Sample records for auxotrophs

  1. Generation of Enterobacter sp. YSU auxotrophs using transposon mutagenesis. (United States)

    Caguiat, Jonathan James


    Prototrophic bacteria grow on M-9 minimal salts medium supplemented with glucose (M-9 medium), which is used as a carbon and energy source. Auxotrophs can be generated using a transposome. The commercially available, Tn5-derived transposome used in this protocol consists of a linear segment of DNA containing an R6Kγ replication origin, a gene for kanamycin resistance and two mosaic sequence ends, which serve as transposase binding sites. The transposome, provided as a DNA/transposase protein complex, is introduced by electroporation into the prototrophic strain, Enterobacter sp. YSU, and randomly incorporates itself into this host's genome. Transformants are replica plated onto Luria-Bertani agar plates containing kanamycin, (LB-kan) and onto M-9 medium agar plates containing kanamycin (M-9-kan). The transformants that grow on LB-kan plates but not on M-9-kan plates are considered to be auxotrophs. Purified genomic DNA from an auxotroph is partially digested, ligated and transformed into a pir+ Escherichia coli (E. coli) strain. The R6Kγ replication origin allows the plasmid to replicate in pir+ E. coli strains, and the kanamycin resistance marker allows for plasmid selection. Each transformant possesses a new plasmid containing the transposon flanked by the interrupted chromosomal region. Sanger sequencing and the Basic Local Alignment Search Tool (BLAST) suggest a putative identity of the interrupted gene. There are three advantages to using this transposome mutagenesis strategy. First, it does not rely on the expression of a transposase gene by the host. Second, the transposome is introduced into the target host by electroporation, rather than by conjugation or by transduction and therefore is more efficient. Third, the R6Kγ replication origin makes it easy to identify the mutated gene which is partially recovered in a recombinant plasmid. This technique can be used to investigate the genes involved in other characteristics of Enterobacter sp. YSU or of a

  2. Positive selection for uracil auxotrophs of the sulfur-dependent thermophilic archaebacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid.


    Kondo, S; Yamagishi, A; Oshima, T


    Uracil auxotrophs of Sulfolobus acidocaldarius were positively selected by using 5-fluoroorotic acid. The wild-type strain was unable to grow in medium containing 5-fluoroorotic acid, whereas the mutants grew normally. Positive selection could be done for the auxotrophs. Mutants deficient in orotidine-5'-monophosphate pyrophosphorylase activity were isolated.

  3. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice. (United States)

    Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David


    Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.

  4. Chromium induced stress conditions in heterotrophic and auxotrophic strains of Euglena gracilis. (United States)

    Rocchetta, Iara; Mazzuca, Marcia; Conforti, Visitación; Balzaretti, Vilma; del Carmen Ríos de Molina, María


    Oxidative stress parameter and antioxidant defense compound as well as enzyme activity were studied in relation to different Cr(VI) concentrations (0, 10, 20, 40 μM) in two strains of Euglena gracilis, one isolated from a polluted river (MAT) and the other acquired from a culture collection (UTEX). Chromium toxicity was measured in the auxotrophic and obligated heterotrophic variants of the two strains. Chromium uptake was higher in auxotrophic cultures, reflected by their higher cell proliferation inhibition and lower IC50 levels compared to heterotrophic ones. In the Cr(VI) treatments a reduction of chlorophyll a and b ratio (Chl a/Chl b) was observed, the ratio of protein to paramylon content was augmented, and total lipid content increased, having the auxotrophic strains the highest values. TBARS content increased significantly only at 40 μM Cr(VI) treatment. Unsaturated fatty acids also increased in the Cr(VI) treatments, with the higher storage lipid (saturated acids) content in the heterotrophic cells. The antioxidant response, such as SOD activity and GSH content, increased with chromium concentration, showing the highest GSH values in the heterotrophic cultures and the SOD enzyme participation in chromium toxicity. The MAT strain had higher IC50 values, higher carbohydrate and saturated acid content, and better response of the antioxidant system than the UTEX one. This strain isolated from the polluted place also showed higher GSH content and SOD activity in control cells and in almost all treated cultures. SOD activity reached a 9-fold increase in both MAT strains. These results suggest that tolerance of MAT strain against Cr(VI) stress is not only related to GSH level and/or biosynthesis capacity but is also related to the participation of the SOD antioxidant enzyme.

  5. Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG. (United States)

    Borsuk, Sibele; Mendum, Tom A; Fagundes, Michel Quevedo; Michelon, Marcelo; Cunha, Cristina Wetzel; McFadden, Johnjoe; Dellagostin, Odir Antônio


    Mycobacterium bovis BCG has the potential to be an effective live vector for multivalent vaccines. However, most mycobacterial cloning vectors rely on antibiotic resistance genes as selectable markers, which would be undesirable in any practical vaccine. Here we report the use of auxotrophic complementation as a selectable marker that would be suitable for use in a recombinant vaccine. A BCG auxotrophic for the amino acid leucine was constructed by knocking out the leuD gene by unmarked homologous recombination. Expression of leuD on a plasmid not only allowed complementation, but also acted as a selectable marker. Removal of the kanamycin resistance gene, which remained necessary for plasmid manipulations in Escherichia coli, was accomplished by two different methods: restriction enzyme digestion followed by re-ligation before BCG transformation, or by Cre-loxP in vitro recombination mediated by the bacteriophage P1 Cre Recombinase. Stability of the plasmid was evaluated during in vitro and in vivo growth of the recombinant BCG in comparison to selection by antibiotic resistance. The new system was highly stable even during in vivo growth, as the selective pressure is maintained, whereas the conventional vector was unstable in the absence of selective pressure. This new system will now allow the construction of potential recombinante vaccine strains using stable multicopy plasmid vectors without the inclusion of antibiotic resistance markers.

  6. Culture and selection of somatic hybrids using an auxotrophic cell line. (United States)

    Hein, T; Przewoźny, T; Schieder, O


    Protoplast fusions between Nicotiana tabacum and N. paniculata and between N. tabacum and N. sylvestris were obtained by polyethylene glycol and Ca(NO3)2 treatment. The protoplasts of one parent originated from cell suspensions, while the protoplasts of the other originated from leaf mesophyll. The heterokaryons were detectable by their intermediate phenotype, namely the green chloroplasts from mesophyll and the dense cytoplasm from suspension cells. They were isolated with micropipettes immediately after fusion using a micromanipulator and were transferred into a protoplast suspension of an auxotrophic cell line serving as a nursery. This mutant is not able to utilize nitrate and had to be supplemented with amino acids. The somatic hybrids were selected by a stepwise reduction of the supplements, which caused the death of the mutant cell colonies, while the autotrophic somatic hybrids continued to grow. The hybrid character of the selected colonies was confirmed by isoenzyme investigations.

  7. Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, G.H.; Wang, L.; Kang, Z.H. [School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping road, Shanghai 200092 (China)


    NH{sub 4}{sup +}, which is normally the integrant in organic wastewater, such as Tofu wastewater, is an inhibitor to hydrogen production by anoxygenic phototrophic bacterium. In order to release inhibition of NH{sub 4}{sup +} to biohydrogen generation by Rhodobacter sphaeroides, a glutamine auxotrophic mutant R. sphaeroides TJ-0803 was obtained by mutagenizing with ethyl methane sulfonate. The mutant could generate biohydrogen efficiently in the medium with high NH{sub 4}{sup +} concentration, because the inhibition of NH{sub 4}{sup +} to nitrogenase was released. Under suitable conditions, TJ-0803 could effectively produce biohydrogen from tofu wastewater, which commonly containing 50-60 mg L{sup -1} NH{sub 4}{sup +}, and the generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides. (author)

  8. Isolation and Characterization of Unsaturated Fatty Acid Auxotrophs of Streptococcus pneumoniae and Streptococcus mutans▿ (United States)

    Altabe, Silvia; Lopez, Paloma; de Mendoza, Diego


    Unsaturated fatty acid (UFA) biosynthesis is essential for the maintenance of membrane structure and function in many groups of anaerobic bacteria. Like Escherichia coli, the human pathogen Streptococcus pneumoniae produces straight-chain saturated fatty acids (SFA) and monounsaturated fatty acids. In E. coli UFA synthesis requires the action of two gene products, the essential isomerase/dehydratase encoded by fabA and an elongation condensing enzyme encoded by fabB. S. pneumoniae lacks both genes and instead employs a single enzyme with only an isomerase function encoded by the fabM gene. In this paper we report the construction and characterization of an S. pneumoniae 708 fabM mutant. This mutant failed to grow in complex medium, and the defect was overcome by addition of UFAs to the growth medium. S. pneumoniae fabM mutants did not produce detectable levels of monounsaturated fatty acids as determined by gas chromatography-mass spectrometry and thin-layer chromatography analysis of the radiolabeled phospholipids. We also demonstrate that a fabM null mutant of the cariogenic organism Streptococcus mutants is a UFA auxotroph, indicating that FabM is the only enzyme involved in the control of membrane fluidity in streptococci. Finally we report that the fabN gene of Enterococcus faecalis, coding for a dehydratase/isomerase, complements the growth of S. pneumoniae fabM mutants. Taken together, these results suggest that FabM is a potential target for chemotherapeutic agents against streptococci and that S. pneumoniae UFA auxotrophs could help identify novel genes encoding enzymes involved in UFA biosynthesis. PMID:17827283

  9. Stable expression of Mycobacterium bovis antigen 85B in auxotrophic M. bovis bacillus Calmette-Guérin (United States)

    Rizzi, Caroline; Peiter, Ana Carolina; Oliveira, Thaís Larré; Seixas, Amilton Clair Pinto; Leal, Karen Silva; Hartwig, Daiane Drawanz; Seixas, Fabiana Kommling; Borsuk, Sibele; Dellagostin, Odir Antônio


