Average resonance parameters evaluation for actinides
Energy Technology Data Exchange (ETDEWEB)
Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)
1997-03-01
New evaluated <{Gamma}{sub n}{sup 0}> and
Average resonance parameters of zirconium and molybdenum nuclei
International Nuclear Information System (INIS)
Full sets of average resonance parameters S0, S1, R0', R1', S1,3/2 for zirconium and molybdenum nuclei with natural mixture of isotopes are determined by means of the method designed by authors. The determination is realized from analysis of the average experimental differential cross sections of neutron elastic scattering in the field of energy before 440 keV. Analysis of recommended parameters and some of the literary data had been performed also.
Average resonance parameters of ruthenium and palladium nuclei
International Nuclear Information System (INIS)
Full sets of the average resonance parameters S0, S1, R0', R1', S1,3/2 for ruthenium and palladium nuclei with natural mixture of isotopes are determined by means of the method designed by authors. The determination is realized from analysis of the average experimental differential cross sections of neutron elastic scattering in the field of energy before 440 keV. The analysis of recommended parameters and of some of the literary data had been performed also.
Average resonance parameters of germanium and selenium nuclei
International Nuclear Information System (INIS)
Full sets of average resonance parameters S0, S1, R0', R1', S1,3/2 for germanium and selenium nuclei with natural isotope content are determined. Parameters are received from the analysis of experimental neutron elastic scattering cross sections at energy region up to 440 keV with the help of the method developed by the authors. The analysis of recommended parameters and some literature data is fulfilled as well.
Average resonance parameters of tellurium and neodymium nuclei
International Nuclear Information System (INIS)
Complete sets of average resonance parameters S0, S1, R''0, R''1, and S1,3/2 for tellurium and neodymium nuclei with natural isotope contents have been determined by analyzing the experimental differential cross-sections of neutron elastic scattering in the energy range lower than 440 keV. The data obtained, the recommended parameter values, and some literature data have been analyzed.
International Nuclear Information System (INIS)
The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs
Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections
Tagliente, G; Fujii, K; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Bisterzo, S; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Goncalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tain, J.L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M.C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K
2011-01-01
The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.
International Nuclear Information System (INIS)
New evaluation of average resonance parameters for 32 isotopes of the actinide region (229Th-252Cf) was completed. Obtained values of average level spacings produce a smooth systematics of the main level density parameter. The results were included into the Starter File of the Reference Input Parameter Library (segment Average Neutron Resonances) and officially released on 15 May 1998. The numerical results are available from the Internet (http://iaeand.iaea.or.at/ripl) and on CD-ROM. (author)
Michel Parameters averages and interpretation
International Nuclear Information System (INIS)
The new measurements of Michel parameters in τ decays are combined to world averages. From these measurements model independent limits on non-standard model couplings are derived and interpretations in the framework of specific models are given. A lower limit of 2.5 tan β GeV on the mass of a charged Higgs boson in models with two Higgs doublets can be set and a 229 GeV limit on a right-handed W-boson in left-right symmetric models (95 % c.l.)
International Nuclear Information System (INIS)
The nuclear structure of even-even nuclei in ground state band and other excited bands with non zero band head is collectively built. The level energy in medium mass region deviates below the ideal rotor energy formula EI = AI(I+1). The average scaling coefficient with asymmetric parameter and bAV rises for Er-Os nuclei when N increases from 88 to 104
Partial Averaging Near a Resonance in Planetary Dynamics
Haghighipour, N
1999-01-01
Following the general numerical analysis of Melita and Woolfson (1996), I showed in a recent paper that a restricted, planar, circular planetary system consisting of Sun, Jupiter and Saturn would be captured in a near (2:1) resonance when one would allow for frictional dissipation due to interplanetary medium (Haghighipour, 1998). In order to analytically explain this resonance phenomenon, the method of partial averaging near a resonance was utilized and the dynamics of the first-order partially averaged system at resonance was studied. Although in this manner, the finding that resonance lock occurs for all initial relative positions of Jupiter and Saturn was confirmed, the first-order partially averaged system at resonance did not provide a complete picture of the evolutionary dynamics of the system and the similarity between the dynamical behavior of the averaged system and the main planetary system held only for short time intervals. To overcome these limitations, the method of partial averaging near a res...
Resonance averaged channel radiative neutron capture cross sections
International Nuclear Information System (INIS)
In order to apply Lane amd Lynn's channel capture model in calculations with a realistic optical model potential, we have derived an approximate wave function for the entrance channel in the neutron-nucleus reaction, based on the intermediate interaction model. It is valid in the exterior region as well as the region near the nuclear surface, ans is expressed in terms of the wave function and reactance matrix of the optical model and of the near-resonance parameters. With this formalism the averaged channel radiative neutron capture cross section in the resonance region is written as the sum of three terms. The first two terms correspond to contribution of the optical model real and imaginary parts respectively, and together can be regarded as the radiative capture of the shape elastic wave. The third term is a fluctuation term, corresponding to the radiative capture of the compound elastic wave in the exterior region. On applying this theory in the resonance region, we obtain an expression for the average valence radiative width similar to that of Lane and Mughabghab. We have investigated the magnitude and energy dependence of the three terms as a function of the neutron incident energy. Calculated results for 98Mo and 55Mn show that the averaged channel radiative capture cross section in the giant resonance region of the neutron strength function may account for a considerable fraction of the total (n, γ) cross section; at lower neutron energies a large part of this channel capture arises from the fluctuation term. We have also calculated the partial capture cross section in 98Mo and 55Mn at 2.4 keV and 24 keV, respectively, and compared the 98Mo results with the experimental data. (orig.)
Resonance Averaged Photoionization Cross Sections for Astrophysical Models
Bautista, M A; Pradhan, A K
1997-01-01
We present ground state photoionization cross sections of atoms and ions averaged over resonance structures for photoionization modeling of astrophysical sources. The detailed cross sections calculated in the close-coupling approximation using the R-matrix method, with resonances delineated at thousands of energies, are taken from the Opacity Project database TOPbase and the Iron Project, including new data for the low ionization stages of iron Fe I--V. The resonance-averaged cross sections are obtained by convolving the detailed cross sections with a Gaussian distribution over the autoionizing resonances. This procedure is expected to minimize errors in the derived ionization rates that could result from small uncertainties in computed positions of resonances, while preserving the overall resonant contribution to the cross sections in the important near threshold regions. The detailed photoionization cross sections at low photon energies are complemented by new relativistic distorted-wave calculations for Z1...
Simultaneous inference for model averaging of derived parameters
DEFF Research Database (Denmark)
Jensen, Signe Marie; Ritz, Christian
2015-01-01
Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...
Auto-Parametric Resonance in Cyclindrical Shells Using Geometric Averaging
MCROBIE, F. A.; POPOV, A. A.; THOMPSON, J. M. T.
1999-10-01
A study is presented of internal auto-parametric instabilities in the free non-linear vibrations of a cylindrical shell, focussed on two modes (a concertina mode and a chequerboard mode) whose non-linear interaction breaks the in-out symmetry of the linear vibration theory: the two mode interaction leads to preferred vibration patterns with larger deflection inwards than outwards, and at internal resonance, significant energy transfer occurs between the modes. A Rayleigh-Ritz discretization of the von Kármán-Donnell equations leads to the Hamiltonian and transformation into action-angle co-ordinates followed by averaging provides readily a geometric description of the modal interaction. It was established that the interaction should be most pronounced when there are slightly less than 2√N square chequerboard panels circumferentially, where N is the ratio of shell radius to thickness.
The LIPAR-5 resonance parameter library
International Nuclear Information System (INIS)
The LIPAR-5 neutron resolved resonance parameter library has been elaborated. It contains data for 94 isotopes. The author's evaluations are included in LIPAR. Other authors' results are also included after re-evaluation. The codes used for the evaluation are described briefly. Tables of results are included for every isotope: the boundaries of the resolved resonance region, the numbers of s- and p-resonances, the thermal neutron partial cross-sections and the resonance integrals. The parameters are presented in ENDF/B-6 format. LIPAR is part of the nuclear data library of the MCU Monte Carlo code for neutron transport calculations. LIPAR was verified by comparing the benchmark experiment and Monte Carlo calculation results. (author). 44 refs, 6 tabs
Neutron Resonance Parameters and Covariance Matrix of 239Pu
Energy Technology Data Exchange (ETDEWEB)
Derrien, Herve [ORNL; Leal, Luiz C [ORNL; Larson, Nancy M [ORNL
2008-08-01
In order to obtain the resonance parameters in a single energy range and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the code SAMMY. The most recent experimental data were analyzed or reanalyzed in the energy range thermal to 2.5 keV. The normalization of the fission cross section data was reconsidered by taking into account the most recent measurements of Weston et al. and Wagemans et al. A full resonance parameter covariance matrix was generated. The method used to obtain realistic uncertainties on the average cross section calculated by SAMMY or other processing codes was examined.
Processing of resonance parameter covariance files
International Nuclear Information System (INIS)
The prudent use of resonance parameter covariance information requires the availability of a means of error propagation from the resonance parameters to the cross sections. This work presents an approach to obtaining these so-called resonance parameter sensitivities. The resonance parameter sensitivity methodology developed herein generally provides accurate results when compared to direct recalculations using existing and wellknown cross-section processing codes. However, it has been shown in several cases that self-shielded cross sections can be very nonlinear functions of the basic parameters. For this reason, caution must be used in any study which assumes that a linear relationship exists between a given self-shielded group cross section and its corresponding basic data parameters. The study also has pointed out the need for more approximate techniques which will allow the required sensitivity information to be obtained in a more cost-effective manner. This paper is a synopsis of major work that was completed nearly ten years ago. However, due to the lack of additional development in the field, it remains essentially the current state-of-the-art
Evaluation of resonance parameters of U-233
International Nuclear Information System (INIS)
Compilation of nuclear data is in progress in Japan, and the second edition of Japanese Evaluated Nuclear Data Library (JENDL-2) will be published. The evaluation of the resonance parameters of U-233, which will be included in JENDL-2, has been made. The measured values of the resonance parameters after the publication of BNL-325 (second edition) were collected, and searched by using CINDA-78. The data by Blons, Kolar, Ryabov, and Bergen were used for the present evaluation. Complete set of the data was made for each measurement. Fission and capture areas integrated over energy intervals were obtained. The total, fission and capture cross-sections of U-233 were calculated from the various sets of complete resonance parameters, and shown in figures. The calculated values of total, fission and capture cross-sections based on the parameters by Blons were compared with the measured values. Correction of the resonance parameters with poor reproducibility was able to be made with the NDES system by Nakagawa. The final parameters which will be included in JENDL are shown in tables. (Kato, T.)
Resolved resonance parameters for 236Np
International Nuclear Information System (INIS)
Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236Np experimental fission cross-section in the resolved resonance region. (author)
Measurement of Resonance Parameters of Dy Isotopes
International Nuclear Information System (INIS)
The electron linear accelerator facility at the Rensselaer Polytechnic Institute (RPI) was used to explore neutron interactions with Dysprosium in the energy region from 10 eV to 1 keV. The neutron capture experiments were performed by the TOF method. The neutron capture measurements were made at 25 m with a 16-segment sodium iodide multiplicity detector. High pure isotopic samples of 161Dy, 162Dy, 163Dy, 164Dy as well as one natural dysprosium sample with thickness of 0.508 mm were prepared for this measurement. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. Dysprosium can play an important role in a reactor system in many different capacities. Dysprosium has a very large thermal neutron absorption cross section. The ability to absorb neutrons readily without swelling or contracting over time as well as its high melting point make dysprosium alloyed with special stainless steels attractive for control in nuclear reactor. Therefore, it is necessary to understand dysprosium's effect on the neutron population over all energy regions in a nuclear reactor system, whether it is in the capacity of a fission product poison or a neutron absorbing control rod. The Resonance parameters, neutron width Γn, radiation width Γγ, and resonance energy E0, were extracted from the capture using the SAMMY version 8 multilevel R-matrix Bayesian code. 161Dy was observed new resonance as shown in Figure 1. In this study, new resonance and discarded are determined by the standard of 2σ of uncertainty. As the consequence, there are 19 new resonances introduced that were not include in ENDF/B-VII.0. Twenty resonances present in ENDF/B-VII.0 have been discarded because whether or not they exist is beyond the present measurement. The present results are compared with other evaluated values of ENDF/B-VII.0 and JENDL 4.0. The details of resonance parameters for Dy isotopes are obtained and will be reported in the paper.
Measurement of the average lifetime of the beauty hadrons on the Z resonance
International Nuclear Information System (INIS)
From a fit to the impact parameter distribution of inclusive electron and muons from semileptonic b decay, the average lifetime of beauty hadrons produced in e+ e- collisions on the Z resonance was measured to be: TB=1.543+-0.016(est)+-0.024(sis)ps Combining this measurement with the earlier semileptonic braching ratio B gamma(B→y ν Χ) the Cabbibo-Kowayashi-Maskawa matrix element vertical barVcbvertical bar is determined to be: vertical barVcbvertical bar=(38.8+-0.8 (exp)+- ''3.02.6 (teor))x10-3
Rho resonance parameters from lattice QCD
Guo, Dehua; Molina, Raquel; Doering, Michael
2016-01-01
We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.
Rho resonance parameters from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael
2016-08-01
We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.
Rho resonance parameters from lattice QCD
Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael
2016-08-01
We perform a high-precision calculation of the phase shifts for π -π scattering in the I =1 , J =1 channel in the elastic region using elongated lattices with two mass-degenerate quark flavors (Nf=2 ). We extract the ρ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to mπ=226 MeV and mπ=315 MeV , and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase shifts around the resonance for both quark masses. We find that the extrapolated value, mρ=720 (1 )(15 ) MeV , is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.
UPSILON' (10.01) resonance parameters
International Nuclear Information System (INIS)
The resonance parameters of the UPSILON' = (10.01) were measured using the LENA detector at the DORIS e+e- storage ring. We obtained a mass of m(UPSILON') = (10 013.6 +- 1.2 +- 10.0) MeV and an electronic width of GAMMAsub(e)sub(e)(T )=(0.53 +- 0.007+0sup(.)09sub(-)0sub(.)05) keV. The upper limit set to the μ-pair branching ratio is 3.8% which implies a lower limit on the total UPSILON' width of 14 keV. Together with our previous measurement of the UPSILON parameters we obtain a mass difference M(UPSILON') - M(UPSILON) = (552.0 +- 1.3 +- 10.0) MeV and GAMMAsub(e)sub(e)(UPSILON')GAMMAsub(e)sub(e)(UPSILON) = 0.43 840 0.07+0sup(.)050sub(.)00. (orig.)
International Nuclear Information System (INIS)
A relatively simple formalism for calculating the average neutron elastic angular distribution dσel/dΩ in the resonance region below several hundred keV is presented. The expression for dσel/dΩ depends mainly on the R-matrix parameters S0, R', S1, and R1∞. Comparisons between calculated and experimental angular distributions are presented for 103Rh, 139La, 232Th, and 238U. A fit to 238U data at 75 keV led to a value of the p-wave strength function of S1=1.81±0.35x10-4. Except for measuring a complete set of individual l=1 resonances, determining the p-wave strength function by fitting low-energy angular distributions is probably more reliable than, or competitive with, other techniques which are available. An analysis of elastic angular distributions as a function of neutron energy is also well suited to a search for intermediate structure in the s- or p-wave strength function. copyright 1997 The American Physical Society
RESONANT EXTRACTION PARAMETERS FOR THE AGS BOOSTER
International Nuclear Information System (INIS)
Brookhaven's AGS Booster is the injector for the AGS. It is being modified to send resonant extracted heavy ions to a new beam line, the Booster Applications Facility (BAF). The design of the resonant extraction system for BAF was described in [1]. This note will give a more detailed description of the system and describe the predicted resonant beam time structure. We will describe tune space manipulations necessary to extract the resonant beam at the maximum Booster rigidity, schemes for performing resonant extraction, and describe the modifications required to perform bunched beam extraction to the BAF facility
The calculation of resonance parameters for the DeCART MOC code
International Nuclear Information System (INIS)
Accurate resonance parameters can be as important as the multi-group neutron cross sections themselves in the overall accuracy of a multigroup library. The work here describes the generation of resonance parameters for the MOC DeCART which utilizes the subgroup method for its resonance treatment. In this paper, we first introduce a procedure for determining the intermediate resonance parameters for all scattering isotopes, also know as lambda parameters or Goldstein-Cohen parameters which are used in the subgroup method. The lambda factors of scattering isotopes are determined as hydrogen equivalence factors by comparing group average cross sections in the mixture of resonance isotope and hydrogen with the average cross sections in mixtures with the hydrogen which is partly replaced by other isotopes. The NJOY code is used for the calculation of spectra in these mixtures. In addition to U-238, which was used as resonance isotope in previous work on lambda factors, U-235 is also treated as a resonance isotope in the lambda calculation developed here which thus provides lambdas for the groups in which U-238 has no significant resonance. After developing a procedure for generating lambda factors for scattering isotopes, a method is then described for generating subgroup parameters. Again NJOY is used for resonance calculations of a set of mixtures for each resonance isotope at each selected temperature. The group average cross sections instead of the resonance integrals of these mixtures are used to generate subgroup parameters using an optimization algorithm. The generated library is then verified by comparing the solution from DeCART with the solution from MCNP. (authors)
Quantum averaging and resonances: two-level atom in a one-mode classical laser field
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2007-06-01
Full Text Available We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.
Nuclear data adjustment methodology utilizing resonance parameter sensitivities and uncertainties
International Nuclear Information System (INIS)
This work presents the development and demonstration of a Nuclear Data Adjustment Method that allows inclusion of both energy and spatial self-shielding into the adjustment procedure. The resulting adjustments are for the basic parameters (i.e., resonance parameters) in the resonance regions and for the group cross sections elsewhere. The majority of this development effort concerns the production of resonance parameter sensitivity information which allows the linkage between the responses of interest and the basic parameters. The resonance parameter sensitivity methodology developed herein usually provides accurate results when compared to direct recalculations using existing and well-known cross section processing codes. However, it has been shown in several cases that self-shielded cross sections can be very non-linear functions of the basic parameters. For this reason caution must be used in any study which assumes that a linear relationship exists between a given self-shielded group cross section and its corresponding basic data parameters
Evaluation of covariances for resolved resonance parameters of 235U, 238U, and 239Pu in JENDL-3.2
International Nuclear Information System (INIS)
Evaluation of covariances for resolved resonance parameters of 235U, 238U, and 239Pu was carried out. Although a large number of resolved resonances are observed for major actinides, uncertainties in averaged cross sections are more important than those in resonance parameters in reactor calculations. We developed a simple method which derives a covariance matrix for the resolved resonance parameters from uncertainties in the averaged cross sections. The method was adopted to evaluate the covariance data for some important actinides, and the results were compiled in the JENDL-3.2 covariance file. (author)
Accurate determination of crystal structures based on averaged local bond order parameters
Lechner, Wolfgang; Dellago, Christoph
2008-01-01
Local bond order parameters based on spherical harmonics, also known as Steinhardt order parameters, are often used to determine crystal structures in molecular simulations. Here we propose a modification of this method in which the complex bond order vectors are averaged over the first neighbor shell of a given particle and the particle itself. As demonstrated using soft particle systems, this averaging procedure considerably improves the accuracy with which different crystal structures can ...
Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos
Institute of Scientific and Technical Information of China (English)
贺凯芬
2001-01-01
A time-averaged behaviour is found to be important for investigating the critical behaviour in parameter space for the transition from temporal chaos to spatiotemporal chaos by using an energy representation. Considering any wave solution as a superposition of the steady wave with its perturbation wave, we find that when approaching the critical parameter point the averaged positive interaction energy for the k = 1 mode becomes competitive with the negative one, with the summation displaying a scaling behaviour of power law.
Sato, Shuji; Harada, Tatsuya; Kaneko, Kohei; Tsubouchi, Yoshifumi
This paper clarifies an important fact that the time parameters evaluated from the mean curve obtained after applying moving average are identical to the ones deduced from the original lightning impulse voltage. Digital recording device is always associated with random thermal noise caused by semi-conductor components used in the pre-amplifier in the recorder. The fact makes it possible for us to get rid of random noise superposed on the measured impulse wave form by means of moving average method. Also using the finding, even jittery noisy records can be averaged to a smooth curve from which one can easily distil identical time parameters.
Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties
DEFF Research Database (Denmark)
Beerepoot, Maarten; Steindal, Arnfinn Hykkerud; List, Nanna Holmgaard;
2016-01-01
We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges and isotr...... polarizable embedding multiscale modeling without compromising the accuracy. The results are promising for the development of general embedding parameters for biomolecules, where the reduction in computational cost can be considerable....
Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments
International Nuclear Information System (INIS)
The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the 176Hf and 178Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The 176Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental hafnium resonance integral however
Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties.
Beerepoot, Maarten T P; Steindal, Arnfinn Hykkerud; List, Nanna Holmgaard; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard
2016-04-12
We derive and validate averaged solvent parameters for embedding potentials to be used in polarizable embedding quantum mechanics/molecular mechanics (QM/MM) molecular property calculations of solutes in organic solvents. The parameters are solvent-specific atom-centered partial charges and isotropic polarizabilities averaged over a large number of geometries of solvent molecules. The use of averaged parameters reduces the computational cost to obtain the embedding potential, which can otherwise be a rate-limiting step in calculations involving large environments. The parameters are evaluated by analyzing the quality of the resulting molecular electrostatic potentials with respect to full QM potentials. We show that a combination of geometry-specific parameters for solvent molecules close to the QM region and averaged parameters for solvent molecules further away allows for efficient polarizable embedding multiscale modeling without compromising the accuracy. The results are promising for the development of general embedding parameters for biomolecules, where the reduction in computational cost can be considerable. PMID:26938368
Single-level resonance parameters fit nuclear cross-sections
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
New evaluation of 238U neutron resonance parameters
International Nuclear Information System (INIS)
The neutron resonance parameters of 238U were obtained in the energy range 1 keV to 20 keV from a SAMMY Reich-Moore analysis of high resolution transmission measurements performed at ORELA. In the energy range 1 keV to 10 keV, the analysis used as prior values the ENDF/B-VI resonance parameters. The analysis in the energy range 10 keV to 20 keV resulted in the creation of a set of resonance parameters for the representation of the cross section in this energy range. The results are compared to the ENDF/B-VI evaluation. Some statistical properties of the new resonance parameters are examined. (author)
Vibrational resonance: a study with high-order word-series averaging
Murua, Ander
2016-01-01
We study a model problem describing vibrational resonance by means of a high-order averaging technique based on so-called word series. With the tech- nique applied here, the tasks of constructing the averaged system and the associ- ated change of variables are divided into two parts. It is first necessary to build recursively a set of so-called word basis functions and, after that, all the required manipulations involve only scalar coefficients that are computed by means of sim- ple recursions. As distinct from the situation with other approaches, with word- series, high-order averaged systems may be derived without having to compute the associated change of variables. In the system considered here, the construction of high-order averaged systems makes it possible to obtain very precise approxima- tions to the true dynamics.
Influence of resonance parameters' correlations on the resonance integral uncertainty; 55Mn case
Žerovnik, Gašper; Trkov, Andrej; Capote, Roberto; Rochman, Dimitri
2011-03-01
For nuclides with a large number of resonances the covariance matrix of resonance parameters can become very large and expensive to process in terms of the computation time. By converting covariance matrix of resonance parameters into covariance matrices of background cross-section in a more or less coarse group structure a considerable amount of computer time and memory can be saved. The question is how important is the information that is discarded in the process. First, the uncertainty of the 55Mn resonance integral was estimated in narrow resonance approximation for different levels of self-shielding using Bondarenko method by random sampling of resonance parameters according to their covariance matrices from two different 55Mn evaluations: one from Nuclear Research and Consultancy Group NRG (with large uncertainties but no correlations between resonances), the other from Oak Ridge National Laboratory (with smaller uncertainties but full covariance matrix). We have found out that if all (or at least significant part of the) resonance parameters are correlated, the resonance integral uncertainty greatly depends on the level of self-shielding. Second, it was shown that the commonly used 640-group SAND-II representation cannot describe the increase of the resonance integral uncertainty. A much finer energy mesh for the background covariance matrix would have to be used to take the resonance structure into account explicitly, but then the objective of a more compact data representation is lost.
Influence of resonance parameters' correlations on the resonance integral uncertainty; 55Mn case
International Nuclear Information System (INIS)
For nuclides with a large number of resonances the covariance matrix of resonance parameters can become very large and expensive to process in terms of the computation time. By converting covariance matrix of resonance parameters into covariance matrices of background cross-section in a more or less coarse group structure a considerable amount of computer time and memory can be saved. The question is how important is the information that is discarded in the process. First, the uncertainty of the 55Mn resonance integral was estimated in narrow resonance approximation for different levels of self-shielding using Bondarenko method by random sampling of resonance parameters according to their covariance matrices from two different 55Mn evaluations: one from Nuclear Research and Consultancy Group NRG (with large uncertainties but no correlations between resonances), the other from Oak Ridge National Laboratory (with smaller uncertainties but full covariance matrix). We have found out that if all (or at least significant part of the) resonance parameters are correlated, the resonance integral uncertainty greatly depends on the level of self-shielding. Second, it was shown that the commonly used 640-group SAND-II representation cannot describe the increase of the resonance integral uncertainty. A much finer energy mesh for the background covariance matrix would have to be used to take the resonance structure into account explicitly, but then the objective of a more compact data representation is lost.
Energy Technology Data Exchange (ETDEWEB)
Zerovnik, Gasper, E-mail: gasper.zerovnik@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Trkov, Andrej, E-mail: andrej.trkov@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Capote, Roberto, E-mail: Roberto.CapoteNoy@iaea.or [Nuclear Data Section, International Atomic Energy Agency, P.O. Box 100, Wagramer Strasse 5, A-1400 Vienna (Austria); Rochman, Dimitri, E-mail: rochman@nrg.e [Nuclear Research and Consultancy Group NRG, P.O. Box 25, 1755 ZG Petten (Netherlands)
2011-03-11
For nuclides with a large number of resonances the covariance matrix of resonance parameters can become very large and expensive to process in terms of the computation time. By converting covariance matrix of resonance parameters into covariance matrices of background cross-section in a more or less coarse group structure a considerable amount of computer time and memory can be saved. The question is how important is the information that is discarded in the process. First, the uncertainty of the {sup 55}Mn resonance integral was estimated in narrow resonance approximation for different levels of self-shielding using Bondarenko method by random sampling of resonance parameters according to their covariance matrices from two different {sup 55}Mn evaluations: one from Nuclear Research and Consultancy Group NRG (with large uncertainties but no correlations between resonances), the other from Oak Ridge National Laboratory (with smaller uncertainties but full covariance matrix). We have found out that if all (or at least significant part of the) resonance parameters are correlated, the resonance integral uncertainty greatly depends on the level of self-shielding. Second, it was shown that the commonly used 640-group SAND-II representation cannot describe the increase of the resonance integral uncertainty. A much finer energy mesh for the background covariance matrix would have to be used to take the resonance structure into account explicitly, but then the objective of a more compact data representation is lost.
Sieve bootstrap t-tests on long-run average parameters
Fuertes, A.
2008-01-01
Panel estimators can provide consistent measures of a long-run average parameter even if the individual regressions are spurious. However, the t-test on this parameter is fraught with problems because the limit distribution of the test statistic is non-standard and rather complicated, particularly in panels with mixed (non-)stationary errors. A sieve bootstrap framework is suggested to approximate the distribution of the t-statistic. An extensive Monte Carlo study demonstrates that the bootst...
International Nuclear Information System (INIS)
The reflectance of ceramic YMnO3 formed by randomly oriented large crystallites (average size about 10 µm) was measured at near normal incidence in the spectral range 100–1200 cm−1. A calibration method was used in order to compensate for the effect of diffuse reflection on the surface of the sample. The spectrum was modelled by averaging the single-crystal reflectivity over all possible crystalline orientations. This anisotropy averaging method was found to adequately describe most of the spectrum, but failed in the regions where one of the principal refractive index became smaller than unity. We argue that these discrepancies are due to enhanced resonant scattering, and discuss the effect with the help of a simplified model of independent spheres based on the Mie theory of light scattering. (paper)
Recommended formulae and formats for a resonance parameter library
International Nuclear Information System (INIS)
It is proposed that a library of neutron resonance parameters be set up, on punched cards and magnetic tape, which will complement the cross section data in the present U.K. Nuclear Data Library. This report gives parametric formulae for the resolved resonance region, based on:- (i) the Breit-Wigner approximation, (ii) other approximations of R-matrix theory and (iii) the formulae of Adler and Adler. In addition, the statistical distributions of the parameters are given. The final section of the report contains the recommended formats for the parameters of the various formulae. (author)
Average H2 performance and maximal parameter pertubation radius for uncertain systems
DEFF Research Database (Denmark)
Zhao, K.-Y.; Grimble, M.J.; Stoustrup, Jakob
with nonlinear (polymnial) dependencies on real uncertain parameters. All results obtained are based on necessary and sufficient conditions. As a special virtue of the approach the proposed algorithms for stability analysis and for performance analysis turn out to have exactly the same algebraic......In this paper methods are prsented for calculating the maximal parameter pertubation bounds under H2 performance constraints for a family of uncertain systems and for calculating the average H2 performance under such parameter variations. The uncertain systems are described by state space models...
International Nuclear Information System (INIS)
With the aim to investigate the justification of time-averaging of climate parameters in multicompartment modelling the effects of various climate parameters and different modes of entry on the predicted substances' total environmental burdens and the compartmental fractions were studied. A simple, non-steady state zero-dimensional (box) mass-balance model of intercompartmental mass exchange which comprises four compartments was used for this purpose. Each two runs were performed, one temporally unresolved (time-averaged conditions) and a time-resolved (hourly or higher) control run. In many cases significant discrepancies are predicted, depending on the substance and on the parameter. We find discrepancies exceeding 10% relative to the control run and up to an order of magnitude for prediction of the total environmental burden from neglecting seasonalities of the soil and ocean temperatures and the hydroxyl radical concentration in the atmosphere and diurnalities of atmospheric mixing depth and the hydroxyl radical concentration in the atmosphere. Under some conditions it was indicated that substance sensitivity could be explained by the magnitude of the sink terms in the compartment(s) with parameters varying. In general, however, any key for understanding substance sensitivity seems not be linked in an easy manner to the properties of the substance, to the fractions of its burden or to the sink terms in either of the compartments with parameters varying. Averaging of diurnal variability was found to cause errors of total environmental residence time of different sign for different substances. The effects of time-averaging of several parameters are in general not additive but synergistic as well as compensatory effects occur. An implication of these findings is that the ranking of substances according to persistence is sensitive to time resolution on the scale of hours to months. As a conclusion it is recommended to use high temporal resolution in multi
Controlled degradation stochastic resonance in adaptive averaging cell-based architectures
Aymerich Capdevila, Nivard; Cotofana, Sorin; Rubio Sola, Jose Antonio
2013-01-01
In this paper, we first analyze the degradation stochastic resonance (DSR) effect in the context of adaptive averaging (AD-AVG) architectures. The AD-AVG is the adaptive version of the well-known AVG architecture . It is an optimized fault-tolerant design for future technologies with very high rates of failures and defects. With system degradation the AD-AVG reliability is diminishing, as expected, but at a certain moment in time it increases due to the DSR occurrence, which is counterintuiti...
Sensitivity and uncertainty studies of average cross section parameters with Monte-Carlo sampling
International Nuclear Information System (INIS)
Hauser Feshbach formalism with width fluctuation corrections and some Optical Model recipes are widely used for the calculation of average cross sections. Each model involved in the calculation is parametrized. The parameters can be adjusted to reproduce experimental datasets. As a result, a covariance matrix can be deduced from the fit and used in uncertainty calculation of the group averaged cross sections. Nevertheless, some parameters, such as the mean level spacing, the binding and pairing energy, are not supposed to be adjusted. They have a-priori uncertainties that should be properly taken into account and propagated into the previous adjustment as well as to group averaged cross sections. In this paper, we propose to use a Monte-Carlo propagation method based on an exact mathematical description to treat these non-adjusted parameters and their effects on the adjusted ones. A full covariance matrix for all the parameters will then be evaluated. Two isotopes will be treated 240Pu and 177Hf to illustrate the involved methods. (authors)
Single-parameter adiabatic charge pumping in carbon nanotube resonators
Perroni, C. A.; Nocera, A.; Cataudella, V.
2013-01-01
Single-parameter adiabatic charge pumping, induced by a nearby radio-frequency antenna, is achieved in suspended carbon nanotubes close to the mechanical resonance. The charge pumping is due to an important dynamic adjustment of the oscillating motion to the antenna signal and it is different from the mechanism active in the two-parameter pumping. Finally, the second harmonic oscillator response shows an interesting relationship with the first harmonic that should be experimentally observed.
Studying the $\\rho$ resonance parameters with staggered fermions
Fu, Ziwen
2016-01-01
We deliver a lattice study of $\\rho$ resonance parameters with p-wave $\\pi\\pi$ scattering phases, which are extracted by finite-size methods at one center-of-mass frame and four moving frames for six MILC lattice ensembles with pion masses ranging from $346$ to $ 176$ MeV. The effective range formula is applied to describe the scattering phases as a function of the energy covering the resonance region, this allows us to extract $\\rho$ resonance parameters and to investigate the quark-mass dependence. Lattice studies with three flavors of the Asqtad-improved staggered fermions enable us to use the moving-wall source technique on large lattice spatial dimensions ($L=64$) and small light $u/d$ quarks. Numerical computations are carried out at two lattice spacings, $a \\approx 0.12$ and $0.09$ fm.
International Nuclear Information System (INIS)
Aim: To evaluate the diagnostic performance of an interactive, adaptively averaged (AA) two-dimensional (2D) magnetic resonance cholangiography (MRC) technique in patients with suspected biliary disease by comparison to the standard MRC technique. Materials and methods: The AA 2D MRC method registers the images after acquisition, allowing summation of multiple images to improve the signal:noise ratio (SNR) and thereby potentially improve the visualization of bile ducts. One hundred and twenty-eight patients underwent both 2D conventional and AA magnetic resonance cholangiopancreatography (MRCP). Twenty-seven patients were excluded from the analysis as AA images could not be properly obtained due to technical failures. All examinations were performed using a 1.5 T whole-body MR system and a four-channel torso phased array coil. Images of 101 patients were adaptively averaged using an in-house developed program written in IDL. Two readers qualitatively evaluated the studies in consensus, blinded to acquisition details and without knowledge of clinical information. Results: The AA technique was significantly better than the conventional 2D MRC for the visualization of the second-order branch intrahepatic ducts (p < 00001). Overall, there was no significant difference in the diagnostic confidence between two techniques (p = 0.12). However, the AA technique showed a trend towards more confident diagnosis of biliary strictures (p = 0.055), likely due to better diagnostic confidence in identifying second order branch intrahepatic duct strictures (p = 0.054). Conclusion: Excluding those patients those patients in whom either satisfactory respiratory gating or a suitable kernel placement was not achieved, AA 2D MRC demonstrated a significant improvement in visualization of intrahepatic duct branches compared to standard MRC
DEFF Research Database (Denmark)
Chon, K H; Hoyer, D; Armoundas, A A; Holstein-Rathlou, N H; Marsh, D J
1999-01-01
In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...
Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments
International Nuclear Information System (INIS)
The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176Hf and 178Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little
Platis, Andreas; Martinez, Daniel; Bange, Jens
2014-05-01
Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the
International Nuclear Information System (INIS)
One reliable and convenient way of processing the cross sections in the resolved energy region is by use of the generalized pole representation, whereby the Doppler-broadening calculation can be carried out rigorously using the analytical approach. So far, its applications have been limited to cases with resonance parameters specified by the Reich-Moore formalism. Although such an approach can in principle be extended to all three remaining representations of resolved resonance parameters specified by the ENDF data format, there is no computational tool for handling such a task at present. Given that Breit-Wigner formalisms are probably the most widely used by any evaluated nuclear data library to represent cross sections, a special effort needs to be made to convert the single- and multilevel Breit-Wigner resonance parameters to pole parameters. The FORTRAN computer code BW2PR has been developed for this purpose. Extensive calculations have been performed to demonstrate that the proposed method ensures the conservation of the information contained originally in Breit-Wigner resonance parameters. This will make it possible to apply the exact Doppler-broadening method to a larger collection of nuclides
DEFF Research Database (Denmark)
Wu, Yunqiu; Arslanagic, Samel
The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both. It is...... shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....
Del Giudice, Dario; Albert, Carlo; Rieckermann, Jörg; Reichert, Peter
2016-04-01
Rainfall input uncertainty is one of the major concerns in hydrological modeling. Unfortunately, during inference, input errors are usually neglected, which can lead to biased parameters and implausible predictions. Rainfall multipliers can reduce this problem but still fail when the observed input (precipitation) has a different temporal pattern from the true one or if the true nonzero input is not detected. In this study, we propose an improved input error model which is able to overcome these challenges and to assess and reduce input uncertainty. We formulate the average precipitation over the watershed as a stochastic input process (SIP) and, together with a model of the hydrosystem, include it in the likelihood function. During statistical inference, we use "noisy" input (rainfall) and output (runoff) data to learn about the "true" rainfall, model parameters, and runoff. We test the methodology with the rainfall-discharge dynamics of a small urban catchment. To assess its advantages, we compare SIP with simpler methods of describing uncertainty within statistical inference: (i) standard least squares (LS), (ii) bias description (BD), and (iii) rainfall multipliers (RM). We also compare two scenarios: accurate versus inaccurate forcing data. Results show that when inferring the input with SIP and using inaccurate forcing data, the whole-catchment precipitation can still be realistically estimated and thus physical parameters can be "protected" from the corrupting impact of input errors. While correcting the output rather than the input, BD inferred similarly unbiased parameters. This is not the case with LS and RM. During validation, SIP also delivers realistic uncertainty intervals for both rainfall and runoff. Thus, the technique presented is a significant step toward better quantifying input uncertainty in hydrological inference. As a next step, SIP will have to be combined with a technique addressing model structure uncertainty.
A method for the estimation of p-mode parameters from averaged solar oscillation power spectra
Reiter, J; Kosovichev, A G; Schou, J; Scherrer, P H; Larson, T P
2015-01-01
A new fitting methodology is presented which is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from $m$-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run using weights from a leakage matrix that takes into account both observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method that employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure which is based upon 6,366 modes that we ha...
Resonance parameters for measured keV neutron capture cross sections
International Nuclear Information System (INIS)
All available neutron capture cross sections in the keV region (∼ to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)
International Nuclear Information System (INIS)
The 241Am total and fission cross sections have been measured in the resonance region, using the 60MeV Saclay linac as a pulsed neutron source. The resonance parameters obtained by a single level shape analysis of the transmission data are given for 189 levels up to 150eV neutron energy. The mean level spacing, corrected for 18% of missed resonances in the 0 to 50eV energy range, is (0.55+-0.05)eV. The s-wave neutron strength function value, in the 0 to 150eV energy range, is equal to (0.94+-0.09)10-4. The average radiation width obtained from 43 resonances is (43.77+-0.72)MeV. Only preliminary results of the fission experiment are available now; 38 fission widths are given up to 32eV neutron energy, with the average value GAMMA(f) approximately equal to 0.23MeV; the statistical distribution of these fission widths corresponds to a X2 law with 4 degrees of freedom. An area analysis of the Los Alamos fission data has also been done, from which we obtain 36 GAMMA(f) values in the 20eV to 50eV energy range; the corresponding average value is: GAMMA(f) approximately equal to 0.52MeV; the statistical distribution obeys to a X2 law with 15 degrees of freedom, in desagreement with the Saclay results
Doppler reactivity worth uncertainties due to errors of resolved resonance parameters
International Nuclear Information System (INIS)
Errors of the resolved resonance parameters for the evaluated nuclear data file JENDL-3.2 were evaluated on the basis of Breit-Wigner Multi-level formula. For the Reich-Moore resonance parameters, the errors equivalent to the Breit-Wigner resonance parameters were obtained. Reactivity uncertainties of Doppler reactivity worth are estimated by the sensitivity coefficients of the infinitely diluted cross section resonance self-shielding factor to the changes of resonance parameter of interest. The resonance self-shielding factor based on NR-approximation was analytically described. Total uncertainty of Doppler reactivity worth ρ for whole resonance was estimated by means of error propagation law. (author)
International Nuclear Information System (INIS)
Resonance treatment is the most important part in the deterministic transport lattice calculation. The conventional resonance treatment requires resonance integrals tabulated as a function of the background cross section (δb) in advance. In the transport lattice calculation, a background cross section is estimated at first, and then the self-shielded resonance cross section can be obtained by looking up a resonance integral (RI) table. This RI table can be prepared by various methods, which include the Bondarenko method, the homogeneous method and the heterogeneous method. These methods are categorized by how to calculate the ultra fine group self shielded fluxes. The third one is the best because it solves the slowing down equation in a heterogeneous geometry. P. H. Kier at Argonne national laboratory developed the RABBLE code and F. Leszczynski at CNEA in Argentina developed RMET21 for this purpose. One of the drawbacks in these codes is that they do not include a module to generate the corresponding δb's. A new transport lattice code LIBERTE has been developed which adopts a subgroup method for a resonance treatment. This subgroup method requires RI tables and intermediate resonance parameters (λ) generated by the heterogeneous method. Therefore, we have developed a new code MERIT (program for Multiregional Effective Resonance Integral Table) to generate RI tables and λ's. This code includes a module to edit ultra fine group (> millions) cross sections with an equal lethargy width, a module to solve the slowing down equation in the homogeneous and 1-D cylindrical geometries by integral transport, a module to calculate the corresponding δb's by the method of characteristics, and a module to calculate λ's
A Method for the Estimation of p-Mode Parameters from Averaged Solar Oscillation Power Spectra
Reiter, J.; Rhodes, E. J., Jr.; Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.
