise and model independent determination of the amplitudes for the S, P, D and F waves [2–4]. The analytic continuation of once subtracted dispersion relations for the S0 wave to the complex energy plane leads to very precise results for the f0(500 pole: √spole = 457-13+14 - i279-7+11 MeV and for the f0(980 pole: √spole = 996 ± 7 - i25-6+10 MeV.
Stochastic resonance in Gaussian quantum channels
Lupo, Cosmo; Wilde, Mark M
2011-01-01
We determine conditions for the presence of stochastic resonance in a lossy bosonic channel with a nonlinear, threshold decoding. The stochastic resonance noise benefit occurs if and only if the detection threshold is outside of a "forbidden interval." We show how noise benefits can occur in different settings: when transmitting classical messages through a lossy bosonic channel, when transmitting over an entanglement-assisted lossy bosonic channel, and when discriminating channels with different loss parameters. Moreover, we consider a setting in which noise can benefit the faithful transmission of a qubit over a lossy bosonic channel with a particular encoding and decoding. In the latter case, we measure noise benefits in terms of the average channel fidelity and the entanglement preserved between a reference system and the channel output. In all cases, we assume Gaussian noise, allowing us to improve upon the forbidden-interval conditions found in earlier work.
Institute of Scientific and Technical Information of China (English)
石新智; 祁昶; 屈美玲; 叶双莉; 王高峰
2014-01-01
基于磁共振的无线能量传输技术应用环境复杂多变，很难保证收、发线圈的参数和结构保持一致。本文针对发射模块参数不变的情况，研究了接收模块线圈半径、线径、线圈匝数和线圈长度变化对电感、电阻、品质因数、互感、耦合系数和传输效率的影响。理论计算与 Pspice仿真均表明，线圈半径的变化对系统传输效率的影响最大，系统传输效率随着线圈半径的增大而增大，但当接收模块的线圈半径小于发射模块线圈半径的50%时，系统的传输效率迅速降低；增大线圈长度对系统的传输效率影响相对较大，增大线圈长度使系统传输效率先减小后增大；导线半径和线圈匝数的变化对传输效率的影响最小，系统传输效率随着它们的增大而略微增大。%Wireless energy transfer system based on magnetic resonance can be applied in different situations. It is hard to make the structure and parameters of the receiver consistent with the transmitter. The impact of receiver parameters, including coils radius, conductor cross-sectional radius, number of turns, and height of coil on the inductance, resistance, quality factor, mutual inductance, coupling coefficient and transfer efficiency of wireless energy transfer systems based on magnetic resonance are studied with parameters of the transmitter are fixed, respectively. Theory calculations and PSPICE simulation indicate that the power transfer efficiency will increase with the increasing of receiver coils radius, conductor cross-sectional radius, number of turns, and height of receiving coil. The effect of radius of receiver is more significant than other parameters. The transfer efficiency will increase notable with the increasing of radius of receiver coils, while increasing slightly with the increasing of conductor cross-sectional radius, number of turns, and height of receiving coil.
Cobb, Jonathan Lynn
The fact that there is no consensus on the microscopic origin of the high-temperature superconducting phenomenon highlights the need for accurate measurements of the parameters which characterize the superconducting state (i.e., the coherence lengths (Ginzburg-Landau), penetration depths, and critical fields) and their anisotropies in these materials. This dissertation presents the first dc magnetization measurements of these parameters in the electron-doped, infinite-layer superconductor rm Sr_{0.90}La _{0.10}CuO_2 (T _{c} = 40 K). This material is particularly attractive for study because of its simple structure which contains nothing more than the features common to all of the high temperature superconducting copper oxides--a stacking of CuO_2 planes separated by (here, single) ion charge doping layers. From these measurements, xi_{| }(0) (xi_|(0))=46 A (30 A), lambda _{|}(0) (lambda_ |(0))=290 nm (450 nm), and H_{c2|}(0) (H _{c2|}(0))=23.8 T (15.5 T) where | and | are with respect to the CuO_2 planes. The ratio of H_ {c2}'s indicates that rm Sr_{0.90}La_{0.10}CuO _2 is much more isotropic than the other cuprates ((m_{c}/m_{ab })^{1/2}~1.5), and one of the samples measured even displayed a surprising anisotropy of less than one. In light of this surprising inverse anisotropy, the first systematic study of the effects of sample inhomogeneities on these reversible dc magnetization measurements was performed. rm YBa_2Cu_3O_{7 -delta} was used in this study because it can be doped either randomly or uniformly, allowing isolation of the artifacts of the measurement technique due to the random nature of the doping alone. This study demonstrates that neglecting the distribution of superconducting transition temperatures which come from the random doping in this type of analysis leads to errors in the measured parameters of up to 1000%. Efforts to measure the distribution of T_{c}'s and to use this distribution in the analysis have produced mixed results, with the most
Energy Technology Data Exchange (ETDEWEB)
Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)
2016-05-15
The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)
Dependability in Aggregation by Averaging
Jesus, Paulo; Almeida, Paulo Sérgio
2010-01-01
Aggregation is an important building block of modern distributed applications, allowing the determination of meaningful properties (e.g. network size, total storage capacity, average load, majorities, etc.) that are used to direct the execution of the system. However, the majority of the existing aggregation algorithms exhibit relevant dependability issues, when prospecting their use in real application environments. In this paper, we reveal some dependability issues of aggregation algorithms based on iterative averaging techniques, giving some directions to solve them. This class of algorithms is considered robust (when compared to common tree-based approaches), being independent from the used routing topology and providing an aggregation result at all nodes. However, their robustness is strongly challenged and their correctness often compromised, when changing the assumptions of their working environment to more realistic ones. The correctness of this class of algorithms relies on the maintenance of a funda...
High average power supercontinuum sources
Indian Academy of Sciences (India)
J C Travers
2010-11-01
The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium. The most common experimental arrangements are described, including both continuous wave fibre laser systems with over 100 W pump power, and picosecond mode-locked, master oscillator power fibre amplifier systems, with over 10 kW peak pump power. These systems can produce broadband supercontinua with over 50 and 1 mW/nm average spectral power, respectively. Techniques for numerical modelling of the supercontinuum sources are presented and used to illustrate some supercontinuum dynamics. Some recent experimental results are presented.
Measuring Complexity through Average Symmetry
Alamino, Roberto C.
2015-01-01
This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalised, including to continuous cases an...
Split ring resonator resonance assisted terahertz antennas
Galal, Hossam; Vitiello, Miriam S
2016-01-01
We report on the computational development of novel architectures of low impedance broadband antennas, for efficient detection of Terahertz (THz) frequency beams. The conceived Split Ring Resonator Resonance Assisted (SRR RA) antennas are based on both a capacitive and inductive scheme, exploiting a 200 Ohm and 400 Ohm impedance, respectively. Moreover, the impedance is tunable by varying the coupling parameters in the exploited geometry, allowing for better matching with the detector circuit for maximum power extraction. Our simulation results have been obtained by assuming a 1.5 THz operation frequency.
Phase-averaged transport for quasiperiodic Hamiltonians
Bellissard, J; Schulz-Baldes, H
2002-01-01
For a class of discrete quasi-periodic Schroedinger operators defined by covariant re- presentations of the rotation algebra, a lower bound on phase-averaged transport in terms of the multifractal dimensions of the density of states is proven. This result is established under a Diophantine condition on the incommensuration parameter. The relevant class of operators is distinguished by invariance with respect to symmetry automorphisms of the rotation algebra. It includes the critical Harper (almost-Mathieu) operator. As a by-product, a new solution of the frame problem associated with Weyl-Heisenberg-Gabor lattices of coherent states is given.
United States Average Annual Precipitation, 1995-1999 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1995-1999. Parameter-elevation...
United States Average Annual Precipitation, 2005-2009 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 2005-2009. Parameter-elevation...
United States Average Annual Precipitation, 1990-1994 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1990-1994. Parameter-elevation...
United States Average Annual Precipitation, 2000-2004 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 2000-2004. Parameter-elevation...
The Partial Averaging of Fuzzy Differential Inclusions on Finite Interval
Directory of Open Access Journals (Sweden)
Andrej V. Plotnikov
2014-01-01
Full Text Available The substantiation of a possibility of application of partial averaging method on finite interval for differential inclusions with the fuzzy right-hand side with a small parameter is considered.
United States Average Annual Precipitation, 1990-2009 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1990-2009. Parameter-elevation...
United States Average Annual Precipitation, 1961-1990 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1961-1990. Parameter-elevation...
PRACTICAL METHOD FOR ESTIMATING NEUTRON CROSS SECTION COVARIANCES IN THE RESONANCE REGION
Energy Technology Data Exchange (ETDEWEB)
Cho, Y.S.; Oblozinsky, P.; Mughabghab,S.F.; Mattoon,C.M.; Herman,M.
2010-04-30
Recent evaluations of neutron cross section covariances in the resolved resonance region reveal the need for further research in this area. Major issues include declining uncertainties in multigroup representations and proper treatment of scattering radius uncertainty. To address these issues, the present work introduces a practical method based on kernel approximation using resonance parameter uncertainties from the Atlas of Neutron Resonances. Analytical expressions derived for average cross sections in broader energy bins along with their sensitivities provide transparent tool for determining cross section uncertainties. The role of resonance-resonance and bin-bin correlations is specifically studied. As an example we apply this approach to estimate (n,{gamma}) and (n,el) covariances for the structural material {sup 55}Mn.
A statistical model for combustion resonance from a DI diesel engine with applications
Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.
2015-08-01
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Average Likelihood Methods for Code Division Multiple Access (CDMA)
2014-05-01
AVERAGE LIKELIHOOD METHODS FOR CODE DIVISION MULTIPLE ACCESS ( CDMA ) MAY 2014 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...REPORT 3. DATES COVERED (From - To) OCT 2011 – OCT 2013 4. TITLE AND SUBTITLE AVERAGE LIKELIHOOD METHODS FOR CODE DIVISION MULTIPLE ACCESS ( CDMA ) 5a...precision parameter from the joint probability of the code matrix. For a full loaded CDMA signal, the average likelihood depends exclusively on feature
Average radiation widths of levels in natural xenon isotopes
Energy Technology Data Exchange (ETDEWEB)
Noguere, G., E-mail: gilles.noguere@cea.fr [CEA, DEN, Cadarache, F-13108 Saint Paul les Durance (France); Litaize, O.; Archier, P.; De Saint Jean, C. [CEA, DEN, Cadarache, F-13108 Saint Paul les Durance (France); Mutti, P. [Institut Laue-Langevin, F-38042 Grenoble (France)
2011-11-15
Average radiation widths <{Gamma}{sub {gamma}>} for the stable xenon isotopes have been estimated using neutron resonance spectroscopic information deduced from high-resolution capture and transmission data measured at the electron linear accelerator GELINA of the Institute for Reference Materials and Measurements (IRMM) in Geel, Belgium. The combination of conventional Neutron Resonance Shape Analysis techniques (NRSA) with high-energy model calculations in a simple Bayesian learning method permit to calculate a consistent local systematic in the xenon's mass region (Z=54) from A=124 to A=136.
Geomagnetic effects on the average surface temperature
Ballatore, P.
Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.
Switching Characteristics and Analysis of Resonant Tunneling Diodes
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Resonant tunneling diode (RTD) of AlAs/InGaAs/AlAs double barrier-single well structure was designed and fabricated. The devices showed current-voltage characteristics with peak-valley current ratio of 4: 1 at room temperature. The scattering parameter of RTD was measured by using an HP8510(C) network analyzer. Equivalent circuit parameters were obtained by curve fitting and optimized. The RTD switching time was estimated using the measured capacitance and average negative differential resistance. The minimum rise time of the sample was estimated to be 21 ps.
Nonlinear Oscillations of Microscale Piezoelectric Resonators and Resonator Arrays
2006-06-30
static buckling deflection of the resonator d3E, kI(x) d 3 , k(x) can be expressed as Elt -t = Elk ----- T- at X = Xk-_ Here, it is important to note that...a number of the parameters can resonators clearly reveal nonlinear characteristics. Although b icted by usng the ro rg met ersal the dimensions of
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Simulation of quartz resonators
Weinmann, M.; Radius, R.; Mohr, R.
Quartz resonators are suitable as novel sensor elements in the field of profilometry and three dimensional measurement techniques. This application requires a tailoring of the oscillator circuit which is performed by a network analysis program. The equivalent network parameters are computed by a finite element analysis. The mechanical loading of the quartz is modeled by a viscous damping approach.
DEFF Research Database (Denmark)
2014-01-01
The present invention relates to a method for detecting photo-thermal absorbance of a material utilising a mechanically temperature sensitive resonator (20) and a sample being arrange in thermal communication with the temperature sensitive resonator. The present invention further relates to an ap......The present invention relates to a method for detecting photo-thermal absorbance of a material utilising a mechanically temperature sensitive resonator (20) and a sample being arrange in thermal communication with the temperature sensitive resonator. The present invention further relates...... to an apparatus for detecting photo-thermal absorbance of a sample....
The stability of a zonally averaged thermohaline circulation model
Schmidt, G A
1995-01-01
A combination of analytical and numerical techniques are used to efficiently determine the qualitative and quantitative behaviour of a one-basin zonally averaged thermohaline circulation ocean model. In contrast to earlier studies which use time stepping to find the steady solutions, the steady state equations are first solved directly to obtain the multiple equilibria under identical mixed boundary conditions. This approach is based on the differentiability of the governing equations and especially the convection scheme. A linear stability analysis is then performed, in which the normal modes and corresponding eigenvalues are found for the various equilibrium states. Resonant periodic solutions superimposed on these states are predicted for various types of forcing. The results are used to gain insight into the solutions obtained by Mysak, Stocker and Huang in a previous numerical study in which the eddy diffusivities were varied in a randomly forced one-basin zonally averaged model. Resonant stable oscillat...
Energy Technology Data Exchange (ETDEWEB)
Munoz-Cobos, J.G.
1981-08-01
The Fortran IV code PAPIN has been developed to calculate cross section probability tables, Bondarenko self-shielding factors and average self-indication ratios for non-fissile isotopes, below the inelastic threshold, on the basis of the ENDF/B prescriptions for the unresolved resonance region. Monte-Carlo methods are utilized to generate ladders of resonance parameters in the unresolved resonance region, from average resonance parameters and their appropriate distribution functions. The neutron cross-sections are calculated by the single level Breit-Wigner (SLBW) formalism, with s, p and d-wave contributions. The cross section probability tables are constructed by sampling the Doppler-broadened cross sections. The various self-shielded factors are computed numerically as Lebesgue integrals over the cross section probability tables. The program PAPIN has been validated through extensive comparisons with several deterministic codes.
Mehta, Daryush D; Wolfe, Patrick J
2011-01-01
Vocal tract resonance characteristics in acoustic speech signals are classically tracked using frame-by-frame point estimates of formant frequencies followed by candidate selection and smoothing using dynamic programming methods that minimize ad hoc cost functions. The goal of the current work is to provide both point estimates and associated uncertainties of center frequencies and bandwidths in a statistically principled state-space framework. Extended Kalman (K) algorithms take advantage of a linearized mapping to infer formant and antiformant parameters from frame-based estimates of autoregressive moving average (ARMA) cepstral coefficients. Error analysis of KARMA, WaveSurfer, and Praat is accomplished in the all-pole case using a manually marked formant database and synthesized speech waveforms. KARMA formant tracks exhibit lower overall root-mean-square error relative to the two benchmark algorithms, with third formant tracking more challenging. Antiformant tracking performance of KARMA is illustrated u...