    BACKGROUND Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis, responsible for causing major losses in livestock. A cost effective alternative to control the disease could be herd vaccination. The bacillus Calmette-Guérin (BCG) vaccine has a limited efficacy against bovine TB, but can improved by over-expression of protective antigens. The M. bovis antigen 85B demonstrates ability to induce protective immune response against bovine TB in animal models. However, current systems for the construction of recombinant BCG expressing multiple copies of the gene result in strains of low genetic stability that rapidly lose the plasmid in vivo. Employing antibiotic resistance as selective markers, these systems also compromise vaccine safety. We previously reported the construction of a stable BCG expression system using auxotrophic complementation as a selectable marker. OBJECTIVES The fundamental aim of this study was to construct strains of M. bovis BCG Pasteur and the auxotrophic M. bovis BCG ΔleuD expressing Ag85B and determine their stability in vivo. METHODS Employing the auxotrophic system, we constructed rBCG strains that expressed M. bovis Ag85B and compared their stability with a conventional BCG strain in mice. Stability was measured in terms of bacterial growth on the selective medium and retention of antigen expression. FINDINGS The auxotrophic complementation system was highly stable after 18 weeks, even during in vivo growth, as the selective pressure and expression of antigen were maintained comparing to the conventional vector. MAIN CONCLUSION The Ag85B continuous expression within the host may generate a stronger and long-lasting immune response compared to conventional systems. PMID:28177046

  10. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli. (United States)

    Gu, Pengfei; Su, Tianyuan; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng


    Shikimate is a key intermediate in the synthesis of neuraminidase inhibitors. Compared with traditional methods, microbial production of shikimate has the advantages of environmental friendliness, low cost, feed stock renewability, and product selectivity and diversity. Despite these advantages, shikimate kinase I and II respectively encoded by aroK and aroL are inactivated in most shikimate microbial producers, thus requiring the addition of aromatic compounds during the fermentation process. To overcome this problem, we constructed a non-auxotrophic, shikimate-synthesising strain of Escherichia coli. By inactivation of repressor proteins, blocking of competitive pathways and overexpression of key enzymes, we increased the shikimate production of wild-type E. coli BW25113 to 1.73 g/L. We then designed a tunable switch that can conditionally decrease gene expression and substituted it for the original aroK promoters. Expression of aroK in the resulting P-9 strain was maintained at a high level during the growth phase and then reduced at a suitable time by addition of an optimal concentration of inducer. In 5-L fed-batch fermentation, strain P-9 produced 13.15 g/L shikimate without the addition of any aromatic compounds. The tunable switch developed in this study is an efficient tool for regulating indispensable genes involved in critical metabolic pathways.

  11. Staphylococcus aureus small colony variants show common metabolic features in central metabolism irrespective of the underlying auxotrophism

    Directory of Open Access Journals (Sweden)

    André eKriegeskorte


    Full Text Available In addition to the classical phenotype, Staphylococcus aureus may exhibit the small colony-variant (SCV phenotype, which has been associated with chronic, persistent and/or relapsing infections. SCVs are characterized by common phenotypic features such as slow growth, altered susceptibility to antibiotic agents and pathogenic traits based on increased internalization and intracellular persistence. They show frequently auxotrophiesms mainly based on two different mechanisms: (i deficiencies in electron transport as shown for menadione- and/or hemin-auxotrophs and (ii thymidylate biosynthetic-defective SCVs. To get a comprehensive overview of the metabolic differences between both phenotypes, we compared sets of clinically derived menadione-, hemin- and thymidine-auxotrophic SCVs and stable site directed mutants exhibiting the SCV phenotype with their corresponding isogenic parental strains displaying the normal phenotype. Isotopologue profiling and transcriptional analysis of central genes involved in carbon metabolism, revealed large differences between both phenotypes. Labeling experiments with [U-13C6]glucose showed reduced 13C incorporation into aspartate and glutamate from all SCVs irrespective of the underlying auxotrophism. More specifically, these SCVs showed decreased fractions of 13C2-aspartate and glutamate; 13C3-glutamate was not detected at all in the SCVs. In comparison to the patterns in the corresponding experiment with the classical S. aureus phenotype, this indicated a reduced carbon flux via the citric acid cycle in all SCV phenotypes. Indeed, the aconitase-encoding gene (acnA was found down-regulated in all SCV phenotypes under study. In conclusion, all SCV phenotypes including clinical isolates and site-directed mutants displaying the SCV phenotype were characterized by down-regulation of citric acid cycle activity. The common metabolic features in central carbon metabolism found in all SCVs may explain similar

  12. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae. (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji


    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus.

  13. Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas. (United States)

    Cheng, Feng; Zhu, Leilei; Lue, Hongqi; Bernhagen, Jürgen; Schwaneberg, Ulrich


    Arginine deiminase (ADI) is a therapeutic protein for cancer therapy of arginine-auxotrophic tumors. However, ADI's application as anticancer drug is hampered by its low activity for arginine under physiological conditions mainly due to its high "K M" (S₀.₅) values which are often 1 magnitude higher than the arginine concentration in blood (0.10-0.12 mM arginine in human plasma). Previous evolution campaigns were directed by us with the aim of boosting activity of PpADI (ADI from Pseudomonas plecoglossicida, k cat = 0.18 s(-1); S₀.₅ = 1.30 mM), and yielded variant M6 with slightly reduced S₀.₅ values and enhanced k cat (S₀.₅ = 0.81 mM; k cat = 11.64 s(-1)). In order to further reduce the S₀.₅ value and to increase the activity of PpADI at physiological arginine concentration, a more sensitive screening system based on ammonia detection in 96-well microtiter plate to reliably detect ≥0.005 mM ammonia was developed. After screening ~5,500 clones with the ammonia detection system (ADS) in two rounds of random mutagenesis and site-directed mutagenesis, variant M19 with increased k cat value (21.1 s(-1); 105.5-fold higher compared to WT) and reduced S₀.₅ value (0.35 mM compared to 0.81 mM (M6) and 1.30 mM (WT)) was identified. Improved performance of M19 was validated by determining IC₅₀ values for two melanoma cell lines. The IC₅₀ value for SK-MEL-28 dropped from 8.67 (WT) to 0.10 (M6) to 0.04 μg/mL (M19); the IC₅₀ values for G361 dropped from 4.85 (WT) to 0.12 (M6) to 0.05 μg/mL (M19).

  14. Immunization of olive flounder (Paralichthys olivaceus) with an auxotrophic Edwardsiella tarda mutant harboring the VHSV DNA vaccine. (United States)

    Choi, Seung Hyuk; Kim, Min Sun; Kim, Ki Hong


    The aims of the present study were to find more powerful promoter for DNA vaccines in olive flounder (Paralichthys olivaceus) and to evaluate the availability of the auxotrophic Edwardsiella tarda mutant (Δalr Δasd E. tarda) as a delivery vehicle for DNA vaccine against VHSV in olive flounder. The marine medaka (Oryzias dancena) β-actin promoter was clearly stronger than cytomegalovirus (CMV) promoter when the vectors were transfected to Epithelioma papulosum cyprini (EPC) cells or injected into the muscle of olive flounder, suggesting that marine medaka β-actin promoter would be more appropriate promoter for DNA vaccines in olive flounder than CMV promoter. Olive flounder immunized with the Δalr Δasd E. tarda harboring viral hemorrhagic septicemia virus (VHSV) DNA vaccine vector driven by the marine medaka β-actin promoter showed significantly higher serum neutralization titer and higher survival rates against challenge with VHSV than fish immunized with the bacteria carrying VHSV DNA vaccine vector driven by CMV promoter. These results indicate that auxotrophic E. tarda mutant harboring marine medaka β-actin promoter-driven DNA vaccine vectors would be a potential system for prophylactics of infectious diseases in olive flounder.

  15. Cloning of a yeast gene coding for the glutamate synthase small subunit (GUS2) by complementation of Saccharomyces cerevisiae and Escherichia coli glutamate auxotrophs. (United States)

    González, A; Membrillo-Hernández, J; Olivera, H; Aranda, C; Macino, G; Ballario, P


    A Saccharomyces cerevisiae glutamate auxotroph, lacking NADP-glutamate dehydrogenase (NADP-GDH) and glutamate synthase (GOGAT) activities, was complemented with a yeast genomic library. Clones were obtained which still lacked NADP-GDH but showed GOGAT activity. Northern analysis revealed that the DNA fragment present in the complementing plasmids coded for a 1.5kb mRNA. Since the only GOGAT enzyme so far purified from S. cerevisiae is made up of a small and a large subunit, the size of the mRNA suggested that the cloned DNA fragment could code for the GOGAT small subunit. Plasmids were purified and used to transform Escherichia coli glutamate auxotrophs. Transformants were only recovered when the recipient strain was an E. coli GDH-less mutant lacking the small GOGAT subunit. These data show that we have cloned the structural gene coding for the yeast small subunit (GUS2). Evidence is also presented indicating that the GOGAT enzyme which is synthesized in the E. coli transformants is a hybrid comprising the large E. coli subunit and the small S. cerevisiae subunit.

  16. Dependence of mutation spectrum on physiological state of Pen. Chrysogenum cells. Auxotrophic mutants induced with UV rays at various stages of DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Zakharova, G.M.; Bartoshevich, Yu.Eh.; Lebed, Eh.S.; Domracheva, A.G.


    The effect of UV-rays on non-activated and activated conidia of penicillin producers Pen, chryrogenum, strain 39, has been studied. It has been established that 2 doses of UV-rays - 4000 and 6000 erg/mm/sup 2/ - induce in non-activated conidia approximately equal quantity of mutations with broken synthesis of amino acids and nitrous bases of nucleic acids. The spectrum of auxotrophic mutations induced during the DNA replication changes depending on the mutagen dose and replication stage. No distinct periodicity in the mutation yield has been observed. Schemes of the induction of mutations during the DNA replication under the effect of both doses of UV-rays have been made.