2015-04-01
A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the “Windowed, MuLTiple-Peak, averaged-spectrum” or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010.
Large-scale solar wind streams: Average temporal evolution of parameters
Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda
2016-07-01
In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR
International Nuclear Information System (INIS)
The present study determines the feasibility of generating an average arterial input function (Avg-AIF) from a limited population of patients with neck nodal metastases to be used for pharmacokinetic modeling of dynamic contrast-enhanced MRI (DCE-MRI) data in clinical trials of larger populations. Twenty patients (mean age 50 years [range 27–77 years]) with neck nodal metastases underwent pretreatment DCE-MRI studies with a temporal resolution of 3.75 to 7.5 sec on a 1.5T clinical MRI scanner. Eleven individual AIFs (Ind-AIFs) met the criteria of expected enhancement pattern and were used to generate Avg-AIF. Tofts model was used to calculate pharmacokinetic DCE-MRI parameters. Bland-Altman plots and paired Student t-tests were used to describe significant differences between the pharmacokinetic parameters obtained from individual and average AIFs. Ind-AIFs obtained from eleven patients were used to calculate the Avg-AIF. No overall significant difference (bias) was observed for the transfer constant (Ktrans) measured with Ind-AIFs compared to Avg-AIF (p = 0.20 for region-of-interest (ROI) analysis and p = 0.18 for histogram median analysis). Similarly, no overall significant difference was observed for interstitial fluid space volume fraction (ve) measured with Ind-AIFs compared to Avg-AIF (p = 0.48 for ROI analysis and p = 0.93 for histogram median analysis). However, the Bland-Altman plot suggests that as Ktrans increases, the Ind-AIF estimates tend to become proportionally higher than the Avg-AIF estimates. We found no statistically significant overall bias in Ktrans or ve estimates derived from Avg-AIF, generated from a limited population, as compared with Ind-AIFs. However, further study is needed to determine whether calibration is needed across the range of Ktrans. The Avg-AIF obtained from a limited population may be used for pharmacokinetic modeling of DCE-MRI data in larger population studies with neck nodal metastases. Further validation of the Avg
Quantifying bone weathering stages using the average roughness parameter Ra measured from 3D data
Vietti, Laura A.
2016-09-01
Bone surface texture is known to degrade in a predictable fashion due to subaerial exposure, and can thus act as a relative proxy for estimating temporal information from modern and ancient bone assemblages. To date, the majority of bone weathering data is collected on a categorical scale based on descriptive terms. While this qualitative classification of weathering data is well established, textural analyses of bone surfaces may provide means to quantify weathering stages but have yet to be tested. Here, I examined the suitability of textural analyses for bone weathering studies by first establishing bone surface regions most appropriate for weathering analyses. I then measured and compared the roughness texture of weathered bones at different stages. To establish regions of bone most suitable for textural analyses, Ra was measured from 3D scans of dorsal ribs of four adult ungulate taxa. Results indicate that the rib-shafts from unweathered ungulate skeletons were similar and are likely good candidates because differences in surface texture will not be due to differences in initial bone texture. To test if textural measurements could reliably characterize weathering stages, the average roughness values (Ra) were measured from weathered ungulate rib-shafts assigned to four descriptive weathering stages. Results from analyses indicate that the Ra was statistically distinct for each weathering stage and that roughness positively correlates with the degree of weathering. As such, results suggest that textural analyses may provide the means for quantifying bone-weathering stages. Using Ra and other quantifiable texture parameters may enable more reliable and comparative taphonomic analyses by reducing inter-observer variations and by providing numerical data more compatible for multivariate statistics.
How can acoustic resonance reduce the average velocity in a falling body?
V. Torres-Zúñiga
2011-01-01
In this article, a simple experiment is described to overcome the misconception that acoustic pressure and levitation effects are difficult to observe in school laboratories. Analysis of the free fall velocity of a toy parachute inside a vertical tube, driven by sound in a range of frequencies around the resonant condition, exhibits the resonance frequency, the node pressure zones, and the optimal conditions to obtain acoustical levitation of a light body.
Measuring Resonance Parameters of Heavy Higgs Bosons at TESLA
Meyer, N
2003-01-01
This study investigates the potential of the TESLA Linear Collider for measuring resonance parameters of Higgs bosons beyond the mass range studied so far. The analysis is based on the reconstruction of events from the Higgsstrahlung process e+e- -> HZ. It is shown that the total width, the mass and the event rate for Higgs production can be measured from the mass spectrum in a model independent fit. Also, the branching ratios to W- and Z-bosons can be measured, assuming these are the only relevant Higgs decay modes. The simulation includes realistic detector effects and all relevant Standard Model background processes. Results are given for mH=200-320 GeV assuming 500 fb^-1 integrated luminosity at collision energies of 500 GeV.
Comments on extracting the resonance strength parameter from yield data
Energy Technology Data Exchange (ETDEWEB)
Croft, Stephen, E-mail: crofts@ornl.gov [Safeguards & Security Technology, Nuclear Security and Isotope Technology Division, One Bethel Valley Road, PO Box 2008, MS-6166, Oak Ridge, TN 37831-6166 (United States); Favalli, Andrea, E-mail: afavalli@lanl.gov [Safeguards Science & Technology Group, Non-proliferation and Nuclear Engineering Division, Los Alamos National Laboratory, MS E540, Los Alamos, NM 87545 (United States)
2015-10-11
The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from {sup 19}F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF{sub 2} target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the {sup 19}F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and
Comments on extracting the resonance strength parameter from yield data
Croft, Stephen; Favalli, Andrea
2015-10-01
The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to
Comments on extracting the resonance strength parameter from yield data
International Nuclear Information System (INIS)
The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to
Energy Technology Data Exchange (ETDEWEB)
Kock, A.
1996-05-01
The objectives of this research are: (1) to calculate and compare off site doses from atmospheric tritium releases at the Savannah River Site using monthly versus 5 year meteorological data and annual source terms, including additional seasonal and site specific parameters not included in present annual assessments; and (2) to calculate the range of the above dose estimates based on distributions in model parameters given by uncertainty estimates found in the literature. Consideration will be given to the sensitivity of parameters given in former studies.
International Nuclear Information System (INIS)
The objectives of this research are: (1) to calculate and compare off site doses from atmospheric tritium releases at the Savannah River Site using monthly versus 5 year meteorological data and annual source terms, including additional seasonal and site specific parameters not included in present annual assessments; and (2) to calculate the range of the above dose estimates based on distributions in model parameters given by uncertainty estimates found in the literature. Consideration will be given to the sensitivity of parameters given in former studies
Energy Technology Data Exchange (ETDEWEB)
Leal, L.C.
2001-02-27
The R-matrix resonance analysis of experimental neutron transmission and cross sections of {sup 233}U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k{sub eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.
The Singer's Formant and Speaker's Ring Resonance: A Long-Term Average Spectrum Analysis
Lee, Sang-Hyuk; Kwon, Hee-Jun; Choi, Hyun-Jin; Lee, Nam-Hun; Lee, Sung-Jin; Jin, Sung-Min
2008-01-01
Objectives We previously showed that a trained tenor's voice has the conventional singer's formant at the region of 3 kHz and another energy peak at 8-9 kHz. Singers in other operatic voice ranges are assumed to have the same peak in their singing and speaking voice. However, to date, no specific measurement of this has been made. Methods Tenors, baritones, sopranos and mezzo sopranos were chosen to participate in this study of the singer's formant and the speaker's ring resonance. Untrained ...
Set up of a method for the adjustment of resonance parameters on integral experiments
International Nuclear Information System (INIS)
Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.)
Dang, N Dinh; Kmiecik, M; Maj, A
2013-01-01
The line shapes of giant dipole resonance (GDR) in the decay of the compound nucleus $^{88}$Mo, which is formed after the fusion-evaporation reaction $^{48}$Ti + $^{40}$Ca at various excitation energies $E^{*}$ from 58 to 308 MeV, are generated by averaging the GDR strength functions predicted within the phonon damping model (PDM) using the empirical probabilities for temperature and angular momentum. The average strength functions are compared with the PDM strength functions calculated at the mean temperature and mean angular momentum, which are obtained by averaging the values of temperature and angular momentum using the same temperature and angular-momentum probability distributions, respectively. It is seen that these two ways of generating the GDR linear line shape yield very similar results. It is also shown that the GDR width approaches a saturation at angular momentum $J\\geq$ 50$\\hbar$ at $T=$ 4 MeV and at $J\\geq$ 70$\\hbar$ at any $T$.
Parameter-Induced Stochastic Resonance of Weak Periodic Signal Excitation with α Stable Noise
Zhang, Qing; Kou, Jie; Jiao, Shang-Bin
In view of the nonlinear bistable system, this paper studied the parameter-induced stochastic resonance phenomenon of low-frequency weak signal excitation under α stable noise environment, and explored the action laws of the α stable noise distribution parameters α, β, μ, σ and the bistable system parameters a, b on stochastic resonance effect. The results show that in different α stable noise, adjusting the bistable system parameters can induce stochastic resonance; Moreover, when a(or b) is fixed, the intervals of b(or a) which can induce stochastic resonance are multiple and don't change with any α stable distribution parameter. Further, by combining with the parameter compensation method for researching on high-frequency weak signal, the same action laws as the low-frequency signal are got. The conclusions are significant for using parameter-induced stochastic resonance principle in weak signal detection in the abnormal diffusion dynamical system.
International Nuclear Information System (INIS)
The objective of our study was to optimize magnetic resonance image (MRI) sequences and parameters using operative assisted images (three-dimensional images) for radical prostatectomy at 3 tesla (T) MRI. Five healthy volunteers underwent MRI on the 3.0 T scanner. Various sequences and parameters [Cube (echo time/repetition time (TE/TR)=18, 50, 90 ms/2000 ms), fast imaging employing steady state acquisition (FIESTA) (TE/TR/FA=2.4 ms/5 ms/40deg, 90deg), fast spoiled gradient recalled acquisition in the steady state (fSPGR) (TE/TR/FA=2.3 ms/11.2 ms/20deg), slice thickness=1.2 mm, matrix=192 x 160] were respectively compared. Several structures of the pelvis (the central zones and transition zones of the prostate, the peripheral zones of the prostate, seminal vesicles, rectum wall, bladder, muscle and fat) were determined. The signal intensities of these structures were measured on reformatted axial images and compared against several structures of the pelvis. Correlation with various sequences and parameters was based on the signal-to-noise ratio (SNR), the contrast ratio (CR) and the presence of artifacts. Student's t-test was used for statistical analysis. With Cube (TE/TR=50 ms/2000 ms), the average value of visual evaluation with artifacts was high, and SNR and CR were higher than for other sequence and parameters. Optimized MRI sequences and parameters were Cube (TE/TR=50 ms/2000 ms) which provides improved SNR and CR and the presence of artifacts with operative assisted images for radical prostatectomy. These operative assisted images obtained from Cube (TE/TR=50 ms/2000 ms) are likely to be useful for surgery. (author)
International Nuclear Information System (INIS)
The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si28, at En = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si30 has not yet been located. The thermal neutron absorption cross-section of Si28 appears to result mainly from a negative energy resonance, possibly the resonance at En = - 59 ± 5 keV detected by the Si28 (d,p) reaction. (author)
Shukla-Dave, Amita; Lee, Nancy; Stambuk, Hilda; Wang, YA; Huang, Wei; Howard T Thaler; Patel, Snehal G.; Shah, Jatin P.; Koutcher, Jason A
2009-01-01
Background The present study determines the feasibility of generating an average arterial input function (Avg-AIF) from a limited population of patients with neck nodal metastases to be used for pharmacokinetic modeling of dynamic contrast-enhanced MRI (DCE-MRI) data in clinical trials of larger populations. Methods Twenty patients (mean age 50 years [range 27–77 years]) with neck nodal metastases underwent pretreatment DCE-MRI studies with a temporal resolution of 3.75 to 7.5 sec on a 1.5T c...
Resonance parameter data uncertainty effects on integral characteristic of fast reactors
International Nuclear Information System (INIS)
Sensitivity studies are presented of integral parameters of interest for fast reactors to uncertainties of resonance parameters of U-238, Pu-239, Pu-240 and Pu-241. Consequences due to some uncertainty correlation hypothesis are also considered
Institute of Scientific and Technical Information of China (English)
WU GuoQi; AO HongRui; JIANG HongYuan; E.A.IZZHEUROV
2009-01-01
The first resonant(anti-resonant)frequency and sound absorption coefficient of metal rubber(MR)material are theoretically studied with hard backed samples and with air layer.The equations of the first resonant and anti-resonant frequencies of MR are deduced from the undamped propagation characteristics of porous material.The first resonant and anti-resonance sound absorption coefficients are induced according to the theoretical formula for the acoustic characteristic parameters of MR,and the former is modified while the energy consumption at resonance is taken into consideration.The good agreement between the calculation results of these resonant sound absorption parameters and the experimental results verifies the effectiveness of this calculation method for the performance evaluation of MR as a sound absorption material.
Institute of Scientific and Technical Information of China (English)
E.A.IZZHEUROV
2009-01-01
The first resonant(anti-resonant)frequency and sound absorption coefficient of metal rubber(MR) material are theoretically studied with hard backed samples and with air layer.The equations of the first resonant and anti-resonant frequencies of MR are deduced from the undamped propagation characteristics of porous material.The first resonant and anti-resonance sound absorption coefficients are induced according to the theoretical formula for the acoustic characteristic parameters of MR,and the former is modified while the energy consumption at resonance is taken into consideration.The good agreement between the calculation results of these resonant sound absorption parameters and the experimental results verifies the effectiveness of this calculation method for the performance evaluation of MR as a sound absorption material.
Abdul Jameel, Abdul Gani
2016-04-22
Heavy fuel oil (HFO) is primarily used as fuel in marine engines and in boilers to generate electricity. Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for structure elucidation and in this study, 1H NMR and 13C NMR spectroscopy were used for the structural characterization of 2 HFO samples. The NMR data was combined with elemental analysis and average molecular weight to quantify average molecular parameters (AMPs), such as the number of paraffinic carbons, naphthenic carbons, aromatic hydrogens, olefinic hydrogens, etc. in the HFO samples. Recent formulae published in the literature were used for calculating various derived AMPs like aromaticity factor 〖(f〗_a), C/H ratio, average paraffinic chain length (¯n), naphthenic ring number 〖(R〗_N), aromatic ring number〖 (R〗_A), total ring number〖 (R〗_T), aromatic condensation index (φ) and aromatic condensation degree (Ω). These derived AMPs help in understanding the overall structure of the fuel. A total of 19 functional groups were defined to represent the HFO samples, and their respective concentrations were calculated by formulating balance equations that equate the concentration of the functional groups with the concentration of the AMPs. Heteroatoms like sulfur, nitrogen, and oxygen were also included in the functional groups. Surrogate molecules were finally constructed to represent the average structure of the molecules present in the HFO samples. This surrogate molecule can be used for property estimation of the HFO samples and also serve as a surrogate to represent the molecular structure for use in kinetic studies.
International Nuclear Information System (INIS)
Uncertainties of reactivities due to those of resolved resonance parameters are evaluated by so-called'' direct k-difference method''. Then, effective cross section of an individual isotope and reaction type is described in terms of infinitely diluted cross section σ∞xik and resonance self-shielding factor fxik (x: reaction, i: isotope, k: sequence number of resonance) as a function of resonance parameters, and reactivity is evaluated from the neutron balance using the effective cross section and neutron flux. Consequently, reactivity uncertainties such as effective multiplication factor can be estimated by the sensitivity coefficients of the infinitely diluted cross section and resonance self-shielding factor to the changes of resonance parameters of interest. In the present work, the uncertainties of the resolved resonance parameters for the evaluated nuclear data file JENDL-3.2 were estimated on the basis of Breit-Wigner Multi-level formula. For the Reich-Moore resonance parameters complied in the library, the uncertainties equivalent to the Breit-Wigner resonance parameters are estimated. The resonance self-shielding factor based on NR-approximation is analytically described. Reactivity uncertainty evaluation method for the effective multiplication factor keff, temperature coefficient α, Doppler reactivity worth ρ is developed by means of the sensitivity coefficient against the resonance parameter. Final uncertainties of the reactivities are estimated by means of error propagation law using the level-wise uncertainties. Preliminary uncertainty evaluation of Doppler reactivity worth due to the uncertainties of resolved resonance parameters results about 4% at the temperature 728 K for large sodium-cooled fast breeder reactor. (author)
Energy Technology Data Exchange (ETDEWEB)
Derrien, Herve [ORNL; Leal, Luiz C [ORNL; Larson, Nancy M [ORNL; Guber, Klaus H [ORNL; Wiarda, Dorothea [ORNL; Arbanas, Goran [ORNL
2008-01-01
High-resolution neutron capture cross section measurements of 55Mn were recently performed at GELINA by Schillebeeckx et al. (2005) and at ORELA by Guber et al. (2007). The analysis of the experimental data was performed with the computer code SAMMY using the Bayesian approach in the resonance parameters representation of the cross sections. The neutron transmission data taken in 1988 by Harvey et al. (2007) and not analyzed before were added to the SAMMY experimental data base. More than 95% of the s-wave resonances and more than 85% of the p-wave resonances were identified in the energy range up to 125 keV, leading to the neutron strength functions S0 = (3.90 0.78) x 10-4 and S1 = (0.45 0.08) x 10-4. About 25% of the d-wave resonances were identified with a possible strength function of S2 = 1.0 x 10-4. The capture cross section calculated at 0.0253 eV is 13.27 b, and the capture resonance integral is 13.52 0.30 b. In the energy range 15 to 120 keV, the average capture cross section is 12% lower than Lerigoleur value and 25% smaller than Macklin value. GELINA and ORELA experimental capture cross sections show a background cross section not described by the Reich-Moore resonance parameters. Part of this background could be due to a direct capture component and/or to the missing d-wave resonances. The uncertainty of 10% on the average capture cross section above 20 keV is mainly due to the inaccuracy in the calculation of the background components.
Cuny, Jérôme; Sykina, Kateryna; Fontaine, Bruno; Le Pollès, Laurent; Pickard, Chris J.; Gautier, Régis
2011-01-01
Solid-state (95)Mo nuclear magnetic resonance (NMR) properties of molybdenum hexacarbonyl have been computed using density functional theory (DFT) based methods. Both quadrupolar coupling and chemical shift parameters were evaluated and compared with parameters of high precision determined using single-crystal (95)Mo NMR experiments. Within a molecular approach, the effects of major computational parameters, i.e. basis set, exchange-correlation functional, treatment of relativity, have been e...
Institute of Scientific and Technical Information of China (English)
LIU Zong-Liang; ZHAO Fang; LI Shao-Hua; ZHAO Mei-Shan; CHEN Chang-Yong
2008-01-01
This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomie molecular predissoeiation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.
International Nuclear Information System (INIS)
This paper analyses the reasons for the differences which exist between group-averaged evaluated cross-section data from different evaluated data files for U235, U238 and Pu239 in the unresolved resonance energy region. (author)
Statistical inference of level densities from resolved resonance parameters
International Nuclear Information System (INIS)
Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.)
International Nuclear Information System (INIS)
Combining with the 1H and 13C nuclear magnetic resonance (NMR) determinations, elemental analysis and molecular weight measurement, average molecular formula of the chemical unit for the asphaltenes from Chinese Daqing crude oil were calculated. Thermal pyrolysis kinetics of the asphaltenes had been studied using thermogravimetric analysis (TGA). The distributed activation energy model (DAEM) was used to analyze these complex systems. The results show that the peak activation energy for pyrolysis of the asphaltenes is 245 kJ mol-1 and the pre-exponential factor is 5.88 x 1014 s-1. The DAEM method presented reasonably good results of the prediction of the weight loss curves. A linear relationship can be found from the plots of logarithm of the pre-exponential factor against the activation energy at selected conversion values. This phenomenon known as the compensation effect was explained and it was in agreement with the estimated chemical structure determined by NMR
International Nuclear Information System (INIS)
In the framework of spectral averaging theory, the bivariate strength density I for a transition operator O takes a convolution form; I→Iohxρov, where Ioh is the strength density due to the effective one-body part h of the nuclear Hamiltonian H and ρov is a spreading bivariate Gaussian due to the effective two-body part V of H. This convolution form is used to construct strength densities for the giant dipole operator and thereby calculate the variation of the γ-ray giant dipole resonance (GDR) absorption cross section with energy. This is applied to the specific case of the 76Se nucleus and an attempt is made to analyse the experimental data for the GDR built on its ground state. (author)
Hirata, Akimasa; Yanase, Kazuya; Laakso, Ilkka; Chan, Kwok Hung; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi; Conil, Emmanuelle; Wiart, Joe
2012-12-21
According to the international guidelines, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric of basic restriction for radio-frequency whole-body exposure. It is well known that the WBA-SAR largely depends on the frequency of the incident wave for a given incident power density. The frequency at which the WBA-SAR becomes maximal is called the 'resonance frequency'. Our previous study proposed a scheme for estimating the WBA-SAR at this resonance frequency based on an analogy between the power absorption characteristic of human models in free space and that of a dipole antenna. However, a scheme for estimating the WBA-SAR in a grounded human has not been discussed sufficiently, even though the WBA-SAR in a grounded human is larger than that in an ungrounded human. In this study, with the use of the finite-difference time-domain method, the grounded condition is confirmed to be the worst-case exposure for human body models in a standing posture. Then, WBA-SARs in grounded human models are calculated at their respective resonant frequencies. A formula for estimating the WBA-SAR of a human standing on the ground is proposed based on an analogy with a quarter-wavelength monopole antenna. First, homogenized human body models are shown to provide the conservative WBA-SAR as compared with anatomically based models. Based on the formula proposed here, the WBA-SARs in grounded human models are approximately 10% larger than those in free space. The variability of the WBA-SAR was shown to be ±30% even for humans of the same age, which is caused by the body shape. PMID:23202273
Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators
Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong
2016-04-01
Locally resonant acoustic metamaterials with multi-resonators are generally regarded as a fine trend for managing the bandgaps, the different effects of relevant structural parameters on the bandgaps, which will be numerically investigated in this paper. A two-step homogenization method is extended to achieve the effective mass of multi-resonators metamaterial in the lattice system. As comparison, the dispersive wave propagation in lattice system and continuum model is studied. Then, the different effects of relevant parameters on the center frequencies and bandwidth of bandgaps are perfectly revealed, and the steady-state responses in the continuum models with purposed relevant parameters are additionally clarified. The related results can well confirm that the bandgaps exist around the undamped natural frequencies of internal resonators, and also their bandwidth can be efficiently controlled with the ensured center frequencies. Moreover, the design of purposed multi-resonators acoustic metamaterial in vibration control is presented and discussed by an example.
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G
1998-01-01
Four of the Michel parameters and the average tau-neutrino helicity have been measured by analysing tau decay spectra in 147 \\pb ~of data collected by the L3 detector. The decays \\tte, ~\\ttm, ~\\ttp, ~\\ttr ~and their charge conjugates were considered. The results: $\\rho = 0.762 \\pm 0.035$, $\\eta = 0.27 \\pm 0.14$, $\\xi = 0.70 \\pm 0.16$, $\\xi\\delta = 0.70 \\pm0.11$ and $\\xi_{h} = -1.032 \\pm 0.031$ are consistent with a V$-$A structure for the weak charged current and lepton universality.
Thiel, Thorsten; Czisch, Michael; Elbel, Gregor K; Hennig, Juergen
2002-06-01
The quality of spectra in (1)H magnetic resonance spectroscopy (MRS) is strongly affected by temporal signal instabilities during the acquisition. One reason for these instabilities are hardware imperfections, e.g., drifts of the main magnetic field in superconducting magnets. This is of special concern in high-field systems where the specification of the field stability is close to the spectral linewidth. A second major potential source of artifacts, particularly in clinical MRS, is patient motion. Using standard acquisition schemes of phase-cycled averaging of the individual acquisitions, long-term effects (field drifts) as well as changes on a shorter time scale (motion) can severely reduce spectral quality. The new technique for volume-selective MRS presented here is based on the additional interleaved acquisition of a navigator signal during the recovery time of the metabolite acquisition. It corrects for temporal signal instabilities by means of a deconvolution of the metabolite and the navigator signal. This leads to phase-corrected individual metabolite scans and upon summation to a phase-coherent averaging scheme. The interleaved navigator acquisition does not require any user interaction or supervision, while sequence efficiency is maintained. PMID:12111954
Directory of Open Access Journals (Sweden)
Xuefeng Li
2014-04-01
Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.
SAMDIST: A computer code for calculating statistical distributions for R-matrix resonance parameters
Energy Technology Data Exchange (ETDEWEB)
Leal, L.C.; Larson, N.M.
1995-09-01
The SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.
Determination of Scaling Parameter and Dynamical Resonances in Complex-Rotated Hamiltonian Ⅰ: Theory
Institute of Scientific and Technical Information of China (English)
LI Heng-Mei; ZHAO Fang; YUAN Hong-Chun; ZHAO Mei-Shan
2008-01-01
In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = En(θ) - iF(θ)/2, as a function of the scaling parameter The condition dER(θR)/ dθ = 0 is merely a consequence of the Virial theorem and θⅠ = θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formalism for resonances in scattering over a potential barrier.
Statistical properties of the 235U resonance parameters up to 300 eV
International Nuclear Information System (INIS)
An accurate resonance analysis of the 235U neutron cross sections up to 300 eV is in progress for the ENDF/B-VI files. A detailed discussion of the data base and a description of the method of resonance analysis have been given elsewhere. The purpose of this paper is to report on the statistical properties of the 235U resonance parameters and compare our results with those of previous analyses. The statistical properties of nuclear levels are of both technical and theoretical interest. From the technical viewpoint, these properties are the basis for an extrapolation into the unresolved resonance region, which is of relevance to the calculation of effective group cross sections for reactor design. From the theoretical viewpoint, the resonance parameters obtained from a multilevel R-matrix analysis of a consistent set of neutron cross sections should satisfy a set of statistical properties arising from general properties of the nuclear Hamiltonian
A coupling method of subgroup and wavelet expansion for the resonance parameter calculation
International Nuclear Information System (INIS)
Owing to their geometric flexibility, subgroup method and wavelet expansion method have become attractive approaches to obtain effective self-shielding microscopic cross sections within resonance energy groups for geometrically complex problems. However, the subgroup method is good in the dense resonance range, while the wavelet expansion method is good in the sparse resonance range. In order to get the resonance parameter in the whole resonance energy range more accurately and effectively, this paper developed a new coupling resonance calculation model based on subgroup method and wavelet expansion method. In this coupling model, the subgroup method is employed to handle the higher resonance energy groups, and the wavelet expansion method is employed to handle the lower resonance energy groups. At the coupling interface, they are coupled by transferring scattering source. In order to verify the coupling model, a series of benchmark problems are calculated in this paper. It is demonstrated that compared with subgroup method and wavelet expansion method respectively, this coupling resonance model has the ability to provide more exactly self-shielding microscopic cross sections in the whole resonance energy range while keeping enough efficiency. (author)
Bera, Mahua; Banerjee, Jayeta; Ray, Mina
2014-02-01
Metallic film thickness optimization in mono- and bimetallic plasmonic structures has been carried out in order to determine the correct device parameters. Different resonance parameters, such as reflectivity, phase, field enhancement, and the complex amplitude reflectance Argand diagram (CARAD), have been investigated for the proposed optimization procedure. Comparison of mono- and bimetallic plasmonic structures has been carried out in the context of these resonance parameters with simultaneous angular and spectral interrogation. Differential phase analysis has also been performed and its application to sensing has been discussed along with a proposed interferometric set-up.
Stoop, C L; Thompson-Crispi, K A; Cartwright, S L; Mallard, B A
2016-06-01
Dairy cattle evaluated for immune responses and identified as high responders are known to have a lower occurrence of economically important diseases, including mastitis, metritis, ketosis, and retained placenta. These high immune responders have also been shown to make more antibody following vaccination and to have improved milk and colostrum quality. Therefore, breeding for improved immune response is expected to have several benefits in the dairy industry. However, a concern of such an approach to improve animal health is the potential cost of lost production due to an allocation of host resources to mount a robust immune response. The objective of this study was to evaluate early- and late-lactation production parameters in cattle classified as having high, average, or low estimated breeding values (EBV) for cell-mediated (CMIR), antibody-mediated (AMIR), and overall immune responses. A total of 561 cows from 6 herds were phenotyped for immune response and ranked based on EBV for CMIR and AMIR. A linear animal model was used to evaluate differences in milk, fat, and protein yields among immune response groups, and a regression analysis was conducted based on immune response EBV. Overall, no difference in production parameters was found based on immune response rank; however, some positive relationships with immune response EBV were found, suggesting that breeding for enhanced immune responsiveness as a prophylactic approach to improve animal health would not come at the cost of lost production. PMID:27060821
Schille, Joerg; Schneider, Lutz; Loeschner, Udo
2015-09-01
In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.
Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium
International Nuclear Information System (INIS)
The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is 149Sm, which has a large neutron absorption cross section at thermal energies and is a 235U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with 6Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D2O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in 149Sm, present measurements agree within estimated uncertainties with En
Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Samarium
Energy Technology Data Exchange (ETDEWEB)
G. Leinweber; J.A. Burke; H.D. Knox; N.J. Drindak; D.W. Mesh; W.T. Haines; R.V. Ballad; R.C. Block; R.E. Slovacek; C.J. Werner; M.J. Trbovich; D.P. Barry; T. Sato
2001-07-16
The purpose of the present work is to accurately measure the neutron cross sections of samarium. The most significant isotope is {sup 149}Sm, which has a large neutron absorption cross section at thermal energies and is a {sup 235}U fission product with a 1% yield. Its cross sections are thus of concern to reactor neutronics. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic institute (RPI) LINAC facility using metallic and liquid Sm samples. The capture measurements were made at the 25 meter flight station with a multiplicity-type capture detector, and the transmission total cross-section measurements were performed at 15- and 25-meter flight stations with {sup 6}Li glass scintillation detectors. Resonance parameters were determined by a combined analysis of six experiments (three capture and three transmission) using the multi-level R-matrix Bayesian code SAMMY version M2. The significant features of this work are as follows. Dilute samples of samarium nitrate in deuterated water (D{sub 2}O) were prepared to measure the strong resonances at 0.1 and 8 eV without saturation. Disk-shaped spectroscopic quartz cells were obtained with parallel inner surfaces to provide a uniform thickness of solution. The diluent feature of the SAMMY program was used to analyze these data. The SAMMY program also includes multiple scattering corrections to capture yield data and resolution functions specific to the RPI facility. Resonance parameters for all stable isotopes of samarium were deduced for all resonances up to 30 eV. Thermal capture cross-section and capture resonance integral calculations were made using the resultant resonance parameters and were compared to results obtained using resonance parameters from ENDF/B-VI updated through release 3. Extending the definition of the capture resonance integral to include the strong 0.1 eV resonance in {sup 149}Sm, present measurements agree within estimated
Effect of quantum resonance-percolation trajectories on the parameters of a Josephson vortex
International Nuclear Information System (INIS)
It is shown that, in the energy range of the tunneling resonances of a long superconductor-insulator-superconductor tunnel junction with a weak structural disorder (low impurity densities) in the insulator layer, the parameters of a Josephson vortex (flucson) are determined by the presence of quantum resonance-percolation trajectories that are randomly formed in the disordered insulator layer and connect the super-conducting banks of the junction
Coupling Influence on Signal Readout of a Dual-Parameter LC Resonant System
Directory of Open Access Journals (Sweden)
Jijun Xiong
2015-01-01
Full Text Available Dual-parameter inductive-capacitive (LC resonant sensor is gradually becoming the measurement trend in complex harsh environments; however, the coupling between inductors greatly affects the readout signal, which becomes very difficult to resolve by means of simple mathematical tools. By changing the values of specific variables in a MATLAB code, the influence of coupling between coils on the readout signal is analyzed. Our preliminary conclusions underline that changing the coupling to antenna greatly affects the readout signal, but it simultaneously influences the other signal. When f01=f02, it is better to broaden the difference between the two coupling coefficients k1 and k2. On the other side, when f01 is smaller than f02, it is better to decrease the coupling between sensor inductors k12, in order to obtain two readout signals averaged in strength. Finally, a test system including a discrete capacitor soldered to a printed circuit board (PCB based planar spiral coil is built, and the readout signals under different relative inductors positions are analyzed. All experimental results are in good agreement with the results of the MATLAB simulation.
Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier
2016-06-01
A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor.
Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters
Energy Technology Data Exchange (ETDEWEB)
Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto
1998-03-01
Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)
Adamik, A; Mischke, R
1998-11-01
Based on 109 blood samples taken from 36 dogs suffering from thrombocytopenia resonance thrombography with the resonance thrombograph RTG 801 (von Hoerner und Sulger Electronic GmbH, Schwetzingen; manufacturer: Fresenius AG, Bad Homburg) was distinctly more sensitive and more closely correlated to the platelet count using an optimized parameter of the resonance thrombogramm (RTG) in comparison to usual parameters. Nevertheless, clinical requirements regarding samples with platelet counts > 25,000/microliter were not fulfilled. Out of 13 samples with reduced platelet count and simultanous extended capillary bleeding time, depending on the used parameter a maximum of 9 samples could be detected as pathological by the RTG. The normal RTG in part of the cases with clearly altered primary haemostasis contrasts to the exclusive use of RTG in the screening of thrombocytopenia in dogs. PMID:9857562
Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Gadolinium
International Nuclear Information System (INIS)
Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute (RPI) linac facility using metallic and liquid Gd samples. The liquid samples were isotopically-enriched in either 155Gd or 157Gd. The capture measurements were made at the 25-m flight station with a multiplicity-type capture detector, and the transmission measurements were performed at 15- and 25-m flight stations with 6Li glass scintillation detectors. The multilevel R-matrix Bayesian code SAMMY was used to extract resonance parameters. Among the significant findings are the following. The neutron width of the largest resonance in Gd, at 0.032 eV in 157Gd, has been measured to be (9 ± 1)% smaller than that given in ENDF/B-VI updated through release 8. The thermal (2200 m/s) capture cross section of 157 Gd. has been measured to be 11% smaller than that calculated from ENDF. The other major thermal resonance, at 0.025 eV in 155Gd, did not display a significant deviation from the thermal capture cross section given by ENDF. In the epithermal region, 1-300 eV, the analysis, provided here represents the most extensive to date. Twenty eight new resonances are proposed and other resonances previously identified in the literature have been revisited. The assignment of resonances within regions of complicated structure incorporated the observations of other researchers, particularly on the six occasions where ENDF resonances are recommended to be removed. The poor match of the ENDF parameters to the current data is significant, and substantial improvement to the understanding of gadolinium cross sections is presented, particularly above 180 eV where the ENDF resolved region for 155Gd ends. In the epithermal energy range, natural metal samples were measured in capture and transmission. The data were analyzed with the Bayesian code SAMMY. Resonance parameters and resonance integrals have been calculated. The historical record was reviewed
Two-parameter stochastic resonance in a model of electrochemical oxidation of formic acid on Pt
Institute of Scientific and Technical Information of China (English)
皮宗新; 辛厚文
2002-01-01
Stochastic resonance (SR) is shown in a two-parameter system, a model of electro-chemical oxidation of formic acid on Pt. The driving current and the saturation coverage for carbon monoxide are two control parameters in this model. Modulation of an excitable focal stable state close to a Hopf bifurcation by a weak periodic signal in one parameter and noise in the other parameter is found to give rise to SR. The results indicate that the noise can enlarge a weak peri-odic signal and lead the system to be ordered. The scenario and novel aspects of SR in this system are discussed.
Parametric Modeling of the Coupling Parameters of Planar Coupled-Resonator Microwave Filters
Caenepeel, Matthias; Seyfert, Fabien; Rolain, Yves; Olivi, Martine
2015-01-01
International audience —The design of planar coupled-resonator microwave filters is widely based on coupling matrix theory. In this framework a coupling matrix is first obtained during the synthesis step. Next this coupling matrix is physically implemented by correctly dimensioning the geometrical parameters of the filter. The implementation step is carried out using simplified empirical design curves relating the coupling coefficients and geometrical parameters. The curves typically only ...
Resonance parameter library LIPAR-5. Part 2. Main characteristics and content
International Nuclear Information System (INIS)
The neutron resolved resonance parameter library LIPAR is elaborated. It contains data for 94 isotopes. The author's evaluations are included in LIPAR. After reevaluation the other author's results are included. The parameters are presented in ENDF/B-6 format. The LIPAR is a part of nuclear data library of the MCU Monte-Carlo code applying for the neutron transport calculations in reactors. 6 tabs
Gutberlet Matthias; Lurz Philipp; Fuernau Georg; de Waha Suzanne; Eitel Ingo; Desch Steffen; Schuler Gerhard; Thiele Holger
2011-01-01
Abstract Cardiac magnetic resonance (CMR) offers a variety of parameters potentially suited as surrogate endpoints in clinical trials of acute myocardial infarction such as infarct size, myocardial salvage, microvascular obstruction or left ventricular volumes and ejection fraction. The present article reviews each of these parameters with regard to the pathophysiological basis, practical aspects, validity, reliability and its relative value (strengths and limitations) as compared to competit...
M. Charmi; M.H. Yousefi
2015-01-01
This paper presents the effects of structural parameters like Quantum well width, barrier width, spacer width, contact width and contact doping, on performance of Resonant Tunneling Diode using full quantum simulation. The simulation is based on a self-consistent solution of the Poisson equation and Schrodinger equation with open boundary conditions, within the non-equilibrium Green’s function formalism. The effects of varying the structural parameters is investigated in terms of the output c...
Spatial coherence resonance induced by coloured noise and parameter diversity in a neuronal network
International Nuclear Information System (INIS)
Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented. (general)
Determination of the a′-parameter of resonance lines in flames
Trigt, C. van; Hollander, Tj.; Alkemade, C.T.J.