Hedge algorithm and Dual Averaging schemes
Baes, Michel
2011-01-01
We show that the Hedge algorithm, a method that is widely used in Machine Learning, can be interpreted as a particular instance of Dual Averaging schemes, which have recently been introduced by Nesterov for regret minimization. Based on this interpretation, we establish three alternative methods of the Hedge algorithm: one in the form of the original method, but with optimal parameters, one that requires less a priori information, and one that is better adapted to the context of the Hedge algorithm. All our modified methods have convergence results that are better or at least as good as the performance guarantees of the vanilla method. In numerical experiments, our methods significantly outperform the original scheme.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Institute of Scientific and Technical Information of China (English)
蒋平; 王贯义
2009-01-01
The problems of subsynchronous resonance (SSR) damping by single-channels power system stabilizer (PSS) and PSS of parallel configuration are analyzed based on the IEEE SSR first benchmark model and the IEEE ST1A excitation system by means of test signal method. The method of computing the ideal phase compensation characteristic provided by PSS is formed based on the phase lags caused by excitation system and the vector relation of rotate speed bias, electromagnetic power bias and electromagnetic torque bias. The parameters of PSS of parallel configuration are optimized by means of genetic algorithms after the ideal compensation phases being computed at the frequencies which are representative in the low frequency range or near the points of SSR frequencies. With the optimized parameters, simulation and analysis are operated. The results show that the actual compensation phases are closer to the ideal compensation phases at entire frequency range with the optimized parameters of PSS of parallel configuration, and better electrical damping characteristic at entire frequency range are obtained, which is the result of that the possibility of subsynchronous resonance and low frequency oscillation is reduced to the least.%采用测试信号法,基于IEEE次同步谐振第一标准测试系统及IEEE ST1A型励磁系统分析了传统的单通道电力系统稳定器(PSS)及多通道并联结构PSS抑制次同步谐振时存在的问题.根据励磁系统引起的相位滞后特性,结合转速偏差、电磁功率偏差与电磁转矩偏差间的矢量关系给出了PSS需提供的理想相位补偿特性的计算方法.选取低频段和次同步谐振频率点附近具有代表性的频率点,计算其理想相位补偿角,并以此为目标应用遗传算法对并联结构PSS的参数进行优化.利用所得优化结果设置并联结构PSS参数,并进行仿真分析.结果表明,优化参数后并联结构PSS的实际相位补偿特性在全频段跟理想相位
Equivalent Circuit Model for Thick Split Ring Resonators and Thick Spiral Resonators
Mancera, Laura Maria Pulido
2014-01-01
A simple theoretical model which provides circuit parameters and resonance frequency of metallic thick resonators is presented. Two different topologies were studied: the original Pendry's SRR and spiral resonators of two and three turns. Theoretical computations of resonant frequencies are in good agreement with values obtained with a commercial electromagnetic solver. The model could be helpful for designing thick frequency selective surfaces (FSS) based on this types of resonators, so called metasurfaces.
The monthly-averaged and yearly-averaged cosine effect factor of a heliostat field
Energy Technology Data Exchange (ETDEWEB)
Al-Rabghi, O.M.; Elsayed, M.M. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Thermal Engineering)
1992-01-01
Calculations are carried out to determine the dependence of the monthly-averaged and the yearly-averaged daily cosine effect factor on the pertinent parameters. The results are plotted on charts for each month and for the full year. These results cover latitude angles between 0 and 45[sup o]N, for fields with radii up to 50 tower height. In addition, the results are expressed in mathematical correlations to facilitate using them in computer applications. A procedure is outlined to use the present results to preliminary layout the heliostat field, and to predict the rated MW[sub th] reflected by the heliostat field during a period of a month, several months, or a year. (author)
Resonance frequency in ferromagnetic superlattices
Energy Technology Data Exchange (ETDEWEB)
Qiu Rongke; Huang Andong [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Li Da; Zhang Zhidong, E-mail: rkqiu@163.com [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China)
2011-10-19
The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.
A precise measurement of the average b hadron lifetime
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, P; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991-1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 \\pm 0.013 \\pm 0.022 ps.
Institute of Scientific and Technical Information of China (English)
李凤娥
2012-01-01
对磁共振无线电能传输系统的最大传输距离问题进行了电路模型研究,先描述了与最大传输距离密切相关的频率分裂现象,进而定义了频率分裂方程、脊方程、谷方程,随后利用脊方程确定了系统的频率分裂临界点,频率分裂临界点对应的传输距离就是系统的最大传输距离.探讨了系统最大传输距离与系统关键参数的关系.最后,利用文献中已有的实验数据,对上述理论进行了实验验证.%Circuit analysis is employed to investigate the maximum transfer distance problem in magnetic resonance wireless power transmission systems. It is described firstly the frequency splitting phenomena that are closely related to the maximum transfer distance problem. Next, the splitting equation, the ridge equation and the trough equation are defined, and the critical splitting point is found through the ridge equation. The maximum transfer distance is uniquely determined by the critical splitting point, and the relationship between the maximum transfer distance and the key system parameters is elucidated. Finally, above theory is validated by the experimental data from the literature.
Theoretical and experimental investigation of microstrip rhombic resonators
Al-Charchafchi, S. H.; Boulkos, J.
1990-06-01
The resonant behavior of a novel microstrip rhombic resonator is investigated by analyzing an equivalent circuit based on transmission line modeling. Design curves showing the dependence of resonator performance on its parameters, as well as the substrate parameters, are presented. Experiments carried out showed a significant reduction in insertion loss when the rhombic resonator is dielectrically shielded. The resonator could be used as a microwave bandpass filter or a stabilization circuit for microwave oscillators in both hybrid and monolithic integrated circuits.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false On average. 1209.12 Section 1209.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS....12 On average. On average means a rolling average of production or imports during the last two...
Universal formalism of Fano resonance
Energy Technology Data Exchange (ETDEWEB)
Huang, Liang [School of Physical Science and Technology and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000 (China); Lai, Ying-Cheng [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Luo, Hong-Gang [School of Physical Science and Technology and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)
2015-01-15
The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.
Universal formalism of Fano resonance
Directory of Open Access Journals (Sweden)
Liang Huang
2015-01-01
Full Text Available The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset. The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.
Esposito, A.; Pilloni, A.; Polosa, A. D.
2017-01-01
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.
Esposito, A.; Polosa, A.D.
2016-01-01
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.
DEFF Research Database (Denmark)
Hjelholt, Morten; Jensen, Tina Blegind
2015-01-01
IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... of an IT project in a Danish local government spans a two-year time period and demonstrates a double-loop legitimization process. First, resonating statements are produced to localize a national IT initiative to support the specificity of a local government discourse. Second, the resonating statements are used...
Oset, E; Sun, Bao Xi; Vacas, M J Vicente; Ramos, A; Gonzalez, P; Vijande, J; Torres, A Martinez; Khemchandani, K
2009-01-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the $\\Lambda(1405)$ resonance, as well as the prediction of one $1/2^+$ baryon state around 1920 MeV which might have been seen in the $\\gamma p \\to K^+ \\Lambda$ reaction.
Energy Technology Data Exchange (ETDEWEB)
Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Sarkar, S. [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Sun Baoxi [Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, A. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, 08028 Barcelona (Spain); Gonzalez, P. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Vijande, J. [Departamento de Fisica Atomica Molecular y Nuclear and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Martinez Torres, A. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Khemchandani, K. [Centro de Fisica Computacional, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal)
2010-04-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the {lambda}(1405) resonance, as well as the prediction of one 1/2{sup +} baryon state around 1920 MeV which might have been seen in the {gamma}p{yields}K{sup +}{lambda} reaction.
DEFF Research Database (Denmark)
Brooks, Anthony Lewis
2013-01-01
sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....
Genuine non-self-averaging and ultraslow convergence in gelation
Cho, Y. S.; Mazza, M. G.; Kahng, B.; Nagler, J.
2016-08-01
In irreversible aggregation processes droplets or polymers of microscopic size successively coalesce until a large cluster of macroscopic scale forms. This gelation transition is widely believed to be self-averaging, meaning that the order parameter (the relative size of the largest connected cluster) attains well-defined values upon ensemble averaging with no sample-to-sample fluctuations in the thermodynamic limit. Here, we report on anomalous gelation transition types. Depending on the growth rate of the largest clusters, the gelation transition can show very diverse patterns as a function of the control parameter, which includes multiple stochastic discontinuous transitions, genuine non-self-averaging and ultraslow convergence of the transition point. Our framework may be helpful in understanding and controlling gelation.
Rotation Axis Variation Due To Spin Orbit Resonance
Gallavotti, G
1993-01-01
Abstract: rotation axis variation due to spin orbit resonance: conference report; keywords: planetary precession, rigid body, chaos, KAM, Arnold diffusion, averaging, celestial mechanics, classical mechanics, large deviations
Accurate Switched-Voltage voltage averaging circuit
金光, 一幸; 松本, 寛樹
2006-01-01
Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.
Averages of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties as of summer 2016
Energy Technology Data Exchange (ETDEWEB)
Amhis, Y.; et al.
2016-12-21
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, \\CP~violation parameters, parameters of semileptonic decays and CKM matrix elements.
Averages of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties as of summer 2014
Energy Technology Data Exchange (ETDEWEB)
Amhis, Y.; et al.
2014-12-23
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.
Averages of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties as of summer 2016 arXiv
Amhis, Y.; Ben-Haim, E.; Bernlochner, F.; Bozek, A.; Bozzi, C.; Chrząszcz, M.; Dingfelder, J.; Duell, S.; Gersabeck, M.; Gershon, T.; Goldenzweig, P.; Harr, R.; Hayasaka, K.; Hayashii, H.; Kenzie, M.; Kuhr, T.; Leroy, O.; Lusiani, A.; Lyu, X.R.; Miyabayashi, K.; Naik, P.; Nanut, T.; Oyanguren Campos, A.; Patel, M.; Pedrini, D.; Petrič, M.; Rama, M.; Roney, M.; Rotondo, M.; Schneider, O.; Schwanda, C.; Schwartz, A.J.; Serrano, J.; Shwartz, B.; Tesarek, R.; Trabelsi, K.; Urquijo, P.; Van Kooten, R.; Yelton, J.; Zupanc, A.
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, \\CP~violation parameters, parameters of semileptonic decays and CKM matrix elements.
Nonlinear behavior of Helmholtz resonators
Hersh, A. S.
1990-10-01
A semi-empirical fluid mechanical model has been derived to predict the nonlinear acoustic behavior of thin-walled, single-orifice Helmholtz resonators. The model assumed that the sound particle velocity field approaches the resonator in a spherically symmetric manner. The incident and cavity sound pressure fields are connected in terms of an orifice discharge coefficient and an end correction parameter whose values are determined empirically. The accuracy of the model was verified by comparing predicted with measured impedance over a wide range of sound amplitudes and frequencies for two different resonator geometries and with measurements conducted by Ingard and Ising.
Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes
2012-09-01
Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.
Average-Time Games on Timed Automata
Jurdzinski, Marcin; Trivedi, Ashutosh
2009-01-01
An average-time game is played on the infinite graph of configurations of a finite timed automaton. The two players, Min and Max, construct an infinite run of the automaton by taking turns to perform a timed transition. Player Min wants to minimise the average time per transition and player Max wants to maximise it. A solution of average-time games is presented using a reduction to average-price game on a finite graph. A direct consequence is an elementary proof of determinacy for average-tim...
Grassmann Averages for Scalable Robust PCA
DEFF Research Database (Denmark)
Hauberg, Søren; Feragen, Aasa; Black, Michael J.
2014-01-01
arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA do not scale beyond small-to-medium sized datasets. To address this, we introduce the Grassmann Average (GA), which expresses dimensionality reduction as an average of the subspaces spanned by the data. Because averages...... to vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements...
Relationship between Fermi Resonance and Solvent Effects
Institute of Scientific and Technical Information of China (English)
JIANG Xiu-Lan; LI Dong-Fei; SUN Cheng-Lin; LI Zhan-Long; YANG Guang; ZHOU Mi; LI Zuo-Wei; GAO Shu-Qin
2011-01-01
We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations. Also, we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures. It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio, etc., on the other hand, the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.%@@ We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations.Also,we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures.It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio,etc.,on the other hand,the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.
Simple classical approach to spin resonance phenomena
DEFF Research Database (Denmark)
Gordon, R A
1977-01-01
A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...
Probing the charge of a quantum dot with a nanomechanical resonator
Meerwaldt, H. B.; Labadze, G.; Schneider, B. H.; Taspinar, A.; Blanter, Ya. M.; van der Zant, H. S. J.; Steele, G. A.
2012-09-01
We have used the mechanical motion of a carbon nanotube (CNT) as a probe of the average charge on a quantum dot. Variations of the resonance frequency and the quality factor are determined by the change in average charge on the quantum dot during a mechanical oscillation. The average charge, in turn, is influenced by the gate voltage, the bias voltage, and the tunnel rates of the barriers to the leads. At bias voltages that exceed the broadening due to tunnel coupling, the resonance frequency and quality factor show a double dip as a function of gate voltage. We find that increasing the current flowing through the CNT at the Coulomb peak does not increase the damping, but in fact decreases damping. Using a model with energy-dependent tunnel rates, we obtain quantitative agreement between the experimental observations and the model. We theoretically compare different contributions to the single-electron induced nonlinearity, and show that only one term is significant for both the Duffing parameter and the mode coupling parameter. We also present additional measurements which support the model we develop: Tuning the tunnel barriers of the quantum dot to the leads gives a 200-fold decrease of the quality factor. Single-electron tunneling through an excited state of the CNT quantum dot also changes the average charge on the quantum dot, bringing about a decrease in the resonance frequency. In the Fabry-Pérot regime, the absence of charge quantization results in a spring behavior without resonance frequency dips, which could be used, for example, to probe the transition from quantized to continuous charge with a nanomechanical resonator.
Interpreting Sky-Averaged 21-cm Measurements
Mirocha, Jordan
2015-01-01
Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation
Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.
2005-01-01
A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221
Note: On-line weak signal detection via adaptive stochastic resonance.
Lu, Siliang; He, Qingbo; Kong, Fanrang
2014-06-01
We design an instrument with a novel embedded adaptive stochastic resonance (SR) algorithm that consists of a SR module and a digital zero crossing detection module for on-line weak signal detection in digital signal processing applications. The two modules are responsible for noise filtering and adaptive parameter configuration, respectively. The on-line weak signal detection can be stably achieved in seconds. The prototype instrument exhibits an advance of 20 dB averaged signal-to-noise ratio and 5 times averaged adjust R-square as compared to the input noisy signal, in considering different driving frequencies and noise levels.
WIDTHS AND AVERAGE WIDTHS OF SOBOLEV CLASSES
Institute of Scientific and Technical Information of China (English)
刘永平; 许贵桥
2003-01-01
This paper concerns the problem of the Kolmogorov n-width, the linear n-width, the Gel'fand n-width and the Bernstein n-width of Sobolev classes of the periodicmultivariate functions in the space Lp(Td) and the average Bernstein σ-width, averageKolmogorov σ-widths, the average linear σ-widths of Sobolev classes of the multivariatequantities.
Low-profile wireless passive resonators for sensing
Energy Technology Data Exchange (ETDEWEB)
Gong, Xun; An, Linan
2017-04-04
A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.
NOAA Average Annual Salinity (3-Zone)
California Department of Resources — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...
Measurement of the average lifetime of b hadrons
Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Anderson, A. L.; Andreev, V. P.; Angelescu, T.; Antonov, L.; Antreasyan, D.; Arce, P.; Arefiev, A.; Atamanchuk, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bagnaia, P.; Bakken, J. A.; Ball, R. C.; Banerjee, S.; Bao, J.; Barillère, R.; Barone, L.; Baschirotto, A.; Battiston, R.; Bay, A.; Becattini, F.; Bechtluft, J.; Becker, R.; Becker, U.; Behner, F.; Behrens, J.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Bosetti, M.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brock, I. C.; Brooks, M.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Capell, M.; Caria, M.; Carlino, G.; Cartacci, A. M.; Castello, R.; Cerrada, M.; Cesaroni, F.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chen, W. Y.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Chung, S.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Contin, A.; Costantini, S.; Cotorobai, F.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; DeNotaristefani, F.; Dhina, M.; DiBitonto, D.; Diemoz, M.; Dimitrov, H. R.; Dionisi, C.; Ditmarr, M.; Djambazov, L.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Easo, S.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Extermann, P.; Fabbretti, R.; Fabre, M.; Falciano, S.; Fan, S. J.; Fackler, O.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Friebel, W.; Fukushima, M.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S. N.; Garcia-Abia, P.; Gele, D.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M.; Gu, C.; Guanziroli, M.; Guo, J. K.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hangarter, K.; Hartmann, B.; Hasan, A.; Hauschildt, D.; He, C. F.; He, J. T.; Hebbeker, T.; Hebert, M.; Hervé, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hu, G.; Hu, G. Q.; Ille, B.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jezequel, S.; Jin, B. N.; Jones, L. W.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirsch, S.; Kittel, W.; Klimentov, A.; Klöckner, R.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krastev, V. R.; Krenz, W.; Krivshich, A.; Kuijten, H.; Kumar, K. S.; Kunin, A.; Landi, G.; Lanske, D.; Lanzano, S.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, D. M.; Lee, J. S.; Lee, K. Y.; Leedom, I.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Li, C.; Li, H. T.; Li, P. J.; Liao, J. Y.; Lin, W. T.; Lin, Z. Y.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Y.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubbers, J. M.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, J. M.; Ma, W. G.; MacDermott, M.; Malik, R.; Malinin, A.; Maña, C.; Maolinbay, M.; Marchesini, P.; Marion, F.; Marin, A.; Martin, J. P.; Martinez-Laso, L.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McBride, P.; McMahon, T.; McNally, D.; Merk, M.; Merola, L.; Meschini, M.; Metzger, W. J.; Mi, Y.; Mihul, A.; Mills, G. B.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Monteleoni, B.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nadtochy, A.; Nagy, E.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Neyer, C.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Perrier, J.; Pevsner, A.; Piccolo, D.; Pieri, M.; Piroué, P. A.; Plasil, F.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Qi, Z. D.; Qian, J. M.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Ro, S.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Romero, L.; Rosier-Lees, S.; Rosmalen, R.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubbia, A.; Rubio, J. A.; Rykaczewski, H.; Sachwitz, M.; Salicio, J.; Salicio, J. M.; Sanders, G. S.; Santocchia, A.; Sarakinos, M. S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schopper, H.; Schotanus, D. J.; Shotkin, S.; Schreiber, H. J.; Shukla, J.; Schulte, R.; Schulte, S.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Scott, I.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Sheer, I.; Shen, D. Z.; Shevchenko, S.; Shi, X. R.; Shumilov, E.; Shoutko, V.; Son, D.; Sopczak, A.; Soulimov, V.; Spartiotis, C.; Spickermann, T.; Spillantini, P.; Starosta, R.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Strauch, K.; Stringfellow, B. C.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Terzi, G.; Ting, Samuel C. C.; Ting, S. M.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, C.; Wang, C. R.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Warner, C.; Weber, A.; Weber, J.; Weill, R.; Wenaus, T. J.; Wenninger, J.; White, M.; Willmott, C.; Wittgenstein, F.; Wright, D.; Wu, S. X.; Wynhoff, S.; Wysłouch, B.; Xie, Y. Y.; Xu, J. G.; Xu, Z. Z.; Xue, Z. L.; Yan, D. S.; Yang, B. Z.; Yang, C. G.; Yang, G.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; Yin, Z. W.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zaitsev, N.; Zemp, P.; Zeng, M.; Zeng, Y.; Zhang, D. H.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.; L3 Collaboration
1993-11-01
The average lifetime of b hadrons has been measured using the L3 detector at LEP, running at √ s ≈ MZ. A b-enriched sample was obtained from 432538 hadronic Z events collected in 1990 and 1991 by tagging electrons and muons from semileptonic b hadron decays. From maximum likelihood fits to the electron and muon impact parameter distributions, the average b hadron lifetime was measured to be τb = (1535 ± 35 ± 28) fs, where the first error is statistical and the second includes both the experimental and the theoretical systematic uncertainties.