  17. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acids in relaxed and stringent amino acid auxotrophs of Escherichia coli. (United States)

    Gray, W J; Midgley, J E


    The biosynthesis and stability of various RNA fractions was studied in RC(str) and RC(rel) multiple amino acid auxotrophs of Escherichia coli. In conditions of amino acid deprivation, RC(str) mutants were labelled with exogenous nucleotide bases at less than 1% of the rate found in cultures growing normally in supplemented media. Studies by DNA-RNA hybridization and by other methods showed that, during a period of amino acid withdrawal, not more than 60-70% of the labelled RNA formed in RC(str) mutants had the characteristics of mRNA. Evidence was obtained for some degradation of newly formed 16S and 23S rRNA species to heterogeneous material of lower molecular weight. This led to overestimations of the mRNA content of rapidly labelled RNA from such methods as simple examination of sucrose-density-gradient profiles. In RC(rel) strains the absolute and relative rates of synthesis of the various RNA fractions were not greatly affected. However, the stability of about half of the mRNA fraction was increased in RC(rel) strains during amino acid starvation, giving kinetics of mRNA labelling and turnover that were identical with those found in either RC(str) or RC(rel) strains inhibited by high concentrations of chloramphenicol. Coincidence hybridization techniques showed that the mRNA content of amino acid-starved RC(str) auxotrophs was unchanged from that found in normally growing cells. In contrast, RC(rel) strains deprived of amino acids increased their mRNA content about threefold. In such cultures the mRNA content of accumulating newly formed RNA was a constant 16% by wt.

  18. Advances in molecular tools for the use of Zygosaccharomyces bailii as host for biotechnological productions and construction of the first auxotrophic mutant. (United States)

    Dato, Laura; Branduardi, Paola; Passolunghi, Simone; Cattaneo, Davide; Riboldi, Luca; Frascotti, Gianni; Valli, Minoska; Porro, Danilo


    The nonconventional yeast Zygosaccharomyces bailii has been proposed as a new host for biotechnological processes due to convenient properties such as its resistance to high sugar concentrations, relatively high temperatures and especially to acidic environments. We describe a series of new expression vectors specific for Z. bailii and the resulting improvements in production levels. By exploiting the sequences of the endogenous plasmid pSB2, 2microm-like multicopy vectors were obtained, giving a fivefold increase in production. A specific integrative vector was developed which led to 100% stability in the absence of selective pressure; a multiple-integration vector was constructed, based on an rRNA gene unit portion cloned and sequenced for this purpose, driving the insertion of up to 80 copies of the foreign construct. Moreover, we show the construction of the first stable auxotrophic mutant of Z. bailii, obtained by targeted gene deletion applied to ZbLEU2. The development of molecular tools for the Z. bailii manipulation has now reached a level that may be compatible with its industrial exploitation; the production of organic acids is a prominent field of application.

  19. Reversions of two proline-requiring auxotrophs of Haemophilus influenzae by N-methyl-N'-nitro-N-nitrosoguanidine and hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, R.F.


    New mutation detection systems are described for Haemophilus influenzae. They involve two independently isolated proline auxotrophs which appear to be mutants at different sites in a proline locus (proB) that is very closely linked to a locus (thd) for thymidine requirement. One of the mutants, proB1, appears to revert to prototrophy only by mutations at the locus. The other, proB2, reverts both by mutation at the locus and by unlinked suppressors. The latter account for about 90 percent of the reversions induced by MNNG and by HZ. The close linkage of proB to thd was used to distinguish between true revertants and suppressors by a transformation test. A comparison was made between the mutation induction kinetics of the different classes of revertants and mutations to novobiocin resistance with MNNG and HZ. The very different induction kinetics for these two mutagens previously reported for the novobiocin resistance system were also found for the proline systems. There were some differences between the detection systems, however, in the frequency of induced mutation relative to the spontaneous frequency and, in one case, in the form of the induction curve. It is concluded that the major features of the induction curves reflect the amount of damage done to DNA and so are general for all systems, but that there are some features which are locus- or site-specific.

  20. Pre-clinical development of BCG.HIVA(CAT, an antibiotic-free selection strain, for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG.

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    Full Text Available In the past, we proposed to develop a heterologous recombinant BCG prime-recombinant modified vaccinia virus Ankara (MVA boost dual pediatric vaccine platform against transmission of breast milk HIV-1 and Mycobacterium tuberculosis (Mtb. In this study, we assembled an E. coli-mycobacterial shuttle plasmid pJH222.HIVA(CAT expressing HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism based on Operator-Repressor Titration (ORT system for plasmid selection and maintenance in E. coli and lysine complementation in mycobacteria. This shuttle plasmid was electroporated into parental lysine auxotroph (safer strain of BCG to generate vaccine BCG.HIVA(CAT. All procedures complied with Good Laboratory Practices (GLPs. We demonstrated that the episomal plasmid pJH222.HIVA(CAT was stable in vivo over a 20-week period, and genetically and phenotypically characterized the BCG.HIVA(CAT vaccine strain. The BCG.HIVA(CAT vaccine in combination with MVA.HIVA induced HIV-1- and Mtb-specific interferon γ-producing T-cell responses in newborn and adult BALB/c mice. On the other hand, when adult mice were primed with BCG.HIVA(CAT and boosted with MVA.HIVA.85A, HIV-1-specific CD8(+ T-cells producing IFN-γ, TNF-α, IL-2 and CD107a were induced. To assess the biosafety profile of BCG.HIVA(CAT-MVA.HIVA regimen, body mass loss of newborn mice was monitored regularly throughout the vaccination experiment and no difference was observed between the vaccinated and naïve groups of animals. Thus, we demonstrated T-cell immunogenicity of a novel, safer, GLP-compatible BCG-vectored vaccine using prototype immunogen HIVA. Second generation immunogens derived from HIV-1 as well as other major pediatric pathogens can be constructed in a similar fashion to prime protective responses soon after birth.

  1. Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations. (United States)

    Menard, Aymeric; Monnez, Claire; Estrada de Los Santos, Paulina; Segonds, Christine; Caballero-Mellado, Jesus; Lipuma, John J; Chabanon, Gerard; Cournoyer, Benoit


    Burkholderia vietnamiensis is the third most prevalent species of the Burkholderia cepacia complex (Bcc) found in cystic fibrosis (CF) patients. Its ability at fixing nitrogen makes it one of the main Bcc species showing strong filiations with environmental reservoirs. In this study, 83% (29 over 35) of the B. vietnamiensis CF isolates and 100% of the environmental ones (over 29) were found expressing the dinitrogenase complex (encoded by the nif cluster) which is essential in N(2) fixation. Among the deficient strains, two were found growing with ammonium chloride suggesting that they were defective in N(2) fixation, and four with amino acids supplements suggesting that they were harbouring auxotrophic mutations. To get insights about the genetic events that led to the emergence of the N(2)-fixing defective strains, a genetic analysis of B. vietnamiensis nitrogen-fixing property was undertaken. A 40-kb-long nif cluster and nif regulatory genes were identified within the B. vietnamiensis strain G4 genome sequence, and analysed. Transposon mutagenesis and nifH genetic marker exchanges showed the nif cluster and several other genes like gltB (encoding a subunit of the glutamate synthase) to play a key role in B. vietnamiensis ability at growing in nitrogen-free media. nif cluster DNA probings of restricted genomic DNA blots showed a full deletion of the nif cluster for one of the N(2)-fixing defective strain while the other one showed a genetic organization similar to the one of the G4 strain. For 17% of B. vietnamiensis clinical strains, CF lungs appeared to have favoured the selection of mutations or deletions leading to N(2)-fixing deficiencies.

  2. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    Directory of Open Access Journals (Sweden)

    Zueco Jesus


    Full Text Available Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β, using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1, negligible if compared to that of the parental strain (0.028 h-1. However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the

  3. 谷氨酸棒杆菌L-色氨酸营养缺陷型突变及其高产菌株的选育%Study on breeding of Corynebacterium glutamicum L-tryptophan auxotrophic strains with high yield

    Institute of Scientific and Technical Information of China (English)

    张新武; 侯钢北; 杨晓明; 廉娜娜


    Objective To research the breeding of high L-tryptophan yield with multiple synthetic and metabolic pathway mutation strain by using Corynebacterium glutamicum HX-22 as the starting strain. Methods Diethyl sulfate (DES), UV, and cobalt-60 gamma-ray mutagenesis method were performed cross processing starting on C. glutamicum HX-22 and mutant strain. The auxotrophic phenotype and metabolic suicide substrate resistance screening methods were used, and targeted mutagenesis and breeding of L-tryptophan acid synthesis and catabolism mutation of lubricious ammonia acid producing strain. Results Through continuous type defect mutagenesis breeding for many times, the strains with auxotroph and resistance marker of L-tryptophan high yield bacteria HX22-118 (Phe--Tyr--5FTr-4FPr-SGr) was screened, then extend the 10 times in succeeding transfer culture, the L-trp fermentation yield reached to 27.1 g/L, which was increased by 81.8% comparing to the wild start strain. Conclusion The selected multiple mutated strain HX22-118 (Phe--Tyr--5FTr-4FPr-SGr) with high L-trp yielding strain has a good genetic stability, which can be applied in industrial application.%目的:以谷氨酸棒杆菌(Corynebacterium glutamicum)HX-22为出发菌株,研究了目标发酵产物L-色氨酸合成途径交叉反馈抑制途径代谢突变与色氨酸分解代谢类似物抗性的营养缺陷型突变诱导过程及 L-色氨酸高产复合突变菌株的筛选。方法采用硫酸二乙酯、紫外线、钴60γ-射线等诱变方法交叉处理起始与突变菌株,通过营养缺陷表型和自杀代谢底物抗性的筛选方法,定向突变和选育 L-色氨酸合成与分解代谢突变的色氨酸高产菌株。结果通过多次连续营养缺陷型诱变选育,筛选出一株具有分支酸-Trp/Phe/Tyr代谢途径L-Phe和 L-Tyr 合成缺陷型和 L-Trp 分解代谢自杀代谢底物抗性的 L-色氨酸高产菌 HX22-118(Phe--Tyr--5FTr-4FPr-SGr);通过连续传代10次

  4. Aerogenic Vaccination With a Burkholderia mallei Auxotroph Protects Against Aerosol-Initiated Glanders in Mice (United States)


    Greenfield RA. Other bacte- rial diseases as a potential consequence of bioterrorism: Q fever, brucellosis , glanders, and melioidosis. J Okla State Med...sheep and goats . Prev Vet Med 1997;31:275–83. 15] Garmory HS, Griffin KF, Brown KA, Titball RW. Oral immunisation with live aroA attenuated Salmonella

  5. Biosynthesis of biotin from dethiobiotin by the biotin auxotroph Lactobacillus plantarum.


    Bowman, W C; DeMoll, E


    Lactobacillus plantarum requires biotin for growth. We show that in the presence of high levels of the biotin biosynthetic precursor, dethiobiotin, L. plantarum synthesizes biotin and grows in medium with dethiobiotin but without biotin. Lactobacillus casei also grew under similar conditions.

