WorldWideScience

Sample records for average genome size

  1. Quantitative metagenomic analyses based on average genome size normalization

    DEFF Research Database (Denmark)

    Frank, Jeremy Alexander; Sørensen, Søren Johannes

    2011-01-01

    Over the past quarter-century, microbiologists have used DNA sequence information to aid in the characterization of microbial communities. During the last decade, this has expanded from single genes to microbial community genomics, or metagenomics, in which the gene content of an environment can...... by estimating average genome sizes. This normalization can relieve comparative biases introduced by differences in community structure, number of sequencing reads, and sequencing read lengths between different metagenomes. We demonstrate the utility of this approach by comparing metagenomes from two different...... marine sources using both conventional small-subunit (SSU) rRNA gene analyses and our quantitative method to calculate the proportion of genomes in each sample that are capable of a particular metabolic trait. With both environments, to determine what proportion of each community they make up and how...

  2. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  3. Genome size analyses of Pucciniales reveal the largest fungal genomes

    Directory of Open Access Journals (Sweden)

    Silvia eTavares

    2014-08-01

    Full Text Available Rust fungi (Basidiomycota, Pucciniales are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 151.5 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi. In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1,800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp. Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94 %. The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7,000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  4. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    Science.gov (United States)

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  5. Genome size variation in Begonia.

    Science.gov (United States)

    Dewitte, Angelo; Leus, Leen; Eeckhaut, Tom; Vanstechelman, Ives; Van Huylenbroeck, Johan; Van Bockstaele, Erik

    2009-10-01

    The genome sizes of a Begonia collection comprising 37 species and 23 hybrids of African, Asiatic, Middle American, and South American origin were screened using flow cytometry. Within the collection, 1C values varied between 0.23 and 1.46 pg DNA. Genome sizes were, in most cases, not positively correlated with chromosome number, but with pollen size. A 12-fold difference in mean chromosome size was found between the genotypes with the largest and smallest chromosomes. In general, chromosomes from South American genotypes were smaller than chromosomes of African, Asian, or Middle American genotypes, except for B. boliviensis and B. pearcei. Cytological chromosome studies in different genotypes showed variable chromosome numbers, length, width, and total chromosome volume, which confirmed the diversity in genome size. Large secondary constrictions were present in several investigated genotypes. These data show that chromosome number and structure exhibit a great deal of variation within the genus Begonia, and likely help to explain the large number of taxa found within the genus.

  6. A first exploration of genome size diversity in sponges.

    Science.gov (United States)

    Jeffery, Nicholas W; Jardine, Catherine B; Gregory, T Ryan

    2013-08-01

    The phyla known as early-branching lineages of animals have become the subject of increasing interest from the perspectives of genomics and evolutionary biology. Unfortunately, data on even the most fundamental properties of their genomes, such as genome size, remain very scarce. In this study, genome size estimates are reported for 75 species of sponges (phylum Porifera) representing 33 families and 12 orders, marking the first large survey of genome size diversity for an early-branching phylum. Sponge genome sizes averaged around 0.2 pg but exhibited a 17-fold range overall (0.04-0.63 pg). In addition, the results of comparisons of two methods of genome size quantification (flow cytometry and Feulgen image analysis densitometry) are presented, thereby facilitating future work on these animals. Some particularly promising avenues for future investigation are highlighted.

  7. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  8. On the Relationship between Pollen Size and Genome Size

    Directory of Open Access Journals (Sweden)

    Charles A. Knight

    2010-01-01

    Full Text Available Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size. We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However, significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient species. However, our results suggest pollen is not a good candidate for such endeavors.

  9. Genome size increases in recently diverged hornwort clades.

    Science.gov (United States)

    Bainard, Jillian D; Villarreal, Juan Carlos

    2013-08-01

    As our knowledge of plant genome size estimates continues to grow, one group has continually been neglected: the hornworts. Hornworts (Anthocerotophyta) have been traditionally grouped with liverworts and mosses because they share a haploid dominant life cycle; however, recent molecular studies place hornworts as the sister lineage to extant tracheophytes. Given the scarcity of information regarding the DNA content of hornworts, our objective was to estimate the 1C-value for a range of hornwort species within a phylogenetic context. Using flow cytometry, we estimated genome size for 36 samples representing 24 species. This accounts for roughly 10% of known hornwort species. Haploid genome sizes (1C-value) ranged from 160 Mbp or 0.16 pg (Leiosporoceros dussii) to 719 Mbp or 0.73 pg (Nothoceros endiviifolius). The average 1C-value was 261 ± 104 Mbp (0.27 ± 0.11 pg). Ancestral reconstruction of genome size on a hornwort phylogeny suggests a small ancestral genome size and revealed increases in genome size in the most recently divergent clades. Much more work is needed to understand DNA content variation in this phylogenetically important group, but this work has significantly increased our knowledge of genome size variation in hornworts.

  10. The evolution of genome size in ants

    Directory of Open Access Journals (Sweden)

    Spagna Joseph C

    2008-02-01

    Full Text Available Abstract Background Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta, and the two published estimates for this species differ by 146.7 Mb (0.15 pg. Results Here, we report the genome size for 40 species of ants distributed across 10 of the 20 currently recognized subfamilies, thus making Formicidae the 4th most surveyed insect family and elevating the Hymenoptera to the 5th most surveyed insect order. Our analysis spans much of the ant phylogeny, from the less derived Amblyoponinae and Ponerinae to the more derived Myrmicinae, Formicinae and Dolichoderinae. We include a number of interesting and important taxa, including the invasive Argentine ant (Linepithema humile, Neotropical army ants (genera Eciton and Labidus, trapjaw ants (Odontomachus, fungus-growing ants (Apterostigma, Atta and Sericomyrmex, harvester ants (Messor, Pheidole and Pogonomyrmex, carpenter ants (Camponotus, a fire ant (Solenopsis, and a bulldog ant (Myrmecia. Our results show that ants possess small genomes relative to most other insects, yet genome size varies three-fold across this insect family. Moreover, our data suggest that two whole-genome duplications may have occurred in the ancestors of the modern Ectatomma and Apterostigma. Although some previous studies of other taxa have revealed a relationship between genome size and body size, our phylogenetically-controlled analysis of this correlation did not reveal a significant relationship. Conclusion This is the first analysis of genome size in ants (Formicidae and the first across multiple species of social insects. We show that genome size is a variable trait that can evolve gradually over long time spans, as well as rapidly, through processes that may

  11. Genome sizes for all genera of Cycadales.

    Science.gov (United States)

    Zonneveld, B J M

    2012-01-01

    Nuclear DNA content (2C) is reported for all genera of the Cycadales, using flow cytometry with propidium iodide. Nuclear DNA content ranges from 24 to 64 pg in cycads. This implies that the largest genome contains roughly 40 × 10(9) more base pairs than the smallest genome. The narrow range in nuclear DNA content within a genus is remarkable for such an old group. Furthermore, 42 of the 58 plants measured, covering five genera, have 18 chromosomes. They vary from 36.1 to 64.7 pg, covering the whole range of genome sizes (excluding the genome of Cycas). Hence, their does not seem to be a correlation between genome size and the number of chromosomes.

  12. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    Directory of Open Access Journals (Sweden)

    Gan Xiaoni

    2010-06-01

    Full Text Available Abstract Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89% and that in the Te. nigroviridis genome (4.66%. In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp. Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different

  13. Reassessment of the Genome Size in Elaeis guineensis and Elaeis oleifera, and Its Interspecific Hybrid.

    Science.gov (United States)

    Camillo, Julceia; Leão, André P; Alves, Alexandre A; Formighieri, Eduardo F; Azevedo, Ana Ls; Nunes, Juliana D; de Capdeville, Guy; de A Mattos, Jean K; Souza, Manoel T

    2014-01-01

    Aiming at generating a comprehensive genomic database on Elaeis spp., our group is leading several R&D initiatives with Elaeis guineensis (African oil palm) and Elaeis oleifera (American oil palm), including the whole-genome sequencing of the last. Genome size estimates currently available for this genus are controversial, as they indicate that American oil palm genome is about half the size of the African oil palm genome and that the genome of the interspecific hybrid is bigger than both the parental species genomes. We estimated the genome size of three E. guineensis genotypes, five E. oleifera genotypes, and two interspecific hybrids genotypes. On average, the genome size of E. guineensis is 4.32 ± 0.173 pg, while that of E. oleifera is 4.43 ± 0.018 pg. This indicates that both genomes are similar in size, even though E. oleifera is in fact bigger. As expected, the hybrid genome size is around the average of the two genomes, 4.40 ± 0.016 pg. Additionally, we demonstrate that both species present around 38% of GC content. As our results contradict the currently available data on Elaeis spp. genome sizes, we propose that the actual genome size of the Elaeis species is around 4 pg and that American oil palm possesses a larger genome than African oil palm.

  14. Genome size and genome evolution in diploid Triticeae species.

    Science.gov (United States)

    Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

    2007-11-01

    One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.

  15. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities

    KAUST Repository

    Huete-Stauffer, Tamara M.

    2016-05-23

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  16. Experimental warming decreases the average size and nucleic acid content of marine bacterial communities

    Directory of Open Access Journals (Sweden)

    Tamara Megan Huete-Stauffer

    2016-05-01

    Full Text Available Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6ºC range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively. Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 µm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per ºC. The usually larger HNA bacteria consistently showed a greater reduction in cell and nucleic acid content compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  17. Experimental Warming Decreases the Average Size and Nucleic Acid Content of Marine Bacterial Communities.

    Science.gov (United States)

    Huete-Stauffer, Tamara M; Arandia-Gorostidi, Nestor; Alonso-Sáez, Laura; Morán, Xosé Anxelu G

    2016-01-01

    Organism size reduction with increasing temperature has been suggested as a universal response to global warming. Since genome size is usually correlated to cell size, reduction of genome size in unicells could be a parallel outcome of warming at ecological and evolutionary time scales. In this study, the short-term response of cell size and nucleic acid content of coastal marine prokaryotic communities to temperature was studied over a full annual cycle at a NE Atlantic temperate site. We used flow cytometry and experimental warming incubations, spanning a 6°C range, to analyze the hypothesized reduction with temperature in the size of the widespread flow cytometric bacterial groups of high and low nucleic acid content (HNA and LNA bacteria, respectively). Our results showed decreases in size in response to experimental warming, which were more marked in 0.8 μm pre-filtered treatment rather than in the whole community treatment, thus excluding the role of protistan grazers in our findings. Interestingly, a significant effect of temperature on reducing the average nucleic acid content (NAC) of prokaryotic cells in the communities was also observed. Cell size and nucleic acid decrease with temperature were correlated, showing a common mean decrease of 0.4% per °C. The usually larger HNA bacteria consistently showed a greater reduction in cell and NAC compared with their LNA counterparts, especially during the spring phytoplankton bloom period associated to maximum bacterial growth rates in response to nutrient availability. Our results show that the already smallest planktonic microbes, yet with key roles in global biogeochemical cycling, are likely undergoing important structural shrinkage in response to rising temperatures.

  18. Patterns of genome size variation in snapping shrimp.

    Science.gov (United States)

    Jeffery, Nicholas W; Hultgren, Kristin; Chak, Solomon Tin Chi; Gregory, T Ryan; Rubenstein, Dustin R

    2016-06-01

    Although crustaceans vary extensively in genome size, little is known about how genome size may affect the ecology and evolution of species in this diverse group, in part due to the lack of large genome size datasets. Here we investigate interspecific, intraspecific, and intracolony variation in genome size in 39 species of Synalpheus shrimps, representing one of the largest genome size datasets for a single genus within crustaceans. We find that genome size ranges approximately 4-fold across Synalpheus with little phylogenetic signal, and is not related to body size. In a subset of these species, genome size is related to chromosome size, but not to chromosome number, suggesting that despite large genomes, these species are not polyploid. Interestingly, there appears to be 35% intraspecific genome size variation in Synalpheus idios among geographic regions, and up to 30% variation in Synalpheus duffyi genome size within the same colony.

  19. Comparative genomics of brain size evolution

    OpenAIRE

    2014-01-01

    Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large ...

  20. Transcriptome and genome size analysis of the venus flytrap

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon;

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D....... muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified......, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations....

  1. Genome Sizes of Nine Insect Species Determined by Flow Cytometry and k-mer Analysis

    Science.gov (United States)

    He, Kang; Lin, Kejian; Wang, Guirong; Li, Fei

    2016-01-01

    The flow cytometry method was used to estimate the genome sizes of nine agriculturally important insects, including two coleopterans, five Hemipterans, and two hymenopterans. Among which, the coleopteran Lissorhoptrus oryzophilus (Kuschel) had the largest genome of 981 Mb. The average genome size was 504 Mb, suggesting that insects have a moderate-size genome. Compared with the insects in other orders, hymenopterans had small genomes, which were averagely about ~200 Mb. We found that the genome sizes of four insect species were different between male and female, showing the organismal complexity of insects. The largest difference occurred in the coconut leaf beetle Brontispa longissima (Gestro). The male coconut leaf beetle had a 111 Mb larger genome than females, which might be due to the chromosome number difference between the sexes. The results indicated that insect invasiveness was not related to genome size. We also determined the genome sizes of the small brown planthopper Laodelphax striatellus (Fallén) and the parasitic wasp Macrocentrus cingulum (Brischke) using k-mer analysis with Illunima Solexa sequencing data. There were slight differences in the results from the two methods. k-mer analysis indicated that the genome size of L. striatellus was 500–700 Mb and that of M. cingulum was ~150 Mb. In all, the genome sizes information presented here should be helpful for designing the genome sequencing strategy when necessary. PMID:27932995

  2. Patterns of genome size diversity in bats (order Chiroptera).

    Science.gov (United States)

    Smith, Jillian D L; Bickham, John W; Gregory, T Ryan

    2013-08-01

    Despite being a group of particular interest in considering relationships between genome size and metabolic parameters, bats have not been well studied from this perspective. This study presents new estimates for 121 "microbat" species from 12 families and complements a previous study on members of the family Pteropodidae ("megabats"). The results confirm that diversity in genome size in bats is very limited even compared with other mammals, varying approximately 2-fold from 1.63 pg in Lophostoma carrikeri to 3.17 pg in Rhinopoma hardwickii and averaging only 2.35 pg ± 0.02 SE (versus 3.5 pg overall for mammals). However, contrary to some other vertebrate groups, and perhaps owing to the narrow range observed, genome size correlations were not apparent with any chromosomal, physiological, flight-related, developmental, or ecological characteristics within the order Chiroptera. Genome size is positively correlated with measures of body size in bats, though the strength of the relationships differs between pteropodids ("megabats") and nonpteropodids ("microbats").

  3. Genome size estimation: a new methodology

    Science.gov (United States)

    Álvarez-Borrego, Josué; Gallardo-Escárate, Crisitian; Kober, Vitaly; López-Bonilla, Oscar

    2007-03-01

    Recently, within the cytogenetic analysis, the evolutionary relations implied in the content of nuclear DNA in plants and animals have received a great attention. The first detailed measurements of the nuclear DNA content were made in the early 40's, several years before Watson and Crick proposed the molecular structure of the DNA. In the following years Hewson Swift developed the concept of "C-value" in reference to the haploid phase of DNA in plants. Later Mirsky and Ris carried out the first systematic study of genomic size in animals, including representatives of the five super classes of vertebrates as well as of some invertebrates. From these preliminary results it became evident that the DNA content varies enormously between the species and that this variation does not bear relation to the intuitive notion from the complexity of the organism. Later, this observation was reaffirmed in the following years as the studies increased on genomic size, thus denominating to this characteristic of the organisms like the "Paradox of the C-value". Few years later along with the no-codification discovery of DNA the paradox was solved, nevertheless, numerous questions remain until nowadays unfinished, taking to denominate this type of studies like the "C-value enigma". In this study, we reported a new method for genome size estimation by quantification of fluorescence fading. We measured the fluorescence intensity each 1600 milliseconds in DAPI-stained nuclei. The estimation of the area under the graph (integral fading) during fading period was related with the genome size.

  4. Coevolution between simple sequence repeats (SSRs and virus genome size

    Directory of Open Access Journals (Sweden)

    Zhao Xiangyan

    2012-08-01

    Full Text Available Abstract Background Relationship between the level of repetitiveness in genomic sequence and genome size has been investigated by making use of complete prokaryotic and eukaryotic genomes, but relevant studies have been rarely made in virus genomes. Results In this study, a total of 257 viruses were examined, which cover 90% of genera. The results showed that simple sequence repeats (SSRs is strongly, positively and significantly correlated with genome size. Certain repeat class is distributed in a certain range of genome sequence length. Mono-, di- and tri- repeats are widely distributed in all virus genomes, tetra- SSRs as a common component consist in genomes which more than 100 kb in size; in the range of genome  Conclusions We conducted this research standing on the height of the whole virus. We concluded that genome size is an important factor in affecting the occurrence of SSRs; hosts are also responsible for the variances of SSRs content to a certain degree.

  5. Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians.

    Science.gov (United States)

    Organ, C L; Canoville, A; Reisz, R R; Laurin, M

    2011-02-01

    An unsolved question in evolutionary genomics is whether amniote genomes have been expanding or contracting since the common ancestor of this diverse group. Here, we report on the polarity of amniote genome size evolution using genome size estimates for 14 extinct tetrapod genera from the Paleozoic and early Mesozoic Eras using osteocyte lacunae size as a correlate. We find substantial support for a phylogenetically controlled regression model relating genome size to osteocyte lacunae size (P of slopes amphibians, contractions along the diapsid lineage, and no directional change within the synapsid lineage leading to mammals.

  6. Improved method for measuring the ensemble average of strand breaks in genomic DNA.

    Science.gov (United States)

    Bespalov, V A; Conconi, A; Zhang, X; Fahy, D; Smerdon, M J

    2001-01-01

    The cis-syn cyclobutane pyrimidine dimer (CPD) is the major photoproduct induced in DNA by low wavelength ultraviolet radiation. An improved method was developed to detect CPD formation and removal in genomic DNA that avoids the problems encountered with the standard method of endonuclease detection of these photoproducts. Since CPD-specific endonucleases make single-strand cuts at CPD sites, quantification of the frequency of CPDs in DNA is usually done by denaturing gel electrophoresis. The standard method of ethidium bromide staining and gel photography requires more than 10 microg of DNA per gel lane, and correction of the photographic signal for the nonlinear film response. To simplify this procedure, a standard Southern blot protocol, coupled with phosphorimage analysis, was developed. This method uses random hybridization probes to detect genomic sequences with minimal sequence bias. Because of the vast linearity range of phosphorimage detection, scans of the signal profiles for the heterogeneous population of DNA fragments can be integrated directly to determine the number-average size of the population.

  7. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome.

  8. Waif goodbye! Average-size female models promote positive body image and appeal to consumers.

    Science.gov (United States)

    Diedrichs, Phillippa C; Lee, Christina

    2011-10-01

    Despite consensus that exposure to media images of thin fashion models is associated with poor body image and disordered eating behaviours, few attempts have been made to enact change in the media. This study sought to investigate an effective alternative to current media imagery, by exploring the advertising effectiveness of average-size female fashion models, and their impact on the body image of both women and men. A sample of 171 women and 120 men were assigned to one of three advertisement conditions: no models, thin models and average-size models. Women and men rated average-size models as equally effective in advertisements as thin and no models. For women with average and high levels of internalisation of cultural beauty ideals, exposure to average-size female models was associated with a significantly more positive body image state in comparison to exposure to thin models and no models. For men reporting high levels of internalisation, exposure to average-size models was also associated with a more positive body image state in comparison to viewing thin models. These findings suggest that average-size female models can promote positive body image and appeal to consumers.

  9. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences.

    Science.gov (United States)

    Satoh, Soichirou; Mimuro, Mamoru; Tanaka, Ayumi

    2013-01-01

    Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.

  10. Bisulfite-based epityping on pooled genomic DNA provides an accurate estimate of average group DNA methylation

    Directory of Open Access Journals (Sweden)

    Docherty Sophia J

    2009-03-01

    Full Text Available Abstract Background DNA methylation plays a vital role in normal cellular function, with aberrant methylation signatures being implicated in a growing number of human pathologies and complex human traits. Methods based on the modification of genomic DNA with sodium bisulfite are considered the 'gold-standard' for DNA methylation profiling on genomic DNA; however, they require relatively large amounts of DNA and may be prohibitively expensive when used on the large sample sizes necessary to detect small effects. We propose that a high-throughput DNA pooling approach will facilitate the use of emerging methylomic profiling techniques in large samples. Results Compared with data generated from 89 individual samples, our analysis of 205 CpG sites spanning nine independent regions of the genome demonstrates that DNA pools can be used to provide an accurate and reliable quantitative estimate of average group DNA methylation. Comparison of data generated from the pooled DNA samples with results averaged across the individual samples comprising each pool revealed highly significant correlations for individual CpG sites across all nine regions, with an average overall correlation across all regions and pools of 0.95 (95% bootstrapped confidence intervals: 0.94 to 0.96. Conclusion In this study we demonstrate the validity of using pooled DNA samples to accurately assess group DNA methylation averages. Such an approach can be readily applied to the assessment of disease phenotypes reducing the time, cost and amount of DNA starting material required for large-scale epigenetic analyses.

  11. Size-selected genomic libraries: the distribution and size-fractionation of restricted genomic DNA fragments by gel electrophoresis.

    Science.gov (United States)

    Gondo, Y

    1995-02-01

    By using one-dimensional genome scanning, it is possible to directly identify the restricted genomic DNA fragment that reflects the site of genetic change. The subsequent strategies to obtain the molecular clones of the corresponding restriction fragment are usually as follows: (i) the restriction of a mass quantity of an appropriate genomic DNA, (ii) the size-fractionation of the restricted DNA on a preparative electrophoresis gel in order to enrich the corresponding restriction fragment, (iii) the construction of the size-selected libraries from the fractionated genomic DNA, and (iv) the screening of the library to obtain an objective clone which is identified on the analytical genome scanning gel. A knowledge of the size distribution pattern of restriction fragments of the genomic DNA makes it possible to calculate the heterogeneity or complexity of the restriction fragment in each size-fraction. This manuscript first describes the distribution of the restriction fragments with respect to their length. Some examples of the practical application of this theory to genome scanning is then discussed using presumptive genome scanning gels. The way to calculate such DNA complexities in the prepared size-fractionated samples is also demonstrated. Such information should greatly facilitate the design of experimental strategies for the cloning of a certain size of genomic DNA after digestion with restriction enzyme(s) as is the case with genome scanning.

  12. GI Joe or Average Joe? The impact of average-size and muscular male fashion models on men's and women's body image and advertisement effectiveness.

    Science.gov (United States)

    Diedrichs, Phillippa C; Lee, Christina

    2010-06-01

    Increasing body size and shape diversity in media imagery may promote positive body image. While research has largely focused on female models and women's body image, men may also be affected by unrealistic images. We examined the impact of average-size and muscular male fashion models on men's and women's body image and perceived advertisement effectiveness. A sample of 330 men and 289 women viewed one of four advertisement conditions: no models, muscular, average-slim or average-large models. Men and women rated average-size models as equally effective in advertisements as muscular models. For men, exposure to average-size models was associated with more positive body image in comparison to viewing no models, but no difference was found in comparison to muscular models. Similar results were found for women. Internalisation of beauty ideals did not moderate these effects. These findings suggest that average-size male models can promote positive body image and appeal to consumers.

  13. Analysis of litter size and average litter weight in pigs using a recursive model

    DEFF Research Database (Denmark)

    Varona, Luis; Sorensen, Daniel; Thompson, Robin

    2007-01-01

    An analysis of litter size and average piglet weight at birth in Landrace and Yorkshire using a standard two-trait mixed model (SMM) and a recursive mixed model (RMM) is presented. The RMM establishes a one-way link from litter size to average piglet weight. It is shown that there is a one......-to-one correspondence between the parameters of SMM and RMM and that they generate equivalent likelihoods. As parameterized in this work, the RMM tests for the presence of a recursive relationship between additive genetic values, permanent environmental effects, and specific environmental effects of litter size......, on average piglet weight. The equivalent standard mixed model tests whether or not the covariance matrices of the random effects have a diagonal structure. In Landrace, posterior predictive model checking supports a model without any form of recursion or, alternatively, a SMM with diagonal covariance...

  14. Microeconomic principles explain an optimal genome size in bacteria.

    Science.gov (United States)

    Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A

    2005-01-01

    Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).

  15. Evolution of genome size and complexity in Pinus.

    Directory of Open Access Journals (Sweden)

    Alison M Morse

    Full Text Available BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea. If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.

  16. Recent updates and developments to plant genome size databases

    Science.gov (United States)

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  17. Metabolic 'engines' of flight drive genome size reduction in birds.

    Science.gov (United States)

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  18. Hawaiian Drosophila genomes: size variation and evolutionary expansions.

    Science.gov (United States)

    Craddock, Elysse M; Gall, Joseph G; Jonas, Mark

    2016-02-01

    This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of ~70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22-70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation.

  19. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny.

    Science.gov (United States)

    Clark, James; Hidalgo, Oriane; Pellicer, Jaume; Liu, Hongmei; Marquardt, Jeannine; Robert, Yannis; Christenhusz, Maarten; Zhang, Shouzhou; Gibby, Mary; Leitch, Ilia J; Schneider, Harald

    2016-05-01

    The genome evolution of ferns has been considered to be relatively static compared with angiosperms. In this study, we analyse genome size data and chromosome numbers in a phylogenetic framework to explore three hypotheses: the correlation of genome size and chromosome number, the origin of modern ferns from ancestors with high chromosome numbers, and the occurrence of several whole-genome duplications during the evolution of ferns. To achieve this, we generated new genome size data, increasing the percentage of fern species with genome sizes estimated to 2.8% of extant diversity, and ensuring a comprehensive phylogenetic coverage including at least three species from each fern order. Genome size was correlated with chromosome number across all ferns despite some substantial variation in both traits. We observed a trend towards conservation of the amount of DNA per chromosome, although Osmundaceae and Psilotaceae have substantially larger chromosomes. Reconstruction of the ancestral genome traits suggested that the earliest ferns were already characterized by possessing high chromosome numbers and that the earliest divergences in ferns were correlated with substantial karyological changes. Evidence for repeated whole-genome duplications was found across the phylogeny. Fern genomes tend to evolve slowly, albeit genome rearrangements occur in some clades.

  20. Construction of a phylogenetic tree of photosynthetic prokaryotes based on average similarities of whole genome sequences.

    Directory of Open Access Journals (Sweden)

    Soichirou Satoh

    Full Text Available Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.

  1. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    Science.gov (United States)

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  2. Genome size is inversely correlated with relative brain size in parrots and cockatoos.

    Science.gov (United States)

    Andrews, Chandler B; Gregory, T Ryan

    2009-03-01

    Genome size (haploid nuclear DNA content) has been found to correlate positively with cell size and negatively with cell division rate in a variety of taxa. These cytological relationships manifest in various ways at the organism level, for example, in terms of body size, metabolic rate, or developmental rate, depending on the biology of the organisms. In birds, it has been suggested that high metabolic rate and strong flight ability are linked to small genome size. However, it was also hypothesized that the exceptional cognitive abilities of birds may impose additional constraints on genome size through effects on neuron size and differentiation, as has been observed in amphibians. To test this hypothesis, a comparative analysis was made between genome size, cell (erythrocyte) size, and brain size in 54 species of parrots and cockatoos (order Psittaciformes, family Psittacidae). Relative brain volume, which is taken as an indicator of investment in brain tissue and is widely correlated with behavioural and ecological traits, was found to correlate inversely with genome size. Several possible and mutually compatible explanations for this relationship are described.

  3. Methodology significantly affects genome size estimates: quantitative evidence using bryophytes.

    Science.gov (United States)

    Bainard, Jillian D; Fazekas, Aron J; Newmaster, Steven G

    2010-08-01

    Flow cytometry (FCM) is commonly used to determine plant genome size estimates. Methodology has improved and changed during the past three decades, and researchers are encouraged to optimize protocols for their specific application. However, this step is typically omitted or undescribed in the current plant genome size literature, and this omission could have serious consequences for the genome size estimates obtained. Using four bryophyte species (Brachythecium velutinum, Fissidens taxifolius, Hedwigia ciliata, and Thuidium minutulum), three methodological approaches to the use of FCM in plant genome size estimation were tested. These included nine different buffers (Baranyi's, de Laat's, Galbraith's, General Purpose, LB01, MgSO(4), Otto's, Tris.MgCl(2), and Woody Plant), seven propidium iodide (PI) staining periods (5, 10, 15, 20, 45, 60, and 120 min), and six PI concentrations (10, 25, 50, 100, 150, and 200 microg ml(-1)). Buffer, staining period and staining concentration all had a statistically significant effect (P = 0.05) on the genome size estimates obtained for all four species. Buffer choice and PI concentration had the greatest effect, altering the 1C-values by as much as 8% and 14%, respectively. As well, the quality of the data varied with the different methodology used. Using the methodology determined to be the most accurate in this study (LB01 buffer and PI staining for 20 min at 150 microg ml(-1)), three new genome size estimates were obtained: B. velutinum: 0.46 pg, H. ciliata: 0.30 pg, and T. minutulum: 0.46 pg. While the peak quality of flow cytometry histograms is important, researchers must consider that changes in methodology can also affect the relative peak positions and therefore the genome size estimates obtained for plants using FCM.

  4. Total centromere size and genome size are strongly correlated in ten grass species.

    Science.gov (United States)

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  5. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  6. The bat genome: GC-biased small chromosomes associated with reduction in genome size.

    Science.gov (United States)

    Kasai, Fumio; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A

    2013-12-01

    Bats are distinct from other mammals in their small genome size as well as their high metabolic rate, possibly related to flight ability. Although the genome sequence has been published in two species, the data lack cytogenetic information. In this study, the size and GC content of each chromosome are measured from the flow karyotype of the mouse-eared bat, Myotis myotis (MMY). The smaller chromosomes are GC-rich compared to the larger chromosomes, and the relative proportions of homologous segments between MMY and human differ among the MMY chromosomes. The MMY genome size calculated from the sum of the chromosome sizes is 2.25 Gb, and the total GC content is 42.3%, compared to human and dog with 41.0 and 41.2%, respectively. The GC-rich small MMY genome is characterised by GC-biased smaller chromosomes resulting from preferential loss of AT-rich sequences. Although the association between GC-rich small chromosomes and small genome size has been reported only in birds so far, we show in this paper, for the first time, that the same phenomenon is observed in at least one group of mammals, implying that this may be a mechanism common to genome evolution in general.

  7. Investigating the role of average color dipole size in BFKL Pomeron phenomenology

    CERN Document Server

    Lengyel, A I

    2005-01-01

    Based on the QCD dipole picture of the BFKL Pomeron, we investigate the role played by the saturation scale, $Q_{\\mathrm{sat}}$, in obtaining physical values for the affective strong coupling in phenomenological fits to small-$x$ HERA data. The dependence on this scale appears since the collection of color dipoles characterizing the proton target have average size $1/Q_{\\mathrm{sat}}$, which is energy dependent. Physically, this means most of the color dipoles are above but sufficiently close to the border between a saturated and the dilute system. The analysis is first performed in the leading-logs BFKL approach in the saddle-point approximation and it could shed light in further investigations using resummed NLO BFKL kernels.

  8. A Running Average Method for Predicting the Size and Length of a Solar Cycle

    Institute of Scientific and Technical Information of China (English)

    Zhan-Le Du; Hua-Ning Wang; Li-Yun Zhang

    2008-01-01

    The running correlation coefficient between the solar cycle amplitudes and the max-max cycle lengths at a given cycle lag is found to vary roughly in a cyclical wave with the cycle number, based on the smoothed monthly mean Group sunspot numbers available since 1610. A running average method is proposed to predict the size and length of a solar cycle by the use of the varying trend of the coefficients. It is found that, when a condition (that the correlation becomes stronger) is satisfied, the mean prediction error (16.1) is much smaller than when the condition is not satisfied (38.7). This result can be explained by the fact that the prediction must fall on the regression line and increase the strength of the correlation. The method itself can also indicate whether the prediction is reasonable or not. To obtain a reasonable prediction, it is more important to search.for a running correlation coefficient whose varying trend satisfies the proposed condition, and the result does not depend so much on the size of the correlation coefficient. As an application, the peak sunspot number of cycle 24 is estimated as 140.4±15.7, and the peak as May 2012± 11 months.

  9. Genome Size in Diploids, Allopolyploids, and Autopolyploids of Mediterranean Triticeae

    Directory of Open Access Journals (Sweden)

    T. Eilam

    2010-01-01

    Full Text Available Nuclear DNA amount, determined by the flow cytometry method, in diploids, natural and synthetic allopolyploids, and natural and synthetic autopolyploids of the tribe Triticeae (Poaceae is reviewed here and discussed. In contrast to the very small and nonsignificant variation in nuclear DNA amount that was found at the intraspecific level, the variation at the interspecific level is very large. Evidently changes in genome size are either the cause or the result of speciation. Typical autopolyploids had the expected additive DNA amount of their diploid parents, whereas natural and synthetic cytologically diploidized autopolyploids and natural and synthetic allopolyploids had significantly less DNA than the sum of their parents. Thus, genome downsizing, occurring during or immediately after the formation of these polyploids, provides the physical basis for their cytological diploidization, that is, diploid-like meiotic behavior. Possible mechanisms that are involved in genome downsizing and the biological significance of this phenomenon are discussed.

  10. Subnational distribution of average farm size and smallholder contributions to global food production

    Science.gov (United States)

    Samberg, Leah H.; Gerber, James S.; Ramankutty, Navin; Herrero, Mario; West, Paul C.

    2016-12-01

    Smallholder farming is the most prevalent form of agriculture in the world, supports many of the planet’s most vulnerable populations, and coexists with some of its most diverse and threatened landscapes. However, there is little information about the location of small farms, making it difficult both to estimate their numbers and to implement effective agricultural, development, and land use policies. Here, we present a map of mean agricultural area, classified by the amount of land per farming household, at subnational resolutions across three key global regions using a novel integration of household microdata and agricultural landscape data. This approach provides a subnational estimate of the number, average size, and contribution of farms across much of the developing world. By our estimates, 918 subnational units in 83 countries in Latin America, sub-Saharan Africa, and South and East Asia average less than five hectares of agricultural land per farming household. These smallholder-dominated systems are home to more than 380 million farming households, make up roughly 30% of the agricultural land and produce more than 70% of the food calories produced in these regions, and are responsible for more than half of the food calories produced globally, as well as more than half of global production of several major food crops. Smallholder systems in these three regions direct a greater percentage of calories produced toward direct human consumption, with 70% of calories produced in these units consumed as food, compared to 55% globally. Our approach provides the ability to disaggregate farming populations from non-farming populations, providing a more accurate picture of farming households on the landscape than has previously been available. These data meet a critical need, as improved understanding of the prevalence and distribution of smallholder farming is essential for effective policy development for food security, poverty reduction, and conservation agendas.

  11. Icelandic Birch Polyploids—The Case of a Perfect Fit in Genome Size

    Directory of Open Access Journals (Sweden)

    K. Anamthawat-Jónsson

    2010-01-01

    Full Text Available Two birch species coexist in Iceland, dwarf birch Betula nana and tree birch B. pubescens. Both species are variable morphologically, which has been shown to be due to introgressive hybridization via interspecific hybrids. The aim of this study was to examine if the introgression could be related to genome size. We characterized 42 plants from Bifröst woodland morphologically and cytogenetically. The population consisted of diploid B. nana (38%, tetraploid B. pubescens (55%, and triploid hybrids (7%. Genome size was measured from 12 plants, using Feulgen DNA image densitometry (FDM on spring leaf buds and flow cytometry (FCM with dormant winter twigs. The use of winter twigs for FCM is novel. The average 1C-values for diploid, triploid, and tetraploid plants were 448, 666, and 882 Mbp, respectively. Monoploid genome sizes were found to be statistically constant among ploidy levels. This stability is in contrast to the different taxonomic positions of the di- and tetraploids and also contrasts with the frequent occurrence of genome downsizing in polyploids.

  12. Genome downsizing and karyotype constancy in diploid and polyploid congeners: a model of genome size variation.

    Science.gov (United States)

    Poggio, Lidia; Realini, María Florencia; Fourastié, María Florencia; García, Ana María; González, Graciela Esther

    2014-06-26

    Evolutionary chromosome change involves significant variation in DNA amount in diploids and genome downsizing in polyploids. Genome size and karyotype parameters of Hippeastrum species with different ploidy level were analysed. In Hippeastrum, polyploid species show less DNA content per basic genome than diploid species. The rate of variation is lower at higher ploidy levels. All the species have a basic number x = 11 and bimodal karyotypes. The basic karyotypes consist of four short metacentric chromosomes and seven large chromosomes (submetacentric and subtelocentric). The bimodal karyotype is preserved maintaining the relative proportions of members of the haploid chromosome set, even in the presence of genome downsizing. The constancy of the karyotype is maintained because changes in DNA amount are proportional to the length of the whole-chromosome complement and vary independently in the long and short sets of chromosomes. This karyotype constancy in taxa of Hippeastrum with different genome size and ploidy level indicates that the distribution of extra DNA within the complement is not at random and suggests the presence of mechanisms selecting for constancy, or against changes, in karyotype morphology.

  13. Average and Heterogeneous Effects of Class Size on Educational Achievement in Lesotho

    OpenAIRE

    2015-01-01

    Understanding class size effects on educational achievement remains a preoccupation of many economists. But empirical results are, to this far, still inconclusive. I use the two-stage least squares and the instrumental variable quantile regression methods on Lesotho’s grade 6 students maths and reading test scores to estimate, respectively, the mean and distributional effects of class size. I find strong evidence for putative class size effects on reading achievement, but not on maths achie...

  14. The dynamic evolutionary history of genome size in North American woodland salamanders.

    Science.gov (United States)

    Newman, Catherine E; Gregory, T Ryan; Austin, Christopher C

    2017-04-01

    The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5-20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.

  15. Meta-basic estimates the size of druggable human genome.

    Science.gov (United States)

    Plewczynski, Dariusz; Rychlewski, Leszek

    2009-06-01

    We present here the estimation of the upper limit of the number of molecular targets in the human genome that represent an opportunity for further therapeutic treatment. We select around approximately 6300 human proteins that are similar to sequences of known protein targets collected from DrugBank database. Our bioinformatics study estimates the size of 'druggable' human genome to be around 20% of human proteome, i.e. the number of the possible protein targets for small-molecule drug design in medicinal chemistry. We do not take into account any toxicity prediction, the three-dimensional characteristics of the active site in the predicted 'druggable' protein families, or detailed chemical analysis of known inhibitors/drugs. Instead we rely on remote homology detection method Meta-BASIC, which is based on sequence and structural similarity. The prepared dataset of all predicted protein targets from human genome presents the unique opportunity for developing and benchmarking various in silico chemo/bio-informatics methods in the context of the virtual high throughput screening.