Quantum state discrimination using the minimum average number of copies
Slussarenko, Sergei; Li, Jun-Gang; Campbell, Nicholas; Wiseman, Howard M; Pryde, Geoff J
2016-01-01
In the task of discriminating between nonorthogonal quantum states from multiple copies, the key parameters are the error probability and the resources (number of copies) used. Previous studies have considered the task of minimizing the average error probability for fixed resources. Here we consider minimizing the average resources for a fixed admissible error probability. We derive a detection scheme optimized for the latter task, and experimentally test it, along with schemes previously considered for the former task. We show that, for our new task, our new scheme outperforms all previously considered schemes.
Dynamic Multiscale Averaging (DMA) of Turbulent Flow
Energy Technology Data Exchange (ETDEWEB)
Richard W. Johnson
2012-09-01
A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical
Subharmonic Resonance of Van Der Pol Oscillator with Fractional-Order Derivative
Directory of Open Access Journals (Sweden)
Yongjun Shen
2014-01-01
Full Text Available The subharmonic resonance of van der Pol (VDP oscillator with fractional-order derivative is studied by the averaging method. At first, the first-order approximate solutions are obtained by the averaging method. Then the definitions of equivalent linear damping coefficient (ELDC and equivalent linear stiffness coefficient (ELSC for subharmonic resonance are established, and the effects of the fractional-order parameters on the ELDC, the ELSC, and the dynamical characteristics of system are also analysed. Moreover, the amplitude-frequency equation and phase-frequency equation of steady-state solution for subharmonic resonance are established. The corresponding stability condition is presented based on Lyapunov theory, and the existence condition for subharmonic resonance (ECSR is also obtained. At last, the comparisons of the fractional-order and the traditional integer-order VDP oscillator are fulfilled by the numerical simulation. The effects of the parameters in fractional-order derivative on the steady-state amplitude, the amplitude-frequency curves, and the system stability are also studied.
Average sampling theorems for shift invariant subspaces
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The sampling theorem is one of the most powerful results in signal analysis. In this paper, we study the average sampling on shift invariant subspaces, e.g. wavelet subspaces. We show that if a subspace satisfies certain conditions, then every function in the subspace is uniquely determined and can be reconstructed by its local averages near certain sampling points. Examples are given.
Testing linearity against nonlinear moving average models
de Gooijer, J.G.; Brännäs, K.; Teräsvirta, T.
1998-01-01
Lagrange multiplier (LM) test statistics are derived for testing a linear moving average model against an additive smooth transition moving average model. The latter model is introduced in the paper. The small sample performance of the proposed tests are evaluated in a Monte Carlo study and compared
Averaging Einstein's equations : The linearized case
Stoeger, William R.; Helmi, Amina; Torres, Diego F.
2007-01-01
We introduce a simple and straightforward averaging procedure, which is a generalization of one which is commonly used in electrodynamics, and show that it possesses all the characteristics we require for linearized averaging in general relativity and cosmology for weak-field and perturbed FLRW situ
Average Transmission Probability of a Random Stack
Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg
2010-01-01
The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…
Average excitation potentials of air and aluminium
Bogaardt, M.; Koudijs, B.
1951-01-01
By means of a graphical method the average excitation potential I may be derived from experimental data. Average values for Iair and IAl have been obtained. It is shown that in representing range/energy relations by means of Bethe's well known formula, I has to be taken as a continuously changing fu
New results on averaging theory and applications
Cândido, Murilo R.; Llibre, Jaume
2016-08-01
The usual averaging theory reduces the computation of some periodic solutions of a system of ordinary differential equations, to find the simple zeros of an associated averaged function. When one of these zeros is not simple, i.e., the Jacobian of the averaged function in it is zero, the classical averaging theory does not provide information about the periodic solution associated to a non-simple zero. Here we provide sufficient conditions in order that the averaging theory can be applied also to non-simple zeros for studying their associated periodic solutions. Additionally, we do two applications of this new result for studying the zero-Hopf bifurcation in the Lorenz system and in the Fitzhugh-Nagumo system.
Overview of the 100 mA average-current RF photoinjector
Energy Technology Data Exchange (ETDEWEB)
Nguyen, D.C. E-mail: dcnguyen@lanl.gov; Colestock, P.L.; Kurennoy, S.S.; Rees, D.E.; Regan, A.H.; Russell, S.; Schrage, D.L.; Wood, R.L.; Young, L.M.; Schultheiss, T.; Christina, V.; Cole, M.; Rathke, J.; Shaw, J.; Eddy, C.; Holm, R.; Henry, R.; Yater, J
2004-08-01
High-average-power FELs require high-current, low-emittance and low-energy-spread electron beams. These qualities have been achieved with RF photoinjectors operating at low-duty factors. To date, a high-average-current RF photoinjector operating continuously at 100% duty factor is yet to be demonstrated. The principal challenges of a high-duty-factor normal-conducting RF photoinjector are related to applying a high accelerating gradient continuously, thus generating large ohmic losses in the cavity walls, cooling the injector cavity walls and the high-power RF couplers, and finding a photocathode with reasonable Q.E. that can survive the poor vacuum of the RF photoinjector. We present the preliminary design of a normal-conducting 700 MHz photoinjector with solenoid magnetic fields for emittance compensation. The photoinjector is designed to produce 2.7 MeV electron beams at 3 nC bunch charge and 35 MHz repetition rate (100 mA average current). The photoinjector consists of a 2((1)/(2))-cell, {pi}-mode, RF cavity with on-axis electric coupling, and a non-resonant vacuum plenum. Heat removal in the resonant cells is achieved via dense arrays of internal cooling passages capable of handling high-velocity water flows. Megawatt RF power is coupled into the injector through two tapered ridge-loaded waveguides. PARMELA simulations show that the 2((1)/(2))-cell injector can produce a 7 {mu}m emittance directly. Transverse plasma oscillations necessitate additional acceleration and a second solenoid to realign the phase space envelopes of different axial slices at higher energy, resulting in a normalized rms emittance of 6.5 {mu}m and 34 keV rms energy spread. We are developing a novel cesiated p-type GaN photocathode with 7% quantum efficiency at 350 nm and a cesium dispenser to replenish the cathode with cesium through a porous silicon carbide substrate. These performance parameters will be necessary for the design of the 100 kW FEL.
Overview of the 100 mA average-current RF photoinjector
Nguyen, D. C.; Colestock, P. L.; Kurennoy, S. S.; Rees, D. E.; Regan, A. H.; Russell, S.; Schrage, D. L.; Wood, R. L.; Young, L. M.; Schultheiss, T.; Christina, V.; Cole, M.; Rathke, J.; Shaw, J.; Eddy, C.; Holm, R.; Henry, R.; Yater, J.
2004-08-01
High-average-power FELs require high-current, low-emittance and low-energy-spread electron beams. These qualities have been achieved with RF photoinjectors operating at low-duty factors. To date, a high-average-current RF photoinjector operating continuously at 100% duty factor is yet to be demonstrated. The principal challenges of a high-duty-factor normal-conducting RF photoinjector are related to applying a high accelerating gradient continuously, thus generating large ohmic losses in the cavity walls, cooling the injector cavity walls and the high-power RF couplers, and finding a photocathode with reasonable Q.E. that can survive the poor vacuum of the RF photoinjector. We present the preliminary design of a normal-conducting 700 MHz photoinjector with solenoid magnetic fields for emittance compensation. The photoinjector is designed to produce 2.7 MeV electron beams at 3 nC bunch charge and 35 MHz repetition rate (100 mA average current). The photoinjector consists of a 2 {1}/{2}-cell, π-mode, RF cavity with on-axis electric coupling, and a non-resonant vacuum plenum. Heat removal in the resonant cells is achieved via dense arrays of internal cooling passages capable of handling high-velocity water flows. Megawatt RF power is coupled into the injector through two tapered ridge-loaded waveguides. PARMELA simulations show that the 2 {1}/{2}-cell injector can produce a 7 μm emittance directly. Transverse plasma oscillations necessitate additional acceleration and a second solenoid to realign the phase space envelopes of different axial slices at higher energy, resulting in a normalized rms emittance of 6.5 μm and 34 keV rms energy spread. We are developing a novel cesiated p-type GaN photocathode with 7% quantum efficiency at 350 nm and a cesium dispenser to replenish the cathode with cesium through a porous silicon carbide substrate. These performance parameters will be necessary for the design of the 100 kW FEL.
Controlling Metamaterial Resonances with Light
Chakrabarti, Sangeeta; Wanare, Harshawardhan
2010-01-01
We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behaviour of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching is implemented by coherently driving the resonant permittivity of the embedding medium by applied optical radiation. The effect of embedding Split ring resonators (SRR) in a frequency- dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetic induced transparency (EIT), is manifested in the splitting of the negative permeability band, the modified (frequency-dependent) filling fractions and dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, while for an embedding medium exhibiting EIT, also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures ...
Nested trampoline resonators for optomechanics
Energy Technology Data Exchange (ETDEWEB)
Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)
2016-01-18
Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.
Nested Trampoline Resonators for Optomechanics
Weaver, Matthew J; Luna, Fernando; Buters, Frank M; Eerkens, Hedwig J; Welker, Gesa; Perock, Blaise; Heeck, Kier; de Man, Sven; Bouwmeester, Dirk
2015-01-01
Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating novel trampoline resonators made from low pressure chemical vapor deposition (LPCVD) Si$_3$N$_4$ with a distributed bragg reflector (DBR) mirror. We construct a nested double resonator structure that generates approximately 80 dB of mechanical isolation from the mounting surface, eliminating the strong mounting dependence of the quality factor observed with single resonators. With the consistency provided by this isolation scheme we reliably fabricate devices with mechanical quality factors of around 400,000 at room temperature. In addition these devices were used to form optical cavities with finesse up to 181,000 $\\pm$ 1,000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.
Study of Mode Coupling on Coaxial Resonators
Institute of Scientific and Technical Information of China (English)
Rui Liu; Hong-Fu Li
2011-01-01
A study of mode coupling phenomenon of coaxial resonators has been conducted with theories.Through establishing the source-free transmission line equation,boundary conditions of the coaxial resonators with a corrugated inner conductor are analyzed.In the end,calculations are performed in a wide range of corrugation parameters for the resonator of the Karisruhe Institute of Technology (KIT) relevant coaxial gyrotron.
Energy Technology Data Exchange (ETDEWEB)
Ellison, James A.; Heinemann, Klaus [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Vogt, Mathias [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Gooden, Matthew [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics
2013-03-15
We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length {lambda} of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As {lambda} varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in
The Conservation of Area Integrals in Averaging Transformations
Kuznetsov, E. D.
2010-06-01
It is shown for the two-planetary version of the weakly perturbed two-body problem that, in a system defined by a finite part of a Poisson expansion of the averaged Hamiltonian, only one of the three components of the area vector is conserved, corresponding to the longitudes measuring plane. The variability of the other two components is demonstrated in two ways. The first is based on calculating the Poisson bracket of the averaged Hamiltonian and the components of the area vector written in closed form. In the second, an echeloned Poisson series processor (EPSP) is used when calculating the Poisson bracket. The averaged Hamiltonian is taken with accuracy to second order in the small parameter of the problem, and the components of the area vector are expanded in a Poisson series.
Testing averaged cosmology with type Ia supernovae and BAO data
Santos, B; Devi, N Chandrachani; Alcaniz, J S
2016-01-01
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard $\\Lambda$CDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.
Evolution of the average avalanche shape with the universality class.
Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J
2013-01-01
A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.
Institute of Scientific and Technical Information of China (English)
穆莉莎; 蒲艳军; 孙凯; 朱力; 李文玲; 田兴仓
2014-01-01
Objective To establish cardiac magnetic resonance imaging (MRI) derived left ventricular (LV) global and region function parameters in normal adults.Methods Twenty normal adults were examined with fast imaging employing steady-state (Fiesta) acquisition sequence of cardiac MRI,LV global function and LV region function were measured at basal,middle,apical level and at 16 LV segments.The regional function parameters among different levels and different segments of the same level were analyzed.Results (1) LV global function: end-diastolic volume (109.17 ± 19.52) ml ; end-systolic volume (37.76 ± 14.16) ml ; ejection fraction (65.93 ± 7.79) ％ ; wall thickening (83.24 ± 40.82) ％ ; longitudinal shortening (15.51 ± 3.78)％ ; fractional shortening (31.78 ± 9.55)％ ; end-diastolic mass (95.20 ± 19.95) g.(2) LV regional function: In each LV level,there was no significant difference in end-systolic wall thickness (P ＞ 0.05).End-diastolic wall thickness and wall thickening were similar between the middle and apical levels,but there were significant differences between middle and apical levels with the basal level (both P ＜0.05).End-systolic wall thickness of the middle and the apical level was similar,but there were significant differences between middle and apical levels with the basal level (both P ＜ 0.05).At the segments of the same level,end-diastolic wall thickness and the relevant regional function parameters between the segments of anteroseptal and inferoseptal at base and middle level were similar (P ＞ 0.05) ; the end-diastolic wall thickness was the largest and the WT was the minimal at the septal segments of three levels,and the difference were significant between the septal and other segments in the same level (P ＜0.05).Conclusions Fractional shortening and longitudinal shortening provide new indicators for assessing LV global function by cardiac MRI.There is obvious heterogeneity on LV regional function in normal adults,systolic function is
Second order average estimates on local data of cusp forms
2005-01-01
We specify sufficient conditions for the square modulus of the local parameters of a family of GL(n) cusp forms to be bounded on average. These conditions are global in nature and are at present satisfied for n less than or equal to 4. As an application, we show that Rankin-Selberg L-functions on GL(m) x GL(n), when m and n are less than or equal to 4, satisfy the standard convexity bound.
Experimental Demonstration of Squeezed State Quantum Averaging
Lassen, Mikael; Sabuncu, Metin; Filip, Radim; Andersen, Ulrik L
2010-01-01
We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.
FREQUENTIST MODEL AVERAGING ESTIMATION: A REVIEW
Institute of Scientific and Technical Information of China (English)
Haiying WANG; Xinyu ZHANG; Guohua ZOU
2009-01-01
In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model without consideration of the uncertainty from the selection process. This often leads to the underreporting of variability and too optimistic confidence sets. Model averaging estimation is an alternative to this procedure, which incorporates model uncertainty into the estimation process. In recent years, there has been a rising interest in model averaging from the frequentist perspective, and some important progresses have been made. In this paper, the theory and methods on frequentist model averaging estimation are surveyed. Some future research topics are also discussed.
Averaging of Backscatter Intensities in Compounds
Donovan, John J.; Pingitore, Nicholas E.; Westphal, Andrew J.
2002-01-01
Low uncertainty measurements on pure element stable isotope pairs demonstrate that mass has no influence on the backscattering of electrons at typical electron microprobe energies. The traditional prediction of average backscatter intensities in compounds using elemental mass fractions is improperly grounded in mass and thus has no physical basis. We propose an alternative model to mass fraction averaging, based of the number of electrons or protons, termed “electron fraction,” which predicts backscatter yield better than mass fraction averaging. PMID:27446752
Average-passage flow model development
Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Kirtley, Kevin; Barnett, Mark
1989-01-01
A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.