  6. Increased resveratrol production in wines using engineered wine strains Saccharomyces cerevisiae EC1118 and relaxed antibiotic or auxotrophic selection. (United States)

    Sun, Ping; Liang, Jing-Long; Kang, Lin-Zhi; Huang, Xiao-Yan; Huang, Jia-Jun; Ye, Zhi-Wei; Guo, Li-Qiong; Lin, Jun-Fang


    Resveratrol is a polyphenolic compound with diverse beneficial effects on human health. Red wine is the major dietary source of resveratrol but the amount that people can obtain from wines is limited. To increase the resveratrol production in wines, two expression vectors carrying 4-coumarate: coenzyme A ligase gene (4CL) from Arabidopsis thaliana and resveratrol synthase gene (RS) from Vitis vinifera were transformed into industrial wine strain Saccharomyces cerevisiae EC1118. When cultured with 1 mM p-coumaric acid, the engineered strains grown with and without the addition of antibiotics produced 8.249 and 3.317 mg/L of trans-resveratrol in the culture broth, respectively. Resveratrol content of the wine fermented with engineered strains was twice higher than that of the control, indicating that our engineered strains could increase the production of resveratrol during wine fermentation.

  7. Study on the Auxotrophic Marker of Pleurotus citrinipileatus%金顶侧耳的营养缺陷标记

    Institute of Scientific and Technical Information of China (English)

    姚方杰; 李玉


    以金顶侧耳(Pleurotus citrinipileatus)JND-020菌株为供试材料,通过对孢子进行紫外诱变,使其发生12种单重营养缺陷突变,获得不同基因型的营养缺陷突变菌株33株,发生1种双重营养缺陷突变,获得双重营养缺陷突变菌株1株,总计34株.

  8. 黑曲霉菌PyrG缺陷株的建立%CONSTRUCTION OF PYRG AUXOTROPHIC Aspergillus niger STRAIN

    Institute of Scientific and Technical Information of China (English)

    刘钟滨; DavidJ.Jeenes; 等


    运用紫外线照射致突变方法建立了黑曲霉菌ATCC 12049,13496和N402等3种菌株的乳清酸核苷-5′-磷酸脱羧酶基因(pyrG)缺陷株.其中ATCC 13496是一种蛋白酶缺陷株.含黑曲霉菌pyrG基因的重组质粒pY 1.2可使它们发生转化,成为Pyr+,转化效率约为8~40转化子/μgDNA.这些pyrG缺陷株将可被用作基因工程的受体菌.

  9. A Simple Laboratory Class Using a "Pseudomonas aeruginosa" Auxotroph to Illustrate UV-Mutagenic Killing, DNA Photorepair and Mutagenic DNA Repair (United States)

    Sobrero, Patricio; Valverde, Claudio


    A simple and cheap laboratory class is proposed to illustrate the lethal effect of UV radiation on bacteria and the operation of different DNA repair mechanisms. The class is divided into two sessions, an initial 3-hour experimental session and a second 2-hour analytical session. The experimental session involves two separate experiments: one…

  10. Induced Mutation Breeding of Gomphidius viscidus Amino Acid Auxotrophic Strain by UV%血红铆钉菇氨基酸缺陷型菌株的紫外诱变选育

    Institute of Scientific and Technical Information of China (English)

    勾丽莉; 李莉; 周建树; 孟庆国; 关艳丽; 赵洁



  11. Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC). (United States)

    Denina, Ilze; Paegle, Longina; Prouza, Marek; Holátko, Jiri; Pátek, Miroslav; Nesvera, Jan; Ruklisha, Maija


    Cell growth limitation is known to be an important condition that enhances L: -valine synthesis in Corynebacterium glutamicum recombinant strains with L: -isoleucine auxotrophy. To identify whether it is the limited availability of L: -isoleucine itself or the L: -isoleucine limitation-induced rel-dependent ppGpp-mediated stringent response that is essential for the enhancement of L: -valine synthesis in growth-limited C. glutamicum cells, we deleted the rel gene, thereby constructing a relaxed (rel (-) ) C. glutamicum DeltailvA DeltapanB Deltarel ilvNM13 (pECKAilvBNC) strain. Variations in enzyme activity and L: -valine synthesis in rel (+) and rel (-) strains under conditions of L: -isoleucine excess and limitation were investigated. A sharp increase in acetohydroxy acid synthase (AHAS) activity, a slight increase in acetohydroxyacid isomeroreductase (AHAIR) activity, and a dramatic increase in L: -valine synthesis were observed in both rel (+) and rel (-) cells exposed to L: -isoleucine limitation. Although the positive effect of induction of the stringent response on AHAS and AHAIR upregulation in cells was not confirmed, we found the stringent response to be beneficial for maintaining increased AHAS, dihydroxyacid dehydratase, and transaminase B activity and L: -valine synthesis in cells during the stationary growth phase.

  12. The Selection of Uracil Auxotroph Strain of Rhodotorula benthica S8 Treated by UV-induced Mutation%紫外诱变筛选海洋红酵母S8的尿嘧啶缺陷型菌株

    Institute of Scientific and Technical Information of China (English)

    王宇光; 雷禄旺; 孙建波; 卢雪花; 夏启玉; 张昕


    本课题组从海南天然海域筛选到一株高产类胡萝卜素的海洋红酵母菌株S8,该菌株对鱼无毒害,并与鱼共生,欲将其应用于盐诱导表达外源蛋白的海洋红酵母工程菌的构建.本研究利用紫外诱变筛选的方法处理S8菌株,通过统计其UV致死率、5-氟乳清酸致死率等筛选S8的尿嘧啶营养缺陷型突变株.研究结果表明,供试菌株通过紫外线诱变、5-氟乳清酸致死和回复突变率的实验筛选,共获得16株稳定的尿嘧啶缺陷型突变株,突变菌株在基本培养基中培养了8 d仍不能生长.选择了其中的一株ST5进行了产胡萝卜素能力的测定,结果表明,在同样的培养条件下,野生型S8菌株细胞生物产量可达87.55 g/L,类胡萝卜素含量可达520μg/g,突变株ST5的细胞生物产量为85.45 g/L,类胡萝卜素含量为512μg/g;ST5的产胡萝卜素能力方面与野生型S8无明显差异.因此,尿嘧啶缺陷型菌株ST5可为下一步海洋红酵母工程菌的构建提供受体菌.

  13. Optimization of selective conditions for the selection of uracil auxotrophs of thermophilic archaea Sulfolobus tokodaii%超嗜热古菌Sulfolobus tokodaii尿嘧啶营养缺陷型筛选条件的最适化及初步筛选

    Institute of Scientific and Technical Information of China (English)

    黄奇洪; 申玉龙; 倪金凤


    超嗜热古菌Sulfolobus tokodaii隶属于古菌中的泉古菌(Crenarchaea),硫化叶菌属(Sulfolobus).野生型S.tokodaii*$尿嘧啶相关基因表达的乳清核苷酸转移酶和乳清苷单磷酸脱羧酶可以将5-氟乳清酸(5-FOA)转化成有毒物质5-氟尿嘧啶核苷酸,导致野生型S.tokodaii无法正常生长.根据此原理,通过对筛选条件如5-FOA的质量浓度、紫外诱变时间等的最适化,运用微生物的自发突变或对其进行紫外照射等诱变方法,初步筛选出S.tokodaii的尿嘧啶营养缺陷型菌株.

  14. Defined medium for Moraxella bovis. (United States)

    Juni, E; Heym, G A


    A defined medium (medium MB) for Moraxella bovis was formulated. Nineteen strains grew well on medium MB. One strain was auxotrophic for asparagine, and another was auxotrophic for methionine. Strains of M. equi and M. lacunata also grew on medium MB. All strains had an absolute requirement for thiamine and were stimulated by or actually required the other growth factors in the medium.

  15. Defined medium for Moraxella bovis.



    A defined medium (medium MB) for Moraxella bovis was formulated. Nineteen strains grew well on medium MB. One strain was auxotrophic for asparagine, and another was auxotrophic for methionine. Strains of M. equi and M. lacunata also grew on medium MB. All strains had an absolute requirement for thiamine and were stimulated by or actually required the other growth factors in the medium.

  16. [Transpon Tn5 mutagenesis in Citrobacter]. (United States)

    Wang, A Q; Yin, P; Chen, X Z


    When E. coli 1830/PJB4JI mating with four Citrobacter strains all were Kanamycin resistant, but a majority of KanrGens transconjugants were obtained from C-3-1. Among 3000 KanrGens 21 were auxotrophs, these are Lys-(1), Ura-(1), Arg-(2), Iso-(2), His-(2), Met-(1), Phe-(1), Tyr-(1), Ser-(1), Thr-(1), Leu-(3), Pro-(1), Ade-(3), Lac-(1), PJB4JI plasmid DNA were detected in parent strain E. coli 1830, but not in auxotrophs strains which carrying Tn5 induced mutations. Twenty auxotrophs chromosome DNA were hybridized with Tn5 DNA labeled with 32P respectively, all auxotrophs has positive reaction. Therefore, we concluded from genetic and physical data that auxotrophs resulted from Tn5 transposition from PJB4JI into C-3-1 chromosome.