1965-01-01
A method is described for determining experimentally the a′-parameter of resonance lines of Na,K,Li,Cs,Ca and Sr by combining the so-called curves of growth† with duplication curves. Theoretical curves of growth and duplication curves for single lines and doublets (with 1 = 1/3 , 2 = 2/3 ) were calc
International Nuclear Information System (INIS)
Kapur-Peierls resonance parameters are complex, energy-dependent in a quite indirectly specified way. In spite of these undesirable features they are needed whenever Doppler broadening of mutually interfering resonances is to be calculated by means of the Voigt profiles PSI and KHI commonly used in reactor physics. On the other hand most resonance parameters extracted from measured cross section data are of the Wigner-Eisenbud or Reich-Moore type, i.e. real and independent of energy. A practical method is presented to convert these to Kapur-Peierls parameters. The energy dependence of partial widths is fully taken into account so that the method works equally well for light and heavy nuclei, for s- and p- or d-wave channels. Large numbers of resonances are no special problem since no level matrix must be inverted. The number of particle channels should be small, however, which makes the method best suited for conversion of Reich-Moore parameters
Institute of Scientific and Technical Information of China (English)
穆莉莎
2014-01-01
Objective To establish cardiac magnetic resonance imaging(MRI)derived left ventricular(LV)global and region function parameters in normal adults.Methods Twenty normal adults were examined with fast imaging employing steady-state(Fiesta)acquisition sequence of cardiac MRI,LV global function and LV region function were measured at basal,middle,apical level and at 16
Nuclear data project in Korea and resonance parameter evaluation of fission products
International Nuclear Information System (INIS)
Nuclear data activities in the fields of evaluation, processing, measurement, and service in Korea are presented in this paper. As one of the current activities, the neutron resonance parameters for stable or long-lived nineteen fission products have been evaluated and the results are presented here. (author)
Indian Academy of Sciences (India)
HAIBIN ZHANG; WEI XIONG; SHANGBIN ZHANG; QINGBO HE; FANRANG KONG
2016-06-01
The nonlinear stochastic resonance system possesses the ability of taking advantage of background noise to enhance the weak signal. It provides a new approach to detect the weak signal embedded with heavy noise. This study proposes a new varying parameter stochastic resonance employing the fourth-order Runge–Kutta numerical method as well as the normalized transformation of a bistable stochastic resonance system. The model performs well in the detection of a time-varying signal with background noise for denoising and signal recovery. We take the fitness coefficient and cross-correlation coefficient as the criteria and analyze the influence of different parameters. The simulating results indicate its availability, validity and that it generates a betterperformance than the traditional stochastic resonance. The method develops the area of time-varying signal detection with stochastic resonance and presents new strategy for detection and denoising of a time-varying signal. It can be expected to be widely used in the areas of aperiodic signal processing, radar communication,etc
Directory of Open Access Journals (Sweden)
Gutberlet Matthias
2011-09-01
Full Text Available Abstract Cardiac magnetic resonance (CMR offers a variety of parameters potentially suited as surrogate endpoints in clinical trials of acute myocardial infarction such as infarct size, myocardial salvage, microvascular obstruction or left ventricular volumes and ejection fraction. The present article reviews each of these parameters with regard to the pathophysiological basis, practical aspects, validity, reliability and its relative value (strengths and limitations as compared to competitive modalities. Randomized controlled trials of acute myocardial infarction which have used CMR parameters as a primary endpoint are presented.
Neutron Capture and Total Cross Section Measurements and Resonance Parameters of Gadolinium
International Nuclear Information System (INIS)
Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute (RPI) linac facility using metallic and liquid Gd samples. The liquid samples were isotopically-enriched in either 155Gd or 157Gd. The capture measurements were made at the 25-m flight station with a multiplicity-type capture detector, and the transmission measurements were performed at 15- and 25-m flight stations with 6Li glass scintillation detectors. The multilevel R-matrix Bayesian code SAMMY was used to extract resonance parameters. Among the significant findings are the following. The neutron width of the largest resonance in Gd, at 0.032 eV in 157Gd, has been measured to be (9 ± 1)% smaller than that given in ENDF/B-VI updated through release 8. The thermal (2200 m/s) capture cross section of 157Gd has been measured to be 11% smaller than that calculated from ENDF. The other major thermal resonance, at 0.025 eV in 155Gd, did not display a significant deviation from the thermal capture cross section given by ENDF. In the epithermal region, the analysis provided here represents the most extensive to date. Twenty eight new resonances are proposed and other resonances previously identified in the literature have been revisited. The assignment of resonances within regions of complicated structure incorporated the observations of other researchers, particularly on the six occasions where ENDF resonances are recommended to be removed. The poor match of the ENDF parameters to the current data is significant, and substantial improvement to the understanding of gadolinium cross sections is presented, particularly above 180 eV where the ENDF resolved region for 155Gd ends
New experimental determination of the neutronic resonance parameters of 237Np below 500 eV
International Nuclear Information System (INIS)
For studies of future nuclear reactors dedicated to nuclear waste transmutation, an improvement of the accuracy of the neutron radiative capture cross section of 237Np appears necessary. In the framework of a collaboration between the Commissariat a l'Energie atomique (CEA) and Institute for Reference Materials and Measurement (IRMM, Geel, Bergium), a new determination of the resonance parameters of 237Np has been performed. Two types of experiments are carried out at GELINA, the IRMM pulsed neutron source, using the time of flight method: a transmission experiment which is related to the neutron total cross section and a capture experiment which gives the neutron radiative capture cross section. The resonance parameters presented in this work are extracted from the transmission data between 0 and 500 eV with the least square code REFIT, using the Reich-Moore formalism. In parallel, the Doppler effect is investigated. The commonly used free gas model appears inadequate below 20 eV for neptunium dioxide at room temperature. By the use of the program DOPUSH, which calculates the Doppler broadening with a harmonic crystal model according to Lamb's theory, we are able to produce abetter fit of the experimental data for the resonances of 237Np in NpO2 at low energy or temperatures. In addition to the resonance parameters, a study of their mean value and distribution is included in this work. (authors)
Ablikim, M; Ban, Y; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; Guo, Z J; Harris, F A; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, G S; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Li, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Fang Liu; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, Jian; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Olsen, S L; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Ruan, X D; Shan, L Y; Shang, L; Shen, C P; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Varner, G S; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W F; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zheng; Wei, C L; Wei, D H; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Zhang, Yiyun; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S
2008-01-01
$R$ measurement data taken with the BESII detector at center-of-mass energies between 3.7 and 5.0 GeV is fitted to determine resonance parameters (mass, total width, electron width) of the high mass charmonium states, $\\psi(3770)$, $\\psi(4040)$, $\\psi(4160)$ and $\\psi(4415)$. Various effects, including the relative phases between the resonances, interferences, the energy-dependence of the full widths, and the initial state radiative correction, are examined. The results are compared to previous studies.
Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Niobium
International Nuclear Information System (INIS)
Epithermal neutron capture and transmission measurements were performed using the time-of-flight method at the RPI linac using metallic Nb samples. The capture measurements were made at the 25-meter flight station with a 16-section sodium iodide multiplicity detector and the transmission measurements at the 25-meter flight station with a Li-6 glass scintillation detector. Resonance parameters were determined for all resonances up to 500eV with a combined analysis of capture and transmission data using the multi-level R-matrix Bayesian code SAMMY. The present results are compared to those presented in ENDF/B-VI, updated through Release 3
Evaluation of statistical resonance parameters for 232Th in 4 to 41 keV energy region
International Nuclear Information System (INIS)
An exhaustive compilation of mean resonance parameters for 232Th isotope reported by different experimental groups, evaluators and users is presented. A set of mean resonance parameters is obtained for 232Th for use in reactor calculations by adjusting the p wave strength function as a function of energy region for a broad group structure corresponding to the already evaluated total and partial cross sections recommended in the ENDF/B-IV library in 4 to 41 keV energy region. The difficulties associated with the evaluation of mean resonance parameters for given evaluated cross sections in the unresolved resonance region are highlighted. A brief comparison of the American ENDF/B procedure and the German KEDAK procedure for the processing of the unresolved resonance data is also given. A possibility exists to explain part of the discrepancies between the calculated and the experimentally determined integral parameters to be due to the non-uniqueness of the mean resonance parameters in the unresolved resonance region for the main fissile and fertile nuclides. It appears more satisfying to evaluate the mean resonance data (and hence the self-shielded cross sections) for a given multigroup structure used in reactor calculations unlike the ENDF/B convention. It is further recommended that the thick sample transmission and self-indication measurements be performed for 232Th in order to determine experimentally the self-shielded cross sections in the unresolved resonance region and to support the above mentioned evaluation of mean resonance parameters. (auth.)
Pritychenko, B.; Mughabghab, S.F.
2012-01-01
We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-...
Evidence of parameter-induced aperiodic stochastic resonance with fixed noise
Institute of Scientific and Technical Information of China (English)
Li Jian-Long
2007-01-01
Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we show the evidence that by changing the system parameters and the signal intensity, a nonlinear system in the presence of an input aperiodic signal can yield the cooperative effect, with the noise fixed. To quantify the nonlinear system output,we determine the theoretical bit error rate (BER). By numerical simulation, the validity of the theoretical derivation is checked. Besides, we show that parameter-induced SR is more realizable than SR via adding noises, especially when the noise intensity exceeds the resonance level, or when the characteristic of the noise is not known.
Broer, H.W.; Lunter, G. A.; Vegter, G.
1998-01-01
We consider Hamiltonian systems near equilibrium that can be (formally) reduced to one degree of freedom. Spatiotemporal symmetries play a key role. The planar reduction is studied by equivariant singularity theory with distinguished parameters. The method is illustrated on the conservative spring-pendulum system near resonance, where it leads to integrable approximations of the iso-energetic Poincare map. The novelty of our approach is that we obtain information on the whole dynamics, regard...
Atlas of giant dipole resonances. Parameters and graphs of photonuclear reaction cross sections
International Nuclear Information System (INIS)
Parameters of giant dipole resonances (GDR) observed in photonuclear reaction cross sections using various beams of incident photons are presented. Data, given for 200 stable isotopes from 2H to 243Am including their natural compositions, were collected from papers published over the years 1951-1996. GDR parameters, such as energy positions, amplitudes and widths, are included into the table and organized by element, isotope and reaction. Graphs of the majority of the photonuclear reaction cross sections, included in the international nuclear data library EXFOR by the end of 1998, are presented. The graphs are provided for 182 stable isotopes and natural compositions. (author)
Energy Technology Data Exchange (ETDEWEB)
Ochiai, S; Okuda, H; Sugano, M; Hojo, M [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Osamura, K [Research Institute for Applied Sciences, Sakyo-ku, Kyoto 606-8202 (Japan); Kuroda, T; Itoh, K; Kitaguchi, H; Kumakura, H [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Wada, H, E-mail: shojiro.ochiai@materials.mbox.media.kyoto-u.ac.j [Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)
2010-02-15
When the critical current of bent Bi2223 composite tape is measured for many specimens, the critical current value is different from specimen to specimen, being distributed from low to high values. We need to characterize the distribution of critical current at various applied strains and also to predict the distribution of irreversible strain for reliability and safe design. The present work attempted to describe them from the statistical viewpoint. In the analysis, the unifying parameter approach proposed recently by the authors was employed, in which the difference in damage evolution and critical current among the specimens was correlated with the distribution of the unifying parameter that refers to the tensile damage strain of Bi2223 filaments in composite tapes. By application of this approach to the measured critical current values under various bending strains for three Bi2223 composite tapes from different suppliers (VAM1, VAM2 and VAM3 used as the common test samples in the round robin test of VAMAS/TWA16), the unifying parameters were estimated and were formulated by the Weibull distribution function. With the formulated distribution function of the unifying parameter, the distributions of the critical current at various strains, the distribution of the irreversible bending strain and the average critical current-bending strain relation near the average irreversible bending strain could be described satisfactorily.
Energy Technology Data Exchange (ETDEWEB)
Derrien, H.; Leal, L.C.; Larson, N.M.; Guber, K.; Wiarda, D.; Arbanas, G. [Oak Ridge National Laboratory, P. O. Box 2008, Tennessee 37831-6170 (United States)
2008-07-01
High-resolution neutron capture cross section measurements of {sup 55}Mn were recently performed at GELINA by Schillebeeckx et al. (2005) and at ORELA by Guber et al. (2007). The analysis of the experimental data was performed with the computer code SAMMY using the Bayesian approach in the resonance parameters representation of the cross sections. The neutron transmission data taken in 1988 by Harvey et al. (2007) and not analyzed before were added to the SAMMY experimental data base. More than 95% of the s-wave resonances and more than 85% of the p-wave resonances were identified in the energy range up to 125 keV, leading to the neutron strength functions S{sub 0} = (3.90 +- 0.78) x 10{sup -4} and S{sub 1} = (0.45 +- 0.08) x 10{sup -4}. About 25% of the d-wave resonances were identified with a possible strength function of S{sub 2} 1.0 x 10{sup -4}. The capture cross section calculated at 0.0253 eV is 13.27 b, and the capture resonance integral is 13.52 +- 0.30 b. In the energy range 15 to 120 keV, the average capture cross section is 12% lower than Lerigoleur value and 25% smaller than Macklin value. GELINA and ORELA experimental capture cross sections show a background cross section not described by the Reich-Moore resonance parameters. Part of this background could be due to a direct capture component and/or to the missing d-wave resonances. The uncertainty of 10% on the average capture cross section above 20 keV is mainly due to the inaccuracy in the calculation of the background components. (authors)
Directory of Open Access Journals (Sweden)
Martin J M Lankheet
Full Text Available Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals.
A method for extracting the resonance parameters from experimental cross-sections
International Nuclear Information System (INIS)
Within the proposed method, a set of experimental data points are fitted using a multi-channel S-matrix. Then the resonance parameters are located as its poles on an appropriate sheet of the Riemann surface of the energy. The main advantage of the method is that the S-matrix is constructed in such a way that it has proper analytic structure, i.e. for any number of two-body channels, the branching at all the channel thresholds is represented via exact analytic expressions in terms of the channel momenta. The way the S-matrix is constructed makes it possible not only to locate multi-channel resonances but also to extract their partial widths as well as to obtain the scattering cross-section in the channels for which no data are available. The efficiency of the method is demonstrated by two model examples of a single-channel and a two-channel problems, where known resonance parameters are rather accurately reproduced by fitting the pseudo-data artificially generated using the corresponding potentials. (author)
A novel parameter-induced stochastic resonance phenomena in fractional Fourier domain
Lin, Lifeng; Wang, Huiqi; Lv, Wangyong; Zhong, Suchuan
2016-08-01
The parameter-induced stochastic resonance (SR) phenomenon in a novel self-adaptive dynamical system driven by linear frequency modulated (LFM) signal and additive noise is considered from the view of the signal-to-noise ratio (SNR). It is found that the dynamical system can be perfectly analyzed by equivalently transforming it into a traditional first-order linear dynamical system driven by periodic signal and additive noise in fractional Fourier transform (FrFT) domain with an optimal rotated angle, and the theoretical analysis and simulation results show that output SNR exhibits the SR behavior when it is plotted as a function of the system parameter. Furthermore, the optimal value of adjusted parameter is obtained, and the possible area of SNR gain is theoretically determined only by center-frequency and modulated frequency of the driving LFM signal.
Directory of Open Access Journals (Sweden)
M. Charmi
2015-12-01
Full Text Available This paper presents the effects of structural parameters like Quantum well width, barrier width, spacer width, contact width and contact doping, on performance of Resonant Tunneling Diode using full quantum simulation. The simulation is based on a self-consistent solution of the Poisson equation and Schrodinger equation with open boundary conditions, within the non-equilibrium Green’s function formalism. The effects of varying the structural parameters is investigated in terms of the output current, peak current, valley current, peak to valley current ratio and the voltage associated with the peak current. Simulation results illustrate that the device performance can be improved by proper selection of the structural parameters.
Bobbili, Prasada Rao; Nayak, Jagannath; Pinnoji, Prerana Dabral; Rama Koti Reddy, D V
2016-03-10
The accuracy of the resonant frequency servo loop is a major concern for the high-performance operation of a resonant fiber optic gyro. For instance, a bias error as large as tens or even hundreds of degrees/hour has been observed at the demodulated output of the resonant frequency servo loop. The traditional frequency servo mechanism is not an efficient tool to address this problem. In our previous work, we proposed a novel method to minimize the laser frequency noise to the level of the shot noise by refractive index modulation by a thermally tunable resonator. In this paper, we performed the parameter optimization for the resonator coil, multifunction integrated-optics chip, and couplers by the transition matrix using the Jones matrix methodology to minimize the polarization error. With the optimized parameter values, we achieved the bias value of the resonator fiber optic gyro to 1.924°/h. PMID:26974794
Energy Technology Data Exchange (ETDEWEB)
Nakajima, Yutaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1996-08-01
Resolved resonance parameters of the following fission product nuclides with atomic numbers Z=46-51 have been evaluated for JENDL-3.2: {sup 102,104,105,106,107,108,110}Pd, {sup 107,109,110m}Ag, {sup 106,108,110,111,112,113,114,116}Cd, {sup 113,115I}n, {sup 121,123}Sb. Evaluation was made on the basis of JENDL-2 for most nuclides and of the data recommended by Mughabghab et al. for the nuclides whose data have not been contained in JENDL-2. Data measured after the JENDL-2 evaluation (1982) have been taken into account in the evaluation. Spin of the resonance state and angular momentum of the incident neutron have been given for all levels. When there exist no measured data, the spin has been given tentatively on the basis of a random sampling technique using their statistical properties, and the angular momentum was also tentatively given on the basis of the Bayes`s theorem on conditional probability using the s- and p-wave strength functions and average level spacings. The resonance parameters have been evaluated so as to reproduce measured capture area of individual resonance levels, thermal cross section and resonance integral. Evaluated results have been compiled into JENDL-3.2 in the formats of ENDF-5 and ENDF-6. (author)
A small parameter in the 1/Nsub(c) expansion and narrowness of hadronic resonances
International Nuclear Information System (INIS)
The dynamical basis for the validity of the 1/Nsub(c) expansion is investigated in the context of QCD in 1+1 dimensions. This is carried out by studying the first non-leading corrections in 1/Nsub(c) to the mass operator in the space of physical states. The correction to the real part of the mass operator has a direct implication for the convergence of the 1/Nsub(c) expansion, since a small effective parameter is identified, where its smallness depends on the dynamical circumstances in a known way. The generated imaginary part of the mass operator provides us with an insight concerning the question of the narrowness of hadronic resonances. In order to have a more realistic contact with our world, we include also effects due to the flavor symmetry group SU(Nsub(f)). This allows us to understand better the validity and usefulness of the notions of resonance dominance and (smooth) Regge behavior. We also discuss the expansion with Nsub(f)/Nsub(c) fixed and compare the results with those obtained from Dual Resonance Model. It is remarked that a non-uniformity exists between the limits Nsub(c) → infinity, Nsub(f) = fixed and Nsub(c) → infinity Nsub(f)/Nsub(c) = fixed, which may affect physical quantities. (author)
International Nuclear Information System (INIS)
Purpose: To evaluate the value of magnetic resonance imaging (MRI) in symptomatic patients with different degrees of internal derangement. Material and methods: We prospectively investigated 117 temporomandibular points (TMJ) of 59 symptomatic patients and 31 asymptomatic volunteers and correlated this with clinical parameters. Results: There was a positive correlation between the degree of internal derangement and deformity of the disc, maximal mouth opening, signal intensity of the posterior band, thickness of the bilaminar zone, proliferative bony changes, size of the condyle and reduced translatory movement of the condyle, which in addition moved upward and backward. Patients most often complained of pain which was dependent on the degree of disc displacement and condylar changes. Clinical parameters were found to be inaccurate in predicting disc displacement of the temporormandibular joint may be asymptomatic. Patients history may give the only pointer to the disorder. (orig.)
Sub-Harmonic Resonances of Periodic Parameter Excited Oscillators with Discontinuities
Institute of Scientific and Technical Information of China (English)
Jifeng Cui∗
2015-01-01
It is difficult to obtain analytic approximations of nonlinear problems such as parameter excited system with strong nonlinearity. An analytic approach based on the homotopy analysis method ( HAM ) is proposed to study the sub⁃harmonic resonances of highly nonlinear parameter excited oscillating systems with absolute value terms. The non⁃smoothness of absolute value terms is handled by means of an iteration approach with Fourier expansion. Two typical examples are employed to illustrate the validity and flexibility of this approach. The square residuals of the homotopy⁃approximations of the two examples decrease to 10-6 and 10-5 , respectively. Thus, the HAM combining with other methods gives hope to solve complex singular oscillating systems analytically.
Institute of Scientific and Technical Information of China (English)
LIN Hong-rong; YANG Ai-xia; QIAN Sheng; LI Yue-hui
2004-01-01
In this paper, the effect of system and amplifier parameters on the performance of soliton transmission system using Phase Sensitive Amplifier (PSA) as in-line amplifier has been researched theoretically by computer simulation.Since in PSA soliton system the performance of average soliton regime is much better than that of dynamic soliton regime,in our simulation we only considered average soliton regime. Our simulation results show that although using PSA as inline amplifiers in soliton system can not only overcome Gordon-Haus restriction but also suppress solitons interaction,lengthen soliton stable transmission distance significantly, the system and amplifier parameters have to be chosen carefully in order to get a better system performance.
International Nuclear Information System (INIS)
Our objective was to evaluate the V20 parameters and dose average compared to a single lung volume designed with a CT study in normal breathing of the patient and the corresponding to a lung volume composed, designed from three studies of CT in different phases of the respiratory cycle. Check if there are important differences in these cases that determine the necessity of creating a composite lung volume to evaluate dose volume histogram. (Author)
Reevaluation and Validation of the 241Pu Resonance Parameters in the Energy Range Thermal to 20 eV
International Nuclear Information System (INIS)
A new SAMMY analysis of the 241Pu resonance parameters from thermal to 20 eV is presented. This evaluation takes into account the trends given by integral experiments [post-irradiation experiments performed in French pressurized water reactors (PWRs)]. Compared to the previous evaluations performed by Derrien and de Saussure, the capture cross section increases especially in the 0.26-eV resonance. It is shown that the new resonance parameters proposed in this work improve the prediction of the 242Pu buildup in a PWR, which was significantly underestimated with the previous evaluations
Pereira, Fabíola Manhas Verbi; Bertelli Pflanzer, Sérgio; Gomig, Thaísa; Lugnani Gomes, Carolina; de Felício, Pedro Eduardo; Colnago, Luiz Alberto
2013-04-15
The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level. PMID:23601874
DeRouin, Andrew; Ghee Ong, Keat
2016-03-01
Magnetoelastic sensors are mass sensitive sensors commonly used for stress and pressure measurement, as well as chemical and biological monitoring when combined with a functionalized coating. Magnetoelastic sensors are typically made of free-standing, rectangular strips of magnetoelastic materials that exhibit longitudinal, extensional vibrations due to the excitation of magnetic fields. A single magnetoelastic sensor is generally used to monitor one parameter since only the fundamental resonant frequency is measured. Multiple-parameter sensing in close proximity has previously been achieved by using multiple magnetoelastic sensors of different dimensions and tracking their resonant frequencies independently. However, this requires a large surface area and inconvenient layout of dissimilarly shaped sensors. This paper presents a technique for monitoring multiple parameters with a single magnetoelastic sensor by applying separate mass loads at the null points (points of zero vibration) of multiple resonant modes. Applying a load at a null location does not affect the corresponding resonant mode but alters the resonant frequencies of other modes. Therefore, by isolating the variables of interest to multiple null points and simultaneously measuring the resonant frequency shifts of related resonant modes, the masses at each null location can be calculated. Results showed that changing the coverage at a null location along the width of the sensor can be used to minimize the loading effect on the corresponding resonant mode. In contrast, changing the lengthwise coverage can maximize the loading effect on other resonant modes, thus increasing the mass sensitivity of the sensor. Furthermore, simultaneously applying loads to null points of multiple resonant modes had a nearly additive effect, allowing detection of multiple parameters with a single magnetoelastic sensor.
Masian, Y.; Sivak, A.; Sevostianov, D.; Vassiliev, V.; Velichansky, V.
The paper shows the presents results of studies of small-size rubidium cells with argon and neon buffer gases, produced by a patent pended technique of laser welding [Fishman et al. (2014)]. Cells were designed for miniature frequency standard. Temperature dependence of the frequency of the coherent population trapping (CPT) resonance was measured and used to optimize the ratio of partial pressures of buffer gases. The influence of duration and regime of annealing on the CPT-resonance frequency drift was investigated. The parameters of the FM modulation of laser current for two cases which correspond to the highest amplitude of CPT resonance and to the smallest light shifts of the resonance frequency were determined. The temperature dependences of the CPT resonance frequency were found to be surprisingly different in the two cases. A non-linear dependence of CPT resonance frequency on the temperature of the cell with the two extremes was revealed for one of these cases.
Costabel, Stephan; Yaramanci, Ugur
2013-04-01
[1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water
Measurement and analysis for neutron resonance parameters of 169Tm below 100 eV
International Nuclear Information System (INIS)
As part of nuclear data library, neutron resonance parameter (NRP) plays a very important part in the application for national defense, industrial production and theoretical research. For some reason, there are no such research conditions for NRP in China, either experimental or theoretical. The analysis of NRP should base on experimental data, so a total cross-section measurement was done on the Pohang Neutron Facility (PNF), yielding a new set of transmission data of 169Tm below 100 eV, as well as a new set of NRP of 169Tm using SAMMY code. Taking all data collected for 169Tm NRP into consideration, a new set of 169Tm NPR was evaluated and recommended. After this work, the methodology and analyzing-flow for NRP evaluation were summarized, as a technological reservation for the future work. (authors)
Neutron total cross-sections and resonance parameters of Mo and Ta
Indian Academy of Sciences (India)
A K M Moinul Haque Meaze; K Devan; Y S Lee; Y D Oh; G N Kim; D Son
2007-02-01
Experimental results of transmissions for the samples of natural molybdenum with thickness 0.0192 atoms/barn and for the four samples of natural tantalum with thickness 0.0222, 0.0111, 0.0055 and 0.0025 atoms/barn are presented in this work. Measurements were carried out at the Pohang Neutron Facility which consists of a 100 MeV Linac, water-cooled tantalum target, and 12 m flight path length. Effective total cross-sections were extracted from the transmission data, and resonance parameters were obtained by using the code SAMMY. The present measurements were compared with other measurements and with the evaluated nuclear data file ENDF/B-VI.8.
Steinfeld, J. I.; Foy, B.; Hetzler, J.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Coy, S.
1990-01-01
The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia.
International Nuclear Information System (INIS)
Complete sets of low-lying 1/2- and 3/2- levels in 185W and 187W have been obtained using measurements of primary γ-rays following average resonance neutron capture at mean incident neutron energies of 2 and 24 keV. The results are discussed in terms of both the Nilsson model and the SU(3) boson-fermion symmetry scheme appropriate to this region. The data highlights the advantages and deficiencies of both frameworks, and shows that neither is able to describe the complete spectrum of low-lying low-spin energy levels. The two approaches are outlined and compared and the role of the missing degrees of freedom in each is discussed. (orig.)
International Nuclear Information System (INIS)
The processes of self-organization of the surface structure of hydrogenated amorphous silicon are studied by the methods of fluctuation analysis and average mutual information on the basis of atomic-force-microscopy images of the surface. It is found that all of the structures can be characterized by a correlation vector and represented as a superposition of harmonic components and noise. It is shown that, under variations in the technological parameters of the production of a-Si:H films, the correlation properties of their structure vary as well. As the substrate temperature is increased, the formation of structural irregularities becomes less efficient; in this case, the length of the correlation vector and the degree of structural ordering increase. It is shown that the procedure based on the method of fluctuation analysis in combination with the method of average mutual information provides a means for studying the self-organization processes in any structures on different length scales
Trifirò, Daniele; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich
2015-01-01
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" $\\xi$ and resonant family $\\Delta\\Phi=0,\\pi$ (which uniquely label the source); the inclination $\\theta_{JN}$ of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables t...
Energy Technology Data Exchange (ETDEWEB)
Chew, D.M; Urban, M.
1978-04-01
A partial-wave analysis was performed on elastic ..pi../sup +/p data between 1400 and 2200 MeV, using principles of analyticity (to select and amalgamate data), causality and unitarity together with Barrelet zeros are the resonating waves between 1500 and 1800 MeV examined in detail, and it is shown how a new resolution of the discrete ambiguity gives, for the S31 and D33 resonances, different parameters than found in an earlier resolution using less accurate information. In either case, mass degeneracy of these resonances is observed in agreement with general considerations regarding smooth zero trajectories. 18 references.
Extracting the resonance parameters from experimental data on scattering of charged particles
Vaandrager, P
2016-01-01
A new parametrization of the multi-channel S-matrix is used to fit scattering data and then to locate the resonances as its poles. The S-matrix is written in terms of the corresponding "in" and "out" Jost matrices which are expanded in the Taylor series of the collision energy E around an appropriately chosen energy E0. In order to do this, the Jost matrices are written in a semi-analytic form where all the factors (involving the channel momenta and Sommerfeld parameters) responsible for their "bad behaviour" (i.e. responsible for the multi-valuedness of the Jost matrices and for branching of the Riemann surface of the energy) are given explicitly. The remaining unknown factors in the Jost matrices are analytic and single-valued functions of the variable E and are defined on a simple energy plane. The expansion is done for these analytic functions and the expansion coefficients are used as the fitting parameters. The method is tested on a two-channel model, using a set of artificially generated data points wi...
A measurement of the resonance parameters of the neutral intermediate vector boson
International Nuclear Information System (INIS)
This thesis presents a measurement of the Z0 Boson resonance parameters. The measurement was performed at the Stanford Linear Collider using the Mark II detector. Based on a sample of 480 Hadronic and Leptonic decays, the mass is found to be 91.14 ± 0.12 GeV/c2, the total width is 2.42 -0.35+0.45 GeV, and the peak cross section for all Hadronic events, and for Muon and Tau events with cosθThrust < 0. 65 is 45 ± 4 nb. By constraining the visible width to the Standard Model value for 5 quarks and 3 charged leptons, and allowing the invisible width to be a parameter, the width to invisible decay modes is found to be 0.46 ± 0.10 GeV. Assuming this width comes from massless neutrinos, this measurement corresponds to 2.8 ± 0.6 neutrino species. This measurement sets an upper limit of 3.9 neutrino generations at the 95% confidence level, ruling out a fourth generation of Standard Model neutrinos at this level. 54 refs., 65 figs., 11 tabs
Institute of Scientific and Technical Information of China (English)
Qing-Gang Xu; Jun-Fang Xian
2015-01-01
Objective:To elaborate the role of quantitative magnetic resonance imaging (MRI) parameters in the evaluation of treatment response in malignant tumors.Data Sources:Data cited in this review were obtained mainly from PubMed in English from 1999 to 2014,with keywords "dynamic contrast-enhanced (DCE)-MRI," "diffusion-weighted imaging (DWI)," "microcirculation," "apparent diffusion coefficient (ADC)," "treatment response" and "oncology."Study Selection:Articles regarding principles of DCE-MRI,principles of DWI,clinical applications as well as opportunity and aspiration were identified,retrieved and reviewed.Results:A significant correlation between ADC values and treatment response was reported in most DWI studies.Most quantitative DCE-MRI studies showed a significant correlation between K~s values and treatment response.However,in different tumors and studies,both high and low pretreatment ADC or K~s values were found to be associated with response rate.Both DCE-MRI and DWI demonstrated changes in their parameters hours to days after treatment,showing a decrease in K~ns or an increase in ADC associated with response in most cases.Conclusions:Combinations of quantitative MRI play an important role in the evaluation of treatment response of malignant tumors and hold promise for use as a cancer treatment response biomarker.However,validation is hampered by the lack of reproducibility and standardization.MRI acquisition protocols and quantitative image analysis approaches should be properly addressed prior to further testing the clinical use of quantitative MRI parameters in the assessment of treatments.
International Nuclear Information System (INIS)
We correlated coagulation and fibrinolytic parameters with small-vessel disease revealed by magnetic resonance imaging (MRI) of the brain. One hundred and eleven patients with asymptomatic or symptomatic cerebral infarction were randomly selected for the study; 57 males and 54 females with an average age of 66.6±9.6, age range 40 to 85, years old. Among them, 76 patients had a history of symptomatic cerebral infarction; 38 patients hypertension; and 24 patients diabetes mellitus. Patients with large cortical infarction, cerebral hemorrhage, demyelinating disease or mass lesions were excluded from the present study. The MRI scans were reviewed for areas with increased signal intensity on T2-weighted images. The small infarction was defined as a lesion less than 10 mm in diameter. The activity of von Willebrand factor (vWF) correlated significantly with the grade of caps at the anterior and posterior horns of the lateral ventricle, and the number of small infarctions in the subcortical white matter and basal ganglia, suggesting vWF could be a predictor for these small-vessel disease. The grade of caps at posterior horn of the lateral ventricle and the number of small infarctions in the subcortical white matter were associated significantly with the concentration of plasma fibrinogen and reversely with the activity of antithrombin III, an inhibitory factor in coagulation system. These results indicate that hypercoagulable state may causatively relate with small-vessel disease in the territory of medullary artery branching from cortical artery. On the contrary, these coagulation parameters did not correlate significantly with small ischemic lesions in the territory of perforating artery. No correlation was observed between the level of marker proteins for platelet activation and the degree of small-vessel disease, indicating the activation of platelet could not associate with the etiology of small-vessel disease. (author)
International Nuclear Information System (INIS)
Diversity in the neurons and noise are inevitable in the real neuronal network. In this paper, parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated. The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified. The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased. The results suggest that natural nervous system might profit from both parameter diversity and noise, provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise. (general)
International Nuclear Information System (INIS)
Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed
Sutter, Kiplangat
This thesis illustrates the utilization of Density functional theory (DFT) in calculations of gas and solution phase Nuclear Magnetic Resonance (NMR) properties of light and heavy nuclei. Computing NMR properties is still a challenge and there are many unknown factors that are still being explored. For instance, influence of hydrogen-bonding; thermal motion; vibration; rotation and solvent effects. In one of the theoretical studies of 195Pt NMR chemical shift in cisplatin and its derivatives illustrated in Chapter 2 and 3 of this thesis. The importance of representing explicit solvent molecules explicitly around the Pt center in cisplatin complexes was outlined. In the same complexes, solvent effect contributed about half of the J(Pt-N) coupling constant. Indicating the significance of considering the surrounding solvent molecules in elucidating the NMR measurements of cisplatin binding to DNA. In chapter 4, we explore the Spin-Orbit (SO) effects on the 29Si and 13C chemical shifts induced by surrounding metal and ligands. The unusual Ni, Pd, Pt trends in SO effects to the 29Si in metallasilatrane complexes X-Si-(mu-mt)4-M-Y was interpreted based on electronic and relativistic effects rather than by structural differences between the complexes. In addition, we develop a non-linear model for predicting NMR SO effects in a series of organics bonded to heavy nuclei halides. In chapter 5, we extend the idea of "Chemist's orbitals" LMO analysis to the quantum chemical proton NMR computation of systems with internal resonance-assisted hydrogen bonds. Consequently, we explicitly link the relationship between the NMR parameters related to H-bonded systems and intuitive picture of a chemical bond from quantum calculations. The analysis shows how NMR signatures characteristic of H-bond can be explained by local bonding and electron delocalization concepts. One shortcoming of some of the anti-cancer agents like cisplatin is that they are toxic and researchers are looking for
Coon, Joshua
Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) treatments are a promising modality for cancer treatments in which a focused beam of ultrasound energy is used to kill tumor tissue. However, obstacles still exist to its widespread clinical implementation, including long treatment times. This research demonstrates reductions in treatment times through intelligent selection of the user-controllable parameters, including: the focal zone treatment path, focal zone size, focal zone spacing, and whether to treat one or several focal zone locations at any given time. Several treatments using various combinations of these parameters were simulated using a finite difference method to solve the Pennes bio-heat transfer equation for an ultrasonically heated tissue region with a wide range of acoustic, thermal, geometric, and tumor properties. The total treatment time was iteratively optimized using either a heuristic method or routines included in the Matlab software package, with constraints imposed for patient safety and treatment efficacy. The results demonstrate that large reductions in treatment time are possible through the intelligent selection of user-controllable treatment parameters. For the treatment path, treatment times are reduced by as much as an order of magnitude if the focal zones are arranged into stacks along the axial direction and a middle-front-back ordering is followed. For situations where normal tissue heating constraints are less stringent, these focal zones should have high levels of adjacency to further decrease treatment times; however, adjacency should be reduced in some cases where normal tissue constraints are more stringent. Also, the use of smaller, more concentrated focal zones produces shorter treatment times than larger, more diluted focal zones, a result verified in an agar phantom model. Further, focal zones should be packed using only a small amount of overlap in the axial direction and with a small gap in the
International Nuclear Information System (INIS)
The aim of this work is development of S-matrix multilevel resonance parameters determination technique with neutron transmission data used in resolved resonance region. Experimental transmission data values were obtained for the Pu-239 thickness range 0.00217-0.1234 nucl/barns on the time-of-flight spectrometer with 70 ns/m resolution. S-matrix Adler's formalism with least square method fit were used for experimental data description. The method developed enables to justify the resonance-resonance interference parameters H. Its possibilities are demonstrated by determination of these parameters for four resonances of the Pu-239 total cross section
U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...
Costabel, Stephan; Yaramanci, Ugur
2013-04-01
For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation.
Energy Technology Data Exchange (ETDEWEB)
Blaise, P.
1996-12-18
Resonance parameters for actinides play a significant role in the neutronic characteristics of all reactor types. All the major integral parameters strongly depend on the nuclear data of the isotopes in the resonance-energy regions.The author sets up a method for the adjustment of resonance parameters taking into account the self-shielding effects and restricting the cross section deconvolution problem to a limited energy region. (N.T.).
Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons
Energy Technology Data Exchange (ETDEWEB)
Aaltonen, : T.
2008-09-01
The authors report a measurement of resonance parameters of the orbitally excited (L = 1) narrow B{sup 0} mesons in decays to B{sup (*)+}{pi}{sup -} using 1.7 fb{sup -1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B*{sub 2}{sup 0} state are measured to be m(B*{sub 2}{sup 0}) = 5740.2{sub -1.8}{sup +1.7}(stat.){sub -0.8}{sup +0.9}(syst.) MeV/c{sup 2} and {Lambda}(B*{sub 2}{sup 0}) = 22.7{sub -3.2}{sup +3.8}(stat.){sub -10.2}{sup +3.2}(syst.) MeV/c{sub 2}. The mass difference between the B*{sub 2}{sup 0} and B{sub 1}{sup 0} states is measured to be 14.9{sub -2.5}{sup +2.2}(stat.){sub -1.4}{sup +1.2}(syst.) MeV/c{sup 2}, resulting in a B{sub 1}{sup 0} mass of 5725.3{sub -2.2}{sup +1.6}(stat.){sub -1.5}{sup +1.4}(syst.) MeV/c{sup 2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B*{sub 2}{sup 0} width.
Measurement of resonance parameters of orbitally excited narrow B0 mesons.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J
2009-03-13
We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width. PMID:19392106
Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha
2007-02-21
We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants. PMID:17328593
Electron paramagnetic resonance parameters and local structure for Gd3+ in KY3F10
Indian Academy of Sciences (India)
Shao-Yi Wu; Hua-Ming Zhang; Guang-Duo Lu; Zhi-Hong Zhang
2007-09-01
The electron paramagnetic resonance parameters, zero-ﬁeld splittings (ZFSs) b$_{2}^{0}$, b$_{4}^{0}$, b$_{4}^{4}$, b$_{6}^{0}$, b$_{6}^{4}$ and the factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the factor containing the admixture of the ground 8S7/2 and the excited 6L7/2 (L=P, D, F, G) states via the spin–orbit coupling interactions, respectively. By analysing the above ZFSs, the local structure information for the impurity Gd3+ is obtained, i.e., the impurity–ligand bonding angles related to the four-fold (C4) axis for the impurity Gd3+ center are found to be about 0.6° larger than those for the host Y3+ site in KY3F10. The calculated ZFSs based on the above angular distortion as well as the factors are in reasonable agreement with the observed values. The present studies on the ZFSs and the local structure would be helpful to understand the optical and magnetic properties of this material with Gd dopants.