Changing mortality and average cohort life expectancy
DEFF Research Database (Denmark)
Schoen, Robert; Canudas-Romo, Vladimir
2005-01-01
of survivorship. An alternative aggregate measure of period mortality which has been seen as less sensitive to period changes, the cross-sectional average length of life (CAL) has been proposed as an alternative, but has received only limited empirical or analytical examination. Here, we introduce a new measure......, the average cohort life expectancy (ACLE), to provide a precise measure of the average length of life of cohorts alive at a given time. To compare the performance of ACLE with CAL and with period and cohort life expectancy, we first use population models with changing mortality. Then the four aggregate...
Microwave power coupling with electron cyclotron resonance plasma using Langmuir probe
Indian Academy of Sciences (India)
S K Jain; V K Senecha; P A Naik; P R Hannurkar; S C Joshi
2013-07-01
Electron cyclotron resonance (ECR) plasma was produced at 2.45 GHz using 200 – 750 W microwave power. The plasma was produced from argon gas at a pressure of 2 × 10−4 mbar. Three water-cooled solenoid coils were used to satisfy the ECR resonant conditions inside the plasma chamber. The basic parameters of plasma, such as electron density, electron temperature, floating potential, and plasma potential, were evaluated using the current–voltage curve using a Langmuir probe. The effect of microwave power coupling to the plasma was studied by varying the microwave power. It was observed that the optimum coupling to the plasma was obtained for ∼ 600 W microwave power with an average electron density of ∼ 6 × 1011 cm−3 and average electron temperature of ∼ 9 eV.
Effect of Systematic Resonance on DBD Device
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Abnormal phenomena that discharge performance declines with the increase in the frequency of power supply have been observed in many DBD devices. DBD systematic resonance formed by transformer leakage induction and equivalent capacitance of the dielectric layer is a key factor causing such abnormal phenomena. Therefore, the parameters of a DBD device should be optimized to avoid resonance damage and improve DBD discharge characteristics.
A practical guide to averaging functions
Beliakov, Gleb; Calvo Sánchez, Tomasa
2016-01-01
This book offers an easy-to-use and practice-oriented reference guide to mathematical averages. It presents different ways of aggregating input values given on a numerical scale, and of choosing and/or constructing aggregating functions for specific applications. Building on a previous monograph by Beliakov et al. published by Springer in 2007, it outlines new aggregation methods developed in the interim, with a special focus on the topic of averaging aggregation functions. It examines recent advances in the field, such as aggregation on lattices, penalty-based aggregation and weakly monotone averaging, and extends many of the already existing methods, such as: ordered weighted averaging (OWA), fuzzy integrals and mixture functions. A substantial mathematical background is not called for, as all the relevant mathematical notions are explained here and reported on together with a wealth of graphical illustrations of distinct families of aggregation functions. The authors mainly focus on practical applications ...
Rotational averaging of multiphoton absorption cross sections
Energy Technology Data Exchange (ETDEWEB)
Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)
2014-11-28
Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.
Rotational averaging of multiphoton absorption cross sections
Friese, Daniel H.; Beerepoot, Maarten T. P.; Ruud, Kenneth
2014-11-01
Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.
Sea Surface Temperature Average_SST_Master
National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...
MN Temperature Average (1961-1990) - Line
Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...
MN Temperature Average (1961-1990) - Polygon
Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...
Spacetime Average Density (SAD) Cosmological Measures
Page, Don N
2014-01-01
The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmolo...
Monthly snow/ice averages (ISCCP)
National Aeronautics and Space Administration — September Arctic sea ice is now declining at a rate of 11.5 percent per decade, relative to the 1979 to 2000 average. Data from NASA show that the land ice sheets in...
Appeals Council Requests - Average Processing Time
Social Security Administration — This dataset provides annual data from 1989 through 2015 for the average processing time (elapsed time in days) for dispositions by the Appeals Council (AC) (both...
Average Vegetation Growth 1990 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1990 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1997 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1997 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1992 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1992 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 2001 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2001 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1995 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1995 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 2000 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2000 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1998 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1998 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1994 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1994 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Symmetric Euler orientation representations for orientational averaging.
Mayerhöfer, Thomas G
2005-09-01
A new kind of orientation representation called symmetric Euler orientation representation (SEOR) is presented. It is based on a combination of the conventional Euler orientation representations (Euler angles) and Hamilton's quaternions. The properties of the SEORs concerning orientational averaging are explored and compared to those of averaging schemes that are based on conventional Euler orientation representations. To that aim, the reflectance of a hypothetical polycrystalline material with orthorhombic crystal symmetry was calculated. The calculation was carried out according to the average refractive index theory (ARIT [T.G. Mayerhöfer, Appl. Spectrosc. 56 (2002) 1194]). It is shown that the use of averaging schemes based on conventional Euler orientation representations leads to a dependence of the result from the specific Euler orientation representation that was utilized and from the initial position of the crystal. The latter problem can be overcome partly by the introduction of a weighing factor, but only for two-axes-type Euler orientation representations. In case of a numerical evaluation of the average, a residual difference remains also if a two-axes type Euler orientation representation is used despite of the utilization of a weighing factor. In contrast, this problem does not occur if a symmetric Euler orientation representation is used as a matter of principle, while the result of the averaging for both types of orientation representations converges with increasing number of orientations considered in the numerical evaluation. Additionally, the use of a weighing factor and/or non-equally spaced steps in the numerical evaluation of the average is not necessary. The symmetrical Euler orientation representations are therefore ideally suited for the use in orientational averaging procedures.
Average Bandwidth Allocation Model of WFQ
Directory of Open Access Journals (Sweden)
Tomáš Balogh
2012-01-01
Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.
Application of Stochastic Resonance Signal Recovery
Institute of Scientific and Technical Information of China (English)
ZHANG Ying; WANG Taiyong; LENG Yonggang; DENG Hui
2009-01-01
Stochastic resonance(SR) enhances the nonlinear system behavior with the assistance of noise, including the sensitivity and selectivity of the response to the exterior stimulus. The energy-transfer mechanism makes the weak information revealed in the output spectrum, while the time-waveform is distorted. The distortion analysis was made both from the particle's dynamics and signal processing. The factors causing the deviation in the output are presented and the function of the recovery system is proposed. By the investigation of the particle's motion track in the bistable system and the suggested recovery system, the influences of noise and system parameters on the recovery course were discussed. Moreover, the pulse distortion appearing the recovery waveform caused by the particle's transitions at the bistable potential' inflexions was explained. Due to different characteristics, cascaded-bistable SR or mono-stable SR was introduced to process different types of signals. The final recovery signal is just the suggested recovery system's response to the SR output. Meanwhile, the recovery system is optional, as parameter-tuned or parameter-fixed. Since the method requires no average processing, it is applicable to a single sample with limited length. The numerical simulations reveal that the SR recovery method can recover the waveform containing weak information submerged in noise effectively. The engineering application to the vibration analysis of metal cutting chose the combination of mono-stable SR and the parameter-fixed recovery system. Because the optimal SR state is not required strongly, the system parameters are tuned in a wider range than the traditional SR processing methods.
Directory of Open Access Journals (Sweden)
Lincheng Zhou
2015-08-01
Full Text Available This paper focuses on the parameter identification problem for Wiener nonlinear dynamic systems with moving average noises. In order to improve the convergence rate, the gradient-based iterative algorithm is presented by replacing the unmeasurable variables with their corresponding iterative estimates, and to compute iteratively the noise estimates based on the obtained parameter estimates. The simulation results show that the proposed algorithm can effectively estimate the parameters of Wiener systems with moving average noises.
Resonance, Multi-resonance, and Reverse-resonance Induced by Multiplicative Dichotomous Noise
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A constant-potential system driven by multiplicative dichotomous noise and subject to an input oscillatory signal is investigated. Two phenomena of stochastic resonance are observed. One is the response as a function of the noise's parameters; the other is that as a function of the input signal frequency. A phenomenon of multi-resonance (there are three or four peaks) is found for the response as a function of a parameter of the noise. A phenomenon of reverse-resonance is found, for which the response of the system to the signal can be weakened by the presence of the noise (there is an optimal minimum). These results help in studies of the systems with multiplicative dichotomous noise, such as the semiconductor, the proteins motor, the chemical reaction, and so on.
Developing accelerometer based on graphene nanoribbon resonators
Energy Technology Data Exchange (ETDEWEB)
Kang, Jeong Won, E-mail: jwkang@ut.ac.kr [Department of Computer Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Lee, Jun Ha, E-mail: junha@smu.ac.kr [Department of Computer System Engineering, Sangmyung University, Chonan 330-720 (Korea, Republic of); Hwang, Ho Jung, E-mail: hjhwang@cau.ac.kr [School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Ki-Sub, E-mail: kks1114@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of)
2012-10-01
We investigated an ultrahigh sensitive accelerometer based on graphene nanoribbon resonators. Sensing acceleration can be made by their resonance frequency shift and/or their capacitance change. Schematics and the static properties were introduced and the dynamic properties were investigated via classical molecular dynamics simulation. As the acceleration increased, the oscillations of the deflections were going dramatically faster and the mean deflections increased, then the capacitance continually varied with large amplitudes and the resonance frequencies linearly increased in a log–log scale by power regression. The energy loss decreased with increasing time, and the average quality factors were dramatically reduced with increasing acceleration. -- Highlights: ► Ultrahigh sensitive accelerometer based on graphene nanoribbon resonators. ► Sensing acceleration by resonance frequency shift and/or capacitance change. ► Resonance frequencies linearly increased with increasing acceleration in a log–log scale. ► Quality factors were dramatically reduced with increasing acceleration.
Low-Loss Polymer-Based Ring Resonator for Resonant Integrated Optical Gyroscopes
Directory of Open Access Journals (Sweden)
Guang Qian
2014-01-01
Full Text Available Waveguide ring resonator is the sensing element of resonant integrated optical gyroscope (RIOG. This paper reports a polymer-based ring resonator with a low propagation loss of about 0.476 dB/cm for RIOG. The geometrical parameters of the waveguide and the coupler of the resonator were optimally designed. We also discussed the optical properties and gyroscope performance of the polymer resonator which shows a high quality factor of about 105. The polymer-based RIOG exhibits a limited sensitivity of less than 20 deg/h for the low and medium resolution navigation systems.
Averaged universe confronted to cosmological observations: a fully covariant approach
Wijenayake, Tharake; Ishak, Mustapha
2016-01-01
One of the outstanding problems in general relativistic cosmology is that of the averaging. That is, how the lumpy universe that we observe at small scales averages out to a smooth Friedmann-Lemaitre-Robertson-Walker (FLRW) model. The root of the problem is that averaging does not commute with the Einstein equations that govern the dynamics of the model. This leads to the well-know question of backreaction in cosmology. In this work, we approach the problem using the covariant framework of Macroscopic Gravity (MG). We use its cosmological solution with a flat FLRW macroscopic background where the result of averaging cosmic inhomogeneities has been encapsulated into a backreaction density parameter denoted $\\Omega_\\mathcal{A}$. We constrain this averaged universe using available cosmological data sets of expansion and growth including, for the first time, a full CMB analysis from Planck temperature anisotropy and polarization data, the supernovae data from Union 2.1, the galaxy power spectrum from WiggleZ, the...
Faster computation of adiabatic EMRIs using resonances
Grossman, Rebecca; Perez-Giz, Gabe
2011-01-01
Motivated by the prohibitive computational cost of producing adiabatic extreme mass ratio inspirals, we explain how a judicious use of resonant orbits can dramatically expedite both that calculation and the generation of snapshot gravitational waves from geodesic sources. In the course of our argument, we clarify the resolution of a lingering debate on the appropriate adiabatic averaging prescription in favor of torus averaging over time averaging.
Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.
1984-01-01
A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.
Average Temperatures in the Southwestern United States, 2000-2015 Versus Long-Term Average
U.S. Environmental Protection Agency — This indicator shows how the average air temperature from 2000 to 2015 has differed from the long-term average (1895–2015). To provide more detailed information,...
Composite spin-1 resonances at the LHC
Low, Matthew; Wang, Lian-Tao
2015-01-01
In this paper, we discuss the signal of composite spin-1 resonances at the LHC. Motivated by the possible observation of a diboson resonance in the 8 TeV LHC data, we demonstrate that vector resonances from composite Higgs models are able to describe the data. We pay particular attention to the role played by fermion partial compositeness, which is a common feature in composite Higgs models. The parameter space that is both able to account for the diboson excess and passes electroweak precision and flavor tests is explored. Finally, we make projections for signals of such resonances at the 13 TeV run of the LHC.
Scalar-Pseudoscalar scattering and pseudoscalar resonances
Albaladejo, M
2010-01-01
The interactions between the f_0(980) and a_0(980) scalar resonances and the lightest pseudoscalar mesons are studied. We first obtain the interacting kernels, without including any ad hoc free parameter, because the lightest scalar resonances are dynamically generated. These kernels are unitarized, giving the final amplitudes, which generate pseudoscalar resonances, associated with the K(1460), \\pi(1300), \\pi(1800), \\eta(1475) and X(1835). We also consider the exotic channels with I=3/2 and I^G=1^+ quantum numbers. The former could be also resonant in agreement with a previous prediction.
Stochastic Averaging and Stochastic Extremum Seeking
Liu, Shu-Jun
2012-01-01
Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering and analysis of bacterial convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...
Books average previous decade of economic misery.
Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.
Books average previous decade of economic misery.
Directory of Open Access Journals (Sweden)
R Alexander Bentley
Full Text Available For the 20(th century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.
Benchmarking statistical averaging of spectra with HULLAC
Klapisch, Marcel; Busquet, Michel
2008-11-01
Knowledge of radiative properties of hot plasmas is important for ICF, astrophysics, etc When mid-Z or high-Z elements are present, the spectra are so complex that one commonly uses statistically averaged description of atomic systems [1]. In a recent experiment on Fe[2], performed under controlled conditions, high resolution transmission spectra were obtained. The new version of HULLAC [3] allows the use of the same model with different levels of details/averaging. We will take advantage of this feature to check the effect of averaging with comparison with experiment. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Quant. Spectros. Rad. Transf. 65, 43 (2000). [2] J. E. Bailey, G. A. Rochau, C. A. Iglesias et al., Phys. Rev. Lett. 99, 265002-4 (2007). [3]. M. Klapisch, M. Busquet, and A. Bar-Shalom, AIP Conference Proceedings 926, 206-15 (2007).
Cosmic structure, averaging and dark energy
Wiltshire, David L
2013-01-01
These lecture notes review the theoretical problems associated with coarse-graining the observed inhomogeneous structure of the universe at late epochs, of describing average cosmic evolution in the presence of growing inhomogeneity, and of relating average quantities to physical observables. In particular, a detailed discussion of the timescape scenario is presented. In this scenario, dark energy is realized as a misidentification of gravitational energy gradients which result from gradients in the kinetic energy of expansion of space, in the presence of density and spatial curvature gradients that grow large with the growth of structure. The phenomenology and observational tests of the timescape model are discussed in detail, with updated constraints from Planck satellite data. In addition, recent results on the variation of the Hubble expansion on < 100/h Mpc scales are discussed. The spherically averaged Hubble law is significantly more uniform in the rest frame of the Local Group of galaxies than in t...
Micro-machined resonator oscillator
Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.
1994-01-01
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.
An approximate analytical approach to resampling averages
DEFF Research Database (Denmark)
Malzahn, Dorthe; Opper, M.
2004-01-01
Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach for appr......Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach...
A singularity theorem based on spatial averages
Indian Academy of Sciences (India)
J M M Senovilla
2007-07-01
Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating the result is that, under the same conditions, any singularity-free model must have a vanishing spatial average of the energy density (and other physical variables). This is very satisfactory and provides a clear decisive difference between singular and non-singular cosmologies.
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian;
2011-01-01
of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set...
Ladefoged, Peter
1980-01-01
Summarizes the 16 parameters hypothesized to be necessary and sufficient for linguistic phonetic specifications. Suggests seven parameters affecting tongue shapes, three determining the positions of the lips, one controlling the position of the velum, four varying laryngeal actions, and one controlling respiratory activity. (RL)
Coupled-resonator optical waveguides
DEFF Research Database (Denmark)
Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor;
2010-01-01
Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex......-valued parameters which allows us to analyze the dispersion properties also in presence of finite Q factors for the coupled resonator states. Near the band-edge the group velocity saturates at a finite value vg/c µ p1/Q while in the band center, the group velocity is unaffected by a finite Q factor as compared...
Experiments with Helmholtz Resonators.
Greenslade, Thomas B., Jr.
1996-01-01
Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)
MRI (Magnetic Resonance Imaging)
... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...
Quantum Averaging of Squeezed States of Light
DEFF Research Database (Denmark)
Squeezing has been recognized as the main resource for quantum information processing and an important resource for beating classical detection strategies. It is therefore of high importance to reliably generate stable squeezing over longer periods of time. The averaging procedure for a single qu...