  17. Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype. (United States)

    diCenzo, George C; Zamani, Maryam; Cowie, Alison; Finan, Turlough M


    In order to effectively manipulate rhizobium-legume symbioses for our benefit, it is crucial to first gain a complete understanding of the underlying genetics and metabolism. Studies with rhizobium auxotrophs have provided insight into the requirement for amino acid biosynthesis during the symbiosis; however, a paucity of available L-proline auxotrophs has limited our understanding of the role of L-proline biosynthesis. Here, we examined the symbiotic phenotypes of a recently described Sinorhizobium meliloti L-proline auxotroph. Proline auxotrophy was observed to result in a host-plant-specific phenotype. The S. meliloti auxotroph displayed reduced symbiotic capability with alfalfa (Medicago sativa) due to a decrease in nodule mass formed and therefore a reduction in nitrogen fixed per plant. However, the proline auxotroph formed nodules on white sweet clover (Melilotus alba) that failed to fix nitrogen. The rate of white sweet clover nodulation by the auxotroph was slightly delayed, but the final number of nodules per plant was not impacted. Examination of white sweet clover nodules by confocal microscopy and transmission electron microscopy revealed the presence of the S. meliloti proline auxotroph cells within the host legume cells, but few differentiated bacteroids were identified compared with the bacteroid-filled plant cells of WT nodules. Overall, these results indicated that L-proline biosynthesis is a general requirement for a fully effective nitrogen-fixing symbiosis, likely due to a transient requirement during bacteroid differentiation.

  18. Arginine Deiminase Enzyme Evolving As A Potential Antitumor Agent. (United States)

    Somani, Rakesh; Chaskar, Pratip K


    Some melanomas and hepatocellular carcinomas have been shown to be auxotrophic for arginine. Arginine deiminase (ADI), an arginine degrading enzyme isolated from Mycoplasma, can inhibit the growth of these tumors. It is a catabolizing enzyme which catabolizes arginine to citrulline. Tumor cells do not express an enzyme called arginosuccinate synthetase (ASS) and hence, these cells becomes auxotrophic for arginine. It is found that ADI is specific for arginine and did not degrade other amino acid. This review covers various aspects of ADIs like origin, properties and chemical modifications for better antitumor activity.

  19. Cloning and functional expression in Escherichia coli of the gene encoding the di- and tripeptide transport protein of Lactobacillus helveticus

    NARCIS (Netherlands)

    Nakajima, H.; Hagting, A; Kunji, E.R S; Poolman, B.; Konings, W.N


    The gene encoding the di- and tripeptide transport protein (DtpT) of Lactobacillus helveticus (DtpT(LH)) was cloned with the aid of the inverse PCR technique and used to complement the dipeptide transport-deficient and proline-auxotrophic Escherichia coil E1772. Functional expression of the peptide

  20. Development of new USER-based cloning vectors for multiple genes expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg; Maury, Jerome;


    auxotrophic and dominant markers for convenience of use. Our vector set also contains both integrating and multicopy vectors for stability of protein expression and high expression level. We will make the new vector system available to the yeast community and provide a comprehensive protocol for cloning...

  1. Direct mating between diploid sake strains of Saccharomyces cerevisiae. (United States)

    Hashimoto, Shinji; Aritomi, Kazuo; Minohara, Takafumi; Nishizawa, Yoshinori; Hoshida, Hisashi; Kashiwagi, Susumu; Akada, Rinji


    Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATalpha mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.

  2. Fragility of the permeability barrier of Escherichia coli

    NARCIS (Netherlands)

    Haest, C.W.M.; Gier, J. de; Es, G.A. van; Verkleij, A.J.; Deenen, L.L.M. van


    An unsaturated fatty acid requiring auxotroph of Escherichia coli was grown with addition of various unsaturated fatty acids. The permeability of the cells for erythritol appeared to be strongly dependent on the fatty acid incorporated in the membrane lipid. Below certain temperatures, depending on

  3. Screening of Trichoderna harzianum mutants tolerant to carbendazim and UV-light

    Institute of Scientific and Technical Information of China (English)

    LU Hai-ju; ZHANG Yun-xiang; LIU Yun-long


    @@ After comparison of Trichoderma popultion density and test of colonization ability in rhizospheres were conducted.Auxotrophic mutants of T.harzianum tolernt to carbendazim and UV-light were obtained by UV-light mutagenesis and carbendazim stress on PDA medium and a basis medium with hot pepper root exudation by adding the fungicide.

  4. Quantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Færgeman, Nils J.


    in the nematode Caenorhabditis elegans. We have recently shown that C. elegans can be completely labeled with heavy-labeled lysine by feeding worms on prelabeled lysine auxotroph Escherichia coli for just one generation. We applied this methodology to examine the organismal response to functional loss or RNAi...... gene knockdown by RNAi provides a powerful tool with broad implications for C. elegans biology....

  5. Isolation, characterization and long term preservation of mutant strains of Xanthophyllomyces dendrorhous. (United States)

    Baeza, Marcelo; Retamales, Patricio; Sepúlveda, Dionisia; Lodato, Patricia; Jiménez, Antonio; Cifuentes, Víctor


    The yeast Xanthophyllomyces dendrorhous is biotechnologically important due to its ability to produce the pigment astaxanthin, but is poorly understood at the genetic level. This is mainly because its preservation is difficult and many of the mutants obtained are unstable. The objectives of the present work were (i) the mutagenesis X. dendrorhous and, (ii) isolation of mutants with auxotrophic markers suitable for genetic studies of the carotenogenesis pathway and sexual cycle. Additionally, two kinds of preservation methods at the laboratory level were tested for the storage of strains. A collection of X. dendrorhous mutants affected in the production of carotenoid pigments or development of sexual structures and auxotrophic requirements were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine and the antibiotic nystatin. From a detailed analysis about the requirements of auxotrophic mutants the ARG7, ARG3 and PRO3 loci can be defined in this yeast. Among the methods assayed for the long-term preservation of X. dendrorhous strains, the dehydrated gelatin drop method showed the highest recovery of viable yeast after storage for 65 months. No changes in auxotrophic properties and in macro or micro morphology were observed after applying the latter method.

  6. Radiation-induced mutagenicity and lethality in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Isildar, M.; Bakale, G.


    The mutagenic and lethal effects of ionizing radiation on histidine-deficient auxotrophs of Salmonella typhimurium were studied to improve the understanding of radiation damage to DNA. The auxotrophs were divided into two groups - one which is sensitive to base-pair substitutions and another sensitive to frameshifts. These groups were composed of parent-daughter pairs in which the chemical mutagenicity enhancing plasmid, pKM101, is absent in the parent strain and present in the daughter. Co-60 ..gamma..-radiation and 250 kV x-rays were used to irradiate the bacteria. Irradiation of the frameshift - sensitive strains which carry the pKm101 plasmid doubled the absolute number of induced revertants whereas irradiation of the base-pair substitution sensitive strain which also carries the pKm101 plasmid produced nearly no change in the number of induced revertants. A nearly negligible effect on the mutation rate was observed for all parent strains. (ACR)

  7. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius. (United States)

    Reilly, Michelle S; Grogan, Dennis W


    To investigate the generality of efficient double-strand break repair and damage-induced mutagenesis in hyperthermophilic archaea, we systematically measured the effects of five DNA-damaging agents on Sulfolobus acidocaldarius and compared the results to those obtained for Escherichia coli under corresponding conditions. The observed lethality of gamma-radiation was very similar for S. acidocaldarius and E. coli, arguing against unusually efficient double-strand break repair in S. acidocaldarius. In addition, DNA-strand-breaking agents (gamma-radiation or bleomycin), as well as DNA-cross-linking agents (mechlorethamine, butadiene diepoxide or cisplatin) stimulated forward mutation, reverse mutation, and formation of recombinants via conjugation in Sulfolobus cells. Although two of the five DNA-damaging agents failed to revert the E. coli auxotrophs under these conditions, all five reverted S. acidocaldarius auxotrophs.

  8. Genetic analysis of methylotrophic yeast Candida boidinii PLD1. (United States)

    Lahtchev, K; Penkova, R; Ivanova, V; Tuneva, D


    This paper reports the initial experiments for genetic analysis of the haploid methylotrophic yeast Candida boidinii PLD1. The collection of multiply marked auxotrophic mutants was obtained after treatment with UV-light or X-rays. Protoplasts from several mutants were fused by the PEG-CA2+ technique and five prototrophic hybrids were isolated. The genetic structure of the hybrids was studied by means of spontaneous and induced mitotic segregation. Our data suggest that hybrids are diploids, heterozygous by parental auxotrophic markers. We obtained genetic linkage between mutations lys2-8-met-3 from one hand and ade-17-arg-24 from the other. The genetic maps constructed showed similar characteristics concerning both the order of the markers and their map distances.

  9. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase


    Bowles, Tawnya L.; Kim, Randie; Galante, Joseph; Parsons, Colin M.; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J.


    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is under-expressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers ha...

  10. The SAGA histone acetyltransferase complex regulates leucine uptake through the Agp3 permease in fission yeast. (United States)

    Takahashi, Hidekazu; Sun, Xiaoying; Hamamoto, Makiko; Yashiroda, Yoko; Yoshida, Minoru


    Metabolic responses of unicellular organisms are mostly acute, transient, and cell-autonomous. Regulation of nutrient uptake in yeast is one such rapid response. High quality nitrogen sources such as NH(4)(+) inhibit uptake of poor nitrogen sources, such as amino acids. Both transcriptional and posttranscriptional mechanisms operate in nutrient uptake regulation; however, many components of this system remain uncharacterized in the fission yeast, Schizosaccharomyces pombe. Here, we demonstrate that the Spt-Ada-Gcn acetyltransferase (SAGA) complex modulates leucine uptake. Initially, we noticed that a branched-chain amino acid auxotroph exhibits a peculiar adaptive growth phenotype on solid minimal media containing certain nitrogen sources. In fact, the growth of many auxotrophic strains is inhibited by excess NH(4)Cl, possibly through nitrogen-mediated uptake inhibition of the corresponding nutrients. Surprisingly, DNA microarray analysis revealed that the transcriptional reprogramming during the adaptation of the branched-chain amino acid auxotroph was highly correlated with reprogramming observed in deletions of the SAGA histone acetyltransferase module genes. Deletion of gcn5(+) increased leucine uptake in the prototrophic background and rendered the leucine auxotroph resistant to NH(4)Cl. Deletion of tra1(+) caused the opposite phenotypes. The increase in leucine uptake in the gcn5Δ mutant was dependent on an amino acid permease gene, SPCC965.11c(+). The closest budding yeast homolog of this permease is a relatively nonspecific amino acid permease AGP3, which functions in poor nutrient conditions. Our analysis identified the regulation of nutrient uptake as a physiological function for the SAGA complex, providing a potential link between cellular metabolism and chromatin regulation.