  16. Orthopedic stretcher with average-sized person can pass through 18-inch opening

    Science.gov (United States)

    Lothschuetz, F. X.

    1966-01-01

    Modified Robinson stretcher for vertical lifting and carrying, will pass through an opening 18 inches in diameter, while containing a person of average height and weight. A subject 6 feet tall and weighing 200 pounds was lowered and raised out of an 18 inch diameter opening in a tank to test the stretcher.

  17. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in Angiosperms

    Directory of Open Access Journals (Sweden)

    Conchita eAlonso

    2015-01-01

    Full Text Available DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value. Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis and 39.2% (Narcissus. Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.

  18. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda

    Science.gov (United States)

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan

    2016-01-01

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae. This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains. PMID:27540052

  19. Genomic Sequencing of Orientia tsutsugamushi Strain Karp, an Assembly Comparable to the Genome Size of the Strain Ikeda.

    Science.gov (United States)

    Liao, Hsiao-Mei; Chao, Chien-Chung; Lei, Haiyan; Li, Bingjie; Tsai, Shien; Hung, Guo-Chiuan; Ching, Wei-Mei; Lo, Shyh-Ching

    2016-08-18

    Orientia tsutsugamushi, an intracellular bacterium, belongs to the family Rickettsiaceae This study presents the draft genome sequence of strain Karp, with 2.0 Mb as the size of the completed genome. This nearly finished draft genome sequence was annotated with the RAST server and the contents compared to those of the other strains.

  20. Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity.

    Directory of Open Access Journals (Sweden)

    Lisa L Ellis

    2014-07-01

    Full Text Available We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.

  1. First genome size estimations for some eudicot families and genera

    Directory of Open Access Journals (Sweden)

    Garcia, S.

    2010-12-01

    Full Text Available Genome size diversity in angiosperms varies roughly 2400-fold, although approximately 45% of angiosperm families lack a single genome size estimation, and therefore, this range could be enlarged. To contribute completing family and genera representation, DNA C-Values are here provided for 19 species from 16 eudicot families, including first values for 6 families, 14 genera and 17 species. The sample of species studied is very diverse, including herbs, weeds, vines, shrubs and trees. Data are discussed regarding previous genome size estimates of closely related species or genera, if any, their chromosome number, growth form or invasive behaviour. The present research contributes approximately 1.5% new values for previously unreported angiosperm families, being the current coverage around 55% of angiosperm families, according to the Plant DNA C-Values Database.

    La diversidad del tamaño del genoma en angiospermas es muy amplia, siendo el valor más elevado aproximadamente unas 2400 veces superior al más pequeño. Sin embargo, cerca del 45% de las familias no presentan ni una sola estimación, por lo que el rango real podría ser ampliado. Para contribuir a completar la representación de familias y géneros de angiospermas, este estudio contribuye con valores C para 19 especies de 16 familias de eudicoticotiledóneas, incluyendo los primeros valores para 6 familias, 14 géneros y 17 especies. La muestra estudiada es muy diversa, e incluye hierbas, malezas, enredaderas, arbustos y árboles. Se discuten los resultados en función de estimaciones previas del tamaño del genoma de especies o géneros estrechamente relacionados, del número de cromosomas, la forma de crecimiento o el comportamiento invasor de las especies analizadas. El presente estudio contribuye aproximadamente en un 1,5% de nuevos valores para familias de angiospermas no estudiadas previamente, de las que actualmente existe información para el 55%, según la base de datos

  2. Optimal scaling of average queue sizes in an input-queued switch: an open problem

    OpenAIRE

    Shah, Devavrat; Tsitsiklis, John N.; Zhong, Yuan

    2011-01-01

    We review some known results and state a few versions of an open problem related to the scaling of the total queue size (in steady state) in an n×n input-queued switch, as a function of the port number n and the load factor ρ. Loosely speaking, the question is whether the total number of packets in queue, under either the maximum weight policy or under an optimal policy, scales (ignoring any logarithmic factors) as O(n/(1 − ρ)).

  3. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China.

    Science.gov (United States)

    Kang, Ming; Tao, Junjie; Wang, Jing; Ren, Chen; Qi, Qingwen; Xiang, Qiu-Yun; Huang, Hongwen

    2014-06-01

    Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. Several hypotheses for genome size evolution including neutral, maladaptive, and adaptive models have been proposed, but the relative importance of these models remains controversial. Primulina is a genus that is highly diversified in the Karst region of southern China, where genome size variation and the underlying evolutionary mechanisms are poorly understood. We reconstructed the phylogeny of Primulina using DNA sequences for 104 species and determined the genome sizes of 101 species. We examined the phylogenetic signal in genome size variation, and tested the fit to different evolutionary models and for correlations with variation in latitude and specific leaf area (SLA). The results showed that genome size, SLA and latitudinal variation all displayed strong phylogenetic signals, but were best explained by different evolutionary models. Furthermore, significant positive relationships were detected between genome size and SLA and between genome size and latitude. Our study is the first to investigate genome size evolution on such a comprehensive scale and in the Karst region flora. We conclude that genome size in Primulina is phylogenetically conserved but its variation among species is a combined outcome of both neutral and adaptive evolution.

  4. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae).

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Gibby, Mary; Jansen, Robert K

    2012-09-01

    The phylogeny of 58 Pelargonium species was estimated using five plastid markers (rbcL, matK, ndhF, rpoC1, trnL-F) and one mitochondrial gene (nad5). The results confirmed the monophyly of three major clades and four subclades within Pelargonium but also indicate the need to revise some sectional classifications. This phylogeny was used to examine karyotype evolution in the genus: plotting chromosome sizes, numbers and 2C-values indicates that genome size is significantly correlated with chromosome size but not number. Accelerated rates of nucleotide substitution have been previously detected in both plastid and mitochondrial genes in Pelargonium, but sparse taxon sampling did not enable identification of the phylogenetic distribution of these elevated rates. Using the multigene phylogeny as a constraint, we investigated lineage- and locus-specific heterogeneity of substitution rates in Pelargonium for an expanded number of taxa and demonstrated that both plastid and mitochondrial genes have had accelerated substitution rates but with markedly disparate patterns. In the plastid, the exons of rpoC1 have significantly accelerated substitution rates compared to its intron and the acceleration was mainly due to nonsynonymous substitutions. In contrast, the mitochondrial gene, nad5, experienced substantial acceleration of synonymous substitution rates in three internal branches of Pelargonium, but this acceleration ceased in all terminal branches. Several lineages also have dN/dS ratios significantly greater than one for rpoC1, indicating that positive selection is acting on this gene, whereas the accelerated synonymous substitutions in the mitochondrial gene are the result of elevated mutation rates.

  5. Reductive genome evolution at both ends of the bacterial population size spectrum.

    Science.gov (United States)

    Batut, Bérénice; Knibbe, Carole; Marais, Gabriel; Daubin, Vincent

    2014-12-01

    Bacterial genomes show substantial variations in size. The smallest bacterial genomes are those of endocellular symbionts of eukaryotic hosts, which have undergone massive genome reduction and show patterns that are consistent with the degenerative processes that are predicted to occur in species with small effective population sizes. However, similar genome reduction is found in some free-living marine cyanobacteria that are characterized by extremely large populations. In this Opinion article, we discuss the different hypotheses that have been proposed to account for this reductive genome evolution at both ends of the bacterial population size spectrum.

  6. Photocatalytic performances of BiFeO{sub 3} particles with the average size in nanometer, submicrometer, and micrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Chunxue; FushengWen,, E-mail: wenfsh03@126.com; Xiang, Jianyong; Hou, Hang; Lv, Weiming; Lv, Yifei; Hu, Wentao; Liu, Zhongyuan

    2014-02-01

    Highlights: • Three different synthesis routes have been taken to successfully prepare the BiFeO{sub 3} particles with the different morphologies and average size in 50, 500 nm, and 15 μm. • For photodegradation of dyes under visible irradiation in the presence of BiFeO{sub 3}, the photocatalytic efficiency increases quickly with the decrease in size. • The enhanced photocatalytic efficiency of BiFeO{sub 3} nanoparticles may attribute to more surface active catalytic-sites and shorter distances carriers have to migrate to the surface reaction sites. - Abstract: Three different synthesis routes were taken to successfully prepare the BiFeO{sub 3} particles with the different morphologies and average size in 50, 500 nm, and 15 μm, respectively. The crystal structure was recognized to be a distorted rhombohedral one with the space group R3c. With the decrease in particle size, obvious decrease in peak intensity and redshift in peak position were observed for the Raman active bands. The narrow band gap was determined from the UV–vis absorption spectra, indicating the semiconducting nature of the BiFeO{sub 3}. For photodegradation of dyes under visible irradiation in the presence of BiFeO{sub 3}, the photocatalytic efficiency increased quickly with the decrease in size which may attribute to more surface active catalytic-sites and shorter distances carriers had to migrate to the surface reaction sites.

  7. Genome size correlates with reproductive fitness in seed beetles

    Science.gov (United States)

    Arnqvist, Göran; Sayadi, Ahmed; Immonen, Elina; Hotzy, Cosima; Rankin, Daniel; Tuda, Midori; Hjelmen, Carl E.; Johnston, J. Spencer

    2015-01-01

    The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘C-value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution. PMID:26354938

  8. Genome size correlates with reproductive fitness in seed beetles.

    Science.gov (United States)

    Arnqvist, Göran; Sayadi, Ahmed; Immonen, Elina; Hotzy, Cosima; Rankin, Daniel; Tuda, Midori; Hjelmen, Carl E; Johnston, J Spencer

    2015-09-22

    The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the 'C-value paradox'. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4-5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.

  9. Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method

    Science.gov (United States)

    Chen, Feier; Tian, Kang; Ding, Xiaoxu; Miao, Yuqi; Lu, Chunxia

    2016-11-01

    Analysis of freight rate volatility characteristics attracts more attention after year 2008 due to the effect of credit crunch and slowdown in marine transportation. The multifractal detrended fluctuation analysis technique is employed to analyze the time series of Baltic Dry Bulk Freight Rate Index and the market trend of two bulk ship sizes, namely Capesize and Panamax for the period: March 1st 1999-February 26th 2015. In this paper, the degree of the multifractality with different fluctuation sizes is calculated. Besides, multifractal detrending moving average (MF-DMA) counting technique has been developed to quantify the components of multifractal spectrum with the finite-size effect taken into consideration. Numerical results show that both Capesize and Panamax freight rate index time series are of multifractal nature. The origin of multifractality for the bulk freight rate market series is found mostly due to nonlinear correlation.

  10. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-31

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles.

  11. The mode and tempo of genome size evolution in the subgenus Sophophora

    Science.gov (United States)

    Johnston, J. Spencer

    2017-01-01

    Genome size varies widely across organisms, with no apparent tie to organismal complexity. While genome size is inherited, there is no established evolutionary model for this trait. Hypotheses have been postulated for the observed variation in genome sizes across species, most notably the effective population size hypothesis, the mutational equilibrium hypothesis, and the adaptive hypothesis. While much data has been collected on genome size, the above hypotheses have largely ignored impacts from phylogenetic relationships. In order to test these competing hypotheses, genome sizes of 87 Sophophora species were analyzed in a comparative phylogenetic approach using Pagel’s parameters of evolution, Blomberg’s K, Abouheif’s Cmean and Moran’s I. In addition to testing the mode and rate of genome size evolution in Sophophora species, the effect of number of taxa on detection of phylogenetic signal was analyzed for each of these comparative phylogenetic methods. Sophophora genome size was found to be dependent on the phylogeny, indicating that evolutionary time was important for predicting the variation among species. Genome size was found to evolve gradually on branches of the tree, with a rapid burst of change early in the phylogeny. These results suggest that Sophophora genome size has experienced gradual changes, which support the largely theoretical mutational equilibrium hypothesis. While some methods (Abouheif’s Cmean and Moran’s I) were found to be affected by increasing taxa numbers, more commonly used methods (λ and Blomberg’s K) were found to have increasing reliability with increasing taxa number, with significantly more support with fifteen or more taxa. Our results suggest that these comparative phylogenetic methods, with adequate taxon sampling, can be a powerful way to uncover the enigma that is genome size variation through incorporation of phylogenetic relationships. PMID:28267812

  12. Facile in situ characterization of gold nanoparticles on electrode surfaces by electrochemical techniques: average size, number density and morphology determination.

    Science.gov (United States)

    Wang, Ying; Laborda, Eduardo; Salter, Chris; Crossley, Alison; Compton, Richard G

    2012-10-21

    A fast and cheap in situ approach is presented for the characterization of gold nanoparticles from electrochemical experiments. The average size and number of nanoparticles deposited on a glassy carbon electrode are determined from the values of the total surface area and amount of gold obtained by lead underpotential deposition and by stripping of gold in hydrochloric acid solution, respectively. The morphology of the nanoparticle surface can also be analyzed from the "fingerprint" in lead deposition/stripping experiments. The method is tested through the study of gold nanoparticles deposited on a glassy carbon substrate by seed-mediated growth method which enables an easy control of the nanoparticle size. The procedure is also applied to the characterization of supplied gold nanoparticles. The results are in satisfactory agreement with those obtained via scanning electron microscopy.

  13. Genome size and metabolic intensity in tetrapods: a tale of two lines.

    Science.gov (United States)

    Vinogradov, Alexander E; Anatskaya, Olga V

    2006-01-07

    We show the negative link between genome size and metabolic intensity in tetrapods, using the heart index (relative heart mass) as a unified indicator of metabolic intensity in poikilothermal and homeothermal animals. We found two separate regression lines of heart index on genome size for reptiles-birds and amphibians-mammals (the slope of regression is steeper in reptiles-birds). We also show a negative correlation between GC content and nucleosome formation potential in vertebrate DNA, and, consistent with this relationship, a positive correlation between genome GC content and nuclear size (independent of genome size). It is known that there are two separate regression lines of genome GC content on genome size for reptiles-birds and amphibians-mammals: reptiles-birds have the relatively higher GC content (for their genome sizes) compared to amphibians-mammals. Our results suggest uniting all these data into one concept. The slope of negative regression between GC content and nucleosome formation potential is steeper in exons than in non-coding DNA (where nucleosome formation potential is generally higher), which indicates a special role of non-coding DNA for orderly chromatin organization. The chromatin condensation and nuclear size are supposed to be key parameters that accommodate the effects of both genome size and GC content and connect them with metabolic intensity. Our data suggest that the reptilian-birds clade evolved special relationships among these parameters, whereas mammals preserved the amphibian-like relationships. Surprisingly, mammals, although acquiring a more complex general organization, seem to retain certain genome-related properties that are similar to amphibians. At the same time, the slope of regression between nucleosome formation potential and GC content is steeper in poikilothermal than in homeothermal genomes, which suggests that mammals and birds acquired certain common features of genomic organization.

  14. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla.

    Science.gov (United States)

    Li, Xiu-Qing; Du, Donglei

    2014-01-01

    C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla.

  15. EFFECT OF WATER CONTENT, TEMPERATURE AND AVERAGE DROPLET SIZE ON THE SETTLING VELOCITY OF WATER-IN-OIL EMULSIONS

    Directory of Open Access Journals (Sweden)

    W. J. Souza

    2015-06-01

    Full Text Available AbstractWater-in-oil (W/O emulsions are complex mixtures generally found in crude oil production in reservoirs and processing equipment. Sedimentation studies of water-oil emulsions enable the analysis of the fluid dynamic behavior concerning separation of this system composed of two immiscible liquids. Gravitational settling was evaluated in this article for a model emulsion system consisting of water and a Brazilian crude oil diluted in a clear mineral oil as organic phase. The effects of water content and temperature were considered in the study of sedimentation velocity of water-oil emulsions. Water contents between 10% and 50 % and temperatures of 25, 40 and 60 ºC were evaluated, and a Richardson-Zaki type correlation was obtained to calculate settling velocities as a function of the process variables investigated. Water contents and average droplet sizes were monitored at different levels in the settling equipment, thus enabling identification of the effect of these variables on the phenomena of sedimentation and coalescence of the emulsions studied. The results showed that the emulsion stability during sedimentation was governed by the emulsion water content, which yielded high settling velocities at low water contents, even when very small droplets were present. A quantitative analysis of the combined effects of drop size and droplet concentration supports the conclusion that a stronger effect is produced by the higher concentration of particles, compared with the relatively smaller effect of increasing the size of the droplets.

  16. A novel statistical method to estimate the effective SNP size in vertebrate genomes and categorized genomic regions

    Directory of Open Access Journals (Sweden)

    Zhao Zhongming

    2006-12-01

    Full Text Available Abstract Background The local environment of single nucleotide polymorphisms (SNPs contains abundant genetic information for the study of mechanisms of mutation, genome evolution, and causes of diseases. Recent studies revealed that neighboring-nucleotide biases on SNPs were strong and the genome-wide bias patterns could be represented by a small subset of the total SNPs. It remains unsolved for the estimation of the effective SNP size, the number of SNPs that are sufficient to represent the bias patterns observed from the whole SNP data. Results To estimate the effective SNP size, we developed a novel statistical method, SNPKS, which considers both the statistical and biological significances. SNPKS consists of two major steps: to obtain an initial effective size by the Kolmogorov-Smirnov test (KS test and to find an intermediate effective size by interval evaluation. The SNPKS algorithm was implemented in computer programs and applied to the real SNP data. The effective SNP size was estimated to be 38,200, 39,300, 38,000, and 38,700 in the human, chimpanzee, dog, and mouse genomes, respectively, and 39,100, 39,600, 39,200, and 42,200 in human intergenic, genic, intronic, and CpG island regions, respectively. Conclusion SNPKS is the first statistical method to estimate the effective SNP size. It runs efficiently and greatly outperforms the algorithm implemented in SNPNB. The application of SNPKS to the real SNP data revealed the similar small effective SNP size (38,000 – 42,200 in the human, chimpanzee, dog, and mouse genomes as well as in human genomic regions. The findings suggest strong influence of genetic factors across vertebrate genomes.

  17. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  18. Transcriptome and genome size analysis of the venus flytrap

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D...

  19. Inexpensive multiplexed library preparation for megabase-sized genomes.

    Directory of Open Access Journals (Sweden)

    Michael Baym

    Full Text Available Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of $8 per sample, approximately 6 times cheaper than the standard Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples. Several hundred samples can then be pooled on the same HiSeq lane via custom barcodes. Our method will be useful for re-sequencing of microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples, as well as for other sequencing applications including large amplicon, open chromosome, artificial chromosomes, and RNA sequencing.

  20. Transposable element distribution, abundance and role in genome size variation in the genus Oryza

    Directory of Open Access Journals (Sweden)

    Collura Kristi

    2007-08-01

    Full Text Available Abstract Background The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop – rice (Oryza sativa [AA]. Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements in shaping these genomes and in their contributing to genome size variation. Results We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Conclusion Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys account for a significant portion of the genome size variations present in the Oryza genus.

  1. Is the Whole Really More than the Sum of Its Parts? Estimates of Average Size and Orientation Are Susceptible to Object Substitution Masking

    Science.gov (United States)

    Jacoby, Oscar; Kamke, Marc R.; Mattingley, Jason B.

    2013-01-01

    We have a remarkable ability to accurately estimate average featural information across groups of objects, such as their average size or orientation. It has been suggested that, unlike individual object processing, this process of "feature averaging" occurs automatically and relatively early in the course of perceptual processing,…

  2. Survey of genome size in 28 hydrothermal vent species covering 10 families.

    Science.gov (United States)

    Bonnivard, Eric; Catrice, Olivier; Ravaux, Juliette; Brown, Spencer C; Higuet, Dominique

    2009-06-01

    Knowledge of genome size is a useful and necessary prerequisite for the development of many genomic resources. To better understand the origins and effects of DNA gains and losses among species, it is important to collect data from a broad taxonomic base, but also from particular ecosystems. Oceanic thermal vents are an interesting model to investigate genome size in very unstable environments. Here we provide data estimated by flow cytometry for 28 vent-living species among the most representative from different hydrothermal vents. We also report the genome size of closely related coastal decapods. Haploid C-values were compared with those previously reported for species from corresponding orders or infraorders. This is the first broad survey of 2C values in vent organisms. Contrary to expectations, it shows that certain hydrothermal vent species have particularly large genomes. The vent squat lobster Munidopsis recta has the largest genome yet reported for any anomuran: 2C=31.1 pg=30.4x10(9) bp. In several groups, such as Brachyura, Phyllodocida, and Veneroida, vent species have genomes that clearly rank at the high end of published values for each group. We also describe the highest DNA content yet recorded for the Brachyura (coastal crabs Xantho pilipes and Necora puber). Finally, analysis of genome size variation across populations revealed unexpected intraspecific variation in the vent shrimp Mirocaris fortunata that could not be attributed simply to ploidy changes.

  3. Reptiles: a group of transition in the evolution of genome size and of the nucleotypic effect.

    Science.gov (United States)

    Olmo, E

    2003-01-01

    A comparison between genome size and some phenotypic parameters, such as developmental length and metabolic rate, showed in reptiles a nucleotypic correlation similar to the one observed in birds and mammals. Indeed, like homeotherms, reptiles exhibit a highly significant, inverse correlation of genome size with metabolic rate but unlike amphibians, no relationship with developmental length. Several lines of evidence suggest that these nucleotypic correlations are influenced by body temperature, which also affects the guanine + cytosine nuclear percentage, and that they play an important role in the adaptation of these amniotes. However, the reptilian suborders exhibit differences in the quantitative and compositional characters of the genome that do not completely correspond to differences in the phenotypic parameters commonly involved in the nucleotypic effect. Thus, additional factors could have influenced genome size in this class. These data could be explained with the model of Hartl and Petrov, who observed an inverse correlation between genome size, non-coding portion of the genome and rate of DNA loss and hypothesized a strong role for different spectra of spontaneous insertions and deletions (indels) in the variations of genome size. It is thus reasonable to surmise that variations in the reptilian genome were initially influenced by different indels spectra typical of the diverse lineages, possibly related to different chromosome compartmentalizations. The consequent size increases or decreases would have influenced various morphological and functional cell parameters, and through these some phenotypic characteristics of the whole organism, especially the metabolic rate, very important for environmental adaptation and thus subject to natural selection. Through this "nucleotypic" bond, natural selection would also have controlled genome size variations.

  4. Genome size and sequence composition of moso bamboo: A comparative study

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Moso bamboo (Phyllostachys pubescens) is one of the world's most important bamboo species. It has the largest area of all planted bamboo―over two-thirds of the total bamboo forest area―and the highest economic value in China. Moso bamboo is a tetraploid (4x=48) and a special member of the grasses family. Although several genomes have been sequenced or are being sequenced in the grasses family, we know little about the genome of the bambusoids (bamboos). In this study, the moso bamboo genome size was estimated to be about 2034 Mb by flow cytometry (FCM), using maize (cv. B73) and rice (cv. Nipponbare) as internal references. The rice genome has been sequenced and the maize genome is being sequenced. We found that the size of the moso bamboo genome was similar to that of maize but significantly larger than that of rice. To determine whether the bamboo genome had a high proportion of repeat elements, similar to that of the maize genome, approximately 1000 genome survey sequences (GSS) were generated. Sequence analysis showed that the proportion of repeat elements was 23.3% for the bamboo genome, which is significantly lower than that of the maize genome (65.7%). The bamboo repeat elements were mainly Gypsy/DIRS1 and Ty1/Copia LTR retrotransposons (14.7%), with a few DNA transposons. However, more genomic sequences are needed to confirm the above results due to several factors, such as the limitation of our GSS data. This study is the first to investigate sequence composition of the bamboo genome. Our results are valuable for future genome research of moso and other bamboos.

  5. Economy, Speed and Size Matter: Evolutionary Forces Driving Nuclear Genome Miniaturization and Expansion

    OpenAIRE

    CAVALIER-SMITH, THOMAS

    2005-01-01

    • Background Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or ‘selfish’ outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear D...

  6. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach.

    Directory of Open Access Journals (Sweden)

    Simon Boitard

    2016-03-01

    Full Text Available Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey, PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles.

  7. Larger Daphnia at lower temperature: a role for cell size and genome configuration?

    Science.gov (United States)

    Jalal, Marwa; Wojewodzic, Marcin W; Laane, Carl Morten M; Hessen, Dag O

    2013-09-01

    Experiments with Daphnia magna and Daphnia pulex raised at 10 and 20 °C yielded larger adult size at the lower temperature. This must reflect increased cell size, increased cell numbers, or a combination of both. As it is difficult to achieve good estimates on cell size in crustaceans, we, therefore, measured nucleus and genome size using flow cytometry at 10 and 20 °C. DNA was stained with propidium iodide, ethidium bromide, and DAPI. Both nucleus and genome size estimates were elevated at 10 °C compared with 20 °C, suggesting that larger body size at low temperature could partly be accredited to an enlarged nucleus and thus cell size. Confocal microscopy observations confirmed the staining properties of fluorochromes. As differences in nucleotide numbers in response of growth temperature within a life span is unlikely, these results seem accredited to changed DNA-fluorochrome binding properties, presumably reflecting increased DNA condensation at low temperature. This implies that genome size comparisons may be impacted by ambient temperature in ectotherms. It also suggests that temperature-induced structural changes in the genome could affect cell size and for some species even body size.

  8. Interactions of photosynthesis with genome size and function.

    Science.gov (United States)

    Raven, John A; Beardall, John; Larkum, Anthony W D; Sánchez-Baracaldo, Patricia

    2013-07-19

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280-320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements.

  9. The Cambrian explosion triggered by critical turning point in genome size evolution.

    Science.gov (United States)

    Li, Dirson Jian; Zhang, Shengli

    2010-02-05

    The Cambrian explosion is a grand challenge to science today and involves multidisciplinary study. This event is generally believed as a result of genetic innovations, environmental factors and ecological interactions, even though there are many conflicts on nature and timing of metazoan origins. The crux of the matter is that an entire roadmap of the evolution is missing to discern the biological complexity transition and to evaluate the critical role of the Cambrian explosion in the overall evolutionary context. Here, we calculate the time of the Cambrian explosion by a "C-value clock"; our result quite fits the fossil records. We clarify that the intrinsic reason of genome evolution determined the Cambrian explosion. A general formula for evaluating genome size of different species has been found, by which the genome size evolution can be illustrated. The Cambrian explosion, as a major transition of biological complexity, essentially corresponds to a critical turning point in genome size evolution.

  10. Comparative Whole-Genome Mapping To Determine Staphylococcus aureus Genome Size, Virulence Motifs, and Clonality

    Science.gov (United States)

    Pantrang, Madhulatha; Stahl, Buffy; Briska, Adam M.; Stemper, Mary E.; Wagner, Trevor K.; Zentz, Emily B.; Callister, Steven M.; Lovrich, Steven D.; Henkhaus, John K.; Dykes, Colin W.

    2012-01-01

    Despite being a clonal pathogen, Staphylococcus aureus continues to acquire virulence and antibiotic-resistant genes located on mobile genetic elements such as genomic islands, prophages, pathogenicity islands, and the staphylococcal chromosomal cassette mec (SCCmec) by horizontal gene transfer from other staphylococci. The potential virulence of a S. aureus strain is often determined by comparing its pulsed-field gel electrophoresis (PFGE) or multilocus sequence typing profiles to that of known epidemic or virulent clones and by PCR of the toxin genes. Whole-genome mapping (formerly optical mapping), which is a high-resolution ordered restriction mapping of a bacterial genome, is a relatively new genomic tool that allows comparative analysis across entire bacterial genomes to identify regions of genomic similarities and dissimilarities, including small and large insertions and deletions. We explored whether whole-genome maps (WGMs) of methicillin-resistant S. aureus (MRSA) could be used to predict the presence of methicillin resistance, SCCmec type, and Panton-Valentine leukocidin (PVL)-producing genes on an S. aureus genome. We determined the WGMs of 47 diverse clinical isolates of S. aureus, including well-characterized reference MRSA strains, and annotated the signature restriction pattern in SCCmec types, arginine catabolic mobile element (ACME), and PVL-carrying prophage, PhiSa2 or PhiSa2-like regions on the genome. WGMs of these isolates accurately characterized them as MRSA or methicillin-sensitive S. aureus based on the presence or absence of the SCCmec motif, ACME and the unique signature pattern for the prophage insertion that harbored the PVL genes. Susceptibility to methicillin resistance and the presence of mecA, SCCmec types, and PVL genes were confirmed by PCR. A WGM clustering approach was further able to discriminate isolates within the same PFGE clonal group. These results showed that WGMs could be used not only to genotype S. aureus but also to

  11. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.

    Science.gov (United States)

    Roth, Gerhard; Walkowiak, Wolfgang

    2015-08-10

    In amphibians, nerve cell size is highly correlated with genome size, and increases in genome and cell size cause a retardation of the rate of development of nervous (as well as nonnervous) tissue leading to secondary simplification. This yields an inverse relationship between genome and cell size on the one hand and morphological complexity of the tectum mesencephali as the main visual center, the size of the torus semicircularis as the main auditory center, the size of the amphibian papilla as an important peripheral auditory structure, and the size of the cerebellum as a major sensorimotor center. Nervous structures developing later (e.g., torus and cerebellum) are more affected by secondary simplification than those that develop earlier (e.g., the tectum). This effect is more prominent in salamanders and caecilians than in frogs owing to larger genome and cells sizes in the former two taxa. We hypothesize that because of intragenomic evolutionary processes, important differences in brain morphology can arise independently of specific environmental selection.

  12. Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species.

    Science.gov (United States)

    Kanzi, Aquillah Mumo; Wingfield, Brenda Diana; Steenkamp, Emma Theodora; Naidoo, Sanushka; van der Merwe, Nicolaas Albertus

    2016-01-01

    In this study, the complete mitochondrial (mt) genomes of Chrysoporthe austroafricana (190,834 bp), C. cubensis (89,084 bp) and C. deuterocubensis (124,412 bp) were determined. Additionally, the mitochondrial genome of another member of the Cryphonectriaceae, namely Cryphonectria parasitica (158,902 bp), was retrieved and annotated for comparative purposes. These genomes showed high levels of synteny, especially in regions including genes involved in oxidative phosphorylation and electron transfer, unique open reading frames (uORFs), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), as well as intron positions. Comparative analyses revealed signatures of duplication events, intron number and length variation, and varying intronic ORFs which highlighted the genetic diversity of mt genomes among the Cryphonectriaceae. These mt genomes showed remarkable size polymorphism. The size polymorphism in the mt genomes of these closely related Chrysoporthe species was attributed to the varying number and length of introns, coding sequences and to a lesser extent, intergenic sequences. Compared to publicly available fungal mt genomes, the C. austroafricana mt genome is the second largest in the Ascomycetes thus far.

  13. Viral genome size distribution does not correlate with the antiquity of the host lineages

    Directory of Open Access Journals (Sweden)

    José Alberto Campillo-Balderas

    2015-12-01

    Full Text Available It has been suggested that RNA viruses and other subcellular entities endowed with RNA genomes are relicts from an ancient RNA/protein World which is believed to have preceded extant DNA/RNA/protein-based cells. According to their proponents, this possibility is supported by the small-genome sizes of RNA viruses and their manifold replication strategies, which have been interpreted as the result of an evolutionary exploration of different alternative genome organizations and replication strategies during early evolutionary stages. At the other extreme are the giant DNA viruses, whose genome sizes can be as large as those of some prokaryotes, and which have been grouped by some authors into a fourth domain of life. As argued here, the comparative analysis of the chemical nature and sizes of the viral genomes reported in GenBank does not reveal any obvious correlation with the phylogenetic history of their hosts. Accordingly, it is somewhat difficult to reconcile the proposal of the putative pre-DNA antiquity of RNA viruses, with their extraordinary diversity in plant hosts and their apparent absence among the Archaea. Other issues related to the genome size of all known viruses and subviral agents and the relationship with their hosts are discussed.

  14. Genome size of Alexandrium catenella and Gracilariopsis lemaneiformis estimated by flow cytometry

    Science.gov (United States)

    Du, Qingwei; Sui, Zhenghong; Chang, Lianpeng; Wei, Huihui; Liu, Yuan; Mi, Ping; Shang, Erlei; Zeeshan, Niaz; Que, Zhou

    2016-08-01

    Flow cytometry (FCM) technique has been widely applied to estimating the genome size of various higher plants. However, there is few report about its application in algae. In this study, an optimized procedure of FCM was exploited to estimate the genome size of two eukaryotic algae. For analyzing Alexandrium catenella, an important red tide species, the whole cell instead of isolated nucleus was studied, and chicken erythrocytes were used as an internal reference. The genome size of A. catenella was estimated to be 56.48 ± 4.14 Gb (1C), approximately nineteen times larger than that of human genome. For analyzing Gracilariopsis lemaneiformis, an important economical red alga, the purified nucleus was employed, and Arabidopsis thaliana and Chondrus crispus were used as internal references, respectively. The genome size of Gp. lemaneiformis was 97.35 ± 2.58 Mb (1C) and 112.73 ± 14.00 Mb (1C), respectively, depending on the different internal references. The results of this research will promote the related studies on the genomics and evolution of these two species.

  15. Transcriptional burst frequency and burst size are equally modulated across the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Roy D. [University of Tennessee, Knoxville (UTK); Simpson, Michael L [ORNL; Weinberger, Leor S. [University of California, San Diego; Razooky, B [University of California, San Diego; Cox, Chris D. [University of Tennessee, Knoxville (UTK); McCollum, James M. [Miami University; Trimeloni, Tom [Virginia Commonwealth University, Richland; Singh, A [University of California, San Diego

    2012-01-01

    Gene expression occurs either as an episodic process, characterized by pulsatile bursts or as a constitutive, Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy, building off of theoretical studies that exploit the time-resolved structure of stochastic fluctuations in gene expression, to develop a three-dimensional method for mapping underlying gene-regulatory mechanisms. Over 8,000 individual human genomic loci were analyzed, and at virtually all loci, episodic bursting as opposed to constitutive expression was found to be the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both frequency and size of transcriptional bursts vary equally across the human genome independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, while stronger expression loci modulate burst size to increase activity. Transcriptional activators, such as TNF, generate similar patterns of change in burst frequency and burst size. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.

  16. Genome-wide scan for quantitative trait loci influencing LDL size and plasma triglyceride in familial hypertriglyceridemia.

    Science.gov (United States)

    Austin, Melissa A; Edwards, Karen L; Monks, Stephanie A; Koprowicz, Kent M; Brunzell, John D; Motulsky, Arno G; Mahaney, Michael C; Hixson, James E

    2003-11-01

    Small, dense LDLs and hypertriglyceridemia, two highly correlated and genetically influenced risk factors, are known to predict for risk of coronary heart disease. The objective of this study was to perform a whole-genome scan for linkage to LDL size and triglyceride (TG) levels in 26 kindreds with familial hypertriglyceridemia (FHTG). LDL size was estimated using gradient gel electrophoresis, and genotyping was performed for 355 autosomal markers with an average heterozygosity of 76% and an average spacing of 10.2 centimorgans (cMs). Using variance components linkage analysis, one possible linkage was found for LDL size [logarithm of odds (LOD) = 2.1] on chromosome 6, peak at 140 cM distal to marker F13A1 (closest marker D6S2436). With adjustment for TG and/or HDL cholesterol, the LOD scores were reduced, but remained in exactly the same location. For TG, LOD scores of 2.56 and 2.44 were observed at two locations on chromosome 15, with peaks at 29 and 61 cM distal to marker D15S822 (closest markers D15S643 and D15S211, respectively). These peaks were retained with adjustment for LDL size and/or HDL cholesterol. These findings, if confirmed, suggest that LDL particle size and plasma TG levels could be caused by two different genetic loci in FHTG.

  17. GENOME SIZE DETERMINATION AND RAPD ANALYSIS OF FOUR EDIBLE AROIDS OF NORTH EAST INDIA

    Directory of Open Access Journals (Sweden)

    Jyoti P. Saikia1*, Bolin K. Konwar 2 and Susmita Singh3

    2010-10-01

    Full Text Available Four edible aroid species were selected for the study. The genomic DNA of the plants was isolated and estimated. A part of the genomic DNA was used for analysis using six different primers from Operon Technologies, USA. The genome size determined for the aroids is in the order of Colocasia esculenta> Xanthosoma caracu> Xanthosoma sagittifolium > Amorphophallus paeonifolius. Amorphophallus species was found to be 50% similar to both Xanthosoma caracu and Colocasia esculenta. The analysis will provide a ground for exploring the vast diversified aroid population of the region.

  18. Genome-wide patterns of large-size presence/absence variants in sorghum

    Institute of Scientific and Technical Information of China (English)

    LiMin Zhang; Hong Luo; ZhiQuan Liu; Yi Zhao; JingChu Luo; DongYun Hao; HaiChun Jing

    2014-01-01

    The presence/absence variants (PAVs) are a major source of genome structural variation and have profound effects on phenotypic and genomic variation in animals and humans. However, little is understood about PAVs in plant genomes. Our previous resequencing effort on three sorghum (Sorghum bicolour L.) genomes, each 12? coverage, uncovered 5 364 PAVs. Here, we report a detailed characterization of 51 large-size (>30 kb) PAVs. These PAVs spanned a total size of 2.92 Mb of the sorghum genome containing 202 known and predicted genes, including 38 genes annotated to encode celldeath and stress response genes. The PAVs varied considerably for repeat sequences and mobile elements with DNA trans-posons as the major components. The frequency and distribution of these PAVs differed substantial y across 96 sorghum inbred lines, and the low-and high frequency PAVs differed in their gene categories. This report shed new light on the occurrence and diversity of PAVs in sorghum genomes. Our research exemplifies a new perspective to explore genome structural variation for genetic improvement in plant breeding.

  19. Intra-specific variation in genome size in maize: cytological and phenotypic correlates

    Science.gov (United States)

    Realini, María Florencia; Poggio, Lidia; Cámara-Hernández, Julián; González, Graciela Esther

    2016-01-01

    Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin. PMID:26644343

  20. A Model of Genome Size Evolution for Prokaryotes in Stable and Fluctuating Environments.

    Science.gov (United States)

    Bentkowski, Piotr; Van Oosterhout, Cock; Mock, Thomas

    2015-08-04

    Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand how organisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results show that a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt.