Generalized Jackknife Estimators of Weighted Average Derivatives
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael
With the aim of improving the quality of asymptotic distributional approximations for nonlinear functionals of nonparametric estimators, this paper revisits the large-sample properties of an important member of that class, namely a kernel-based weighted average derivative estimator. Asymptotic...
Bayesian Model Averaging for Propensity Score Analysis
Kaplan, David; Chen, Jianshen
2013-01-01
The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…
High average-power induction linacs
Energy Technology Data Exchange (ETDEWEB)
Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.
1989-03-15
Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs.
Discontinuities and hysteresis in quantized average consensus
Ceragioli, Francesca; Persis, Claudio De; Frasca, Paolo
2011-01-01
We consider continuous-time average consensus dynamics in which the agents’ states are communicated through uniform quantizers. Solutions to the resulting system are defined in the Krasowskii sense and are proven to converge to conditions of ‘‘practical consensus’’. To cope with undesired chattering
On averaging methods for partial differential equations
Verhulst, F.
2001-01-01
The analysis of weakly nonlinear partial differential equations both qualitatively and quantitatively is emerging as an exciting eld of investigation In this report we consider specic results related to averaging but we do not aim at completeness The sections and contain important material which
A Functional Measurement Study on Averaging Numerosity
Tira, Michael D.; Tagliabue, Mariaelena; Vidotto, Giulio
2014-01-01
In two experiments, participants judged the average numerosity between two sequentially presented dot patterns to perform an approximate arithmetic task. In Experiment 1, the response was given on a 0-20 numerical scale (categorical scaling), and in Experiment 2, the response was given by the production of a dot pattern of the desired numerosity…
Average utility maximization: A preference foundation
A.V. Kothiyal (Amit); V. Spinu (Vitalie); P.P. Wakker (Peter)
2014-01-01
textabstractThis paper provides necessary and sufficient preference conditions for average utility maximization over sequences of variable length. We obtain full generality by using a new algebraic technique that exploits the richness structure naturally provided by the variable length of the sequen
Full averaging of fuzzy impulsive differential inclusions
Directory of Open Access Journals (Sweden)
Natalia V. Skripnik
2010-09-01
Full Text Available In this paper the substantiation of the method of full averaging for fuzzy impulsive differential inclusions is studied. We extend the similar results for impulsive differential inclusions with Hukuhara derivative (Skripnik, 2007, for fuzzy impulsive differential equations (Plotnikov and Skripnik, 2009, and for fuzzy differential inclusions (Skripnik, 2009.
Materials for high average power lasers
Energy Technology Data Exchange (ETDEWEB)
Marion, J.E.; Pertica, A.J.
1989-01-01
Unique materials properties requirements for solid state high average power (HAP) lasers dictate a materials development research program. A review of the desirable laser, optical and thermo-mechanical properties for HAP lasers precedes an assessment of the development status for crystalline and glass hosts optimized for HAP lasers. 24 refs., 7 figs., 1 tab.
Independence, Odd Girth, and Average Degree
DEFF Research Database (Denmark)
Löwenstein, Christian; Pedersen, Anders Sune; Rautenbach, Dieter;
2011-01-01
We prove several tight lower bounds in terms of the order and the average degree for the independence number of graphs that are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum...
A dynamic analysis of moving average rules
C. Chiarella; X.Z. He; C.H. Hommes
2006-01-01
The use of various moving average (MA) rules remains popular with financial market practitioners. These rules have recently become the focus of a number empirical studies, but there have been very few studies of financial market models where some agents employ technical trading rules of the type use
Latent resonance in tidal rivers, with applications to River Elbe
Backhaus, Jan O.
2015-11-01
We describe a systematic investigation of resonance in tidal rivers, and of river oscillations influenced by resonance. That is, we explore the grey-zone between absent and fully developed resonance. Data from this study are the results of a one-dimensional numerical channel model applied to a four-dimensional parameter space comprising geometry, i.e. length and depths of rivers, and varying dissipation and forcing. Similarity of real rivers and channels from parameter space is obtained with the help of a 'run-time depth'. We present a model-channel, which reproduces tidal oscillations of River Elbe in Hamburg, Germany with accuracy of a few centimetres. The parameter space contains resonant regions and regions with 'latent resonance'. The latter defines tidal oscillations that are elevated yet not in full but juvenile resonance. Dissipation reduces amplitudes of resonance while creating latent resonance. That is, energy of resonance radiates into areas in parameter space where periods of Eigen-oscillations are well separated from the period of the forcing tide. Increased forcing enhances the re-distribution of resonance in parameter space. The River Elbe is diagnosed as being in a state of anthropogenic latent resonance as a consequence of ongoing deepening by dredging. Deepening the river, in conjunction with the expected sea level rise, will inevitably cause increasing tidal ranges. As a rule of thumb, we found that 1 m deepening would cause 0.5 m increase in tidal range.
Fujimoto, Milton M; Tennyson, Jonathan
2016-01-01
A theoretical study of elastic electron collisions with 9 conformers of the gas-phase amino acid $\\alpha$-alanine (CH$_3$CH(NH$_2$)COOH) is performed. The eigenphase sums, resonance features, differential and integral cross sections are computed for each individual conformer. Resonance positions for the low-energy $\\pi^*$ shape resonance are found to vary from 2.6 eV to 3.1 eV and the resonance widths from 0.3 eV to 0.5 eV. Averaged cross sections for thermal mixtures of the 9 conformers are presented. Both theoretical and experimental population ratios are considered. Thermally-averaged cross sections obtained using the best theoretical estimates give reasonable agreement with the observed thermal cross sections. Excited conformers IIA and IIB make a large contribution to this average due to their large permanent dipole moments.
Regenerative feedback resonant circuit
Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.
2014-09-02
A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.
Some applications of stochastic averaging method for quasi Hamiltonian systems in physics
Institute of Scientific and Technical Information of China (English)
DENG MaoLin; ZHU WeiQiu
2009-01-01
Many physical systems can be modeled as quasi-Hamiltonian systems and the stochastic averaging method for uasi-Hamiltonian systems can be applied to yield reasonable approximate response sta-tistics. In the present paper, the basic idea and procedure of the stochastic averaging method for quasi Hamiltonian systems are briefly introduced. The applications of the stochastic averaging method in studying the dynamics of active Brownian particles, the reaction rate theory, the dynamics of breathing and denaturation of DNA, and the Fermi resonance and its effect on the mean transition time are re-viewed.
Some applications of stochastic averaging method for quasi Hamiltonian systems in physics
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Many physical systems can be modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems can be applied to yield reasonable approximate response sta-tistics.In the present paper,the basic idea and procedure of the stochastic averaging method for quasi Hamiltonian systems are briefly introduced.The applications of the stochastic averaging method in studying the dynamics of active Brownian particles,the reaction rate theory,the dynamics of breathing and denaturation of DNA,and the Fermi resonance and its effect on the mean transition time are reviewed.
Anomalous diffusion in strong cellular flows: Averaging and homogenization
Pajor-Gyulai, Zsolt
This thesis considers the possible limit behaviors of a strong Hamiltonian cellular flow that is subjected to a Brownian stochastic perturbation. Three possible limits are identified. When long timescales are considered, the limit behavior is described by classical homogenization theory. In the intermediate (finite) time case, it is shown that the limit behavior is anomalously diffusive. This means that the limit is given by a Brownian motion that is time changed by the local time of a process on the graph which is associated with the structure of the unperturbed flow lines (Reeb graph) that one obtains by Freidlin-Wentzell type averaging. Finally, we consider the case when the motion starts close to, or on, the cell boundary and derive a limit for the displacement on timescales of order proportional to some power of a small parameter with exponent between zero and one. (modulo a logarithmic correction to compensate for the slowdown of the flow near the saddle points of the Hamiltonian). The latter two cases are novel results obtained by the author and his collaborators. We also consider two applications of the above results to associated partial differential equation (PDE) problems. Namely, we study a two-parameter averaging-homogenization type elliptic boundary value problem and obtain a precise description of the limit behavior of the solution as a function of the parameters using the well-known stochastic representation. Additionally, we study a similar parabolic Cauchy problem.
Pulsar average waveforms and hollow cone beam models
Backer, D. C.
1975-01-01
An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects.
ANALYSIS OF THE FACTORS AFFECTING THE AVERAGE
Directory of Open Access Journals (Sweden)
Carmen BOGHEAN
2013-12-01
Full Text Available Productivity in agriculture most relevantly and concisely expresses the economic efficiency of using the factors of production. Labour productivity is affected by a considerable number of variables (including the relationship system and interdependence between factors, which differ in each economic sector and influence it, giving rise to a series of technical, economic and organizational idiosyncrasies. The purpose of this paper is to analyse the underlying factors of the average work productivity in agriculture, forestry and fishing. The analysis will take into account the data concerning the economically active population and the gross added value in agriculture, forestry and fishing in Romania during 2008-2011. The distribution of the average work productivity per factors affecting it is conducted by means of the u-substitution method.
Time-average dynamic speckle interferometry
Vladimirov, A. P.
2014-05-01
For the study of microscopic processes occurring at structural level in solids and thin biological objects, a method of dynamic speckle interferometry successfully applied. However, the method has disadvantages. The purpose of the report is to acquaint colleagues with the method of averaging in time in dynamic speckle - interferometry of microscopic processes, allowing eliminating shortcomings. The main idea of the method is the choice the averaging time, which exceeds the characteristic time correlation (relaxation) the most rapid process. The method theory for a thin phase and the reflecting object is given. The results of the experiment on the high-cycle fatigue of steel and experiment to estimate the biological activity of a monolayer of cells, cultivated on a transparent substrate is given. It is shown that the method allows real-time visualize the accumulation of fatigue damages and reliably estimate the activity of cells with viruses and without viruses.
Averaged Extended Tree Augmented Naive Classifier
Directory of Open Access Journals (Sweden)
Aaron Meehan
2015-07-01
Full Text Available This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN, which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN and Averaged One-Dependence Estimator (AODE classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computational time complexity. Empirical results with numerous data sets indicate that the new approach is superior to ETAN and AODE in terms of both zero-one classification accuracy and log loss. It also compares favourably against weighted AODE and hidden Naive Bayes. The learning phase of the new approach is slower than that of its competitors, while the time complexity for the testing phase is similar. Such characteristics suggest that the new classifier is ideal in scenarios where online learning is not required.
Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-01-01
The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400--407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305--320]. The application of the trajectory averaging estimator to other stochastic approximation MCMC algorithms, for example, a stochastic approximation MLE al...
Average Annual Rainfall over the Globe
Agrawal, D. C.
2013-01-01
The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74 ×…
The Ghirlanda-Guerra identities without averaging
Chatterjee, Sourav
2009-01-01
The Ghirlanda-Guerra identities are one of the most mysterious features of spin glasses. We prove the GG identities in a large class of models that includes the Edwards-Anderson model, the random field Ising model, and the Sherrington-Kirkpatrick model in the presence of a random external field. Previously, the GG identities were rigorously proved only `on average' over a range of temperatures or under small perturbations.
Spatial averaging infiltration model for layered soil
Institute of Scientific and Technical Information of China (English)
HU HePing; YANG ZhiYong; TIAN FuQiang
2009-01-01
To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial heterogeneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overestimate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hydrological and land surface process modeling in a promising way.
Unscrambling The "Average User" Of Habbo Hotel
Directory of Open Access Journals (Sweden)
Mikael Johnson
2007-01-01
Full Text Available The “user” is an ambiguous concept in human-computer interaction and information systems. Analyses of users as social actors, participants, or configured users delineate approaches to studying design-use relationships. Here, a developer’s reference to a figure of speech, termed the “average user,” is contrasted with design guidelines. The aim is to create an understanding about categorization practices in design through a case study about the virtual community, Habbo Hotel. A qualitative analysis highlighted not only the meaning of the “average user,” but also the work that both the developer and the category contribute to this meaning. The average user a represents the unknown, b influences the boundaries of the target user groups, c legitimizes the designer to disregard marginal user feedback, and d keeps the design space open, thus allowing for creativity. The analysis shows how design and use are intertwined and highlights the developers’ role in governing different users’ interests.
A simple algorithm for averaging spike trains.
Julienne, Hannah; Houghton, Conor
2013-02-25
Although spike trains are the principal channel of communication between neurons, a single stimulus will elicit different spike trains from trial to trial. This variability, in both spike timings and spike number can obscure the temporal structure of spike trains and often means that computations need to be run on numerous spike trains in order to extract features common across all the responses to a particular stimulus. This can increase the computational burden and obscure analytical results. As a consequence, it is useful to consider how to calculate a central spike train that summarizes a set of trials. Indeed, averaging responses over trials is routine for other signal types. Here, a simple method for finding a central spike train is described. The spike trains are first mapped to functions, these functions are averaged, and a greedy algorithm is then used to map the average function back to a spike train. The central spike trains are tested for a large data set. Their performance on a classification-based test is considerably better than the performance of the medoid spike trains.
Spatial averaging infiltration model for layered soil
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial hetero- geneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overes- timate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hy- drological and land surface process modeling in a promising way.
Disk-averaged synthetic spectra of Mars
Tinetti, G; Fong, W; Meadows, V S; Snively, H; Velusamy, T; Crisp, David; Fong, William; Meadows, Victoria S.; Snively, Heather; Tinetti, Giovanna; Velusamy, Thangasamy
2004-01-01
The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPF-C) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model which uses observational data as input to generate a database of spatially-resolved synthetic spectra for a range of illumination conditions (phase angles) and viewing geometries. Results presented here include disk averaged synthetic spectra, light-cur...
Disk-averaged synthetic spectra of Mars
Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather
2005-01-01
The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.
RELATIONSHIP BETWEEN J-INTEGRAL AND FRACTURE SURFACE AVERAGE PROFILE
Institute of Scientific and Technical Information of China (English)
Y.G. Cao; S.F. Xue; K.Tanaka
2007-01-01
To investigate the causes that led to the formation of cracks in materials, a novel method that only considered the fracture surfaces for determining the fracture toughness parameters of J-integral for plain strain was proposed. The principle of the fracture-surface topography analysis (FRASTA) was used. In FRASTA, the fracture surfaces were scanned by laser microscope and the elevation data was recorded for analysis. The relationship between J-integral and fracture surface average profile for plain strain was deduced. It was also verified that the J-integral determined by the novel method and by the compliance method matches each other well.
MAXIMUM LIKELIHOOD ESTIMATION FOR PERIODIC AUTOREGRESSIVE MOVING AVERAGE MODELS.
Vecchia, A.V.
1985-01-01
A useful class of models for seasonal time series that cannot be filtered or standardized to achieve second-order stationarity is that of periodic autoregressive moving average (PARMA) models, which are extensions of ARMA models that allow periodic (seasonal) parameters. An approximation to the exact likelihood for Gaussian PARMA processes is developed, and a straightforward algorithm for its maximization is presented. The algorithm is tested on several periodic ARMA(1, 1) models through simulation studies and is compared to moment estimation via the seasonal Yule-Walker equations. Applicability of the technique is demonstrated through an analysis of a seasonal stream-flow series from the Rio Caroni River in Venezuela.
Studies into the averaging problem: Macroscopic gravity and precision cosmology
Wijenayake, Tharake S.
2016-08-01
With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model
Model averaging for semiparametric additive partial linear models
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion for model selection among ALPM after we estimate the nonparametric functions by the polynomial spline smoothing,and introduce a general model average estimator.The major advantage of the proposed procedures is that iterative backfitting implementation is avoided,which thus results in gains in computational simplicity.The resulting estimators are shown to be asymptotically normal.A simulation study and a real data analysis are presented for illustrations.
Unstable optical resonator loss calculations using the prony method.
Siegman, A E; Miller, H Y
1970-12-01
The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.
The average rate of change for continuous time models.
Kelley, Ken
2009-05-01
The average rate of change (ARC) is a concept that has been misunderstood in the applied longitudinal data analysis literature, where the slope from the straight-line change model is often thought of as though it were the ARC. The present article clarifies the concept of ARC and shows unequivocally the mathematical definition and meaning of ARC when measurement is continuous across time. It is shown that the slope from the straight-line change model generally is not equal to the ARC. General equations are presented for two measures of discrepancy when the slope from the straight-line change model is used to estimate the ARC in the case of continuous time for any model linear in its parameters, and for three useful models nonlinear in their parameters.