  11. Enterococcus faecium small colony variant endocarditis in an immunocompetent patient

    Directory of Open Access Journals (Sweden)

    S. Hernández Egido


    Full Text Available Small colony variants (SCV are slow-growing subpopulations of bacteria usually associated with auxotrophism, causing persistent or recurrent infections. Enterococcus faecalis SCV have been seldom described, and only one case of Enterococcus faecium SCV has been reported, associated with sepsis in a leukaemia patient. Here we report the first case described of bacteraemia and endocarditis by SCV E. faecium in an immunocompetent patient.

  12. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.



    Hayashi, Katsuhiro; Ming ZHAO; Yamauchi, Kensuke; Yamamoto, Norio; Tsuchiya, Hiroyuki; Tomita, Katsuro; Hoffman, Robert M.


    Cancer metastasis is the life-threatening aspect of cancer and is usually resistant to standard treatment. We report here a targeted therapy strategy for cancer metastasis using a modified strain of Salmonella typhimurium. The genetically modified strain of S. typhimurium is auxotrophic for the amino acids arginine and leucine. These mutations preclude growth in normal tissue but do not reduce bacterial virulence in tumor cells. The tumor-targeting strain of S. typhimurium, termed A1-R and ex...

  14. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae.


    Lewis, T A; Taylor, F R; Parks, L W


    Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth o...

  15. Efecto de la cafeína sobre las lesiones inducidas por nitrosoguanidina y luz ultravioleta en Phycomyces blakesleeanus


    Díaz Minguez, J. M.; Iturriaga, E A; Eslava, A. P.


    [EN] Caffeine, a regular component of the diet for most people, enhances the lethal and mutagenic effects of various DNA-damaging agents in many prokaryote and eukaryote organismm. A wild type strain and two auxotrophic strains of the zygomycete Phycomyces blakesleeanus were tested for enhancement of UV-inactivation and MNNG-inactivation and mutagenesis by caffeine in growth medium. Results show that caffeine interferes with a non light-dependent DNA repair mechanism, presumably a recombinati...

  16. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast


    Xiaoying Sun; Go Hirai; Masashi Ueki; Hiroshi Hirota; Qianqian Wang; Yayoi Hongo; Takemichi Nakamura; Yuki Hitora; Hidekazu Takahashi; Mikiko Sodeoka; Hiroyuki Osada; Makiko Hamamoto; Minoru Yoshida; Yoko Yashiroda


    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4 + and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies...

  17. Pigment and Virulence Deficiencies Associated with Mutations in the aroE Gene of Xanthomonas oryzae pv. oryzae



    Xanthomonadins are yellow, membrane-bound pigments produced by members of the genus Xanthomonas. We identified an ethyl methanesulfonate-induced Xanthomonas oryzae pv. oryzae mutant (BXO65) that is deficient for xanthomonadin production and virulence on rice, as well as auxotrophic for aromatic amino acids (Pig− Vir− Aro−). Reversion analysis indicated that these multiple phenotypes are due to a single mutation. A genomic library of the wild-type strain was used to isolate a 7.0-kb clone that...

  18. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A. (United States)

    Kokina, Agnese; Kibilds, Juris; Liepins, Janis


    Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.

  19. Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin. (United States)

    Sanjuán-Pinilla, Julio M; Muñoz, Socorro; Nogales, Joaquina; Olivares, José; Sanjuán, Juan


    The role of leucine biosynthesis by Sinorhizobium meliloti in the establishment of nitrogen-fixing symbiosis with alfalfa ( Medicago sativa) was investigated. The leuA gene from S. meliloti, encoding alpha-isopropylmalate synthase, which catalyses the first specific step in the leucine biosynthetic pathway, was characterized. S. melilotiLeuA(-) mutants were Leu auxotrophs and lacked alpha-isopropylmalate synthase activity. In addition, leuA auxotrophs were unable to nodulate alfalfa. Alfalfa roots did not seem to secrete enough leucine to support growth of leucine auxotrophs in the rhizosphere. Thus, this growth limitation probably imposes the inability to initiate symbiosis. However, in addition to the leucine auxotrophy, leuA strains were impaired in activation of nodulation genes by the transcriptional activator NodD1 in response to the plant flavone luteolin. By contrast, nod gene activation by NodD3, which does not involve plant-derived inducers, was unaffected. Our results suggest that a leucine-related metabolic intermediate may be involved in activation of nodulation genes by NodD1 and luteolin. This kind of control could be of relevance as a way to link bacterial physiological status to the response to plant signals and initiation of symbiosis.

  20. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes


    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  1. De Novo Proteins with Life-Sustaining Functions Are Structurally Dynamic. (United States)

    Murphy, Grant S; Greisman, Jack B; Hecht, Michael H


    Designing and producing novel proteins that fold into stable structures and provide essential biological functions are key goals in synthetic biology. In initial steps toward achieving these goals, we constructed a combinatorial library of de novo proteins designed to fold into 4-helix bundles. As described previously, screening this library for sequences that function in vivo to rescue conditionally lethal mutants of Escherichia coli (auxotrophs) yielded several de novo sequences, termed SynRescue proteins, which rescued four different E. coli auxotrophs. In an effort to understand the structural requirements necessary for auxotroph rescue, we investigated the biophysical properties of the SynRescue proteins, using both computational and experimental approaches. Results from circular dichroism, size-exclusion chromatography, and NMR demonstrate that the SynRescue proteins are α-helical and relatively stable. Surprisingly, however, they do not form well-ordered structures. Instead, they form dynamic structures that fluctuate between monomeric and dimeric states. These findings show that a well-ordered structure is not a prerequisite for life-sustaining functions, and suggests that dynamic structures may have been important in the early evolution of protein function.

  2. 多倍体啤酒酵母URA3基因的失活与恢复%Inactivation and Recovery of URA3 Gene of Polyploid Brewer's Yeast

    Institute of Scientific and Technical Information of China (English)

    许海艳; 赵丽彬; 董健; 肖冬光


    Polyploid brewer's yeast strain S6 was used as the starting strain to construct uracil auxotrophic strain S6-△U through gene homologous recombination, which could be used as a genetic marker. Then uracil auxotrophic strain S6-△U was restored to original strain and named strain S6'. The growth of strain S6, strain S6-△U and strain S6' was compared and the results suggested that the mutation of URA3 gene would not re-duce the growth of the strain. Accordingly, a method for rapid preparation of auxotrophic brewer's strains had been established in this study.%以多倍体啤酒酵母菌株S6作为出发菌株,利用同源重组的方法构建了尿嘧啶营养缺陷型啤酒酵母菌株S6-△U,使之用于遗传标记,并把缺陷型菌株恢复成原营养型S6'。同时对出发菌株S6,缺陷型菌株S6-△U和恢复后的菌株S6'的生长状况进行比较。结果表明,URA 3点突变并没有弱化菌株的生长状况。从而建立一种快速获得缺陷型啤酒酵母菌株的方法。

  3. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears. (United States)

    Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W


    Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.

  4. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T


    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  5. Isolation of recombinant strains with enhanced pectinase production by protoplast fusion between Penicillium expansum and Penicillium griseoroseum Isolamento de linhagens recombinantes com maior produção de pectinases por meio de fusão de protoplastos entre Penicillium expansum e Penicillium griseoroseum

    Directory of Open Access Journals (Sweden)

    Maurilio Antonio Varavallo


    Full Text Available Protoplast fusion between complementary auxotrophic and morphological mutant strains of Penicillium griseoroseum and P. expansum was induced by polyethylene glycol and calcium ions (Ca2+. Fusant strains were obtained in minimal medium and a prototrophic strain, possibly diploid, was chosen for haplodization with the fungicide benomyl. Different recombinant strains were isolated and characterized for occurrence of auxotrophic mutations and pectinolytic enzyme production. The fusant prototrophic did not present higher pectinase production than the parental strains, but among 29 recombinants analyzed, four presented enhanced enzyme activities. The recombinant RGE27, which possesses the same auxotrophic and morphologic mutations as the P. griseoroseum parental strain, presented a considerable increase in polygalacturonase (3-fold and pectin lyase production (1.2-fold.Fusões de protoplastos entre linhagens mutantes auxotróficas e morfológicas complementares de Penicillium griseoroseum e P. expansum foram induzidas por polietilenoglicol e íons cálcio (Ca2+. Fusionantes foram obtidos em meio mínimo e uma linhagem prototrófica, possivelmente diplóide, foi selecionada para a haploidização com o fungicida benomil. Diferentes linhagens recombinantes foram isoladas e caracterizadas quanto à presença de mutações auxotróficas e a produção de enzimas pectinolíticas. O fusionante prototrófico não apresentou maior atividade de pectinases em relação às linhagens parentais, entretanto, entre 29 recombinantes analisados, quatro apresentaram maiores atividades enzimáticas. O recombinante RGE27, o qual possui as mesmas mutações auxotróficas e morfológicas que a linhagem parental de P. griseoroseum, apresentou um aumento considerável na produção de poligalacturonase (3 vezes e de pectina liase (1,2 vezes.

  6. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph). (United States)

    Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada


    To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph).

  7. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Egebo, L A; Nielsen, S V; Jochimsen, B U


    addition of the substrates for induction and is oxygen dependent. The highest activity is obtained when the concentration of inducer is 0.2 mM. Spectrophotometric data are consistent with the suggestion that the indole ring is broken during degradation of IAA. We hypothesize that the enzyme catalyzes...... an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  8. Oxidative refolding from inclusion bodies. (United States)

    Nelson, Christopher A; Lee, Chung A; Fremont, Daved H


    This protocol describes the growth and purification of bacterial inclusion body proteins with an option to selenomethionine label the targeted protein through feedback inhibition of methionine biosynthesis in common (non-auxotrophic) strains of E. coli. The method includes solubilization of inclusion body proteins by chemical denaturation and disulfide reduction, renaturation of the solubilized material through rapid dilution by pulsed injection into refolding buffer containing arginine and a mixture of oxidized and reduced glutathione, recovery of the recombinant protein using a stirred cell concentrator, and removal of the aggregated or misfolded fraction by passage over size-exclusion chromatography. The quality of the resulting protein can be assessed by SDS-PAGE.