  1. Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis

    Directory of Open Access Journals (Sweden)

    J. Gordon Burleigh

    2012-01-01

    Full Text Available Gymnosperms, comprising cycads, Ginkgo, Gnetales, and conifers, represent one of the major groups of extant seed plants. Yet compared to angiosperms, little is known about the patterns of diversification and genome evolution in gymnosperms. We assembled a phylogenetic supermatrix containing over 4.5 million nucleotides from 739 gymnosperm taxa. Although 93.6% of the cells in the supermatrix are empty, the data reveal many strongly supported nodes that are generally consistent with previous phylogenetic analyses, including weak support for Gnetales sister to Pinaceae. A lineage through time plot suggests elevated rates of diversification within the last 100 million years, and there is evidence of shifts in diversification rates in several clades within cycads and conifers. A likelihood-based analysis of the evolution of genome size in 165 gymnosperms finds evidence for heterogeneous rates of genome size evolution due to an elevated rate in Pinus.

  2. Genome-wide estimates of coancestry, inbreeding and effective population size in the Spanish Holstein population.

    Directory of Open Access Journals (Sweden)

    Silvia Teresa Rodríguez-Ramilo

    Full Text Available Estimates of effective population size in the Holstein cattle breed have usually been low despite the large number of animals that constitute this breed. Effective population size is inversely related to the rates at which coancestry and inbreeding increase and these rates have been high as a consequence of intense and accurate selection. Traditionally, coancestry and inbreeding coefficients have been calculated from pedigree data. However, the development of genome-wide single nucleotide polymorphisms has increased the interest of calculating these coefficients from molecular data in order to improve their accuracy. In this study, genomic estimates of coancestry, inbreeding and effective population size were obtained in the Spanish Holstein population and then compared with pedigree-based estimates. A total of 11,135 animals genotyped with the Illumina BovineSNP50 BeadChip were available for the study. After applying filtering criteria, the final genomic dataset included 36,693 autosomal SNPs and 10,569 animals. Pedigree data from those genotyped animals included 31,203 animals. These individuals represented only the last five generations in order to homogenise the amount of pedigree information across animals. Genomic estimates of coancestry and inbreeding were obtained from identity by descent segments (coancestry or runs of homozygosity (inbreeding. The results indicate that the percentage of variance of pedigree-based coancestry estimates explained by genomic coancestry estimates was higher than that for inbreeding. Estimates of effective population size obtained from genome-wide and pedigree information were consistent and ranged from about 66 to 79. These low values emphasize the need of controlling the rate of increase of coancestry and inbreeding in Holstein selection programmes.

  3. Genome-wide estimates of coancestry, inbreeding and effective population size in the Spanish Holstein population.

    Science.gov (United States)

    Rodríguez-Ramilo, Silvia Teresa; Fernández, Jesús; Toro, Miguel Angel; Hernández, Delfino; Villanueva, Beatriz

    2015-01-01

    Estimates of effective population size in the Holstein cattle breed have usually been low despite the large number of animals that constitute this breed. Effective population size is inversely related to the rates at which coancestry and inbreeding increase and these rates have been high as a consequence of intense and accurate selection. Traditionally, coancestry and inbreeding coefficients have been calculated from pedigree data. However, the development of genome-wide single nucleotide polymorphisms has increased the interest of calculating these coefficients from molecular data in order to improve their accuracy. In this study, genomic estimates of coancestry, inbreeding and effective population size were obtained in the Spanish Holstein population and then compared with pedigree-based estimates. A total of 11,135 animals genotyped with the Illumina BovineSNP50 BeadChip were available for the study. After applying filtering criteria, the final genomic dataset included 36,693 autosomal SNPs and 10,569 animals. Pedigree data from those genotyped animals included 31,203 animals. These individuals represented only the last five generations in order to homogenise the amount of pedigree information across animals. Genomic estimates of coancestry and inbreeding were obtained from identity by descent segments (coancestry) or runs of homozygosity (inbreeding). The results indicate that the percentage of variance of pedigree-based coancestry estimates explained by genomic coancestry estimates was higher than that for inbreeding. Estimates of effective population size obtained from genome-wide and pedigree information were consistent and ranged from about 66 to 79. These low values emphasize the need of controlling the rate of increase of coancestry and inbreeding in Holstein selection programmes.

  4. Coconut genome size determined by flow cytometry: Tall versus Dwarf types.

    Science.gov (United States)

    Freitas Neto, M; Pereira, T N S; Geronimo, I G C; Azevedo, A O N; Ramos, S R R; Pereira, M G

    2016-02-11

    Coconuts (Cocos nucifera L.) are tropical palm trees that are classified into Tall and Dwarf types based on height, and both types are diploid (2n = 2x = 32 chromosomes). The reproduction mode is autogamous for Dwarf types and allogamous for Tall types. One hypothesis for the origin of the Dwarf coconut suggests that it is a Tall variant that resulted from either mutation or inbreeding, and differences in genome size between the two types would support this hypothesis. In this study, we estimated the genome sizes of 14 coconut accessions (eight Tall and six Dwarf types) using flow cytometry. Nuclei were extracted from leaf discs and stained with propidium iodide, and Pisum sativum (2C = 9.07 pg DNA) was used as an internal standard. Histograms with good resolution and low coefficients of variation (2.5 to 3.2%) were obtained. The 2C DNA content ranged from 5.72 to 5.48 pg for Tall accessions and from 5.58 to 5.52 pg for Dwarf accessions. The mean genome sizes for Tall and Dwarf specimens were 5.59 and 5.55 pg, respectively. Among all accessions, Rennel Island Tall had the highest mean DNA content (5.72 pg), whereas West African Tall had the lowest (5.48 pg). The mean coconut genome size (2C = 5.57 pg, corresponding to 2723.73 Mbp/haploid set) was classified as small. Only small differences in genome size existed among the coconut accessions, suggesting that the Dwarf type did not evolve from the Tall type.

  5. Multi-beam raindrop size distributions retrievals on the Doppler spectra: Influence of averaging and mean horizontal wind correction

    NARCIS (Netherlands)

    Unal, C.M.H.

    2012-01-01

    Acquiring the raindrop size distribution (DSD) from radar data is still a challenge. For profiling radar, this distribution can be estimated from the Doppler spectra. However the Doppler spectrum is not a direct measure of the DSD. The radial component of the wind shifts the Doppler spectrum related

  6. Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis.

    Science.gov (United States)

    Makapedua, Daisy Monica; Barucca, Marco; Forconi, Mariko; Antonucci, Niki; Bizzaro, Davide; Amici, Adolfo; Carradori, Maria Rita; Olmo, Ettore; Canapa, Adriana

    2011-09-01

    The living fossil Latimeria menadoensis is important to understand sarcopterygian evolution. To gain further insights into this fish species we studied its genome size, GC% and 5mC level. The genome size and the GC% of the Indonesian coelacanth seem to be very similar to those of the African coelacanth. Moreover the GC%, the CpG frequency and the 5mC level of L. menadoensis are more similar to those of fish and amphibians than to those of mammals, birds and reptiles and this is in line with the hypothesis that two different DNA methylation and CpG shortage equilibria arose during vertebrate evolution. Our results suggest that the genome of L. menadoensis has remained unchanged for several million years, maybe since the origin of the lineage which from lobe-finned fish led to tetrapods. These data fit a conservative evolutionary landscape and suggest that the genome of the extant crossopterygians may be a sort of evolutionarily frozen genome.

  7. Estimating variable effective population sizes from multiple genomes: a sequentially markov conditional sampling distribution approach.

    Science.gov (United States)

    Sheehan, Sara; Harris, Kelley; Song, Yun S

    2013-07-01

    Throughout history, the population size of modern humans has varied considerably due to changes in environment, culture, and technology. More accurate estimates of population size changes, and when they occurred, should provide a clearer picture of human colonization history and help remove confounding effects from natural selection inference. Demography influences the pattern of genetic variation in a population, and thus genomic data of multiple individuals sampled from one or more present-day populations contain valuable information about the past demographic history. Recently, Li and Durbin developed a coalescent-based hidden Markov model, called the pairwise sequentially Markovian coalescent (PSMC), for a pair of chromosomes (or one diploid individual) to estimate past population sizes. This is an efficient, useful approach, but its accuracy in the very recent past is hampered by the fact that, because of the small sample size, only few coalescence events occur in that period. Multiple genomes from the same population contain more information about the recent past, but are also more computationally challenging to study jointly in a coalescent framework. Here, we present a new coalescent-based method that can efficiently infer population size changes from multiple genomes, providing access to a new store of information about the recent past. Our work generalizes the recently developed sequentially Markov conditional sampling distribution framework, which provides an accurate approximation of the probability of observing a newly sampled haplotype given a set of previously sampled haplotypes. Simulation results demonstrate that we can accurately reconstruct the true population histories, with a significant improvement over the PSMC in the recent past. We apply our method, called diCal, to the genomes of multiple human individuals of European and African ancestry to obtain a detailed population size change history during recent times.

  8. Standard practice for determining average grain size using electron backscatter diffraction (EBSD) in fully recrystallized polycrystalline materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is used to determine grain size from measurements of grain areas from automated electron backscatter diffraction (EBSD) scans of polycrystalline materials. 1.2 The intent of this practice is to standardize operation of an automated EBSD instrument to measure ASTM G directly from crystal orientation. The guidelines and caveats of E112 apply here, but the focus of this standard is on EBSD practice. 1.3 This practice is only applicable to fully recrystallized materials. 1.4 This practice is applicable to any crystalline material which produces EBSD patterns of sufficient quality that a high percentage of the patterns can be reliably indexed using automated indexing software. 1.5 The practice is applicable to any type of grain structure or grain size distribution. 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parenthe...

  9. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals.

    Science.gov (United States)

    Herculano-Houzel, Suzana; Messeder, Débora J; Fonseca-Azevedo, Karina; Pantoja, Nilma A

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  10. Genome size as a key to evolutionary complex aquatic plants: polyploidy and hybridization in Callitriche (Plantaginaceae.

    Directory of Open Access Journals (Sweden)

    Jan Prančl

    Full Text Available Despite their complex evolutionary histories, aquatic plants are highly underrepresented in contemporary biosystematic studies. Of them, the genus Callitriche is particularly interesting because of such evolutionary features as wide variation in chromosome numbers and pollination systems. However, taxonomic difficulties have prevented broader investigation of this genus. In this study we applied flow cytometry to Callitriche for the first time in order to gain an insight into evolutionary processes and genome size differentiation in the genus. Flow cytometry complemented by confirmation of chromosome counts was applied to an extensive dataset of 1077 Callitriche individuals from 495 localities in 11 European countries and the USA. Genome size was determined for 12 taxa. The results suggest that many important processes have interacted in the evolution of the genus, including polyploidization and hybridization. Incongruence between genome size and ploidy level, intraspecific variation in genome size, formation of autotriploid and hybridization between species with different pollination systems were also detected. Hybridization takes place particularly in the diploid-tetraploid complex C. cophocarpa-C. platycarpa, for which the triploid hybrids were frequently recorded in the area of co-occurrence of its parents. A hitherto unknown hybrid (probably C. hamulata × C. cophocarpa with a unique chromosome number was discovered in the Czech Republic. However, hybridization occurs very rarely among most of the studied species. The main ecological preferences were also compared among the taxa collected. Although Callitriche taxa often grow in mixed populations, the ecological preferences of individual species are distinctly different in some cases. Anyway, flow cytometry is a very efficient method for taxonomic delimitation, determination and investigation of Callitriche species, and is even able to distinguish homoploid taxa and identify introduced

  11. Genome size and phenotypic variation of Nymphaea (Nymphaeaceae species from Eastern Europe and temperate Asia

    Directory of Open Access Journals (Sweden)

    Magdalena Anna Dąbrowska

    2015-07-01

    Full Text Available Despite long-term research, the aquatic genus Nymphaea still possesses major taxonomic challenges. High phenotypic plasticity and possible interspecific hybridization often make it impossible to identify individual specimens. The main aim of this study was to assess phenotypic variation in Nymphaea taxa sampled over a wide area of Eastern Europe and temperate Asia. Samples were identified based on species-specific genome sizes and diagnostic morphological characters for each taxon were then selected. A total of 353 specimens from 32 populations in Poland, Russia and Ukraine were studied, with nine biometric traits being examined. Although some specimens morphologically matched N. ×borealis (a hybrid between N. alba and N. candida according to published determination keys, only one hybrid individual was revealed based on genome size data. Other specimens with intermediate morphology possessed genome size corresponding to N. alba, N. candida or N. tetragona. This indicates that natural hybridization between N. alba and N. candida is not as frequent as previously suggested. Our results also revealed a considerably higher variation in the studied morphological traits (especially the quantitative ones in N. alba and N. candida than reported in the literature. A determination key for the investigated Nymphaea species is provided, based on taxonomically-informative morphological characters identified in our study.

  12. Flow cytometric analysis using SYBR Green I for genome size estimation in coffee.

    Science.gov (United States)

    Ronildo Clarindo, Wellington; Roberto Carvalho, Carlos

    2011-02-01

    Plant genome size has been measured by flow cytometry using propidium iodide as a dye for nuclear DNA staining. However, some authors have reported the occurrence of genome size estimation errors, especially in plants rich in secondary metabolites, such as the coffee tree. In this context, we tested an alternative cytometric protocol using the SYBR Green I as a fluorochrome for stoichiometrically staining nuclear double-stranded DNA in Coffea canephora (2x) and Coffea arabica (4x). The results showed that the respective mean genome size measured from nuclei stained with SYBR Green I and propidium iodide was statistically identical. However, the G(0)/G(1) peaks of nuclei stained with SYBR Green I exhibited lower coefficient variations (1.57-2.85%) compared to those stained with propidium iodide (2.75-4.80%). Coefficient variation statistical data suggest that SYBR Green I is adequate for stoichiometric nuclei staining using this methodology. Our results provide evidence that SYBR Green I can be used in flow cytometry measurements of plants, with the advantages of minimizing errors in nuclear DNA content quantification, staining relatively quicker, with high affinity, and being less mutagenic than propidium iodide.

  13. Estimation of the Whitefly Bemisia tabaci Genome Size Based on k-mer and Flow Cytometric Analyses

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    2015-07-01

    Full Text Available Whiteflies of the Bemisia tabaci (Hemiptera: Aleyrodidae cryptic species complex are among the most important agricultural insect pests in the world. These phloem-feeding insects can colonize over 1000 species of plants worldwide and inflict severe economic losses to crops, mainly through the transmission of pathogenic viruses. Surprisingly, there is very little genomic information about whiteflies. As a starting point to genome sequencing, we report a new estimation of the genome size of the B. tabaci B biotype or Middle East-Asia Minor 1 (MEAM1 population. Using an isogenic whitefly colony with over 6500 haploid male individuals for genomic DNA, three paired-end genomic libraries with insert sizes of ~300 bp, 500 bp and 1 Kb were constructed and sequenced on an Illumina HiSeq 2500 system. A total of ~50 billion base pairs of sequences were obtained from each library. K-mer analysis using these sequences revealed that the genome size of the whitefly was ~682.3 Mb. In addition, the flow cytometric analysis estimated the haploid genome size of the whitefly to be ~690 Mb. Considering the congruency between both estimation methods, we predict the haploid genome size of B. tabaci MEAM1 to be ~680–690 Mb. Our data provide a baseline for ongoing efforts to assemble and annotate the B. tabaci genome.

  14. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    Science.gov (United States)

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented.

  15. Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L.

    Science.gov (United States)

    Ali, Muzamil; Mujib, A; Tonk, Dipti; Zafar, Nadia

    2017-01-01

    In the present study, an improved plant regeneration protocol via primary and secondary somatic embryogenesis was established in two Co-1 and Rajendra Swathi (RS) varieties of Coriandrum sativum L. Callus was induced from root explants on 2, 4-D (0.5-2.0 mg/l) supplemented MS. The addition of BA (0.2 mg/l) improved callus induction and proliferation response significantly. The maximum callus induction frequency was on 1.0 mg/l 2, 4-D and 0.2 mg/l BA added MS medium (77.5 % in Co-1 and 72.3 % in RS). The callus transformed into embryogenic callus on 2, 4-D added MS with maximum embryogenic frequency was on 1.0 mg/l. The granular embryogenic callus differentiated into globular embryos on induction medium, which later progressed to heart-, torpedo- and cotyledonary embryos on medium amended with 0.5 mg/l NAA and 0.2 mg/l BA. On an average, 2-3 secondary somatic embryos (SEs) were developed on mature primary SEs, which increased the total embryo numbers in culture. Histology and scanning electron microscopy (SEM) studies are presented for the origin, development of primary and secondary embryos in coriander. Later, these induced embryos converted into plantlets on 1.0 mg/l BA and 0.2 mg/l NAA-amended medium. The regenerated plantlets were cultured on 0.5 mg/l IBA added ½ MS for promotion of roots. The well-rooted plantlets were acclimatized and transferred to soil. The genetic stability of embryo-regenerated plant was analyzed by flow cytometry with optimized Pongamia pinnata as standard. The 2C DNA content of RS coriander variety was estimated to 5.1 pg; the primary and secondary somatic embryo-derived plants had 5.26 and 5.44 pg 2C DNA content, respectively. The regenerated plants were genetically stable, genome size similar to seed-germinated coriander plants.

  16. An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies

    DEFF Research Database (Denmark)

    Thompson, Wesley K.; Wang, Yunpeng; Schork, Andrew J.;

    2015-01-01

    for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome......-wide association study (GWAS) test statistics. Test statistics corresponding to null associations are modeled as random draws from a normal distribution with zero mean; test statistics corresponding to non-null associations are also modeled as normal with zero mean, but with larger variance. The model is fit via...... minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local...

  17. Population genomics of eusocial insects: the costs of a vertebrate-like effective population size.

    Science.gov (United States)

    Romiguier, J; Lourenco, J; Gayral, P; Faivre, N; Weinert, L A; Ravel, S; Ballenghien, M; Cahais, V; Bernard, A; Loire, E; Keller, L; Galtier, N

    2014-03-01

    The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes – a marker of the effective population size – in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.

  18. Cytogenetics of Aspidogaster limacoides (Trematoda, Aspidogastrea): karyotype, spermatocyte division, and genome size.

    Science.gov (United States)

    Bombarová, Marta; Špakulová, Marta; Kello, Martin; Nguyen, Petr; Bazsalovicsová, Eva; Králová-Hromadová, Ivica

    2015-04-01

    A detailed cytogenetic analysis of the aspidogastrean fluke Aspidogaster limacoides revealed a karyotype consisting of six medium-sized chromosome pairs. The first and the last pairs were two-armed while four remaining were one-armed; 2n = 12, n = 1 m + 1 m - sm + 4a. Fluorescence in situ hybridization with 18S ribosomal DNA (rDNA) probe detected a single cluster of ribosomal genes (NOR) located in pericentromeric regions of the long arms of the third chromosome pair in a site of secondary constriction apparent in meiotic prophase, especially in diplotene. The silver nitrate staining showed only a single active NOR site on one of homologous chromosomes in the majority of spermatogonia and spermatocyte divisions. A course of meiosis corresponded to standard schemes. The nucleolus was apparent in early meiotic spermatocytes and disintegrated by the end of pachytene. For the first time in Aspidogastrea, the genome size was determined. The flow cytometry showed 1.21 pg DNA per haploid nucleus in A. limacoides which is in accordance with relatively low genome sizes of other flukes and tapeworms (Neodermata). A comparison of cytogenetic data available to date in the fluke sister groups Aspidogastrea and Digenea suggests that the lower chromosome number of Aspidogastrea might represent an ancestral condition and their split might have been accompanied by an increase in chromosome number via either chromosome fissions or paleopolyploidy.

  19. Genome Sizes in Hepatica Mill: (Ranunculaceae Show a Loss of DNA, Not a Gain, in Polyploids

    Directory of Open Access Journals (Sweden)

    B. J. M. Zonneveld

    2010-01-01

    , and a possible pentaploid. The somatic nuclear DNA contents (2C-value, as measured by flow cytometry with propidium iodide, were shown to range from 33 to 80 pg. The Asiatic and American species, often considered subspecies of H. nobilis, could be clearly distinguished from European H. nobilis. DNA content confirmed the close relationships in the Asiatic species, and these are here considered as subspecies of H. asiatica. Parents for the allotetraploid species could be suggested based on their nuclear DNA content. Contrary to the increase in genome size suggested earlier for Hepatica, a significant (6%–14% loss of nuclear DNA in the natural allopolyploids was found.

  20. One size fits all? Direct evidence for the heterogeneity of genetic drift throughout the genome.

    Science.gov (United States)

    Jiménez-Mena, Belén; Tataru, Paula; Brøndum, Rasmus F; Sahana, Goutam; Guldbrandtsen, Bernt; Bataillon, Thomas

    2016-07-01

    Effective population size (Ne) is a central parameter in population and conservation genetics. It measures the magnitude of genetic drift, rates of accumulation of inbreeding in a population, and it conditions the efficacy of selection. It is often assumed that a single Ne can account for the evolution of genomes. However, recent work provides indirect evidence for heterogeneity in Ne throughout the genome. We study this by examining genome-wide diversity in the Danish Holstein cattle breed. Using the differences in allele frequencies over a single generation, we directly estimated Ne among autosomes and smaller windows within autosomes. We found statistically significant variation in Ne at both scales. However, no correlation was found between the detected regional variability in Ne, and proxies for the intensity of linked selection (local recombination rate, gene density), or the presence of either past strong selection or current artificial selection on traits of economic value. Our findings call for further caution regarding the wide applicability of the Ne concept for understanding quantitatively processes such as genetic drift and accumulation of consanguinity in both natural and managed populations.

  1. Optimizing k-mer size using a variant grid search to enhance de novo genome assembly

    Science.gov (United States)

    Cha, Soyeon; Bird, David McK

    2016-01-01

    Largely driven by huge reductions in per-base costs, sequencing nucleic acids has become a near-ubiquitous technique in laboratories performing biological and biomedical research. Most of the effort goes to re-sequencing, but assembly of de novogenerated, raw sequence reads into contigs that span as much of the genome as possible is central to many projects. Although truly complete coverage is not realistically attainable, maximizing the amount of sequence that can be correctly assembled into contigs contributes to coverage. Here we compare three commonly used assembly algorithms (ABySS, Velvet and SOAPdenovo2), and show that empirical optimization of k-mer values has a disproportionate influence on de novo assembly of a eukaryotic genome, the nematode parasite Meloidogynechitwoodi. Each assembler was challenged with about 40 million Iluumina II paired-end reads, and assemblies performed under a range of k-mer sizes. In each instance, the optimal k-mer was 127, although based on N50 values,ABySS was more efficient than the others. That the assembly was not spurious was established using the “Core Eukaryotic Gene Mapping Approach”, which indicated that 98.79% of the M. chitwoodi genome was accounted for by the assembly. Subsequent gene finding and annotation are consistent with this and suggest that k-mer optimization contributes to the robustness of assembly. PMID:28104957

  2. Genome-Wide Association Study on Male Genital Shape and Size in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Baku Takahara

    Full Text Available Male genital morphology of animals with internal fertilization and promiscuous mating systems have been one of the most diverse and rapidly evolving morphological traits. The male genital morphology in general is known to have low phenotypic and genetic variations, but the genetic basis of the male genital variation remains unclear. Drosophila melanogaster and its closely related species are morphologically very similar, but the shapes of the posterior lobe, a cuticular projection on the male genital arch are distinct from each other, representing a model system for studying the genetic basis of male genital morphology. In this study, we used highly inbred whole genome sequenced strains of D. melanogaster to perform genome wide association analysis on posterior lobe morphology. We quantified the outline shape of posterior lobes with Fourier coefficients obtained from elliptic Fourier analysis and performed principal component analysis, and posterior lobe size. The first and second principal components (PC1 and PC2 explained approximately 88% of the total variation of the posterior lobe shape. We then examined the association between the principal component scores and posterior lobe size and 1902142 single nucleotide polymorphisms (SNPs. As a result, we obtained 15, 14 and 15 SNPs for PC1, PC2 and posterior lobe size with P-values smaller than 10(-5. Based on the location of the SNPs, 13, 13 and six protein coding genes were identified as potential candidates for PC1, PC2 and posterior lobe size, respectively. In addition to the previous findings showing that the intraspecific posterior shape variation are regulated by multiple QTL with strong effects, the present study suggests that the intraspecific variation may be under polygenic regulation with a number of loci with small effects. Further studies are required for investigating whether these candidate genes are responsible for the intraspecific posterior lobe shape variation.

  3. Genome size variation in Corchorus olitorius (Malvaceae s.l.) and its correlation with elevation and phenotypic traits.

    Science.gov (United States)

    Benor, Solomon; Fuchs, Jörg; Blattner, Frank R

    2011-07-01

    In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = -0.29, p genome size and growing elevation (r = 0.59, p genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.

  4. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae).

    Science.gov (United States)

    Chumová, Zuzana; Krejčíková, Jana; Mandáková, Terezie; Suda, Jan; Trávníček, Pavel

    2015-01-01

    The genus Anthoxanthum (sweet vernal grass, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x) and one high (~16x-18x) polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus.

  5. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae.

    Directory of Open Access Journals (Sweden)

    Zuzana Chumová

    Full Text Available The genus Anthoxanthum (sweet vernal grass, Poaceae represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x and one high (~16x-18x polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus.

  6. Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach.

    Science.gov (United States)

    Balao, Francisco; Herrera, Javier; Talavera, Salvador

    2011-10-01

    • Chromosomal duplications and increases in DNA amount have the potential to alter quantitative plant traits like flower number, plant stature or stomata size. This has been documented often across species, but information on whether such effects also occur within species (i.e. at the microevolutionary or population scale) is scarce. • We studied trait covariation associated with polyploidy and genome size (both monoploid and total) in 22 populations of Dianthus broteri s.l., a perennial herb with several cytotypes (2x, 4x, 6x and 12x) that do not coexist spatially. Principal component scores of organ size/number variations were assessed as correlates of polyploidy, and phylogenetic relatedness among populations was controlled using phylogenetic generalized least squares. • Polyploidy covaried with organ dimensions, causing multivariate characters to increase, remain unchanged, or decrease with DNA amount. Variations in monoploid DNA amount had detectable consequences on some phenotypic traits. According to the analyses, some traits would experience phenotypic selection, while others would not. • We show that polyploidy contributes to decouple variation among traits in D. broteri, and hypothesize that polyploids may experience an evolutionary advantage in this plant lineage, for example, if it helps to overcome the constraints imposed by trait integration.

  7. State Averages

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...

  8. The effects of parameter estimation on minimizing the in-control average sample size for the double sampling X bar chart

    Directory of Open Access Journals (Sweden)

    Michael B.C. Khoo

    2013-11-01

    Full Text Available The double sampling (DS X bar chart, one of the most widely-used charting methods, is superior for detecting small and moderate shifts in the process mean. In a right skewed run length distribution, the median run length (MRL provides a more credible representation of the central tendency than the average run length (ARL, as the mean is greater than the median. In this paper, therefore, MRL is used as the performance criterion instead of the traditional ARL. Generally, the performance of the DS X bar chart is investigated under the assumption of known process parameters. In practice, these parameters are usually estimated from an in-control reference Phase-I dataset. Since the performance of the DS X bar chart is significantly affected by estimation errors, we study the effects of parameter estimation on the MRL-based DS X bar chart when the in-control average sample size is minimised. This study reveals that more than 80 samples are required for the MRL-based DS X bar chart with estimated parameters to perform more favourably than the corresponding chart with known parameters.

  9. Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2009-06-01

    A general reduced HETP (height equivalent to a theoretical plate) equation is proposed that accounts for the mass transfer of a wide range of molecular weight compounds in monolithic columns. The detailed derivatization of each one of the individual and independent mass transfer contributions (longitudinal diffusion, eddy dispersion, film mass transfer resistance, and trans-skeleton mass transfer resistance) is discussed. The reduced HETPs of a series of small molecules (phenol, toluene, acenaphthene, and amylbenzene) and of a larger molecule, insulin, were measured on three research grade monolithic columns (M150, M225, M350) having different average pore size (approximately 150, 225, and 350 A, respectively) but the same dimension (100 mm x 4.6 mm). The first and second central moments of 2 muL samples were measured and corrected for the extra-column contributions. The h data were fitted to the new HETP equation in order to identify which contribution controls the band broadening in monolithic columns. The contribution of the B-term was found to be negligible compared to that of the A-term, even at very low reduced velocities (numass transfer across the column. Experimental chromatograms exhibited variable degrees of systematic peak fronting, depending on the column studied. The heterogeneity of the distribution of eluent velocities from the column center to its wall (average 5%) is the source of this peak fronting. At high reduced velocities (nu>5), the C-term of the monolithic columns is controlled by film mass transfer resistance between the eluent circulating in the large throughpores and the eluent stagnant inside the thin porous skeleton. The experimental Sherwood number measured on the monolith columns increases from 0.05 to 0.22 while the adsorption energy increases by nearly 6 kJ/mol. Stronger adsorption leads to an increase in the value of the estimated film mass transfer coefficient when a first order film mass transfer rate is assumed (j proportional

  10. Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules.

    Science.gov (United States)

    Rashid, M Harun-or; Young, J Peter W; Everall, Isobel; Clercx, Pia; Willems, Anne; Santhosh Braun, Markus; Wink, Michael

    2015-09-01

    Rhizobial strains isolated from effective root nodules of field-grown lentil (Lens culinaris) from different parts of Bangladesh were previously analysed using sequences of the 16S rRNA gene, three housekeeping genes (recA, atpD and glnII) and three nodulation genes (nodA, nodC and nodD), DNA fingerprinting and phenotypic characterization. Analysis of housekeeping gene sequences and DNA fingerprints indicated that the strains belonged to three novel clades in the genus Rhizobium. In present study, a representative strain from each clade was further characterized by determination of cellular fatty acid compositions, carbon substrate utilization patterns and DNA-DNA hybridization and average nucleotide identity (ANI) analyses from whole-genome sequences. DNA-DNA hybridization showed 50-62% relatedness to their closest relatives (the type strains of Rhizobium etli and Rhizobium phaseoli) and 50-60% relatedness to each other. These results were further supported by ANI values, based on genome sequencing, which were 87-92% with their close relatives and 88-89% with each other. On the basis of these results, three novel species, Rhizobium lentis sp. nov. (type strain BLR27(T) = LMG 28441(T) = DSM 29286(T)), Rhizobium bangladeshense sp. nov. (type strain BLR175(T) = LMG 28442(T) = DSM 29287(T)) and Rhizobium binae sp. nov. (type strain BLR195(T) = LMG 28443(T) = DSM 29288(T)), are proposed. These species share common nodulation genes (nodA, nodC and nodD) that are similar to those of the symbiovar viciae.

  11. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  12. Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus

    Directory of Open Access Journals (Sweden)

    Mounsey Kate E

    2012-01-01

    Full Text Available Abstract Background The lack of genomic data available for mites limits our understanding of their biology. Evolving high-throughput sequencing technologies promise to deliver rapid advances in this area, however, estimates of genome size are initially required to ensure sufficient coverage. Methods Quantitative real-time PCR was used to estimate the genome sizes of the burrowing ectoparasitic mite Sarcoptes scabiei, the non-burrowing ectoparasitic mite Psoroptes ovis, and the free-living house dust mite Dermatophagoides pteronyssinus. Additionally, the chromosome number of S. scabiei was determined by chromosomal spreads of embryonic cells derived from single eggs. Results S. scabiei cells were shown to contain 17 or 18 small (S. scabiei and P. ovis were 96 (± 7 Mb and 86 (± 2 Mb respectively, among the smallest arthropod genomes reported to date. The D. pteronyssinus genome was estimated to be larger than its parasitic counterparts, at 151 Mb in female mites and 218 Mb in male mites. Conclusions This data provides a starting point for understanding the genetic organisation and evolution of these astigmatid mites, informing future sequencing projects. A comparitive genomic approach including these three closely related mites is likely to reveal key insights on mite biology, parasitic adaptations and immune evasion.

  13. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability

    Directory of Open Access Journals (Sweden)

    Joardar Vinita

    2012-12-01

    Full Text Available Abstract Background The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Results Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus, A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum. The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25–36 Kb among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus, contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. Conclusions The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent

  14. Testing the link between genome size and growth rate in maize

    Directory of Open Access Journals (Sweden)

    Maud I. Tenaillon

    2016-09-01

    Full Text Available Little is known about the factors driving within species Genome Size (GS variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt. As a proxy for growth rate, we measured the Leaf Elongation Rate maximum during nighttime (LERmax as well as GS in all inbred lines. In addition we combined available and new nucleotide polymorphism data at 29,090 sites to characterize the genetic structure of our panel. We found significant variation for both LERmax and GS among groups defined by our genetic structuring. Tropicals displayed larger GS than Flints while Dents exhibited intermediate values. LERmax followed the opposite trend with greater growth rate in Flints than in Tropicals. In other words, LERmax and GS exhibited a significantly negative correlation (r = − 0.27. However, this correlation was driven by among-group variation rather than within-group variation—it was no longer significant after controlling for structure and kinship among inbreds. Our results indicate that selection on GS may have accompanied ancient maize diffusion from its center of origin, with large DNA content excluded from temperate areas. Whether GS has been targeted by more intense selection during modern breeding within groups remains an open question.

  15. Genome size and base composition of five Pinus species from the Balkan region.

    Science.gov (United States)

    Bogunic, F; Muratovic, E; Brown, S C; Siljak-Yakovlev, S

    2003-08-01

    The 2C DNA content and base composition of five Pinus (2 n=24) species and two Pinus subspecies from the Balkan region have been estimated by flow cytometry. P. heldreichii (five populations) and P. peuce (one population) were assessed for the first time, as also were subspecies of P. nigra (three populations-two of subspecies nigra and one of subspecies dalmatica) along with P. sylvestris, and P. mugo from the same region. The 2C DNA values of these Pinus ranged from 42.5 pg to 54.9 pg (41.7-53.8 x 10(9)bp), and the base composition was quite stable (about 39.5% GC). Significant differences were observed between two subspecies of P. nigra and even between two populations of subsp. nigra. The two other species (P. sylvestris and P. mugo) had 2C values of 42.5 pg and 42.8 pg, respectively, while that of P. peuce was 54.9 pg. These genome sizes are in accordance with published values except for P. sylvestris, which was 20% below estimates made by other authors.

  16. Entire genome sequence analysis of genotype IX Newcastle disease viruses reveals their early-genotype phylogenetic position and recent-genotype genome size

    Directory of Open Access Journals (Sweden)

    Hu Shunling

    2011-03-01

    Full Text Available Abstract Background Six nucleotide (nt insertion in the 5'-noncoding region (NCR of the nucleoprotein (NP gene of Newcaslte disease virus (NDV is considered to be a genetic marker for recent genotypes of NDV, which emerged after 1960. However, F48-like NDVs from China, identified a 6-nt insert in the NP gene, have been previously classified into genotype III or genotype IX. Results In order to clarify their phylogenetic position and explore the origin of NDVs with the 6-nt insert and its significance in NDV evolution, we determined the entire genome sequences of five F48-like viruses isolated in China between 1946 and 2002 by RT-PCR amplification of overlapping fragments of full-length genome and rapid amplification of cDNA ends. All the five NDV isolates shared the same genome size of 15,192-nt with the recent genotype V-VIII viruses whereas they had the highest homology with early genotype III and IV isolates. Conclusions The unique characteristic of the genome size and phylogenetic position of F48-like viruses warrants placing them in a separate geno-group, genotype IX. Results in this study also suggest that genotype IX viruses most likely originate from a genotype III virus by insertion of a 6-nt motif in the 5'-NCR of the NP gene which had occurred as early as in 1940 s, and might be the common origin of genotype V-VIII viruses.

  17. Flow cytometric determination of genome size in European sunbleak Leucaspius delineatus (Heckel, 1843).

    Science.gov (United States)

    Filipiak, Marta; Tylko, Grzegorz; Kilarski, Wincenty

    2012-04-01

    The aim of this study was to compare DNA content in hepatocyte and erythrocyte nuclei of the European sunbleak, Leucaspius delineatus, in relation to nuclear and cell size by means of flow cytometry and fluorescence microscopy. The DNA standards, chicken and rainbow trout erythrocytes, were prepared in parallel with both cell types, with initial separation of liver cells in pepsin solution followed by cell filtering. Standards and investigated cells were stained with a mixture of propidium iodide, citric acid, and Nonidet P40 in the presence of RNAse, and fluorescence of at least 50,000 nuclei was analyzed by flow cytometry. Average cell size was determined by flow cytometry, using fresh cell suspension in relation to latex beads of known diameter. The size of nuclei was examined on the basis of digital micrographs obtained by fluorescence microscopy after nuclei staining with DAPI. The sunbleak's erythrocyte nuclei contain 2.25 ± 0.06 pg of DNA, whereas the hepatocyte nuclei contain 2.46 ± 0.06 pg of DNA. This difference in DNA content was determined spectroscopically using isolated DNA from the two cell types. The modal diameters of the erythrocytes and hepatocytes were estimated to be 5.1 ± 0.2 and 22.3 ± 5.0 μm, respectively, and the corresponding modal dimensions of their nuclei (measured as surface area) were 15.2 and 21.4 μm(2), respectively. The nucleoplasmic index, as calculated from diameters estimated from surface area of nuclear profiles, was 2.51 for the erythrocytes compared with 0.08 for hepatocytes.

  18. Estimation of (co)variances for genomic regions of flexible sizes

    DEFF Research Database (Denmark)

    Sørensen, Lars P; Janss, Luc; Madsen, Per;

    2012-01-01

    traits such as mammary disease traits in dairy cattle. METHODS: Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based genomic model......)variances of mastitis resistance traits in dairy cattle using multivariate genomic models......., per chromosome, and in regions of 100 SNP on a chromosome. RESULTS: Genomic proportions of the total variance differed between traits. Genomic correlations were lower than pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits because...

  19. The battle of the sexes over seed size: support for both kinship genomic imprinting and interlocus contest evolution.

    Science.gov (United States)

    Willi, Yvonne

    2013-06-01

    Outcrossing creates a venue for parental conflict. When one sex provides parental care to offspring fertilized by several partners, the nonproviding sex is under selection to maximally exploit the caring sex. The caring sex may counteradapt, and a coevolutionary arms race ensues. Genetic models of this conflict include the kinship theory of genomic imprinting (parent-of-origin-specific expression of maternal-care effectors) and interlocus conflict evolution (interaction between male selfish signals and female abatement). Predictions were tested by measuring the sizes of seeds produced by within-population crosses (diallel design) and between-population crosses in outcrossing and selfing populations of Arabidopsis lyrata. Within-population diallel crosses revealed substantial maternal variance in seed size in most populations. The comparison of between- and within-population crosses showed that seeds were larger when pollen came from another outcrossing population than when pollen came from a selfing or the same population, supporting interlocus contest evolution between male selfish genes and female recognition genes. Evidence for kinship genomic imprinting came from complementary trait means of seed size in reciprocal between-population crosses independent of whether populations were predominantly selfing or outcrossing. Hence, both kinship genomic imprinting and interlocus contest are supported in outcrossing Arabidopsis, whereas only kinship genomic imprinting is important in selfing populations.