Data Point Averaging for Computational Fluid Dynamics Data
Norman, Jr., David (Inventor)
2016-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Resonances of a nonlinear SDOF system with time-delay in linear feedback control
Energy Technology Data Exchange (ETDEWEB)
El-Bassiouny, A F [Mathematics Department, Faculty of Science, Benha University, Benha 13518 (Egypt); El-kholy, S [Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-kom (Egypt)], E-mail: atef_elbassiouny@yahoo.com
2010-01-15
The primary and subharmonic resonances of a nonlinear single-degree-of-freedom (SDOF) system under feedback control with a time delay have been studied by means of an asymptotic perturbation technique. Both external (forcing) and parametric excitations have been included. By means of the averaging method and multiple scales method, two slow-flow equations for the amplitude and phase of the primary and subharmonic resonances and all other parameters are obtained, respectively. The steady state solutions (fixed points) for the original system are investigated. The stability of the fixed points is examined by using the variational method. The effect of the feedback gains, time-delay, the coefficient of cubic term, the coefficients of external and parametric excitations on the steady state responses are investigated and the results are presented as plots of the steady state response amplitude versus the detuning parameter. The results obtained by the two methods are in excellent agreement. There exist saddle node bifurcations for the case of primary resonance and the solutions lose stability for the case of resonance subharmonic.
Directory of Open Access Journals (Sweden)
Eduardo Zlotnik
2014-03-01
Full Text Available OBJECTIVE: Minimally invasive methods are used as alternatives to treat leiomyomas and include uterine artery embolization, which has emerged as a safe, effective method. This study aims to evaluate the magnetic resonance imaging predictors for a reduction in leiomyoma volume in patients undergoing uterine artery embolization. METHODS: This prospective longitudinal study was performed at a university hospital. We followed 50 symptomatic premenopausal women with uterine leiomyomas who underwent uterine artery embolization. We examined 179 leiomyomas among these patients. Magnetic resonance imaging was performed one month before and six months after uterine artery embolization. Two radiologists who specialized in abdominal imaging independently interpreted the images. Main Outcome Measures: The magnetic resonance imaging parameters were the uterus and leiomyomas volumes, their localizations, contrast perfusion pattern and node-to-muscle ratio. RESULTS: Six months after treatment, the average uterine volume reduction was 38.91%, and the leiomyomas were reduced by 55.23%. When the leiomyomas were submucosal and/or had a higher node-to-muscle ratio in the T2 images, the volume reduction was even greater (greater than 50%. Other parameters showed no association. CONCLUSIONS: We conclude that symptomatic uterine leiomyomas in patients undergoing uterine artery embolization exhibit volume reductions greater than 50% by magnetic resonance imaging when the leiomyomas are submucosal and/or had a high node-to-muscle ratio in the T2 images.
Empirical algorithm to estimate the average cosine of underwater light field at 490 nm
Digital Repository Service at National Institute of Oceanography (India)
Talaulikar, M.; Suresh, T.; Desa, E.; Matondkar, S.G.P.; Kumar, T.S.; Lotliker, A.; Inamdar, A.
single optical parameter, performed better compared with other empirical algorithms in determining the average cosine of underwater light field. The absorption coefficient at 490 nm, derived as an application of mu(490), compared well with the synthetic...
Preparation of high viscosity average molecular mass poly-L-lactide
Institute of Scientific and Technical Information of China (English)
ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun
2006-01-01
Poly-L-lactide(PLLA) was synthesized by ring-opening polymerization from high purity L-lactide with tin octoate as initiator, and characterized by means of infrared, and 1H-nuclear magnetic resonance. The influences of initiator concentration,polymerization temperature and polymerization time on the viscosity average molecular mass of PLLA were investigated. The effects of different purification methods on the concentration of initiator and viscosity average molecular mass were also studied. PLLA with a viscosity average molecular mass of about 50.5×104 was obtained when polymerization was conducted for 24 h at 140 ℃ with the molar ratio of monomer to purification initator being 12 000. After purification, the concentration of tin octoate decreases; however,the effect of different purification methods on the viscosity average molecular mass of PLLA is different, and the obtained PLLA is a typical amorphous polymeric material. The crystallinity of PLLA decreases with the increase of viscosity average molecular mass.
What Do s- and p-Wave Neutron Average Radiative Widths Reveal
Energy Technology Data Exchange (ETDEWEB)
Mughabghab, S.F.
2010-04-30
A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.
Spatially coherent surface resonance states derived from magnetic resonances
Wei, Zeyong; Cao, Yang; Wu, Chao; Ren, Jinzhi; Hang, Zhihong; Chen, Hong; Zhang, Daozhong; Chan, C T
2010-01-01
A thin metamaterial slab comprising a dielectric spacer sandwiched between a metallic grating and a ground plane is shown to possess spatially coherent surface resonance states that span a large frequency range and can be tuned by structural and material parameters. They give rise to nearly perfect angle-selective absorption and thus exhibit directional thermal emissivity. Direct numerical simulations show that the metamaterial slab supports spatially coherent thermal emission in a wide frequency range that is robust against structural disorder.
Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012
Energy Technology Data Exchange (ETDEWEB)
Amhis, Y.; et al.
2012-07-01
This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.
Kromen, Wolfgang; Korkusuz, Huedayi; Korkusuz, Yuecel; Esters, Philip; Bauer, Ralf W; Huebner, Frank; Lindemayr, Sebastian; Vogl, Thomas J
2012-12-01
For a definitive diagnosis of myocarditis, different strategies like analysis of late gadolinium enhancement (LGE) in cardiovascular magnetic resonance imaging (CMR) up to invasive endomyocardial biopsy have been applied. The objective of the study was to investigate inflammatory changes like left ventricular wall thickening and increase of ventricular mass and to quantitatively analyse their correlation with extent and localisation of myocardial damage in CMR and with subsequent changes of serological markers in an animal model of an experimental autoimmune myocarditis (EAM). In the current study, an EAM was induced in 10 male Lewis rats, 10 rats served as control. On day 21, animals were examined with four CMR protocols to assess the extent of LGE in a 12 segment model of the rat heart. Left myocardial wall thickness and mass and histological grade of inflammation were measured to determine localisation and severity of the induced myocarditis. Depending on the CMR sequence, LGE was mostly found in the left anterior (9.6%) and left lateral (8.7%) myocardial wall segments. Wall thickness correlated with the LGE area in CMR imaging and the histopathological severity of myocarditis for the left lateral myocardial wall segment. In a similar way, the heart mass correlated to the extent of LGE for the left lateral segment. We conclude that in our animal model left ventricular wall thickness and mass reflect the severity of myocardial changes in myocarditis and that the EAM rat model is well suited for further investigations of myocarditis.
How do partly omitted control variables influence the averages used in meta-analysis in economics?
DEFF Research Database (Denmark)
Paldam, Martin
of the primary studies. They are the POCs, partly omitted controls, of the meta-study. Some POCs are ceteris paribus controls chosen to make results from different data samples comparable. They should differ. Others are model variables. They may be true and should always be included, while others are false......Meta regression analysis is used to extract the best average from a set of N primary studies of one economic parameter. Three averages of the N-set are discussed: The mean, the PET meta-average and the augmented meta-average. They are affected by control variables that are used in some...... and should always be excluded, if only we knew. If POCs are systematically included for their effect on the estimate of the parameter, it gives publication bias. It is corrected by the meta-average. If a POC is randomly included, it gives a bias, which is corrected by the augmented meta-average. With many...
De Luca, G.; Magnus, J.R.
2011-01-01
This article is concerned with the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the Weighted Average Least Squa
Bootstrapping Density-Weighted Average Derivatives
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael
Employing the "small bandwidth" asymptotic framework of Cattaneo, Crump, and Jansson (2009), this paper studies the properties of a variety of bootstrap-based inference procedures associated with the kernel-based density-weighted averaged derivative estimator proposed by Powell, Stock, and Stoker......" variance estimator derived from the "small bandwidth" asymptotic framework. The results of a small-scale Monte Carlo experiment are found to be consistent with the theory and indicate in particular that sensitivity with respect to the bandwidth choice can be ameliorated by using the "robust...
The average free volume model for liquids
Yu, Yang
2014-01-01
In this work, the molar volume thermal expansion coefficient of 59 room temperature ionic liquids is compared with their van der Waals volume Vw. Regular correlation can be discerned between the two quantities. An average free volume model, that considers the particles as hard core with attractive force, is proposed to explain the correlation in this study. A combination between free volume and Lennard-Jones potential is applied to explain the physical phenomena of liquids. Some typical simple liquids (inorganic, organic, metallic and salt) are introduced to verify this hypothesis. Good agreement from the theory prediction and experimental data can be obtained.
Fluctuations of wavefunctions about their classical average
Bénet, L; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H
2003-01-01
Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.
Sparsity averaging for radio-interferometric imaging
Carrillo, Rafael E; Wiaux, Yves
2014-01-01
We propose a novel regularization method for compressive imaging in the context of the compressed sensing (CS) theory with coherent and redundant dictionaries. Natural images are often complicated and several types of structures can be present at once. It is well known that piecewise smooth images exhibit gradient sparsity, and that images with extended structures are better encapsulated in wavelet frames. Therefore, we here conjecture that promoting average sparsity or compressibility over multiple frames rather than single frames is an extremely powerful regularization prior.
A sixth order averaged vector field method
Li, Haochen; Wang, Yushun; Qin, Mengzhao
2014-01-01
In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order =5. With the help of the new substitution law, we derive a B-series integrator extending the averaged vector field (AVF) method to high order. The new integrator turns out to be of order six and exactly preserves energy for Hamiltonian systems. Numerical experiments are presented to demonstrate the accuracy and the energy-preserving property of the s...
Fluctuations of wavefunctions about their classical average
Energy Technology Data Exchange (ETDEWEB)
Benet, L [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Flores, J [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Hernandez-Saldana, H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Izrailev, F M [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Leyvraz, F [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Seligman, T H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico)
2003-02-07
Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.
Grassmann Averages for Scalable Robust PCA
2014-01-01
As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase—“big data” implies “big outliers”. While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA do not scale beyond small-to-medium sized datasets. To address this, we introduce the Grassmann Average (GA), whic...
Average Transient Lifetime and Lyapunov Dimension for Transient Chaos in a High-Dimensional System
Institute of Scientific and Technical Information of China (English)
陈洪; 汤建新; 唐少炎; 向红; 陈新
2001-01-01
The average transient lifetime of a chaotic transient versus the Lyapunov dimension of a chaotic saddle is studied for high-dimensional nonlinear dynamical systems. Typically the average lifetime depends upon not only the system parameter but also the Lyapunov dimension of the chaotic saddle. The numerical example uses the delayed feedback differential equation.
Signal-averaged P wave duration and the dimensions of the atria
DEFF Research Database (Denmark)
Dixen, Ulrik; Joens, Christian; Rasmussen, Bo V;
2004-01-01
Delay of atrial electrical conduction measured as prolonged signal-averaged P wave duration (SAPWD) could be due to atrial enlargement. Here, we aimed to compare different atrial size parameters obtained from echocardiography with the SAPWD measured with a signal-averaged electrocardiogram (SAECG)....
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains
Elazab, Ahmed; Wang, Changmiao; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao
2015-01-01
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.
Directory of Open Access Journals (Sweden)
Ahmed Elazab
2015-01-01
Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.
MACHINE PROTECTION FOR HIGH AVERAGE CURRENT LINACS
Energy Technology Data Exchange (ETDEWEB)
Jordan, Kevin; Allison, Trent; Evans, Richard; Coleman, James; Grippo, Albert
2003-05-01
A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high current accelerators. The Jefferson Lab FEL [1,2] has multiple electron beam paths and many different types of diagnostic insertion devices. The MPS [3] needs to monitor both the status of these devices and the magnet settings which define the beam path. The matrix of these devices and beam paths are programmed into gate arrays, the output of the matrix is an allowable maximum average power limit. This power limit is enforced by the drive laser for the photocathode gun. The Beam Loss Monitors (BLMs), RF status, and laser safety system status are also inputs to the control matrix. There are 8 Machine Modes (electron path) and 8 Beam Modes (average power limits) that define the safe operating limits for the FEL. Combinations outside of this matrix are unsafe and the beam is inhibited. The power limits range from no beam to 2 megawatts of electron beam power.
Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-10-01
The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.
Local average height distribution of fluctuating interfaces
Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel V.
2017-01-01
Height fluctuations of growing surfaces can be characterized by the probability distribution of height in a spatial point at a finite time. Recently there has been spectacular progress in the studies of this quantity for the Kardar-Parisi-Zhang (KPZ) equation in 1 +1 dimensions. Here we notice that, at or above a critical dimension, the finite-time one-point height distribution is ill defined in a broad class of linear surface growth models unless the model is regularized at small scales. The regularization via a system-dependent small-scale cutoff leads to a partial loss of universality. As a possible alternative, we introduce a local average height. For the linear models, the probability density of this quantity is well defined in any dimension. The weak-noise theory for these models yields the "optimal path" of the interface conditioned on a nonequilibrium fluctuation of the local average height. As an illustration, we consider the conserved Edwards-Wilkinson (EW) equation, where, without regularization, the finite-time one-point height distribution is ill defined in all physical dimensions. We also determine the optimal path of the interface in a closely related problem of the finite-time height-difference distribution for the nonconserved EW equation in 1 +1 dimension. Finally, we discuss a UV catastrophe in the finite-time one-point distribution of height in the (nonregularized) KPZ equation in 2 +1 dimensions.
Intensity contrast of the average supergranule
Langfellner, J; Gizon, L
2016-01-01
While the velocity fluctuations of supergranulation dominate the spectrum of solar convection at the solar surface, very little is known about the fluctuations in other physical quantities like temperature or density at supergranulation scale. Using SDO/HMI observations, we characterize the intensity contrast of solar supergranulation at the solar surface. We identify the positions of ${\\sim}10^4$ outflow and inflow regions at supergranulation scales, from which we construct average flow maps and co-aligned intensity and magnetic field maps. In the average outflow center, the maximum intensity contrast is $(7.8\\pm0.6)\\times10^{-4}$ (there is no corresponding feature in the line-of-sight magnetic field). This corresponds to a temperature perturbation of about $1.1\\pm0.1$ K, in agreement with previous studies. We discover an east-west anisotropy, with a slightly deeper intensity minimum east of the outflow center. The evolution is asymmetric in time: the intensity excess is larger 8 hours before the reference t...
Directory of Open Access Journals (Sweden)
Hilmi Volkan Demir
2009-11-01
Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.
Roy, Arpita; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni
2016-01-14
The formation of pluronic triblock copolymer (F127)-cholesterol-based niosome and its interaction with sugar (sucrose) molecules have been investigated. The morphology of F127-cholesterol -based niosome in the presence of sucrose has been successfully demonstrated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) techniques. The DLS profiles and TEM images clearly suggest that the size of the niosome aggregates increases significantly in the presence of sucrose. In addition to structural characterization, a detailed comparative fluorescence resonance energy transfer (FRET) study has been carried out in these F127-containing aggregates, involving coumarin 153 (C153) as donor (D) and rhodamine 6G (R6G) as an acceptor (A) to monitor the dynamic heterogeneity of the systems. Besides, time-resolved anisotropy and fluorescence correlation spectroscopy measurements have been carried out to monitor the rotational and lateral diffusion motion in these F127-cholesterol-based aggregates using C153 and R6G, respectively. During the course of FRET study, we have observed multiple time constants of FRET inside the F127-cholesterol-based niosomes in contrast with the F127 micelle. This corresponds to the presence of more than one preferential donor-acceptor (D-A) distance in niosomes than in F127 micelle. FRET has also been successfully used to probe the effect of sucrose on the morphology of F127-cholesterol-based niosome. In the presence of sucrose, the time constant of FRET further increases as the D-A distances increase in sucrose-decorated niosome. Finally, the excitation-wavelength-dependent FRET studies have indicated that as the excitation of donor molecules varies from 408 to 440 nm the contribution of the faster rise component of the acceptor enhances considerably, which clearly establishes the dynamics heterogeneity of both systems. Our findings also indicate that FRET is completely intravesicular in nature in these block copolymer
DEFF Research Database (Denmark)
Chon, K H; Hoyer, D; Armoundas, A A;
1999-01-01
part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...
Low Average Sidelobe Slot Array Antennas for Radiometer Applications
Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.
2012-01-01
In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E
Modeling noisy resonant system response
Weber, Patrick Thomas; Walrath, David Edwin
2017-02-01
In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.
Averaged Null Energy Condition from Causality
Hartman, Thomas; Tajdini, Amirhossein
2016-01-01
Unitary, Lorentz-invariant quantum field theories in flat spacetime obey microcausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy, $\\int du T_{uu}$, must be positive. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to $n$-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form $\\int du X_{uuu\\cdots u} \\geq 0$. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment ...
Geographic Gossip: Efficient Averaging for Sensor Networks
Dimakis, Alexandros G; Wainwright, Martin J
2007-01-01
Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log ...
Bivariate phase-rectified signal averaging
Schumann, Aicko Y; Bauer, Axel; Schmidt, Georg
2008-01-01
Phase-Rectified Signal Averaging (PRSA) was shown to be a powerful tool for the study of quasi-periodic oscillations and nonlinear effects in non-stationary signals. Here we present a bivariate PRSA technique for the study of the inter-relationship between two simultaneous data recordings. Its performance is compared with traditional cross-correlation analysis, which, however, does not work well for non-stationary data and cannot distinguish the coupling directions in complex nonlinear situations. We show that bivariate PRSA allows the analysis of events in one signal at times where the other signal is in a certain phase or state; it is stable in the presence of noise and impassible to non-stationarities.