  9. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per


    From an Escherichia coli purine auxotroph a mutant defective in phosphoribosylpyrophosphate (PRib-PP) synthetase has been isolated and partially characterized. In contrast to the parental strain, the mutant was able to grow on nucleosides as purine source, whereas growth on purine bases was reduced......, stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib...

  10. Inositol-Limited Growth, Repair, and Translocation in an Inositol-Requiring Mutant of Neurospora crassa


    Hanson, Barbara A.


    The biochemical consequences of inositol limitation in an inositol auxotroph of Neurospora crassa have been examined as a means of disclosing the cellular role of inositol. The cellular levels of inositol in the inl mutant were proportional to the concentration of inositol in the growth medium whereas inositol phosphate levels remained relatively constant at about 0.1 μmol/g (dry weight). After 72 h of growth, about 57-fold more protein per milligram (dry weight) was released by the mutant gr...

  11. [Physiological function in Torulopsis glabrata--a review]. (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming


    A multi-vitamin auxotrophic yeast of Torulopsis glabrata was the most competitive strain for industrial production of pyruvate. Given its genomic characterizations and physiological functions, it was an efficient way to redirect carbon flux to the target metabolites through manipulating nutritional and environmental conditions, intracellular cofactor form and level. In this review, we summarized the progress on the elucidation and manipulation of physiological function of T. glabrata. Furthermore, we also evaluated the potential of T. glabrata as cell factory for production of fine chemicals.

  12. Characterization of the Genetic System of the Xylose-Fermenting Yeast Pichia stipitis (United States)

    Melake; Passoth; Klinner


    High mutant frequencies indicated that the wild-type strains of Pichia stipitis are haploid. Sporulation ability of these clones pointed to a homothallic life cycle. Mating was induced by cultivation under nutritionally poor conditions on malt extract medium. Conjugation was followed immediately by sporulation. However, hybrids could be rescued by transferring the nascent zygotes to complete medium before meiosis had started. Under rich nutritional conditions, hybrids were mitotically stable and did not sporulate. The segregation pattern of auxotrophic markers of diploid zygotes indicated regular meiosis, although asci contained preferentially spore dyads.

  13. Transduction in Streptomyces hygroscopicus mediated by the temperate bacteriophage SH10. (United States)

    Süss, F; Klaus, S


    The temperate actinophage SH10 mediates generalized transduction in Streptomyces hygroscopicus at low frequency. The efficiency of transduction depends on the average phage input, age of outgrowing spores of the recipient and on the selective marker. The highest EOT was found for the auxotrophic mutants 21(phe-) and 5(try-) (4.2 x 10(-6) and 2.7 x 10(-6), respectively). Transduction of the thermosensitive mutant NG14-216 ts 35 was two orders of magnitude lower (2.5 x 10(-8)). The transductant colonies segregated into stable and unstable clones. Stable transductants were never found to be lysogenic for phage SH10.

  14. Production of Metabolites

    DEFF Research Database (Denmark)


    A recombinant micro-organism such as Saccharomyces cerevisiae which produces and excretes into culture medium a stilbenoid metabolite product when grown under stilbenoid production conditions, which expresses in above native levels a ABC transporter which transports said stilbenoid out of said...... micro-organism cells to the culture medium. The genome of the Saccharomyces cerevisiae produces an auxotrophic phenotype which is compensated by a plasmid which also expresses one or more of said enzymes constituting said metabolic pathway producing said stilbenoid, an expression product of the plasmid...

  15. Overview of the genetic tools in the Archaea

    Directory of Open Access Journals (Sweden)

    Haruyuki eAtomi


    Full Text Available This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.

  16. Characteristics of sterol uptake in Saccharomyces cerevisiae.


    Lorenz, R T; Rodriguez, R J; Lewis, T A; Parks, L W


    A Saccharomyces cerevisiae sterol auxotroph, FY3 (alpha hem1 erg7 ura), was used to probe the characteristics of sterol uptake in S. cerevisiae. The steady-state cellular concentration of free sterol at the late exponential phase of growth could be adjusted within a 10-fold range by varying the concentration of exogenously supplied sterol. When cultured on 1 microgram of sterol ml-1, the cells contained a minimal cellular free-cholesterol concentration of 0.85 nmol/mg (dry weight) and were te...

  17. Preparação de copolímeros à base de 2-vinilpiridina com propriedades bactericidas

    Directory of Open Access Journals (Sweden)

    Aline S. S. Valle


    Full Text Available We report the development of two copolymers based on 2-vinylpyridine, styrene and divinylbenzene (2Vpy-Sty-DVB with different porosity degrees. The copolymers were subsequently quaternized with methyl iodide. To prepare charge transfer complexes, the unmodified copolymers and their derivatives quaternized with methyl iodine were impregnated with iodine. The antibacterial properties of the polymers were evaluated in dilutions ranging from 10² to 10(7 cells/mL of the auxotrophic OHd5-K12 Escherichia coli strain. It was possible to obtain materials with complete antibacterial activity even in the highest cell concentrations tested.

  18. Identification of novel protein functions and signaling mechanisms by genetics and quantitative phosphoproteomics in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Møller-Jensen, Jakob;


    knockdown by feeding the nematode on pre-labeled lysine auxotroph Escherichia coli. In this chapter, we describe in details the generation of the E. coli strain, incorporation of heavy isotope-labeled lysine in C. elegans, and the procedure for a comprehensive global phosphoproteomic experiment.......Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology for measuring relative changes in protein and phosphorylation levels at a global level. We have applied this method to the model organism Caenorhabditis elegans in combination with RNAi-mediated gene...

  19. Construction of Yeast Vectors with Resistance to Geneticin

    Institute of Scientific and Technical Information of China (English)

    林会兰; 张广; 周全; 陈国强


    Two Escherichia coli-Saccharomyces cerevisiae shuttle vectors containing a resistance marker to geneticin (G418) are constructed. Both vectors contain a kanamycin-resistant marker (KanMX4) module coding aminoglycoside 3'-phosphotransferase (APH) that renders E. coli resistant to kanamycin and S. cerevisiae to geneticin. These vectors overcome the shortage of the conventional yeast vectors bearing HIS3, TRP1, LEU2, and URA3 modules as selection markers, which require hosts to be auxotrophic. Green fluorescent protein (GFP) is used as the reporter to examine the functions of the vectors. The vectors are powerful tools for the convenient cloning and controlled expression of genes in most S. cerevisiae strains.

  20. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.


    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  1. Characterization of Halomonas Varabilis Strain HTG7 Conferring Glyphosate Resistance

    Institute of Scientific and Technical Information of China (English)

    Liu Zhu(刘柱); Liang Aimin; Ping Shuzhen; Zhang Wei; Chen Ming; Yang Zhirong; Lin Min


    Bcterial strain HTG7 is isolated from extremely glyphosate-polluted soil. It is identified as Halomonas Varabilis. It can tolerate in 500 m mol/L glyphosate concentration. Physiological characterization of strain HTG7 shows that the optimum pH and temperature are 7.0 and 30℃, respectively. It grows well in the NaCl concentrations ranging from 0% to 10%. A plasmid pACYC184 carrying a 3.5 kb DNA fragment, which confers increased glyphosate tolerance, is cloned. The DNA fragment is able to complement with an E.coli auxotrophic aroA mutant.

  2. Trypanosoma cruzi Coexpressing Ornithine Decarboxylase and Green Fluorescence Proteins as a Tool to Study the Role of Polyamines in Chagas Disease Pathology

    Directory of Open Access Journals (Sweden)

    Jeremías José Barclay


    Full Text Available Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP and a heterologous ornithine decarboxylase (ODC, used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.

  3. Phenotypic mutants of the intracellular actinomycete Rhodococcus equi created by in vivo Himar1 transposon mutagenesis. (United States)

    Ashour, Joseph; Hondalus, Mary K


    Rhodococcus equi is a facultative intracellular opportunistic pathogen of immunocompromised people and a major cause of pneumonia in young horses. An effective live attenuated vaccine would be extremely useful in the prevention of R. equi disease in horses. Toward that end, we have developed an efficient transposon mutagenesis system that makes use of a Himar1 minitransposon delivered by a conditionally replicating plasmid for construction of R. equi mutants. We show that Himar1 transposition in R. equi is random and needs no apparent consensus sequence beyond the required TA dinucleotide. The diversity of the transposon library was demonstrated by the ease with which we were able to screen for auxotrophs and mutants with pigmentation and capsular phenotypes. One of the pigmentation mutants contained an insertion in a gene encoding phytoene desaturase, an enzyme of carotenoid biosynthesis, the pathway necessary for production of the characteristic salmon color of R. equi. We identified an auxotrophic mutant with a transposon insertion in the gene encoding a putative dual-functioning GTP cyclohydrolase II-3,4-dihydroxy-2-butanone-4-phosphate synthase, an enzyme essential for riboflavin biosynthesis. This mutant cannot grow in minimal medium in the absence of riboflavin supplementation. Experimental murine infection studies showed that, in contrast to wild-type R. equi, the riboflavin-requiring mutant is attenuated because it is unable to replicate in vivo. The mutagenesis methodology we have developed will allow the characterization of R. equi virulence mechanisms and the creation of other attenuated strains with vaccine potential.

  4. Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. (United States)

    Willett, Christopher S; Burton, Ronald S


    Diverse organisms regulate concentrations of intracellular organic osmolytes in response to changes in environmental salinity or desiccation. In marine crustaceans, accumulation of high concentrations of proline is a dominant component of response to hyperosmotic stress. In the euryhaline copepod Tigriopus californicus, synthesis of proline from its metabolic precursor glutamate is tightly regulated by changes in environmental salinity. Here, for the first time in a marine invertebrate, the genes responsible for this pathway have been cloned and characterized. The two proteins display the sequence features of homologous enzymes identified from other eukaryotes. One of the cloned genes, delta1-pyrroline-5-carboxylase reductase (P5CR), is demonstrated to have the reductase enzyme activity when expressed in proline-auxotroph bacteria, while the second, delta1-pyrroline-5-carboxylase synthase (P5CS), does not rescue proline-auxotroph bacteria. In contrast to results from higher plants, neither levels of P5CS nor P5CR mRNAs increase in response to salinity stress in T. californicus. Hence, regulation of proline synthesis during osmotic stress in T. californicus is likely mediated by some form of post-transcriptional regulation of either P5CS or P5CR. Understanding the regulation this pathway may elucidate the mechanisms limiting the salinity ranges of marine taxa.