  20. Morphological and genome size variations within populations of Edraianthus graminifolius “Jugoslavicus” (Campanulaceae from the central Balkan peninsula

    Directory of Open Access Journals (Sweden)

    Rakić Tamara

    2014-01-01

    Full Text Available The E. graminifolius complex is widely distributed in the continental part of the central and western Balkan Peninsula and is characterized by pronounced morphological variability. Plants grow on different geological substrates, span a wide altitudinal range and inhabit heterogeneous microclimatic conditions. The aim of this study was to compare morpho-anatomical and genome size variations among 31 populations of E. graminifolius, and to correlate morphoanatomical characteristics of plants with the geomorphologic and bioclimatic characteristics of their habitats. For these purposes, multivariate statistical analyses were performed. Results showed that most of morphological variability could be explained as the adaptive responses of plants to diverse environmental conditions that accompany life at different altitudes. Populations from SE Serbia had larger genome size in respect to other investigated populations. Genome size was bigger in sympatric populations of Edraianthus then in allopatric ones. Apart from the general morphological variability, plants from the Ovčar-Kablar Gorge are particularly morphologically specific. [Projekat Ministarstva nauke Republike Srbije, br. 173030

  1. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus

    Directory of Open Access Journals (Sweden)

    Jing eWang

    2015-05-01

    Full Text Available Flow cytometry (FCM is a commonly used method for estimating genome size in many organisms. The use of flow cytometry in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of the most representative and diverse genera of the Old World Gesneriaceae, to evaluate the methodology effect on determining genome size. Our results showed that buffer choice significantly affected genome size estimation in six out of the eight species examined and altered the 2C-value (DNA content by as much as 21.4%. The staining duration and propidium iodide (PI concentration slightly affected the 2C-value. Our experiments showed better histogram quality when the samples were stained for 40 minutes at a PI concentration of 100 µg ml-1. The quality of the estimates was not improved by one-day incubation in the dark at 4 °C or by centrifugation. Thus, our study determined an optimum protocol for genome size measurement in Primulina: LB01 buffer supplemented with 100 µg ml-1 PI and stained for 40 minutes. This protocol also demonstrated a high universality in other Gesneriaceae genera. We report the genome size of nine Gesneriaceae species for the first time. The results showed substantial genome size variation both within and among the species, with the 2C-value ranging between 1.62 and 2.71 pg. Our study highlights the necessity of optimizing the FCM methodology prior to obtaining reliable genome size estimates in a given taxon.

  2. Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus.

    Science.gov (United States)

    Wang, Jing; Liu, Juan; Kang, Ming

    2015-01-01

    Flow cytometry (FCM) is a commonly used method for estimating genome size in many organisms. The use of FCM in plants is influenced by endogenous fluorescence inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying the relationship between genome size and phenotypic traits/ecological performance. Quantitative optimization of FCM methodology minimizes such errors, yet there are few studies detailing this methodology. We selected the genus Primulina, one of the most representative and diverse genera of the Old World Gesneriaceae, to evaluate the methodology effect on determining genome size. Our results showed that buffer choice significantly affected genome size estimation in six out of the eight species examined and altered the 2C-value (DNA content) by as much as 21.4%. The staining duration and propidium iodide (PI) concentration slightly affected the 2C-value. Our experiments showed better histogram quality when the samples were stained for 40 min at a PI concentration of 100 μg ml(-1). The quality of the estimates was not improved by 1-day incubation in the dark at 4°C or by centrifugation. Thus, our study determined an optimum protocol for genome size measurement in Primulina: LB01 buffer supplemented with 100 μg ml(-1) PI and stained for 40 min. This protocol also demonstrated a high universality in other Gesneriaceae genera. We report the genome size of nine Gesneriaceae species for the first time. The results showed substantial genome size variation both within and among the species, with the 2C-value ranging between 1.62 and 2.71 pg. Our study highlights the necessity of optimizing the FCM methodology prior to obtaining reliable genome size estimates in a given taxon.

  3. rRNA operons and genome size of 'Candidatus Liberibacter americanus', a bacterium associated with citrus huanglongbing in Brazil.

    Science.gov (United States)

    Wulff, N A; Eveillard, S; Foissac, X; Ayres, A J; Bové, J-M

    2009-08-01

    Huanglongbing is one of the most severe diseases of citrus worldwide and is associated with 'Candidatus (Ca.) Liberibacter africanus' in Africa, 'Ca. Liberibacter asiaticus' in Asia and the Americas (Brazil, USA and Cuba) and 'Ca. Liberibacter americanus' (Lam) in Brazil. In the absence of axenic cultures, genetic information on liberibacters is scarce. The sequences of the entire 23S rRNA and 5S rRNA genes from Lam have now been obtained, using a consensus primer designed on known tRNAMet sequences of rhizobia. The size of the Lam genome was determined by PFGE, using Lam-infected periwinkle plants for bacterial enrichment, and was found to be close to 1.31 Mbp. In order to determine the number of ribosomal operons on the Lam genome, probes designed to detect the 16S rRNA gene and the 3' end of the 23S rRNA gene were developed and used for Southern hybridization with I-CeuI-treated genomic DNA. Our results suggest that there are three ribosomal operons in a circular genome. Lam is the first liberibacter species for which such data are available.

  4. Notes on genome size in the hybrid Ranunculus x luizetii (Ranunculaceae and its parents by flow cytometry

    Directory of Open Access Journals (Sweden)

    Fernández Prieto, J. A.

    2011-12-01

    Full Text Available Notes on genome size in the hybrid Ranunculus x luizetii (Ranunculaceae and its parents by flow cytometry.- Flow cytometry was used to estimate the nuclear DNA content in the natural hybrid Ranunculus x luizetii and its parents. Our results indicate that the genome size of the hybrid R. x luizetii is closer to R. pyrenaeus than to R. parnassiifolius, providing an evidence of genome downsizing.Notas sobre el tamaño del genoma en el híbrido Ranunculus x luizetii (Ranunculaceae y sus progenitores mediante citometría de flujo.- Se ha empleado la citometría de flujo para estimar el contenido de ADN nuclear en el híbrido Ranunculus x luizetii y sus progenitores. Nuestros resultados indican que el tamaño del genoma del híbrido R. x luizetii se acerca más a R. pyrenaeus que a R. parnassiifolius, con una evidencia de reducción del genoma.

  5. A genomics approach to understanding the role of auxin in apple (Malus x domestica fruit size control

    Directory of Open Access Journals (Sweden)

    Devoghalaere Fanny

    2012-01-01

    Full Text Available Abstract Background Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. Results High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106. This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. Conclusions The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3 removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.

  6. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Directory of Open Access Journals (Sweden)

    Julien Chaillot

    2017-02-01

    Full Text Available One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host.

  7. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Science.gov (United States)

    Chaillot, Julien; Cook, Michael A.; Corbeil, Jacques; Sellam, Adnane

    2016-01-01

    One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host. PMID:28040776

  8. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    Daniel I Chasman

    2009-11-01

    Full Text Available While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL, HDL, and VLDL and particle size (small, medium, and large. The concentrations of these lipoprotein sub-fractions may be related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women from the Women's Genome Health Study (WGHS. Among 36 loci with genome-wide significance (P<5x10(-8 in primary and secondary analysis, ten (PCCB/STAG1 (3q22.3, GMPR/MYLIP (6p22.3, BTNL2 (6p21.32, KLF14 (7q32.2, 8p23.1, JMJD1C (10q21.3, SBF2 (11p15.4, 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B, and WIPI1 (17q24.2 have not been reported in prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3, 12q24.31.B, and LIPG (18q21.1 and for HDL at one locus (GCKR (2p23.3. In addition, genetic determinants of total IDL and total VLDL concentration were found at many loci, most strongly at LIPC (15q22.1 and APOC-APOE complex (19q13.32, respectively. Associations at seven more loci previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with lipoprotein metabolism-including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL particles-all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay.

  9. Combining site occupancy, breeding population sizes and reproductive success to calculate time-averaged reproductive output of different habitat types: an application to Tricolored Blackbirds.

    Directory of Open Access Journals (Sweden)

    Marcel Holyoak

    Full Text Available In metapopulations in which habitat patches vary in quality and occupancy it can be complicated to calculate the net time-averaged contribution to reproduction of particular populations. Surprisingly, few indices have been proposed for this purpose. We combined occupancy, abundance, frequency of occurrence, and reproductive success to determine the net value of different sites through time and applied this method to a bird of conservation concern. The Tricolored Blackbird (Agelaius tricolor has experienced large population declines, is the most colonial songbird in North America, is largely confined to California, and breeds itinerantly in multiple habitat types. It has had chronically low reproductive success in recent years. Although young produced per nest have previously been compared across habitats, no study has simultaneously considered site occupancy and reproductive success. Combining occupancy, abundance, frequency of occurrence, reproductive success and nest failure rate we found that that large colonies in grain fields fail frequently because of nest destruction due to harvest prior to fledging. Consequently, net time-averaged reproductive output is low compared to colonies in non-native Himalayan blackberry or thistles, and native stinging nettles. Cattail marshes have intermediate reproductive output, but their reproductive output might be improved by active management. Harvest of grain-field colonies necessitates either promoting delay of harvest or creating alternative, more secure nesting habitats. Stinging nettle and marsh colonies offer the main potential sources for restoration or native habitat creation. From 2005-2011 breeding site occupancy declined 3x faster than new breeding colonies were formed, indicating a rapid decline in occupancy. Total abundance showed a similar decline. Causes of variation in the value for reproduction of nesting substrates and factors behind continuing population declines merit urgent

  10. Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts.

    Directory of Open Access Journals (Sweden)

    Fernando Martínez-Alberola

    Full Text Available Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae.

  11. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes.

    Directory of Open Access Journals (Sweden)

    Elijah R Behr

    Full Text Available Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP, treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7, odds ratio = 2, 95% confidence intervals: 1.5-2.6. The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9. Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs.

  12. Geographical distribution of cytotypes in the Chrysanthemum indicum complex as evidenced by ploidy level and genome-size variation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Qian WAN; Richard J.ABBOTT; Guang-Yuan RAO

    2013-01-01

    A detailed knowledge of the geographical distribution ofcytotypes within and between species comprising a polyploid complex is critical to our understanding of the history and evolution of such complexes.In the present study we examined the geographical distributions ofcytotypes within six tentatively delimited species comprising the Chrysanthemum indicum complex in China.We determined the ploidy of 188 individuals sampled from 47 populations,based on DNA content using flow cytometry.In addition,chromosome counts were made on samples of each taxon.We confirmed that all samples of C.rhombifolium and C.lavandulifolium were diploid (2n =18),those of C.hypargyrum and C.potentilloides were tetraploid (2n--36),and those of C.vestitum were hexaploid (2n =54).In contrast,we confirmed that C.indicum contained both diploid and tetraploid cytotypes.We found that in addition to marked differences in genome size between ploidy levels,there was a variation in genome size between species of the same ploidy level.Although the diploid,tetraploid,and hexaploid taxa of the complex,as well as the diploid form of C.indicum,occurred only in central and northem China,the tetraploid form of C.indicum was widespread both north and south of the Yangtze River.We suggest that the tetraploid form of C.indicum may have expanded its range southward during recent Quatemary glacial periods when forests retreated in south China as conditions became drier.

  13. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    Winkler, Thomas W; Justice, Anne E; Graff, Mariaelisa; Barata, Llilda; Feitosa, Mary F; Chu, Su; Czajkowski, Jacek; Esko, Tõnu; Fall, Tove; Kilpeläinen, Tuomas O; Lu, Yingchang; Mägi, Reedik; Mihailov, Evelin; Pers, Tune H; Rüeger, Sina; Teumer, Alexander; Ehret, Georg B; Ferreira, Teresa; Heard-Costa, Nancy L; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M; Jansen, Rick; Westra, Harm-Jan; White, Charles C; Absher, Devin; Ahluwalia, Tarunveer S; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L; de Craen, Anton J M; Bis, Joshua C; Bonnefond, Amélie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W K; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jackson, Anne U; Jacobs, Kevin B; Johansson, Åsa; Kaakinen, Marika; Kleber, Marcus E; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A F; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L; Montasser, May E; Müller, Gabriele; Müller-Nurasyid, Martina; Nolte, Ilja M; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W; Renström, Frida; Rizzi, Federica; Rose, Lynda M; Ryan, Kathy A; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stančáková, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P; Vandenput, Liesbeth; van der Laan, Sander W; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L; Wang, Sophie R; Wang, Zhaoming; Wild, Sarah H; Willenborg, Christina; Wilson, James F; Wong, Andrew; Yang, Jian; Yengo, Loïc; Yerges-Armstrong, Laura M; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A; Bakker, Stephan J L; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blüher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L; Boyd, Heather A; Bruinenberg, Marcel; Buchman, Aron S; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S; Claudi-Boehm, Simone; Cole, John; Collins, Francis S; de Geus, Eco J C; de Groot, Lisette C P G M; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G; Friedrich, Nele; Gejman, Pablo V; Gigante, Bruna; Glorioso, Nicola; Go, Alan S; Gottesman, Omri; Gräßler, Jürgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T; Heath, Andrew C; Henders, Anjali K; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G; Hui, Jennie; Husemoen, Lise L; Hutri-Kähönen, Nina; Hysi, Pirro G; Illig, Thomas; De Jager, Philip L; Jalilzadeh, Shapour; Jørgensen, Torben; Jukema, J Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T; Kratzer, Wolfgang; Krüger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J; Leander, Karin; Lindström, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stéphane; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Magnusson, Patrik K; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W; Morris, Andrew P; Narisu, Narisu; Nelis, Mari; Ong, Ken K; Palotie, Aarno; Pérusse, Louis; Pichler, Irene; Pilia, Maria G; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M; Rice, Treva K; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R; Sarzynski, Mark A; Scholtens, Salome; Scott, Robert A; Scott, William R; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P Eline; Smit, Jan H; Sparsø, Thomas H; Stirrups, Kathleen; Stolk, Ronald P; Stringham, Heather M; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tönjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J; Völker, Uwe; Vohl, Marie-Claude; Vonk, Judith M; Waldenberger, Melanie; Walker, Ryan W; Wennauer, Roman; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F; Zillikens, M Carola; van Dijk, Suzanne C; van Schoor, Natasja M; Asselbergs, Folkert W; de Bakker, Paul I W; Beckmann, Jacques S; Beilby, John; Bennett, David A; Bergman, Richard N; Bergmann, Sven; Böger, Carsten A; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Bornstein, Stefan R; Bottinger, Erwin P; Bouchard, Claude; Chambers, John C; Chanock, Stephen J; Chasman, Daniel I; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G; Evans, Denis A; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W; Froguel, Philippe; Gansevoort, Ron T; Gieger, Christian; Grönberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliövaara, Markku; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V; Hveem, Kristian; James, Alan L; Jordan, Joanne M; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A L M; Kivimaki, Mika; Knekt, Paul B; Koistinen, Heikki A; Kooner, Jaspal S; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G; Laakso, Markku; Lakka, Timo A; Lehtimäki, Terho; Lettre, Guillaume; Levinson, Douglas F; Lind, Lars; Lokki, Marja-Liisa; Mäntyselkä, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D; Moll, Frans L; Murray, Jeffrey C; Musk, Arthur W; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Oostra, Ben A; Palmer, Lyle J; Pankow, James S; Pasterkamp, Gerard; Pedersen, Nancy L; Pedersen, Oluf; Penninx, Brenda W; Perola, Markus; Peters, Annette; Polašek, Ozren; Pramstaller, Peter P; Psaty, Bruce M; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M; Rioux, John D; Rivadeneira, Fernando; Rotter, Jerome I; Rudan, Igor; den Ruijter, Hester M; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E H; Shuldiner, Alan R; Sinisalo, Juha; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Staessen, Jan A; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; Verbeek, André L M; Vermeulen, Sita H; Viikari, Jorma S; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Waeber, Gérard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J; Cupples, L Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E; Rao, D C; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Berndt, Sonja I; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S; Groop, Leif C; Hunter, David J; Ingelsson, Erik; Kaplan, Robert C; McCarthy, Mark I; Mohlke, Karen L; O'Connell, Jeffrey R; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Hirschhorn, Joel N; Lindgren, Cecilia M; Heid, Iris M; North, Kari E; Borecki, Ingrid B; Kutalik, Zoltán; Loos, Ruth J F

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially betw

  14. Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology

    Directory of Open Access Journals (Sweden)

    Whittaker Kerry A

    2012-10-01

    Full Text Available Abstract Background Marine phytoplankton drift passively with currents, have high dispersal potentials and can be comprised of morphologically cryptic species. To examine molecular subdivision in the marine diatom Thalassiosira rotula, variations in rDNA sequence, genome size, and growth rate were examined among isolates collected from the Atlantic and Pacific Ocean basins. Analyses of rDNA included T. gravida because morphological studies have argued that T. rotula and T. gravida are conspecific. Results Culture collection isolates of T. gravida and T. rotula diverged by 7.0 ± 0.3% at the ITS1 and by 0.8 ± 0.03% at the 28S. Within T. rotula, field and culture collection isolates were subdivided into three lineages that diverged by 0.6 ± 0.3% at the ITS1 and 0% at the 28S. The predicted ITS1 secondary structure revealed no compensatory base pair changes among lineages. Differences in genome size were observed among isolates, but were not correlated with ITS1 lineages. Maximum acclimated growth rates of isolates revealed genotype by environment effects, but these were also not correlated with ITS1 lineages. In contrast, intra-individual variation in the multi-copy ITS1 revealed no evidence of recombination amongst lineages, and molecular clock estimates indicated that lineages diverged 0.68 Mya. The three lineages exhibited different geographic distributions and, with one exception, each field sample was dominated by a single lineage. Conclusions The degree of inter- and intra-specific divergence between T. gravida and T. rotula suggests they should continue to be treated as separate species. The phylogenetic distinction of the three closely-related T. rotula lineages was unclear. On the one hand, the lineages showed no physiological differences, no consistent genome size differences and no significant changes in the ITS1 secondary structure, suggesting there are no barriers to interbreeding among lineages. In contrast, analysis of intra

  15. Draft Genome Sequences of Seven Pseudomonas fluorescens Subclade III Strains Isolated from Cystic Fibrosis Patients.

    Science.gov (United States)

    Scales, Brittan S; Erb-Downward, John R; Huffnagle, Ian M; LiPuma, John J; Huffnagle, Gary B

    2015-01-29

    We report here the first draft genome sequences of Pseudomonas fluorescens strains that have been isolated from humans. The seven assembled draft genomes contained an average of 60.1% G+C content, were an average genomic size of 6.3 Mbp, and mapped by multilocus sequence analysis to subclade III.

  16. Silage Collected from Dairy Farms Harbors an Abundance of Listeriaphages with Considerable Host Range and Genome Size Diversity

    Science.gov (United States)

    Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.

    2012-01-01

    Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180

  17. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.

    Science.gov (United States)

    Diaz, Francisco J; Berg, Michel J; Krebill, Ron; Welty, Timothy; Gidal, Barry E; Alloway, Rita; Privitera, Michael

    2013-12-01

    Due to concern and debate in the epilepsy medical community and to the current interest of the US Food and Drug Administration (FDA) in revising approaches to the approval of generic drugs, the FDA is currently supporting ongoing bioequivalence studies of antiepileptic drugs, the EQUIGEN studies. During the design of these crossover studies, the researchers could not find commercial or non-commercial statistical software that quickly allowed computation of sample sizes for their designs, particularly software implementing the FDA requirement of using random-effects linear models for the analyses of bioequivalence studies. This article presents tables for sample-size evaluations of average bioequivalence studies based on the two crossover designs used in the EQUIGEN studies: the four-period, two-sequence, two-formulation design, and the six-period, three-sequence, three-formulation design. Sample-size computations assume that random-effects linear models are used in bioequivalence analyses with crossover designs. Random-effects linear models have been traditionally viewed by many pharmacologists and clinical researchers as just mathematical devices to analyze repeated-measures data. In contrast, a modern view of these models attributes an important mathematical role in theoretical formulations in personalized medicine to them, because these models not only have parameters that represent average patients, but also have parameters that represent individual patients. Moreover, the notation and language of random-effects linear models have evolved over the years. Thus, another goal of this article is to provide a presentation of the statistical modeling of data from bioequivalence studies that highlights the modern view of these models, with special emphasis on power analyses and sample-size computations.

  18. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): extreme size asymmetry among chromosomes and possible recent control region duplication

    Science.gov (United States)

    Multi-partite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice). We provide the first report of a multi-partite mitochondrial genome architecture...

  19. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus) reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene.

    Science.gov (United States)

    Halley, Yvette A; Dowd, Scot E; Decker, Jared E; Seabury, Paul M; Bhattarai, Eric; Johnson, Charles D; Rollins, Dale; Tizard, Ian R; Brightsmith, Donald J; Peterson, Markus J; Taylor, Jeremy F; Seabury, Christopher M

    2014-01-01

    Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite) have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao). More than 90% of the assembled bobwhite genome was captured within 14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum) would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.

  20. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus and zebra finch (Taeniopygia guttata genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao. More than 90% of the assembled bobwhite genome was captured within 14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.

  1. Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Liu

    Full Text Available Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF that are associated with high morbidity and mortality. Hip bone size (BS has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS of hip BS interrogating approximately 380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1, that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72x10(-7. The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62x10(-3 and 2.44x10(-3, respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10(-5 in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only approximately 0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412, achieved a p value of 7.66x10(-3 (odds ratio = 0.26 for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate-mediated calcium signaling, an important pathway regulating mechanical sensing of

  2. 制备条件对纳米硫化锌平均粒径的影响%Effect of the Preparation Technology on Average Size of Nano - zinc Sulfide

    Institute of Scientific and Technical Information of China (English)

    王明芳; 薛永强

    2011-01-01

    由于纳米硫化锌的功能和用途不同,需要制备出不同粒径的球形纳米硫化锌。以乙酸锌为锌源,硫代硫酸钠为沉淀剂,采用均匀沉淀法研究了制备工艺对纳米硫化锌粒径的影响。%It is needful to prepare nano - ZnS with different average diameters for different application purposes. Using conditions to the zinc acetate as zinc source, sodium hyposulfite as precipitating agent, the reaction influences of nano - zincum sulfid sizes was studied by homogeneous precipitation.

  3. A comparative study of intra canal stress pattern in endodontically treated teeth with average sized canal diameter and reinforced wide canals with three different post systems using finite element analysis

    Directory of Open Access Journals (Sweden)

    Kaur Amandeep

    2010-01-01

    Full Text Available Study methodology: This is a comparative study of intra canal stress patterns in endodontically treated maxillary central incisor with: average sized canal diameter and wide canals reinforced with three different post systems - cast post and core, carbon fiber post, stainless steel post; restored with ceramic crown using finite element analysis (FEA. All the models were subjected to a force of 100N applied at 450 to the long axis of the tooth at the middle third of the palatal surface of the restored ceramic crown. Results: The FEA revealed that all the post systems showed maximum stress in the coronal and middle third of the root. Maximum stress was seen on the inner dentinal wall in case of stainless steel post followed by cast gold and carbon fiber post, both in the models without reinforcement as well as in the reinforced models.

  4. Transmission of human mtDNA heteroplasmy in the Genome of the Netherlands families: support for a variable-size bottleneck

    Science.gov (United States)

    Li, Mingkun; Rothwell, Rebecca; Vermaat, Martijn; Wachsmuth, Manja; Schröder, Roland; Laros, Jeroen F.J.; van Oven, Mannis; de Bakker, Paul I.W.; Bovenberg, Jasper A.; van Duijn, Cornelia M.; van Ommen, Gert-Jan B.; Slagboom, P. Eline; Swertz, Morris A.; Wijmenga, Cisca; Kayser, Manfred; Boomsma, Dorret I.; Zöllner, Sebastian; de Knijff, Peter; Stoneking, Mark

    2016-01-01

    Although previous studies have documented a bottleneck in the transmission of mtDNA genomes from mothers to offspring, several aspects remain unclear, including the size and nature of the bottleneck. Here, we analyze the dynamics of mtDNA heteroplasmy transmission in the Genomes of the Netherlands (GoNL) data, which consists of complete mtDNA genome sequences from 228 trios, eight dizygotic (DZ) twin quartets, and 10 monozygotic (MZ) twin quartets. Using a minor allele frequency (MAF) threshold of 2%, we identified 189 heteroplasmies in the trio mothers, of which 59% were transmitted to offspring, and 159 heteroplasmies in the trio offspring, of which 70% were inherited from the mothers. MZ twin pairs exhibited greater similarity in MAF at heteroplasmic sites than DZ twin pairs, suggesting that the heteroplasmy MAF in the oocyte is the major determinant of the heteroplasmy MAF in the offspring. We used a likelihood method to estimate the effective number of mtDNA genomes transmitted to offspring under different bottleneck models; a variable bottleneck size model provided the best fit to the data, with an estimated mean of nine individual mtDNA genomes transmitted. We also found evidence for negative selection during transmission against novel heteroplasmies (in which the minor allele has never been observed in polymorphism data). These novel heteroplasmies are enhanced for tRNA and rRNA genes, and mutations associated with mtDNA diseases frequently occur in these genes. Our results thus suggest that the female germ line is able to recognize and select against deleterious heteroplasmies. PMID:26916109

  5. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae).

    Science.gov (United States)

    da Silva, Rangeline Azevedo; Souza, Gustavo; Lemos, Lívia Santos Lima; Lopes, Uilson Vanderlei; Patrocínio, Nara Geórgia Ribeiro Braz; Alves, Rafael Moysés; Marcellino, Lucília Helena; Clement, Didier; Micheli, Fabienne; Gramacho, Karina Peres

    2017-01-01

    The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI- bands). The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted.

  6. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)

    Science.gov (United States)

    da Silva, Rangeline Azevedo; Souza, Gustavo; Lemos, Lívia Santos Lima; Lopes, Uilson Vanderlei; Patrocínio, Nara Geórgia Ribeiro Braz; Alves, Rafael Moysés; Marcellino, Lucília Helena; Clement, Didier; Micheli, Fabienne

    2017-01-01

    The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI− bands). The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted. PMID:28187131

  7. Comparative Analysis of Growth, Genome Size, Chromosome Numbers and Phylogeny of Arabidopsis thaliana and Three Cooccurring Species of the Brassicaceae from Uzbekistan

    Directory of Open Access Journals (Sweden)

    Matthias H. Hoffmann

    2010-01-01

    Full Text Available Contrary to literature data Arabidopsis thaliana was rarely observed in Middle Asia during a collection trip in 2001. Instead, three other Brassicaceae species were frequently found at places where A. thaliana was expected. To reveal reasons for this frequency pattern, we studied chromosome numbers, genome sizes, phylogenetic relationships, developmental rates, and reproductive success of A. thaliana, Olimarabidopsis pumila, Arabis montbretiana, and Arabis auriculata from Uzbekistan in two temperature treatments. There are little but partially significant differences between phenotypes. All studied species have very small genomes. The 1Cx-values of different genotypes within the sampled species are correlated with altitude. Developmental rates are also correlated with 1Cx-values. In our growth experiments, Arabidopsis had high seed sterility at higher temperature, which might be one reason for the rarity of A. thaliana in Middle Asia.

  8. The DNA methylation level against the background of the genome size and t-heterochromatin content in some species of the genus Secale L

    Science.gov (United States)

    Kalinka, Anna; Poter, Paulina

    2017-01-01

    Methylation of cytosine in DNA is one of the most important epigenetic modifications in eukaryotes and plays a crucial role in the regulation of gene activity and the maintenance of genomic integrity. DNA methylation and other epigenetic mechanisms affect the development, differentiation or the response of plants to biotic and abiotic stress. This study compared the level of methylation of cytosines on a global (ELISA) and genomic scale (MSAP) between the species of the genus Secale. We analyzed whether the interspecific variation of cytosine methylation was associated with the size of the genome (C-value) and the content of telomeric heterochromatin. MSAP analysis showed that S. sylvestre was the most distinct species among the studied rye taxa; however, the results clearly indicated that these differences were not statistically significant. The total methylation level of the studied loci was very similar in all taxa and ranged from 60% in S. strictum ssp. africanum to 66% in S. cereale ssp. segetale, which confirmed the lack of significant differences in the sequence methylation pattern between the pairs of rye taxa. The level of global cytosine methylation in the DNA was not significantly associated with the content of t-heterochromatin and did not overlap with the existing taxonomic rye relationships. The highest content of 5-methylcytosine was found in S. cereale ssp. segetale (83%), while very low in S. strictum ssp. strictum (53%), which was significantly different from the methylation state of all taxa, except for S. sylvestre. The other studied taxa of rye had a similar level of methylated cytosine ranging from 66.42% (S. vavilovii) to 74.41% in (S. cereale ssp. afghanicum). The results obtained in this study are evidence that the percentage of methylated cytosine cannot be inferred solely based on the genome size or t-heterochromatin. This is a significantly more complex issue. PMID:28149679

  9. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs

    Directory of Open Access Journals (Sweden)

    Arensburger Peter

    2011-12-01

    Full Text Available Abstract Background The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. Results Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. Conclusions Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D

  10. Comparison of genome size and synthesis of structural proteins of Hirame Rhabdovirus, infectious hematopoietic necrosis virus, and viral hemorrhagic Septicemia virus

    Science.gov (United States)

    Nishizawa, Toyohiko; Yoshimizu, Mamoru; Winton, James R.; Kimura, Takahisa

    1991-01-01

    Genomic RNA was extracted from purified virions of hirame rhabdovirus (HRV), infectious hematopoietic necrosis virus (IHNV), and viral hemorrhagic septicemia virus (VHSV). The full-length RNA was analyzed using formaldehyde agarose gel electrophoresis followed by ethidium bromide staining. Compared with an internal RNA size standard, all three viral genomic RNAs appeared to have identical relative mobilities and were estimated to be approximately 10.7 kilobases in length or about 3.7 megadaltons in molecular mass. Structural protein synthesis of HRV, IHNV, and VHSV was studied using cell cultures treated with actinomycin D. At 2 h intervals, proteins were labeled with 35S-methionine, extracted, and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. The five structural proteins of each of the three viruses appeared in the following order : nucleoprotein (N), matrix protein 1 (M1), matrix protein 2 (M2), glycoprotein (G), and polymerase (L) reflecting both the approximate relative abundance of each protein within infected cells and the gene order within the viral genome.

  11. Optimizing Training Population Size and Genotyping Strategy for Genomic Prediction Using Association Study Results and Pedigree Information. A Case of Study in Advanced Wheat Breeding Lines

    Science.gov (United States)

    Jahoor, Ahmed; Orabi, Jihad; Andersen, Jeppe R.; Janss, Luc L.; Jensen, Just

    2017-01-01

    Wheat breeding programs generate a large amount of variation which cannot be completely explored because of limited phenotyping throughput. Genomic prediction (GP) has been proposed as a new tool which provides breeding values estimations without the need of phenotyping all the material produced but only a subset of it named training population (TP). However, genotyping of all the accessions under analysis is needed and, therefore, optimizing TP dimension and genotyping strategy is pivotal to implement GP in commercial breeding schemes. Here, we explored the optimum TP size and we integrated pedigree records and genome wide association studies (GWAS) results to optimize the genotyping strategy. A total of 988 advanced wheat breeding lines were genotyped with the Illumina 15K SNPs wheat chip and phenotyped across several years and locations for yield, lodging, and starch content. Cross-validation using the largest possible TP size and all the SNPs available after editing (~11k), yielded predictive abilities (rGP) ranging between 0.5–0.6. In order to explore the Training population size, rGP were computed using progressively smaller TP. These exercises showed that TP of around 700 lines were enough to yield the highest observed rGP. Moreover, rGP were calculated by randomly reducing the SNPs number. This showed that around 1K markers were enough to reach the highest observed rGP. GWAS was used to identify markers associated with the traits analyzed. A GWAS-based selection of SNPs resulted in increased rGP when compared with random selection and few hundreds SNPs were sufficient to obtain the highest observed rGP. For each of these scenarios, advantages of adding the pedigree information were shown. Our results indicate that moderate TP sizes were enough to yield high rGP and that pedigree information and GWAS results can be used to greatly optimize the genotyping strategy. PMID:28081208

  12. Genome-wide scan reveals LEMD3 and WIF1 on SSC5 as the candidates for porcine ear size.

    Science.gov (United States)

    Zhang, Longchao; Liang, Jing; Luo, Weizhen; Liu, Xin; Yan, Hua; Zhao, Kebin; Shi, Huibi; Zhang, Yuebo; Wang, Ligang; Wang, Lixian

    2014-01-01

    The quantitative trait loci (QTL) for porcine ear size was previously reported to mainly focus on SSC5 and SSC7. Recently, a missense mutation, G32E, in PPARD in the QTL interval on SSC7 was identified as the causative mutation for ear size. However, on account of the large interval of QTL, the responsible gene on SSC5 has not been identified. In this study, an intercross population was constructed from the large-eared Minzhu, an indigenous Chinese pig breed, and the Western commercial Large White pig to examine the genetic basis of ear size diversity. A GWAS was performed to detect SNPs significantly associated with ear size. Thirty-five significant SNPs defined a 10.78-Mb (30.14-40.92 Mb) region on SSC5. Further, combining linkage disequilibrium and haplotype sharing analysis, a reduced region of 3.07-Mb was obtained. Finally, by using a selective sweep analysis, a critical region of about 450-kb interval containing two annotated genes LEMD3 and WIF1 was refined in this work. Functional analysis indicated that both represent biological candidates for porcine ear size, with potential application in breeding programs. The two genes could also be used as novel references for further study of the mechanism underlying human microtia.

  13. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes.

    Directory of Open Access Journals (Sweden)

    Estienne C Swart

    Full Text Available The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5% of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes, have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size that vary from 469 bp to 66 kb long (mean ∼3.2 kb and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%, suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing

  14. Aggregation and Averaging.

    Science.gov (United States)

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  15. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  16. The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants

    Science.gov (United States)

    The American cranberry (Vaccinium macrocarpon Ait.) mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with comparat...

  17. Your Average Nigga

    Science.gov (United States)

    Young, Vershawn Ashanti

    2004-01-01

    "Your Average Nigga" contends that just as exaggerating the differences between black and white language leaves some black speakers, especially those from the ghetto, at an impasse, so exaggerating and reifying the differences between the races leaves blacks in the impossible position of either having to try to be white or forever struggling to…

  18. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  19. Dependability in Aggregation by Averaging

    CERN Document Server

    Jesus, Paulo; Almeida, Paulo Sérgio

    2010-01-01

    Aggregation is an important building block of modern distributed applications, allowing the determination of meaningful properties (e.g. network size, total storage capacity, average load, majorities, etc.) that are used to direct the execution of the system. However, the majority of the existing aggregation algorithms exhibit relevant dependability issues, when prospecting their use in real application environments. In this paper, we reveal some dependability issues of aggregation algorithms based on iterative averaging techniques, giving some directions to solve them. This class of algorithms is considered robust (when compared to common tree-based approaches), being independent from the used routing topology and providing an aggregation result at all nodes. However, their robustness is strongly challenged and their correctness often compromised, when changing the assumptions of their working environment to more realistic ones. The correctness of this class of algorithms relies on the maintenance of a funda...

  20. Effects of ERBB2 amplicon size and genomic alterations of chromosomes 1, 3, and 10 on patient response to trastuzumab in metastatic breast cancer.

    Science.gov (United States)

    Morrison, Larry E; Jewell, Susan S; Usha, Lydia; Blondin, Beth A; Rao, Ruta D; Tabesh, Bita; Kemper, Matthew; Batus, Marta; Coon, John S

    2007-04-01

    Trastuzumab is widely used for advanced breast cancer patients with ERBB2-amplified tumors. Nevertheless, over half of these patients do not have an objective response. One reason may be altered expression of genes that might compensate for ERBB2 inhibition. We previously mapped the gene-rich region of chromosome 17 telomeric to ERBB2, and reported considerable variability in the telomeric extent of the ERBB2 amplicon. Here we examined whether the variable amplicon size may be associated with patient response to trastuzumab. In addition, we looked at associations between response and several signaling pathway-related genes unrelated to the ERBB2 amplicon, including AKT3, PTEN, PIK3CA, and PTGS2. In 35 patients with ERBB2-amplified metastatic breast cancer, with 40% overall response to trastuzumab, fluorescence in situ hybridization identified the telomeric extent of the ERBB2 amplicon and the status of the several pathway-related genes. Objective response strongly correlated with the telomeric amplicon size, with 62% of patients with shorter amplicons responding, compared with only 7% of patients with longer amplicons (P = 0.0015). Abnormal copy number of PTGS2 was marginally associated with objective response (P = 0.066), while abnormal copy numbers of two reference loci, 1q25 and the chromosome 10 centromere, were significantly associated with response. Pairwise combinations of copy number status of these loci and ERBB2 amplicon size provided stronger associations and identified a group of patients without responders. These results suggest that patient selection for trastuzumab may be improved by considering ERBB2 amplicon size and genomic status of the 1q25, PTGS2, and centromere 10 loci.

  1. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study.

    Directory of Open Access Journals (Sweden)

    Thomas W Winkler

    2015-10-01

    Full Text Available Genome-wide association studies (GWAS have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI, a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE, sex-specific effects (G x SEX or age-specific effects that differed between men and women (G x AGE x SEX. For BMI, we identified 15 loci (11 previously established for main effects, four novel that showed significant (FDR<5% age-specific effects, of which 11 had larger effects in younger (<50y than in older adults (≥50y. No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.

  2. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Science.gov (United States)

    Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tõnu; Fall, Tove; Kilpeläinen, Tuomas O.; Lu, Yingchang; Mägi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rüeger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amélie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Åsa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Müller, Gabriele; Müller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renström, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stančáková, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loïc; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blüher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Gräßler, Jürgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G; Hui, Jennie; Husemoen, Lise L.; Hutri-Kähönen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jørgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Krüger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindström, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stéphane; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Pérusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparsø, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A; Swift, Amy J.; Syvänen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tönjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Völker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Böger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Grönberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliövaara, Markku; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mäntyselkä, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Polašek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sørensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Verbeek, André L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Waeber, Gérard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltán; Loos, Ruth J. F.