Asymmetric network connectivity using weighted harmonic averages
Morrison, Greg; Mahadevan, L.
2011-02-01
We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.
Average Gait Differential Image Based Human Recognition
Directory of Open Access Journals (Sweden)
Jinyan Chen
2014-01-01
Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.
Fabrication of MEMS Resonators in Thin SOI
Grogg, D; Ionescu, Adrian Mihai
2008-01-01
A simple and fast process for micro-electromechanical (MEM) resonators with deep sub-micron transduction gaps in thin SOI is presented in this paper. Thin SOI wafers are important for advanced CMOS technology and thus are evaluated as resonator substrates for future co-integration with CMOS circuitry on a single chip. As the transduction capacitance scales with the resonator thickness, it is important to fabricate deep sub-micron trenches in order to achieve a good capacitive coupling. Through the combination of conventional UV-lithography and focused ion beam (FIB) milling the process needs only two lithography steps, enabling therefore a way for fast prototyping of MEM-resonators. Different FIB parameters and etching parameters are compared in this paper and their effect on the process are reported.
Resonance and Neck Length for a Spherical Resonator
Directory of Open Access Journals (Sweden)
Emily Corning
2011-06-01
Full Text Available The relationship between the neck length of a spherical resonator and its period of fundamental resonance was investigated. This was done by measuring the frequency of fundamental resonance of the resonator at 6 different neck lengths. It was found that its resonance resembled Helmholtz resonance but was not that of ideal Helmholtz resonance.
Hybrid simulation of electron cyclotron resonance heating
Ropponen, T; Suominen, P; Koponen, T K; Kalvas, T; Koivisto, H
2008-01-01
Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.
Cyclotron resonance studies on InAs/GaSb heterostructures
Energy Technology Data Exchange (ETDEWEB)
Petchsingh, Cattleya
2002-07-01
Far-infrared cyclotron resonance is used to study the magneto-optical properties of semimetallic InAs/GaSb heterostructures. Spatially separated two-dimensional electron and hole gases coexist in this 'broken-gap' type-ll system due to charge transfer across the interfaces. Hybridisations of the overlapping electron and hole wavefunctions are investigated experimentally in samples of varying growth parameters. A self-consistent 8-band k{center_dot}p model is used to assist in the interpretation of experimental results. In samples subjected to varying magnetic field, hybridisations result in oscillations of cyclotron resonance mass, amplitude and linewidth, accompanied by transition splittings in the vicinity of Landau level anticrossings. Asymmetries introduced by InSb interface biasing enhance these effects. Comparison of samples with varying confinement energies (at specified magnetic field) shows effective mass enhancement greater than the standard nonparabolicity effect. The mass enhancement increases with hybridisation strength. A simple two-band minigap model gives good agreement with experimental results. Tilled field measurements show that hybridisation suppresses electron cyclotron resonance transitions. Increased resonance amplitudes at higher temperatures are therefore ascribed to reduced hybridisation strength. Strong evidence of Coulomb interactions between different single particle transitions shows the interactions increasing with temperature, leading to a single motion-averaged transition at sufficiently high temperature. High magnetic field measurements near the quantum limit show transition features generally consistent with electron-hole Landau level hybridisation. Multiple splittings in this field range (14-27T) are ascribed to spin splitting and subband coupling effects. Breaking of selection rules is suggested to be due to inherent band asymmetries in the samples. For narrow well samples, some transition features remain unexplained
Average Dissipative and Dipole Forces on a Three-Level Atom in a Laguerre-Gaussian Beam
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Ling; YIN Jian-Ping
2005-01-01
@@ By means of the optical Bloch equations based on the atomic density matrix elements, the general expressions of the average dissipative force, dipole force and the mechanical torque acting on a A-configuration three-level atom in a linearly-polarized Laguerre-Gaussian beam (LGB) with an angular momentum of lh are derived, and the general properties of the average dissipative and dipole force on the three-level atom in the linearly-polarized LGB are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Our study also shows that all of general expressions on the three-level atom will be simplified to those on the two-level atom in the approximation of large detuning.
Experimental study of resonance fiber optic gyroscope employing a dual-ring resonator
Fan, Yue; Wang, Wei
2016-09-01
A dual-ring resonator which is available to alter the full width at half maximum (FWHM) without altering the free spectrum range (FSR) for practice applications is analyzed theoretically and set up in practice. The parameters of the dual-ring resonator have been optimized in simulation, the resonance depth and the dynamic range are enhanced. The prototype is set up with single mode fiber of 8 meter and two 95 : 5 couplers for open loop experiment. The FWHM of the dual-ring resonator is demonstrated less than 1.5MHz and the fineness is calculated to be 37 during the frequency sweeping experiment. The frequency locking experiment with demodulation curve method has been accomplished, and the locking time achieves less than 40ms. All these provide a basic reference for optimizing the resonance fiber optic gyro based on dual-ring resonator.
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)
2008-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Kepler-16b: a resonant survivor
Popova, E A
2012-01-01
The planet Kepler-16b is known to follow a circumbinary orbit around a double system of two main-sequence stars. We construct stability diagrams in the "pericentric distance - eccentricity" plane, which show that Kepler-16b is in a hazardous vicinity to the chaos domain - just between the instability "teeth" in the space of orbital parameters. Kepler-16b survives, because it is close to the half-integer 11/2 orbital resonance with the central binary. The neighbouring resonance cells are vacant, because they are "purged" by Kepler-16b, due to overlap of first-order resonances with the planet.
Resonance enhancement by suitably chosen frequency detuning
Dutykh, Denys
2014-01-01
In this Letter we report new effects of resonance detuning on various dynamical parameters of a generic 3-wave system. Namely, for suitably chosen values of detuning the variation range of amplitudes can be significantly wider than for exact resonance. Moreover, the range of energy variation is not symmetric with respect to the sign of the detuning. Finally, the period of the energy oscillation exhibits non-monotonic dependency on the magnitude of detuning. These results have important theoretical implications where nonlinear resonance analysis is involved, such as geophysics, plasma physics, fluid dynamics. Numerous practical applications are envisageable e.g. in energy harvesting systems.
Subwavelength resonant nanostructured films for sensing
Energy Technology Data Exchange (ETDEWEB)
Alvine, Kyle J.; Bernacki, Bruce E.; Suter, Jonathan D.; Bennett, Wendy D.; Edwards, Daniel L.; Mendoza, Albert
2013-05-29
We present a novel subwavelength nanostructure architecture that may be utilized for optical standoff sensing applications. The subwavelength structures are fabricated via a combination of nanoimprint lithography and metal sputtering to create metallic nanostructured films encased within a transparent media. The structures are based on the open ring resonator (ORR) architecture and have their analog in resonant LC circuits, which display a resonance frequency that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any perturbation of the nanostructured films due to chemical or environmental effects can alter the inductive or capacitive behavior of the subwavelength features, which can shift the resonant frequency and provide an indication of the external stimulus. This shift in resonance can be interrogated remotely either actively using either laser illumination or passively using hyperspectral or multispectral sensing. These structures may be designed to be either anisotropic or isotropic, which can also provide polarization-sensitive interrogation. Due to the nanometer-scale of the structures, they can be tailored to be optically responsive in the visible or near infrared spectrum with a highly reflective resonant peak that is dependent solely on structural dimensions and material characteristics. We present experimental measurements of the optical response of these structures as a function of wavelength, polarization, and incident angle demonstrating the resonant effect in the near infrared region. Numerical modeling data showing the effect of different fabrication parameters such as structure parameters are also discussed.
Resonance neutron capture in {sup 60}Ni below 450 keV
Energy Technology Data Exchange (ETDEWEB)
Corvi, F.; Fioni, G. E-mail: gfioni@cea.fr; Gunsing, F.; Mutti, P.; Zanini, L
2002-01-28
High-resolution neutron capture cross-section measurements on {sup 60}Ni have been performed at the Geel Linear Accelerator in the energy range from 1 to 450 keV. An experimentally determined weighting function, obtained by a total energy detection set-up, has been applied to the measured capture spectra. The parameters of 275 resonances have been determined in a recent reanalysis using the FANAC R-matrix shape fitting code. Accurate values of the maxwellian-averaged capture cross section for stellar temperatures ranging from kT=5 to 100 keV, corresponding to different scenarios of s-process stellar nucleosynthesis, have been calculated. The distributions of partial radiative widths for s- and p-wave resonances have been derived. A correlation of 0.64 between capture and reduced neutron widths is compatible with the presence of nonstatistical effects in the capture of {sup 60}Ni.
Resonance neutron capture in sup 6 sup 0 Ni below 450 keV
Corvi, F; Gunsing, F; Mutti, P; Zanini, L
2002-01-01
High-resolution neutron capture cross-section measurements on sup 6 sup 0 Ni have been performed at the Geel Linear Accelerator in the energy range from 1 to 450 keV. An experimentally determined weighting function, obtained by a total energy detection set-up, has been applied to the measured capture spectra. The parameters of 275 resonances have been determined in a recent reanalysis using the FANAC R-matrix shape fitting code. Accurate values of the maxwellian-averaged capture cross section for stellar temperatures ranging from kT=5 to 100 keV, corresponding to different scenarios of s-process stellar nucleosynthesis, have been calculated. The distributions of partial radiative widths for s- and p-wave resonances have been derived. A correlation of 0.64 between capture and reduced neutron widths is compatible with the presence of nonstatistical effects in the capture of sup 6 sup 0 Ni.
A new approach for Bayesian model averaging
Institute of Scientific and Technical Information of China (English)
TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun
2012-01-01
Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.
Calculating Free Energies Using Average Force
Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.
High-frequency averaging in semi-classical Hartree-type equations
Giannoulis, Johannes; Sparber, Christof
2009-01-01
We investigate the asymptotic behavior of solutions to semi-classical Schroedinger equations with nonlinearities of Hartree type. For a weakly nonlinear scaling, we show the validity of an asymptotic superposition principle for slowly modulated highly oscillatory pulses. The result is based on a high-frequency averaging effect due to the nonlocal nature of the Hartree potential, which inhibits the creation of new resonant waves. In the proof we make use of the framework of Wiener algebras.
High -Factor Wideband Resonators for Millimeter and Submillimeter Applications
Directory of Open Access Journals (Sweden)
Tatiana Gaevskaya
2012-01-01
Full Text Available Physical principles for designing a multipurpose set of high -factor quasioptical and corrugated resonators with automatic frequency tuning (>6×104, VSWR<1.6 that can operate in the frequency band from 37.5 to 400 GHz are presented. The electrodynamical calculation methods of resonators, the constructive particularities of resonators, the methods and results of the experimental researches are considered. This set of resonators can be used as a universal measuring resonator for measuring radio-signal fluctuations and parameters of different media, in particular, nanotube composites and high-temperature superconductors.
Quantum Effect in Mesoscopic Open Electron Resonator
Institute of Scientific and Technical Information of China (English)
YAN Zhan-Yuan; ZHANG Xiao-Hong; HAN Ying-Hui
2008-01-01
The open electron resonator is a mesoscopic device that has attracted considerable attention due to its remarkable behavior: conductance oscillations. In this paper, using an improved quantum theory to mesoscopic circuits developed recently by Li and Chen, the mesoscopic electron resonator is quantized based on the fundamental fact that the electric charge takes discrete value. With presentation transformation and unitary transformation, the Schrodinger equation becomes an standard Mathieu equation. Then, the detailed energy spectrum and wave functions in the system are obtained, which will be helpful to the observation of other characters of electron resonator. The average of currents and square of the current are calculated, the results show the existence of the current fluctuation, which causes the noise in the circuits, the influence of inductance to the noise is discussed. With the results achieved, the stability characters of mesoscopic electron resonator are studied firstly, these works would be benefit to the design and control of integrate circuit.
Zielinski, M.L.; van Lenthe, J.H.
2008-01-01
The resonating block localize wave function (RBLW) method is introduced, a resonating modification of the block localized wave functions introduced by Mo et al. [Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687].This approach allows the evaluation of resonance energies following Pauling’s r
Udayashankar, Paniveni
2016-07-01
I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.
Averaged-null-energy condition for electromagnetism in Minkowski spacetime
Energy Technology Data Exchange (ETDEWEB)
Folacci, A. (Universite de Corse, Faculte des Sciences, Boite Postale 52, 20250 Corti (France))
1992-09-15
We show, on four-dimensional Minkowski spacetime, that {l angle}{psi}{vert bar}{ital T}{sub {mu}{nu}}{vert bar}{psi}{r angle}, the renormalized expectation value in a general quantum state {vert bar}{psi}{r angle} of the stress-energy tensor for electromagnetism, satisfies the averaged-null-energy condition, i.e., that {integral}{ital d}{lambda}{l angle}{psi}{vert bar}{ital T}{sub {mu}{nu}}{vert bar}{psi}{r angle}{ital t}{sup {mu}}{ital t{nu}}{ge}0 where this integral is along complete null geodesics with an affine parameter {lambda} and tangent vector {ital t}{sup {mu}}.
Ocean tides in GRACE monthly averaged gravity fields
DEFF Research Database (Denmark)
Knudsen, Per
2003-01-01
The GRACE mission will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more subtle climate signals which GRACE...... aims at. In this analysis the results of Knudsen and Andersen (2002) have been verified using actual post-launch orbit parameter of the GRACE mission. The current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower than 47. The accumulated tidal errors may affect...... the GRACE data up to harmonic degree 60. A study of the revised alias frequencies confirm that the ocean tide errors will not cancel in the GRACE monthly averaged temporal gravity fields. The S-2 and the K-2 terms have alias frequencies much longer than 30 days, so they remain almost unreduced...
Spatial Games Based on Pursuing the Highest Average Payoff
Institute of Scientific and Technical Information of China (English)
YANG Han-Xin; WANG Bing-Hong; WANG Wen-Xu; RONG Zhi-Hai
2008-01-01
We propose a strategy updating mechanism based on pursuing the highest average payoff to investigate the prisoner's dilemma game and the snowdrift game. We apply the new rule to investigate cooperative behaviours on regular, small-world, scale-free networks, and find spatial structure can maintain cooperation for the prisoner's dilemma game. In the snowdrift game, spatial structure can inhibit or promote cooperative behaviour which depends on payoff parameter. We further study cooperative behaviour on scale-free network in detail. Interestingly, non-monotonous behaviours observed on scale-free network with middle-degree individuals have the lowest cooperation level. We also find that large-degree individuals change their strategies more frequently for both games.
Medium-modified average multiplicity and multiplicity fluctuations in jets
Energy Technology Data Exchange (ETDEWEB)
Perez-Ramos, Redamy [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2009-05-15
The energy evolution of average multiplicities and multiplicity fluctuations in jets produced in heavy-ion collisions is investigated from a toy QCD-inspired model. In this model, we use modified splitting functions accounting for medium-enhanced radiation of gluons by a fast parton which propagates through the quark gluon plasma. The leading contribution of the standard production of soft hadrons is enhanced by a factor {radical}(N{sub s}) while next-to-leading order (NLO) corrections are suppressed by 1/{radical}(N{sub s}), where the parameter N{sub s}>1 accounts for the induced-soft gluons in the medium. Our results for such global observables are cross-checked and compared with their limits in the vacuum. (orig.)
Forecasting natural gas consumption in China by Bayesian Model Averaging
Directory of Open Access Journals (Sweden)
Wei Zhang
2015-11-01
Full Text Available With rapid growth of natural gas consumption in China, it is in urgent need of more accurate and reliable models to make a reasonable forecast. Considering the limitations of the single model and the model uncertainty, this paper presents a combinative method to forecast natural gas consumption by Bayesian Model Averaging (BMA. It can effectively handle the uncertainty associated with model structure and parameters, and thus improves the forecasting accuracy. This paper chooses six variables for forecasting the natural gas consumption, including GDP, urban population, energy consumption structure, industrial structure, energy efficiency and exports of goods and services. The results show that comparing to Gray prediction model, Linear regression model and Artificial neural networks, the BMA method provides a flexible tool to forecast natural gas consumption that will have a rapid growth in the future. This study can provide insightful information on natural gas consumption in the future.
Acoustic Resonance between Ground and Thermosphere
Directory of Open Access Journals (Sweden)
M Matsumura
2009-04-01
Full Text Available Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data. The frequencies of the peaks varied with the seasons. This is probably because the vertical temperature profile of the atmosphere varies with the seasons, as does the reflection height of infrasounds. These results indicate that acoustic resonance occurs frequently.
Yearly average performance of the principal solar collector types
Energy Technology Data Exchange (ETDEWEB)
Rabl, A.
1981-01-01
The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.