The limits on the strong Higgs sector parameters in the presence of new vector resonances
Gintner, Mikulas
2016-01-01
In this paper, we investigate how the LHC data limit the Higgs related couplings in the effective description of a strongly interacting extension of the Standard model. The Higgs boson is introduced as a scalar composite state and it is followed in the mass hierarchy by an $SU(2)$ triplet of vector composites. The limits are calculated from the constraints on the parameters of the interim kappa framework obtained in the recent ATLAS+CMS combined analysis of the data from 2011 and 2012. In our work, we find that the data prefer the scenario where the Higgs couplings to the electroweak gauge bosons differ from its couplings to the vector triplet. We calculate the experimentally preferred values for these couplings along with the preferred value for the Higgs coupling to the top quark. We also investigate the unitarity limits of the studied effective model for these experimentally preferred values. We find from the $\\pi\\pi\\rightarrow\\pi\\pi$ scattering amplitudes that for the vector resonance masses between one a...
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-05-01
Uncertainties have been estimated for the resonance parameters of {sup 56}Fe, {sup 239}Pu, {sup 240}Pu and {sup 238}U contained in JENDL-3.2. Errors of the parameters were determined from the measurements which the evaluation was based on. The estimated errors have been compiled in the MF32 of the ENDF format. The numerical results are given in tables. (author)
Guo, Haotian; Duan, Fajie; Zhang, Jilong
2016-01-01
Blade tip-timing is the most effective method for blade vibration online measurement of turbomachinery. In this article a synchronous resonance vibration measurement method of blade based on tip-timing is presented. This method requires no once-per revolution sensor which makes it more generally applicable in the condition where this sensor is difficult to install, especially for the high-pressure rotors of dual-rotor engines. Only three casing mounted probes are required to identify the engine order, amplitude, natural frequency and the damping coefficient of the blade. A method is developed to identify the blade which a tip-timing data belongs to without once-per revolution sensor. Theoretical analyses of resonance parameter measurement are presented. Theoretic error of the method is investigated and corrected. Experiments are conducted and the results indicate that blade resonance parameter identification is achieved without once-per revolution sensor.
International Nuclear Information System (INIS)
The purpose of this study was to investigate the feasibility of the autoregressive moving average (ARMA) model for quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in comparison with deconvolution analysis based on singular value decomposition (DA-SVD). Using computer simulations, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) modeled as a gamma-variate function under various CBFs, cerebral blood volumes and signal-to-noise ratios (SNRs) for three different types of residue function (exponential, triangular, and box-shaped). We also considered the effects of delay and dispersion in AIF. The ARMA model and DA-SVD were used to estimate CBF values from the simulated concentration-time curves in the VOI and AIFs, and the estimated values were compared with the assumed values. We found that the CBF value estimated by the ARMA model was more sensitive to the SNR and the delay in AIF than that obtained by DA-SVD. Although the ARMA model considerably overestimated CBF at low SNRs, it estimated the CBF more accurately than did DA-SVD at high SNRs for the exponential or triangular residue function. We believe this study will contribute to an understanding of the usefulness and limitations of the ARMA model when applied to quantification of CBF with DSC-MRI. (author)
The management-retrieval code system of giant dipole resonance parameter sub-library (CENPL.GDP-1)
International Nuclear Information System (INIS)
The giant dipole resonance parameter library, a sub-library of Chinese Evaluated Nuclear Parameter Library (CENPL), consists of two parts: the data file and management-retrieval code system. The former stores the giant dipole resonance parameters (GDRP) of Lorentz curves fitted the total photoneutron cross section data for 102 nuclides from 51V to 239Pu. The latter is used for retrieving GDRP. Since there are no GDRP for most nuclides, a treatment method, which could supplement the GDRP for lack of ones in the data file by using the code system, is presented. It contains the direct retrieval, replacement, interpolation and systematic calculation. The function, feature and operation instruction of the code system are described briefly
Nuclear magnetic resonance parameters of atomic xenon dissolved in Gay-Berne model liquid crystal.
Lintuvuori, Juho; Straka, Michal; Vaara, Juha
2007-03-01
We present constant-pressure Monte Carlo simulations of nuclear magnetic resonance (NMR) spectral parameters, nuclear magnetic shielding relative to the free atom as well as nuclear quadrupole coupling, for atomic xenon dissolved in a model thermotropic liquid crystal. The solvent is described by Gay-Berne (GB) molecules with parametrization kappa=4.4, kappa{'}=20.0 , and mu=nu=1 . The reduced pressure of P{*}=2.0 is used. Previous simulations of a pure GB system with this parametrization have shown that upon lowering the temperature, the model exhibits isotropic, nematic, smectic- A , and smectic- B /molecular crystal phases. We introduce spherical xenon solutes and adjust the energy and length scales of the GB-Xe interaction to those of the GB-GB interaction. This is done through first principles quantum chemical calculations carried out for a dimer of model mesogens as well as the mesogen-xenon complex. We preparametrize quantum chemically the Xe nuclear shielding and quadrupole coupling tensors when interacting with the model mesogen, and use the parametrization in a pairwise additive fashion in the analysis of the simulation. We present the temperature evolution of {129/131}Xe shielding and 131Xe quadrupole coupling in the different phases of the GB model. From the simulations, separate isotropic and anisotropic contributions to the experimentally available total shielding can be obtained. At the experimentally relevant concentration, the presence of the xenon atoms does not significantly affect the phase behavior as compared to the pure GB model. The simulations reproduce many of the characteristic experimental features of Xe NMR in real thermotropic LCs: Discontinuity in the value or trends of the shielding and quadrupole coupling at the nematic-isotropic and smectic-A-nematic phase transitions, nonlinear shift evolution in the nematic phase reflecting the behavior of the orientational order parameter, and decreasing shift in the smectic-A phase. The last
Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov
2007-01-01
Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.
Energy Technology Data Exchange (ETDEWEB)
Derrien, H
2005-12-05
The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.
Chemyakin, E.; Sawamura, P.; Mueller, D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Scarino, A. J.; Hair, J. W.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Seaman, S. T.
2015-12-01
Although aerosols are only a fairly minor constituent of Earth's atmosphere they are able to affect its radiative energy balance significantly. Light detection and ranging (lidar) instruments have the potential to play a crucial role in atmospheric research as only these instruments provide information about aerosol properties at a high vertical resolution. We are exploring different algorithmic approaches to retrieve microphysical properties of aerosols using lidar. Almost two decades ago we started with inversion techniques based on Tikhonov's regularization that became a reference point for the improvement of retrieval capabilities of inversion algorithms. Recently we began examining the potential of the "arrange and average" scheme, which relies on a look-up table of optical and microphysical aerosol properties. The future combination of these two different inversion schemes may help us to improve the accuracy of the microphysical data products.The novel arrange and average algorithm was applied to retrieve aerosol optical and microphysical parameters using NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL-2) data. HSRL-2 is the first airborne HSRL system that is able to provide advanced datasets consisting of backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm as input information for aerosol microphysical retrievals. HSRL-2 was deployed on-board NASA LaRC's King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns over the California Central Valley and Houston. Vertical profiles of aerosol optical properties and size distributions were obtained from in-situ instruments on-board the NASA's P-3B aircraft. As HSRL-2 flew along the same flight track of the P-3B, synergistic measurements and retrievals were obtained by these two independent platforms. We will present an
International Nuclear Information System (INIS)
Measurements have been performed on the perturbing effect of a number of scattering materials by the 'free-field' neutron leakage spectrum from a Godiva Type Critical Assembly (White Sands Missile Range Fast Burst Reactor). The results of these measurements are interpreted in relation to some of the general parameters characterizing a neutron environment, namely, the average neutron energy >10 KeV, the spectral index and the hardness parameter. Three neutron spectrum measurements have been performed, each under different experimental configurations of scattering materials. Results from these measurements show the following with relation to the spectral index: (1) The neutron environment on the core surface and at 12-inches from the core surface (free-field) yield a spectral index of 6.8, (2) The neutron environment behind a 4.75-inch Plexiglas plate yield 4.6 for the spectral index and (3) The neutron environment behind a 2-inch aluminum plate yield 6.7 for the spectral index. It is concluded that the core surface and the 12-inch from core surface neutron environment are identical with the 'free-field' neutron environment at 20-inches when considering only those neutrons with energy >10 KeV. On the other hand, it appears that the 4.75 inches of Plexiglas severely perturbs the 'free-field' neutron environment, i.e., a much harder neutron spectrum >10 KeV. In the situation where 2-inches of aluminum is used as the perturbing medium, essentially no change in the neutron spectrum >10 KeV is noted
Resonance parameters from K-matrix and T-matrix poles
Workman, R L
2008-01-01
We extract K-matrix poles from our fits to elastic pion-nucleon scattering and eta-nucleon production data in order to test a recently proposed method for the determination of resonance properties, based on the trace of the K-matrix. We have considered issues associated with the separation of background and resonance contributions, the correspondence between K-matrix and T-matrix poles, and the complicated behavior of eigenphases.
International Nuclear Information System (INIS)
A microwave resonator device for measuring the plasma density is described. A method is proposed for determining the radial distribution function of the plasma density by measuring a shift of resonance frequencies for two oscillation modes. According to experimental results, the device is suitable for measuring the plasma density in the range 109-1011 cm-3
Trifirò, Daniele; O'Shaughnessy, Richard; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich
2016-02-01
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession time scale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this paper we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" ξ and resonant family Δ Φ =0 ,π (which uniquely label the source); the inclination θJ N of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables to characterize precessing black hole binaries which naturally reflects the time scale separation of the system and therefore better encode the dynamical information carried by gravitational waves.
Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard
2014-11-01
We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and
Energy Technology Data Exchange (ETDEWEB)
Gollwitzer, A.; Hertenberger, R.; Metz, A.; Schiemenz, P.; Valnion, B.D.; Graw, G. [Sektion Physik der Universitaet Muenchen, D-85748 Garching (Germany); Blasi, N.; Lucchini, S.; Micheletti, S.; Pignanelli, M. [Dipartimento di Fisica dellUniversita di Milano, I-20133 Milano (Italy); de Leo, R. [Universita di Bari and Sezione INFN di Bari (Italy); Gill, R.L. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Hategan, C. [Institute of Atomic Physics, Bukarest (Romania); Casten, R.F. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, Connecticut 06520 (United States)
1998-06-01
The {sup 154}Sm({rvec d},t) reaction at high energy resolution (n,{gamma}), average resonance capture (ARC), and coincidence measurements were performed to study the deformed nucleus {sup 153}Sm. Strength distributions from ({rvec d},t) and completeness for I{sup {pi}}= (1) /(2) {sup {minus}} and (3) /(2) {sup {minus}} states up to 1500 keV from ARC provide one of the first detailed tests of the interacting boson fermion model (IBFM) in a deformed nucleus in a multiorbit environment. For negative parity states the model accounts for the large number of low spin ( (1) /(2) {sup {minus}}, (3) /(2) {sup {minus}}) states much better than the Nilsson model since the even-even core in the IBFM calculations automatically includes excited vibrational states. The IBFM calculations also predict (d,t) spectroscopic factors better than the Nilsson model with pairing and Coriolis mixing. Neither the IBFM nor the Nilsson approach can explain the low lying positive parity states. The IBFM calculations show that for certain combinations of parameters, the monopole term in the boson-fermion Hamiltonian has more than a scaling effect: it can attenuate the Coriolis mixing (energy staggering). Finally suggested improvements in the treatment of pairing in the IBFM are made. {copyright} {ital 1998} {ital The American Physical Society}
Isselhardt, Brett Hallen
2011-01-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with aut...
Cho, Herman
2016-09-01
Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.
Energy Technology Data Exchange (ETDEWEB)
Lepretre, A.; Herault, N. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Brusegan, A.; Noguere, G.; Siegler, P. [Institut des Materiaux et des Metrologies - IRMM, Joint Research Centre, Gell (Belgium)
2002-12-01
This report is a follow up of the report CEA DAPNIA/SPHN-99-04T of Vincent Gressier. In the frame of a collaboration between the 'Commissariat a l'Energie Atomique (CEA)' and the Institute for Reference Materials and Measurement (IRMM, Geel, Belgique), the resonance parameters of neptunium 237 have been determined in the energy interval between 0 and 500 eV. These parameters have been obtained by using the Refit code in analysing simultaneously three transmission experiments. The covariance matrix of statistical origin is provided. A new method, based on various sensitivity studies is proposed for determining also the covariance matrix of systematic origin, relating the resonance parameters. From an experimental viewpoint, the study indicated that, with a large probability, the background spectrum has structure. A two dimensional profiler for the neutron density has been proved feasible. Such a profiler could, among others, demonstrate the existence of the structured background. (authors)
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to...... realize theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall...
George Chacko; Sanjiv Ranjan Das
1997-01-01
We develop analytic pricing models for options on averages by means of a state-space expansion method. These models augment the class of Asian options to markets where the underlying traded variable follows a mean-reverting process. The approach builds from the digital Asian option on the average and enables pricing of standard Asian calls and puts, caps and floors, as well as other exotica. The models may be used (i) to hedge long period interest rate risk cheaply, (ii) to hedge event risk (...
New experimental determination of the neutron resonance parameters of 99Tc
International Nuclear Information System (INIS)
In order to improve nuclear data for nuclear waste transmutation cross-sections of Tc99 in the resonance energy region have been performed using the time-of-flight method at the pulsed white neutron source GELINA of the Institute for Reference Materials and Measurements, Geel, Belgium. The energy range studied spreads from 3 eV to 100 KeV. 2 kinds of measurements have been performed: capture and transmission measurements. In the energy range between 0 and 2 KeV, more than 220 resonances have been analyzed. About 130 resonances which had stayed previously undiscovered, have been detected and analyzed. Because of instability problems concerning the process of measuring itself, the systematic error is not yet determined. The accuracy which takes into account statistical and systematic errors is expected to be between 4 and 5%
Energy Technology Data Exchange (ETDEWEB)
Onxley, Jennifer D.; Yoo, David S. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Muradyan, Naira [iCAD Inc., Nashua, New Hampshire (United States); MacFall, James R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Brizel, David M. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Department of Surgery, Duke University Medical Center, Durham, North Carolina (United States); Craciunescu, Oana I., E-mail: Oana.Craciunescu@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)
2014-07-01
Purpose: To generate a population-averaged arterial input function (PA-AIF) for quantitative analysis of dynamic contrast-enhanced MRI data in head and neck cancer patients. Methods and Materials: Twenty patients underwent dynamic contrast-enhanced MRI during concurrent chemoradiation therapy. Imaging consisted of 2 baseline scans 1 week apart (B1/B2) and 1 scan after 1 week of chemoradiation therapy (Wk1). Regions of interest (ROIs) in the right and left carotid arteries were drawn on coronal images. Plasma concentration curves of all ROIs were averaged and fit to a biexponential decay function to obtain the final PA-AIF (AvgAll). Right-sided and left-sided ROI plasma concentration curves were averaged separately to obtain side-specific AIFs (AvgRight/AvgLeft). Regions of interest were divided by time point to obtain time-point-specific AIFs (AvgB1/AvgB2/AvgWk1). The vascular transfer constant (K{sub trans}) and the fractional extravascular, extracellular space volume (V{sub e}) for primaries and nodes were calculated using the AvgAll AIF, the appropriate side-specific AIF, and the appropriate time-point-specific AIF. Median K{sub trans} and V{sub e} values derived from AvgAll were compared with those obtained from the side-specific and time-point-specific AIFs. The effect of using individual AIFs was also investigated. Results: The plasma parameters for AvgAll were a{sub 1,2} = 27.11/17.65 kg/L, m{sub 1,2} = 11.75/0.21 min{sup −1}. The coefficients of repeatability (CRs) for AvgAll versus AvgLeft were 0.04 min{sup −1} for K{sub trans} and 0.02 for V{sub e}. For AvgAll versus AvgRight, the CRs were 0.08 min{sup −1} for K{sub trans} and 0.02 for V{sub e}. When AvgAll was compared with AvgB1/AvgB2/AvgWk1, the CRs were slightly higher: 0.32/0.19/0.78 min{sup −1}, respectively, for K{sub trans}; and 0.07/0.08/0.09 for V{sub e}. Use of a PA-AIF was not significantly different from use of individual AIFs. Conclusion: A PA-AIF for head and neck cancer
International Nuclear Information System (INIS)
In the scope of the study on the paramagnetic resonance spectra of a point defect in a crystal, a method for evaluating the spin Hamiltonian coefficients is proposed. The approach is based on the study of correlation functions. Simple equations between the crystal chemical bonds and the spectroscopic discrimination factors are obtained. The investigation carried out on cations and anions showed the importance of the local analysis. Moreover, it allowed the muonium analysis to be extended to the transition metal ions. The experimental device consists in an electron paramagnetic resonance (EPR) spectrometer computer-aided unit, enabling the EPR automatic display by means of a computer-aided design system. The experimental results of the BaF2 characterization and the study of Mn+2 in CuBr and CuI are reported
International Nuclear Information System (INIS)
Angle-resolved photoelectron spectroscopy using monochromatized synchrotron radiation has been applied to measure relative partial photoionization cross sections σ and photoelectron asymmetry parameters β for Sr+ 5s 2S1/2, 5p 2P1/2 and 5p 2P3/2 in the Sr 4p-4d giant resonance region. At the Sr 4p-15s24d 1P1 resonance photoionization, the phase difference between the s and d outgoing waves which leave Sr+ in the 5p 2P3/2 level is evaluated using the present measurement of β and the previous fluorescence measurement of the alignment tensor A20 for Sr+ 5p 2P3/2. (author)
Electrostatic Generation of Bulk Acoustic Waves and Electrical Parameters of Si-MEMS Resonators.
Dulmet, Bernard; Ivan, Mihaela Eugenia; Ballandras, Sylvain
2016-02-01
This paper proposes an analytical approach to model the generation of bulk acoustic waves in an electrostatically excited silicon MEMS structure, as well as its electromechanical response in terms of static and dynamic displacements, electromechanical coupling, and motional current. The analysis pertains to the single-port electrostatic drive of trapped-energy thickness-extensional (TE) modes in thin plates. Both asymmetric single-side and symmetric double-side electrostatic gap configurations are modeled. Green's function is used to describe the characteristic of the static displacement of the driven surface of the structure versus the dc bias voltage, which allows us to determine the electrical response of the resonator. Optical and electrical characterizations have been performed on resonator samples operating at 10.3 MHz on the fundamental of TE mode under single-side electrostatic excitation. The various figures of merit depend on the dc bias voltage. Typical values of 9000 for the Q-factor, and of 10(-5) for the electromechanical coupling factor k(2) have been obtained with [Formula: see text] for [Formula: see text]-thick gaps. Here-considered modes have a typical temperature coefficients of frequency (TCF) close to -30 ppm/(°)C. We conclude that the practical usability of such electrostatically excited bulk acoustic waves (BAW) resonators essentially depends on the efficiency of the compensation of feed-through capacitance. PMID:26642450
Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy
International Nuclear Information System (INIS)
Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene
Directory of Open Access Journals (Sweden)
Javad Ghiasi-Freez
2015-05-01
Full Text Available Neural network models are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went to step forward by optimizing neural network models using three intelligent optimization algorithms, including genetic algorithm (GA, particle swarm optimization (PSO, and ant colony (AC, to eliminate the risk of being exposed to local minima. This strategy was capable of significantly improving the accuracy of a neural network by optimizing network parameters such as weights and biases. Nuclear magnetic resonance (NMR log measures some of the most useful characteristics of reservoir rock; the capabilities of the optimized models were used for prediction of nuclear magnetic resonance (NMR log parameters in a carbonate reservoir rock of Iran. Conventional porosity logs, which are the easily accessible tools compared to NMR log’s parameters, were introduced to the models as inputs while free fluid porosity and permeability, which were measured by NMR log, are desire outputs. The performance of three optimized models was verified by some unseen test data. The results show that PSO-based network and ACO-based network is the best and poorest method, respectively, in terms of accuracy; however, the convergence time of GA-based model is considerably smaller than PSO-based and GA-based models.
Two-parameter coherent resonance behavior in catalytic oxidation of CO on platinum surface
International Nuclear Information System (INIS)
We study the effects of two-parameter noises on rate oscillations during CO oxidation on platinum surface, in a parameter region sub-threshold to deterministic Hopf bifurcation. It is found that the performance of noise-induced oscillations, characterized by an effective signal-to-noise ratio, shows ridge shape in the DCO∼DO2 plane, where DCO and DO2 measure the strength of two different parameter noises. It is indicating that the ‘two-parameter coherent resonance’ phenomenon occurs. Stochastic normal form theory is employed to analyze the non-trivial effects of two-parameter noises and the simulation results are well reproduced. -- Highlights: ► ‘Two-parameter coherent resonance’ phenomenon takes place in the present system. ► The underlying mechanism of this phenomenon has been making clear. ► Two-parameter noise work in a cooperative way in regulating the oscillations. ► The weight factors of the noises depend on how the noise is coupled to the system.
Energy Technology Data Exchange (ETDEWEB)
Cho, Herman
2016-09-01
Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program.
International Nuclear Information System (INIS)
Neodymium is a 235U fission product and is important for reactor neutronic calculations. The aim of the present work is to improve upon the existing neutron cross section data of neodymium. Neutron capture and transmission measurements were performed by the time-off-light technique at the Rensselaer Polytechnic Institute LINAC laboratory using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment NaI multiplicity detector, and the transmission measurements were performed at 15-m and 25-m flight stations, respectively, with 6Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by combined fitting of the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1 eV to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integrals from this energy. The RPI parameters gave a resonance integral value of 32 ± 1 barns that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the uncertainties on the resonance parameters when compared with previously published parameters
Energy Technology Data Exchange (ETDEWEB)
Werner, C.J.; Block, R.C.; Slovacek, R.E.; Overberg, M.E.; Moretti, B.E. [Rensselaer Polytechnic Inst., Troy, NY (United States). Environmental and Energy Engineering Dept.; Burke, J.A.; Leinweber, G.; Drindak, N.J. [Lockheed Martin Corp., Schenectady, NY (United States)
1998-06-15
Natural tungsten metal was measured using neutron time-of-flight spectroscopy at the Rensselaer Polytechnic Institute (RPI) Gaerttner Laboratory linear accelerator to determine the tungsten resonance parameters. Three separate measurements were performed: transmission, capture, and self-indication. Previous measurements did not employ all three experiment types and used less sophisticated methods. The current work improves on the published tungsten data base and reduces resonance parameter uncertainties.
DEFF Research Database (Denmark)
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav;
2007-01-01
Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...... obtained for d and ?s in Xe2. For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other...
Energy Technology Data Exchange (ETDEWEB)
Roettgen, Rainer; Christiani, Robert; Freyhardt, Patrick; Hamm, Bernd [Charite Universitaetsmedizin Berlin, Klinik fuer Strahlenheilkunde, Campus Virchow-Klinikum, Berlin (Germany); Gutberlet, Matthias [Herzzentrum Leipzig, Abteilung fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany); Schultheiss, Hans Peter; Kuehl, Uwe [Charite Universitaetsmedizin Berlin, Klinik fuer Herz-, Kreislauf- und Gefaessmedizin, Campus Benjamin-Franklin, Berlin (Germany)
2011-06-15
To evaluate the role of MRI in diagnosing acute myocarditis by correlation with immunohistological parameters. A total of 131 patients (85 men, 46 women; mean age, 44.9 years) with suspected acute myocarditis were examined by MRI. The relative water content of the left ventricular myocardium as well as relative and late enhancement was correlated with the immunohistological results in biopsy specimens. Myocardial inflammation was confirmed by immunohistology in 82 of the 131 patients investigated and ruled out in 49 patients. The sensitivity, specificity and accuracy for diagnosing myocarditis in patients with immunohistologically proven disease were 48.8%, 73.8% and 57.3%, respectively, for relative enhancement, 58.3%, 57.1% and 57.9% for relative water content, and 30.6%, 88.1% and 49.6% for late enhancement. A combination of all three parameters had 39,3% sensitivity and 91,3% specificity and 62,7% accuracy. Relative enhancement and late enhancement significantly correlated with the presence of myocarditis but relative oedema did not. Relative and late enhancement significantly correlate with the presence of myocarditis, while there is no significant correlation for relative oedema. Myocarditis cannot be reliably diagnosed using any of the three MRI parameters alone but combinations of parameters will improve specificity. (orig.)
Broer, H.W.; Lunter, G.A.; Vegter, G.
1998-01-01
We consider Hamiltonian systems near equilibrium that can be (formally) reduced to one degree of freedom. Spatiotemporal symmetries play a key role. The planar reduction is studied by equivariant singularity theory with distinguished parameters. The method is illustrated on the conservative spring-p
International Nuclear Information System (INIS)
The method for determination of the average parameters of the proton dispersion optical potential, applicable in the area of the nuclei mass numbers 40 ≤ A ≤ 208 and within the energy range of -60 ≤ E ≤+65 MeV is proposed. Application of the average parameters makes it possible to reliable forecast the differential cross sections of elastic scattering and polarization, complete cross sections of reactions, characteristics of the single-particle proton stets in the A-1 and A+1 nuclei
International Nuclear Information System (INIS)
To prevent this resonant interaction and realize Nuclear power plant life management, it is proposed to develop Vibro-Accoustics Specifications (VAS). Based on NPP VAS, it would be possible to reveal the dynamical loadings on metal that are dangerous for the initiation of cracking process in the early stage of negative condition appearance. An application-oriented circuit of NPP with reactor of WWER -1000 are presented. The causes of resonant approach to the problem of identification of abnormal phenomena of thermal-hydraulic parameters is proposed. Thus the objective is to simultaneously monitoring the deviation between EFOCP that corresponds to normal or initial operating conditions and those to abnormal phenomena. Resonant destruction of constructions takes place in cases when Eigen-Frequencies of Oscillations of the Coolant Pressure (EFOCP) begin to be equal to the eigen-frequencies of structural oscillations. The most dangerous dynamic interaction of the equipments and the fluid flow are supposed to be in the resonance region of mechanical oscillations of the elements and the parameters of the flow. The worked out R and D provides the understanding of the nature of the concealed dynamical processes in thermal hydraulic circuits of NPP, which are not foreseen in design and normative documents and not predicted by the thermal hydraulic computer codes. The basis research shows, that these processes appear in the form of self oscillations, caused by the equipments and coolant resonant interaction and other system effects. In many cases, due to the existence of these physical phenomena and processes, sudden failures of the equipments and accidents occur. To prevent the appearance of the conditions for resonance interaction between the fluid flow and the equipments, it is necessary to provide the different frequencies for the self oscillations in the separated elements of the circulating system and also in the parts of the system formed by the comprising of these
Looyenga, Brendan; VanOpstall, Calvin; Lee, Zion; Bell, Jed; Lodge, Evans; Wrobel, Katherine; Arnoys, Eric; Louters, Larry
2016-01-01
The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across different cell types can vary dramatically. Prior studies in erythrocytes—which express particularly high levels of GLUT1—have suggested that GLUT1 is able to form tetrameric complexes with enhanced transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest expression of GLUT1, however, is unclear. To address this question, we developed a genetically encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live cells. PMID:27357903
Directory of Open Access Journals (Sweden)
Bansilal Sameer
2009-04-01
Full Text Available Abstract Aims Patients with prior major cardiovascular or cerebrovascular events (MACE are more likely to have future recurrent events independent of traditional cardiovascular disease risk factors. The purpose of this study was to determine if patients with traditional risk factors and prior MACE had increased cardiovascular magnetic resonance (CMR plaque burden measures compared to patients with risk factors but no prior events. Methods and Results Black blood carotid and thoracic aorta images were obtained from 195 patients using a rapid extended coverage turbo spin echo sequence. CMR measures of plaque burden were obtained by tracing lumen and outer vessel wall contours. Patients with prior MACE had significantly higher MR plaque burden (wall thickness, wall area and normalized wall index in carotids and thoracic aorta compared to those without prior MACE (Wall thickness carotids: 1.03 ± 0.03 vs. 0.93± 0.03, p = 0.001; SD wall thickness carotids: 0.137 ± 0.0008 vs. 0.102 ± 0.0004, p Conclusion A greater plaque burden and plaque eccentricity is prevalent among patients with prior MACE.
Dudaryonok, A. S.; Voronin, B. A.; Lavrentieva, N. N.; Lugovskoy, A. A.; Starikov, V. I.
2012-11-01
Air-broadening coefficients of the water isotopologue HD16O up to J = 50 for P, Q and R branches calculated using different methods are presented. For partially labeled lines ("good" quantum numbers: J, symmetry and level number) we combined three methods for calculating half-widths: J-dependence and JJ'-dependence up to J=15 and averaging coefficients calculated using a previously developed semi-empirical method for high J (15-50). For lines with full assignments based on normal modes v1, v2, v3, Ka, Kc we used: (a) an analytical model (approximation) which depends on use of rotational quantum numbers J and Ka for both the upper and lower levels; and (b) a method based on the estimate of the averaged energy differences between coupled states. The comparison of calculated data with broadening coefficients from HITRAN-2008 and available experimental data is presented. The resulting broadening coefficients can be used to calculate spectra of water vapor with hundreds millions of weak lines with reasonable accuracy. The line list VTT [Voronin, Tennyson, Tolchenov, MNRAS, 2010], supporting programs, files for calculations of spectra HD16O and estimation of broadening coefficient are made freely available also in electronic form via http://www.exomol.com.
Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine
Nouh, Mostafa A.
2014-01-01
A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.
International Nuclear Information System (INIS)
The aim of this study was to determine suitable image parameters and an analytical method for phase-contrast magnetic resonance imaging (PC-MRI) as a means of measuring cerebral blood flow volume. This was done by constructing an experimental model and applying the results to a clinical application. The experimental model was constructed from the aorta of a bull and circulating isotonic saline. The image parameters of PC-MRI (repetition time, flip angle, matrix, velocity rate encoding, and the use of square pixels) were studied with percent flow volume (the ratio of actual flow volume to measured flow volume). The most suitable image parameters for accurate blood flow measurement were as follows: repetition time, 50 msec; flip angle, 20 degrees; and a 512 x 256 matrix without square pixels. Furthermore, velocity rate encoding should be set ranging from the maximum flow velocity in the vessel to five times this value. The correction in measuring blood flow was done with the intensity of the region of interest established in the background. With these parameters for PC-MRI, percent flow volume was greater than 90%. Using the image parameters for PC-MRI and the analytical method described above, we evaluated cerebral blood flow volume in 12 patients with occlusive disease of the major cervical arteries. The results were compared with conventional xenon computed tomography. The values found with both methods showed good correlation. Thus, we concluded that PC-MRI was a noninvasive method for evaluating cerebral blood flow in patients with occlusive disease of the major cervical arteries. (author)
Energy Technology Data Exchange (ETDEWEB)
Solgaard Sorensen, J.; Kjaer, P.; Jensen, S.T.; Andersen, P. [Univ. of Southern Denmark, Ringe (Denmark). Clinical Locomotion Science
2006-11-15
Purpose: To determine the intra- and interobserver reliability in grading disc and muscle parameters using low-field magnetic resonance imaging (MRI). Material and Methods: MRI scans of 100 subjects representative of the general population were evaluated blindly by two radiologists. Criteria for grading lumbar discs were based on the spinal nomenclature of the Combined Task Force and the literature. Consensus in rating was achieved by evaluating 50 MRI examinations in tandem. The remaining 50 examinations were evaluated independently by the observers to determine interobserver agreement and re-evaluated by one of the observers to determine intra-observer agreement. Results: Intra- and interobserver agreement was substantial when grading changes in the lumbar discs. Interobserver agreement was fair to moderate in grading the lumbar muscles, whereas intra-observer agreement was almost perfect. Conclusion: Convincing reliability was found in the evaluation of disc- and muscle-related MRI variables.
International Nuclear Information System (INIS)
1H nuclear magnetic resonance spin-Hamiltonian parameters: chemical shifts δ and indirect spin–spin coupling constants J, have been calculated for serine, a brain metabolite. Serine molecules in the gas-phase as well as in solution in water have been investigated using density functional theory. Solvent and conformer effects as well as zero-point vibrational corrections have been taken into account. For the non-vibrating molecule, the best agreement is obtained when solvent and conformer effects are included. Zero-point vibrational corrections improve the agreement with experimental values, leading to a root mean square deviation of 0.05 ppm for chemical shifts and 0.7 Hz for spin–spin coupling constants
Resolution of the multichannel anomaly in the extraction of S-matrix resonance-pole parameters
International Nuclear Information System (INIS)
Within the framework of a mathematically well-defined coupled-channel T-matrix model we have improved the existing multichannel pole-extraction procedure based on the numerical analytic continuation of the channel propagator, and for the first time we present the full set of pole parameters for already published amplitudes. Standard single-channel pole-extraction method (speed plot) was then applied to those amplitudes and resulting sets of T-matrix poles were inspected. The anomaly has been established that in some partial waves the pole values extracted using the standard single-channel methods differ not only from the values obtained using the analytic continuation method, but also change from one reaction to another. Inspired by this peculiarity, we have developed a new single-channel pole-extraction method based solely on the assumption of the partial wave analyticity. Since the speed plot turns out to be the lowest order term of the proposed method, the anomaly is understood and resolved
Ipek-Ugay, Selcan; Drießle, Toni; Ledwig, Michael; Guo, Jing; Hirsch, Sebastian; Sack, Ingolf; Braun, Jürgen
2015-02-01
We demonstrate the feasibility of low-cost tabletop MR elastography (MRE) for quantifying the complex shear modulus G∗ of small soft biological tissue samples as provided by pathologists. The MRE system was developed based on a tabletop MRI scanner equipped with a 0.5 T permanent magnet and a tissue sample holder mounted to a loudspeaker. A spin echo sequence was enhanced with motion-encoding gradients of 250 mT/m amplitude synchronized to acoustic vibration frequencies. Shear wave images suitable for elastography were acquired between vibration frequencies of 0.5 and 1 kHz in agarose, ultrasound gel, porcine liver, porcine skeletal muscle, and bovine heart with a spatial resolution of 234 μm pixel edge length. The measured frequency dependence of G∗ agreed well with previous work based on high-field MR systems. The ratio between loss and storage moduli was highest in liver and ultrasound gel, followed by muscle tissue and agarose gel while ultrasound gel and liver showed similarly low storage moduli compared to the other samples. The shear wave to noise ratio is an important imaging criteria for MRE and was about 4.2 times lower for the preliminary setup of the 0.5 T tabletop system compared to a 7 T animal scanner. In the future, the new tabletop MRE system may serve as a low cost device for preclinical research on the correlation of viscoelastic parameters with histopathology of biological samples.
Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation
International Nuclear Information System (INIS)
The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.
Energy Technology Data Exchange (ETDEWEB)
Csedreki, L., E-mail: csedreki@atomki.mta.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, MTA Atomki, H-4001 Debrecen, P.O. Box 51 (Hungary); Szíki, G.Á. [University of Debrecen, Faculty of Engineering, Department of Basic Technical Studies, H-4028 Debrecen, Ótemető u. 2-4 (Hungary); Szikszai, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, MTA Atomki, H-4001 Debrecen, P.O. Box 51 (Hungary); Kocsis, I. [University of Debrecen, Faculty of Engineering, Department of Basic Technical Studies, H-4028 Debrecen, Ótemető u. 2-4 (Hungary)
2015-01-01
The observed resonance parameters of the {sup 12}C(d,pγ){sup 13}C reaction in the vicinity of 1450 keV deuteron energy have been determined in a thorough procedure, fitting our recent experimental excitation curve, as well as earlier literature data with the Root Software Package. The resulting energy and width (FWHM) of resonance are 1445.8 ± 0.2 keV and 5.3 ± 0.4 keV, respectively. We propose the application of this resonance as a precise and simple method for accelerator energy calibration when performing DIGE analysis.
Energy Technology Data Exchange (ETDEWEB)
Isselhardt, Brett H. [Univ. of California, Berkeley, CA (United States)
2011-09-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of ^{235}U/^{238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.
Directory of Open Access Journals (Sweden)
C Zancanaro
2009-08-01
Full Text Available The effect of a three-month training period on T2 relaxation time as well as on myofibre size and type was investigated in the lower limbs of senescent mice. After training, T2 (which is a magnetic resonance imaging parameter known to increase during acute exercise was significantly higher in trained mice (36.37±1.27 vs 37.76±2.06 ms, p=0.003, n=8, whereas no change was found in non-trained animals (36.35±1.02 vs 36.24±1.15 ms, p=0.278, n=8. The percentage of muscle limb area evaluated in vivo on magnetic resonance images before and after the experimental period was unchanged in trained mice (69.84±2.50 vs 70.29±2.29, p=0.896, n=3 and decreased in non-trained animals (72.98±1.68 vs 64.62±2.34, p=0.006, n=3. Cross-sectional area of fast and slow myofibres, evaluated on paraffin-embedded samples after immunolabelling for skeletal fast fibre myosin, was lower in non-trained than in trained mice in both gastrocnemius and quadriceps muscle, but no change in slow/fast fibre ratio nor in apoptotic rate was found. These data show that training can prevent sarcopenia in senescent mice by affecting muscle status and inducing myofibre hypertrophy in the absence of significant muscle damage.