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape. PMID:26426971

  3. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  4. Characterization of the genome of bald cypress

    Directory of Open Access Journals (Sweden)

    Liu Wenxuan

    2011-11-01

    Full Text Available Abstract Background Bald cypress (Taxodium distichum var. distichum is a coniferous tree of tremendous ecological and economic importance. It is a member of the family Cupressaceae which also includes cypresses, redwoods, sequoias, thujas, and junipers. While the bald cypress genome is more than three times the size of the human genome, its 1C DNA content is amongst the smallest of any conifer. To learn more about the genome of bald cypress and gain insight into the evolution of Cupressaceae genomes, we performed a Cot analysis and used Cot filtration to study Taxodium DNA. Additionally, we constructed a 6.7 genome-equivalent BAC library that we screened with known Taxodium genes and select repeats. Results The bald cypress genome is composed of 90% repetitive DNA with most sequences being found in low to mid copy numbers. The most abundant repeats are found in fewer than 25,000 copies per genome. Approximately 7.4% of the genome is single/low-copy DNA (i.e., sequences found in 1 to 5 copies. Sequencing of highly repetitive Cot clones indicates that most Taxodium repeats are highly diverged from previously characterized plant repeat sequences. The bald cypress BAC library consists of 606,336 clones (average insert size of 113 kb and collectively provides 6.7-fold genome equivalent coverage of the bald cypress genome. Macroarray screening with known genes produced, on average, about 1.5 positive clones per probe per genome-equivalent. Library screening with Cot-1 DNA revealed that approximately 83% of BAC clones contain repetitive sequences iterated 103 to 104 times per genome. Conclusions The BAC library for bald cypress is the first to be generated for a conifer species outside of the family Pinaceae. The Taxodium BAC library was shown to be useful in gene isolation and genome characterization and should be an important tool in gymnosperm comparative genomics, physical mapping, genome sequencing, and gene/polymorphism discovery. The single

  5. Grassmann Averages for Scalable Robust PCA

    DEFF Research Database (Denmark)

    Hauberg, Søren; Feragen, Aasa; Black, Michael J.

    2014-01-01

    arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA do not scale beyond small-to-medium sized datasets. To address this, we introduce the Grassmann Average (GA), which expresses dimensionality reduction as an average of the subspaces spanned by the data. Because averages...... to vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements...

  6. Comparative genomic data of the Avian Phylogenomics Project

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Bo; Li, Cai;

    2014-01-01

    , which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts...... in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence...

  7. First Report on the Draft Genome Sequences of Corynebacterium diphtheriae Isolates from India

    Science.gov (United States)

    Anandan, Shalini; Rajamani Sekar, Suresh Kumar; Gopi, Radha; Devanga Ragupathi, Naveen Kumar; Ramesh, Srilekha; Verghese, Valsan Philip; Korulla, Sophy; Mathai, Sarah; Sangal, Lucky; Joshi, Sudhir

    2016-01-01

    We report here the draft genome sequences of five Corynebacterium diphtheriae isolates of Indian origin. The C. diphtheriae isolates TH1141, TH510, TH1526, TH1337, and TH2031 belong to sequence type ST-50, ST-295, ST-377, ST-405, and ST-405, with an average genome size of 2.5 Mbp. PMID:27881543

  8. Unraveling the karyotype structure of the spurges Euphorbia hirta Linnaeus, 1753 and E. hyssopifolia Linnaeus, 1753 (Euphorbiaceae) using genome size estimation and heterochromatin differentiation

    Science.gov (United States)

    Santana, Karla C. B.; Pinangé, Diego S. B.; Vasconcelos, Santelmo; Oliveira, Ana R.; Brasileiro-Vidal, Ana C.; Alves, Marccus V.; Benko-Iseppon, Ana M.

    2016-01-01

    Abstract Euphorbia Linnaeus, 1753 (Euphorbiaceae) is one of the most diverse and complex genera among the angiosperms, showing a huge diversity in morphologic traits and ecologic patterns. In order to improve the knowledge of the karyotype organization of Euphorbia hirta (2n = 18) and Euphorbia hyssopifolia (2n = 12), cytogenetic studies were performed by means of conventional staining with Giemsa, genome size estimations with flow cytometry, heterochromatin differentiation with chromomycin A3 (CMA) and 4’,6-diamidino-2-phenylindole (DAPI) and Giemsa C-banding, fluorescent in situ hybridization (FISH) with 45S and 5S rDNA probes, and impregnation with silver nitrate (AgNO3). Our results revealed small metacentric chromosomes, CMA+/DAPI0 heterochromatin in the pericentromeric regions of all chromosomes and CMA+/DAPI− in the distal part of chromosome arms carriers of nucleolar organizing regions (NORs). The DNA content measurements revealed small genomes for both species: Euphorbia hirta with 2C = 0.77 pg and Euphorbia hyssopifolia with 2C = 1.41 pg. After FISH procedures, Euphorbia hirta, and Euphorbia hyssopifolia presented three and four pairs of terminal 45S rDNA sites, respectively, colocalizing with CMA+ heterochromatic blocks, besides only one interstitial pair of 5S rDNA signals. Additionally, the maximum number of active NORs agreed with the total number of observed 45S rDNA sites. This work represents the first analysis using FISH in the subfamily Euphorbioideae, revealing a significant number of chromosomal markers, which may be very helpful to understand evolutionary patterns among Euphorbia species. PMID:28123686

  9. Negative Average Preference Utilitarianism

    Directory of Open Access Journals (Sweden)

    Roger Chao

    2012-03-01

    Full Text Available For many philosophers working in the area of Population Ethics, it seems that either they have to confront the Repugnant Conclusion (where they are forced to the conclusion of creating massive amounts of lives barely worth living, or they have to confront the Non-Identity Problem (where no one is seemingly harmed as their existence is dependent on the “harmful” event that took place. To them it seems there is no escape, they either have to face one problem or the other. However, there is a way around this, allowing us to escape the Repugnant Conclusion, by using what I will call Negative Average Preference Utilitarianism (NAPU – which though similar to anti-frustrationism, has some important differences in practice. Current “positive” forms of utilitarianism have struggled to deal with the Repugnant Conclusion, as their theory actually entails this conclusion; however, it seems that a form of Negative Average Preference Utilitarianism (NAPU easily escapes this dilemma (it never even arises within it.

  10. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size.

    Directory of Open Access Journals (Sweden)

    Nicole Soranzo

    2009-04-01

    Full Text Available Recent genome-wide (GW scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1x10(-8 and rs910316 in TMED10, P-value = 1.4x10(-7 and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3x10(-7 and rs849141 in JAZF1, P-value = 3.2x10(-11. One locus (rs1182188 at GNA12 identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk and lower-body (hip axis and femur skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4x10(-5 and rs6817306 in LCORL, P-value = 4x10(-4, hip axis length (including rs6830062 at LCORL, P-value = 4.8x10(-4 and rs4911494 at UQCC, P-value = 1.9x10(-4, and femur length (including rs710841 at PRKG2, P-value = 2.4x10(-5 and rs10946808 at HIST1H1D, P-value = 6.4x10(-6. Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.

  11. Preparing and Digesting Megabase-size Nuclear DNA of Glycine soja Genome%野生大豆核基因组Mb级DNA的制备与酶切

    Institute of Scientific and Technical Information of China (English)

    李晓玲; 李克秀; 赵洪锟; 董英山

    2011-01-01

    Nuclear DNA was extracted from etiolated seedlings of Glycine soja. Generally, the nuclei were embeded in lowmelting-point agarose pulgs, digested with proteinase K and depurated with pulsed field gel electrophoresis to yield about two Megabase-size DNA. The concentration of DNA solution could be up to 10 ng · μL-1 after partial digestion by Hind Ⅲ, elution by pulsed field gel electrophoresis, concentration and dialysis. The result of examination by ligation and eletroporation showed that the DNA obtained by the method was suitable for consequent construction of genomic library of Glycine soja.%以野生大豆黄化幼苗为材料提取其细胞核DNA,经LMP包埋并用蛋白酶K裂解其中的核蛋白后,采用脉冲电泳回收2 Mb左右细胞核DNA.用HindⅢ对回收细胞核DNA进行部分酶切并用脉冲电泳回收酶切后的DNA片段,经电洗脱、浓缩和透析后DNA溶液浓度可达10 ng·μL.连接转化检测结果表明:该DNA可用于后续野生大豆基因组可转化人工染色体(TAC)文库的构建和基因组分析.

  12. Between Two Fern Genomes

    OpenAIRE

    Sessa, Emily B.; Banks, Jo; Michael S Barker; Der, Joshua P; Duffy, Aaron M; Graham, Sean W.; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D; Kathleen M. Pryer; Rothfels, Carl J.; Roux, Stanley J.; Salmi, Mari L; Sigel, Erin M.

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense divers...

  13. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  14. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2011-08-01

    Full Text Available Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896 is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862 and L. victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for L. boulardi (Barbotin, Carton et Keiner-Pillault, 1979 (n = 9, whose genome size is smaller than that of wasps of the L. heterotoma clade. Like L. boulardi, the haploid chromosome number for G. xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insect communities.

  15. Draft Genome Sequences of Five Pseudomonas fluorescens Subclade I and II Strains, Isolated from Human Respiratory Samples.

    Science.gov (United States)

    Scales, Brittan S; Erb-Downward, John R; LiPuma, John J; Huffnagle, Gary B

    2015-07-30

    We report the draft genomes of five Pseudomonas fluorescens strains, isolated from clinical samples. Phylogenetic analysis places three in subclade I and two in subclade II of the P. fluorescens species complex. The average G+C content and genomic size are 63% and 7.1 Mbp (subclade I) and 59.6% and 6.14 Mbp (subclade II), respectively.

  16. Complete Genome Sequence of a Potential Novel Bacillus sp. Strain, FJAT-18017, Isolated from a Potato Field

    Science.gov (United States)

    Liu, Guo-Hong; Wang, Jie-Ping; Che, Jian-Mei; Chen, Qian-Qian

    2017-01-01

    ABSTRACT Bacillus sp. strain FJAT-18017 was isolated from a potato field in Xinjiang, China. This paper is the first report, to our knowledge, to demonstrate the fully sequenced and completely annotated genome of Bacillus sp. FJAT-18017. The genome size is 5,265,521 bp. The average G+C content was 42.42%. PMID:28104649

  17. Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2

    OpenAIRE

    Jaffe, David B.; Butler, Jonathan; Gnerre, Sante; Mauceli, Evan; Lindblad-Toh, Kerstin; Jill P. Mesirov; Michael C Zody; Lander, Eric S.

    2003-01-01

    We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rej...

  18. Socorro County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  19. Rio Arriba County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  20. Cibola County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  1. Harding County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  2. Grant County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  3. Los Alamos County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  4. Roosevelt County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  5. Lea County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  6. Dona Ana County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  7. Valencia County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  8. Union County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  9. Curry County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  10. San Miguel County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  11. De Baca County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  12. Guadalupe County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  13. Bernalillo County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  14. San Juan County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  15. Sierra County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  16. Quay County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  17. Torrance County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  18. Mora County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  19. Catron County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  20. Santa Fe County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  1. Otero County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  2. Lincoln County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  3. Taos County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  4. Luna County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  5. Chaves County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  6. Eddy County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  7. Sandoval County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  8. Hidalgo County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  9. Colfax County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  10. Insular organization of gene space in grass genomes.

    Science.gov (United States)

    Gottlieb, Andrea; Müller, Hans-Georg; Massa, Alicia N; Wanjugi, Humphrey; Deal, Karin R; You, Frank M; Xu, Xiangyang; Gu, Yong Q; Luo, Ming-Cheng; Anderson, Olin D; Chan, Agnes P; Rabinowicz, Pablo; Devos, Katrien M; Dvorak, Jan

    2013-01-01

    Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  11. Insular organization of gene space in grass genomes.

    Directory of Open Access Journals (Sweden)

    Andrea Gottlieb

    Full Text Available Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  12. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias

    Directory of Open Access Journals (Sweden)

    Ovchinnikov Sergey

    2012-03-01

    Full Text Available Abstract Background Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. Results We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic

  13. Physical Theories with Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...

  14. Average Convexity in Communication Situations

    NARCIS (Netherlands)

    Slikker, M.

    1998-01-01

    In this paper we study inheritance properties of average convexity in communication situations. We show that the underlying graph ensures that the graphrestricted game originating from an average convex game is average convex if and only if every subgraph associated with a component of the underlyin

  15. Spacetime Average Density (SAD) Cosmological Measures

    CERN Document Server

    Page, Don N

    2014-01-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmolo...

  16. Sampling Based Average Classifier Fusion

    Directory of Open Access Journals (Sweden)

    Jian Hou

    2014-01-01

    fusion algorithms have been proposed in literature, average fusion is almost always selected as the baseline for comparison. Little is done on exploring the potential of average fusion and proposing a better baseline. In this paper we empirically investigate the behavior of soft labels and classifiers in average fusion. As a result, we find that; by proper sampling of soft labels and classifiers, the average fusion performance can be evidently improved. This result presents sampling based average fusion as a better baseline; that is, a newly proposed classifier fusion algorithm should at least perform better than this baseline in order to demonstrate its effectiveness.

  17. Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure

    Directory of Open Access Journals (Sweden)

    Muehlbauer Gary J

    2010-12-01

    Full Text Available Abstract Background Considerations in applying association mapping (AM to plant breeding are population structure and size: not accounting for structure and/or using small populations can lead to elevated false-positive rates. The principal determinants of population structure in cultivated barley are growth habit and inflorescence type. Both are under complex genetic control: growth habit is controlled by the epistatic interactions of several genes. For inflorescence type, multiple loss-of-function alleles in one gene lead to the same phenotype. We used these two traits as models for assessing the effectiveness of AM. This research was initiated using the CAP Core germplasm array (n = 102 assembled at the start of the Barley Coordinated Agricultural Project (CAP. This array was genotyped with 4,608 SNPs and we re-sequenced genes involved in morphology, growth and development. Larger arrays of breeding germplasm were subsequently genotyped and phenotyped under the auspices of the CAP project. This provided sets of 247 accessions phenotyped for growth habit and 2,473 accessions phenotyped for inflorescence type. Each of the larger populations was genotyped with 3,072 SNPs derived from the original set of 4,608. Results Significant associations with SNPs located in the vicinity of the loci involved in growth habit and inflorescence type were found in the CAP Core. Differentiation of true and spurious associations was not possible without a priori knowledge of the candidate genes, based on re-sequencing. The re-sequencing data were used to define allele types of the determinant genes based on functional polymorphisms. In a second round of association mapping, these synthetic markers based on allele types gave the most significant associations. When the synthetic markers were used as anchor points for analysis of interactions, we detected other known-function genes and candidate loci involved in the control of growth habit and inflorescence type. We

  18. Physical Theories with Average Symmetry

    CERN Document Server

    Alamino, Roberto C

    2013-01-01

    This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.

  19. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea

    Directory of Open Access Journals (Sweden)

    Joon-Hee Han

    2016-06-01

    Full Text Available Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.

  20. Grassmann Averages for Scalable Robust PCA

    OpenAIRE

    2014-01-01

    As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase—“big data” implies “big outliers”. While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA do not scale beyond small-to-medium sized datasets. To address this, we introduce the Grassmann Average (GA), whic...

  1. Quantized average consensus with delay

    NARCIS (Netherlands)

    Jafarian, Matin; De Persis, Claudio

    2012-01-01

    Average consensus problem is a special case of cooperative control in which the agents of the network asymptotically converge to the average state (i.e., position) of the network by transferring information via a communication topology. One of the issues of the large scale networks is the cost of co

  2. Tamanho da leitegada e pesos médios, ao nascer e aos 21 dias de idade, de leitões da raça Large White Litter size and average weights at birth and at 21 days of age of Large White piglets

    Directory of Open Access Journals (Sweden)

    M.C.R. Holanda

    2005-08-01

    Full Text Available Avaliaram-se os efeitos da época de parto e idade da matriz ao parto (IMP sobre o tamanho da leitegada (TL, da época de parto, idade da matriz ao parto e tamanho da leitegada sobre o peso médio ao nascer (PMN, e da época de parto, idade da matriz ao parto, número de nascidos vivos (NV e percentual de machos na leitegada (PERCM sobre o peso aos 21 dias de idade (PM21 de leitões Large White. Utilizaram-se dados de 3259 leitões nascidos no período de junho/85 a junho/96. A avaliação foi feita por meio de regressão múltipla. Para TL apenas o efeito de IMP determinou modificações significativas sobre o número de leitões nascidos. TL médio foi 9,73±2,78, observando-se maiores leitegadas em fêmeas de 2,84 a 3,83 anos. PMN e PM21 foram 1,35kg±0,18 e 5,06kg±1,00, respectivamente. Para PMN foram significativos os efeitos de IMP e TL, com redução do peso em 20g para cada leitão adicional. Para PM21 apenas o número de NV apresentou efeito significativo.The effects of season of birth (PE and age of sow at birth (IMP on litter size (TL; season of birth, age of sow and litter size on average weight at birth (PMN; season of birth age of sow, number of alive piglets at birth (NV, and percentage of alive males on average weight at 21 days of age (PM21 of 3259 Large White piglets born from June/85 to June/96 were evaluated by multiple regression analyses. The IMP effect on TL was significant. The average TL was 9.73±2.78. Larger litters were observed for sows from 2.84 to 3.83 years of age. The average PMN and PM21 were 1.35kg±0.18 e 5.06kg±1.00, respectively. The IMP and TL effects on PMN traits were linear and significant. A decrease of 20g on piglet weight was estimated for each additional piglet in the litter. The effect of NV was significant only for PM21 trait.

  3. Gaussian moving averages and semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    2008-01-01

    In the present paper we study moving averages (also known as stochastic convolutions) driven by a Wiener process and with a deterministic kernel. Necessary and sufficient conditions on the kernel are provided for the moving average to be a semimartingale in its natural filtration. Our results...... are constructive - meaning that they provide a simple method to obtain kernels for which the moving average is a semimartingale or a Wiener process. Several examples are considered. In the last part of the paper we study general Gaussian processes with stationary increments. We provide necessary and sufficient...

  4. Construction and characterization of a bovine BAC library with four genome-equivalent coverage

    Directory of Open Access Journals (Sweden)

    Eilertsen Ken

    2001-09-01

    Full Text Available Abstract A bovine artificial chromosome (BAC library of 105 984 clones has been constructed in the vector pBeloBAC11 and organized in 3-dimension pools and high density membranes for screening by PCR and hybridization. The average insert size, determined after analysis of 388 clones, was estimated at 120 kb corresponding to a four genome coverage. Given the fact that a male was used to construct the library, the probability of finding any given autosomal and X or Y locus is respectively 0.98 and 0.86. The library was screened for 164 microsatellite markers and an average of 3.9 superpools was positive for each PCR system. None of the 50 or so BAC clones analysed by FISH was chimeric. This BAC library increases the international genome coverage for cattle to around 28 genome equivalents and extends the coverage of the ruminant genomes available at the Inra resource center to 15 genome equivalents.

  5. Construction of Oryza Sativa genome contigs by fingerprint strategy

    Institute of Scientific and Technical Information of China (English)

    TAOQUAZHOU; GUOFANHONG; 等

    1995-01-01

    We described the construction of BAC contigs of the genome of a indica variety of Oryza sativa.Guang Lu Ai 4. An entire representative(Sixfold coverage of rice chromosomes)and genetically stable BAC library of rice genome constructed in this lab has been systematically analysed by restriction enzyme fragmentation and polyacrylamide gel electrophoresis.And all the images thus obtained were subject to image-processing,which consisted of preliminary location of bands,cooperative tracking of lanes by correlation of adjacent bads.a precise densitometric pass,alignment at the marker bands with the standard,optional interactive editing,and normalization of the accepted bands.The contigs were generated based on the Computer Software specially designed for genome mapping.The number of contigs with 600 kb in length on average was 464.of contigs with 1000kb in length on average was 107; of contigs with 1500 kb in length on average was Construction of Oryza Sativa genome contigs.23.Therefor,all the contigs we have obtained ampunted up to 420 megabases in length.Considering the size of rice genome(430 megabased),the contigs generated in this lab have covered nearly 98% of the rice genome.We are now in the process of mapping the contigs to chromosomes.

  6. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter.

    Directory of Open Access Journals (Sweden)

    Guillaume Méric

    Full Text Available The increasing availability of hundreds of whole bacterial genomes provides opportunities for enhanced understanding of the genes and alleles responsible for clinically important phenotypes and how they evolved. However, it is a significant challenge to develop easy-to-use and scalable methods for characterizing these large and complex data and relating it to disease epidemiology. Existing approaches typically focus on either homologous sequence variation in genes that are shared by all isolates, or non-homologous sequence variation--focusing on genes that are differentially present in the population. Here we present a comparative genomics approach that simultaneously approximates core and accessory genome variation in pathogen populations and apply it to pathogenic species in the genus Campylobacter. A total of 7 published Campylobacter jejuni and Campylobacter coli genomes were selected to represent diversity across these species, and a list of all loci that were present at least once was compiled. After filtering duplicates a 7-isolate reference pan-genome, of 3,933 loci, was defined. A core genome of 1,035 genes was ubiquitous in the sample accounting for 59% of the genes in each isolate (average genome size of 1.68 Mb. The accessory genome contained 2,792 genes. A Campylobacter population sample of 192 genomes was screened for the presence of reference pan-genome loci with gene presence defined as a BLAST match of ≥ 70% identity over ≥ 50% of the locus length--aligned using MUSCLE on a gene-by-gene basis. A total of 21 genes were present only in C. coli and 27 only in C. jejuni, providing information about functional differences associated with species and novel epidemiological markers for population genomic analyses. Homologs of these genes were found in several of the genomes used to define the pan-genome and, therefore, would not have been identified using a single reference strain approach.

  7. Construction of a llama bacterial artificial chromosome library with approximately 9-fold genome equivalent coverage.

    Science.gov (United States)

    Airmet, K W; Hinckley, J D; Tree, L T; Moss, M; Blumell, S; Ulicny, K; Gustafson, A K; Weed, M; Theodosis, R; Lehnardt, M; Genho, J; Stevens, M R; Kooyman, D L

    2012-01-01

    The Ilama is an important agricultural livestock in much of South America. The llama is increasing in popularity in the United States as a companion animal. Little work has been done to improve llama production using modern technology. A paucity of information is available regarding the llama genome. We report the construction of a llama bacterial artificial chromosome (BAC) library of about 196,224 clones in the vector pECBAC1. Using flow cytometry and bovine, human, mouse, and chicken as controls, we determined the llama genome size to be 2.4 × 10⁹ bp. The average insert size of the library is 137.8 kb corresponding to approximately 9-fold genome coverage. Further studies are needed to further characterize the library and llama genome. We anticipate that this new library will help facilitate future genomic studies in the llama.

  8. Vocal attractiveness increases by averaging.

    Science.gov (United States)

    Bruckert, Laetitia; Bestelmeyer, Patricia; Latinus, Marianne; Rouger, Julien; Charest, Ian; Rousselet, Guillaume A; Kawahara, Hideki; Belin, Pascal

    2010-01-26

    Vocal attractiveness has a profound influence on listeners-a bias known as the "what sounds beautiful is good" vocal attractiveness stereotype [1]-with tangible impact on a voice owner's success at mating, job applications, and/or elections. The prevailing view holds that attractive voices are those that signal desirable attributes in a potential mate [2-4]-e.g., lower pitch in male voices. However, this account does not explain our preferences in more general social contexts in which voices of both genders are evaluated. Here we show that averaging voices via auditory morphing [5] results in more attractive voices, irrespective of the speaker's or listener's gender. Moreover, we show that this phenomenon is largely explained by two independent by-products of averaging: a smoother voice texture (reduced aperiodicities) and a greater similarity in pitch and timbre with the average of all voices (reduced "distance to mean"). These results provide the first evidence for a phenomenon of vocal attractiveness increases by averaging, analogous to a well-established effect of facial averaging [6, 7]. They highlight prototype-based coding [8] as a central feature of voice perception, emphasizing the similarity in the mechanisms of face and voice perception.

  9. Genome Size and Variation Analysis of Mango (Mangifera indica L.) Germplasms in Yunnan by Flow Cytometry%云南芒果种质基因组大小测定与变异分析

    Institute of Scientific and Technical Information of China (English)

    柳觐; 李开雄; 孔广红; 倪书邦

    2015-01-01

    为了解云南芒果(Mangifera indica L.)种质资源的基因组的变异情况,采用流式细胞术对35份云南芒果种质资源的基因组大小进行了测定和变异分析。结果表明,云南芒果种质资源的基因组大小存在一定差异,基因组的平均C值是0.445110 pg,0.4353177×109 bp,最小的是采自景洪的半栽培种YSM-44(0.434567 pg,0.4250060×109 bp),最大的是采自红河的野生种YSM-25(0.458679 pg,0.4485881×109 bp)。基因组C值变异程度最大的是野生种(CV=1.65%),其次为半野生种(CV=1.26%)、半栽培种(CV=1.21%)和栽培种(CV=0.11%)。与芒果具有相近基因组大小的多为苔藓植物,与“C值悖论”观点相一致。因此,应用流式细胞术能准确、快捷地测定芒果基因组大小,而且云南野生、半野生及半栽培芒果种质资源遗传变异类型丰富,有较大的挖掘利用潜力。%In order to understand the variation of mango (Mangifera indica L.) germplasms in Yunnan, the genome size of 35 germplasms was determined by lfow cytometry and their variation was analyzed. The results showed that the mean genome size among the 35 germplasms was 0.445110 pg and 0.4353177×109 bp, which the minimum one (0.434567 pg, 0.4250060×109 bp) was YSM-44 from Jinghong, and the maximum one (0.458679 pg, 0.44485881×109 bp) was YSM-25 from Honghe. The genome size variation of wild germplasms was the largest (CV=1.65%), followed by semi-wild germplasms (CV=1.26%), semi-cultivated germplasms (CV=1.21%) and cultivated germplasms (CV=0.11%). The bryophytes had similar genome size to mango, which is consistent with the“C-value paradox”theory. Therefore, lfow cytometry method could accurately and fastly measure genome size of mango, and the genetic variation in wild, semi-wild and semi-cultivated germplasms was rich, these could be used for mango breeding.

  10. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape.

    Directory of Open Access Journals (Sweden)

    Mirte Bosse

    Full Text Available Inbreeding has long been recognized as a primary cause of fitness reduction in both wild and domesticated populations. Consanguineous matings cause inheritance of haplotypes that are identical by descent (IBD and result in homozygous stretches along the genome of the offspring. Size and position of regions of homozygosity (ROHs are expected to correlate with genomic features such as GC content and recombination rate, but also direction of selection. Thus, ROHs should be non-randomly distributed across the genome. Therefore, demographic history may not fully predict the effects of inbreeding. The porcine genome has a relatively heterogeneous distribution of recombination rate, making Sus scrofa an excellent model to study the influence of both recombination landscape and demography on genomic variation. This study utilizes next-generation sequencing data for the analysis of genomic ROH patterns, using a comparative sliding window approach. We present an in-depth study of genomic variation based on three different parameters: nucleotide diversity outside ROHs, the number of ROHs in the genome, and the average ROH size. We identified an abundance of ROHs in all genomes of multiple pigs from commercial breeds and wild populations from Eurasia. Size and number of ROHs are in agreement with known demography of the populations, with population bottlenecks highly increasing ROH occurrence. Nucleotide diversity outside ROHs is high in populations derived from a large ancient population, regardless of current population size. In addition, we show an unequal genomic ROH distribution, with strong correlations of ROH size and abundance with recombination rate and GC content. Global gene content does not correlate with ROH frequency, but some ROH hotspots do contain positive selected genes in commercial lines and wild populations. This study highlights the importance of the influence of demography and recombination on homozygosity in the genome to understand

  11. Averaged Electroencephalic Audiometry in Infants

    Science.gov (United States)

    Lentz, William E.; McCandless, Geary A.

    1971-01-01

    Normal, preterm, and high-risk infants were tested at 1, 3, 6, and 12 months of age using averaged electroencephalic audiometry (AEA) to determine the usefulness of AEA as a measurement technique for assessing auditory acuity in infants, and to delineate some of the procedural and technical problems often encountered. (KW)

  12. Ergodic averages via dominating processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Mengersen, Kerrie

    2006-01-01

    We show how the mean of a monotone function (defined on a state space equipped with a partial ordering) can be estimated, using ergodic averages calculated from upper and lower dominating processes of a stationary irreducible Markov chain. In particular, we do not need to simulate the stationary ...

  13. Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis.

    Science.gov (United States)

    Thakur, Jitendra Kumar; Agarwal, Pinky; Parida, Swarup; Bajaj, Deepak; Pasrija, Richa

    2013-08-01

    The KIX domain, which mediates protein-protein interactions, was first discovered as a motif in the large multidomain transcriptional activator histone acetyltransferase p300/CBP. Later, the domain was also found in Mediator subunit MED15, where it interacts with many transcription factors. In both proteins, the KIX domain is a target of activation domains of diverse transcription activators. It was found to be an essential component of several specific gene-activation pathways in fungi and metazoans. Not much is known about KIX domain proteins in plants. This study aims to characterize all the KIX domain proteins encoded by the genomes of Arabidopsis and rice. All identified KIX domain proteins are presented, together with their chromosomal locations, phylogenetic analysis, expression and SNP analyses. KIX domains were found not only in p300/CBP- and MED15-like plant proteins, but also in F-box proteins in rice and DNA helicase in Arabidopsis, suggesting roles of KIX domains in ubiquitin-mediated proteasomal degradation and genome stability. Expression analysis revealed overlapping expression of OsKIX_3, OsKIX_5 and OsKIX_7 in different stages of rice seeds development. Moreover, an association analysis of 136 in silico mined SNP loci in 23 different rice genotypes with grain-length information identified three non-synonymous SNP loci in these three rice genes showing strong association with long- and short-grain differentiation. Interestingly, these SNPs were located within KIX domain encoding sequences. Overall, this study lays a foundation for functional analysis of KIX domain proteins in plants.

  14. Genome resource for the Indonesian coelacanth, Latimeria menadoensis.

    Science.gov (United States)

    Danke, Joshua; Miyake, Tsutomu; Powers, Thomas; Schein, Jacqueline; Shin, Heesun; Bosdet, Ian; Erdmann, Mark; Caldwell, Roy; Amemiya, Chris T

    2004-03-01

    We have generated a BAC library from the Indonesian coelacanth, Latimeria menadoensis. This library was generated using genomic DNA of nuclei isolated from heart tissue, and has an average insert size of 171 kb. There are a total of 288 384-well microtiter dishes in the library (110,592 clones) and its genomic representation is estimated to encompass > or = 7X coverage based on the amount of DNA presumably cloned in the library as well as via hybridization with probes to a small set of single copy genes. This genomic resource has been made available to the public and should prove useful to the scientific community for many applications, including comparative genomics, molecular evolution and conservation genetics.

  15. Model averaging and muddled multimodel inferences.

    Science.gov (United States)

    Cade, Brian S

    2015-09-01

    Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the t

  16. Model averaging and muddled multimodel inferences

    Science.gov (United States)

    Cade, Brian S.

    2015-01-01

    Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the

  17. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    J C Travers

    2010-11-01

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium. The most common experimental arrangements are described, including both continuous wave fibre laser systems with over 100 W pump power, and picosecond mode-locked, master oscillator power fibre amplifier systems, with over 10 kW peak pump power. These systems can produce broadband supercontinua with over 50 and 1 mW/nm average spectral power, respectively. Techniques for numerical modelling of the supercontinuum sources are presented and used to illustrate some supercontinuum dynamics. Some recent experimental results are presented.

  18. Measuring Complexity through Average Symmetry

    OpenAIRE

    Alamino, Roberto C.

    2015-01-01

    This work introduces a complexity measure which addresses some conflicting issues between existing ones by using a new principle - measuring the average amount of symmetry broken by an object. It attributes low (although different) complexity to either deterministic or random homogeneous densities and higher complexity to the intermediate cases. This new measure is easily computable, breaks the coarse graining paradigm and can be straightforwardly generalised, including to continuous cases an...

  19. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  20. Reconstructing the Phylogenetic History of Long-Term Effective Population Size and Life-History Traits Using Patterns of Amino Acid Replacement in Mitochondrial Genomes of Mammals and Birds

    Science.gov (United States)

    Nabholz, Benoit; Lartillot, Nicolas

    2013-01-01

    The nearly neutral theory, which proposes that most mutations are deleterious or close to neutral, predicts that the ratio of nonsynonymous over synonymous substitution rates (dN/dS), and potentially also the ratio of radical over conservative amino acid replacement rates (Kr/Kc), are negatively correlated with effective population size. Previous empirical tests, using life-history traits (LHT) such as body-size or generation-time as proxies for population size, have been consistent with these predictions. This suggests that large-scale phylogenetic reconstructions of dN/dS or Kr/Kc might reveal interesting macroevolutionary patterns in the variation in effective population size among lineages. In this work, we further develop an integrative probabilistic framework for phylogenetic covariance analysis introduced previously, so as to estimate the correlation patterns between dN/dS, Kr/Kc, and three LHT, in mitochondrial genomes of birds and mammals. Kr/Kc displays stronger and more stable correlations with LHT than does dN/dS, which we interpret as a greater robustness of Kr/Kc, compared with dN/dS, the latter being confounded by the high saturation of the synonymous substitution rate in mitochondrial genomes. The correlation of Kr/Kc with LHT was robust when controlling for the potentially confounding effects of nucleotide compositional variation between taxa. The positive correlation of the mitochondrial Kr/Kc with LHT is compatible with previous reports, and with a nearly neutral interpretation, although alternative explanations are also possible. The Kr/Kc model was finally used for reconstructing life-history evolution in birds and mammals. This analysis suggests a fairly large-bodied ancestor in both groups. In birds, life-history evolution seems to have occurred mainly through size reduction in Neoavian birds, whereas in placental mammals, body mass evolution shows disparate trends across subclades. Altogether, our work represents a further step toward a more

  1. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species...... that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively...

  2. Disk-averaged synthetic spectra of Mars

    CERN Document Server

    Tinetti, G; Fong, W; Meadows, V S; Snively, H; Velusamy, T; Crisp, David; Fong, William; Meadows, Victoria S.; Snively, Heather; Tinetti, Giovanna; Velusamy, Thangasamy

    2004-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPF-C) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model which uses observational data as input to generate a database of spatially-resolved synthetic spectra for a range of illumination conditions (phase angles) and viewing geometries. Results presented here include disk averaged synthetic spectra, light-cur...

  3. Bioinformatics decoding the genome

    CERN Document Server

    CERN. Geneva; Deutsch, Sam; Michielin, Olivier; Thomas, Arthur; Descombes, Patrick

    2006-01-01

    Extracting the fundamental genomic sequence from the DNA From Genome to Sequence : Biology in the early 21st century has been radically transformed by the availability of the full genome sequences of an ever increasing number of life forms, from bacteria to major crop plants and to humans. The lecture will concentrate on the computational challenges associated with the production, storage and analysis of genome sequence data, with an emphasis on mammalian genomes. The quality and usability of genome sequences is increasingly conditioned by the careful integration of strategies for data collection and computational analysis, from the construction of maps and libraries to the assembly of raw data into sequence contigs and chromosome-sized scaffolds. Once the sequence is assembled, a major challenge is the mapping of biologically relevant information onto this sequence: promoters, introns and exons of protein-encoding genes, regulatory elements, functional RNAs, pseudogenes, transposons, etc. The methodological ...

  4. Estimation of genome size of eighteen Chinese old garden roses by flow cytometry%应用流式细胞术测定18个中国古老月季基因组大小

    Institute of Scientific and Technical Information of China (English)

    武荣花; 葛蓓蓓; 王茂良; 周燕; 冯慧

    2016-01-01

    Using Petroselinum crispum as the calibration standard, we used two different test processes to estimate the genome size of Chinese old garden rose. Using chromosome counting method, we also determined the ploidy level of three Chinese old garden rose cultivars, which are still in debate or have not been reported, to offer necessary support for estimating the genome size. Main results are as follows. 1 ) The Chinese old garden rose cultivar ‘Pingdong Yueji ’ is diploid ( 2 n=2 x=14 ) , while ‘Jünang ’ and ‘Mudan Yueji ’ are tetraploid ( 2 n =4 x =28 ) . 2 ) Significant differences were observed in six cultivars, but no significant differences in other twelve cultivars in both two test processes, in which the method II was more accurate and stable to estimate the genome size. Method I was easier in operating and more suitable for detecting ploidy level. 3 ) The genome size of 18 Chinese old garden rose cultivars (including diploid, triploid and tetraploid cultivars) ranged from 0. 62 pg to 0. 71 pg. The 2C DNA amounts of diploid cultivars ranged between 1. 34--1. 43 pg, and C-value varied from 0. 67 pg to 1. 43 pg. The 2C DNA amounts of triploid cultivars ranged between 1. 96--2. 05 pg, and C-value between 0. 65--0. 68 pg. The 2C DNA amounts of tetraploid varieties varied from 2. 49 to 2. 63 pg, and C-value from 0. 62 to 0. 66 pg. Diploid cultivars possess the largest genome, followed by the triploid ones, and tetraploid ones the least. We selected the optimum pretreatment method for estimating the genome sizes of 18 Chinese old garden rose cultivars using flow cytometry. Our results offer theory for revealing the relationship between the origin and evolution of Chinese old garden rose, and lay a foundation for their genomic sequencing.%以18个中国古老月季为试材,以欧芹作为标准植物,采用2种不同的样本处理方法对其基因组大小进行测定,同时利用染色体计数法补充3个存在争议或尚未见报道的中国

  5. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    Directory of Open Access Journals (Sweden)

    Feltus Frank A

    2011-07-01

    Full Text Available Abstract Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18 to duodecaploid (12X = 108. Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective. Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of

  6. Genome evolution of Oryza

    Directory of Open Access Journals (Sweden)

    Tieyan Liu

    2014-01-01

    Full Text Available The genus Oryza is composed of approximately 24 species. Wild species of Oryza contain a largely untapped resource of agronomically important genes. As an increasing number of genomes of wild rice species have been or will be sequenced, Oryza is becoming a model system for plant comparative, functional and evolutionary genomics studies. Comparative analyses of large genomic regions and whole-genome sequences have revealed molecular mechanisms involved in genome size variation, gene movement, genome evolution of polyploids, transition of euchromatin to heterochromatin and centromere evolution in the genus Oryza. Transposon activity and removal of transposable elements by unequal recombination or illegitimate recombination are two important factors contributing to expansion or contraction of Oryza genomes. Double-strand break repair mediated gene movement, especially non-homologous end joining, is an important source of non-colinear genes. Transition of euchromatin to heterochromatin is accompanied by transposable element amplification, segmental and tandem duplication of genic segments, and acquisition of heterochromatic genes from other genomic locations. Comparative analyses of multiple genomes dramatically improve the precision and sensitivity of evolutionary inference than single-genome analyses can provide. Further investigations on the impact of structural variation, lineage-specific genes and evolution of agriculturally important genes on phenotype diversity and adaptation in the genus Oryza should facilitate molecular breeding and genetic improvement of rice.