Average gluon and quark jet multiplicities at higher orders
Energy Technology Data Exchange (ETDEWEB)
Bolzoni, Paolo; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, Anatoly V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics
2013-05-15
We develop a new formalism for computing and including both the perturbative and nonperturbative QCD contributions to the scale evolution of average gluon and quark jet multiplicities. The new method is motivated by recent progress in timelike small-x resummation obtained in the MS factorization scheme. We obtain next-to-next-to-leading-logarithmic (NNLL) resummed expressions, which represent generalizations of previous analytic results. Our expressions depend on two nonperturbative parameters with clear and simple physical interpretations. A global fit of these two quantities to all available experimental data sets that are compatible with regard to the jet algorithms demonstrates by its goodness how our results solve a longstanding problem of QCD. We show that the statistical and theoretical uncertainties both do not exceed 5% for scales above 10 GeV. We finally propose to use the jet multiplicity data as a new way to extract the strong-coupling constant. Including all the available theoretical input within our approach, we obtain {alpha}{sub s}{sup (5)}(M{sub Z})=0.1199{+-}0.0026 in the MS scheme in an approximation equivalent to next-to-next-to-leading order enhanced by the resummations of ln(x) terms through the NNLL level and of ln Q{sup 2} terms by the renormalization group, in excellent agreement with the present world average.
BeppoSAX average spectra of Seyfert galaxies
Malizia, A; Stephen, J B; Cocco, G D; Fiore, F; Dean, A J
2003-01-01
We have studied the average 3-200 keV spectra of Seyfert galaxies of type 1 and 2, using data obtained with BeppoSAX. The average Seyfert 1 spectrum is well-fitted by a power law continuum with photon spectral index Gamma~1.9, a Compton reflection component R~0.6-1 (depending on the inclination angle between the line of sight and the reflecting material) and a high-energy cutoff at around 200 keV; there is also an iron line at 6.4 keV characterized by an equivalent width of 120 eV. Seyfert 2's on the other hand show stronger neutral absorption (NH=3-4 x 10^{22} atoms cm-2) as expected but are also characterized by an X-ray power law which is substantially harder (Gamma~1.75) and with a cut-off at lower energies (E_c~130 keV); the iron line parameters are instead substantially similar to those measured in type 1 objects. There are only two possible solutions to this problem: to assume more reflection in Seyfert 2 galaxies than observed in Seyfert 1 or more complex absorption than estimated in the first instanc...
Oppugning the assumptions of spatial averaging of segment and joint orientations.
Pierrynowski, Michael Raymond; Ball, Kevin Arthur
2009-02-09
Movement scientists frequently calculate "arithmetic averages" when examining body segment or joint orientations. Such calculations appear routinely, yet are fundamentally flawed. Three-dimensional orientation data are computed as matrices, yet three-ordered Euler/Cardan/Bryant angle parameters are frequently used for interpretation. These parameters are not geometrically independent; thus, the conventional process of averaging each parameter is incorrect. The process of arithmetic averaging also assumes that the distances between data are linear (Euclidean); however, for the orientation data these distances are geodesically curved (Riemannian). Therefore we question (oppugn) whether use of the conventional averaging approach is an appropriate statistic. Fortunately, exact methods of averaging orientation data have been developed which both circumvent the parameterization issue, and explicitly acknowledge the Euclidean or Riemannian distance measures. The details of these matrix-based averaging methods are presented and their theoretical advantages discussed. The Euclidian and Riemannian approaches offer appealing advantages over the conventional technique. With respect to practical biomechanical relevancy, examinations of simulated data suggest that for sets of orientation data possessing characteristics of low dispersion, an isotropic distribution, and less than 30 degrees second and third angle parameters, discrepancies with the conventional approach are less than 1.1 degrees . However, beyond these limits, arithmetic averaging can have substantive non-linear inaccuracies in all three parameterized angles. The biomechanics community is encouraged to recognize that limitations exist with the use of the conventional method of averaging orientations. Investigations requiring more robust spatial averaging over a broader range of orientations may benefit from the use of matrix-based Euclidean or Riemannian calculations.
Ovenized microelectromechanical system (MEMS) resonator
Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang
2014-03-11
An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.
An alternative method to specify the degree of resonator stability
Indian Academy of Sciences (India)
Jogy George; K Ranganathan; T P S Nathan
2007-04-01
We present an alternative method to specify the stability of real stable resonators. We introduce the degree of optical stability or the parameter, which specify the stability of resonators in a numerical scale ranging from 0 to 100%. The value of zero corresponds to marginally stable resonator and < 0 corresponds to unstable resonator. Also, three definitions of the S parameter are provided: in terms of &, & R0 and 12. It may be noticed from the present formalism that the maximum degree of stability with = 1 automatically corresponds to 12 = 1/2. We also describe the method to measure the parameter from the output beam characteristics and parameter. A possible correlation between the parameter and the misalignment tolerance is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Gribble, Robert F [Los Alamos National Laboratory
2009-01-01
This paper will present operational data and performance parameters of the newest generation polyphase resonant high voltage converter modulator (HVCM) as developed and delivered to the KAERI 100 MeV ''PEFP'' accelerator [1]. The KAERI design realizes improvements from the SNS and SLAC designs [2]. To improve the IGBT switching performance at 20 kHz for the KAERI system, the HVCM utilizes the typical zero-voltage-switching (ZVS) at turn on and as well as artificial zero-current-switching (ZCS) at turn-off. The new technique of artificial ZCS technique should result in a 6 fold reduction of IGBT switching losses (3). This improves the HCVM conversion efficiency to better than 95% at full average power, which is 500 kW for the KAERI two klystron 105 kV, 50 A application. The artificial ZCS is accomplished by placing a resonant RLC circuit across the input busswork to the resonant boost transformer. This secondary resonant circuit provides a damped ''kick-back'' to assist in IGBT commutation. As the transformer input busswork is extremely low inductance (< 10 nH), the single RLC network acts like it is across each of the four IGBT collector-emitter terminals of the H-bridge switching network. We will review these topological improvements and the overall system as delivered to the KAERI accelerator and provide details of the operational results.
Active Control of the Parametric Resonance in the Modified Rayleigh-Duffing Oscillator
Miwadinou, C H; Orou, J B Chabi
2013-01-01
The present paper examines the active control of parametric resonance in modified Rayleigh-Duffing oscillator. We used the method of averaging to obtain steady-state solutions. We have found the critical value of the parametrical amplitude which indicates the boundary layer where the control is efficient in reducing the amplitude vibration. We find also the effects of excitation parameters and time-delay on dynamical of this system with the principal parametric resonance. We obtain also for this oscillators the Hopf bifurcation or saddle-node bifurcation for certains values of parametric parameters and time-delay and we have studied the influence of parameter $k_2$ which is one parameter which modify the ordinary Rayleigh-Duffing oscillator. We have discussed the appropriate choice of the time-delay and control gain. We finally studied the stability of fixed point and it is found that the appropriate choice of the time-delay can broaden the stable region of the non-trivial steady-state solutions enhance the c...
Hearing Office Average Processing Time Ranking Report, February 2016
Social Security Administration — A ranking of ODAR hearing offices by the average number of hearings dispositions per ALJ per day. The average shown will be a combined average for all ALJs working...
Magnetic resonance energy and topological resonance energy.
Aihara, Jun-Ichi
2016-04-28
Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference.
2010-07-01
... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average...
Purcell factor of Mie resonators featuring electric and magnetic modes
Zambrana-Puyalto, Xavier
2015-01-01
We present a modal approach to compute the Purcell factor in Mie resonators exhibiting both electric and magnetic resonances. The analytic expressions of the normal modes are used to calculate the effective volumes. We show that important features of the effective volume can be predicted thanks to the translation-addition coefficients of a displaced dipole. Using our formalism, it is easy to see that, in general, the Purcell factor of Mie resonators is not dominated by a single mode, but rather by a large superposition. Finally we consider a silicon resonator homogeneously doped with electric dipolar emitters, and we show that the average electric Purcell factor dominates over the magnetic one.
Institute of Scientific and Technical Information of China (English)
吕永灿; 林桦; 杨化承; 罗咏
2013-01-01
To track the given sinusoidal current under stationary frame and suppress the effect of the low harmonics in the grid, a multi-resonant proportional resonant (PR) controller was adopted for pulse width modulation (PWM) converter with LCL filter based on capacitor current feedback active damping. Because the system is of high order, many parameters and complicated, the effects of the control parameters on the current-loop performance were investigated with frequency theory, i.e. the stability, steady-state error and phase margin. Based on this, a decoupling-simplified analytic design method was proposed. According to the requests of the stability, steady-state error and phase margin, the capacitor-current-feedback coefficient, the relative resonant gain factor and the proportional factor could be designed separately. The proposed method uses the analytic method and simplifies the couple of the parameters without trial-and-error procedure. Finally, a battery storage power conversion system (PCS) was built. Experiment results verify the effectiveness of the proposed design method.%基于电容电流反馈有源阻尼的LCL型脉宽调制(pulse width modulation，PWM)变换器并网电流控制中，通常采用多谐振比例谐振(proportional resonant，PR)控制器来实现静止αβ坐标系下正弦电流给定的无静差跟踪和抑制电网电压特定次谐波影响。针对电流环控制器复杂、参数多、设计难的问题，采用频率域理论分析电容电流反馈系数和准PR控制器各参数对电流环性能的影响。在此基础上，提出一种电流环控制器参数解耦简化解析设计方法，根据稳定性、稳态误差和相位裕度要求，分别设计电容电流反馈系数及PR控制器相对谐振增益系数和比例系数。该设计方法简化了控制器参数之间的耦合关系，且多采用解析计算，不需要反复试凑。实验结果验证了所提出的参数解耦解析设计方法是可行和有效的。
Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators
Sharma, Bhisham
2015-01-01
We study the low frequency wave propagation behavior of sandwich beams containing periodically embedded internal resonators. A closed form expression for the propagation constant is obtained using a phased array approach and verified using finite element simulations. We show that local resonance and Bragg bandgaps coexist in such a system and that the width of both bandgaps is a function of resonator parameters as well as their periodicity. The interaction between the two bandgaps is studied by varying the local resonance frequency. We find that a single combined bandgap does not exist for this system and that the Bragg bandgaps transition into sub-wavelength bandgaps when the local resonance frequency is above their associated classical Bragg frequency.
Simulation of mosquitoes population dynamic based on rainfall and average daily temperature
Widayani, H.; Seprianus, Nuraini, N.; Arum, J.
2014-02-01
This paper proposed rainfall and average daily temperature approximation functions using least square method with trigonometry polynomial. Error value from this method is better than Fast Fourier Transform method. This approximation is used to accommodate climatic factors into deterministic model of mosquitoes population by constructing a carrying capacity function which contains rainfall and average daily temperature functions. We develop a mathematical model for mosquitoes population dynamic which formulated by Yang et al (2010) with dynamic parameter of a daily rainfall as well as temperature on that model. Two fixed points, trivial and non-trivial, are obtained when constant entomological parameters assumed. Basic offspring number, Q0 as mosquitoes reproduction parameter is constructed. Non-trivial fixed point is stable if and only if Q0 > 1. Numerical simulation shown the dynamics of mosquitoes population significantly affected by rainfall and average daily temperature function.
Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric
2006-07-01
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.
Quark-mass dependence of baryon resonances
Energy Technology Data Exchange (ETDEWEB)
Lutz, M.F.M. [Gesellschaft fuer Schwerionenforschung (GSI), Planck Str. 1, D-64291 Darmstadt (Germany) and Institut fuer Kernphysik, TU Darmstadt, D-64289 Darmstadt (Germany)]. E-mail: m.lutz@gsi.de; Garcia-Recio, C. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Kolomeitsev, E.E. [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nieves, J. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)
2005-05-30
We study the quark-mass dependence of JP=12- s-wave and JP=32- d-wave baryon resonances. Parameter-free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m{pi}=mK{approx}500 MeV the s-wave resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. Similarly the d-wave resonances turn into bound states forming an octet and a decuplet in this limit. A contrasted result is obtained in the 'light' SU(3) limit with m{pi}=mK{approx}140 MeV for which no resonances exist.
Characterization of superconducting transmission line resonators
Energy Technology Data Exchange (ETDEWEB)
Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)
2015-07-01
Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.
Sigma photoproduction in the resonance region
Janssen, S; Debruyne, D; Van Cauteren, T
2002-01-01
A study of p(gamma,K)Sigma processes in an isobar model at tree level is reported. By comparing model calculations to the published SAPHIR data, we explore the possible role of different isospin I=1/2 (N*) and I=3/2 (Delta*) resonances in the reaction dynamics. In our analysis, the inclusion of the ``missing'' D_{13}(1895) resonance does only slightly improve the global description of the Sigma photoproduction data. More convincing signals for the presence of such a ``missing'' resonance emerged in the analysis of the isospin related p(gamma,K+)Lambda reaction. Various implementations of the nonresonant part of the Sigma photoproduction amplitude are presented. The sensitivity of the computed observables and extracted resonance parameters to the uncertainties inherent to the treatment of the nonresonant (background) diagrams are discussed.
Vibrational resonance in the Morse oscillator
Indian Academy of Sciences (India)
K Abirami; S Rajasekar; M A F Sanjuan
2013-07-01
The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies and with $ \\gg $. In the damped and biharmonically driven classical Morse oscillator, by applying a theoretical approach, an analytical expression is obtained for the response amplitude at the low-frequency . Conditions are identified on the parameters for the occurrence of resonance. The system shows only one resonance and moreover at resonance the response amplitude is 1/ where is the coefficient of linear damping. When the amplitude of the high-frequency force is varied after resonance the response amplitude does not decay to zero but approaches a nonzero limiting value. It is observed that vibrational resonance occurs when the sinusoidal force is replaced by a square-wave force. The occurrence of resonance and antiresonance of transition probability of quantum mechanical Morse oscillator is also reported in the presence of the biharmonic external field.
Resonator coupled Josephson junctions; parametric excitations and mutual locking
DEFF Research Database (Denmark)
Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper
1991-01-01
Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...
Towards chains of tunable and nonlinear superconducting microwave resonators
Energy Technology Data Exchange (ETDEWEB)
Fischer, Michael; Wulschner, Friedrich; Schaumburger, Udo; Haeberlein, Max; Fedorov, Kirill; Goetz, Jan; Xie, Edwar [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Schwarz, Manuel; Eder, Peter; Menzel, Edwin; Zhong, Ling; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)
2015-07-01
We present an experimental feasibility study of chains of tunable and nonlinear superconducting microwave resonators within the realm of circuit QED. We describe the fabrication and experimental characterization of the components required to realize nonlinear resonators with tunable anharmonicity, capacitively coupled resonator chains and on-chip parallel plate capacitors. We discuss possible error sources in the fabrication and characterization processes. Furthermore, simulations based on existing theories are performed to identify accessible parameter ranges.
Wadop Ngouongo, Y. J.; Djuidjé Kenmoé, G.; Kofané, T. C.
2017-04-01
This work presents the characterization of stochastic resonance (SR) and stochastic antiresonance (SAR) in terms of hysteresis loop area (HLA). In connection with SR and SAR phenomena, we study the dynamics of a chain of particles coupled by nonlinear springs in a periodic sinusoidal potential. The dependence of the coupling parameter as well as the system size on SR and SAR is analysed. We consider the role played by the nonlinear coupling on the SR. We show that there is a range of coupling parameter where only SAR is observed, after this range the SR can occur, however, there also exists a range where neither SAR nor SR appear. It is noted that the maximum and the minimum of the average input energy increases with the coupling parameter. Also demonstrate that there exists an optimal value of the number of particles N for which the average input energy of the first particle reaches the saturation.
Resonant Behavior of an Augmented Railgun
Bahder, Thomas B
2011-01-01
We consider a lumped circuit model of an augmented electromagnetic railgun that consists of a gun circuit and an augmentation circuit that is inductively coupled to the gun circuit. The gun circuit is driven by a d.c. voltage generator, and the augmentation circuit is driven by an a.c. voltage generator. Using sample parameters, we numerically solve the three non-linear dynamical equations that describe this system. We find that there is a resonant behavior in the armature kinetic energy as a function of the frequency of the voltage generator in the augmentation circuit. This resonant behavior may be exploited to increase armature kinetic energy. Alternatively, if the presence of the kinetic energy resonance is not taken into account, parameters may be chosen that result in less than optimal kinetic energy and efficiency.
Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser
Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.
2013-10-01
We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.
Resonance fluorescence of a cold atom in a high-finesse resonator
Bienert, M; Torres, J M; Zippilli, S; Bienert, Marc; Morigi, Giovanna; Zippilli, Stefano
2007-01-01
We study the spectra of emission of a system composed by an atom, tightly confined inside a high-finesse resonator, when the atom is driven by a laser and is at steady state of the cooling dynamics induced by laser and cavity field. In general, the spectrum of resonance fluorescence and the spectrum at the cavity output contain complementary information about the dynamics undergone by the system. In certain parameter regimes, quantum interference effects between the scattering processes induced by cavity and laser field lead to the selective suppression of features of the resonance fluorescence spectrum, which are otherwise visible in the spectrum of laser-cooled atoms in free space.