International Nuclear Information System (INIS)
The resonance parameters of 39 fission product nuclides have been evaluated. The present work is a part of the evaluation of 100 fission product nuclei for JENDL-2 by Japanese Nuclear Data Committee. All the available experimental data were collected, stored in REPSTOR system and compared with one another. The evaluation was made on the basis of the experimental data. The precise description of the evaluation is given in this report. The presently evaluated resonance parameters are tabulated in Appendix with the experimental data. (author)
International Nuclear Information System (INIS)
Chapter 1 describes the motivation of the measurements (accelerator driven systems, stellar nucleosynthesis, neutron induced reactions on 206Pb), the present status of the neutron capture data for 206Pb and 209Bi and the structure of this work. In Chapter 2 the basic reaction theory underlying this work is described. The neutron induced reaction mechanism and formalism are explained. The parameterisation of the cross section in terms of R-matrix theory is discussed and we put particular emphasis on the statistical behaviour of the resonance parameters and the impact of the angular distribution of gamma rays following neutron capture. The relation between experimental observables and the resonance parameters is discussed together with general comments related to resonance shape analysis. Chapter 3 is focused on the determination of resonance parameters for 206Pb. We performed high-resolution transmission and capture measurements at the Time-Of-Flight (TOF) facility GELINA of the IRMM at Geel (B) and determined the resonance parameters. For nuclei like 206Pb, where the total width is dominated by Γn, the capture area allows to determine G. Transmission measurements were carried out to determine Γn, and the statistical factor g of resonances. Before performing a Resonance Shape Analysis (RSA) on the transmission and capture data, we verified the neutron flux and resolution at GELINA. We also compared the characteristics of GELINA with those of the n-TOF facility at CERN. A special emphasis is placed on the total energy detection technique using C6D6 detectors. This technique was applied for the determination of the capture cross section. To reduce systematic bias effects on the capture cross section, the response of the detectors was determined by Monte Carlo simulations, which has been validated by experiments. Using these response functions the partial capture cross sections for individual resonances of 206Pb have been deduced, by unfolding the response of the C6D
Institute of Scientific and Technical Information of China (English)
Katarzyna; Jadwiga; Macura; Richard; Eugene; Thompson; David; Alan; Bluemke; Rene; Genadry
2015-01-01
AIM: To define the magnetic resonance imaging(MRI) parameters differentiating urethral hypermobility(UH) and intrinsic sphincter deficiency(ISD) in women with stress urinary incontinence(SUI).METHODS: The static and dynamic MR images of 21 patients with SUI were correlated to urodynamic(UD) findings and compared to those of 10 continent controls. For the assessment of the urethra and integrity of the urethral support structures, we applied the highresolution endocavitary MRI, such as intraurethral MRI, endovaginal or endorectal MRI. For the functional imaging of the urethral support, we performed dynamic MRI with the pelvic phased array coil. We assessed the following MRI parameters in both the patient and thevolunteer groups:(1) urethral angle;(2) bladder neck descent;(3) status of the periurethral ligaments,(4) vaginal shape;(5) urethral sphincter integrity, length and muscle thickness at mid urethra;(6) bladder neck funneling;(7) status of the puborectalis muscle;(8) pubo-vaginal distance. UDs parameters were assessed in the patient study group as follows:(1) urethral mobility angle on Q-tip test;(2) Valsalva leak point pressure(VLPP) measured at 250 cc bladder volume; and(3) maximum urethral closure pressure(MUCP). The UH type of SUI was defined with the Q-tip test angle over 30 degrees, and VLPP pressure over 60 cm H2 O. The ISD incontinence was defined with MUCP pressure below 20 cm H2 O, and VLPP pressure less or equal to 60 cm H2 O. We considered the associations between the MRI and clinical data and UDs using a variety of statistical tools to include linear regression, multivariate logistic regression and receiver operating characteristic(ROC) analysis. All statistical analyses were performed using STATA version 9.0(Stata Corp LP, College Station, TX).RESULTS: In the incontinent group, 52% have history of vaginal delivery trauma as compared to none in control group(P < 0.001). There was no difference between the continent volunteers and incontinent
Energy Technology Data Exchange (ETDEWEB)
Gressier, V
1999-10-01
For studies of future nuclear reactors dedicated to nuclear waste transmutation, an improvement of the accuracy of the neutron radiative capture cross section of {sup 237}Np appears necessary. In the framework of a collaboration between the Commissariat a l'Energie atomique (CEA) and Institute for Reference Materials and Measurement (IRMM, Geel, Bergium), a new determination of the resonance parameters of {sup 237}Np has been performed. Two types of experiments are carried out at GELINA, the IRMM pulsed neutron source, using the time of flight method: a transmission experiment which is related to the neutron total cross section and a capture experiment which gives the neutron radiative capture cross section. The resonance parameters presented in this work are extracted from the transmission data between 0 and 500 eV with the least square code REFIT, using the Reich-Moore formalism. In parallel, the Doppler effect is investigated. The commonly used free gas model appears inadequate below 20 eV for neptunium dioxide at room temperature. By the use of the program DOPUSH, which calculates the Doppler broadening with a harmonic crystal model according to Lamb's theory, we are able to produce abetter fit of the experimental data for the resonances of {sup 237}Np in NpO{sub 2} at low energy or temperatures. In addition to the resonance parameters, a study of their mean value and distribution is included in this work. (authors)
International Nuclear Information System (INIS)
Purpose: The purpose of this study was to evaluate inter- and intra-rater reproducibility in volume assessment using cardiac magnetic resonance imaging (CMRI). Methods: Twenty-five healthy volunteers and 106 patients were included into this retrospective study and received CMRI. The patients were divided in three groups (group I, 80 patients with arrhythmia; group II, 20 patients with cardiomyopathy; group III, 6 patients after correction of septum defects). Therefore, the images were semiautomatically segmented by an experienced and an unexperienced radiologists. The analysis of end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV) as well as ejection fraction (EF) and myocardial mass (MM) were performed twice by an experienced and an unexperienced radiologists. The intra-class correlation coefficients (ICC) were determined for the evaluation of inter- and intra-rater variance. Results: The intra-rater reproducibility for determination of EF, ESV, EDV and MM was excellent with ICCs ranging from 0.88 to 0.99 (all p < 0.001). The inter-observer reproducibility for these parameters was also excellent with ICCs ranging from 0.91 to 0.98 (all p < 0.001). The assessment of the SV showed an excellent intra-rater agreement with ICCs of 0.96 and 0.92 (both p < 0.001), but only a moderate ICC for the inter-rater reproducibility (0.54, p < 0.001). Conclusions: Our study shows that assessment of cardiac volumes can be performed on CMRIs with an excellent reproducibility by both experienced and unexperienced investigators
International Nuclear Information System (INIS)
This document summarizes contents and format of a PC data file of properties of the giant dipole resonances derived from measurements made with monoenergetic photon beams. The IAEA Nuclear Data Section (NDS) received this file from Su Zongdi, Chinese Nuclear Data Centre in June 1992, based on integrated cross-sections and the parameters of Lorentz curves fitted to the giant-resonance data reported by Samuel S. Dietrich and Barry L. Berman in 1988. The data file is available free of charge from the IAEA Nuclear Data Section upon request on PC diskette. (author)
Resonance parameters of the 6.67-, 20.9-, and 36.8-eV levels in 238U
International Nuclear Information System (INIS)
The ENDF/B-IV 238U cross sections (MAT-1262) yield an effective capture resonance integral in strongly self-shielded situations which is too high. This situation suggests that the ENDF/B capture widths for the first few s-wave levels may be too large. Recent ORELA measurements of transmission through 238U have been analyzed with a multilevel formula to determine the parameters of the 6.67-, 20.9-, and 36.6-eV levels. These three levels provide 86 percent of the infinitely dilute capture resonance integral
International Nuclear Information System (INIS)
This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space
International Nuclear Information System (INIS)
Near the (3s3p)1p resonance of He, we have calculated the photo-electrons angular distribution asymmetry parameter β2p in the diagonalization approximation. Using the measured value of βn=2 near the (3s3p)1p level obtained by Lindle et al. in the resonance photo-ionization of He to He+(n=2), we have estimated the ratio R=σ2p/σ2s of the partial 2p photo-ionization cross section to the partial 2s photo-ionization cross section. Our calculation supports the result that in the resonance region, the formation of ions in the 2p level dominates over the 2s level. This is in good agreement with the experimental and most of the theoretical results reported to date. (author). 18 refs, 1 fig., 2 tabs
Applied neutron resonance theory
International Nuclear Information System (INIS)
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.)
International Nuclear Information System (INIS)
1H nuclear magnetic resonance (NMR) spin-Hamiltonian parameters: chemical shifts δ and spin–spin coupling constants J have been calculated for the two polyamines: spermidine and spermine present in prostate tissue. Molecules in the gas phase as well as in solution in water have been investigated using density functional theory calculations. From calculated δ and J values, NMR spectra have been simulated and compared to the experimental ones we acquired at 400 MHz for each polyamine in solution in D2O. From these comparisons, reliable NMR parameters are proposed for spermidine and spermine, among which the J constants were until now unknown for these two molecules
International Nuclear Information System (INIS)
The parity-violating parameters Ab and Ac are directly measured by the SLD experiment at the SLAC Linear Collider in e+e- collisions with polarized electrons at the Z0 resonance. Leptons with distinctive total and transverse momenta are used to select and analyze Z0→bcbar events. Ab and Ac are extracted by forming the left-right forward-backward asymmetry in electron beam polarization and quark polar angle. From our 1993 sample of 1.8 pb--1 of Z0 decay data with an average electron beam polarization of 63% we find Ab=0.91±0.14 (stat) ±0.07 (syst) and Ac=0.37±0.23 (stat) ±0.21 (syst)
Indian Academy of Sciences (India)
Y-X Hu; S-Y Wu; X-F Wang; P Xu
2010-04-01
The electron paramagnetic resonance (EPR) parameters (the factors, hyperfine structure constants and the superhyperfine parameters) for the tetragonal Ir2+ centre in NaCl are theoretically investigated from the perturbation formulas of these parameters for a 5d7 ion in tetragonally elongated octahedra. This impurity centre is attributed to the substitutional [IrCl6]4- cluster on host Na+ site, associated with the 4% relative elongation along the 4-axis due to the Jahn–Teller effect. Despite the ionicity of host NaCl, the [IrCl6]4- cluster still exhibits moderate covalency and then the ligand orbital and spin-orbit coupling contributions should be taken into account. In addition, the theoretical EPR parameters based on the Jahn–Teller elongation show good agreement with the observed values.
Byoun, T. Y.; Block, R. C.; Semler, T. T.
1972-01-01
A series of average transmission and average self-indication ratio measurements were performed in order to investigate the temperature dependence of the resonance self-shielding effect in the unresolved resonance region of depleted uranium and tantalum. The measurements were carried out at 77 K, 295 K and approximately 1000 K with sample thicknesses varying from approximately 0.1 to 1.0 mean free path. The average resonance parameters as well as the temperature dependence were determined by using an analytical model which directly integrates over the resonance parameter distribution functions.
International Nuclear Information System (INIS)
To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (Ktrans) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (Ktrans, Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for Ktrans; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for Ktrans; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, Ktrans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.
Partial Averaged Navier-Stokes approach for cavitating flow
Zhang, L.; Zhang, Y. N.
2015-01-01
Partial Averaged Navier Stokes (PANS) is a numerical approach developed for studying practical engineering problems (e.g. cavitating flow inside hydroturbines) with a resonance cost and accuracy. One of the advantages of PANS is that it is suitable for any filter width, leading a bridging method from traditional Reynolds Averaged Navier-Stokes (RANS) to direct numerical simulations by choosing appropriate parameters. Comparing with RANS, the PANS model will inherit many physical nature from parent RANS but further resolve more scales of motion in great details, leading to PANS superior to RANS. As an important step for PANS approach, one need to identify appropriate physical filter-width control parameters e.g. ratios of unresolved-to-total kinetic energy and dissipation. In present paper, recent studies of cavitating flow based on PANS approach are introduced with a focus on the influences of filter-width control parameters on the simulation results.
Research on GSM level density formula and its parameters
International Nuclear Information System (INIS)
The Generalized Superfluid Model (GSM) level density formula has been studied. On the basis of the average neutron resonance level spacing D0 and cumulative level number N0 which were evaluated by ourselves, a set of GSM level density parameters has been obtained. These parameters have been included in the initial data file of IAEA's Reference Input Parameter Library (RIPL)
International Nuclear Information System (INIS)
At the 1966 Conference on Nuclear Data for Reactors, simultaneous measurements of the capture and fission cross-sections of 233U and 235U were presented. Those measurements have now been analysed with the multilevel formalism developed by Adler and Adler. To obtain consistent sets of resonance parameters the capture and fission data were least-square fitted simultaneously. This analysis was carried out to 60 eV for 233U and to 100 eV for 235U. The main purpose of this analysis was to provide a simple and precise analytical description of the very complex structure of the fission and capture cross-sections of 233U and 235U at low energy. Such an analytical description should be useful to calculate reaction rates in nuclear reactors and to compare experimental data taken with different energy resolutions or at different sample temperatures. For the low-energy resonances of 233U and 235U, the neutron width is always smaller, by at least two orders of magnitude, than the total width. Thus, the total cross-section, for those isotopes, can be approximated as the sum of the absorption cross-section and the potential scattering cross-section. Hence it is possible to compute the total cross-section from the resonance parameters obtained by fitting the fission and capture cross-sections. The total cross-section of 235U computed by this method is compared to the data from a transmission measurement done at Saclay, with the sample at 77 deg. K. The computed total cross-section of 233U is compared with transmission data obtained at Oak Ridge National Laboratory and at the Material Testing Reactor. Such comparisons between data obtained by different experimental techniques illustrate the internal consistency of the low-energy cross-sections of the two main uranium fissile isotopes. The physical interpretation of the resonance parameters is somewhat ambiguous, because such multilevel fits are by no means unique. This is particularly true for 233U since, for this nucleus, the
Average nuclear surface properties
International Nuclear Information System (INIS)
The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)
Indian Academy of Sciences (India)
S Ravi; P Subramanian
2007-08-01
The EPR parameters, anisotropic -factors , and for Cu2+ ion and hyperfine structure constants , and for Cu2+ in LiNbO3 crystal are calculated by the method of diagonalizing the full Hamiltonian matrix. The crystal-field parameters contact with the crystal structure by the aid of the superposition model. The optical transition parameters are calculated using Zhao crystal-field model. The calculated results are in good agreement with the observed values. The results are discussed.
International Nuclear Information System (INIS)
Complete text of publication follows. A left-right asymmetry was observed experimentally for the outer s-shell photoelectrons of noble gases and of the H2 molecule in our previous studies (see the cited articles for the definition of 'left' and 'right' as well as for the details of the experimental method). Recently, the angular distribution of 4p photoelectrons of Kr was measured with linearly polarized synchrotron radiation in the photon energy range (90 - 94.4 eV) of the 3d-1 → np resonant excitations in order to determine the anisotropy parameters. Now, also the left-right asymmetry parameters have been determined from the measured spectra of Ref. [3]. The experiment was performed at beamline BW3 of the DORIS III storage ring at HASYLAB (Hamburg, Germany). The emitted electrons were analyzed using the ESA-22D electrostatic electron spectrometer. Fig. 1 shows the measured left-right asymmetry parameters (ALR) of the two fine structure components of Kr 4p photoelectrons. The asymmetry parameters (ALR) are increasing with increasing photon energies reaching a maximum value of 0.04, definitely different from zero when considering the error bars. Furthermore, the left-right asymmetry parameters oscillate around the (3d3/2,5/2)-1 → 5p resonant excitation for both fine structure components. Currently, we do not know what kind of interaction can produce a left-right asymmetry in photon-atom collisions but the shape of the oscillations shows interference between the unknown and the resonant excitation channels. One of the most important observations is that the sign of ALR changes from positive to negative and then back again to positive just within a narrow photon energy range of only 250 meV around the (3d5/2)-1 → 5p resonant excitation. Within such a narrow range artificial asymmetry of the experimental setup is totally unconceivable. Acknowledgements. The authors thank the DORIS III staff for providing excellent working conditions. This work was supported by
Ebata, Shuichiro
2015-01-01
The isoscaler giant monopole resonances (ISGMR) are computed using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) with five kinds of Skyrme parameter sets (SGII, SkM$^*$, SLy4, SkT3 and SkI3). To extract the nuclear matter property from finite system, ISGMRs of $N$=$Z$ ($Z$=20 - 50), isobar even-even nuclide for $A$=100, 132 and Sn isotopes are analysed systematically. The magnitude relation of nuclear incompressibility-parameter ($K_\\infty$) among Skyrme parameter sets, can be corresponded to the peak positions of GMR in spherical isotopes over $A$=80. The parameters ($K_{\\rm surf}, K_\\tau$ and $K_{\\rm Coul}$) which appear in expansion of the finite nucleus incompressibility $K_A$, are determined for each Skyrme parameter. From the comparison experimental data whole mass region and the present results, they indicate that the isospin dependent term $K_\\tau$ is filtered as -305$\\pm$10 MeV. The incompressibility parameters of {\\it infinite} system corresponding to our results is $K...
半桥LLC谐振变换器参数优化设计%Optimal design of parameters of half-bridge LLC resonant converter
Institute of Scientific and Technical Information of China (English)
钟运平; 程小华; 张勇; 程声烽
2014-01-01
To solve those problems such as difficulty in analyzing working principle of half-bridge LLC resonant converter,unintuitivity of parameter design, analysis of the working principle of the resonant converter was simplified based on the relationship between resonance and excitation current. Voltage gain and impedance characteristics was analyzed according to equivalent model, and the mutual relationship between the parameters was analyzed from curves of voltage gain and impedance characteristics. Parameter optimization design procedure was given. Finally a 180W/24V drive power was designed and desired simulation and experimental results were obtained.%针对半桥LLC谐振变换器工作原理分析复杂、参数设计直观性较差等问题，根据谐振电流、励磁电流的变化关系，简化了半桥LLC谐振变换器工作原理的分析。由变换器的等效电路模型分析了其电压增益、阻抗特性，并通过相应的电压增益曲线、阻抗特性曲线直观地分析了各参数间相互关系，给出了参数的优化设计步骤。最后设计了180W/24V驱动电源，仿真及实验结果均达到预期效果。
Tests of the 238U+n evaluation for JEF-2 in the unresolved resonance region
International Nuclear Information System (INIS)
During the JEF-2 test phase the new evaluation for 238U+n in the unresolved resonance region (adopted for JEF-2 up to 200 keV, for ENDF/B-VI up to 149 keV) has been checked against recent capture cross section measurements and against thick-sample transmission data and capture self-indication ratios. Effects of the unresolved resonance structure on self-shielding and multiple scattering were treated by Monte Carlo techniques based on resonance statistics and average resonance parameters. It was found that the average cross sections and the average resonance parameters given in the new evaluation permit very satisfactory reproduction of all the test data. The resonance-averaged capture cross sections below 200 keV appear now to be known with roughly 2% uncertainty. (orig.)
International Nuclear Information System (INIS)
Covariance data in the existing evaluated nuclear data libraries often include large relative uncertainties and mathematical inconsistencies, which arise especially in combination with random sampling. The 232Th evaluation from the ENDF/B-VII.1 library has been taken as an example. Possible solutions for mathematically impossible correlation matrices with negative eigenvalues and too low correlation coefficients between inherently positive parameters with large relative uncertainties are proposed. Convergence of the random sampling for lognormal distribution with extremely high relative standard deviations is slow by nature. Using weighted sampling, single parameters or a limited number of correlated parameters with large uncertainties can be sampled. Efficient sampling of a large number of correlated parameters with extremely large relative uncertainties remains unsolved
Indian Academy of Sciences (India)
M K Maurya; T K Yadav; R A Yadav
2009-04-01
The steady-state amplification of light beam during two-wave mixing in photorefractive materials has been analysed in the strong nonlinear regime. The oscillation conditions for unidirectional ring resonator have been studied. The signal beam can be amplified in the presence of material absorption, provided the gain due to the beam coupling is large enough to overcome the cavity losses. Such amplification is responsible for the oscillations. The gain bandwidth is only a few Hz. In spite of such an extremely narrow bandwidth, unidirectional oscillation can be observed easily at any cavity length in ring resonators by using photorefractive crystals as the medium and this can be explained in terms of the photorefractive phase-shift. The presence of such a phase-shift allows the possibility of the non-reciprocal steady-state transfer of energy between the two light beams. Dependence of gain bandwidth on coupling constant, absorption coefficient of the material's cavity length (crystal length) and modulation ratio have also been studied.
Energy Technology Data Exchange (ETDEWEB)
Jia, Qian-Jun; Zhang, Shui-Xing; Chen, Wen-Bo; Liang, Long; Zhou, Zheng-Gen; Liu, Zai-Yi; Zeng, Qiong-Xin; Liang, Chang-Hong [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Radiology, Guangzhou, Guangdong Province (China); Qiu, Qian-Hui [Guangdong General Hospital/Guangdong Academy of Medical Sciences, Department of Otolaryngology, Guangzhou, Guangdong Province (China)
2014-12-15
To determine the correlation between intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters. Thirty-eight newly diagnosed NPC patients were prospectively enrolled. Diffusion-weighted images (DWI) at 13 b-values were acquired using a 3.0-T MRI system. IVIM parameters including the pure molecular diffusion (D), perfusion-related diffusion (D*), perfusion fraction (f), DCE-MRI parameters including maximum slope of increase (MSI), enhancement amplitude (EA) and enhancement ratio (ER) were calculated by two investigators independently. Intra- and interobserver agreement were evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Relationships between IVIM and DCE-MRI parameters were evaluated by calculation of Spearman's correlation coefficient. Intra- and interobserver reproducibility were excellent to relatively good (ICC = 0.887-0.997; narrow width of 95 % limits of agreement). The highest correlation was observed between f and EA (r = 0.633, P < 0.001), with a strong correlation between f and MSI (r = 0.598, P = 0.001). No correlation was observed between f and ER (r = -0.162; P = 0.421) or D* and DCE parameters (r = 0.125-0.307; P > 0.119). This study suggests IVIM perfusion imaging using 3.0-T MRI is feasible in NPC, and f correlates significantly with EA and MSI. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Riches, S.F.; Payne, G.S.; Morgan, V.A.; DeSouza, N.M. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Dearnaley, D. [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Department of Urology and Department of Academic Radiotherapy, Sutton, Surrey (United Kingdom); Morgan, S. [The Ottawa Hospital Cancer Centre and the University of Ottawa, Division of Radiation Oncology, Ottawa, Ontario (Canada); Partridge, M. [The Institute of Cancer Research, Section of Radiotherapy and Imaging, Sutton, Surrey (United Kingdom); University of Oxford, The Gray Institute for Radiation Oncology and Biology, Oxford (United Kingdom); Livni, N. [Royal Marsden NHS Foundation Trust Chelsea, Department of Histopathology, London (United Kingdom); Ogden, C. [Royal Marsden NHS Foundation Trust Chelsea, Department of Urology, London (United Kingdom)
2015-05-01
The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T{sub 2}-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T{sub 2,} Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K{sup trans},K{sub ep},V{sub e}), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. (orig.)
Tona, K; Kemps, B; Bruggeman, V; Bamelis, F; De Smit, L; Onagbesan, O; De Baerdemaeker, J; Decuypere, E
2005-09-01
Ascites is a prevalent cardiovascular disease among modern broilers with negative impacts on production and animal welfare. The peak of mortality due to ascites occurs at the end of the growing period, but the etiology of this problem may start during embryonic development. A few recent reports have demonstrated that the signs of ascites susceptibility are manifested during the late stages of incubation. In the current study, we used a nondestructive method based on egg acoustic resonance parameters [resonant frequency (RF) and damping] to establish a relationship between embryo physiological events during early development in broiler eggs and susceptibility to ascites. The hatching eggs of 3 broiler lines differing in ascites susceptibility were used for this study: ascites-resistant dam line (DAR), ascites-sensitive dam line (DAS), and ascites-sensitive sire line (SASL). These lines were selected on the basis of fast growth, high breast meat yield, and ascites induction at low temperatures such that the order of ascites susceptibility in terms of mortality was SASL > DAS > DAR. Eggs were incubated under standard conditions in forced-draft incubators. We measured egg weights at setting, albumen pH, Haugh units (HU) at setting, and embryo weights at d 11 and 18, at internal pipping (IP), and at hatch. The durations of IP, external pipping (EP), and hatching were also determined. At 2 hourly periods during incubation, egg RF and damping were also measured. There were differences in egg weights between DAR and SASL vs. DAS, but albumen HU, albumen pH, and the ratio of yolk weight to egg weight were similar. There were differences in RF, damping, embryonic growth rates, and hatching events. Changes in resonant frequency and damping, which certainly suggest eggshell differences among lines, were not totally related to variations in physiological events during early and late embryonic development. A comparison between DAR and DAS, between DAS and SASL, or DAR and SASL
International Nuclear Information System (INIS)
To determine the correlation between intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters. Thirty-eight newly diagnosed NPC patients were prospectively enrolled. Diffusion-weighted images (DWI) at 13 b-values were acquired using a 3.0-T MRI system. IVIM parameters including the pure molecular diffusion (D), perfusion-related diffusion (D*), perfusion fraction (f), DCE-MRI parameters including maximum slope of increase (MSI), enhancement amplitude (EA) and enhancement ratio (ER) were calculated by two investigators independently. Intra- and interobserver agreement were evaluated using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Relationships between IVIM and DCE-MRI parameters were evaluated by calculation of Spearman's correlation coefficient. Intra- and interobserver reproducibility were excellent to relatively good (ICC = 0.887-0.997; narrow width of 95 % limits of agreement). The highest correlation was observed between f and EA (r = 0.633, P 0.119). This study suggests IVIM perfusion imaging using 3.0-T MRI is feasible in NPC, and f correlates significantly with EA and MSI. (orig.)
International Nuclear Information System (INIS)
Neutron data for 242Pu are evaluated in the resolved and unresolved resonance regions. In the 10-5-1 keV region, the evaluation is based on the Breit-Wigner resonance parameters. In the unresolved resonance region, all types of average cross-section and width are calculated. The authors quote average parameters and cross-sections in the 1-200 keV region and analyse the errors in the evaluated data. (author)
International Nuclear Information System (INIS)
Blood flow in the main pulmonary artery (MPA) and superior vena cava (SVC) was studied in 25 patients with chronic lung diseases before and after single lung transplantation using cine magnetic resonance imaging (MRI) with velocity mapping. Flow was measured (l/min/m2) and characterised (time-related flow curve profiles) in 13 patients before and 14 patients after transplantation. Eight normal subjects matched for heart rate were studied for comparison. MPA and SVC flow (l/min/m2) in the posttransplant group were significantly higher than in the pretransplant group. The MPA flow profile in all but one patients was similar to that of the control and consists of a large forward systolic peak and a small forward diastolic peak. Normal SVC flow profile shows forward peaks during ventricular systole (s) and diastole (d), the ratio of s/d was 1.39±0.33. In the pre-transplant group 67% of the patients have a single systolic peak while the diastolic peak either absent or there was a reverse flow, 33% have a dominant diastolic peaks (s/d ratio 0.9±0.04). In the posttransplant group SVC flow profile was comparable to that of control (s/d ratio 1.41±0.62). These changes are likely related to the improvement in the right ventricular function secondary to the reduction of pulmonary resistance. (orig.)
International Nuclear Information System (INIS)
Electron paramagnetic resonance (EPR) has been successfully used as a physical technique for gamma radiation dose reconstruction using calcified tissues. To minimize potential discrepancies between EPR readings in future studies, the effects of cavity response factor, tooth position and donor gender on the estimated gamma radiation dose were studied. It was found that the EPR response per sample mass used for assessment of doses in teeth outside of the 70-100 mg range should be corrected by a factor which is a function of the sample mass. In the EPR measurements, the difference in sensitivity of different tooth positions to γ-radiation was taken into consideration. It was determined that among all the premolars and molars tooth positions, the relative standard deviation of sensitivity was 6.5%, with the wisdom teeth and the first molars having the highest and lowest sensitivity to γ-radiation, respectively. The current results reveal no effect of the donor gender on the sensitivity to γ-radiation. (author)
International Nuclear Information System (INIS)
Highlights: • Multi-group formulation for exact neutron elastic scattering kernel is developed. • Up-scattering effects are incorporated in the cross-section data for heavy nuclei. • Effects on Doppler Temperature Coefficient (DTC) are demonstrated using DRAGON. • Results show an increase in DTC values by almost 10% for UOX and MOX LWR fuels. - Abstract: A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects stemming from lattice atoms thermal motion and it accounts for them within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to −10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes research performed to date on this topic
Averaging anisotropic cosmologies
International Nuclear Information System (INIS)
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity
On generalized averaged Gaussian formulas
Spalevic, Miodrag M.
2007-09-01
We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions w(x)equiv w^{(alpha,beta)}(x)D(1-x)^alpha(1+x)^beta ( alpha,beta>-1 ) we give a necessary and sufficient condition on the parameters alpha and beta such that the optimal averaged Gaussian quadrature formulas are internal.
LLC半桥式谐振变换器参数模型与设计%Parameter Model and Design for LLC Resonant Half-bridge Converter
Institute of Scientific and Technical Information of China (English)
王镇道; 赵亚魁; 章兢; 吴旭; 易峰
2012-01-01
According to working principle of LLC topology,a mathematical model for LLC resonant half-bridge converter is presented in this paper.On the basis of conversion relations between the best conversion efficiency and wide scope of load changes,leakage inductance,magnetic inductance and resonant capacitance are confirmed according to the proposed model.Also a LLC resonant half-bridge converter is designed.By improving switch frequency to MHz-level,its converter efficiency can reach to 94% either in full or light loader.At the same time,the power density can reach to 500W/in3.Experiment results ultimately verify the correctness of the model and parameter deduction.%根据LLC拓扑结构工作原理,建立了LLC半桥式谐振变换器的数学模型。基于最优转换效率和宽负载变化范围的转换关系,根据模型确定了漏感、励磁电感和谐振电容,并设计了一款LLC半桥式谐振变换器,开关频率提高到兆赫兹级,在轻载和满载时效率均达到94%,功率密度达到500W/in3,实验结果表明了模型和参数设计的正确性。
Mass- and field-shift isotope parameters for the $2s - 2p$ resonance doublet of lithium-like ions
Li, Jiguang; Godefroid, Michel; Fritzsche, Stephan; Gaigalas, Gediminas; Indelicato, Paul; Jönsson, Per
2012-01-01
It was recently shown that dielectronic recombination measurements can be used for accurately inferring changes in the nuclear mean-square charge radii of highly-charged lithium-like neodymium [Brandau et al., Phys. Rev. Lett. 100 073201 (2008)]. To make use of this method to derive information about the nuclear charge distribution for other elements and isotopes, accurate electronic isotope shift parameters are required. In this work, we calculate and discuss the relativistic mass- and field-shift factors for the two $2s ^{2}S_{1/2} - 2p ^{2}P^{o}_{1/2,3/2}$ transitions along the lithium isoelectronic sequence. Based on the multiconfiguration Dirac-Hartree-Fock method, the electron correlation and the Breit interaction are taken into account systematically. The analysis of the isotope shifts for these two transitions along the isoelectronic sequence demonstrates the importance and competition between the mass shifts and the field shifts.
Spectral averaging techniques for Jacobi matrices
del Rio, Rafael; Schulz-Baldes, Hermann
2008-01-01
Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.
Energy Technology Data Exchange (ETDEWEB)
Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)
2013-09-15
Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.
International Nuclear Information System (INIS)
Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients
Berthier, Laure; Trott, Michael
2016-01-01
We calculate the double pole contribution to two to four fermion scattering through $W^{\\pm}$ currents at tree level in the Standard Model Effective Field Theory (SMEFT). We assume all fermions to be massless, $\\rm U(3)^5$ flavour and $\\rm CP$ symmetry. Using this result, we update the global constraint picture on SMEFT parameters including LEPII data on these charged current processes, and also include modifications to our fit procedure motivated by a companion paper focused on $W^{\\pm}$ mass extractions. The fit reported is now to 177 observables and emphasises the need for a consistent inclusion of theoretical errors, and a consistent treatment of observables. Including charged current data lifts the two-fold degeneracy previously encountered in LEP (and lower energy) data, and allows us to set simultaneous constraints on 20 of 53 Wilson coefficients in the SMEFT, consistent with our assumptions. This allows the model independent inclusion of LEP data in SMEFT studies at LHC, which are projected into the S...
Directory of Open Access Journals (Sweden)
Sattar Arshadi
2013-01-01
Full Text Available A computational study on the basis of density functional theory (DFT calculations has been performed to investigate the properties of the electronic structure of (6,0 zigzag boron nitride nanotubes and two models ((a and (b of diborinin-doped boron nitride nanotubes (DBD-BNNTs. The calculated structural energies yield similar values for two models of DBD-BNNTs. Isotropic ( and anisotropic ( chemical shielding parameters of the optimized BNNT and DBD-BNNTs are calculated. The results illustrate that the changes in chemical shielding tensors of 11B and 15N nuclei are more significant in the nearest neighborhood of the diborinin ring due to doping process. The changes of the electronic sites of the N atoms are also more significant than those of the B atoms. The dipole moments of the diborinin-doped BNNT structures show changes with respect to the pristine model. It is clear that the doping of diborinin ring decreases the energy gaps of the pure BNNT. For the pure model, the HOMO is located on the nitrogen atoms, and the LUMO is uniformly distributed throughout the B–N bonds. In contrast, for the diborinin-doped models, the majority of the HOMO and LUMO are located at the diborinin-doped regions.
Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; Dutta, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Innocente, Vincenzo; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Koffeman, E; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lu, W; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Merk, M; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paoloni, A; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zöller, M
2000-01-01
We report on measurements of hadronic and leptonic cross sections and leptonic forward-backward asymmetries performed with the L3 detector in the years $1993-95$.A total luminosity of 103 pb$^{-1}$ was collected at centre-of-mass energies $\\sqrt{s} \\approx m_\\mathrm{Z}$ and $\\sqrt{s} \\approx m_\\mathrm{Z} \\pm 1.8$ GeVwhich corresponds to 2.5 million hadronic and 245 thousand leptonic events selected.These data lead to a significantly improved determination of Z parameters.From the total cross sections, combined with our measurements in $1990-92$,we obtain the final results:%%%\\begin{eqnarr ay*} m_\\mathrm{Z} = 91189.8 \\pm 3.1\\ \\mathrm{MeV} \\, , & & \\Gamma_\\mathrm{Z} = 2502.4 \\pm 4.2\\ \\mathrm{MeV} \\, , \\\\ \\Gamma_\\mathrm{had} = 1741.1 \\pm 3.8\\ \\mathrm{MeV} \\, , & & \\Gamma_\\ell = 84.14 \\pm 0.17\\ \\mathrm{MeV} \\,. \\label{eq:Zpara_abstract}\\end{eqnarray*}%%%An invisible width of $\\Gamma_\\mathrm{inv} = 499.1 \\pm 2.9$ MeV is derived which in the Standard Model yields for the numberof light neutrino spec...
Energy Technology Data Exchange (ETDEWEB)
Heyerdahl, Helen, E-mail: Helen.Heyerdahl@rr-research.no [Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo (Norway); Røe, Kathrine [Department of Oncology, Division of Medicine, Akershus University Hospital, Lørenskog (Norway); Brevik, Ellen Mengshoel [Department of Research and Development, Algeta ASA, Oslo (Norway); Dahle, Jostein [Nordic Nanovector AS, Oslo (Norway)
2013-09-01
Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.
Unified approach to the multilevel parametrization of resonance cross sections
International Nuclear Information System (INIS)
A combined method of parametrization in the resolved resonance region and an approach to modelling the resonance structure in the unresolved region are suggested. The most typical case for the resonances of the non fissile nuclei with one neutron channel (s-wave resonances or resonances of an arbitrary l and a zero spin of the target nucleus) are considered. It is shown that for such systems the total cross section as well as the absorption cross section can be expressed as ratios of sums of pole terms with respect to energy. The modeling of the resonance structure in the unresolved region is needed for the examination of the resonance self-shielding effects in reactor physics. In this region the analysis of the experimental data (average cross sections and average transmissions) permits the determination of only the average resonance parameters - the strength functions Sn, Sγ. And it is necessary to model the resonance cross sections structure and such models should give the correct average cross section and also conserve the information for the cross sections minima to which the values of the transmissions data are very sensitive
Bouyer, Patricia; Markey, Nicolas; Randour, Mickael; Larsen, Kim G.; Laursen, Simon
2015-01-01
Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this ...
Dziuda, Łukasz
2015-01-01
The issues involved with recording vital functions in the magnetic resonance imaging (MRI) environment using fiber-optic sensors are considered in this paper. Basic physiological parameters, such as respiration and heart rate, are fundamental for predicting the risk of anxiety, panic, and claustrophobic episodes in patients undergoing MRI examinations. Electronic transducers are generally hazardous to the patient and are prone to erroneous operation in heavily electromagnetically penetrated MRI environments; however, nonmetallic fiber-optic sensors are inherently immune to electromagnetic effects and will be crucial for acquiring the above-mentioned physiological parameters. Forty-seven MRI-tested or potentially MRI-compatible sensors have appeared in the literature over the last 20 years. The author classifies these sensors into several categories and subcategories, depending on the sensing element placement, method of application, and measurand type. The author includes five in-house-designed fiber Bragg grating based sensors and shares experience in acquiring physiological measurements during MRI scans. This paper aims to systematize the knowledge of fiber-optic techniques for recording life functions and to indicate the current directions of development in this area.
International Nuclear Information System (INIS)
The use of 14N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation
Energy Technology Data Exchange (ETDEWEB)
Iselin, L.H.
1992-12-31
The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.
DEFF Research Database (Denmark)
Gramkow, Claus
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... natural approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...
Van Essen, H.
2004-01-01
This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...
Fibich, Gadi; Gavious, Arieh; Solan, Eilon
2012-01-01
Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced with its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of differentiability and interchangibility is O(\\epsilon^2) equivalent to the outcome of the corresponding homogeneous model, where \\epsilon is the level of heterogeneity. We then use this averaging pr...
DEFF Research Database (Denmark)
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... natural approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...
Averaged extreme regression quantile
Jureckova, Jana
2015-01-01
Various events in the nature, economics and in other areas force us to combine the study of extremes with regression and other methods. A useful tool for reducing the role of nuisance regression, while we are interested in the shape or tails of the basic distribution, is provided by the averaged regression quantile and namely by the average extreme regression quantile. Both are weighted means of regression quantile components, with weights depending on the regressors. Our primary interest is ...
Search for 136Xe resonance neutron capture
International Nuclear Information System (INIS)
Evidence for neutron capture in 134Xe at 2154-eV and 18.4-keV resonances is presented and quantified in terms of limits on Breit-Wigner single level parameters. Assuming the radiation width, 32 meV, found at the 18.4-keV resonance for all the reported resonances at higher energies, the Maxwellian average capture cross section is calculated for a range of stellar interior temperatures T. For kT = 30 keV only 0.72 mb is found. Only one third of this comes from the resonances above 18.4 keV so an overall uncertainty at kT = 30 keV of /+-/0.11 mb at the 68% probability level seems reasonable. Four resonances in 134Xe were also found. 11 refs., 5 figs
International Nuclear Information System (INIS)
The angular distribution of the Kr 4p photoelectrons was investigated in the photon energy range of the (3d)-1→np resonant excitations. The experimental dipole (β) and nondipole (γ and δ) anisotropy parameters were determined for the spin-orbit components of the Kr 4p shell. A simple theoretical model was developed for the description of the photoionization and excitation processes. An interference effect was observed between the direct photoionization and the resonant excitation participator Auger decay processes in the photon energy dependence of the experimental anisotropy parameters.
Averaging anisotropic cosmologies
Barrow, J D; Barrow, John D.; Tsagas, Christos G.
2006-01-01
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...
Essén, H
2003-01-01
This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.
Carrillo, Rafael E; Wiaux, Yves
2013-01-01
Recent developments in Carrillo et al. (2012) and Carrillo et al. (2013) introduced a novel regularization method for compressive imaging in the context of compressed sensing with coherent redundant dictionaries. The approach relies on the observation that natural images exhibit strong average sparsity over multiple coherent frames. The associated reconstruction algorithm, based on an analysis prior and a reweighted $\\ell_1$ scheme, is dubbed Sparsity Averaging Reweighted Analysis (SARA). We review these advances and extend associated simulations establishing the superiority of SARA to regularization methods based on sparsity in a single frame, for a generic spread spectrum acquisition and for a Fourier acquisition of particular interest in radio astronomy.
Pritychenko, B.; Mughabghab, S. F.
2012-12-01
We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.
DEFF Research Database (Denmark)
Gramkow, Claus
2001-01-01
In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong to...
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ping [Chongqing Jiaotong Univ. (China). School of Science; Li, Ling [Sichuan University of Arts and Science, Dazhou (China). Dept. of Maths and Finance-Economics
2015-07-01
The optical spectra, electron paramagnetic resonance parameters (i.e., the spin Hamiltonian parameters, including paramagnetic g factors and the hyperfine structure constants A{sub i}) and the local distortion structure for the tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7} are theoretically studied based on the crystal-field theory and three-order perturbation formulas of a 3d{sup 1} centre in tetragonal site. The magnitude of orbital reduction factor, core polarisation constant κ, and local structure parameters are obtained by fitting the calculated optical spectra and electron paramagnetic resonance parameters to the experimental values. The theoretical results are in reasonable agreement with the experimental values.
Directory of Open Access Journals (Sweden)
Moelker Adriaan
2011-06-01
Full Text Available Abstract Background There are physiological reasons for the effects of positioning on hemodynamic variables and cardiac dimensions related to altered intra-abdominal and intra-thoracic pressures. This problem is especially evident in pregnant women due to the additional aorto-caval compression by the enlarged uterus. The purpose of this study was to investigate the effect of postural changes on cardiac dimensions and function during mid and late pregnancy using cardiovascular magnetic resonance (CMR. Methods Healthy non-pregnant women, pregnant women at 20th week of gestation and at 32nd week of gestation without history of cardiac disease were recruited to the study and underwent CMR in supine and left lateral positions. Cardiac hemodynamic parameters and dimensions were measured and compared between both positions. Results Five non-pregnant women, 6 healthy pregnant women at mid pregnancy and 8 healthy pregnant women at late pregnancy were enrolled in the study. In the group of non-pregnant women left ventricular (LV cardiac output (CO significantly decreased by 9% (p = 0.043 and right ventricular (RV end-diastolic volume (EDV significantly increased by 5% (p = 0.043 from the supine to the left lateral position. During mid pregnancy LV ejection fraction (EF, stroke volume (SV, left atrium lateral diameter and left atrial supero-inferior diameter increased significantly from the supine position to the left lateral position: 8%, 27%, 5% and 11%, respectively (p Conclusions During pregnancy positional changes affect significantly cardiac hemodynamic parameters and dimensions. Pregnant women who need serial studies by CMR should be imaged in a consistent position. From as early as 20 weeks the left lateral position should be preferred on the supine position because it positively affects venous return, SV and CO.
Bothe, Jameson R.; Stein, Zachary W.; Al-Hashimi, Hashim M.