  7. Perceptual averaging in individuals with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jennifer Elise Corbett

    2016-11-01

    Full Text Available There is mounting evidence that observers rely on statistical summaries of visual information to maintain stable and coherent perception. Sensitivity to the mean (or other prototypical value of a visual feature (e.g., mean size appears to be a pervasive process in human visual perception. Previous studies in individuals diagnosed with Autism Spectrum Disorder (ASD have uncovered characteristic patterns of visual processing that suggest they may rely more on enhanced local representations of individual objects instead of computing such perceptual averages. To further explore the fundamental nature of abstract statistical representation in visual perception, we investigated perceptual averaging of mean size in a group of 12 high-functioning individuals diagnosed with ASD using simplified versions of two identification and adaptation tasks that elicited characteristic perceptual averaging effects in a control group of neurotypical participants. In Experiment 1, participants performed with above chance accuracy in recalling the mean size of a set of circles (mean task despite poor accuracy in recalling individual circle sizes (member task. In Experiment 2, their judgments of single circle size were biased by mean size adaptation. Overall, these results suggest that individuals with ASD perceptually average information about sets of objects in the surrounding environment. Our results underscore the fundamental nature of perceptual averaging in vision, and further our understanding of how autistic individuals make sense of the external environment.

  8. Construction of genomic libraries of Cryptosporidium parvum and identification of antigen-encoding genes.

    Science.gov (United States)

    Dykstra, C C; Blagburn, B L; Tidwell, R R

    1991-01-01

    Genomic libraries have been constructed from bovine C. parvum DNA in the lambda ZAP and lambda DASH vectors. Based on an estimated genome size of 2 x 10(4) kilobases (kb), each recombinant library contains greater than 10 genomic equivalents. The average recombinant size for the lambda ZAP library is 2.1 kb and for the lambda DASH library is 14 kb. We have identified genes to major antigens recognized by hyperimmune bovine antiserum. These recombinants are currently being purified and characterized. Limited DNA sequence analysis of random C. parvum clones confirms suggestions that the genome is quite AT-rich. The DNA sequence of random lambda ZAP fusion proteins has identified a potential ATPase, a structural protein and a DNA-binding protein.

  9. Nothing special in the specialist? Draft genome sequence of Cryomyces antarcticus, the most extremophilic fungus from Antarctica.

    Directory of Open Access Journals (Sweden)

    Katja Sterflinger

    Full Text Available The draft genome of the Antarctic endemic fungus Cryomyces antarcticus is presented. This rock inhabiting, microcolonial fungus is extremely stress tolerant and it is a model organism for exobiology and studies on stress resistance in Eukaryots. Since this fungus is a specialist in the most extreme environment of the Earth, the analysis of its genome is of important value for the understanding of fungal genome evolution and stress adaptation. A comparison with Neurospora crassa as well as with other microcolonial fungi shows that the fungus has a genome size of 24 Mbp, which is the average in the fungal kingdom. Although sexual reproduction was never observed in this fungus, 34 mating genes are present with protein homologs in the classes Eurotiomycetes, Sordariomycetes and Dothideomycetes. The first analysis of the draft genome did not reveal any significant deviations of this genome from comparative species and mesophilic hyphomycetes.

  10. Nothing special in the specialist? Draft genome sequence of Cryomyces antarcticus, the most extremophilic fungus from Antarctica.

    Science.gov (United States)

    Sterflinger, Katja; Lopandic, Ksenija; Pandey, Ram Vinay; Blasi, Barbara; Kriegner, Albert

    2014-01-01

    The draft genome of the Antarctic endemic fungus Cryomyces antarcticus is presented. This rock inhabiting, microcolonial fungus is extremely stress tolerant and it is a model organism for exobiology and studies on stress resistance in Eukaryots. Since this fungus is a specialist in the most extreme environment of the Earth, the analysis of its genome is of important value for the understanding of fungal genome evolution and stress adaptation. A comparison with Neurospora crassa as well as with other microcolonial fungi shows that the fungus has a genome size of 24 Mbp, which is the average in the fungal kingdom. Although sexual reproduction was never observed in this fungus, 34 mating genes are present with protein homologs in the classes Eurotiomycetes, Sordariomycetes and Dothideomycetes. The first analysis of the draft genome did not reveal any significant deviations of this genome from comparative species and mesophilic hyphomycetes.

  11. Between two fern genomes.

    Science.gov (United States)

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

  12. Correlations of plant seed dispersal pattern with genome size and 1000-seed mass%植物种子传播途径与基因组值和千粒重的相关性

    Institute of Scientific and Technical Information of China (English)

    白成科; 曹博; 李桂双

    2013-01-01

    Seed dispersal is essential to the reproduction, distribution, and evolution of plants. To study the correlations of plant seed dispersal pattern with genome size and 1000-seed mass is of significance for revealing the invasion of plant seeds and the mechanisms of genome evolution. In this paper, statistics and correlation analysis were conducted on 235 plant species with complete genome information (chromosomes number, ploidy, and C-value) , 1000-seed mass, and seed dispersal patterns, based on the previous estimation of some plant species C-values and the searching of plant C-value database and seed information database. The ANOVA analysis indicated that for the plants whose seeds were dispersed by water, bird, and wind, the C-values (Cwater = 1.3 pg, Cbird = 1.6 pg, and Cwingd=2.0 pg) and genome sizes (1Cxwater = 1. 1 pg, lCxbird = 1.3 pg, and 1Cxwind = 1.6 pg) were significantly lower than those whose seeds were dispersed by animal-eating (1Canimal=4.9 pg, and lCxanimal=4.7 pg) (P 0. 05). The 1000-seed mass of the 235 species varied greatly. The 1000-seed mass of the plants with seed dispersal by wind and animal-carrying (7. 2 g and 13. 5 g, respectively) were obviously lower than that with seed dispersal by water and animal-eating (85. 8 g and 92. 5 g, respectively) , but the 1000-seed mass of the plants with unassisted dispersal had no significant differences with that of other dispersal patterns. The further correlation analysis showed that there existed positive correlations between the genome size and 1000-seed mass of the plants whose seeds were dispersed by animal-eating and water (γ = 0. 33) , in which, the correlation for the plants whose seeds were dispersed by animal-eating was significant (γ = 0. 67 x + 3. 23, R2 =0.11, P = 0. 04). These findings would provide references to reveal the mechanisms of plant seed dispersal, distribution, and genome evolution.%种子传播对植物的繁殖、分布和进化至关重要,研究植物基因组、种子

  13. Construction and utility of 10-kb libraries for efficient clone-gap closure for rice genome sequencing.

    Science.gov (United States)

    Yang, Tae-Jin; Yu, Yeisoo; Nah, Gyoungju; Atkins, Michael; Lee, Seunghee; Frisch, David A; Wing, Rod A

    2003-08-01

    Rice is an important crop and a model system for monocot genomics, and is a target for whole genome sequencing by the International Rice Genome Sequencing Project (IRGSP). The IRGSP is using a clone by clone approach to sequence rice based on minimum tiles of BAC or PAC clones. For chromosomes 10 and 3 we are using an integrated physical map based on two fingerprinted and end-sequenced BAC libraries to identifying a minimum tiling path of clones. In this study we constructed and tested two rice genomic libraries with an average insert size of 10 kb (10-kb library) to support the gap closure and finishing phases of the rice genome sequencing project. The HaeIII library contains 166,752 clones covering approximately 4.6x rice genome equivalents with an average insert size of 10.5 kb. The Sau3AI library contains 138,960 clones covering 4.2x genome equivalents with an average insert size of 11.6 kb. Both libraries were gridded in duplicate onto 11 high-density filters in a 5 x 5 pattern to facilitate screening by hybridization. The libraries contain an unbiased coverage of the rice genome with less than 5% contamination by clones containing organelle DNA or no insert. An efficient method was developed, consisting of pooled overgo hybridization, the selection of 10-kb gap spanning clones using end sequences, transposon sequencing and utilization of in silico draft sequence, to close relatively small gaps between sequenced BAC clones. Using this method we were able to close a majority of the gaps (up to approximately 50 kb) identified during the finishing phase of chromosome-10 sequencing. This method represents a useful way to close clone gaps and thus to complete the entire rice genome.

  14. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAOGuo-ping

    2004-01-01

    Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  15. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-ping

    2004-01-01

    @@ Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  16. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  17. 7 CFR 1209.12 - On average.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false On average. 1209.12 Section 1209.12 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS....12 On average. On average means a rolling average of production or imports during the last two...

  18. A draft genome assembly of the army worm, Spodoptera frugiperda.

    Science.gov (United States)

    Kakumani, Pavan Kumar; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2014-08-01

    Spodoptera is an agriculturally important pest insect and studies in understanding its biology have been limited by the unavailability of its genome. In the present study, the genomic DNA was sequenced and assembled into 37,243 scaffolds of size, 358 Mb with N50 of 53.7 kb. Based on degree of identity, we could anchor 305 Mb of the genome onto all the 28 chromosomes of Bombyx mori. Repeat elements were identified, which accounts for 20.28% of the total genome. Further, we predicted 11,595 genes, with an average intron length of 726 bp. The genes were annotated and domain analysis revealed that Sf genes share a significant homology and expression pattern with B. mori, despite differences in KOG gene categories and representation of certain protein families. The present study on Sf genome would help in the characterization of cellular pathways to understand its biology and comparative evolutionary studies among lepidopteran family members to help annotate their genomes.

  19. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform.

    Directory of Open Access Journals (Sweden)

    Graham F Hatfull

    2006-06-01

    Full Text Available Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774 of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three-encoding tape-measure proteins, lysins, and minor tail proteins-are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15% have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education.

  20. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    Science.gov (United States)

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  1. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj;

    2014-01-01

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also...... in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome...

  2. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  3. Genome digging: insight into the mitochondrial genome of Homo.

    Directory of Open Access Journals (Sweden)

    Igor V Ovchinnikov

    Full Text Available BACKGROUND: A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1 into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split. PRINCIPAL FINDINGS: Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2 with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000-485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively. CONCLUSIONS: This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The d(N/d(S dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective

  4. Burst speciation processes and genomic expansion in the neotropical annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae).

    Science.gov (United States)

    García, G; Gutiérrez, V; Ríos, N; Turner, B; Santiñaque, F; López-Carro, B; Folle, G

    2014-02-01

    The extent to which genome sizes and other nucleotypic factors influence the phyletic diversification of lineages has long been discussed but remains largely unresolved. In the present work, we present evidence that the genomes of at least 16 species of the neotropical rivulid killifish genus Austrolebias are unusually large, with an average DNA content of about 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). They are thus larger than the genomes of very nearly all other diploid, i.e. non-(paleo) polyploid species of actinopterygian fishes so far reported. Austrolebias species appear to be conventional diploids in all other respects and there is no reason to believe that they arise from polyploid ancestors. The genome sizes reported for other rivulid killifishes, including a putative sister group, are considerably smaller and fall within the range typical of most other cyprinodontoid species. Therefore, it appears that the ancestor(s) of contemporary Austrolebias have undergone one or more episodes of genome expansion encompassing sudden speciation process during the Pleistocene. In addition, these findings are consistent with the hypothesis of a positive correlation between species richness and genome size.

  5. Bootstrapping pre-averaged realized volatility under market microstructure noise

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Goncalves, Sílvia; Meddahi, Nour

    -averaged returns implies that these are kn-dependent with kn growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the "blocks of blocks" bootstrap method suggested by Politis and Romano (1992) (and further studied by Bühlmann and Künsch (1995...

  6. Pareto Principle in Datamining: an Above-Average Fencing Algorithm

    Directory of Open Access Journals (Sweden)

    K. Macek

    2008-01-01

    Full Text Available This paper formulates a new datamining problem: which subset of input space has the relatively highest output where the minimal size of this subset is given. This can be useful where usual datamining methods fail because of error distribution asymmetry. The paper provides a novel algorithm for this datamining problem, and compares it with clustering of above-average individuals.

  7. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    Directory of Open Access Journals (Sweden)

    Kudrna David

    2011-03-01

    Full Text Available Abstract Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1 digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb to 157 Kb (Eg_Ba, very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×, contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae

  8. Genuine non-self-averaging and ultraslow convergence in gelation

    Science.gov (United States)

    Cho, Y. S.; Mazza, M. G.; Kahng, B.; Nagler, J.

    2016-08-01

    In irreversible aggregation processes droplets or polymers of microscopic size successively coalesce until a large cluster of macroscopic scale forms. This gelation transition is widely believed to be self-averaging, meaning that the order parameter (the relative size of the largest connected cluster) attains well-defined values upon ensemble averaging with no sample-to-sample fluctuations in the thermodynamic limit. Here, we report on anomalous gelation transition types. Depending on the growth rate of the largest clusters, the gelation transition can show very diverse patterns as a function of the control parameter, which includes multiple stochastic discontinuous transitions, genuine non-self-averaging and ultraslow convergence of the transition point. Our framework may be helpful in understanding and controlling gelation.

  9. Evolution of the average avalanche shape with the universality class.

    Science.gov (United States)

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.

  10. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.

    Science.gov (United States)

    Detrich, H W; Amemiya, Chris T

    2010-12-01

    The perciform suborder Notothenoidei provides a compelling opportunity to study the adaptive radiation of a marine species-flock in the cold Southern Ocean that surrounds Antarctica. To facilitate genome-level studies of the diversification of these fishes, we present estimates of the genome sizes of 11 Antarctic species and describe the production of high-quality bacterial artificial chromosome (BAC) libraries for two, the red-blooded notothen Notothenia coriiceps and the white-blooded icefish Chaenocephalus aceratus. Our results indicate that evolution of phylogenetically derived notothenioid families (e.g., the crown group Channichthyidae [icefishes]), was accompanied by genome expansion. Six species from the basal family Nototheniidae had C-values between 0.98 and 1.20 pg, a range that is consistent with the genome sizes of proposed outgroups (e.g., percids) of the notothenioid suborder. In contrast, four icefishes had C-values in the range 1.66-1.83 pg. The BAC libraries VMRC-19 (N. coriiceps) and VMRC-21 (C. aceratus) comprise 12× and 10× coverage of the respective genomes and have average insert sizes of 138 and 168 kb. Paired BAC-end reads representing ∼0.1% of each genome showed that the repetitive element landscapes of the two genomes (13.4% of the N. coriiceps genome and 14.5% for C. aceratus) were similar. The availability of these high-quality and well-characterized BAC libraries sets the stage for targeted genomic analyses of the unusual anatomical and physiological adaptations of the notothenioids, some of which mimic human diseases. Here we consider the evolution of secondary pelagicism by various taxa of the group and illustrate the utility of Antarctic icefishes as an evolutionary-mutant model of human osteopenia (low-mineral density of bones).

  11. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  12. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  13. Spectral averaging techniques for Jacobi matrices

    CERN Document Server

    del Rio, Rafael; Schulz-Baldes, Hermann

    2008-01-01

    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.

  14. Derivation of a mathematical expression useful for the construction of complete genomic libraries.

    Science.gov (United States)

    Zilsel, J; Ma, P H; Beatty, J T

    1992-10-12

    We present and derive a formula that is useful for the design and evaluation of gene cloning experiments in which a complete gene library of the entire genome of an organism is desired. The formula n = ln(1-phi f)/ln(1-f) (in which n is the number of recombinant clones required to ensure a probability, phi, of obtaining at least one of each of all possible gene sequences, and f is the fraction of the genome contained in an average-sized DNA fragment) applies to construction of libraries, in which at least one copy of all the genetic information of a genome is required. The use of this formula for quantitative evaluation of genomic libraries should give greater assurance that a given library would be complete.

  15. Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae).

    Science.gov (United States)

    García, G; Ríos, N; Gutiérrez, V

    2015-06-01

    Among Neotropical fish fauna, the South American killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) constitutes an excellent model to study the genomic evolutionary processes underlying speciation events. Recently, unusually large genome size has been described in 16 species of this genus, with an average DNA content of about 5.95 ± 0.45 pg per diploid cell (mean C-value of about 2.98 pg). In the present paper we explore the possible origin of this unparallel genomic increase by means of comparative analysis of the repetitive components using NGS (454-Roche) technology in the lowest and highest Rivulidae genomes. Here, we provide the first annotated Rivulidae-repeated sequences composition and their relative repetitive fraction in both genomes. Remarkably, the genomic proportion of the moderately repetitive DNA in Austrolebias charrua genome represents approximately twice (45%) of the repetitive components of the highly related rivulinae taxon Cynopoecilus melanotaenia (25%). Present work provides evidence about the impact of the repeat families that could be distinctly proliferated among sublineages within Rivulidae fish group, explaining the great genome size differences encompassing the differentiation and speciation events in this family.

  16. Average-Time Games on Timed Automata

    OpenAIRE

    Jurdzinski, Marcin; Trivedi, Ashutosh

    2009-01-01

    An average-time game is played on the infinite graph of configurations of a finite timed automaton. The two players, Min and Max, construct an infinite run of the automaton by taking turns to perform a timed transition. Player Min wants to minimise the average time per transition and player Max wants to maximise it. A solution of average-time games is presented using a reduction to average-price game on a finite graph. A direct consequence is an elementary proof of determinacy for average-tim...

  17. Leaner and meaner genomes in Escherichia coli

    DEFF Research Database (Denmark)

    Ussery, David

    2006-01-01

    A 'better' Escherichia coli K-12 genome has recently been engineered in which about 15% of the genome has been removed by planned deletions. Comparison with related bacterial genomes that have undergone a natural reduction in size suggests that there is plenty of scope for yet more deletions....

  18. The diploid genome sequence of an Asian individual

    DEFF Research Database (Denmark)

    Wang, Jun; Wang, Wei; Li, Ruiqiang

    2008-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we...

  19. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  20. Genomic Aspects of Research Involving Polyploid Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  1. Genic regions of a large salamander genome contain long introns and novel genes

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp were isolated and sequenced to characterize the structure of genic regions. Results Annotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86% of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! Conclusion This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.

  2. Análisis del tamaño del genoma y cariotipo de Agave aktites Gentry (Agavaceae de Sonora, México Genome size and karyotype analysis of Agave aktites Gentry (Agavaceae from Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Guadalupe Palomino

    2010-12-01

    Full Text Available Se determinó el tamaño del genoma y la estructura del cariotipo de 2 poblaciones silvestres de Agave aktites Gentry de Las Bocas y San Carlos, Sonora, México. El contenido de ADN nuclear en tejido foliar se determinó por citometría de flujo y los cromosomas se observaron en metafase mitótica de meristemos radiculares. Las plantas en ambas poblaciones son diploides (2n= 2x= 60. El contenido promedio 2C de ADN nuclear fue de 8.404 pg; 1Cx= 4 120 millones de pares de nucleótidos. El cariotipo bimodal fue similar en las 2 poblaciones y consistió de 10 cromosomas grandes y 50 pequeños y correspondió a 46m+6st+8t: también mostró un par de cromosomas telocéntricos grandes con constricción secundaria. El cociente de los brazos cromosómicos fue diferente en los pares 7, 8, 14 y 16 del grupo de cromosomas pequeños que presentan diferencias morfológicas entre las 2 poblaciones. Estos rearreglos cromosómicos podrían deberse a intercambios cromosómicos heterocigóticos espontáneos y son evidencia de que los genomas de distintas poblaciones de A. aktites se encuentran en un activo proceso de diferenciación que podría llevar a la especiación. Los análisis son básicos para conocer la diversidad genética intraespecífica de A. aktites y para establecer estrategias de conservación in situ y ex situ para esta especie.Genome size and karyotype structure of 2 wild populations of Agave aktites Gentry from Las Bocas and San Carlos, Sonora, Mexico were determined. Nuclear DNA content of leaf tissue was measured through flow cytometry, and chromosomes were observed in mitotic metaphase of root tips. All individual plants studied in both populations are diploids (2n= 2x= 60. The mean 2C nuclear DNA content was 8.404 pg; 1Cx= 4 120 million of base pairs. All plants of the 2 populations of A. aktites show a bimodal karyotype consisting of 10 large + 50 small chromosomes and corresponded to 46m+6st+8t; they also have a pair of large telocentric

  3. Genomic resources in mungbean for future breeding programs

    Directory of Open Access Journals (Sweden)

    Sue K Kim

    2015-08-01

    Full Text Available Among the legume family, mungbean (Vigna radiata has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement.

  4. A physical map of the human genome

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, J.D.; Marra, M.; Hillier, L.; Waterston, R.H.; Chinwalla, A.; Wallis, J.; Sekhon, M.; Wylie, K.; Mardis, E.R.; Wilson, R.K.; Fulton, R.; Kucaba, T.A.; Wagner-McPherson, C.; Barbazuk, W.B.; Gregory, S.G.; Humphray, S.J.; French, L.; Evans, R.S.; Bethel, G.; Whittaker, A.; Holden, J.L.; McCann, O.T.; Dunham, A.; Soderlund, C.; Scott, C.E.; Bentley, D.R.; Schuler, G.; Chen, H.-C.; Jang, W.; Green, E.D.; Idol, J.R.; Maduro, V.V. Braden; Montgomery, K.T.; Lee, E.; Miller, A.; Emerling, S.; Kucherlapati; Gibbs, R.; Scherer, S.; Gorrell, J.H.; Sodergren, E.; Clerc-Blankenburg, K.; Tabor, P.; Naylor, S.; Garcia, D.; de Jong, P.J.; Catanese, J.J.; Nowak, N.; Osoegawa, K.; Qin, S.; Rowen, L.; Madan, A.; Dors, M.; Hood, L.; Trask, B.; Friedman, C.; Massa, H.; Cheung, V.G.; Kirsch, I.R.; Reid, T.; Yonescu, R.; Weissenbach, J.; Bruls, T.; Heilig, R.; Branscomb, E.; Olsen, A.; Doggett, N.; Cheng, J.F.; Hawkins, T.; Myers, R.M.; Shang, J.; Ramirez, L.; Schmutz, J.; Velasquez, O.; Dixon, K.; Stone, N.E.; Cox, D.R.; Haussler, D.; Kent, W.J.; Furey, T.; Rogic, S.; Kennedy, S.; Jones, S.; Rosenthal, A.; Wen, G.; Schilhabel, M.; Gloeckner, G.; Nyakatura, G.; Siebert, R.; Schlegelberger, B.; Korenberg, J.; Chen, X.N.; Fujiyama, A.; Hattori, M.; Toyoda, A.; Yada, T.; Park, H.S.; Sakaki, Y.; Shimizu, N.; Asakawa, S.; Kawasaki, K.; Sasaki, T.; Shintani, A.; Shimizu, A.; Shibuya, K.; Kudoh, J.; Minoshima, S.; Ramser, J.; Seranski, P.; Hoff, C.; Poustka, A.; Reinhardt, R.; Lehrach, H.

    2001-01-01

    The human genome is by far the largest genome to be sequenced, and its size and complexity present many challenges for sequence assembly. The International Human Genome Sequencing Consortium constructed a map of the whole genome to enable the selection of clones for sequencing and for the accurate assembly of the genome sequence. Here we report the construction of the whole-genome bacterial artificial chromosome (BAC) map and its integration with previous landmark maps and information from mapping efforts focused on specific chromosomal regions. We also describe the integration of sequence data with the map.

  5. WIDTHS AND AVERAGE WIDTHS OF SOBOLEV CLASSES

    Institute of Scientific and Technical Information of China (English)

    刘永平; 许贵桥

    2003-01-01

    This paper concerns the problem of the Kolmogorov n-width, the linear n-width, the Gel'fand n-width and the Bernstein n-width of Sobolev classes of the periodicmultivariate functions in the space Lp(Td) and the average Bernstein σ-width, averageKolmogorov σ-widths, the average linear σ-widths of Sobolev classes of the multivariatequantities.

  6. GENOMIC FEATURES OF COTESIA PLUTELLAE POLYDNAVIRUS

    Institute of Scientific and Technical Information of China (English)

    LIUCai-ling; ZHUXiang-xiong; FuWen-jun; ZHAOMu-jun

    2003-01-01

    Polydnavirus was purified from the calyx fluid of Cotesia plutellae ovary. The genomic features of C. plutellae polydnavirus (CpPDV) were investigated. The viral genome consists of at least 12 different segments and the aggregate genome size is a lower estimate of 80kbp. By partial digestion of CpPDV DNA with BamHI and subsequent ligation with BamHI-cut plasmid Bluescript, a representative library of CpPDV genome was obtained.

  7. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Department of Resources — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  8. Stochastic averaging of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋

    1996-01-01

    A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.

  9. Revised selection criteria for candidate restriction enzymes in genome walking.

    Science.gov (United States)

    Taheri, Ali; Robinson, Stephen J; Parkin, Isobel; Gruber, Margaret Y

    2012-01-01

    A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes.

  10. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical

  11. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    Directory of Open Access Journals (Sweden)

    Changqing Liu

    2014-03-01

    Full Text Available Bacterial artificial chromosome (BAC libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12, consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger.

  12. Construction and Preliminary Characterization Analysis of Wuzhishan Miniature Pig Bacterial Artificial Chromosome Library with Approximately 8-Fold Genome Equivalent Coverage

    Directory of Open Access Journals (Sweden)

    Changqing Liu

    2013-01-01

    Full Text Available Bacterial artificial chromosome (BAC libraries have been invaluable tools for the genome-wide genetic dissection of complex organisms. Here, we report the construction and characterization of a high-redundancy BAC library from a very valuable pig breed in China, Wuzhishan miniature pig (Sus scrofa, using its blood cells and fibroblasts, respectively. The library contains approximately 153,600 clones ordered in 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 152.3 kb, representing approximately 7.68 genome equivalents of the porcine haploid genome and a 99.93% statistical probability of obtaining at least one clone containing a unique DNA sequence in the library. 19 pairs of microsatellite marker primers covering porcine chromosomes were used for screening the BAC library, which showed that each of these markers was positive in the library; the positive clone number was 2 to 9, and the average number was 7.89, which was consistent with 7.68-fold coverage of the porcine genome. And there were no significant differences of genomic BAC library from blood cells and fibroblast cells. Therefore, we identified 19 microsatellite markers that could potentially be used as genetic markers. As a result, this BAC library will serve as a valuable resource for gene identification, physical mapping, and comparative genomics and large-scale genome sequencing in the porcine.

  13. Construction and analysis of Siberian tiger bacterial artificial chromosome library with approximately 6.5-fold genome equivalent coverage.

    Science.gov (United States)

    Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2014-03-07

    Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger.

  14. FUNDAMENTALS OF TRANSMISSION FLUCTUATION SPECTROMETRY WITH VARIABLE SPATIAL AVERAGING

    Institute of Scientific and Technical Information of China (English)

    Jianqi Shen; Ulrich Riebel; Marcus Breitenstein; Udo Kr(a)uter

    2003-01-01

    Transmission signal of radiation in suspension of particles performed with a high spatial and temporal resolution shows significant fluctuations, which are related to the physical properties of the particles and the process of spatial and temporal averaging. Exploiting this connection, it is possible to calculate the parti cie size distribution (PSD)and particle concentration. This paper provides an approach of transmission fluctuation spectrometry (TFS) with variable spatial averaging. The transmission fluctuations are expressed in terms of the expectancy of transmission square (ETS)and are obtained as a spectrum, which is a function of the variable beam diameter. The reversal point and the depth of the spectrum contain the information of particle size and particle concentration, respectively.

  15. Average sampling theorems for shift invariant subspaces

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The sampling theorem is one of the most powerful results in signal analysis. In this paper, we study the average sampling on shift invariant subspaces, e.g. wavelet subspaces. We show that if a subspace satisfies certain conditions, then every function in the subspace is uniquely determined and can be reconstructed by its local averages near certain sampling points. Examples are given.

  16. Testing linearity against nonlinear moving average models

    NARCIS (Netherlands)

    de Gooijer, J.G.; Brännäs, K.; Teräsvirta, T.

    1998-01-01

    Lagrange multiplier (LM) test statistics are derived for testing a linear moving average model against an additive smooth transition moving average model. The latter model is introduced in the paper. The small sample performance of the proposed tests are evaluated in a Monte Carlo study and compared

  17. Averaging Einstein's equations : The linearized case

    NARCIS (Netherlands)

    Stoeger, William R.; Helmi, Amina; Torres, Diego F.

    2007-01-01

    We introduce a simple and straightforward averaging procedure, which is a generalization of one which is commonly used in electrodynamics, and show that it possesses all the characteristics we require for linearized averaging in general relativity and cosmology for weak-field and perturbed FLRW situ

  18. Average Transmission Probability of a Random Stack

    Science.gov (United States)

    Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg

    2010-01-01

    The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…

  19. Average excitation potentials of air and aluminium

    NARCIS (Netherlands)

    Bogaardt, M.; Koudijs, B.

    1951-01-01

    By means of a graphical method the average excitation potential I may be derived from experimental data. Average values for Iair and IAl have been obtained. It is shown that in representing range/energy relations by means of Bethe's well known formula, I has to be taken as a continuously changing fu

  20. New results on averaging theory and applications

    Science.gov (United States)

    Cândido, Murilo R.; Llibre, Jaume

    2016-08-01

    The usual averaging theory reduces the computation of some periodic solutions of a system of ordinary differential equations, to find the simple zeros of an associated averaged function. When one of these zeros is not simple, i.e., the Jacobian of the averaged function in it is zero, the classical averaging theory does not provide information about the periodic solution associated to a non-simple zero. Here we provide sufficient conditions in order that the averaging theory can be applied also to non-simple zeros for studying their associated periodic solutions. Additionally, we do two applications of this new result for studying the zero-Hopf bifurcation in the Lorenz system and in the Fitzhugh-Nagumo system.

  1. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    Science.gov (United States)

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.

  2. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    Science.gov (United States)

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  3. A BAC-based physical map of the Drosophila buzzatii genome

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra; Shin, Heesun; Chiu, Readman; Mathewson, Carrie; Wye, Natasja; Hoskins, Roger A.; Schein, JacquelineE.; de Jong, Pieter; Ruiz, Alfredo

    2005-03-18

    Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available to the research community.

  4. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  5. Experimental Demonstration of Squeezed State Quantum Averaging

    CERN Document Server

    Lassen, Mikael; Sabuncu, Metin; Filip, Radim; Andersen, Ulrik L

    2010-01-01

    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.

  6. Averaged Lema\\^itre-Tolman-Bondi dynamics

    CERN Document Server

    Isidro, Eddy G Chirinos; Piattella, Oliver F; Zimdahl, Winfried

    2016-01-01

    We consider cosmological backreaction effects in Buchert's averaging formalism on the basis of an explicit solution of the Lema\\^itre-Tolman-Bondi (LTB) dynamics which is linear in the LTB curvature parameter and has an inhomogeneous bang time. The volume Hubble rate is found in terms of the volume scale factor which represents a derivation of the simplest phenomenological solution of Buchert's equations in which the fractional densities corresponding to average curvature and kinematic backreaction are explicitly determined by the parameters of the underlying LTB solution at the boundary of the averaging volume. This configuration represents an exactly solvable toy model but it does not adequately describe our "real" Universe.

  7. FREQUENTIST MODEL AVERAGING ESTIMATION: A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Haiying WANG; Xinyu ZHANG; Guohua ZOU

    2009-01-01

    In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model without consideration of the uncertainty from the selection process. This often leads to the underreporting of variability and too optimistic confidence sets. Model averaging estimation is an alternative to this procedure, which incorporates model uncertainty into the estimation process. In recent years, there has been a rising interest in model averaging from the frequentist perspective, and some important progresses have been made. In this paper, the theory and methods on frequentist model averaging estimation are surveyed. Some future research topics are also discussed.

  8. Averaging of Backscatter Intensities in Compounds

    Science.gov (United States)

    Donovan, John J.; Pingitore, Nicholas E.; Westphal, Andrew J.

    2002-01-01

    Low uncertainty measurements on pure element stable isotope pairs demonstrate that mass has no influence on the backscattering of electrons at typical electron microprobe energies. The traditional prediction of average backscatter intensities in compounds using elemental mass fractions is improperly grounded in mass and thus has no physical basis. We propose an alternative model to mass fraction averaging, based of the number of electrons or protons, termed “electron fraction,” which predicts backscatter yield better than mass fraction averaging. PMID:27446752

  9. Average-passage flow model development

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Kirtley, Kevin; Barnett, Mark

    1989-01-01

    A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.

  10. Changing mortality and average cohort life expectancy

    DEFF Research Database (Denmark)

    Schoen, Robert; Canudas-Romo, Vladimir

    2005-01-01

    of survivorship. An alternative aggregate measure of period mortality which has been seen as less sensitive to period changes, the cross-sectional average length of life (CAL) has been proposed as an alternative, but has received only limited empirical or analytical examination. Here, we introduce a new measure......, the average cohort life expectancy (ACLE), to provide a precise measure of the average length of life of cohorts alive at a given time. To compare the performance of ACLE with CAL and with period and cohort life expectancy, we first use population models with changing mortality. Then the four aggregate...

  11. Evaluation of methods for de novo genome assembly from high-throughput sequencing reads reveals dependencies that affect the quality of the results.

    Science.gov (United States)

    Haiminen, Niina; Kuhn, David N; Parida, Laxmi; Rigoutsos, Isidore

    2011-01-01

    Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger numbers of usable sequences per instrument-run continue to make whole-genome assembly an appealing target application. In this paper we evaluate the feasibility of de novo genome assembly from short reads (≤100 nucleotides) through a detailed study involving genomic sequences of various lengths and origin, in conjunction with several of the currently popular assembly programs. Our extensive analysis demonstrates that, in addition to sequencing coverage, attributes such as the architecture of the target genome, the identity of the used assembly program, the average read length and the observed sequencing error rates are powerful variables that affect the best achievable assembly of the target sequence in terms of size and correctness.

  12. Portion size

    Science.gov (United States)

    ... Romaine lettuce) One medium baked potato is a computer mouse To control your portion sizes when you ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  13. PULP FIBER SIZE CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    Shijie Liu

    2004-01-01

    Pulp fiber length distribution characterization has been examined in this study. Because of the fiber morphology: slender in shape, fiber size distribution characterization is a very difficult task. Traditional technique involves separation of the particles by size,such as Bauer-McNett fiber classifier, and measuring the weight fractions. The particle fractions obtained may or may not reflect the desired size classification.On the other hand, the more recent technique through optical measurement of fiber length is limited by its inability to measure the mass of the particle fractions.Therefore, not only the two techniques fail to generate identical results, either one was accepted to be of better value. Pure hardwood kraft, softwood kraft, and their mixture samples have been measured for their fiber length distributions using an optical fiber quality analyzer: FQA. The data obtained from FQA are extensively studied to investigate more reliable way of representing the fiber length data and thus examining the viable route for measuring the fiber size distributions. It has been found that the fiber length averaged length 11 is a viable indicator of the average pulp fiber length. The fiber size fraction and/or distribution can be represented by the fiber "length" fractions.

  14. PULP FIBER SIZE CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    ShijieLiu

    2004-01-01

    Pulp fiber length distribution characterization hasbeen examined in this study. Because of the fibermorphology: slender in shape, fiber size distributioncharacterization is a very difficult task. Traditionaltechnique involves separation of the particles by size,such as Bauer-McNett fiber classifier, and measuringthe weight fractions. Themay or may not reflect theparticle fractions obtaineddesired size classification.On the other hand, the more recent technique throughoptical measurement of fiber length is limited by itsinability to measure the mass of the particle fractions.Therefore, not only the two techniques fail togenerate identical results, either one was accepted tobe of better value. Pure hardwood kraft, softwoodkraft, and their mixture samples have been measuredfor their fiber length distributions using an opticalfiber quality analyzer: FQA. The data obtained fromFQA are extensively studied to investigate morereliable way of representing the fiber length data andthus examining the viable route for measuring thefiber size distributions. It has been found that thefiber length averaged length 1~ is a viable indicator ofthe average pulp fiber length. The fiber size fractionand/or distribution can be represented by the fiber"length" fractions.

  15. A practical guide to averaging functions

    CERN Document Server

    Beliakov, Gleb; Calvo Sánchez, Tomasa

    2016-01-01

    This book offers an easy-to-use and practice-oriented reference guide to mathematical averages. It presents different ways of aggregating input values given on a numerical scale, and of choosing and/or constructing aggregating functions for specific applications. Building on a previous monograph by Beliakov et al. published by Springer in 2007, it outlines new aggregation methods developed in the interim, with a special focus on the topic of averaging aggregation functions. It examines recent advances in the field, such as aggregation on lattices, penalty-based aggregation and weakly monotone averaging, and extends many of the already existing methods, such as: ordered weighted averaging (OWA), fuzzy integrals and mixture functions. A substantial mathematical background is not called for, as all the relevant mathematical notions are explained here and reported on together with a wealth of graphical illustrations of distinct families of aggregation functions. The authors mainly focus on practical applications ...

  16. Rotational averaging of multiphoton absorption cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  17. Rotational averaging of multiphoton absorption cross sections

    Science.gov (United States)

    Friese, Daniel H.; Beerepoot, Maarten T. P.; Ruud, Kenneth

    2014-11-01

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  18. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  19. MN Temperature Average (1961-1990) - Line

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...

  20. MN Temperature Average (1961-1990) - Polygon

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set depicts 30-year averages (1961-1990) of monthly and annual temperatures for Minnesota. Isolines and regions were created using kriging and...

  1. Monthly snow/ice averages (ISCCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — September Arctic sea ice is now declining at a rate of 11.5 percent per decade, relative to the 1979 to 2000 average. Data from NASA show that the land ice sheets in...

  2. Appeals Council Requests - Average Processing Time

    Data.gov (United States)

    Social Security Administration — This dataset provides annual data from 1989 through 2015 for the average processing time (elapsed time in days) for dispositions by the Appeals Council (AC) (both...

  3. Average Annual Precipitation (PRISM model) 1961 - 1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1961-1990. Parameter-elevation...

  4. Average Vegetation Growth 1990 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1990 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  5. Average Vegetation Growth 1997 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1997 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  6. Average Vegetation Growth 1992 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1992 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  7. Average Vegetation Growth 2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2001 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  8. Average Vegetation Growth 1995 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1995 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  9. Average Vegetation Growth 2000 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2000 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  10. Average Vegetation Growth 1998 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1998 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  11. Average Vegetation Growth 1994 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1994 average vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the...