2014-07-01
Spin relaxation in the rotating frame (R1ρ) is a powerful NMR technique for characterizing fast microsecond timescale exchange processes directed toward short-lived excited states in biomolecules. At the limit of fast exchange, only kex = k1 + k-1 and Φex = pGpE(Δω)2 can be determined from R1ρ data limiting the ability to characterize the structure and energetics of the excited state conformation. Here, we use simulations to examine the uncertainty with which exchange parameters can be determined for two state systems in intermediate-to-fast exchange using off-resonance R1ρ relaxation dispersion. R1ρ data computed by solving the Bloch-McConnell equations reveals small but significant asymmetry with respect to offset (R1ρ (ΔΩ) ≠ R1ρ (-ΔΩ), which is a hallmark of slow-to-intermediate exchange, even under conditions of fast exchange for free precession chemical exchange line broadening (kex/Δω > 10). A grid search analysis combined with bootstrap and Monte-Carlo based statistical approaches for estimating uncertainty in exchange parameters reveals that both the sign and magnitude of Δω can be determined at a useful level of uncertainty for systems in fast exchange (kex/Δω analysis of experimental R1ρ data measured in three nucleic acid systems with exchange processes occurring on the slow (kex/Δω = 0.2; pE = ∼0.7%), fast (kex/Δω = ∼10-16; pE = ∼13%) and very fast (kex = 39,000 s-1) chemical shift timescales.
Reference input parameter library for nuclear model calculations
International Nuclear Information System (INIS)
The lecture describes the status of the Reference Input Parameter Library for nuclear model calculations of nuclear reaction cross sections. The library aims to facilitate evaluations of nuclear reaction data up to about 100 MeV. The present version of the library (RIPL Starter File) contains input parameters in 7 segments: atomic masses and deformations, discrete level schemes, average neutron resonances, optical model parameters, nuclear level densities (total, fission, partial), γ ray strength functions, and continuum angular distributions. (author)
Indian Academy of Sciences (India)
S Dev; Jyoti Dhar Sharma; U C Pandey; S P Sud; B C Chauhan
2003-07-01
Resonant spin-ﬂavor precession (RSFP) scenario with twisting solar magnetic ﬁelds has been confronted with the solar neutrino data from various ongoing experiments. The anticorrelation apparent in the Homestake solar neutrino data has been taken seriously to constrain ( 2,') parameter space and the twisting proﬁles of the magnetic ﬁeld in the convective zone of the Sun. The twisting proﬁles, thus derived, have been used to calculate the variation of the neutrino detection rates with the solar magnetic activity for the Homestake, Super-Kamiokande and the gallium experiments. It is found that the presence of twisting reduces the degree of anticorrelation in all the solar neutrino experiments. However, the anticorrelation in the Homestake experiment is expected to be more pronounced in this scenario. Moreover, the anticorrelation of the solar neutrino ﬂux emerging from the southern solar hemisphere is expected to be stronger than that for the neutrinos emerging from the northern solar hemispheres.
Covariant approximation averaging
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2014-01-01
We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in $N_f=2+1$ lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for the same cost.
Fibich, Gadi; Gavious, Arieh; Solan, Eilon
2012-01-01
Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced with its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of \\emph{differentiability} and \\emph{interchangibility}, is $O(\\epsilon^2)$ equivalent to the outcome of the corresponding homogeneous model, where $\\epsilon$ is the level of heterogeneity. We then us...
Test of the ENDF/B [Evaluated Nuclear Data File] unresolved resonance formalism for 235U
International Nuclear Information System (INIS)
It is common practice in ENDF/B [Evaluated Nuclear Data File] to represent neutron cross sections in the unresolved resonance region by specifying the average values and distribution laws of resonance parameters. This formalism allows the calculation of resonance self-shielding and of its variation with temperature. The purpose of this paper is to present a test of the validity of the formalism by comparing self-shielding factors computed with the ENDF/B unresolved formalism with values computed with the resolved resonance parameters recently evaluated for the neutron cross sections of 235U
Evaluation of Cm-247 neutron cross sections in the resonance region
International Nuclear Information System (INIS)
The neutron cross sections of Cm-247 are evaluated in the resonance (resolved and unresolved) region up to 10 keV. Average resonance parameters (i.e. spacing D, fission and radiative widths, neutron strength functions) are determined for unresolved region calculations. Moreover for a better comparison with the experimental data, fission cross section is calculated up to 10 MeV. In addition, the average number of neutrons emitted per fission as a function of energy is estimated
On the unresolved resonance region representation of neutron induced cross sections
International Nuclear Information System (INIS)
The accurate representation of neutron cross sections in the unresolved resonance region is of interest for the calculation of the Doppler coefficient of reactivity and self-shielded group cross -section sets for fast reactors. Customarily, the cross sections in the unresolved resonance region are described on the basis of the statistical theory of nuclear reactions, by specifying average values and distribution functions for the resonance parameters. Resonance self-shielding factors can then be calculated by the appropriate statistical techniques. In this work we review the unresolved resonance region formalism in the light of the availability of new high-energy resolution measurements. 8 refs., 3 figs., 2 tabs
Robust Averaging Level Control
Rosander, Peter; Isaksson, Alf; Löfberg, Johan; Forsman, Krister
2011-01-01
Frequent inlet ﬂow changes typically cause problems for averaging level controllers. For a frequently changing inlet ﬂow the upsets do not occur when the system is in steady state and the tank level at its set-point. For this reason the tuning of the level controller gets quite complicated, since not only the size of the upsets but also the time in between them relative to the hold up of the tank have to be considered. One way to obtain optimal ﬂow ﬁltering while directly accounting for futur...
Wang, Yong; Goh, Wang Ling; Chai, Kevin T.-C.; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu
2016-04-01
The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators.
International Nuclear Information System (INIS)
The authors analyse experimental data on the transmission and fission self-indication functions for 239Pu in the unresolved resonance region. Use is made of the method of generating a cross-section structure based on the multi-level R-matrix formalism (stochastic K-matrix method). Evaluations of the average resonance parameters and group constants for 239Pu are made. (author)
Reass, W A; Gribble, R F; Lynch, M T; Tallerico, P J; Reass, William A.; Doss, James D.; Gribble, Robert F.; Lynch, Michael T.; Tallerico, Paul J.
2000-01-01
This paper describes electrical design and operational characteristics of a zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three "H-Bridge" IGBT switching networks are used to generate the polyphase 20 kHz transformers primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to ...
Averaged Lema\\^itre-Tolman-Bondi dynamics
Isidro, Eddy G Chirinos; Piattella, Oliver F; Zimdahl, Winfried
2016-01-01
We consider cosmological backreaction effects in Buchert's averaging formalism on the basis of an explicit solution of the Lema\\^itre-Tolman-Bondi (LTB) dynamics which is linear in the LTB curvature parameter and has an inhomogeneous bang time. The volume Hubble rate is found in terms of the volume scale factor which represents a derivation of the simplest phenomenological solution of Buchert's equations in which the fractional densities corresponding to average curvature and kinematic backreaction are explicitly determined by the parameters of the underlying LTB solution at the boundary of the averaging volume. This configuration represents an exactly solvable toy model but it does not adequately describe our "real" Universe.
Negative Average Preference Utilitarianism
Directory of Open Access Journals (Sweden)
Roger Chao
2012-03-01
Full Text Available For many philosophers working in the area of Population Ethics, it seems that either they have to confront the Repugnant Conclusion (where they are forced to the conclusion of creating massive amounts of lives barely worth living, or they have to confront the Non-Identity Problem (where no one is seemingly harmed as their existence is dependent on the “harmful” event that took place. To them it seems there is no escape, they either have to face one problem or the other. However, there is a way around this, allowing us to escape the Repugnant Conclusion, by using what I will call Negative Average Preference Utilitarianism (NAPU – which though similar to anti-frustrationism, has some important differences in practice. Current “positive” forms of utilitarianism have struggled to deal with the Repugnant Conclusion, as their theory actually entails this conclusion; however, it seems that a form of Negative Average Preference Utilitarianism (NAPU easily escapes this dilemma (it never even arises within it.
International Nuclear Information System (INIS)
Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45–50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model (α/β = 10 Gy for tumor; α/β = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV (± 1 standard deviation) at diagnosis was 45.3 (±30) cm3, and the mean GTV at brachytherapy was 10 (±14) cm3. The mean D90 for the HRCTV was 86 (±13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 (±20) Gy, 76 (±16) Gy, 70 (±9) Gy, and 60 (±9) Gy, respectively. After a median follow-up of 43 months (range, 19–87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable range
International Nuclear Information System (INIS)
Purpose: Dynamic contrast enhanced (DCE) imaging has gained interest as an imaging modality for assessment of tumor characteristics and response to cancer treatment. However, for DCE-magnetic resonance imaging (MRI) tissue contrast enhancement may vary depending on imaging sequence and temporal resolution. The aim of this study is to compare DCE-MRI to DCE-computed tomography (DCE-CT) as the gold standard. Material and methods: Thirteen patients with advanced cervical cancer were scanned once prior to chemo-radiation and during chemo-radiation with DCE-CT and -MRI in immediate succession. A total of 22 paired DCE-CT and -MRI scans were acquired for comparison. Kinetic modeling using the extended Tofts model was applied to both image series. Furthermore the similarity of the spatial distribution was evaluated using a G analysis. The correlation between the two imaging techniques was evaluated using Pe arson's correlation and the parameter means were compared using a Student's t-test (p trans (r = 0.9), flux rate constant kep (r = 0.77), extracellular volume fraction ve (r = 0.58) and blood plasma volume fraction vp (r = 0.83). All quantitative parameters were found to be significantly different as estimated by DCE-CT and -MRI. The G analysis in normalized maps revealed that 45 % of the voxels failed to find a voxel with the corresponding value allowing for an uncertainty of 3 mm in position and 3 % in value (G3,3). By reducing the criteria, the G-failure rates were: G3,5 (37 % failure), G3,10 (26% failure) and at G3,15 (19 % failure). Conclusion: Good to excellent correlations but significant bias was found between DCE-CT and -MRI. Both the Pearson's correlation and the G analysis proved that the spatial information was similar when analyzing the two sets of DCE data using the extended Tofts model. Improvement of input function sampling is needed to improve kinetic quantification using DCE-MRI
Energy Technology Data Exchange (ETDEWEB)
Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)
2012-04-01
Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and
Pearlman, David A; Rao, B Govinda; Charifson, Paul
2008-05-15
We demonstrate a new approach to the development of scoring functions through the formulation and parameterization of a new function, which can be used both for rapidly ranking the binding of ligands to proteins and for estimating relative aqueous molecular solubilities. The intent of this work is to introduce a new paradigm for creation of scoring functions, wherein we impose the following criteria upon the function: (1) simple; (2) intuitive; (3) requires no postparameterization tweaking; (4) can be applied (without reparameterization) to multiple target systems; and (5) can be rapidly evaluated for any potential ligand. Following these criteria, a new function, FURSMASA (function for rapid scoring using an MD-averaged grid and the accessible surface area) has been developed. Three novel features of the function include: (1) use of an MD-averaged potential energy grid for ligand-protein interactions, rather than a simple static grid; (2) inclusion of a term that depends on the change in the solvent-accessible surface area changes on an atomic (not molecular) basis; and (3) use of the recently derived predictive index (PI) target when optimizing the function, which focuses the function on its intended purpose of relative ranking. A genetic algorithm is used to optimize the function against test data sets that include ligands for the following proteins: IMPDH, p38, gyrase B, HIV-1, and TACE, as well as the Syracuse Research solubility database. We find that the function is predictive, and can simultaneously fit all the test data sets with cross-validated predictive indices ranging from 0.68 to 0.82. As a test of the ability of this function to predict binding for systems not in the training set, the resulting fitted FURSAMA function is then applied to 23 ligands of the COX-2 enzyme. Comparing the results for COX-2 against those obtained using a variety of well-known rapid scoring functions demonstrates that FURSMASA outperforms all of them in terms of the PI and
Energy Technology Data Exchange (ETDEWEB)
Derrien, H
2004-05-27
Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.
Average-cost based robust structural control
Hagood, Nesbitt W.
1993-01-01
A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed.
Energy Technology Data Exchange (ETDEWEB)
Monroy Anton, J. L.; Solar Tortosa, M.; Lopez Munoz, M.; Navarro Bergada, A.; Estornell Gualde, M. A.; Melchor Iniguez, M.
2013-07-01
Our objective was to evaluate the V20 parameters and dose average compared to a single lung volume designed with a CT study in normal breathing of the patient and the corresponding to a lung volume composed, designed from three studies of CT in different phases of the respiratory cycle. Check if there are important differences in these cases that determine the necessity of creating a composite lung volume to evaluate dose volume histogram. (Author)
Averaging procedure in variable-G cosmologies
Cardone, Vincenzo F
2008-01-01
Previous work in the literature had built a formalism for spatially averaged equations for the scale factor, giving rise to an averaged Raychaudhuri equation and averaged Hamiltonian constraint, which involve a backreaction source term. The present paper extends these equations to include models with variable Newton parameter and variable cosmological term, motivated by the non-perturbative renormalization program for quantum gravity based upon the Einstein--Hilbert action. The coupling between backreaction and spatially averaged three-dimensional scalar curvature is found to survive, and all equations involving contributions of a variable Newton parameter are worked out in detail. Interestingly, under suitable assumptions, an approximate solution can be found where the universe tends to a FLRW model, while keeping track of the original inhomogeneities through two effective fluids.
Institute of Scientific and Technical Information of China (English)
江雪; 龚春英
2009-01-01
LLC half-bridge resonant converter has been widely studied due to advantages of high efficiency and high power density.The accurate parameters can create a precondition for LLC resonant converter to achieve high efficiency and satis-factory soft switching.A parameter design strategy based on frequency domain is described,a more accurate design strategy is introduced based on frequency and time domains in order to optimize the parameter.A I,LC resonant converter prototype which employ the latter strategy is designed and the results verify the feasibility of the strategy.%LLC半桥谐振变换器以其高效率、高功率密度等优点成为研究的热门拓扑.合理选择其参数的是实现变换器高工作效率.优良软开关特性的前提和保证.介绍了一种皋丁频域分析的参数设计方法,在总结其优缺点的基础上给出一种更为精确的频域、时域相结合的方法.通过优化参数设计,并根据该设计策略制作了一台LLC半桥谐振变换器样机,以验证所述方法的可行性.
High Average Power Yb:YAG Laser
Energy Technology Data Exchange (ETDEWEB)
Zapata, L E; Beach, R J; Payne, S A
2001-05-23
We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.
2016-01-01
Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to...
Time-dependent angularly averaged inverse transport
Bal, Guillaume; Jollivet, Alexandre
2009-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured al...
The treatment of resonance interference effects in the subgroup method
International Nuclear Information System (INIS)
Research highlights: → In this paper, we propose to first remedy the inaccurate treatment of the interference effect between resonance isotopes in conventional subgroup method. → In our work we use group averaged cross section instead of resonance integrals in the objective function for generating subgroup weights. This is much more effective since group average cross sections are the parameters which will be used in transport calculation. We have shown that the subgroup group weights generated with this method improves the accuracy of the resonance integration. → We solved the least squares optimization problem with the penalty method for constraints. The Krylov subspace method, CGNR, was found to be very efficient method for solving this type of optimization problem. → In addition to U-238, which was used as resonance isotope in previous work on lambda factors, U-235 was also treated as a resonance isotope in the lambda calculation developed here. This improves the accuracy of the subgroup method since we are able to provide lambdas for the groups in which U-238 has no significant resonance. - Abstract: This paper describes the development of a method to treat resonance interference effects within the framework of the subgroup method. The new procedure provides for the treatment of multiple resonance absorbers in which the subgroup weights are determined using a least squares technique and based on the cross sections generated from a mixture of multiple resonance isotopes and a suitably wide range of background cross sections. The method was implemented in the Method of Characteristics code DeCART and validated using MCNP. In order to implement the new method, the NJOY code was used for the calculation of neutron spectra and resonance parameters in for each representative LWR mixture. The resonance parameters, lambda, of the scattering isotopes are computed not just with U-238 as the resonance isotope as in previous applications of the subgroup method
The treatment of resonance interference effects in the subgroup method
Energy Technology Data Exchange (ETDEWEB)
Gao Zhenjia [Purdue University, West Lafayette, IN (United States); Xu Yunlin [University of Michigan, Ann Arbor, MI (United States); Downar, Thomas J., E-mail: downar@umich.edu [University of Michigan, Ann Arbor, MI (United States)
2011-05-15
Research highlights: > In this paper, we propose to first remedy the inaccurate treatment of the interference effect between resonance isotopes in conventional subgroup method. > In our work we use group averaged cross section instead of resonance integrals in the objective function for generating subgroup weights. This is much more effective since group average cross sections are the parameters which will be used in transport calculation. We have shown that the subgroup group weights generated with this method improves the accuracy of the resonance integration. > We solved the least squares optimization problem with the penalty method for constraints. The Krylov subspace method, CGNR, was found to be very efficient method for solving this type of optimization problem. > In addition to U-238, which was used as resonance isotope in previous work on lambda factors, U-235 was also treated as a resonance isotope in the lambda calculation developed here. This improves the accuracy of the subgroup method since we are able to provide lambdas for the groups in which U-238 has no significant resonance. - Abstract: This paper describes the development of a method to treat resonance interference effects within the framework of the subgroup method. The new procedure provides for the treatment of multiple resonance absorbers in which the subgroup weights are determined using a least squares technique and based on the cross sections generated from a mixture of multiple resonance isotopes and a suitably wide range of background cross sections. The method was implemented in the Method of Characteristics code DeCART and validated using MCNP. In order to implement the new method, the NJOY code was used for the calculation of neutron spectra and resonance parameters in for each representative LWR mixture. The resonance parameters, lambda, of the scattering isotopes are computed not just with U-238 as the resonance isotope as in previous applications of the subgroup method, but also
Resonance and Fractal Geometry
Broer, Henk W.
2012-01-01
The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena occur for parameter values in fractal sets of positive measure. We describe a universal phenomenon that plays an important role in modelling. This paper gives a summary of the background theory, vein...
Bayesian Averaging is Well-Temperated
DEFF Research Database (Denmark)
Hansen, Lars Kai
2000-01-01
Bayesian predictions are stochastic just like predictions of any other inference scheme that generalize from a finite sample. While a simple variational argument shows that Bayes averaging is generalization optimal given that the prior matches the teacher parameter distribution the situation is l...
International Nuclear Information System (INIS)
An arrangement of programs is described providing interactive computer graphics assistance to improve the operation of an existing fitting program. The particular example is the well-known 'Atta-Harvey' code used in resonance area analysis of neutron transmission data. This report is intended both as a manual for running the area analysis programs and as a practical example of program improvement by interactive programming methods. (U.K.)
Resonances and resonance widths
International Nuclear Information System (INIS)
Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances
Control of average spacing of OMCVD grown gold nanoparticles
Rezaee, Asad
Metallic nanostructures and their applications is a rapidly expanding field. Nobel metals such as silver and gold have historically been used to demonstrate plasmon effects due to their strong resonances, which occur in the visible part of the electromagnetic spectrum. Localized surface plasmon resonance (LSPR) produces an enhanced electromagnetic field at the interface between a gold nanoparticle (Au NP) and the surrounding dielectric. This enhanced field can be used for metal-dielectric interfacesensitive optical interactions that form a powerful basis for optical sensing. In addition to the surrounding material, the LSPR spectral position and width depend on the size, shape, and average spacing between these particles. Au NP LSPR based sensors depict their highest sensitivity with optimized parameters and usually operate by investigating absorption peak: shifts. The absorption peak: of randomly deposited Au NPs on surfaces is mostly broad. As a result, the absorption peak: shifts, upon binding of a material onto Au NPs might not be very clear for further analysis. Therefore, novel methods based on three well-known techniques, self-assembly, ion irradiation, and organo-meta1lic chemical vapour deposition (OMCVD) are introduced to control the average-spacing between Au NPs. In addition to covalently binding and other advantages of OMCVD grown Au NPs, interesting optical features due to their non-spherical shapes are presented. The first step towards the average-spacing control is to uniformly form self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) as resists for OMCVD Au NPs. The formation and optimization of the OTS SAMs are extensively studied. The optimized resist SAMs are ion-irradiated by a focused ion beam (Fill) and ions generated by a Tandem accelerator. The irradiated areas are refilled with 3-mercaptopropyl-trimethoxysilane (MPTS) to provide nucleation sites for the OMCVD Au NP growth. Each step during sample preparation is monitored by
Resolving resonances in R-matrix calculations
International Nuclear Information System (INIS)
We present a technique to obtain detailed resonance structures from R-matrix calculations of atomic cross sections for both collisional and radiative processes. The resolving resonances (RR) method relies on the QB method of Quigley-Berrington (Quigley L, Berrington K A and Pelan J 1998 Comput. Phys. Commun. 114 225) to find the position and width of resonances directly from the reactance matrix. Then one determines the symmetry parameters of these features and generates an energy mesh whereby fully resolved cross sections are calculated with minimum computational cost. The RR method is illustrated with the calculation of the photoionization cross sections and the unified recombination rate coefficients of Fe XXIV, O VI, and Fe XVII. The RR method reduces numerical errors arising from unresolved R-matrix cross sections in the computation of synthetic bound-free opacities, thermally averaged collision strengths and recombination rate coefficients. (author)
International Nuclear Information System (INIS)
Two models indended for calculation of neutron resonance absorption in reactor cells are considered. A method, by which resonance absorption on a certain system of levels is represented by absorption at a level with effective parameters, is suggested. Two models are considered. The first one is based on conservation of resonance integrals: infinite dilution in approximation of narrow resonances and infinite mass. The second one is based on coservation of resonance integrals for some values of dilution cross section and temperature applying thetheory of intermediate resonances with temperature dependence. Parameters of effective resonance level have universal character and they can be applied for calculation of resonance absorption in homogeneous and heterogeneous systems. Results of the calculations for 8 uranium-water cells using parameters of effective levels in the groups 15, 16, 17 of the BNAB system reveal that the attained accuracy complies with requirements placed upon the calculation of resonance absorption of 238U. The method can be applied to other isotopes as well
Institute of Scientific and Technical Information of China (English)
叶湖; 周唯逸; 贾文超; 姜明伟
2016-01-01
Half-bridge LLC resonant converter of high efficiency and high power density is widely used to drive the LED light source. Through the analysis of its principle, characterization and the resonant network transmission efficiency, we summed up a simple parameter design method. This method designs the LLC half-bridge resonant circuit of 100kHz and 120W with 90% conversion efficiency. The results of experiment confirm the feasibility of the design method.%LLC半桥谐振变换器的高效率、高功率密度使其广泛应用于LED光源驱动器。通过对其工作原理、特性及谐振网络传输效率的分析，归纳出一种简易的参数设计方法。最后，用该方法设计了具有90%变换效率的100kHz、120W的LLC半桥谐振电路，实验结果证实了此设计方法的可行性。
International Nuclear Information System (INIS)
For a class of Schroedinger operators, with potentials having minima embedded in the continuum of the spectrum and non-trapping tails, we show the existence of shape-resonance exponentially close to the real axis as n → ν. The resonant energies are given by a convergent perturbation expansion in powers of a parameter exhibiting the expected exponentially small behaviour for tunneling
Average Range and Network Synchronizability
International Nuclear Information System (INIS)
The influence of structural properties of a network on the network synchronizability is studied by introducing a new concept of average range of edges. For both small-world and scale-free networks, the effect of average range on the synchronizability of networks with bounded or unbounded synchronization regions is illustrated through numerical simulations. The relations between average range, range distribution, average distance, and maximum betweenness are also explored, revealing the effects of these factors on the network synchronizability of the small-world and scale-free networks, respectively. (general)
Physical Theories with Average Symmetry
Alamino, Roberto C
2013-01-01
This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.
Evaluation of the average ion approximation for a tokamak plasma
International Nuclear Information System (INIS)
The average ion approximation, sometimes used to calculated atomic processes in plasmas, is assessed by computing deviations in various rates over a set of conditions representative of tokamak edge plasmas. Conditions are identified under which the rates are primarily a function of the average ion charge and plasma parameters, as assumed in the average ion approximation. (Author) 19 refs., tab., 5 figs
Calculation of neutron cross-sections in the unresolved resonance region by the Monte Carlo method
International Nuclear Information System (INIS)
The Monte-Carlo method is used to produce neutron cross-sections and functions of the cross-section probabilities in the unresolved energy region and a corresponding Fortran programme (ONERS) is described. Using average resonance parameters, the code generates statistical distribution of level widths and spacing between resonance for S and P waves. Some neutron cross-sections for U238 and U235 are shown as examples
Indian Academy of Sciences (India)
Wu Xiao-Xuan; Fang Wang; Feng Wen-Lin; Zheng Wen-Chen
2009-03-01
The EPR parameters ( factors ∥, ⊥ and zero-field splitting ) of Mn4+ ion in h-BaTiO3 crystal are calculated from the complete high-order perturbation formulas based on a two-mechanism model for the EPR parameters of 33 ions in trigonal symmetry. In the model, not only the widely used crystal-field mechanism, but also the charge-transfer mechanism (which is not considered in crystal-field theory) are included. The calculated results are in reasonable agreement with the experimental values. The relative importance of charge-transfer mechanism to EPR parameters and the defect structure of Mn4+ centre in h-BaTiO3 crystal obtained from the calculations are discussed.
Ablikim, M
2006-01-01
We report measurements of the branching fractions for $\\psi(3770)\\to D^0 \\bar D^0, D^+D^-, D\\bar D$ and resonance parameters of $\\psi(3770)$ and $\\psi(2S)$. By analyzing the line-shapes of the cross sections for inclusive hadron, $D^0 \\bar D^0$ and $D^+D^-$ event production in the range from 3.660 GeV to 3.872 GeV covering both $\\psi(2S)$ and $\\psi(3770)$ resonances, we extract the branching fractions for $\\psi(3770)$ decay into $D^0\\bar D^0 {\\rm and} D^+D^-$ respectively to be $B(\\psi(3770)\\to D^0 \\bar D^0)=(46.7 \\pm 4.7 \\pm 2.3)%$ and $B(\\psi(3770)\\to D^+ D^-)=(36.9 \\pm 3.7 \\pm 2.8)%$, which give $B(\\psi(3770)\\to D \\bar D)=(83.6 \\pm 7.3 \\pm 4.2)%$ and non-$D\\bar D$ branching fraction of $\\psi(3770)$ to be $B(\\psi(3770)\\to non-D \\bar D)=(16.4 \\pm 7.3 \\pm 4.2)%$. We meanwhile obtain the resonance parameters of $\\psi(3770)$ and $\\psi(2S)$ to be $M_{\\psi(3770)}=3772.2 \\pm 0.7 \\pm 0.3$ MeV, $\\Gamma^{\\rm tot}_{\\psi(3770)}=26.9 \\pm 2.4 \\pm 0.3$ MeV and $\\Gamma^{ee}_{\\psi(3770)}=251 \\pm 26 \\pm 11$ eV; $M_{\\psi(2S)}...
"Pricing Average Options on Commodities"
Kenichiro Shiraya; Akihiko Takahashi
2010-01-01
This paper proposes a new approximation formula for pricing average options on commodities under a stochastic volatility environment. In particular, it derives an option pricing formula under Heston and an extended lambda-SABR stochastic volatility models (which includes an extended SABR model as a special case). Moreover, numerical examples support the accuracy of the proposed average option pricing formula.
Time-dependent angularly averaged inverse transport
International Nuclear Information System (INIS)
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. Such measurement settings find applications in medical and geophysical imaging. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain
Time-dependent angularly averaged inverse transport
Bal, Guillaume
2009-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain.
238U self-indication ratio measurement in the resonance region
International Nuclear Information System (INIS)
An accurate representation of the 238U cross-section structures in the resonance region is required to compute the resonance self-shielded effective cross sections used in the calculation of thermal and fast-reactor performance parameters. Several authors have demonstrated the usefulness of self-indication and average transmission measurements to investigate the resonance structure of the 238U cross sections. This paper compares measured self-indication ratios with calculations based on ENDF/B-V, in the resolved energy range from 100 eV to 4 keV. In that energy range the ENDF/B-V evaluation is chiefly based on high resolution transmission measurements. The immediate purpose of the comparison presented is not to generate a new set of improved resonance parameters but to provide an additional test of the adequacy of the ENDF/B-V representation for the calculation of resonance self-shielding
From cellular doses to average lung dose
International Nuclear Information System (INIS)
Sensitive basal and secretory cells receive a wide range of doses in human bronchial and bronchiolar airways. Variations of cellular doses arise from the location of target cells in the bronchial epithelium of a given airway and the asymmetry and variability of airway dimensions of the lung among airways in a given airway generation and among bronchial and bronchiolar airway generations. To derive a single value for the average lung dose which can be related to epidemiologically observed lung cancer risk, appropriate weighting scenarios have to be applied. Potential biological weighting parameters are the relative frequency of target cells, the number of progenitor cells, the contribution of dose enhancement at airway bifurcations, the promotional effect of cigarette smoking and, finally, the application of appropriate regional apportionment factors. Depending on the choice of weighting parameters, detriment-weighted average lung doses can vary by a factor of up to 4 for given radon progeny exposure conditions. (authors)
Contribution to the study of the unresolved resonance range of the neutrons cross sections
International Nuclear Information System (INIS)
This document presents the statistical description of neutron cross sections in the unresolved resonance range. The modeling of the total cross section and of the 'shape - elastic' cross section is based on the 'average R-Matrix' formalism. The partial cross sections describing the radiative capture, elastic scattering, inelastic scattering and fission process are calculated using the Hauser-Feshbach formalism with width fluctuation corrections. In the unresolved resonance range, these models depend on the average resonance parameters (neutron strength function Sc, mean level spacing Dc, average partial reaction widths Γc, channel radius ac, effective radius R' and distant level parameter R-barc∞). The codes (NJOY, CALENDF...) dedicated to the processing of nuclear data libraries (JEFF, ENDF/B, JENDL, CENDL, BROND... ) use the average parameters to take into account the self-shielding phenomenon for the simulation of the neutron transport in Monte-Carlo (MCNP, TRIPOLI... ) and deterministic (APOLLO, ERANOS...) codes. The evaluation work consists in establishing a consistent set of average parameters as a function of the total angular momentum J of the system and of the orbital moment of the incident neutron l. The work presented in this paper aims to describe the links between the S-Matrix and the 'average R-Matrix' formalism for the calculation of Sc, R-barc∞, ac and R'. (author)
Indian Academy of Sciences (India)
Q Fu; S Y Wu; J Z Lin; J S Yao
2007-03-01
The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic factors) for a 3d5 (with high spin = 5/2) and a 4d5 (with low spin = 1/2) ion in trigonal symmetry, respectively. According to the investigations, the nd5 ( = 3 and 4) impurity ions may not locate at the ideal Al3+ site but undergo axial displacements by about 0.132 Å and 0.170 Å for Fe3+ and Ru3+, respectively, away from the center of the ligand octahedron along the C3 axis. The calculated spin Hamiltonian parameters based on the above axial displacements show good agreement with the observed values. The validity of the results is discussed.
Unresolved resonance self shielding calculation: causes and importance of discrepancies
International Nuclear Information System (INIS)
To compute the self shielding coefficient, it is necessary to know the point-wise cross-sections. In the unresolved resonance region, we do not know the parameters of each level but only the average parameters. Therefore we simulate the point-wise cross-section by random sampling of the energy levels and resonance parameters with respect to the Wigner law and the X2 distributions, and by computing the cross-section in the same way as in the resolved regions. The result of this statistical calculation obviously depends on the initial parameters but also on the method of sampling, on the formalism which is used to compute the cross-section or on the weighting neutron flux. In this paper, we will survey the main phenomena which can induce discrepancies in self shielding computations. Results are given for typical dilutions which occur in nuclear reactors. 8 refs
International Nuclear Information System (INIS)
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, 3JNHα and 3Jαβ coupling constants, and 15N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone 3JHNα-coupling constants and 1H- 15N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain 3Jαβ-coupling constants and 1H- 15N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result
Energy Technology Data Exchange (ETDEWEB)
Soares, T. A. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Daura, X. [Universitat Autonoma de Barcelona, InstitucioCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i Biomedicina (Spain); Oostenbrink, C. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Smith, L. J. [University of Oxford, Oxford Centre for Molecular Sciences, Central Chemistry Laboratory (United Kingdom); Gunsteren, W. F. van [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland)], E-mail: wfvgn@igc.phys.chem.ethz.ch
2004-12-15
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, {sup 3}J{sub NH{alpha}} and {sup 3}J{sub {alpha}}{sub {beta}} coupling constants, and {sup 1}5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone {sup 3}J{sub HN{alpha}}-coupling constants and {sup 1}H- {sup 1}5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain {sup 3}J{sub {alpha}}{sub {beta}}-coupling constants and {sup 1}H- {sup 1}5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the
Energy Technology Data Exchange (ETDEWEB)
Lipp, M J; Yoo, C H; Strachan, D; Daniels, W B
2005-11-29
Most alkali halides crystallize in the fcc sodium chloride structure. In contrast, with the exception of CsF, the Cs-halides form the simple cubic cesium chloride (CsCl) structure at ambient conditions and they have a substantially different electronic structure than other alkali halides; in particular, they have several nearly degenerate electronic levels near the Brillouin zone center. Highly resolved Three-Photon Spectroscopy (TPS) measurements allow direct observation of the near band edge structure and, in the case of CsI, probe more states than one-photon techniques. A number of interesting phenomena, among them level repulsion (Fermi resonance), occur as these levels are tuned through one another by application of hydrostatic pressure. To the best of our knowledge, this has been observed for CsBr for the first time. Doubling the photon energy range compared to a previous publication [see Yoo et al. PRL 84, 3875 (2000)] allows direct observation of the n=1, 2 and 3 exciton-polariton members of the {Lambda}{sub 8}{sup -}-{Lambda}{sub 6}{sup +} transition in CsI and lets us establish unambiguous values for the bandgap (6.139 eV), binding energy (0.265 eV) and their pressure dependence up to 7 kbar. Similarly to CsI, the CsBr linewidth of the lowest {Lambda}{sub 4}{sup -} polariton (A) decreases upon compression.
Power convergence of Abel averages
Kozitsky, Yuri; Shoikhet, David; Zemanek, Jaroslav
2012-01-01
Necessary and sufficient conditions are presented for the Abel averages of discrete and strongly continuous semigroups, $T^k$ and $T_t$, to be power convergent in the operator norm in a complex Banach space. These results cover also the case where $T$ is unbounded and the corresponding Abel average is defined by means of the resolvent of $T$. They complement the classical results by Michael Lin establishing sufficient conditions for the corresponding convergence for a bounded $T$.
International Nuclear Information System (INIS)
The goals of the High-Average-Power Laser Program at LLNL are to develop a broad technology base for solid state lasers and to demonstrate high-average-power laser operation with more efficiency and higher beam quality than has been possible with current technology. Major activities are the zig-zag laser testbed and the gas-cooled-slab laser test bed. This section describes these activities as well as discussion of material development; nonlinear optics; laser materials, and applications
Energy Technology Data Exchange (ETDEWEB)
Valentini, Anna Lia, E-mail: alvalentini@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Gui, Benedetta, E-mail: bgui@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Cina, Alessandro, E-mail: acina@sirm.org [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Pinto, Francesco, E-mail: francesco.pinto@libero.it [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Totaro, Angelo, E-mail: dr.atotaro@gmail.com [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Pierconti, Francesco, E-mail: francescopierconti@rm.unicatt.it [Department of Pathology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Bassi, Pier Francesco, E-mail: bassipf@gmail.com [Department of Surgical Sciences, Institute of Urology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy); Bonomo, Lorenzo, E-mail: lbonomo@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, Catholic University of Rome, Policlinico A Gemelli, Lgo A Gemelli n 8, 00168 Rome (Italy)
2012-11-15
Background and aims: Dynamic contrast enhanced magnetic resonance improves prostate cancer detection. The aims of this paper are to verify whether wash-in-rate parameter (speed of contrast uptake in dynamic contrast enhanced magnetic resonance) can help to differentiate prostate cancer from non-neoplastic T2-weighted hypointense lesions within prostate gland and to assess a cut-off for prostate cancer diagnosis. Methods: Prospective, monocentric, multi-departmental study. Thirty consecutive patients underwent T2-weighted and dynamic contrast enhanced magnetic resonance, and re-biopsy. T2-weighted hypointense lesions, >5 mm in size, were noted. Lesions were assessed as cancerous (showing mass effect, or no defined margin within transitional zone) and non cancerous (no mass effect) and were compared with histopathology by 2 Multiplication-Sign 2 tables. Wash-in-rate of each lesion was calculated and was correlated with histopathology. Student's t-test was adopted to assess significant differences. Receiver operating characteristic (ROC) analysis was employed to identify the best cut-off for wash-in-rate in detecting prostate cancer. Results: At re-biopsy, cancer was proven in 43% of patients. On T2-weighted MRI, 111 hypointense lesions {>=}5 mm in size were found. Sensitivity, specificity and accuracy of T2-weighted MRI were 80% ({+-}12.4 CI 95%), 74.6% ({+-}10.1 CI 95%), and 76.5% ({+-}7.9 CI 95%), respectively. Mean WR was 5.8 {+-} 1.9/s for PCa zones and 2.96 {+-} 1.44/s for non-PCa zones (p < 0.00000001). At ROC analysis, the best area under curve (AUC) for wash-in-rate parameter was associated to 4.2/s threshold with 82.5% sensitivity (CI {+-} 7.07), 97.2% specificity (CI {+-} 4.99) and 91.2% accuracy (CI {+-} 5.27). Eighteen false positive lesions on T2-weighted MRI showed low wash-in-rate values suggesting non-cancer lesions, while in 5/8 false negative cases high wash-in-rate values correctly suggested prostate cancer. Nine lesions with surgically proven
International Nuclear Information System (INIS)
Background and aims: Dynamic contrast enhanced magnetic resonance improves prostate cancer detection. The aims of this paper are to verify whether wash-in-rate parameter (speed of contrast uptake in dynamic contrast enhanced magnetic resonance) can help to differentiate prostate cancer from non-neoplastic T2-weighted hypointense lesions within prostate gland and to assess a cut-off for prostate cancer diagnosis. Methods: Prospective, monocentric, multi-departmental study. Thirty consecutive patients underwent T2-weighted and dynamic contrast enhanced magnetic resonance, and re-biopsy. T2-weighted hypointense lesions, >5 mm in size, were noted. Lesions were assessed as cancerous (showing mass effect, or no defined margin within transitional zone) and non cancerous (no mass effect) and were compared with histopathology by 2 × 2 tables. Wash-in-rate of each lesion was calculated and was correlated with histopathology. Student's t-test was adopted to assess significant differences. Receiver operating characteristic (ROC) analysis was employed to identify the best cut-off for wash-in-rate in detecting prostate cancer. Results: At re-biopsy, cancer was proven in 43% of patients. On T2-weighted MRI, 111 hypointense lesions ≥5 mm in size were found. Sensitivity, specificity and accuracy of T2-weighted MRI were 80% (±12.4 CI 95%), 74.6% (±10.1 CI 95%), and 76.5% (±7.9 CI 95%), respectively. Mean WR was 5.8 ± 1.9/s for PCa zones and 2.96 ± 1.44/s for non-PCa zones (p < 0.00000001). At ROC analysis, the best area under curve (AUC) for wash-in-rate parameter was associated to 4.2/s threshold with 82.5% sensitivity (CI ± 7.07), 97.2% specificity (CI ± 4.99) and 91.2% accuracy (CI ± 5.27). Eighteen false positive lesions on T2-weighted MRI showed low wash-in-rate values suggesting non-cancer lesions, while in 5/8 false negative cases high wash-in-rate values correctly suggested prostate cancer. Nine lesions with surgically proven cancer were not included in the
International Nuclear Information System (INIS)
It has been suggested that an ulceration or hemorrhage within an atheroma on a stenotic carotid artery is a clinically important cause of transient ishcemic attack (TIA). In previous studies, due to its inherent signal loss by static or turbulent flow, magnetic resonance angiography (MRA) proved to be an unreliable method for the evaluation of subtle changes of ulceration. To improve the detectability of the ulceration within atheroma, a vascular phantom was filled with gadolinium solution of various concentrations during various MR sequences. Several vascular phantoms made of elastic silicon mimicking an ulcerated stenotic internal carotid artery (ICA) were constructed, and gadolinium solution of different concentrations (1 : 1000 and 1: 200 of Gd-DTPA) and distilled water were introduced into the vascular phantoms using a computerized pulsatile pump. To evaluate maximum intensity projection (MIP), multiple planar reconstruction (MPR) and source images, axial and coronal images of MRA with 2D-TOF (time of flight) and 3D-TOF were reviewed. Each image of various sequences was compared with plain X-ray films of each phantom filled with barium. On all MR sequences, the image of the phantom of the normal carotid bifurcation were superior to the images of ulcerated and stenotic phantoms. MPR and MIP were the optimal image for detecting and defining ulceration and stenosis. Better quality images were obtained when a higher concentration of Gd-DTPA was used and when the 3D-TOF technique instead of the 2D-TOF technique was applied. This study reveals that a combination of higher concentration gadolinium with MPR and MIP on 3D-TOF technique could be optimal for the evaluation of ulceration and/or stenosis at the bifurcation of the carotid artery
Vocal attractiveness increases by averaging.