  12. Symmetric Euler orientation representations for orientational averaging.

    Science.gov (United States)

    Mayerhöfer, Thomas G

    2005-09-01

    A new kind of orientation representation called symmetric Euler orientation representation (SEOR) is presented. It is based on a combination of the conventional Euler orientation representations (Euler angles) and Hamilton's quaternions. The properties of the SEORs concerning orientational averaging are explored and compared to those of averaging schemes that are based on conventional Euler orientation representations. To that aim, the reflectance of a hypothetical polycrystalline material with orthorhombic crystal symmetry was calculated. The calculation was carried out according to the average refractive index theory (ARIT [T.G. Mayerhöfer, Appl. Spectrosc. 56 (2002) 1194]). It is shown that the use of averaging schemes based on conventional Euler orientation representations leads to a dependence of the result from the specific Euler orientation representation that was utilized and from the initial position of the crystal. The latter problem can be overcome partly by the introduction of a weighing factor, but only for two-axes-type Euler orientation representations. In case of a numerical evaluation of the average, a residual difference remains also if a two-axes type Euler orientation representation is used despite of the utilization of a weighing factor. In contrast, this problem does not occur if a symmetric Euler orientation representation is used as a matter of principle, while the result of the averaging for both types of orientation representations converges with increasing number of orientations considered in the numerical evaluation. Additionally, the use of a weighing factor and/or non-equally spaced steps in the numerical evaluation of the average is not necessary. The symmetrical Euler orientation representations are therefore ideally suited for the use in orientational averaging procedures.

  13. Average Bandwidth Allocation Model of WFQ

    Directory of Open Access Journals (Sweden)

    Tomáš Balogh

    2012-01-01

    Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.

  14. Genome-wide association and genomic selection in animal breeding.

    Science.gov (United States)

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  15. Genomic Partnering - Fifth Annual CHI Meeting: emerging and early-stage companies. Genome Tri-Conference. 23-24 February 2002, Santa Clara, CA, USA.

    Science.gov (United States)

    Sehgal, Anil

    2002-04-01

    The 2002 Genome Tri-Conference was a medium-sized meeting, with an approximate attendance of 400 to 500 delegates. This event held three conferences back to back, addressing three different aspects of current developments in the area of genomics, ie, genomic partnering, human genome discovery and gene functional analysis. Several new aspects of genomics, such as clinical genomics and chemical genomics, were discussed.

  16. Correction: The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study (vol 11, e1005378, 2015)

    NARCIS (Netherlands)

    Winkler, Thomas W.; Justice, Anne E.; Graff, Mariaelisa; Barata, Llilda; Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tonu; Fall, Tove; Kilpelainen, Tuomas O.; Lu, Yingchang; Magi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rueger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amelie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Asa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Muller, Gabriele; Muller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renstrom, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stancakova, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W.; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loic; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Bluher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S.; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Grassler, Jurgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G.; Hui, Jennie; Husemoen, Lise L.; Hutri-Kahonen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jorgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Kruger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindstrom, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stephane; Luben, Robert; Lyssenko, Valeriya; Mannisto, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Perusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparso, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Syvanen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tonjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Volker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widen, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Boger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Gronberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliovaara, Markku; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kahonen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G.; Laakso, Markku; Lakka, Timo A.; Lehtimaki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mantyselka, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njolstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J.; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda; Perola, Markus; Peters, Annette; Polasek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sorensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Uusitupa, Matti; Verbeek, Andre L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Volzke, Henry; Vollenweider, Peter; Waeber, Gerard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Ines; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltan; Loos, Ruth J. F.

    2016-01-01

    The arcOGEN Consortium should be listed as an author of this article. They contributed to the genome-wide association study results presented in this work. They should be listed in the author byline at position 292 and affiliated with The Arthritis Research UK Osteoarthritis Genetics Consortium. The

  17. Rewriting the blueprint of life by synthetic genomics and genome engineering

    OpenAIRE

    Annaluru, Narayana; Ramalingam, Sivaprakash; Chandrasegaran, Srinivasan

    2015-01-01

    Advances in DNA synthesis and assembly methods over the past decade have made it possible to construct genome-size fragments from oligonucleotides. Early work focused on synthesis of small viral genomes, followed by hierarchical synthesis of wild-type bacterial genomes and subsequently on transplantation of synthesized bacterial genomes into closely related recipient strains. More recently, a synthetic designer version of yeast Saccharomyces cerevisiae chromosome III has been generated, with ...

  18. Average Temperatures in the Southwestern United States, 2000-2015 Versus Long-Term Average

    Data.gov (United States)

    U.S. Environmental Protection Agency — This indicator shows how the average air temperature from 2000 to 2015 has differed from the long-term average (1895–2015). To provide more detailed information,...

  19. Averaged controllability of parameter dependent conservative semigroups

    Science.gov (United States)

    Lohéac, Jérôme; Zuazua, Enrique

    2017-02-01

    We consider the problem of averaged controllability for parameter depending (either in a discrete or continuous fashion) control systems, the aim being to find a control, independent of the unknown parameters, so that the average of the states is controlled. We do it in the context of conservative models, both in an abstract setting and also analysing the specific examples of the wave and Schrödinger equations. Our first result is of perturbative nature. Assuming the averaging probability measure to be a small parameter-dependent perturbation (in a sense that we make precise) of an atomic measure given by a Dirac mass corresponding to a specific realisation of the system, we show that the averaged controllability property is achieved whenever the system corresponding to the support of the Dirac is controllable. Similar tools can be employed to obtain averaged versions of the so-called Ingham inequalities. Particular attention is devoted to the 1d wave equation in which the time-periodicity of solutions can be exploited to obtain more precise results, provided the parameters involved satisfy Diophantine conditions ensuring the lack of resonances.

  20. Targeted Cancer Screening in Average-Risk Individuals.

    Science.gov (United States)

    Marcus, Pamela M; Freedman, Andrew N; Khoury, Muin J

    2015-11-01

    Targeted cancer screening refers to use of disease risk information to identify those most likely to benefit from screening. Researchers have begun to explore the possibility of refining screening regimens for average-risk individuals using genetic and non-genetic risk factors and previous screening experience. Average-risk individuals are those not known to be at substantially elevated risk, including those without known inherited predisposition, without comorbidities known to increase cancer risk, and without previous diagnosis of cancer or pre-cancer. In this paper, we describe the goals of targeted cancer screening in average-risk individuals, present factors on which cancer screening has been targeted, discuss inclusion of targeting in screening guidelines issued by major U.S. professional organizations, and present evidence to support or question such inclusion. Screening guidelines for average-risk individuals currently target age; smoking (lung cancer only); and, in some instances, race; family history of cancer; and previous negative screening history (cervical cancer only). No guidelines include common genomic polymorphisms. RCTs suggest that targeting certain ages and smoking histories reduces disease-specific cancer mortality, although some guidelines extend ages and smoking histories based on statistical modeling. Guidelines that are based on modestly elevated disease risk typically have either no or little evidence of an ability to affect a mortality benefit. In time, targeted cancer screening is likely to include genetic factors and past screening experience as well as non-genetic factors other than age, smoking, and race, but it is of utmost importance that clinical implementation be evidence-based.

  1. Stochastic Averaging and Stochastic Extremum Seeking

    CERN Document Server

    Liu, Shu-Jun

    2012-01-01

    Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...

  2. Books average previous decade of economic misery.

    Science.gov (United States)

    Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.

  3. High Average Power Yb:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, L E; Beach, R J; Payne, S A

    2001-05-23

    We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.

  4. Books average previous decade of economic misery.

    Directory of Open Access Journals (Sweden)

    R Alexander Bentley

    Full Text Available For the 20(th century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.

  5. Benchmarking statistical averaging of spectra with HULLAC

    Science.gov (United States)

    Klapisch, Marcel; Busquet, Michel

    2008-11-01

    Knowledge of radiative properties of hot plasmas is important for ICF, astrophysics, etc When mid-Z or high-Z elements are present, the spectra are so complex that one commonly uses statistically averaged description of atomic systems [1]. In a recent experiment on Fe[2], performed under controlled conditions, high resolution transmission spectra were obtained. The new version of HULLAC [3] allows the use of the same model with different levels of details/averaging. We will take advantage of this feature to check the effect of averaging with comparison with experiment. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Quant. Spectros. Rad. Transf. 65, 43 (2000). [2] J. E. Bailey, G. A. Rochau, C. A. Iglesias et al., Phys. Rev. Lett. 99, 265002-4 (2007). [3]. M. Klapisch, M. Busquet, and A. Bar-Shalom, AIP Conference Proceedings 926, 206-15 (2007).

  6. Cosmic structure, averaging and dark energy

    CERN Document Server

    Wiltshire, David L

    2013-01-01

    These lecture notes review the theoretical problems associated with coarse-graining the observed inhomogeneous structure of the universe at late epochs, of describing average cosmic evolution in the presence of growing inhomogeneity, and of relating average quantities to physical observables. In particular, a detailed discussion of the timescape scenario is presented. In this scenario, dark energy is realized as a misidentification of gravitational energy gradients which result from gradients in the kinetic energy of expansion of space, in the presence of density and spatial curvature gradients that grow large with the growth of structure. The phenomenology and observational tests of the timescape model are discussed in detail, with updated constraints from Planck satellite data. In addition, recent results on the variation of the Hubble expansion on < 100/h Mpc scales are discussed. The spherically averaged Hubble law is significantly more uniform in the rest frame of the Local Group of galaxies than in t...

  7. DNA sequence comparative analysis of the 3pter-p26 region of human genome

    Institute of Scientific and Technical Information of China (English)

    LUO; Chunqing; LI; Yan; ZHANG; Xiaowei; ZHANG; Yilin; ZHAN

    2005-01-01

    Most proterminal regions of human chromosomes are GC-rich and gene-rich. Chromosome 3p is an exception. Its proterminal region is GC-poor, and likely to lose heterozygosity, thus causing a number of fatal diseases. Except one gap left in the telomeric position, the proterminal region of human chromosome 3p has been completely sequenced. The detailed sequence analysis showed: (i) the GC content of this region was 38.5%, being the lowest among all the human proterminal regions; (ii) this region contained 20 known genes and 22 predicted genes, with an average gene size of 97.5 kb. The previously mapped gene Cntn3 was not found in this region, but instead located in the 74 Mb position of human chromosome 3p; (iii) the interspersed repeats of this region were more active than the average level of the whole human genome, especially (TA)n, the content of which was twice the genome average; (iv) this region had a conserved synteny extending from 104.1 Mb to 112.4 Mb on the mouse chromosome 6, which was 8% larger in size, not in accordance with the whole genome comparison, probably because the 3pter-p26 region was more likely to lose neocleitides and its mouse synteny had more active interspersed repeats.

  8. An approximate analytical approach to resampling averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, M.

    2004-01-01

    Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach for appr......Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach...

  9. A singularity theorem based on spatial averages

    Indian Academy of Sciences (India)

    J M M Senovilla

    2007-07-01

    Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating the result is that, under the same conditions, any singularity-free model must have a vanishing spatial average of the energy density (and other physical variables). This is very satisfactory and provides a clear decisive difference between singular and non-singular cosmologies.

  10. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  11. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    Objectives We examined how a reduction in plate size would affect the amount of food waste from leftovers in a field experiment at a standing lunch for 220 CEOs. Methods A standing lunch for 220 CEOs in the Danish Opera House was arranged to feature two identical buffets with plates of two differ...

  12. A GeneTrek analysis of the maize genome.

    Science.gov (United States)

    Liu, Renyi; Vitte, Clémentine; Ma, Jianxin; Mahama, A Assibi; Dhliwayo, Thanda; Lee, Michael; Bennetzen, Jeffrey L

    2007-07-10

    Analysis of the sequences of 74 randomly selected BACs demonstrated that the maize nuclear genome contains approximately 37,000 candidate genes with homologues in other plant species. An additional approximately 5,500 predicted genes are severely truncated and probably pseudogenes. The distribution of genes is uneven, with approximately 30% of BACs containing no genes. BAC gene density varies from 0 to 7.9 per 100 kb, whereas most gene islands contain only one gene. The average number of genes per gene island is 1.7. Only 72% of these genes show collinearity with the rice genome. Particular LTR retrotransposon families (e.g., Gyma) are enriched on gene-free BACs, most of which do not come from pericentromeres or other large heterochromatic regions. Gene-containing BACs are relatively enriched in different families of LTR retrotransposons (e.g., Ji). Two major bursts of LTR retrotransposon activity in the last 2 million years are responsible for the large size of the maize genome, but only the more recent of these is well represented in gene-containing BACs, suggesting that LTR retrotransposons are more efficiently removed in these domains. The results demonstrate that sample sequencing and careful annotation of a few randomly selected BACs can provide a robust description of a complex plant genome.

  13. Learning attitudes in excellent and average university students

    Directory of Open Access Journals (Sweden)

    Bernardo GARGALLO LÓPEZ

    2011-12-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} We seek to analyse how the best students on entry to University work in order to transfer it to the rest of the University community. We used the AUSLQ questionnaire (Attitudes of University Students toward Learning Questionnaire  to assess the attitudes of a sample of 148 excellent students selected from 11 degrees from 9 centers of the Polytechnic University of Valencia, and we compared the results with those of a sample of 133 average students of the same centers. We found that excellent students developed better attitudes than average students. We also found that learning attitudes had an influence on the academic achievement. The available data allow us to affirm that the professors can enhance the deep approach by using adequate teaching and assessment methodologies.

  14. Shot-gun sequencing strategy for long-range genome mapping: a pilot study.

    Science.gov (United States)

    Zabarovsky, E R; Kashuba, V I; Pettersson, B; Petrov, N; Zakharyev, V; Gizatullin, R; Lebedeva, T; Bannikov, V; Pokrovskaya, E S; Zabarovska, V I

    1994-06-01

    We have recently proposed a strategy for construction of long-range physical maps based on random sequencing of NotI linking and jumping clones. Here, we present results of sequence comparison between 168 NotI linking (100 of them were sequenced from both sides) and 81 chromosome 3-specific jumping clones. We were able to identify 14 NotI jumping clones (17%), each joined with two NotI linking clones. The average size of chromosomal jumps was about 650 kb. The assembled 42 NotI genomic fragments correspond to 12-15% of chromosome 3. These results demonstrate the value of random sequencing of NotI linking and jumping clones for genome mapping. This mapping proposal can be used for connecting physical and genetic maps of the human genome and will be a valuable supplement to YAC and cosmid library based mapping projects.

  15. Construction and characterization of a 10-genome equivalent yeast artificial chromosome library for the laboratory rat, Rattus norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Cai, L.; Zee, R.Y.L. [Harvard Medical School, Boston, MA (United States); Schalkwyk, L.C. [Max Planck Institute for Molecular Genetics, Berlin (Germany)] [and others

    1997-02-01

    Increasing attention has been focused in recent years on the rat as a model organism for genetic studies, in particular for the investigation of complex traits, but progress has been limited by the lack of availability of large-insert genomic libraries. Here, we report the construction and characterization of an arrayed yeast artificial chromosome (YAC) library for the rat genome containing approximately 40,000 clones in the AB1380 host using the pCGS966 vector. An average size of 736 kb was estimated from 166 randomly chosen clones; thus the library provides 10-fold coverage of the genome, with a 99.99% probability of containing a unique sequence. Eight of 39 YACs analyzed by fluorescence in situ hybridization were found to be chimeric, indicating a proportion of about 20-30% of chimeric clones. The library was spotted on high-density filters to allow the identification of YAC clones by hybridization and was pooled using a 3-dimensional scheme for screening by PCR. Among 48 probes used to screen the library, an average of 9.3 positive clones were found, consistent with the calculated 10-fold genomic coverage of the library. This YAC library represents the first large-insert genomic library for the rat. It will be made available to the research community at large as an important new resource for complex genome analysis in this species. 35 refs., 4 figs.

  16. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders.

    Science.gov (United States)

    Sun, Cheng; Shepard, Donald B; Chong, Rebecca A; López Arriaza, José; Hall, Kathryn; Castoe, Todd A; Feschotte, Cédric; Pollock, David D; Mueller, Rachel Lockridge

    2012-01-01

    Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from ~14 to ~120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders.

  17. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  18. An Exploration into Fern Genome Space.

    Science.gov (United States)

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-08-26

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.

  19. Quantum Averaging of Squeezed States of Light

    DEFF Research Database (Denmark)

    Squeezing has been recognized as the main resource for quantum information processing and an important resource for beating classical detection strategies. It is therefore of high importance to reliably generate stable squeezing over longer periods of time. The averaging procedure for a single qu...

  20. Generalized Jackknife Estimators of Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    With the aim of improving the quality of asymptotic distributional approximations for nonlinear functionals of nonparametric estimators, this paper revisits the large-sample properties of an important member of that class, namely a kernel-based weighted average derivative estimator. Asymptotic...

  1. Bayesian Model Averaging for Propensity Score Analysis

    Science.gov (United States)

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  2. High average-power induction linacs

    Energy Technology Data Exchange (ETDEWEB)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.

    1989-03-15

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs.

  3. Discontinuities and hysteresis in quantized average consensus

    NARCIS (Netherlands)

    Ceragioli, Francesca; Persis, Claudio De; Frasca, Paolo

    2011-01-01

    We consider continuous-time average consensus dynamics in which the agents’ states are communicated through uniform quantizers. Solutions to the resulting system are defined in the Krasowskii sense and are proven to converge to conditions of ‘‘practical consensus’’. To cope with undesired chattering

  4. On averaging methods for partial differential equations

    NARCIS (Netherlands)

    Verhulst, F.

    2001-01-01

    The analysis of weakly nonlinear partial differential equations both qualitatively and quantitatively is emerging as an exciting eld of investigation In this report we consider specic results related to averaging but we do not aim at completeness The sections and contain important material which

  5. A Functional Measurement Study on Averaging Numerosity

    Science.gov (United States)

    Tira, Michael D.; Tagliabue, Mariaelena; Vidotto, Giulio

    2014-01-01

    In two experiments, participants judged the average numerosity between two sequentially presented dot patterns to perform an approximate arithmetic task. In Experiment 1, the response was given on a 0-20 numerical scale (categorical scaling), and in Experiment 2, the response was given by the production of a dot pattern of the desired numerosity…

  6. Bayesian Averaging is Well-Temperated

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2000-01-01

    Bayesian predictions are stochastic just like predictions of any other inference scheme that generalize from a finite sample. While a simple variational argument shows that Bayes averaging is generalization optimal given that the prior matches the teacher parameter distribution the situation...

  7. Average utility maximization: A preference foundation

    NARCIS (Netherlands)

    A.V. Kothiyal (Amit); V. Spinu (Vitalie); P.P. Wakker (Peter)

    2014-01-01

    textabstractThis paper provides necessary and sufficient preference conditions for average utility maximization over sequences of variable length. We obtain full generality by using a new algebraic technique that exploits the richness structure naturally provided by the variable length of the sequen

  8. Full averaging of fuzzy impulsive differential inclusions

    Directory of Open Access Journals (Sweden)

    Natalia V. Skripnik

    2010-09-01

    Full Text Available In this paper the substantiation of the method of full averaging for fuzzy impulsive differential inclusions is studied. We extend the similar results for impulsive differential inclusions with Hukuhara derivative (Skripnik, 2007, for fuzzy impulsive differential equations (Plotnikov and Skripnik, 2009, and for fuzzy differential inclusions (Skripnik, 2009.

  9. Materials for high average power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Marion, J.E.; Pertica, A.J.

    1989-01-01

    Unique materials properties requirements for solid state high average power (HAP) lasers dictate a materials development research program. A review of the desirable laser, optical and thermo-mechanical properties for HAP lasers precedes an assessment of the development status for crystalline and glass hosts optimized for HAP lasers. 24 refs., 7 figs., 1 tab.

  10. Independence, Odd Girth, and Average Degree

    DEFF Research Database (Denmark)

    Löwenstein, Christian; Pedersen, Anders Sune; Rautenbach, Dieter;

    2011-01-01

      We prove several tight lower bounds in terms of the order and the average degree for the independence number of graphs that are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum...

  11. A dynamic analysis of moving average rules

    NARCIS (Netherlands)

    C. Chiarella; X.Z. He; C.H. Hommes

    2006-01-01

    The use of various moving average (MA) rules remains popular with financial market practitioners. These rules have recently become the focus of a number empirical studies, but there have been very few studies of financial market models where some agents employ technical trading rules of the type use

  12. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.

    Science.gov (United States)

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-04-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.

  13. Evolutionary forces shaping genomic islands of population differentiation in humans

    Directory of Open Access Journals (Sweden)

    Hofer Tamara

    2012-03-01

    Full Text Available Abstract Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM. A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i as much as 20% of islands are in non-genic regions ii these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii most loci are

  14. Sequencing and annotated analysis of an Estonian human genome.

    Science.gov (United States)

    Lilleoja, Rutt; Sarapik, Aili; Reimann, Ene; Reemann, Paula; Jaakma, Ülle; Vasar, Eero; Kõks, Sulev

    2012-02-01

    In present study we describe the sequencing and annotated analysis of the individual genome of Estonian. Using SOLID technology we generated 2,449,441,916 of 50-bp reads. The Bioscope version 1.3 was used for mapping and pairing of reads to the NCBI human genome reference (build 36, hg18). Bioscope enables also the annotation of the results of variant (tertiary) analysis. The average mapping of reads was 75.5% with total coverage of 107.72 Gb. resulting in mean fold coverage of 34.6. We found 3,482,975 SNPs out of which 352,492 were novel. 21,222 SNPs were in coding region: 10,649 were synonymous SNPs, 10,360 were nonsynonymous missense SNPs, 155 were nonsynonymous nonsense SNPs and 58 were nonsynonymous frameshifts. We identified 219 CNVs with total base pair coverage of 37,326,300 bp and 87,451 large insertion/deletion polymorphisms covering 10,152,256 bp of the genome. In addition, we found 285,864 small size insertion/deletion polymorphisms out of which 133,969 were novel. Finally, we identified 53 inversions, 19 overlapped genes and 2 overlapped exons. Interestingly, we found the region in chromosome 6 to be enriched with the coding SNPs and CNVs. This study confirms previous findings, that our genomes are more complex and variable as thought before. Therefore, sequencing of the personal genomes followed by annotation would improve the analysis of heritability of phenotypes and our understandings on the functions of genome.

  15. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758 reveals slow genome and chromosome evolution in the Apidae

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2011-01-01

    Full Text Available Abstract Background The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. Results The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. Conclusions This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae.

  16. Measurements of Aperture Averaging on Bit-Error-Rate

    Science.gov (United States)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  17. Averaging processes in granular flows driven by gravity

    Science.gov (United States)

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental

  18. Complete genome sequence of an attenuated Sparfloxacin-resistant Streptococcus agalactiae strain 138spar

    Science.gov (United States)

    The complete genome of a sparfloxacin-resistant Streptococcus agalactiae vaccine strain 138spar is 1,838,126 bp in size. The genome has 1892 coding sequences and 82 RNAs. The annotation of the genome is added by the NCBI Prokaryotic Genome Annotation Pipeline. The publishing of this genome will allo...

  19. Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael

    2012-11-01

    The shakeout in the solar cell and module industry is in full swing. While the number of companies and production locations shutting down in the Western world is increasing, the capacity expansion in the Far East seems to be unbroken. Size in combination with a good sales network has become the key to success for surviving in the current storm. The trade war with China already looming on the horizon is adding to the uncertainties. (orig.)

  20. Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. isolates from Yellowstone National Park.

    Science.gov (United States)

    Romano, Christine; D'Imperio, Seth; Woyke, Tanja; Mavromatis, Konstantinos; Lasken, Roger; Shock, Everett L; McDermott, Timothy R

    2013-05-01

    We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥ 99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized.

  1. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong

    2011-12-21

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  2. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.

  3. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications.

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    Full Text Available Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N(2 fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes. Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N(2 fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP. Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505 and 3.2 (D9 Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N(2 fixation capacity. Further comparisons to all available cyanobacterial

  4. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications.

    Science.gov (United States)

    Stucken, Karina; John, Uwe; Cembella, Allan; Murillo, Alejandro A; Soto-Liebe, Katia; Fuentes-Valdés, Juan J; Friedel, Maik; Plominsky, Alvaro M; Vásquez, Mónica; Glöckner, Gernot

    2010-02-16

    Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N(2)) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N(2) fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N(2) fixation capacity. Further comparisons to all available cyanobacterial genomes

  5. Genome evolution in Reptilia, the sister group of mammals.

    Science.gov (United States)

    Janes, Daniel E; Organ, Christopher L; Fujita, Matthew K; Shedlock, Andrew M; Edwards, Scott V

    2010-01-01

    The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.

  6. Ensemble Averaging in Metallic Quantum Networks

    Science.gov (United States)

    Mallet, François; Schopfer, Félicien; Ericsson, Jerry; Saminadayar, Laurent; Bäuerle, Christopher; Mailly, Dominique; Texier, Christophe; Montambaux, Gilles

    2008-10-01

    We report on the size dependence of the amplitudes of Aharonov-Bohm (AB) as well as Altshuler-Aronov-Spivak (AAS) magnetoconductance oscillations in silver networks with anisotropic aspect ratio and for various sizes ranging from 10 to 106 plaquettes. We show that the amplitude of both AB and AAS oscillations exhibit an unexpected dependence as a function of number of plaquettes N when the smallest dimension of the network becomes smaller than the phase coherence length: in this case, the network can be considered as a fully coherent object (mesoscopic) in one direction, whereas macroscopic in the other.

  7. ANALYSIS OF THE FACTORS AFFECTING THE AVERAGE

    Directory of Open Access Journals (Sweden)

    Carmen BOGHEAN

    2013-12-01

    Full Text Available Productivity in agriculture most relevantly and concisely expresses the economic efficiency of using the factors of production. Labour productivity is affected by a considerable number of variables (including the relationship system and interdependence between factors, which differ in each economic sector and influence it, giving rise to a series of technical, economic and organizational idiosyncrasies. The purpose of this paper is to analyse the underlying factors of the average work productivity in agriculture, forestry and fishing. The analysis will take into account the data concerning the economically active population and the gross added value in agriculture, forestry and fishing in Romania during 2008-2011. The distribution of the average work productivity per factors affecting it is conducted by means of the u-substitution method.

  8. Time-average dynamic speckle interferometry

    Science.gov (United States)

    Vladimirov, A. P.

    2014-05-01

    For the study of microscopic processes occurring at structural level in solids and thin biological objects, a method of dynamic speckle interferometry successfully applied. However, the method has disadvantages. The purpose of the report is to acquaint colleagues with the method of averaging in time in dynamic speckle - interferometry of microscopic processes, allowing eliminating shortcomings. The main idea of the method is the choice the averaging time, which exceeds the characteristic time correlation (relaxation) the most rapid process. The method theory for a thin phase and the reflecting object is given. The results of the experiment on the high-cycle fatigue of steel and experiment to estimate the biological activity of a monolayer of cells, cultivated on a transparent substrate is given. It is shown that the method allows real-time visualize the accumulation of fatigue damages and reliably estimate the activity of cells with viruses and without viruses.

  9. Averaged Extended Tree Augmented Naive Classifier

    Directory of Open Access Journals (Sweden)

    Aaron Meehan

    2015-07-01

    Full Text Available This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN, which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN and Averaged One-Dependence Estimator (AODE classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computational time complexity. Empirical results with numerous data sets indicate that the new approach is superior to ETAN and AODE in terms of both zero-one classification accuracy and log loss. It also compares favourably against weighted AODE and hidden Naive Bayes. The learning phase of the new approach is slower than that of its competitors, while the time complexity for the testing phase is similar. Such characteristics suggest that the new classifier is ideal in scenarios where online learning is not required.

  10. Trajectory averaging for stochastic approximation MCMC algorithms

    CERN Document Server

    Liang, Faming

    2010-01-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400--407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305--320]. The application of the trajectory averaging estimator to other stochastic approximation MCMC algorithms, for example, a stochastic approximation MLE al...

  11. The Genomic Scrapheap Challenge; Extracting Relevant Data from Unmapped Whole Genome Sequencing Reads, Including Strain Specific Genomic Segments, in Rats.

    Science.gov (United States)

    van der Weide, Robin H; Simonis, Marieke; Hermsen, Roel; Toonen, Pim; Cuppen, Edwin; de Ligt, Joep

    2016-01-01

    Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts.

  12. Average Annual Rainfall over the Globe

    Science.gov (United States)

    Agrawal, D. C.

    2013-01-01

    The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74 ×…

  13. The Ghirlanda-Guerra identities without averaging

    CERN Document Server

    Chatterjee, Sourav

    2009-01-01

    The Ghirlanda-Guerra identities are one of the most mysterious features of spin glasses. We prove the GG identities in a large class of models that includes the Edwards-Anderson model, the random field Ising model, and the Sherrington-Kirkpatrick model in the presence of a random external field. Previously, the GG identities were rigorously proved only `on average' over a range of temperatures or under small perturbations.

  14. Small Benefit from Country Size

    OpenAIRE

    Kazuto Masuda

    2010-01-01

    Furceri and Karras(2007, 2008) insisted that smaller countries are subject to more volatile business cycles than larger countries and country size really matters using international data from 1960 to 2000. They measure country size with population size. In this paper, we calculate welfare benefit from the less volatile busine! ss cycle, that is the positive effect of country size in Japan, US and OECD average. For calculating welfare benefit, we use “Welfare Cost of Business Cycle†approac...

  15. Listeria Genomics

    Science.gov (United States)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  16. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew D.; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...... evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics....

  17. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    HU HePing; YANG ZhiYong; TIAN FuQiang

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial heterogeneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overestimate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hydrological and land surface process modeling in a promising way.

  18. Unscrambling The "Average User" Of Habbo Hotel

    Directory of Open Access Journals (Sweden)

    Mikael Johnson

    2007-01-01

    Full Text Available The “user” is an ambiguous concept in human-computer interaction and information systems. Analyses of users as social actors, participants, or configured users delineate approaches to studying design-use relationships. Here, a developer’s reference to a figure of speech, termed the “average user,” is contrasted with design guidelines. The aim is to create an understanding about categorization practices in design through a case study about the virtual community, Habbo Hotel. A qualitative analysis highlighted not only the meaning of the “average user,” but also the work that both the developer and the category contribute to this meaning. The average user a represents the unknown, b influences the boundaries of the target user groups, c legitimizes the designer to disregard marginal user feedback, and d keeps the design space open, thus allowing for creativity. The analysis shows how design and use are intertwined and highlights the developers’ role in governing different users’ interests.

  19. A simple algorithm for averaging spike trains.

    Science.gov (United States)

    Julienne, Hannah; Houghton, Conor

    2013-02-25

    Although spike trains are the principal channel of communication between neurons, a single stimulus will elicit different spike trains from trial to trial. This variability, in both spike timings and spike number can obscure the temporal structure of spike trains and often means that computations need to be run on numerous spike trains in order to extract features common across all the responses to a particular stimulus. This can increase the computational burden and obscure analytical results. As a consequence, it is useful to consider how to calculate a central spike train that summarizes a set of trials. Indeed, averaging responses over trials is routine for other signal types. Here, a simple method for finding a central spike train is described. The spike trains are first mapped to functions, these functions are averaged, and a greedy algorithm is then used to map the average function back to a spike train. The central spike trains are tested for a large data set. Their performance on a classification-based test is considerably better than the performance of the medoid spike trains.

  20. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial hetero- geneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overes- timate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hy- drological and land surface process modeling in a promising way.

  1. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  2. Disk-averaged synthetic spectra of Mars

    Science.gov (United States)

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  3. Average fidelity between random quantum states

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Jurgen

    2003-01-01

    We analyze mean fidelity between random density matrices of size N, generated with respect to various probability measures in the space of mixed quantum states: Hilbert-Schmidt measure, Bures (statistical) measure, the measures induced by partial trace and the natural measure on the space of pure states. In certain cases explicit probability distributions for fidelity are derived.

  4. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans......, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  5. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  6. Signal-averaged P wave duration and the dimensions of the atria

    DEFF Research Database (Denmark)

    Dixen, Ulrik; Joens, Christian; Rasmussen, Bo V;

    2004-01-01

    Delay of atrial electrical conduction measured as prolonged signal-averaged P wave duration (SAPWD) could be due to atrial enlargement. Here, we aimed to compare different atrial size parameters obtained from echocardiography with the SAPWD measured with a signal-averaged electrocardiogram (SAECG)....

  7. McKinley County Blocks, Average Household Size by Tenure (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  8. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer

    Science.gov (United States)

    Claudin, P.; Fourrière, A.; Andreotti, B.; Murray, A. B.

    2009-12-01

    Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.

  9. Normalized Weighted Averages for Tracing Continuous Trends of Data and Easy Filtering of Discontinuous Samples

    Directory of Open Access Journals (Sweden)

    R. PURUSHOTHAMAN NAIR

    2011-02-01

    Full Text Available In this paper a set of normalized weighted averages which may be called as bi-average, tri-average, quadric-average or in general kth poly average, k=2,3,4,… is introduced. The weights can be easily assigned using the integer k. The linear combination of the weights with the samples is biased to latest samples of a given discrete data set when the samples are considered chronologically or sequentially. Hence these averages can generate moving and realistic trends of data without being a moving average. Computations of these averages are not explicitly depending on the size of the data set and can be done in a progressive way. The advantage is that it is not necessary to store the data samples or its size for computing these averages. An inferring mechanism is derived based on which one can easily decide whether current sample is continuous or not with previous samples based on the computed average. Illustrative examples are presented to establish the effectiveness of this inferring mechanism in testing continuous trends and filtering of discontinuous samples of flight telemetry data of a typical launch vehicle and that of sample data sets of standard continuous signals. Mathematical properties ofthese averages are discussed.

  10. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  11. The projection of a test genome onto a reference population and applications to humans and archaic hominins.

    Science.gov (United States)

    Yang, Melinda A; Harris, Kelley; Slatkin, Montgomery

    2014-12-01

    We introduce a method for comparing a test genome with numerous genomes from a reference population. Sites in the test genome are given a weight, w, that depends on the allele frequency, x, in the reference population. The projection of the test genome onto the reference population is the average weight for each x, [Formula: see text]. The weight is assigned in such a way that, if the test genome is a random sample from the reference population, then [Formula: see text]. Using analytic theory, numerical analysis, and simulations, we show how the projection depends on the time of population splitting, the history of admixture, and changes in past population size. The projection is sensitive to small amounts of past admixture, the direction of admixture, and admixture from a population not sampled (a ghost population). We compute the projections of several human and two archaic genomes onto three reference populations from the 1000 Genomes project-Europeans, Han Chinese, and Yoruba-and discuss the consistency of our analysis with previously published results for European and Yoruba demographic history. Including higher amounts of admixture between Europeans and Yoruba soon after their separation and low amounts of admixture more recently can resolve discrepancies between the projections and demographic inferences from some previous studies.

  12. Characterization of genome-wide microsatellites of Saccharina japonica based on a preliminary assembly of Illumina sequencing reads

    Science.gov (United States)

    Zhang, Linan; Peng, Jie; Li, Xiaojie; Cui, Cuiju; Sun, Juan; Yang, Guanpin

    2016-06-01

    Microsatellites or simple sequence repeats (SSR) function widely and locate dependently in genome. However, their characteristics are often ignored due to the lack of genomic sequences of most species. Kelp ( Saccharina japonica), a brown macroalga, is extensively cultured in China. In this study, the genome of S. japonica was surveyed using an Illumina sequencing platform, and its microsatellites were characterized. The preliminarily assembled genome was 469.4 Mb in size, with a scaffold N50 of 20529 bp. Among the 128370 identified microsatellites, 90671, 25726 and 11973 were found in intergenic regions, introns and exons, averaging 339.3, 178.8 and 205.4 microsatellites per Mb, respectively. These microsatellites distributed unevenly in S. japonica genome. Mononucleotide motifs were the most abundant in the genome, while trinucleotide ones were the most prevalent in exons. The microsatellite abundance decreased significantly with the increase of motif repeat numbers, and the microsatellites with a small number of repeats accounted for a higher proportion of the exons than those of the intergenic regions and introns. C/G-rich motifs were more common in exons than in intergenic regions and introns. These characteristics of microsatellites in S. japonica genome may associate with their functions, and ultimately their adaptation and evolution. Among the 120140 pairs of designed microsatellite primers, approximately 75% were predicted to be able to amplify S. japonica DNA. These microsatellite markers will be extremely useful for the genetic breeding and population evolution studies of kelp.

  13. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Science.gov (United States)

    Wang, Wei; Wang, Shenyuan; Hou, Chenglin; Xing, Yanping; Cao, Junwei; Wu, Kaifeng; Liu, Chunxia; Zhang, Dong; Zhang, Li; Zhang, Yanru; Zhou, Huanmin

    2014-01-01

    Recent studies have found that copy number variations (CNVs) are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds) and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs). The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO), genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  14. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC region, 16.670 bp of a small single-copy (SSC region, and a pair of 25,783 bp sequences of inverted repeats (IRs.The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.

  15. Bayesian Model Averaging and Weighted Average Least Squares : Equivariance, Stability, and Numerical Issues

    NARCIS (Netherlands)

    De Luca, G.; Magnus, J.R.

    2011-01-01

    This article is concerned with the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the Weighted Average Least Squa

  16. Genomic analysis for managing small and endangered populations: A case study in Tyrol Grey cattle

    Directory of Open Access Journals (Sweden)

    Gábor eMészáros

    2015-05-01

    Full Text Available Analysis of genomic data is increasingly becoming part of the livestock industry. Therefore the routine collection of genomic information would be an invaluable resource for management of breeding programs in small, endangered populations. The objectives of this project were to analyse 1. linkage disequlibrium decay and the effective population size; 2. Inbreeding level and effective population size (NeROH based on runs of homozygosity (ROH; 3. Prediction of genomic breeding values (GEBV within and across breeds. In addition, the use of genomic information for breed management is discussed. The study was based on all available genotypes of Tyrol Grey AI bulls. ROHs were derived based on regions covering at least 4 Mb, 8 Mb and 16 Mb regions, with the corresponding mean inbreeding coefficients 4.0%, 2.9% and 1.6%, respectively. The NeROH was 125 (NeROH>16Mb, 186 (NeROH>8Mb and 370 (NeROH>4Mb, indicating strict avoidance of close inbreeding in the population.The genomic selection was developed for and is working well in large breeds. Contrary to the expectations, the accuracy of GEBVs with very small within breed reference populations were very high, between 0.13-0.91 and 0.12-0.63, when EBVs and dEBVs were used as pseudo-phenotypes, respectively. Subsequent analyses confirmed the high accuracies being heavily influenced by parent averages. Multi-breed and across breed reference sets gave inconsistent and lower accuracies. Genomic information may have a crucial role in management of small breeds. It allows to assess relatedness between individuals, trends in inbreeding and to take decisions accordingly. These decisions would be based on the real genome architecture, rather than conventional pedigree information, which can be missing or incomplete. We strongly suggest the routine genotyping of all individuals that belong to a small breed in order to facilitate the effective management of endangered livestock populations.

  17. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda.

    Science.gov (United States)

    Gloria-Soria, Andrea; Dunn, W Augustine; Telleria, Erich L; Evans, Benjamin R; Okedi, Loyce; Echodu, Richard; Warren, Wesley C; Montague, Michael J; Aksoy, Serap; Caccone, Adalgisa

    2016-06-01

    The tsetse fly Glossina fuscipes fuscipes (Gff) is the insect vector of the two forms of Human African Trypanosomiasis (HAT) that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs) distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD) in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r(2) max/2) between 1359 and 2429 bp. The overall LD estimated for the species reaches r(2) max/2 at 708 bp, an order of magnitude slower than in Drosophila Using 53 infected (Trypanosoma spp.) and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis.

  18. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda

    Directory of Open Access Journals (Sweden)

    Andrea Gloria-Soria

    2016-06-01

    Full Text Available The tsetse fly Glossina fuscipes fuscipes (Gff is the insect vector of the two forms of Human African Trypanosomiasis (HAT that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r2max/2 between 1359 and 2429 bp. The overall LD estimated for the species reaches r2max/2 at 708 bp, an order of magnitude slower than in Drosophila. Using 53 infected (Trypanosoma spp. and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis.

  19. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austri...

  20. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen;

    2015-01-01

    , archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  1. Pseudomonas aeruginosa genomic structure and diversity

    Directory of Open Access Journals (Sweden)

    Jens eKlockgether

    2011-07-01

    Full Text Available The Pseudomonas aeruginosa genome (G + C content 65-67%, size 5.5 – 7 Mbp is made up of a single circular chromosome and a variable number of plasmids. Sequencing of complete genomes or blocks of the accessory genome has revealed that the genome encodes a large repertoire of transporters, transcriptional regulators and two-component regulatory systems which reflects its metabolic diversity to utilize a broad range of nutrients. The conserved core component of the genome is largely collinear among P. aeruginosa strains and exhibits an interclonal sequence diversity of 0.5 – 0.7%. Only a few loci of the core genome are subject to diversifying selection. Genome diversity is mainly caused by accessory DNA elements located in 79 regions of genome plasticity that are scattered around the genome and show an anomalous usage of mono- to tetradecanucleotides. Genomic islands of the pKLC102/PAGI-2 family that integrate into tRNALys or tRNAGly genes represent hotspots of inter- and intraclonal genomic diversity. The individual islands differ in their repertoire of metabolic genes that make a large contribution to the pangenome. In order to unravel intraclonal diversity of P. aeruginosa, the genomes of two members of the PA14 clonal complex from diverse habitats and geographic origin were compared. The genome sequences differed by less than 0.01% from each other. 198 of the 231 SNPs were non-randomly distributed in the genome. Non-synonymous SNPs were mainly found in an integrated Pf1-like phage and in genes involved in transcriptional regulation, membrane and extracellular constituents, transport and secretion. In summary, P. aeruginosa is endowed with a highly conserved core genome of low sequence diversity and a highly variable accessory genome that communicates with other pseudomonads and genera via horizontal gene transfer.

  2. Bootstrapping Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    Employing the "small bandwidth" asymptotic framework of Cattaneo, Crump, and Jansson (2009), this paper studies the properties of a variety of bootstrap-based inference procedures associated with the kernel-based density-weighted averaged derivative estimator proposed by Powell, Stock, and Stoker......" variance estimator derived from the "small bandwidth" asymptotic framework. The results of a small-scale Monte Carlo experiment are found to be consistent with the theory and indicate in particular that sensitivity with respect to the bandwidth choice can be ameliorated by using the "robust...

  3. The average free volume model for liquids

    CERN Document Server

    Yu, Yang

    2014-01-01

    In this work, the molar volume thermal expansion coefficient of 59 room temperature ionic liquids is compared with their van der Waals volume Vw. Regular correlation can be discerned between the two quantities. An average free volume model, that considers the particles as hard core with attractive force, is proposed to explain the correlation in this study. A combination between free volume and Lennard-Jones potential is applied to explain the physical phenomena of liquids. Some typical simple liquids (inorganic, organic, metallic and salt) are introduced to verify this hypothesis. Good agreement from the theory prediction and experimental data can be obtained.

  4. Phase-averaged transport for quasiperiodic Hamiltonians

    CERN Document Server

    Bellissard, J; Schulz-Baldes, H

    2002-01-01

    For a class of discrete quasi-periodic Schroedinger operators defined by covariant re- presentations of the rotation algebra, a lower bound on phase-averaged transport in terms of the multifractal dimensions of the density of states is proven. This result is established under a Diophantine condition on the incommensuration parameter. The relevant class of operators is distinguished by invariance with respect to symmetry automorphisms of the rotation algebra. It includes the critical Harper (almost-Mathieu) operator. As a by-product, a new solution of the frame problem associated with Weyl-Heisenberg-Gabor lattices of coherent states is given.

  5. Fluctuations of wavefunctions about their classical average

    CERN Document Server

    Bénet, L; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.

  6. Sparsity averaging for radio-interferometric imaging

    CERN Document Server

    Carrillo, Rafael E; Wiaux, Yves

    2014-01-01

    We propose a novel regularization method for compressive imaging in the context of the compressed sensing (CS) theory with coherent and redundant dictionaries. Natural images are often complicated and several types of structures can be present at once. It is well known that piecewise smooth images exhibit gradient sparsity, and that images with extended structures are better encapsulated in wavelet frames. Therefore, we here conjecture that promoting average sparsity or compressibility over multiple frames rather than single frames is an extremely powerful regularization prior.

  7. A sixth order averaged vector field method

    OpenAIRE

    Li, Haochen; Wang, Yushun; Qin, Mengzhao

    2014-01-01

    In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order =5. With the help of the new substitution law, we derive a B-series integrator extending the averaged vector field (AVF) method to high order. The new integrator turns out to be of order six and exactly preserves energy for Hamiltonian systems. Numerical experiments are presented to demonstrate the accuracy and the energy-preserving property of the s...

  8. Fluctuations of wavefunctions about their classical average

    Energy Technology Data Exchange (ETDEWEB)

    Benet, L [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Flores, J [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Hernandez-Saldana, H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Izrailev, F M [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Leyvraz, F [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Seligman, T H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico)

    2003-02-07

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.

  9. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  10. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  11. Imaging genomics of Glioblastoma: state of the art bridge between genomics and neuroradiology.

    Science.gov (United States)

    ElBanan, Mohamed G; Amer, Ahmed M; Zinn, Pascal O; Colen, Rivka R

    2015-02-01

    Glioblastoma (GBM) is the most common and most aggressive primary malignant tumor of the central nervous system. Recently, researchers concluded that the "one-size-fits-all" approach for treatment of GBM is no longer valid and research should be directed toward more personalized and patient-tailored treatment protocols. Identification of the molecular and genomic pathways underlying GBM is essential for achieving this personalized and targeted therapeutic approach. Imaging genomics represents a new era as a noninvasive surrogate for genomic and molecular profile identification. This article discusses the basics of imaging genomics of GBM, its role in treatment decision-making, and its future potential in noninvasive genomic identification.

  12. Characterization of Interspecific Hybrids Between Oryza sativa L. and Three Wild Rice Species of China by Genomic In Situ Hybridization

    Institute of Scientific and Technical Information of China (English)

    Guang-Xuan Tan; Zhi-Yong Xiong; Hua-Jun Jin; Gang Li; Li-Li Zhu; Li-Hui Shu; Guang-Cun He

    2006-01-01

    In the genus Oryza, interspecific hybrids are useful bridges for transferring the desired genes from wild species to cultivated rice (Oryza sativa L.). In the present study, hybrids between O. sativa (AA genome)and three Chinese wild rices, namely O. rufipogon (AA genome), O. officinalis (CC genome), and O. meyeriana (GG genome), were produced. Agricultural traits of the F1 hybrids surveyed were intermediate between their parents and appreciably resembled wild rice parents. Except for the O. sativa × O. rufipogon hybrid,the other F1 hybrids were completely sterile. Genomic in situ hybridization (GISH) was used for hybrid verification. Wild rice genomic DNAs were used as probes and cultivated rice DNA was used as a block. With the exception of O. rufipogon chromosomes, this method distinguished the other two wild rice and cultivated rice chromosomes at the stage of mitotic metaphase with different blocking ratios. The results suggest that a more distant phylogenetic relationship exists between O. meyeriana and O. sativa and that O. rufipogon and O. sativa share a high degree of sequence homology. The average mitotic chromosome length of O. officinalis and O. meyeriana was 1.25- and 1.51-fold that of O. sativa, respectively. 4',6'-Diamidino2-phenylindole staining showed that the chromosomes of O. officinalis and O. meyeriana harbored more heterochromatin, suggesting that the C and G genomes were amplified with repetitive sequences compared with the A genome. Although chromocenters formed by chromatln compaction were detected with wild rice-specific signals corresponding to the C and G genomes in discrete domains of the F1 hybrid interphase nuclei, the size and number of O. meyeriana chromocenters were bigger and greater than those of O. officinalis. The present results provide an important understanding of the genomic relationships and a tool for the transfer of useful genes from three native wild rice species in China to cultivars.

  13. Construction of a nurse shark (Ginglymostoma cirratum bacterial artificial chromosome (BAC library and a preliminary genome survey

    Directory of Open Access Journals (Sweden)

    Inoko Hidetoshi

    2006-05-01

    Full Text Available Abstract Background Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. Aims In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC library for the nurse shark, Ginglymostoma cirratum. Results The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 × 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6–28 primary positive clones per probe of which 50–90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. Conclusion We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  14. MACHINE PROTECTION FOR HIGH AVERAGE CURRENT LINACS

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Kevin; Allison, Trent; Evans, Richard; Coleman, James; Grippo, Albert

    2003-05-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high current accelerators. The Jefferson Lab FEL [1,2] has multiple electron beam paths and many different types of diagnostic insertion devices. The MPS [3] needs to monitor both the status of these devices and the magnet settings which define the beam path. The matrix of these devices and beam paths are programmed into gate arrays, the output of the matrix is an allowable maximum average power limit. This power limit is enforced by the drive laser for the photocathode gun. The Beam Loss Monitors (BLMs), RF status, and laser safety system status are also inputs to the control matrix. There are 8 Machine Modes (electron path) and 8 Beam Modes (average power limits) that define the safe operating limits for the FEL. Combinations outside of this matrix are unsafe and the beam is inhibited. The power limits range from no beam to 2 megawatts of electron beam power.

  15. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-10-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.

  16. Local average height distribution of fluctuating interfaces

    Science.gov (United States)

    Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel V.

    2017-01-01

    Height fluctuations of growing surfaces can be characterized by the probability distribution of height in a spatial point at a finite time. Recently there has been spectacular progress in the studies of this quantity for the Kardar-Parisi-Zhang (KPZ) equation in 1 +1 dimensions. Here we notice that, at or above a critical dimension, the finite-time one-point height distribution is ill defined in a broad class of linear surface growth models unless the model is regularized at small scales. The regularization via a system-dependent small-scale cutoff leads to a partial loss of universality. As a possible alternative, we introduce a local average height. For the linear models, the probability density of this quantity is well defined in any dimension. The weak-noise theory for these models yields the "optimal path" of the interface conditioned on a nonequilibrium fluctuation of the local average height. As an illustration, we consider the conserved Edwards-Wilkinson (EW) equation, where, without regularization, the finite-time one-point height distribution is ill defined in all physical dimensions. We also determine the optimal path of the interface in a closely related problem of the finite-time height-difference distribution for the nonconserved EW equation in 1 +1 dimension. Finally, we discuss a UV catastrophe in the finite-time one-point distribution of height in the (nonregularized) KPZ equation in 2 +1 dimensions.

  17. Intensity contrast of the average supergranule

    CERN Document Server

    Langfellner, J; Gizon, L

    2016-01-01

    While the velocity fluctuations of supergranulation dominate the spectrum of solar convection at the solar surface, very little is known about the fluctuations in other physical quantities like temperature or density at supergranulation scale. Using SDO/HMI observations, we characterize the intensity contrast of solar supergranulation at the solar surface. We identify the positions of ${\\sim}10^4$ outflow and inflow regions at supergranulation scales, from which we construct average flow maps and co-aligned intensity and magnetic field maps. In the average outflow center, the maximum intensity contrast is $(7.8\\pm0.6)\\times10^{-4}$ (there is no corresponding feature in the line-of-sight magnetic field). This corresponds to a temperature perturbation of about $1.1\\pm0.1$ K, in agreement with previous studies. We discover an east-west anisotropy, with a slightly deeper intensity minimum east of the outflow center. The evolution is asymmetric in time: the intensity excess is larger 8 hours before the reference t...

  18. Tight Bounds on the Average Length, Entropy, and Redundancy of Anti-Uniform Huffman Codes

    CERN Document Server

    Mohajer, Soheil

    2007-01-01

    In this paper we consider the class of anti-uniform Huffman codes and derive tight lower and upper bounds on the average length, entropy, and redundancy of such codes in terms of the alphabet size of the source. The Fibonacci distributions are introduced which play a fundamental role in AUH codes. It is shown that such distributions maximize the average length and the entropy of the code for a given alphabet size. Another previously known bound on the entropy for given average length follows immediately from our results.

  19. Quenched effective population size

    CERN Document Server

    Sagitov, Serik; Vatutin, Vladimir

    2010-01-01

    We study the genealogy of a geographically - or otherwise - structured version of the Wright-Fisher population model with fast migration. The new feature is that migration probabilities may change in a random fashion. Applying Takahashi's results on Markov chains with random transition matrices, we establish convergence to the Kingman coalescent, as the population size goes to infinity. This brings a novel formula for the coalescent effective population size (EPS). We call it a quenched EPS to emphasize the key feature of our model - random environment. The quenched EPS is compared with an annealed (mean-field) EPS which describes the case of constant migration probabilities obtained by averaging the random migration probabilities over possible environments.

  20. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.

    Science.gov (United States)

    El Baidouri, Moaine; Panaud, Olivier

    2013-01-01

    Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.

  1. An epigenetic toolkit allows for diverse genome architectures in eukaryotes.

    Science.gov (United States)

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2015-12-01

    Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.

  2. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  3. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  4. "In Vivo" Brain Size and Intelligence.

    Science.gov (United States)

    Willerman, Lee; And Others

    1991-01-01

    Magnetic resonance imaging was used to demonstrate that larger brain size (corrected for body size) was associated with higher intelligence quotient (IQ) for 40 right-handed college students grouped by high and average IQ and sex. Results suggest the relevance of brain size to intelligence test performance. (SLD)

  5. Averaged Null Energy Condition from Causality

    CERN Document Server

    Hartman, Thomas; Tajdini, Amirhossein

    2016-01-01

    Unitary, Lorentz-invariant quantum field theories in flat spacetime obey microcausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy, $\\int du T_{uu}$, must be positive. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to $n$-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form $\\int du X_{uuu\\cdots u} \\geq 0$. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment ...

  6. Geographic Gossip: Efficient Averaging for Sensor Networks

    CERN Document Server

    Dimakis, Alexandros G; Wainwright, Martin J

    2007-01-01

    Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log ...

  7. Bivariate phase-rectified signal averaging

    CERN Document Server

    Schumann, Aicko Y; Bauer, Axel; Schmidt, Georg

    2008-01-01

    Phase-Rectified Signal Averaging (PRSA) was shown to be a powerful tool for the study of quasi-periodic oscillations and nonlinear effects in non-stationary signals. Here we present a bivariate PRSA technique for the study of the inter-relationship between two simultaneous data recordings. Its performance is compared with traditional cross-correlation analysis, which, however, does not work well for non-stationary data and cannot distinguish the coupling directions in complex nonlinear situations. We show that bivariate PRSA allows the analysis of events in one signal at times where the other signal is in a certain phase or state; it is stable in the presence of noise and impassible to non-stationarities.

  8. Hedge algorithm and Dual Averaging schemes

    CERN Document Server

    Baes, Michel

    2011-01-01

    We show that the Hedge algorithm, a method that is widely used in Machine Learning, can be interpreted as a particular instance of Dual Averaging schemes, which have recently been introduced by Nesterov for regret minimization. Based on this interpretation, we establish three alternative methods of the Hedge algorithm: one in the form of the original method, but with optimal parameters, one that requires less a priori information, and one that is better adapted to the context of the Hedge algorithm. All our modified methods have convergence results that are better or at least as good as the performance guarantees of the vanilla method. In numerical experiments, our methods significantly outperform the original scheme.

  9. Asymmetric network connectivity using weighted harmonic averages

    Science.gov (United States)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  10. Average Gait Differential Image Based Human Recognition

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI, AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition.

  11. Quantitative genetics theory for genomic selection and efficiency of breeding value prediction in open-pollinated populations

    Directory of Open Access Journals (Sweden)

    José Marcelo Soriano Viana

    2016-06-01

    Full Text Available ABSTRACT To date, the quantitative genetics theory for genomic selection has focused mainly on the relationship between marker and additive variances assuming one marker and one quantitative trait locus (QTL. This study extends the quantitative genetics theory to genomic selection in order to prove that prediction of breeding values based on thousands of single nucleotide polymorphisms (SNPs depends on linkage disequilibrium (LD between markers and QTLs, assuming dominance. We also assessed the efficiency of genomic selection in relation to phenotypic selection, assuming mass selection in an open-pollinated population, all QTLs of lower effect, and reduced sample size, based on simulated data. We show that the average effect of a SNP substitution is proportional to LD measure and to average effect of a gene substitution for each QTL that is in LD with the marker. Weighted (by SNP frequencies and unweighted breeding value predictors have the same accuracy. Efficiency of genomic selection in relation to phenotypic selection is inversely proportional to heritability. Accuracy of breeding value prediction is not affected by the dominance degree and the method of analysis, however, it is influenced by LD extent and magnitude of additive variance. The increase in the number of markers asymptotically improved accuracy of breeding value prediction. The decrease in the sample size from 500 to 200 did not reduce considerably accuracy of breeding value prediction.

  12. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Vattipally B Sreenu; Pankaj Kumar; Javaregowda Nagaraju; Hampapathalu A Nagarajaram

    2007-01-01

    Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes.

  13. Defining orthologs and pangenome size metrics.

    Science.gov (United States)

    Bosi, Emanuele; Fani, Renato; Fondi, Marco

    2015-01-01

    Since the advent of ultra-massive sequencing techniques, the consequent drop-off in both price and time required made feasible the sequencing of increasingly more genomes from microbes belonging to the same taxonomic unit. Eventually, this led to the concept of pangenome, that is, the entire set of genes present in a group of representatives of the same genus/species, which, in turn, can be divided into core genome, defined as the set of those genes present in all the genomes under study, and a dispensable genome, the set of genes possessed only by one or a subset of organism. When analyzing a pangenome, an interesting point is to measure its size, thus estimating the gene repertoire of a given taxonomic group. This is usually performed counting the novel genes added to the overall pangenome when new genomes are sequenced and annotated. A pangenome can be also classified as open or close: in an open pangenome its size increases indefinitely when adding new genomes; thus sequencing additional strains will likely yield novel genes. Conversely, in a close pangenome, adding new genomes will not lead to the discovery of new coding capabilities. A central point in pangenomics is the definition of homology relationships between genes belonging to different genomes. This may turn into the search of those genes with similar sequences between different organisms (and including both paralogous and orthologous genes). In this chapter, methods for finding groups of orthologs between genomes and for estimating the pangenome size are discussed. Also, working codes to address these tasks are provided.

  14. PromBase: a web resource for various genomic features and predicted promoters in prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Bansal Manju

    2011-07-01

    Full Text Available Abstract Background As more and more genomes are being sequenced, an overview of their genomic features and annotation of their functional elements, which control the expression of each gene or transcription unit of the genome, is a fundamental challenge in genomics and bioinformatics. Findings Relative stability of DNA sequence has been used to predict promoter regions in 913 microbial genomic sequences with GC-content ranging from 16.6% to 74.9%. Irrespective of the genome GC-content the relative stability based promoter prediction method has already been proven to be robust in terms of recall and precision. The predicted promoter regions for the 913 microbial genomes have been accumulated in a database called PromBase. Promoter search can be carried out in PromBase either by specifying the gene name or the genomic position. Each predicted promoter region has been assigned to a reliability class (low, medium, high, very high and highest based on the difference between its average free energy and the downstream region. The recall and precision values for each class are shown graphically in PromBase. In addition, PromBase provides detailed information about base composition, CDS and CG/TA skews for each genome and various DNA sequence dependent structural properties (average free energy, curvature and bendability in the vicinity of all annotated translation start sites (TLS. Conclusion PromBase is a database, which contains predicted promoter regions and detailed analysis of various genomic features for 913 microbial genomes. PromBase can serve as a valuable resource for comparative genomics study and help the experimentalist to rapidly access detailed information on various genomic features and putative promoter regions in any given genome. This database is freely accessible for academic and non- academic users via the worldwide web http://nucleix.mbu.iisc.ernet.in/prombase/.

  15. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

    DEFF Research Database (Denmark)

    Li, Yingrui; Zheng, Hancheng; Luo, Ruibang;

    2011-01-01

    Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise...

  16. The function genomics study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Genomics is a biology term appeared ten years ago, used to describe the researches of genomic mapping, sequencing, and structure analysis, etc. Genomics, the first journal for publishing papers on genomics research was born in 1986. In the past decade, the concept of genomics has been widely accepted by scientists who are engaging in biology research. Meanwhile, the research scope of genomics has been extended continuously, from simple gene mapping and sequencing to function genomics study. To reflect the change, genomics is divided into two parts now, the structure genomics and the function genomics.

  17. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  18. Architecture and evolution of a minute plant genome

    Science.gov (United States)

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C.; Himmelbauer, Heinz; Minoche, André E.; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P.; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A.; Herrera-Estrella, Luis

    2016-01-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation1. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  19. Visualization for genomics: the Microbial Genome Viewer.

    NARCIS (Netherlands)

    Kerkhoven, R.; Enckevort, F.H.J. van; Boekhorst, J.; Molenaar, D.; Siezen, R.J.

    2004-01-01

    SUMMARY: A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a My

  20. Frequency and Distribution of Microsatellites in the Genome of Filamentous Fungus, Neurospora crassa

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-yun; LI Jin-bin; ZHOU Xiao-gang; ZHANG Shao-song; XU Ming-hui

    2005-01-01

    A total of 38.0 Mb of publicly available DNA sequence in Neurospora crassa was researched for mono- to hexanucleotide simple sequence repeats (SSR or microsatellite) to determine the type, size and frequency. A total of 14 788 SSRs were observed in the whole genomic DNA sequence, about one every 2.57 kb, with the criteria of SSR length >15 bp and 80%matches. The most abundant microsatellite was trinucleotide repeat, the number was 4 729, followed by hexanucleotide and mononucleotide repeats, the numbers were 2 940 and 2 489 respectively, and the least abundance was dinucleotide repeat, only 691 were found. Among the 10 082 ORFs, 4 094 SSRs were harbored in 2 373 ORF (no intron) of the organism.One thousand and fifty six ORFs harbored only one SSR. Similar with other organisms, tri- and hexanucleotide repeats were predominant in ORFs, 54.1 and 48.8% oftri- and hexanucleotide repeats were distributed in ORF region. The density of these two motifs was overpresented in coding regions, because ORF region and coding region constitutes only 46 and 38.3% of genomic sequence, respectively. Upstream and downstream 300 bp of regulatory regions were high density regions of SSRs, particularly density of pentanucleotide SSR in upstream region was as high as five times of average density in genomic DNA, density of di- and tetranucleotide SSR was also more than two times of average density. The density of penta-, tetra-, di- and mononucleotide SSRs was relatively higher than average density. There were 47 SSRs in mitochondria 64 840 bp DNA sequence, their distribution is similar with genomic DNA sequence. These results suggested that SSRs were clustered in regulatory regions of genomic DNA.

  1. Draft Genome Sequence of Pseudomonas azotifigens Strain DSM 17556T (6H33bT), a Nitrogen Fixer Strain Isolated from a Compost Pile.

    Science.gov (United States)

    Busquets, Antonio; Peña, Arantxa; Gomila, Margarita; Mulet, Magdalena; Mayol, Joan; García-Valdés, Elena; Bennasar, Antonio; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Palaniappan, Krishnaveni; Ivanova, Natalia; Schaumberg, Andrew; Pati, Amrita; Reddy, T B K; Nordberg, Henrik; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos; Lalucat, Jorge

    2013-10-31

    Pseudomonas azotifigens strain 6H33b(T) is a nitrogen fixer isolated from a hyperthermal compost pile in 2005 by Hatayama and collaborators. Here we report the draft genome, which has an estimated size of 5.0 Mb, exhibits an average G+C content of 66.73%, and is predicted to encode 4,536 protein-coding genes and 100 RNA genes.

  2. Draft Genome Sequence of Human-Pathogenic Lactococcus garvieae LG-ilsanpaik-gs201105 That Caused Acute Acalculous Cholecystitis.

    Science.gov (United States)

    Kim, Ji Hyung; Kang, Do-Hyung; Park, Se Chang

    2015-06-04

    Lactococcus garvieae, which is generally known as a marine and freshwater fish pathogen, is now considered to be an emerging zoonotic pathogen in both human and veterinary medicine. In recent years, we have reported the infection of L. garvieae LG-ilsanpaik-gs201105 in the gallbladder of an old fisherman. In this study, we present the draft genome sequence of L. garvieae LG-ilsanpaik-gs201105, with a total genome size of 1,960,261 bp in 53 contigs and a 38.1% average G+C content. Interestingly, the capsule gene cluster, which was known as one of the crucial virulence factors in L. garvieae, was not detected in our isolate. This is the first genome sequence of human-pathogenic L. garvieae, which caused acute acalculous cholecystitis.

  3. A new approach for Bayesian model averaging

    Institute of Scientific and Technical Information of China (English)

    TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun

    2012-01-01

    Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.

  4. Calculating Free Energies Using Average Force

    Science.gov (United States)

    Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.

  5. Extent of linkage disequilibrium and effective population size in Finnish Landrace and Finnish Yorkshire pig breeds.

    Science.gov (United States)

    Uimari, P; Tapio, M

    2011-03-01

    The extent of linkage disequilibrium (LD) and effective population size in Finnish Landrace and Finnish Yorkshire pig populations were studied using a whole genome SNP panel (Illumina PorcineSNP60 BeadChip) and pedigree data. Genotypic data included 86 Finnish Landrace and 32 Finnish Yorkshire boars. Pedigree data included 608,138 Finnish Landrace 554,237 and Finnish Yorkshire pigs, and on average 15 ancestral generations were known for the reference animals, born in 2005 to 2009. The breeding animals of the 2 populations have been kept separate in the breeding programs. Based on the pedigree data, the current effective population size for Finnish Landrace is 91 and for Finnish Yorkshire 61. Linkage disequilibrium measures (D' and r(2)) were estimated for over 1.5 million pairs of SNP. Average r(2) for SNP 30 kb apart was 0.47 and 0.49 and for SNP 5 Mb apart 0.09 and 0.12 for Finnish Landrace and Finnish Yorkshire, respectively. Average LD (r(2)) between adjacent SNP in the Illumina PorcineSNP60 BeadChip was 0.43 (57% of the adjacent SNP pairs had r(2) > 0.2) for Finnish Landrace and 0.46 (60% of the adjacent SNP pairs had r(2) > 0.2) for Finnish Yorkshire, and average r(2) > 0.2 extended to 1.0 and 1.5 Mb for Finnish Landrace and Finnish Yorkshire, respectively. Effective population size estimates based on the decay of r(2) with distance were similar to those based on the pedigree data: 80 and 55 for Finnish Landrace and Finnish Yorkshire, respectively. Thus, the results indicate that the effective population size of Finnish Yorkshire is smaller than of Finnish Landrace and has a clear effect on the extent of LD. The current effective population size of both breeds is above the recommended minimum of 50 but may get smaller than that in the near future, if no action is taken to balance the inbreeding rate and selection response. Because a moderate level of LD extends over a long distance, selection based on whole genome SNP markers (genomic selection) is expected

  6. Insights into the genome of large sulfur bacteria revealed by analysis of single filaments.

    Directory of Open Access Journals (Sweden)

    Marc Mussmann

    2007-09-01

    Full Text Available Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical importance, little is known about their genetic repertoire because of the lack of pure cultures. Here, we present a unique approach to access the genome of single filaments of Beggiatoa by combining whole genome amplification, pyrosequencing, and optical genome mapping. Sequence assemblies were incomplete and yielded average contig sizes of approximately 1 kb. Pathways for sulfur oxidation, nitrate and oxygen respiration, and CO2 fixation confirm the chemolithoautotrophic physiology of Beggiatoa. In addition, Beggiatoa potentially utilize inorganic sulfur compounds and dimethyl sulfoxide as electron acceptors. We propose a mechanism of vacuolar nitrate accumulation that is linked to proton translocation by vacuolar-type ATPases. Comparative genomics indicates substantial horizontal gene transfer of storage, metabolic, and gliding capabilities between Beggiatoa and cyanobacteria. These capabilities enable Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur and nitrogen cycling in marine sediments.

  7. The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population

    Science.gov (United States)

    Künstner, Axel; Hoffmann, Margarete; Fraser, Bonnie A.; Kottler, Verena A.; Sharma, Eshita; Weigel, Detlef; Dreyer, Christine

    2016-01-01

    For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish. PMID:28033408

  8. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  9. The Giardia lamblia genome.

    Science.gov (United States)

    Adam, R D

    2000-04-10

    Giardia lamblia is a protozoan parasite of humans and other mammals that is thought to be one of the most primitive extant eukaryotic organisms. Although distinctly eukaryotic, it is notable for its lack of mitochondria, nucleoli, and perixosomes. It has been suggested that Giardia spp. are pre-mitochondriate organisms, but the identification of genes in G. lamblia thought to be of mitochondrial origin has generated controversy regarding that designation. Giardi lamblia trophozoites have two nuclei that are identical in all ways that have been studied. They are polyploid with at least four, and perhaps eight or more, copies of each of five chromosomes per organism and have an estimated genome complexity of 1.2x10(7)bp of DNA, and GC content of 46%. There is evidence for recombination at the telomeres of some of the chromosomes, and multiple size variants of single chromosomes have been identified within cloned isolates. However, the internal regions of the chromosomes demonstrate no evidence of recombination. For example, there is no evidence for control of vsp gene expression by DNA recombination, and no evidence for rapid mutation in the vsp genes. Single pass sequences of approximately 9% of the G. lamblia genome have already been obtained. An ongoing genome project plans to obtain approximately 95% of the genome by a random approach, as well as a complete physical map using a bacterial artificial chromosome library. The results will facilitate a better understanding of the biology of Giardia spp. as well as their phylogenetic relationship to other primitive organisms.

  10. Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research.

    Science.gov (United States)

    Coates, Brad S; Sumerford, Douglas V; Hellmich, Richard L; Lewis, Leslie C

    2009-01-01

    The European corn borer, Ostrinia nubilalis, is a serious pest of food, fiber, and biofuel crops in Europe, North America, and Asia and a model system for insect olfaction and speciation. A bacterial artificial chromosome library constructed for O. nubilalis contains 36 864 clones with an estimated average insert size of >or=120 kb and genome coverage of 8.8-fold. Screening OnB1 clones comprising approximately 2.76 genome equivalents determined the physical position of 24 sequence tag site markers, including markers linked to ecologically important and Bacillus thuringiensis toxin resistance traits. OnB1 bacterial artificial chromosome end sequence reads (GenBank dbGSS accessions ET217010 to ET217273) showed homology to annotated genes or expressed sequence tags and identified repetitive genome elements, O. nubilalis miniature subterminal inverted repeat transposable elements (OnMITE01 and OnMITE02), and ezi-like long interspersed nuclear elements. Mobility of OnMITE01 was demonstrated by the presence or absence in O. nubilalis of introns at two different loci. A (GTCT)n tetranucleotide repeat at the 5' ends of OnMITE01 and OnMITE02 are evidence for transposon-mediated movement of lepidopteran microsatellite loci. The number of repetitive elements in lepidopteran genomes will affect genome assembly and marker development. Single-locus sequence tag site markers described here have downstream application for integration within linkage maps and comparative genomic studies.

  11. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta based on next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    Full Text Available Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb of the genome, and 7737 simple sequence repeats (SSRs were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs, followed by the di- (17.41%, tetra- (5.49%, hexa- (2.90%, and penta- (1.00% nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.

  12. Mathematical Analysis of Genomic Evolution

    Directory of Open Access Journals (Sweden)

    Cedric Green

    2011-01-01

    Full Text Available Changes in nucleotide sequences, or mutations, accumulate from generation to generation in the genomes of all living organisms. The mutations can be advantageous, deleterious, or neutral. The goal of this project is to determine the amount of advantageous mutations it takes to get human (Homo sapiens DNA from the DNA of genetically distinct organisms. We do this by collecting the genomic data of such organisms, and estimating the amount of mutations it takes to transform yeast (Saccharomyces cerevisiae DNA to the DNA of a human. We calculate the typical number of mutations occurring annually through the organism's average life span and the average mutation rate. This allows us to determine the total number of mutations as well as the probability of advantageous mutations. Not surprisingly, this probability proves to be fairly small. A more precise estimate can be determined by accounting for the differences in the chromosomal structure and phenomena like horizontal gene transfer.

  13. Spreading of oil and the concept of average oil thickness

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, R. [Innovative Ventures Ltd., Cochrane, AB (Canada); Quintero-Marmol, A.M. [Pemex E and P, Campeche (Mexico); Bannerman, K. [Radarsat International, Vancouver, BC (Canada); Stevenson, G. [Calgary Univ., AB (Canada)

    2004-07-01

    The area of on oil slick on water can be readily measured using simple techniques ranging from visual observations to satellite-based radar systems. However, it is necessary to know the volume of spilled oil in order to determine the environmental impacts and best response strategy. The volume of oil must be known to determine spill quantity, response effectiveness and weathering rates. The relationship between volume and area is the average thickness of the oil over the spill area. This paper presents the results of several experiments conducted in the Gulf of Mexico that determined if average thickness of the oil is a characteristic of a specific crude oil, independent of spill size. In order to calculate the amount of oil on water from the area of slick requires information on the oil thickness, the inhomogeneity of the oil thickness and the oil-to-water ratio in the slick if it is emulsified. Experimental data revealed that an oil slick stops spreading very quickly after the application of oil. After the equilibrium thickness has been established, the slick is very sensitive to disturbances on the water surface, such as wave action, which causes the oil circle to dissipate into several small irregular shapes. It was noted that the spill source and oceanographic conditions are both critical to the final shape of the spill. 31 refs., 2 tabs., 8 figs.

  14. A high average power electro-optic switch using KTP

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C.A.; Cook, W.M.; Velsko, S.P.

    1994-04-01

    High damage threshold, high thermal conductivity, and small thermo-optic coefficients make KTiOPO{sub 4} (KTP) an attractive material for use in a high average power Q-switch. However, electro-chromic damage and refractive index homogeneity have prevented the utilization of KTP in such a device in the past. This work shows that electro-chromic damage is effectively suppressed using capacitive coupling, and a KTP crystal can be Q-switched for 1.5 {times} 10{sup 9} shots without any detectable electro-chromic damage. In addition, KTP with the high uniformity and large aperture size needed for a KTP electro-optic Q-switch can be obtained from flux crystals grown at constant temperature. A thermally compensated, dual crystal KTP Q-switch, which successfully produced 50 mJ pulses with a pulse width of 8 ns (FWHM), has been constructed. In addition, in off-line testing the Q-switch showed less than 7% depolarization at an average power loading of 3.2 kW/cm{sup 2}.

  15. Construction and Characterization of a Bacterial Artificial Chromosome Library for the A-Genome of Cotton (G. arboreum L.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    2011-01-01

    Full Text Available A bacterial artificial chromosome (BAC library for the A-genome of cotton has been constructed from the leaves of G. arboreum L cv. Jianglinzhongmian. It is used as elite A-genome germplasm resources in the present cotton breeding program and has been used to build a genetic reference map of cotton. The BAC library consists of 123,648 clones stored in 322 384-well plates. Statistical analysis of a set of 103 randomly selected BAC clones indicated that each clone has an average insert length of 100.2 kb per plasmid, with a range of 30 to 190 kb. Theoretically, this represents 7.2 haploid genome equivalents based on an A-genome size of 1697 Mb. The BAC library has been arranged in column pools and superpools allowing screening with various PCR-based markers. In the future, the A-genome cotton BAC library will serve as both a giant gene resource and a valuable tool for map-based gene isolation, physical mapping and comparative genome analysis.

  16. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  17. Development of genomic resources for the prairie vole (Microtus ochrogaster: construction of a BAC library and vole-mouse comparative cytogenetic map

    Directory of Open Access Journals (Sweden)

    Young Larry J

    2010-01-01

    Full Text Available Abstract Background The prairie vole (Microtus ochrogaster is a premier animal model for understanding the genetic and neurological basis of social behaviors. Unlike other biomedical models, prairie voles display a rich repertoire of social behaviors including the formation of long-term pair bonds and biparental care. However, due to a lack of genomic resources for this species, studies have been limited to a handful of candidate genes. To provide a substrate for future development of genomic resources for this unique model organism, we report the construction and characterization of a bacterial artificial chromosome (BAC library from a single male prairie vole and a prairie vole-mouse (Mus musculus comparative cytogenetic map. Results We constructed a prairie vole BAC library (CHORI-232 consisting of 194,267 recombinant clones with an average insert size of 139 kb. Hybridization-based screening of the gridded library at 19 loci established that the library has an average depth of coverage of ~10×. To obtain a small-scale sampling of the prairie vole genome, we generated 3884 BAC end-sequences totaling ~2.8 Mb. One-third of these BAC-end sequences could be mapped to unique locations in the mouse genome, thereby anchoring 1003 prairie vole BAC clones to an orthologous position in the mouse genome. Fluorescence in situ hybridization (FISH mapping of 62 prairie vole clones with BAC-end sequences mapping to orthologous positions in the mouse genome was used to develop a first-generation genome-wide prairie vole-mouse comparative cytogenetic map. While conserved synteny was observed between this pair of rodent genomes, rearrangements between the prairie vole and mouse genomes were detected, including a minimum of five inversions and 16 inter-chromosomal rearrangements. Conclusions The construction of the prairie vole BAC library and the vole-mouse comparative cytogenetic map represent the first genome-wide modern genomic resources developed for this

  18. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola.

    Directory of Open Access Journals (Sweden)

    Eva H Stukenbrock

    2010-12-01

    Full Text Available The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000-12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was

  19. Interpreting Sky-Averaged 21-cm Measurements

    Science.gov (United States)

    Mirocha, Jordan

    2015-01-01

    Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation

  20. Genome sequence of the aerobic bacterium Bacillus sp. strain FJAT-13831.

    Science.gov (United States)

    Liu, Guohong; Liu, Bo; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-12-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.