Bruckert, Laetitia; Bestelmeyer, Patricia; Latinus, Marianne; Rouger, Julien; Charest, Ian; Rousselet, Guillaume A; Kawahara, Hideki; Belin, Pascal
2010-01-26
Vocal attractiveness has a profound influence on listeners-a bias known as the "what sounds beautiful is good" vocal attractiveness stereotype [1]-with tangible impact on a voice owner's success at mating, job applications, and/or elections. The prevailing view holds that attractive voices are those that signal desirable attributes in a potential mate [2-4]-e.g., lower pitch in male voices. However, this account does not explain our preferences in more general social contexts in which voices of both genders are evaluated. Here we show that averaging voices via auditory morphing [5] results in more attractive voices, irrespective of the speaker's or listener's gender. Moreover, we show that this phenomenon is largely explained by two independent by-products of averaging: a smoother voice texture (reduced aperiodicities) and a greater similarity in pitch and timbre with the average of all voices (reduced "distance to mean"). These results provide the first evidence for a phenomenon of vocal attractiveness increases by averaging, analogous to a well-established effect of facial averaging [6, 7]. They highlight prototype-based coding [8] as a central feature of voice perception, emphasizing the similarity in the mechanisms of face and voice perception. PMID:20129047
Strzelecki, Dominik; Podgórski, Michał; Kałużyńska, Olga; Gawlik-Kotelnicka, Oliwia; Stefańczyk, Ludomir; Kotlicka-Antczak, Magdalena; Gmitrowicz, Agnieszka; Grzelak, Piotr
2015-10-01
Dysfunction of the glutamatergic system, the main stimulating system in the brain, has a major role in pathogenesis of schizophrenia. The frontal white matter (WM) is partially composed of axons from glutamatergic pyramidal neurons and glia with glutamatergic receptors. The natural amino acid sarcosine, a component of a normal diet, inhibits the glycine type 1 transporter, increasing the glycine level. Thus, it modulates glutamatergic transmission through the glutamatergic ionotropic NMDA (N-methyl-d-aspartate) receptor, which requires glycine as a co-agonist. To evaluate the concentrations of brain metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine, and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left frontal WM, Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy was used. Twenty-five patients randomly chosen from a group of fifty with stable schizophrenia (DSM-IV-TR) and dominant negative symptoms, who were receiving antipsychotic therapy, were administered 2 g of sarcosine daily for six months. The remaining 25 patients received placebo. Assignment was double blinded. ¹H-NMR spectroscopy (1.5 T) was performed twice: before and after the intervention. NAA, Glx and mI were evaluated as Cr and Cho ratios. All patients were also assessed twice with the Positive and Negative Syndrome Scale (PANSS). Results were compared between groups and in two time points in each group. The sarcosine group demonstrated a significant decrease in WM Glx/Cr and Glx/Cho ratios compared to controls after six months of therapy. In the experimental group, the final NAA/Cr ratio significantly increased and Glx/Cr ratio significantly decreased compared to baseline values. Improvement in the PANSS scores was significant only in the sarcosine group. In patients with schizophrenia, sarcosine augmentation can reverse the negative effect of glutamatergic system overstimulation, with a simultaneous beneficial increase of NAA
Sparsity Averaging for Compressive Imaging
Carrillo, Rafael E; Van De Ville, Dimitri; Thiran, Jean-Philippe; Wiaux, Yves
2012-01-01
We propose a novel regularization method for sparse image reconstruction from compressive measurements. The approach relies on the conjecture that natural images exhibit strong average sparsity over multiple coherent frames. The associated reconstruction algorithm, based on an analysis prior and a reweighted $\\ell_1$ scheme, is dubbed Sparsity Averaging Reweighted Analysis (SARA). We test our prior and the associated algorithm through extensive numerical simulations for spread spectrum and Gaussian acquisition schemes suggested by the recent theory of compressed sensing with coherent and redundant dictionaries. Our results show that average sparsity outperforms state-of-the-art priors that promote sparsity in a single orthonormal basis or redundant frame, or that promote gradient sparsity. We also illustrate the performance of SARA in the context of Fourier imaging, for particular applications in astronomy and medicine.
Weigert, S
2002-01-01
The quantum mechanical equivalent of parametric resonance is studied. A simple model of a periodically kicked harmonic oscillator is introduced which can be solved exactly. Classically stable and unstable regions in parameter space are shown to correspond to Floquet operators with qualitatively different properties. Their eigenfunctions, which are calculated exactly, exhibit a transition: for parameter values with classically stable solutions the eigenstates are normalizable while they cannot be normalized for parameter values with classically instable solutions. Similarly, the spectrum of quasi energies undergoes a specific transition. These observations remain valid qualitatively for arbitrary linear systems exhibiting classically parametric resonance such as the paradigm example of a frequency modulated pendulum described by Mathieu's equation.
Resonant driving of a nonlinear Hamiltonian system
International Nuclear Information System (INIS)
As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.
Energy Technology Data Exchange (ETDEWEB)
Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)
2016-05-15
The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)
International Nuclear Information System (INIS)
The T-matrix averaging procedure advocated by Burke, Berrington and Sukumar [1981, J. Phys. B. At. Mol. Phys. 14, 289] is demonstrated to hold in a class of soluble models for two different L2 basis expansions. The convergence rates as the bases are extended to completeness are determined. (author)
Progress on reference input parameter library for nuclear model calculations of nuclear data (III)
International Nuclear Information System (INIS)
A new set of the average neutron resonance spacings D0 and neutron strength functions S0 for 309 nuclei were reestimated on the basis of the resolved resonance parameters reevaluated from BNL-325, ENDF/B-6, JEF-2, and JENDL-3, and the cumulative number N0 of low low lying levels for 344 nuclei were also reevaluated by means of histograms. Three sets of level density parameters for the Gilbert-Cameron (GC) formula, back-shifted Fermi gas model(BS) and generated superfluid model (GSM) have been reesitmated by fitting the D0 and N0 values of CENPL.LRD-2
United States Average Annual Precipitation, 1995-1999 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1995-1999. Parameter-elevation...
United States Average Annual Precipitation, 1990-2009 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1990-2009. Parameter-elevation...
United States Average Annual Precipitation, 1961-1990 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1961-1990. Parameter-elevation...
United States Average Annual Precipitation, 2005-2009 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 2005-2009. Parameter-elevation...
United States Average Annual Precipitation, 2000-2004 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 2000-2004. Parameter-elevation...
United States Average Annual Precipitation, 1990-1994 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1990-1994. Parameter-elevation...
Phase-averaged transport for quasiperiodic Hamiltonians
Bellissard, J; Schulz-Baldes, H
2002-01-01
For a class of discrete quasi-periodic Schroedinger operators defined by covariant re- presentations of the rotation algebra, a lower bound on phase-averaged transport in terms of the multifractal dimensions of the density of states is proven. This result is established under a Diophantine condition on the incommensuration parameter. The relevant class of operators is distinguished by invariance with respect to symmetry automorphisms of the rotation algebra. It includes the critical Harper (almost-Mathieu) operator. As a by-product, a new solution of the frame problem associated with Weyl-Heisenberg-Gabor lattices of coherent states is given.
PAPIN, Cross Section, Self-Shielding Factors for Fertile Isotopes in Unresolved Resonance Region
International Nuclear Information System (INIS)
1 - Description of problem or function: PAPIN calculates cross section probability tables, Bondarenko self-shielding factors and average self-indication ratios for non-fissile isotopes, below the inelastic threshold, on the basis of the ENDF/B prescriptions for the unresolved resonance region. 2 - Method of solution: Monte-Carlo methods are utilized to generate ladders of resonance parameters in the unresolved resonance region, from average parameters and their appropriate distribution functions. The neutron cross-sections are calculated by the single-level Breit-Wigner formalism, with s-, p-, and d-wave contributions. The cross section probability tables are constructed by sampling the Doppler-broadened cross sections. The various self-shielded factors are computed numerically as Lebesgue integrals over the cross section probability tables
Review of lattice studies of resonances
Mohler, Daniel
2012-01-01
I review recent progress in extracting resonance parameters using lattice field theory, with an emphasis on determining hadron resonances from lattice quantum chromodynamics. Until recently, the \\rho-meson channel was the only one considered, while, during the last year, several resonant channels have been investigated for the first time. Recent lattice results for scattering phase shifts in resonant channels are presented.
Measurement of the resonance escape probability
International Nuclear Information System (INIS)
The average cadmium ratio in natural uranium rods has been measured, using equal diameter natural uranium disks. These values correlated with independent measurements of the lattice buckling, enabled us to calculate values of the resonance escape probability for the G1 reactor with one or the other of two definitions. Measurements were performed on 26 mm and 32 mm rods, giving the following values for the resonance escape probability p: 0.8976 ± 0.005 and 0.912 ± 0.006 (d. 26 mm), 0.8627 ± 0.009 and 0.884 ± 0.01 (d. 32 mm). The influence of either definition on the lattice parameters is discussed, leading to values of the effective integral. Similar experiments have been performed with thorium rods. (author)
Stochastic Approximation with Averaging Innovation
Laruelle, Sophie
2010-01-01
The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic approximation in a setting with innovations satisfying some averaging properties and to study some applications. The averaging assumptions allow us to unify the framework where the innovations are generated (to solve problems from Numerical Probability) and the one with exogenous innovations (market data, output of "device" $e.g.$ an Euler scheme) with stationary or ergodic properties. We propose several fields of applications with random innovations or quasi-random numbers. In particular we provide in both setting a rule to tune the step of the algorithm. At last we illustrate our results on five examples notably in Finance.
High average power supercontinuum sources
Indian Academy of Sciences (India)
J C Travers
2010-11-01
The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium. The most common experimental arrangements are described, including both continuous wave fibre laser systems with over 100 W pump power, and picosecond mode-locked, master oscillator power fibre amplifier systems, with over 10 kW peak pump power. These systems can produce broadband supercontinua with over 50 and 1 mW/nm average spectral power, respectively. Techniques for numerical modelling of the supercontinuum sources are presented and used to illustrate some supercontinuum dynamics. Some recent experimental results are presented.
Predicting vibration-induced displacement for a resonant friction slider
DEFF Research Database (Denmark)
Fidlin, A.; Thomsen, Jon Juel
2001-01-01
A mathematical model is set up to quantify vibration-induced motions of a slider, sandwiched between friction layers with different coefficients of friction, and equipped with an imbedded resonator that oscillates at high frequency and small amplitude. This model is highly nonlinear, involving non......-smooth functions with strong harmonic excitation terms. The method of averaging is extended to hold for systems of this class, and used to derive approximate expressions for predicting average velocities of the slider. These expressions are shown to produce results that agree very well with numerical integration...... of the full equations of motion. The expressions are used to estimate and explain the influence of system parameters....
Thomson scattering in the average-atom approximation
Johnson, W. R.; Nilsen, J.; Cheng, K. T.
2012-01-01
The average-atom model is applied to study Thomson scattering of x-rays from warm-dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave-functions and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Appli...
On Dupree's resonance function
International Nuclear Information System (INIS)
It is shown that Dupree's resonance function has a negative real asymptotic tail, so that the dispersion relation of the renormalized weak turbulence theory leads to unstable high phase velocity waves, even when the average distribution is a Gaussian. A possible explanation of this paradox is proposed
A statistical model for combustion resonance from a DI diesel engine with applications
Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.
2015-08-01
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
On Backus average for generally anisotropic layers
Bos, Len; Slawinski, Michael A; Stanoev, Theodore
2016-01-01
In this paper, following the Backus (1962) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (1962) for the case of isotropic and transversely isotropic layers. In over half-a-century since the publications of Backus (1962) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of mathematical underpinnings of the original formulation; hence, this paper. We prove that---within the long-wave approximation---if the thin layers obey stability conditions then so does the equivalent medium. We examine---within the Backus-average context---the approximation of the average of a product as the product of averages, and express it as a proposition in terms of an upper bound. In the presented examination we use the e...
Average Description of Dipole Gamma Transitions in Hot Atomic Nuclei
Plujko, V. A.; Gorbachenko, O. M.; Rovenskykh, E. P.; Zheltonozhskii, V. A.
2014-04-01
A new version of the modified Lorentzian approach for radiative strength function is proposed. It is based on renewed systematics for giant dipole resonance (GDR) parameters. The gamma-decay strength functions are calculated using new GDR parameters and compared with experimental data. It is demonstrated that closed-form approaches with energy-dependent width of the gamma strength, as a rule, provide a reliable simple method for description of gamma-decay processes.
Calculating High Speed Centrifugal Compressor Performance from Averaged Measurements
Lou, Fangyuan; Fleming, Ryan; Key, Nicole L.
2012-12-01
To improve the understanding of high performance centrifugal compressors found in modern aircraft engines, the aerodynamics through these machines must be experimentally studied. To accurately capture the complex flow phenomena through these devices, research facilities that can accurately simulate these flows are necessary. One such facility has been recently developed, and it is used in this paper to explore the effects of averaging total pressure and total temperature measurements to calculate compressor performance. Different averaging techniques (including area averaging, mass averaging, and work averaging) have been applied to the data. Results show that there is a negligible difference in both the calculated total pressure ratio and efficiency for the different techniques employed. However, the uncertainty in the performance parameters calculated with the different averaging techniques is significantly different, with area averaging providing the least uncertainty.
Split ring resonator resonance assisted terahertz antennas
Galal, Hossam; Vitiello, Miriam S
2016-01-01
We report on the computational development of novel architectures of low impedance broadband antennas, for efficient detection of Terahertz (THz) frequency beams. The conceived Split Ring Resonator Resonance Assisted (SRR RA) antennas are based on both a capacitive and inductive scheme, exploiting a 200 Ohm and 400 Ohm impedance, respectively. Moreover, the impedance is tunable by varying the coupling parameters in the exploited geometry, allowing for better matching with the detector circuit for maximum power extraction. Our simulation results have been obtained by assuming a 1.5 THz operation frequency.
Switching Characteristics and Analysis of Resonant Tunneling Diodes
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Resonant tunneling diode (RTD) of AlAs/InGaAs/AlAs double barrier-single well structure was designed and fabricated. The devices showed current-voltage characteristics with peak-valley current ratio of 4: 1 at room temperature. The scattering parameter of RTD was measured by using an HP8510(C) network analyzer. Equivalent circuit parameters were obtained by curve fitting and optimized. The RTD switching time was estimated using the measured capacitance and average negative differential resistance. The minimum rise time of the sample was estimated to be 21 ps.
Flexible time domain averaging technique
Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng
2013-09-01
Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.
Pastor, Pavol
2015-01-01
This paper presents a librational solution for evolutions of parameters averaged over a synodic period in mean motion resonances in planar circular restricted three-body problem (PCR3BP) with non-gravitational effects taken into account. The librational solution is derived from a linearization of modified Lagrange's planetary equations. The presented derivation respects properties of orbital evolutions in the mean motion resonances within the framework of the PCR3BP. All orbital evolutions in the PCR3BP with the non-gravitational effects can be described by four varying parameters. We used the semimajor axis, eccentricity, longitude of pericenter and resonant angular variable. The evolutions are found for all four parameters. The solution can be applied also in the case without the non-gravitational effects. We compared numerically and analytically obtained evolutions in the case when the non-gravitational effects are the Poynting-Robertson effect and the radial stellar wind. The librational solution is good ...
On description of the direct nucleon decay of giant resonances
Chekomazov, G A; Urin, M H
1996-01-01
A semimicroscopical approach is formulated to describe the direct nucleon decay of various giant resonances in intermediate and heavy mass spherical nuclei. The approach consists in: (i) the exact continuum-RPA calculations for amplitudes of the reactions accompanied by excitation and the nucleon decay of the collective particle-hole states (doorway states); (ii) the Breit-Wigner parametrization of the RPA reaction-amplitudes in the vicinity of the giant giant-resonance energy and evaluation of the doorway-state parameter (the energy, entrance and partial nucleon, escape widths); (iii) the phenomenological consideration for the doorway-state coupling to many-particle configurations with the use of reasonable statistical assumptions and derivation on this base the expressions for the energy-averaged reaction amplitudes. The nuclear mean field and quasiparticle interaction are the input quantities for calculations. Examples of description for the direct nucleon decay of a number of giant resonances in the $^{20...
Resonant frequencies of whispering gallery modes of dielectric resonator
S.L. Badnilcar; N.Shanmugam; V. R. K. Murthy
2001-01-01
The modal spectrum of the whispering gallery modes of dielectric resonator depends mainly on its physical dimensions, dielectric constant, and to a lesser extent, on the environment. This paper carries investigation of the resonant frequencies in dielectric disc utilising the ring resonator model. Results of the structural design parameters are used to generate a nume!ical expression for describing the operational frequencies useful for computer-aided design applications. Theoretical ...
The stability of a zonally averaged thermohaline circulation model
Schmidt, G A
1995-01-01
A combination of analytical and numerical techniques are used to efficiently determine the qualitative and quantitative behaviour of a one-basin zonally averaged thermohaline circulation ocean model. In contrast to earlier studies which use time stepping to find the steady solutions, the steady state equations are first solved directly to obtain the multiple equilibria under identical mixed boundary conditions. This approach is based on the differentiability of the governing equations and especially the convection scheme. A linear stability analysis is then performed, in which the normal modes and corresponding eigenvalues are found for the various equilibrium states. Resonant periodic solutions superimposed on these states are predicted for various types of forcing. The results are used to gain insight into the solutions obtained by Mysak, Stocker and Huang in a previous numerical study in which the eddy diffusivities were varied in a randomly forced one-basin zonally averaged model. Resonant stable oscillat...
Bounce averaged trapped electron fluid equations for plasma turbulence
International Nuclear Information System (INIS)
A novel set of nonlinear fluid equations for mirror-trapped electrons is developed which differs from conventional fluid equations in two main respects: (1) the trapped-fluid moments average over only two of three velocity space dimensions, retaining the full pitch angle dependence of the traped electron dynamics, and (2) closure approximations include the effects of collisionless wave-particle resonances with the toroidal precession drift. By speeding up calculations by at least √ mi/me, these bounce averaged fluid equations make possible realistic nonlinear simulations of turbulent particle transport and electron heat transport in tokamaks and other magnetically confined plasmas
International Nuclear Information System (INIS)
We study in a simple model the effects of resonance production and decay on Bose-Einstein correlations of identical pions. The intermediate stage of collision is simulated by the formation process of resonances given by a single function of the proper time of a resonance. Direct pions are described as decay products of a resonance with vanishing life-time. In contradistinction to our recent work we include realistic pT-distributions of resonances. The comparison with data of the EHS/NA22 Collaboration shows that the mean time of resonance formation is rather short 0.1 - 0.4 fm/c. This result is almost independent of the form of the function describing resonance formation. The data of the EHS/NA22 Collaboration require also a decrease of the chaotic parameter A with increasing average transfer momentum of identical pions. It is pointed out that there are similarities between the model based on resonance formation and decay and the one based on hydrodynamical evolution of hadronic matter. We conjecture that hydrodynamical models in hadronic collisions are describing in a different language the process of resonance formation and decay. (authors)
Mehta, Daryush D; Wolfe, Patrick J
2011-01-01
Vocal tract resonance characteristics in acoustic speech signals are classically tracked using frame-by-frame point estimates of formant frequencies followed by candidate selection and smoothing using dynamic programming methods that minimize ad hoc cost functions. The goal of the current work is to provide both point estimates and associated uncertainties of center frequencies and bandwidths in a statistically principled state-space framework. Extended Kalman (K) algorithms take advantage of a linearized mapping to infer formant and antiformant parameters from frame-based estimates of autoregressive moving average (ARMA) cepstral coefficients. Error analysis of KARMA, WaveSurfer, and Praat is accomplished in the all-pole case using a manually marked formant database and synthesized speech waveforms. KARMA formant tracks exhibit lower overall root-mean-square error relative to the two benchmark algorithms, with third formant tracking more challenging. Antiformant tracking performance of KARMA is illustrated u...
High average power solid state laser power conditioning system
International Nuclear Information System (INIS)
The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers
Averaging along Uniform Random Integers
Janvresse, Élise
2011-01-01
Motivated by giving a meaning to "The probability that a random integer has initial digit d", we define a URI-set as a random set E of natural integers such that each n>0 belongs to E with probability 1/n, independently of other integers. This enables us to introduce two notions of densities on natural numbers: The URI-density, obtained by averaging along the elements of E, and the local URI-density, which we get by considering the k-th element of E and letting k go to infinity. We prove that the elements of E satisfy Benford's law, both in the sense of URI-density and in the sense of local URI-density. Moreover, if b_1 and b_2 are two multiplicatively independent integers, then the mantissae of a natural number in base b_1 and in base b_2 are independent. Connections of URI-density and local URI-density with other well-known notions of densities are established: Both are stronger than the natural density, and URI-density is equivalent to log-density. We also give a stochastic interpretation, in terms of URI-...
International Nuclear Information System (INIS)
The Fortran IV code PAPIN has been developed to calculate cross section probability tables, Bondarenko self-shielding factors and average self-indication ratios for non-fissile isotopes, below the inelastic threshold, on the basis of the ENDF/B prescriptions for the unresolved resonance region. Monte-Carlo methods are utilized to generate ladders of resonance parameters in the unresolved resonance region, from average resonance parameters and their appropriate distribution functions. The neutron cross-sections are calculated by the single level Breit-Wigner (SLBW) formalism, with s, p and d-wave contributions. The cross section probability tables are constructed by sampling the Doppler-broadened cross sections. The various self-shielded factors are computed numerically as Lebesgue integrals over the cross section probability tables. The program PAPIN has been validated through extensive comparisons with several deterministic codes
Munoz-Cobos, J. G.
1981-08-01
A FORTRAN 4 code was developed to calculate cross section probability tables, Bondarenko self-shielding factors, and average self-indication ratios for non-fissile isotopes, below the inelastic threshold, on the basis of prescriptions for the unresolved resonance region. Monte-Carlo methods are utilized to generate ladders of resonance parameters in he unresolved resonance region, from average resonance parameters and their appropriate distribution functions. The neutron cross sections are calculated by the single level Breit-Wigner formalism, with s, p and d-wave contributions. The cross section probability tables are constructed by sampling the Doppler-broadened cross sections. The various self-shielded factors are computed numerically as Lebesgue integrals over the cross section probability tables. The program was validated through extensive comparisons with several deterministic codes.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Accidental degeneracy of resonances
International Nuclear Information System (INIS)
Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)
Accidental degeneracy of resonances
Energy Technology Data Exchange (ETDEWEB)
Hernandez, E.; Mondragon, A. [Instituto de Fisica, UNAM (Mexico); Jauregui, A. [Departamento de Fisica, Universidad de Sonora, A.P. 1625, Hermosillo, Sonora (Mexico)
2001-09-01
Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)
Weigert, S.
2001-01-01
The quantum mechanical equivalent of parametric resonance is studied. A simple model of a periodically kicked harmonic oscillator is introduced which can be solved exactly. Classically stable and unstable regions in parameter space are shown to correspond to Floquet operators with qualitatively different properties. Their eigenfunctions, which are calculated exactly, exhibit a transition: for parameter values with classically stable solutions the eigenstates are normalizable while they cannot...
Garcilazo, H.; Mathelitsch, L.
1994-03-01
We investigate the continuum three-pion problem within a relativistic three-body model that takes into account the ππ S and P waves. The dynamical input of the two-body subsystem is given by separable potentials, which yield a good fit to the ππ scattering data and resonance parameters up to a two-body invariant mass of 900MeV. We introduce a parameter ν expressing the ambiguity in the reduction of a fully relativistic theory to a three-dimensional one. The masses and widths of the ω, a 1(1260), and π(1300) mesons, which decay predominantly into three pions, are reasonably well described by our model. The h 1(1170) meson, however, which also decays into three pions, cannot be explained as a three-pion resonance. Some πρ Argand diagrams are shown in those channels where resonances exist.
Averaging Methods for Design of Spacecraft Hysteresis Damper
Directory of Open Access Journals (Sweden)
Ricardo Gama
2013-01-01
Full Text Available This work deals with averaging methods for dynamics of attitude stabilization systems. The operation of passive gravity-gradient attitude stabilization systems involving hysteresis rods is described by discontinuous differential equations. We apply recently developed averaging techniques for discontinuous system in order to simplify its analysis and to perform parameter optimization. The results obtained using this analytic method are compared with those of numerical optimization.
A precise measurement of the average b hadron lifetime
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, P; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991-1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 \\pm 0.013 \\pm 0.022 ps.
Updated measurement of the average b hadron lifetime
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrad, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Takashima, M.; Thomas, J.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Mirabito, L.; Rivera, F.; Schäfer, U.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Sau Lan Wu; Wu, X.; Zobernig, G.; Aleph Collaboration
1992-11-01
An improved measurement of the average lifetime of b hadrons has been performed with the ALEPH detector. From a sample of 260 000 hadronic Z 0 decays, recorded during the 1991 LEP run with the silicon vertex detector fully operational, a fit to the impact parameter distribution of lepton tracks coming from semileptonic decays yields an average b hadron lifetime of 1.49 ± 0.03 ± 0.06 ps.
A precise measurement of the average b hadron lifetime
Buskulic, D.; de Bonis, I.; Casper, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Markou, C.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; van Gemmeren, P.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Thulasidas, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Sau Lan Wu; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1996-02-01
An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991-1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 ± 0.013 ± 0.022 ps.
Hand-held resonance sensor for tissue stiffness measurements—a theoretical and experimental analysis
International Nuclear Information System (INIS)
A piezoelectric transducer in a feedback circuit operating in a resonance state is the basis of a resonance sensor. Upon contact with a soft object a change in the resonance frequency reflects the acoustic impedance. Together with force measurement it is possible to obtain the elastic stiffness of the object. The aim of this study was to evaluate the concept of a hand-held resonance sensor for tissue stiffness measurement. A time derivative analysis of the force and the frequency change showed that a stiffness-sensitive parameter was independent of the impression speed. Soft tissue phantoms of gelatin were used in an experimental validation of the theory. A force indentation method was used as a reference method for assessing the gelatin's elastic stiffness. Results from the hand-held measurements showed that the stiffness parameter accurately measured the elastic stiffness of the gelatin (R2 = 0.94, p 2 = 0.15) and non-significantly (p > 0.05, 14 out of 17) dependent on an impression speed parameter. On average, a small amount of the total variance was explained by the impression speed. In conclusion, soft tissue stiffness can be objectively measured with free-hand measurement with a resonance sensor. This study contributes a theoretical analysis and an experimental demonstration of the concept of a hand-held resonance sensor for stiffness measurements
Evaluation of the resonance region for 58Fe
International Nuclear Information System (INIS)
An evaluation of the resonance parameters for neutrons incident on 58Fe has been carried out in the energy region of resolved resonances. The recommended parameters given in this report reproduce the measured differential cross section and the recommended thermal capture cross section to within the published errors and more closely than the present JEF-2.2 evaluated file. The spins of the resonances with neutron widths greater than the radiation widths could be derived from the observed capture areas by assuming that the average radiation width of 0.2446 eV did not vary greatly with spin or momentum. Spins and momentum of the remaining resonances were allocated in a random fashion to make up the expected 2J + 1 spacing distribution and the strength functions. The expected 1/v dependence of the capture cross section below the first positive resonance is accomplished by the addition of several negative energy resonances. The radiation width of the first bound level was adjusted to reproduce the evaluated thermal capture cross section of 1.3143 barns and its neutron width adjusted to fit the measured total cross section in the region above ∼ 50 eV. These recommended parameters should only be used to calculate cross sections up to 155 keV. Between 155 keV and 2 MeV the averaged cross section given in Appendix 2 could be used, and above 2 MeV the recommended values given in the present JEF-2.2 file could be adopted. One of the problems with this evaluation and previous ones is that ∼ 45% of the calculated value of the total resonance integral of 1.2817 ± 0.0277 barns comes from the first two resonances for which there is effectively only one transmission measurement by Garg et al [Gar-78a] and some preliminary capture measurements by Borella [Bo-04]. New measurements on enriched or natural iron are needed to solve this problem. Another is that there is a correlation between the radiation widths and the neutron widths. This correlation may be genuine or may be due
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747
International Nuclear Information System (INIS)
The quantum mechanical equivalent of parametric resonance is studied. A simple model of a periodically kicked harmonic oscillator is introduced which can be solved exactly. Classically stable and unstable regions in parameter space are shown to correspond to Floquet operators with qualitatively different properties. Their eigenfunctions, which are calculated exactly, exhibit a transition: for parameter values with classically stable solutions the eigenstates are normalizable while they cannot be normalized for parameter values with classically unstable solutions. Similarly, the spectrum of quasi energies undergoes a specific transition. These observations remain valid qualitatively for arbitrary linear systems exhibiting classically parametric resonance such as the paradigm example of a frequency modulated pendulum described by Mathieu's equation. (author)
Energy Technology Data Exchange (ETDEWEB)
Weigert, Stefan [Institut de Physique, Universite de Neuchatel, Neuchatel (Switzerland) and Department of Mathematics, University of Hull, Hull (United Kingdom)]. E-mail: s.weigert@hull.ac.uk
2002-05-10
The quantum mechanical equivalent of parametric resonance is studied. A simple model of a periodically kicked harmonic oscillator is introduced which can be solved exactly. Classically stable and unstable regions in parameter space are shown to correspond to Floquet operators with qualitatively different properties. Their eigenfunctions, which are calculated exactly, exhibit a transition: for parameter values with classically stable solutions the eigenstates are normalizable while they cannot be normalized for parameter values with classically unstable solutions. Similarly, the spectrum of quasi energies undergoes a specific transition. These observations remain valid qualitatively for arbitrary linear systems exhibiting classically parametric resonance such as the paradigm example of a frequency modulated pendulum described by Mathieu's equation. (author)
On the extremal properties of the average eccentricity
Ilic, Aleksandar
2011-01-01
The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity $ecc (G)$ of a graph $G$ is the mean value of eccentricities of all vertices of $G$. The average eccentricity is deeply connected with a topological descriptor called the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, introducing two graph transformations that increase or decrease $ecc (G)$. Furthermore, we resolve four conjectures, obtained by the system AutoGraphiX, about the average eccentricity and other graph parameters (the clique number, the Randi\\' c index and the independence number), refute one AutoGraphiX conjecture about the average eccentricity and the minimum vertex degree and correct one AutoGraphiX conjecture about the domination number.
Neutron capture cross section measurements for 238U in the resonance region at GELINA
Kim, H. I.; Paradela, C.; Sirakov, I.; Becker, B.; Capote, R.; Gunsing, F.; Kim, G. N.; Kopecky, S.; Lampoudis, C.; Lee, Y.-O.; Massarczyk, R.; Moens, A.; Moxon, M.; Pronyaev, V. G.; Schillebeeckx, P.; Wynants, R.
2016-06-01
Measurements were performed at the time-of-flight facility GELINA to determine the 238U(n, γ) cross section in the resonance region. Experiments were carried out at a 12.5 and 60m measurement station. The total energy detection principle in combination with the pulse height weighting technique was applied using C6D6 liquid scintillators as prompt γ-ray detectors. The energy dependence of the neutron flux was measured with ionisation chambers based on the 10B(n, α) reaction. The data were normalised to the isolated and saturated 238U resonance at 6.67 eV. Special procedures were applied to reduce bias effects due to the weighting function, normalization, dead time and background corrections, and corrections related to the sample properties. The total uncertainty due to the weighting function, normalization, neutron flux and sample characteristics is about 1.5%. Resonance parameters were derived from a simultaneous resonance shape analysis of the GELINA capture data and transmission data obtained previously at a 42m and 150m station of ORELA. The parameters of resonances below 500 eV are in good agreement with those resulting from an evaluation that was adopted in the main data libraries. Between 500 eV and 1200 eV a systematic difference in the neutron width is observed. Average capture cross section data were derived from the experimental capture yield in the energy region between 3.5 keV and 90 keV. The results are in good agreement with an evaluated cross section resulting from a least squares fit to experimental data available in the literature prior to this work. The average cross section data derived in this work were parameterised in terms of average resonance parameters and included in a least squares analysis together with other experimental data reported in the literature.
Level density parameters for the back-shifted Fermi gas model in the mass range 24 ≤ A ≤ 250
International Nuclear Information System (INIS)
The parameters a and δeff for the back-shifted Fermi gas model are determined for 1224 nuclei. For 272 nuclei the parameters are determined from experimental data on cumulative numbers of low-lying levels and the average spacings between neutron resonances. For the rest of the nuclei the δeff parameter was determined from cumulative numbers of low-lying levels and values of the a parameter obtained by interpolation using the data for the 272 nuclei. A formula is suggested to account for damping of the shell effect at high excitation energies. A comparison is made with previous results and different experimental data on level densities. (author)
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
A modified Eddington-Barbier relation in highly coherent resonance-line wings
Gayley, K. G.
1992-01-01
It is shown that resonance-line wings are just as useful in inferring plane-parallel stellar chromospheric S sub L distributions as complete redistribution (CRD) profiles. Although coherent scattering effects at a given frequency tend to average depth-dependent parameters over a larger volume than in CRD, this effect can be offset by simply looking closer to line center, where the same depth-dependent information exists as in CRD, albeit somewhat more compressed in frequency space. For resonance lines with high excitation energies such as Ly-alpha, steep Planck function gradients can invalidate the modified Eddington-Barbier approach given, but this problem also exists in CRD.
Fission mode fluctuations in the resonances of 235U(n,f)
Hambsch, F. J.; Knitter, H. H.; Budtz-Jørgensen, C.; Theobald, J. P.
1989-01-01
Fission fragment mass- and total kinetic energy distributions were measured for single, isolated resonances and neutron energy bins covering the incident neutron energy range from 0.006 eV to 130 eV. The measurements were performed at the Geel Electron Linear Accelerator (GELINA) of the European Communities using a Frisch-gridded ionization chamber. Fluctuations of the fission fragment mass distributions as function of resonance energy were observed, which are correlated with fluctuations of the reaction Q-value and with the measured total kinetic energy averaged over all fragments. In the resonance region the fluctuations in from resonance to resonance are observed with amplitudes up to about 450 keV. The correlations between the mass-distribution fluctuations and other parameters like spin J, spin orientation quantum number K, angular distribution fluctuations and the fluctuations of the average number of neutrons emitted in fission, overlinev, are evaluated and discussed. An interpretation of the overlinev- fluctuations observed in other experiments is given in terms of the mass distribution fluctuations. The fluctuations of the mass-distribution parameters and of the total kinetic energy distributions as function of mass are viewed in the frame of the fission channel model of Bohr and Wheeler and of the recent multi-fission mode random neck-rupture model of Brosa, Grossmann and Müller.
D Pi scattering and D meson resonances from lattice QCD
Mohler, Daniel; Woloshyn, R M
2012-01-01
The masses and widths of the broad scalar D_0^*(2400) and the axial D_1(2430) charmed-light resonances are extracted by simulating the corresponding D Pi and D* Pi scattering on the lattice. The resonance parameters are obtained using a Breit-Wigner fit of the elastic phase shifts. The resulting D_0^*(2400) mass is 351+/-21 MeV above the spin-average 1/4(m_D+3m_{D*}), in agreement with the experimental value of 347+/-29 MeV above. The resulting D_0^* to D Pi coupling g^{lat}=2.55+/-0.21 GeV is close to the experimental value g^{exp}<=1.92+/-0.14 GeV, where g parametrizes the width $\\Gamma\\equiv g^2p^*/s$. The resonance parameters for the broad D_1(2430) are also found close to the experimental values; these are obtained by appealing to the heavy quark limit, where the neighboring resonance D_1(2420) is narrow. The calculated I=1/2 scattering lengths are a_0=0.81+/-0.14 fm for D Pi and a_0=0.81+/-0.17 fm for D* Pi scattering. The simulation of the scattering in these channels incorporates quark-antiquark as...
Gaussian-Beam Laser-Resonator Program
Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman
1989-01-01
Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).
Averages of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties as of summer 2014
Amhis, Y; Ben-Haim, E; Blyth, S; Bozek, A; Bozzi, C; Carbone, A; Chistov, R; Chrząszcz, M; Cibinetto, G; Dingfelder, J; Gelb, M; Gersabeck, M; Gershon, T; Gibbons, L; Golob, B; Harr, R; Hayasaka, K; Hayashii, H; Kuhr, T; Leroy, O; Lusiani, A; Miyabayashi, K; Naik, P; Nishida, S; Campos, A Oyanguren; Patel, M; Pedrini, D; Petrič, M; Rama, M; Roney, M; Rotondo, M; Schneider, O; Schwanda, C; Schwartz, A J; Shwartz, B; Smith, J G; Tesarek, R; Trabelsi, K; Urquijo, P; Van Kooten, R; Zupanc, A
2014-01-01
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.
International Nuclear Information System (INIS)
A program (RESQ) based on quadratures that evaluates, from ENDF/B data, the resolved resonance contribution in group-averaged cross sections (capture, fission and scattering) was developed. Single and Multilevel Breit-Wigner parameters are accepted. Constant weighting function and zero degree kelvin were considered. To assure convergence, different quadrature orders may be analysed. Results are compared with other codes' reconstruction and integration methods. (author)
Effect of slice thickness on brain magnetic resonance image texture analysis
Heinonen Tomi; Luukkaala Tiina; Harrison Lara CV; Savio Sami J; Dastidar Prasun; Soimakallio Seppo; Eskola Hannu J
2010-01-01
Abstract Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two h...
Time-averaged photon-counting digital holography.
Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario
2015-09-15
Time-averaged holography has been using photo-emulsions (early stage) and digital photo-sensitive arrays (later) to record holograms. We extend the recording possibilities by utilizing a photon-counting camera, and we further investigate the possibility of obtaining accurate hologram reconstructions in rather severe experimental conditions. To achieve this, we derived an expression for fringe function comprising the main parameters affecting the hologram recording. Influence of the main parameters, namely the exposure time and the number of averaged holograms, is analyzed by simulations and experiments. It is demonstrated that taking long exposure times can be avoided by averaging over many holograms with the exposure times much shorter than the vibration cycle. Conditions in which signal-to-noise ratio in reconstructed holograms can be substantially increased are provided. PMID:26371907
Vibration monitor for rotating machines using average frequency technique
International Nuclear Information System (INIS)
A vibration monitoring technique has been developed which can be applied to continuous monitoring and to patrol checking of many kinds of rotating machines in nuclear power plants. In this method, the vibrating condition in such equipment are represented in terms of two parameters, i.e. a vibration amplitude (RMS value) and an average frequency. The average frequency is defined as the root value of the second moment of the vibration frequency weighted by the power spectrum. The average frequency can be calculated by simple analogue circuits and does not need the spectrum analysis. Using these two parameter, not only the occurrence of abnormal vibration but also the type of vibration can be detected. (author)
Averages of Values of L-Series
Alkan, Emre; Ono, Ken
2013-01-01
We obtain an exact formula for the average of values of L-series over two independent odd characters. The average of any positive moment of values at s = 1 is then expressed in terms of finite cotangent sums subject to congruence conditions. As consequences, bounds on such cotangent sums, limit points for the average of first moment of L-series at s = 1 and the average size of positive moments of character sums related to the class number are deduced.
A Small Signal Equivalent Circuit Model for Resonant Tunnelling Diode
Institute of Scientific and Technical Information of China (English)
MA Long; HUANG Ying-Long; ZHANG Yang; WANG Liang-Chen; YANG Fu-Hua; ZENG Yi-Ping
2006-01-01
@@ We report a resonant tunnelling diode (RTD) small signal equiwlent circuit model consisting of quantum capacitance and quantum inductance. The model is verified through the actual InAs/In0.53Ga0.47As/AlAs RTD fabricated on an InP substrate. Model parameters are extracted by fitting the equivalent circuit model with ac measurement data in three different regions of RTD current-voltage (Ⅰ-Ⅴ) characteristics. The electron lifetime,representing the average time that the carriers remain in the quasibound states during the tunnelling process, is also calculated to be 2.09ps.
Universal formalism of Fano resonance
International Nuclear Information System (INIS)
The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology
Average and Quantile Effects in Nonseparable Panel Models
Chernozhukov, Victor; Hahn, Jinyong; Newey, Whitney
2011-01-01
This paper gives identification and estimation results for average and quantile effects in nonseparable panel models. Nonseparable models are important for modeling in a variety of economic settings, including discrete choice. We find that linear fixed effects estimators are not consistent for the average effect, due in part to that effect not being identified. Nonparametric bounds for quantile and average effects are derived for discrete regressors that are strictly exogenous or predetermined. We allow for location and scale time effects and show how monotonicity can be used to shrink the bounds. We derive rates at which the bounds tighten as the number $T$ of time series observations grows. We also consider semiparametric discrete choice models and find that the bounds for average effects tighten considerably. In numerical calculations we find that the bounds may be very tight for small numbers of observations, suggesting their use in practice. We propose two novel inference methods for parameters defined a...
Effects of spatial variability and scale on areal -average evapotranspiration
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.
Damping of nanomechanical resonators.
Unterreithmeier, Quirin P; Faust, Thomas; Kotthaus, Jörg P
2010-07-01
We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m≤9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency-independent fit parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying microscopic mechanisms. PMID:20867737
Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.
2005-01-01
A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian;
2011-01-01
In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to...... generate a set of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....
International Nuclear Information System (INIS)
Full text: Uncertainties of the KD03 global optical model parameters. An estimate of the uncertainties of the parameters of the KD03 global optical model potential has been given. A Monte Carlo method for generating uncertainties of the final cross sections and angular distributions is used. The approach is pragmatic: The parameter uncertainties are adjusted such that the resulting calculated uncertainties account for the difference between the global prediction and the experimental data. At this stage, no OMP parameter correlations have been taken into account. We think however that the present results (summarized in a table), allow for adjustment of OMP parameters for data evaluation purposes. The presented uncertainties give a measure of the allowed deviation from the average parameters. Phenomenological level density parameters A computational set up for a consistent parameterization of three level density models has been built. This includes the Back-shifted Fermi gas Model, the Constant Temperature Model and the Generalized Superfluid Model, each without and with explicit collective enhancement. The resulting level densities should be applicable over a large energy range, taking into account experimental information from both discrete levels and mean resonance spacing. For each of the three models, we have produced local level density parameters, i.e. parameters that are adjusted per nucleus, which give the best average description of all observables (discrete levels, mean resonance spacing) for that nucleus. We have also produced a global level density parameterization for all models, i.e. formulae for the global expressions that enter the level density formula, to be used for any nucleus. A few remaining deficiencies in the procedure need to be removed before the parameter collection can be delivered to RIPL-3)
Preheating and locked inflation: an analytic approach towards parametric resonance
Wang, Lingfei
2011-01-01
We take an analytic approach towards the framework of parametric resonance and apply it on preheating and locked inflation. A two-scalar toy model is analytically solved for the \\lambda\\phi^2\\chi^2 coupling for the homogenous modes. The effects of dynamic universe background and backreaction are taken into account. We show the average effect of parametric resonance to be that \\chi's amplitude doubles for each cycle of \\phi. Our framework partly solves the preheating scenario, showing two distinct stages of preheating and making the parameters of preheating analytically calculable. It is demonstrated for slowroll inflation models, preheating is terminated, if by backreaction, typically in the 5th e-fold. Under our framework, a possible inhomogeneity amplification effect is also found during preheating, which both may pose strong constraints on some inflationary models and may amplify tiny existing inhomogeneities to the desired scale. For demonstration, we show it rules out the backreaction end of preheating o...
DEFF Research Database (Denmark)
Brooks, Anthony Lewis
2013-01-01
the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance.......Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... tailored channeling of sensory stimulus aligned as ‘art-making’ and ‘game playing’ core experiences. Thus, affecting brain plasticity and human motoric-performance via the adaptability (plasticity) of digital medias result in closure of the human afferent-efferent neural feedback loop closure through...
Simple classical approach to spin resonance phenomena
DEFF Research Database (Denmark)
Gordon, R A
1977-01-01
A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...
Quantum state discrimination using the minimum average number of copies
Slussarenko, Sergei; Li, Jun-Gang; Campbell, Nicholas; Wiseman, Howard M; Pryde, Geoff J
2016-01-01
In the task of discriminating between nonorthogonal quantum states from multiple copies, the key parameters are the error probability and the resources (number of copies) used. Previous studies have considered the task of minimizing the average error probability for fixed resources. Here we consider minimizing the average resources for a fixed admissible error probability. We derive a detection scheme optimized for the latter task, and experimentally test it, along with schemes previously considered for the former task. We show that, for our new task, our new scheme outperforms all previously considered schemes.
Average profiles, from tries to suffix-trees
Nicodème, Pierre
2005-01-01
We build upon previous work of [Fayj04] and [ParSzp05] to study asymptotically the average internal profile of tries and of suffix-trees. The binary keys and the strings are built from a Bernoulli source (p,q). We consider the average number p_k,\\textitP(ν ) of internal nodes at depth k of a trie whose number of input keys follows a Poisson law of parameter ν . The Mellin transform of the corresponding bivariate generating function has a major singularity at the origin, which implies a phase ...
Coherent ensemble averaging techniques for impedance cardiography
Hurwitz, Barry E.; Shyu, Liang-Yu; Reddy, Sridhar P; Schneiderman, Neil; Nagel, Joachim H.
1990-01-01
EKG synchronized ensemble averaging of the impedance cardiogram tends to blur or suppress signal events due to signal jitter or event latency variability. Although ensemble averaging provides some improvement in the stability of the signal and signal to noise ratio under conditions of nonperiodic influences of respiration and motion, coherent averaging techniques were developed to determine whether further enhancement of the impedance cardiogram could be obtained. Physiological signals were o...
MEASUREMENT AND MODELLING AVERAGE PHOTOSYNTHESIS OF MAIZE
ZS LÕKE
2005-01-01
The photosynthesis of fully developed maize was investigated in the Agrometeorological Research Station Keszthely, in 2000. We used LI-6400 type measurement equipment to locate measurement points where the intensity of photosynthesis mostly nears the average. So later we could obtain average photosynthetic activities featuring the crop, with only one measurement. To check average photosynthesis of maize we used Goudriaan’s simulation model (CMSM) as well to calculate values on cloudless sampl...
NOAA Average Annual Salinity (3-Zone)
California Department of Resources — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...
Averages of B-Hadron Properties at the End of 2005
Energy Technology Data Exchange (ETDEWEB)
Barberio, E.; /Melbourne U.; Bizjak, I.; /Novosibirsk, IYF; Blyth, S.; /CERN; Cavoto, G.; /Rome U.; Chang, P.; /Taiwan, Natl. Taiwan U.; Dingfelder, J.; /SLAC; Eidelman, S.; /Novosibirsk, IYF; Gershon, T.; /WARWICK U.; Godang, R.; /Mississippi U.; Harr, R.; /Wayne State U.; Hocker, A; /CERN; Iijima, T.; /Nagoya U.; Kowalewski, R.; /Victoria U.; Lehner, F.; /Fermilab; Limosani, A.; /Novosibirsk, IYF; Lin, C.-J.; /Fermilab; Long, O.; /UC, Riverside; Luth, V.; /SLAC; Morii, M.; /Harvard U.; Prell, S.; /Iowa State U.; Schneider, O.; /LPHE,
2006-09-27
This article reports world averages for measurements on b-hadron properties obtained by the Heavy Flavor Averaging Group (HFAG) using the available results as of at the end of 2005. In the averaging, the input parameters used in the various analyses are adjusted (rescaled) to common values, and all known correlations are taken into account. The averages include lifetimes, neutral meson mixing parameters, parameters of semileptonic decays, branching fractions of B decays to final states with open charm, charmonium and no charm, and measurements related to CP asymmetries.
The characteristics of plasma-sheath resonances in a non-uniform radio-frequency plasma
International Nuclear Information System (INIS)
Plasma-sheath resonances in the resonance-probe were first reported by Takayama et al. in 1960. At that time the resonance was thought to occur at the plasma frequency; later work, however, showed that a plasma-sheath resonance was taking place. In this paper the authors plotted the ratio of RF field in the probe sheath to the RF probe voltage versus ω/ωep, and found that the ratio passed through a maximum when the probe was at resonance. The maximum corresponded to a ratio ω/ωep less than 1, the resonance frequency was confirmed to be below the plasma frequency and the open-quotes series resonance modelclose quotes was verified. After this definitive paper on the subject the interest of resonance probe moved into more practical applications. These include: determining the collision frequency between the electrons and neutrals in a low density plasma; measuring the electron density in the ionosphere; measuring the averaged densities of the charged particles as well as their temperature in a bounded plasma with an external magnetic field; studying antenna signals in space plasmas, etc. It is apparent that the harmonics developing in the plasma may weaken the conventional open-quotes drivenclose quotes Langmuir probe technique which is widely used in plasma research. There have been many attempts to resolve this problem, for example, driving, actively, the first two RF harmonics that appear across the probe sheath to achieve more precise plasma parameters. Nevertheless, it has been recently found that the natural frequency of the plasma-sheath system can be much more influential than the contributions from the external circuitry at certain fairly low pressures. This in particular when the plasma-sheath resonance coincides with one of the harmonics of the fundamental frequency. In this contribution we present some theoretical and experimental aspects of the plasma-sheath resonance in a parallel-plate RF plasma reactor
Reconstruction of ionization probabilities from spatially averaged data in N dimensions
International Nuclear Information System (INIS)
We present an analytical inversion technique, which can be used to recover ionization probabilities from spatially averaged data in an N-dimensional detection scheme. The solution is given as a power series in intensity. For this reason, we call this technique a multiphoton expansion (MPE). The MPE formalism was verified with an exactly solvable inversion problem in two dimensions, and probabilities in the postsaturation region, where the intensity-selective scanning approach breaks down, were recovered. In three dimensions, ionization probabilities of Xe were successfully recovered with MPE from simulated (using the Ammosov-Delone-Krainov tunneling theory) ion yields. Finally, we tested our approach with intensity-resolved benzene-ion yields, which show a resonant multiphoton ionization process. By applying MPE to this data (which were artificially averaged), the resonant structure was recovered, which suggests that the resonance in benzene may have been observed in spatially averaged data taken elsewhere.
Reconstruction of ionization probabilities from spatially averaged data in N-dimensions
Strohaber, J; Schuessler, H A
2010-01-01
We present an analytical inversion technique which can be used to recover ionization probabilities from spatially averaged data in an N-dimensional detection scheme. The solution is given as a power series in intensity. For this reason, we call this technique a multiphoton expansion (MPE). The MPE formalism was verified with an exactly solvable inversion problem in 2D, and probabilities in the postsaturation region, where the intensity-selective scanning approach breaks down, were recovered. In 3D, ionization probabilities of Xe were successfully recovered with MPE from simulated (using the ADK tunneling theory) ion yields. Finally, we tested our approach with intensity-resolved benzene ion yields showing a resonant multiphoton ionization process. By applying MPE to this data (which was artificially averaged) the resonant structure was recovered-suggesting that the resonance in benzene may have been observable in spatially averaged data taken elsewhere.
Mechanical and vibrational responses of gate-tunable graphene resonator
Energy Technology Data Exchange (ETDEWEB)
Lei, Yuqing; Sun, Jiangping; Gong, Xionghui, E-mail: sensorman@163.com
2015-03-15
The vibrational mechanical properties of gate-tunable graphene resonator were investigated in detail using finite element analysis (FEA) and simulation. Treating the graphene resonator as a two-dimensional (2D) thin plate, the relationship between resonance frequency and driving force was explored. The effects of built-in tension, adsorbates and graphene size on the performance of resonator including resonance frequency and tunability were also studied. It was shown that resonance frequency could be tuned by the electrostatically induced average tension due to driving force, and exponentially increased with increasing driving force. When the single-layer graphene resonator without any adsorbates had no or very small built-in tension, the tunability of resonator was greater. However, for a high-frequency-range resonator, the resonator with high built-in tension should be used. The simulation results suggested potential applications of graphene resonators tuned by a driving force, such as widely tunable or ultrahigh frequency nanoelectromechanical systems (NEMS) devices.
Improving consensus structure by eliminating averaging artifacts
Directory of Open Access Journals (Sweden)
KC Dukka B
2009-03-01
Full Text Available Abstract Background Common structural biology methods (i.e., NMR and molecular dynamics often produce ensembles of molecular structures. Consequently, averaging of 3D coordinates of molecular structures (proteins and RNA is a frequent approach to obtain a consensus structure that is representative of the ensemble. However, when the structures are averaged, artifacts can result in unrealistic local geometries, including unphysical bond lengths and angles. Results Herein, we describe a method to derive representative structures while limiting the number of artifacts. Our approach is based on a Monte Carlo simulation technique that drives a starting structure (an extended or a 'close-by' structure towards the 'averaged structure' using a harmonic pseudo energy function. To assess the performance of the algorithm, we applied our approach to Cα models of 1364 proteins generated by the TASSER structure prediction algorithm. The average RMSD of the refined model from the native structure for the set becomes worse by a mere 0.08 Å compared to the average RMSD of the averaged structures from the native structure (3.28 Å for refined structures and 3.36 A for the averaged structures. However, the percentage of atoms involved in clashes is greatly reduced (from 63% to 1%; in fact, the majority of the refined proteins had zero clashes. Moreover, a small number (38 of refined structures resulted in lower RMSD to the native protein versus the averaged structure. Finally, compared to PULCHRA 1, our approach produces representative structure of similar RMSD quality, but with much fewer clashes. Conclusion The benchmarking results demonstrate that our approach for removing averaging artifacts can be very beneficial for the structural biology community. Furthermore, the same approach can be applied to almost any problem where averaging of 3D coordinates is performed. Namely, structure averaging is also commonly performed in RNA secondary prediction 2, which
Cranial magnetic resonance imaging
International Nuclear Information System (INIS)
Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes
A note on generalized averaged Gaussian formulas
Spalevic, Miodrag
2007-11-01
We have recently proposed a very simple numerical method for constructing the averaged Gaussian quadrature formulas. These formulas exist in many more cases than the real positive Gauss?Kronrod formulas. In this note we try to answer whether the averaged Gaussian formulas are an adequate alternative to the corresponding Gauss?Kronrod quadrature formulas, to estimate the remainder term of a Gaussian rule.
Average Transmission Probability of a Random Stack
Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg
2010-01-01
The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…
Labour Turnover Costs and Average Labour Demand
Bertola, Giuseppe
1991-01-01
The effect of labour turnover costs on average employment in a partial equilibrium model of labour demand, depends on the form of the revenue function, on the rates of discount and labour attrition, and on the relative size of hiring and firing costs. If discount and attrition rates are strictly positive, firing costs may well increase average employment even when hiring costs reduce it.
40 CFR 76.11 - Emissions averaging.
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Emissions averaging. 76.11 Section 76...) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.11 Emissions averaging. (a) General provisions. In lieu of complying with the applicable emission limitation in § 76.5, 76.6, or 76.7,...
Measurement of the average lifetime of hadrons containing bottom quarks
International Nuclear Information System (INIS)
A measurement of the average lifetime of hadrons containing bottom quarks is presented. The b hadrons are produced in e+e- annihilation at 29 GeV, and the lifetime is determined from the impact parameters of high-transverse-momentum electrons produced in the decay of the b hadrons. A b lifetime of tau/sub b/ = 1.17/sup +0.27//sub -0.22/(stat)/sup +0.17//sub 0.16/(sys) psec is determined from a maximum-likelihood fit to the impact parameters. Particular care has been taken to describe the experimental resolution correctly in the fit
Level-density parameters for back-shifted Fermi-gas model
International Nuclear Information System (INIS)
On the base of evaluated experimental data and created systematics the parameters a and δeff for the back-shifted Fermi gas model are determined for ∼ 3000 nuclei. For 272 nuclei the parameters are determined from experimental data on cumulative numbers of low-lying levels and the average spacings between neutron resonances. For 952 nuclei the δeff parameter is determined from cumulative numbers of low-lying levels and values of a-parameter obtained by interpretation of data for 272 nuclei. For the rest nuclei parameters a and δeff are obtained from the systematics created. The formula for the account of the damping of the shell effect at high excitation energies is suggested. A comparison is given with previous results and different experimental data on the level densities
New results on averaging theory and applications
Cândido, Murilo R.; Llibre, Jaume
2016-08-01
The usual averaging theory reduces the computation of some periodic solutions of a system of ordinary differential equations, to find the simple zeros of an associated averaged function. When one of these zeros is not simple, i.e., the Jacobian of the averaged function in it is zero, the classical averaging theory does not provide information about the periodic solution associated to a non-simple zero. Here we provide sufficient conditions in order that the averaging theory can be applied also to non-simple zeros for studying their associated periodic solutions. Additionally, we do two applications of this new result for studying the zero-Hopf bifurcation in the Lorenz system and in the Fitzhugh-Nagumo system.
The Hubble rate in averaged cosmology
International Nuclear Information System (INIS)
The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaître-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble constant from local observations. It also predicts an intrinsic variance associated with the finite scale of any measurement of H0, the Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition of the Hubble rate and the spatial surface on which the average is performed. We quantitatively study different definitions of the averaged Hubble rate encountered in the literature by consistently calculating the backreaction effect at second order in perturbation theory, and compare the results. We employ for the first time a recently developed gauge-invariant definition of an averaged scalar. We also discuss the variance of the Hubble rate for the different definitions
Average luminosity distance in inhomogeneous universes
Kostov, Valentin
2010-01-01
Using numerical ray tracing, the paper studies how the average distance modulus in an inhomogeneous universe differs from its homogeneous counterpart. The averaging is over all directions from a fixed observer not over all possible observers (cosmic), thus it is more directly applicable to our observations. Unlike previous studies, the averaging is exact, non-perturbative, and includes all possible non-linear effects. The inhomogeneous universes are represented by Sweese-cheese models containing random and simple cubic lattices of mass-compensated voids. The Earth observer is in the homogeneous cheese which has an Einstein - de Sitter metric. For the first time, the averaging is widened to include the supernovas inside the voids by assuming the probability for supernova emission from any comoving volume is proportional to the rest mass in it. Despite the well known argument for photon flux conservation, the average distance modulus correction at low redshifts is not zero due to the peculiar velocities. A form...
Engineering a resonant nanocoating for an optical refractive index sensor
Bialiayeu, A.; Ianoul, A.; Albert, J.
2014-03-01
We proposing to boost the performance of refractive index sensors based on the tilted fiber Bragg grating (TFBG) structure by resonant coupling of small spherical nanoparticles to the TFBG resonances. The optimal choice of nanoparticle parameters is discussed.
Overview of the 100 mA average-current RF photoinjector
Nguyen, D. C.; Colestock, P. L.; Kurennoy, S. S.; Rees, D. E.; Regan, A. H.; Russell, S.; Schrage, D. L.; Wood, R. L.; Young, L. M.; Schultheiss, T.; Christina, V.; Cole, M.; Rathke, J.; Shaw, J.; Eddy, C.; Holm, R.; Henry, R.; Yater, J.
2004-08-01
High-average-power FELs require high-current, low-emittance and low-energy-spread electron beams. These qualities have been achieved with RF photoinjectors operating at low-duty factors. To date, a high-average-current RF photoinjector operating continuously at 100% duty factor is yet to be demonstrated. The principal challenges of a high-duty-factor normal-conducting RF photoinjector are related to applying a high accelerating gradient continuously, thus generating large ohmic losses in the cavity walls, cooling the injector cavity walls and the high-power RF couplers, and finding a photocathode with reasonable Q.E. that can survive the poor vacuum of the RF photoinjector. We present the preliminary design of a normal-conducting 700 MHz photoinjector with solenoid magnetic fields for emittance compensation. The photoinjector is designed to produce 2.7 MeV electron beams at 3 nC bunch charge and 35 MHz repetition rate (100 mA average current). The photoinjector consists of a 2 {1}/{2}-cell, π-mode, RF cavity with on-axis electric coupling, and a non-resonant vacuum plenum. Heat removal in the resonant cells is achieved via dense arrays of internal cooling passages capable of handling high-velocity water flows. Megawatt RF power is coupled into the injector through two tapered ridge-loaded waveguides. PARMELA simulations show that the 2 {1}/{2}-cell injector can produce a 7 μm emittance directly. Transverse plasma oscillations necessitate additional acceleration and a second solenoid to realign the phase space envelopes of different axial slices at higher energy, resulting in a normalized rms emittance of 6.5 μm and 34 keV rms energy spread. We are developing a novel cesiated p-type GaN photocathode with 7% quantum efficiency at 350 nm and a cesium dispenser to replenish the cathode with cesium through a porous silicon carbide substrate. These performance parameters will be necessary for the design of the 100 kW FEL.
Short-Term Auditory Memory of Above-Average and Below-Average Grade Three Readers.
Caruk, Joan Marie
To determine if performance on short term auditory memory tasks is influenced by reading ability or sex differences, 62 third grade reading students (16 above average boys, 16 above average girls, 16 below average boys, and 14 below average girls) were administered four memory tests--memory for consonant names, memory for words, memory for…
Time averaging of instantaneous quantities in HYDRA
Energy Technology Data Exchange (ETDEWEB)
McCallen, R.C.
1996-09-01
For turbulent flow the evaluation of direct numerical simulations (DNS) where all scales are resolved and large-eddy simulation (LES) where only large-scales are resolved is difficult because the results are three-dimensional and transient. To simplify the analysis, the instantaneous flow field can be averaged in time for evaluation and comparison to experimental results. The incompressible Navier-Stokes flow code HYDRA has been modified for calculation of time-average quantities for both DNS and LES. This report describes how time averages of instantaneous quantities are generated during program execution (i.e., while generating the instantaneous quantities, instead of as a postprocessing operation). The calculations are performed during program execution to avoid storing values at each time step and thus to reduce storage requirements. The method used in calculating the time-average velocities, turbulent intensities, <{ital u}{sup ``}{sup 2}>, <{ital va}{sup ``}{sup 2}>, and <{ital w}{sup ``}{sup 2}>, and turbulent shear, <{ital u}{sup ``}{ital v}{sup ``}> are outlined. The brackets <> used here represent a time average. the described averaging methods were implemented in the HYDRA code for three-dimensional problem solutions. Also presented is a method for taking the time averages for a number of consecutive intervals and calculating the time average for the sum of the intervals. This method could be used for code restarts or further postprocessing of the timer averages from consecutive intervals. This method was not used in the HYDRA implementation, but is included here for completeness. In HYDRA, the running sums needed fro time averaging are simply written to the restart dump.
Preheating and locked inflation: an analytic approach towards parametric resonance
International Nuclear Information System (INIS)
We take an analytic approach towards the framework of parametric resonance and apply it on preheating and locked inflation. A two-scalar toy model is analytically solved for the λφ2χ2 coupling for the homogenous modes. The effects of dynamic universe background and backreaction are taken into account. We show the average effect of parametric resonance to be that χ's amplitude doubles for each cycle of φ. Our framework partly solves the broad resonance for preheating scenario, showing two distinct stages of preheating and making the parameters of preheating analytically calculable. It is demonstrated for slowroll inflation models, preheating is terminated, if by backreaction, typically in the 5th e-fold. Under our framework, a possible inhomogeneity amplification effect is also found during preheating, which both may pose strong constraints on some inflationary models and may amplify tiny existing inhomogeneities to the desired scale. For demonstration, we show it rules out the backreaction end of preheating of the quadratic slowroll inflation model with mass m ∼ 10−6. For locked inflation, parametric resonance is found to be inhibited if φ has more than one real component
Ellison, James A.; Heinemann, Klaus; Vogt, Mathias; Gooden, Matthew
2013-09-01
We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the x-ray free electron laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wavelength λ of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the method of averaging (MoA), a long-time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so-called ponderomotive phase. As λ varies the system passes through resonant and nonresonant (NonR) intervals and we develop NonR and near-to-resonant (NearR) MoA normal form approximations to the exact equations. The NearR normal forms contain a parameter which measures the distance from a resonance. For the planar motion, with the special initial condition that matches into the undulator design trajectory, and on resonance, the NearR normal form reduces to the well-known FEL pendulum system. We then state and prove NonR and NearR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near-identity transformation and they use a system of differential inequalities. The NonR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar problem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of
Energy Technology Data Exchange (ETDEWEB)
Ellison, James A.; Heinemann, Klaus [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Vogt, Mathias [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Gooden, Matthew [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics
2013-03-15
We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length {lambda} of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As {lambda} varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in
Clarifying the Relationship between Average Excesses and Average Effects of Allele Substitutions.
Alvarez-Castro, José M; Yang, Rong-Cai
2012-01-01
Fisher's concepts of average effects and average excesses are at the core of the quantitative genetics theory. Their meaning and relationship have regularly been discussed and clarified. Here we develop a generalized set of one locus two-allele orthogonal contrasts for average excesses and average effects, based on the concept of the effective gene content of alleles. Our developments help understand the average excesses of alleles for the biallelic case. We dissect how average excesses relate to the average effects and to the decomposition of the genetic variance. PMID:22509178
Clarifying the relationship between average excesses and average effects of allele substitutions
Directory of Open Access Journals (Sweden)
Jose M eÁlvarez-Castro
2012-03-01
Full Text Available Fisher’s concepts of average effects and average excesses are at the core of the quantitative genetics theory. Their meaning and relationship have regularly been discussed and clarified. Here we develop a generalized set of one-locus two-allele orthogonal contrasts for average excesses and average effects, based on the concept of the effective gene content of alleles. Our developments help understand the average excesses of alleles for the biallelic case. We dissect how average excesses relate to the average effects and to the decomposition of the genetic variance.
Averaging analysis of a point process adaptive algorithm
Solo, Victor
2004-01-01
Motivated by a problem in neural encoding, we introduce an adaptive (or real-time) parameter estimation algorithm driven by a counting process. Despite the long history of adaptive algorithms, this kind of algorithm is relatively new. We develop a finite-time averaging analysis which is nonstandard partly because of the point process setting and partly because we have sought to avoid requiring mixing conditions. This is significant since mixing conditions often place rest...
Small scale magnetic flux-averaged magnetohydrodynamics
International Nuclear Information System (INIS)
By relaxing exact magnetic flux conservation below a scale λ a system of flux-averaged magnetohydrodynamic equations are derived from Hamilton's principle with modified constraints. An energy principle can be derived from the linearized averaged system because the total system energy is conserved. This energy principle is employed to treat the resistive tearing instability and the exact growth rate is recovered when λ is identified with the resistive skin depth. A necessary and sufficient stability criteria of the tearing instability with line tying at the ends for solar coronal loops is also obtained. The method is extended to both spatial and temporal averaging in Hamilton's principle. The resulting system of equations not only allows flux reconnection but introduces irreversibility for appropriate choice of the averaging function. Except for boundary contributions which are modified by the time averaging process total energy and momentum are conserved over times much longer than the averaging time τ but not for less than τ. These modified boundary contributions correspond to the existence, also, of damped waves and shock waves in this theory. Time and space averaging is applied to electron magnetohydrodynamics and in one-dimensional geometry predicts solitons and shocks in different limits
Self-averaging characteristics of spectral fluctuations
Braun, Petr; Haake, Fritz
2014-01-01
The spectral form factor as well as the two-point correlator of the density of (quasi-)energy levels of individual quantum dynamics are not self-averaging. Only suitable smoothing turns them into useful characteristics of spectra. We present numerical data for a fully chaotic kicked top, employing two types of smoothing: one involves primitives of the spectral correlator, the second a small imaginary part of the quasi-energy. Self-averaging universal (like the CUE average) behavior is found f...
Experimental Demonstration of Squeezed State Quantum Averaging
Lassen, Mikael; Sabuncu, Metin; Filip, Radim; Andersen, Ulrik L
2010-01-01
We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.
Average Shape of Transport-Limited Aggregates
Davidovitch, Benny; Choi, Jaehyuk; Bazant, Martin Z.
2005-08-01
We study the relation between stochastic and continuous transport-limited growth models. We derive a nonlinear integro-differential equation for the average shape of stochastic aggregates, whose mean-field approximation is the corresponding continuous equation. Focusing on the advection-diffusion-limited aggregation (ADLA) model, we show that the average shape of the stochastic growth is similar, but not identical, to the corresponding continuous dynamics. Similar results should apply to DLA, thus explaining the known discrepancies between average DLA shapes and viscous fingers in a channel geometry.
Microwave power coupling with electron cyclotron resonance plasma using Langmuir probe
Indian Academy of Sciences (India)
S K Jain; V K Senecha; P A Naik; P R Hannurkar; S C Joshi
2013-07-01
Electron cyclotron resonance (ECR) plasma was produced at 2.45 GHz using 200 – 750 W microwave power. The plasma was produced from argon gas at a pressure of 2 × 10−4 mbar. Three water-cooled solenoid coils were used to satisfy the ECR resonant conditions inside the plasma chamber. The basic parameters of plasma, such as electron density, electron temperature, floating potential, and plasma potential, were evaluated using the current–voltage curve using a Langmuir probe. The effect of microwave power coupling to the plasma was studied by varying the microwave power. It was observed that the optimum coupling to the plasma was obtained for ∼ 600 W microwave power with an average electron density of ∼ 6 × 1011 cm−3 and average electron temperature of ∼ 9 eV.
Optimal VLF Parameters for Pitch Angle Scattering of Trapped Electrons
Albert, J. M.; Inan, U. S.
2001-12-01
VLF waves are known to determine the lifetimes of energetic radiation belt electrons in the inner radiation belt and slot regions. Artificial injection of such waves from ground- or space-based transmitters may thus be used to affect the trapped electron population. In this paper, we seek to determine the optimal parameters (frequency and wave normal angle) of a quasi-monochromatic VLF wave using bounce-averaged quasi-linear theory. We consider the cumulative effects of all harmonic resonances and determine the diffusion rates of particles with selected energies on particular L-shells. We also compare the effects of the VLF wave to diffusion driven by other whistler-mode waves (plasmaspheric hiss, lightning, and VLF transmitters). With appropriate choice of the wave parameters, it may be possible to substantially reduce the lifetime of selected classes of particles.
Brooks, Anthony Lewis
2013-01-01
Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimu...
Effect of slice thickness on brain magnetic resonance image texture analysis
Directory of Open Access Journals (Sweden)
Heinonen Tomi
2010-10-01
Full Text Available Abstract Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue.
ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances
International Nuclear Information System (INIS)
1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions
Systematics of local pion optical model parameters
Sarker, Dipika Rani; Sengupta, H M; Peterson, R J
2010-01-01
A simple six-parameter local optical potential has been used to fit the global supply of pion-nucleus elastic scattering data, with good success. The resulting real and imaginary well-depths show a striking resonant structure, derived from the underlying pion-nucleon resonances.
Average Vegetation Growth 1992 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1992 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1994 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1994 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1991 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1991 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1993 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1993 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1998 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1998 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1999 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1999 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 1990 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1990 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 2003 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2003 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
A practical guide to averaging functions
Beliakov, Gleb; Calvo Sánchez, Tomasa
2016-01-01
This book offers an easy-to-use and practice-oriented reference guide to mathematical averages. It presents different ways of aggregating input values given on a numerical scale, and of choosing and/or constructing aggregating functions for specific applications. Building on a previous monograph by Beliakov et al. published by Springer in 2007, it outlines new aggregation methods developed in the interim, with a special focus on the topic of averaging aggregation functions. It examines recent advances in the field, such as aggregation on lattices, penalty-based aggregation and weakly monotone averaging, and extends many of the already existing methods, such as: ordered weighted averaging (OWA), fuzzy integrals and mixture functions. A substantial mathematical background is not called for, as all the relevant mathematical notions are explained here and reported on together with a wealth of graphical illustrations of distinct families of aggregation functions. The authors mainly focus on practical applications ...
Sea Surface Temperature Average_SST_Master
National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using...
MN Temperature Average (1961-1990) - Line
Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...
Monthly snow/ice averages (ISCCP)
National Aeronautics and Space Administration — September Arctic sea ice is now declining at a rate of 11.5 percent per decade, relative to the 1979 to 2000 average. Data from NASA show that the land ice sheets...
Average Vegetation Growth 1997 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1997 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
Average Vegetation Growth 2001 - Direct Download
U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2001 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...
MN Temperature Average (1961-1990) - Polygon
Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...
Averaged universe confronted to cosmological observations: a fully covariant approach
Wijenayake, Tharake; Ishak, Mustapha
2016-01-01
One of the outstanding problems in general relativistic cosmology is that of the averaging. That is, how the lumpy universe that we observe at small scales averages out to a smooth Friedmann-Lemaitre-Robertson-Walker (FLRW) model. The root of the problem is that averaging does not commute with the Einstein equations that govern the dynamics of the model. This leads to the well-know question of backreaction in cosmology. In this work, we approach the problem using the covariant framework of Macroscopic Gravity (MG). We use its cosmological solution with a flat FLRW macroscopic background where the result of averaging cosmic inhomogeneities has been encapsulated into a backreaction density parameter denoted $\\Omega_\\mathcal{A}$. We constrain this averaged universe using available cosmological data sets of expansion and growth including, for the first time, a full CMB analysis from Planck temperature anisotropy and polarization data, the supernovae data from Union 2.1, the galaxy power spectrum from WiggleZ, the...
Average Bandwidth Allocation Model of WFQ
Directory of Open Access Journals (Sweden)
Tomáš Balogh
2012-01-01
Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.
Development of average wages in CR regions
Bejvlová, Jana
2013-01-01
The purpose of this study is to analyse trends in average gross monthly earnings of employees – individuals - in particular regions of the Czech Republic. The analysed time series begin in 2000 as the regions were decisively established on 1st January 2000. Moreover the self-governing competencies were introduced by the Act No. 129/2000 Coll., on Regions (Establishment of Regions). The researched period ends in 2010. Based on model construction of referential sets, the study predicts average ...
Grassmann Averages for Scalable Robust PCA
DEFF Research Database (Denmark)
Hauberg, Søren; Feragen, Aasa; Black, Michael J.
vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements......, making it scalable to “big noisy data.” We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie....
Hyperplane Arrangements with Large Average Diameter
Deza, Antoine; Xie, Feng
2007-01-01
The largest possible average diameter of a bounded cell of a simple hyperplane arrangement is conjectured to be not greater than the dimension. We prove that this conjecture holds in dimension 2, and is asymptotically tight in fixed dimension. We give the exact value of the largest possible average diameter for all simple arrangements in dimension 2, for arrangements having at most the dimension plus 2 hyperplanes, and for arrangements having 6 hyperplanes in dimension 3. In dimension 3, we g...
The Hubble rate in averaged cosmology
Umeh, Obinna; Larena, Julien; Clarkson, Chris
2010-01-01
The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble constant from local observations. It also predicts an intrinsic variance associated with the finite scale of any measurement of H_0, the Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition of the Hubble rate ...
Nonequilibrium statistical averages and thermo field dynamics
International Nuclear Information System (INIS)
An extension of thermo field dynamics is proposed, which permits the computation of nonequilibrium statistical averages. The Brownian motion of a quantum oscillator is treated as an example. In conclusion it is pointed out that the procedure proposed to computation of time-dependent statistical average gives the correct two-point Green function for the damped oscillator. A simple extension can be used to compute two-point Green functions of free particles
Averaging Problem in Cosmology and Macroscopic Gravity
Zalaletdinov, Roustam
2007-01-01
The Averaging problem in general relativity and cosmology is discussed. The approach of macroscopic gravity to resolve the problem is presented. An exact cosmological solution to the equations of macroscopic gravity is given and its properties are discussed. Contents: 1. Introduction to General Relativity 2. General Relativity -> Relativistic Cosmology 3. Introduction to Relativistic Cosmology 4. Relativistic Cosmology -> Mathematical Cosmology 5. Averaging Problem in Relativistic Cosmology 6...
Method of averaging in Clifford algebras
Shirokov, D. S.
2014-01-01
In this paper we consider different operators acting on Clifford algebras. We consider Reynolds operator of Salingaros' vee group. This operator average" an action of Salingaros' vee group on Clifford algebra. We consider conjugate action on Clifford algebra. We present a relation between these operators and projection operators onto fixed subspaces of Clifford algebras. Using method of averaging we present solutions of system of commutator equations.
Modeling and Instability of Average Current Control
Fang, Chung-Chieh
2012-01-01
Dynamics and stability of average current control of DC-DC converters are analyzed by sampled-data modeling. Orbital stability is studied and it is found unrelated to the ripple size of the orbit. Compared with the averaged modeling, the sampled-data modeling is more accurate and systematic. An unstable range of compensator pole is found by simulations, and is predicted by sampled-data modeling and harmonic balance modeling.
Disk-averaged synthetic spectra of Mars
Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather
2004-01-01
The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra as a f...
Self-averaging characteristics of spectral fluctuations
Braun, Petr; Haake, Fritz
2015-04-01
The spectral form factor as well as the two-point correlator of the density of (quasi-)energy levels of individual quantum dynamics are not self-averaging. Only suitable smoothing turns them into useful characteristics of spectra. We present numerical data for a fully chaotic kicked top, employing two types of smoothing: one involves primitives of the spectral correlator, the second, a small imaginary part of the quasi-energy. Self-averaging universal (like the circular unitary ensemble (CUE) average) behavior is found for the smoothed correlator, apart from noise which shrinks like 1/\\sqrt{N} as the dimension N of the quantum Hilbert space grows. There are periodically repeated quasi-energy windows of correlation decay and revival wherein the smoothed correlation remains finite as N\\to ∞ such that the noise is negligible. In between those windows (where the CUE averaged correlator takes on values of the order 1/{{N}2}) the noise becomes dominant and self-averaging is lost. We conclude that the noise forbids distinction of CUE and GUE-type behavior. Surprisingly, the underlying smoothed generating function does not enjoy any self-averaging outside the range of its variables relevant for determining the two-point correlator (and certain higher-order ones). We corroborate our numerical findings for the noise by analytically determining the CUE variance of the smoothed single-matrix correlator.
Average Soil Water Retention Curves Measured by Neutron Radiography
Energy Technology Data Exchange (ETDEWEB)
Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD
2011-01-01
Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.
Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators
Rakhshani, Mohammad Reza; Mansouri-Birjandi, Mohammad Ali
2016-06-01
In this paper, we investigated a plasmonic demultiplexer structure based on Metal-Insulator-Metal (MIM) waveguides and circular ring resonators. In order to achieve the structure of demultiplexer, two improved ring resonators have been used, which input and outputs MIM waveguides coupled by the ring resonators. To improve the transmission efficiency, a reflector was introduced at the right end of the input and output waveguides. By substituting the ring core with dielectric, the possibility of tuning the resonance wavelength of the proposed structure is illustrated, and the effect of various parameters such as radius and refractive index in transmission efficiency is studied in detail. This is useful for the design of integrated circuits in which it is not possible to extend the dimension of the ring resonator to attain a longer resonance wavelength. Transmission efficiency and quality factor of the single ring are 84% and 110, respectively. The simulation results using finite difference time domain method shows that in the proposed demultiplexer, which is composed of two rings with different core refractive indexes, the average power efficiency, bandwidth for each output channel, and the mean value of crosstalk are estimated 80%, 17 nm, and -26.95 dB, respectively. It is revealed that the significant features of the device are high transmission efficiency, low crosstalk, high-quality factor, and tunability for desired wavelengths. Therefore, the proposed structure has the potential to be applied in plasmonic integrated circuits.