  5. Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Mülleder


    Full Text Available Auxotrophic markers are useful tools in cloning and genome editing, enable a large spectrum of genetic techniques, as well as facilitate the study of metabolite exchange interactions in microbial communities. If unused background auxotrophies are left uncomplemented however, yeast cells need to be grown in nutrient supplemented or rich growth media compositions, which precludes the analysis of biosynthetic metabolism, and which leads to a profound impact on physiology and gene expression. Here we present a series of 23 centromeric plasmids designed to restore prototrophy in typical Saccharomyces cerevisiae laboratory strains. The 23 single-copy plasmids complement for deficiencies in HIS3, LEU2, URA3, MET17 or LYS2 genes and in their combinations, to match the auxotrophic background of the popular functional-genomic yeast libraries that are based on the S288c strain. The plasmids are further suitable for designing self-establishing metabolically cooperating (SeMeCo communities, and possess a uniform multiple cloning site to exploit multiple parallel selection markers in protein expression experiments.

  6. Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii. (United States)

    Silva, Rui; Aguiar, Tatiana Q; Domingues, Lucília


    The Ashbya gossypii riboflavin biosynthetic pathway and its connection with the purine pathway have been well studied. However, the outcome of genetic alterations in the pyrimidine pathway on riboflavin production by A. gossypii had not yet been assessed. Here, we report that the blockage of the de novo pyrimidine biosynthetic pathway in the recently generated A. gossypii Agura3 uridine/uracil auxotrophic strain led to improved riboflavin production on standard agar-solidified complex medium. When extra uridine/uracil was supplied, the production of riboflavin by this auxotroph was repressed. High concentrations of uracil hampered this (and the parent) strain growth, whereas excess uridine favored the A. gossypii Agura3 growth. Considering that the riboflavin and the pyrimidine pathways share the same precursors and that riboflavin overproduction may be triggered by nutritional stress, we suggest that overproduction of riboflavin by the A. gossypii Agura3 may occur as an outcome of a nutritional stress response and/or of an increased availability in precursors for riboflavin biosynthesis, due to their reduced consumption by the pyrimidine pathway.

  7. Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Carmine; Paciello, Lucia [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy); Alteriis, Elisabetta de [Dept. Biologia Strutturale e Funzionale, Universita degli Studi di Napoli ' Federico II' , Via Cinthia, 80100 Napoli (Italy); Brambilla, Luca [Dept. Biotecnologie e Bioscienze, Universita Milano-Bicocca, Piazza della Scienza, 20126 Milano (Italy); Parascandola, Palma, E-mail: [Dept. Ingegneria Industriale, Universita di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno (Italy)


    Highlights: Black-Right-Pointing-Pointer The paper contributes to fill the gap existing between the basic and applied research. Black-Right-Pointing-Pointer Mathematical model sheds light on the physiology of auxotrophic yeast strains. Black-Right-Pointing-Pointer Yeast behavior in fed-batch is influenced by biological and environmental determinants. Black-Right-Pointing-Pointer Process optimization would make possible the production of heterologous proteins which are not yet on the market. -- Abstract: A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae, one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance.

  8. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum. (United States)

    Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong


    In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum.

  9. The function of the three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans. (United States)

    Jiang, Ping; Wei, Wen-Fan; Zhong, Guo-Wei; Zhou, Xiao-Gang; Qiao, Wei-Ran; Fisher, Reinhard; Lu, Ling


    Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and AnprsC are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.

  10. The function of the three phosphoribosyl-pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans. (United States)

    Jiang, Ping; Wei, Wen-Fan; Zhong, Guo-Wei; Zhou, Xiao-Gang; Qiao, Wei-Ran; Lu, Ling


    Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyzes the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total PRPP synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthase-homologous genes (AnprsA, B, and C), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, B and C are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time-point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.

  11. Cloning of Bacillus subtilis leucina A, B and C genes with Escherichia coli plasmids and expression of the leuC gene in E. coli. (United States)

    Nagahari, K; Sakaguchi, K


    The leucine genes of Bacillus subtilis have been cloned directly from the chromosomal DNA into Escherichia coli leuB cells by selection for the Leu+ phenotype using RSF2124 as a vector plasmid. The hybrid plasmid designated RSF2124-B.leu contained a 4.2 megadalton fragment derived from B. subtilis DNA, including the leu genes. The fragment had one site susceptible to EcoRI* and another site susceptible to BamNI endonuclease. Among the three fragments produced by EcoRI* and BamNI endonucleases, the 1.2 megadalton fragment had the ability to transform B. subtilis leuA, leuB and leuC auxotrophs to leu+. However, B. subtilis ilvB and ilvc auxotrophs were not rescued even by the whole 4.2 megadalton fragment present in the hybrid plasmid. beta-Isopropylmalate dehydrogenase (leuB gene product) activity found in E. coli cells containing the hybrid plasmid was about 60% of that in E. coli wild type cells, despite the high copy number (7.8) of the plasmid per chromosome observed.

  12. Insights into the modulation of optimum pH by a single histidine residue in arginine deiminase from Pseudomonas aeruginosa. (United States)

    Ding, Hanjing; Liu, Hui; Yin, Yan; Ding, Ying; Jia, Yan; Chen, Qingming; Zou, Guolin; Zheng, Zhongliang


    Arginine deiminase (ADI) is a potential antitumor agent for the arginine deprivation treatment of L-arginine auxotrophic tumors. The optimum pH of ADI varies significantly, yet little is known about the origin of this variety. Here, Pseudomonas aeruginosa ADI (PaADI), an enzyme that functions only at acidic pH, was utilized as the model system. The results of UV-pH titration imply that the nucleophilic Cys406 thiol group is protonated in the resting state. The H405R single mutation resulted in an altered pH optimum (from pH 5.5 to 6.5), an increased k(cat) (from 9.8 s(-1) to 101.7 s(-1) at pH 6.5), and a shifted pH rate dependence (ascending limb pK(a) from 3.6 to 4.4). Other mutants were constructed to investigate the effects of hydrogen bonding, charge distribution, and hydrophobicity on the properties of the enzyme. The pH optima of His405 mutants were all shifted to a relatively neutral pH except for the H405E mutant. The results of kinetic characterizations and molecular dynamic simulations revealed that the active site hydrogen bonding network involving Asp280 and His405 plays an important role in controlling the dependence of PaADI activity on pH. Moreover, the H405R variant showed increased cytotoxicity towards arginine auxotrophic cancer cell lines.

  13. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Sebastian Germerodt


    Full Text Available Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability, we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters' periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations.

  14. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440. (United States)

    Molina-Henares, M Antonia; García-Salamanca, Adela; Molina-Henares, A Jesús; de la Torre, Jesús; Herrera, M Carmen; Ramos, Juan L; Duque, Estrella


    Pseudomonas putida KT2440 is a non-pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini-Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene-encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB-like genes are present in the host chromosome.

  15. Extreme nuclear disproportion and constancy of enzyme activity in a heterokaryon of Neurospora crassa

    Indian Academy of Sciences (India)

    Kandasamy Pitchaimani; Ramesh Maheshwari


    Heterokaryons of Neurospora crassa were generated by transformation of multinucleate conidia of a histidine-3 auxotroph with his-3+ plasmid. In one of the transformants, propagated on a medium with histidine supplementation, a gradual but drastic reduction occurred in the proportion of prototrophic nuclei that contained an ectopically integrated his-3+ allele. This response was specific to histidine. The reduction in prototrophic nuclei was confirmed by several criteria: inoculum size test, hyphal tip analysis, genomic Southern analysis, and by visual change in colour of the transformant incorporating genetic colour markers. Construction and analyses of three-component heterokaryons revealed that the change in nuclear ratio resulted from interaction of auxotrophic nucleus with prototrophic nucleus that contained an ectopically integrated his-3+ gene, but not with prototrophic nucleus that contained his-3+ gene at the normal chromosomal location. The growth rate of heterokaryons and the activity of histidinol dehydrogenase—the protein encoded by the his-3+ gene—remained unchanged despite prototrophic nuclei becoming very scarce. The results suggest that not all nuclei in the coenocytic fungal mycelium may be active simultaneously, the rare active nuclei being sufficient to confer the wild-type phenotype.

  16. Molecular Characterization of Heterologous HIV-1gp120 Gene Expression Disruption in Mycobacterium bovis BCG Host Strain: A Critical Issue for Engineering Mycobacterial Based-Vaccine Vectors

    Directory of Open Access Journals (Sweden)

    Joan Joseph


    Full Text Available Mycobacterium bovis Bacillus Calmette-Guérin (BCG as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261 and Mycobacteria spp. α-antigen promoter (in plasmid pJH222. Among 14 rBCG:HIV-1gp120 (pMV261 colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222 colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.

  17. Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yo Maruyama

    Full Text Available The chronological lifespan of Saccharomyces cerevisiae represents the duration of cell survival in the postdiauxic and stationary phases. Using a prototrophic strain derived from the standard auxotrophic laboratory strain BY4742, we showed that supplementation of non-essential amino acids to a synthetic defined (SD medium increases maximal cell growth and extends the chronological lifespan. The positive effects of amino acids can be reproduced by modulating the medium pH, indicating that amino acids contribute to chronological longevity in a cell-extrinsic manner by alleviating medium acidification. In addition, we showed that the amino acid-mediated effects on extension of chronological longevity are independent of those achieved through a reduction in the TORC1 pathway, which is mediated in a cell-intrinsic manner. Since previous studies showed that extracellular acidification causes mitochondrial dysfunction and leads to cell death, our results provide a path to premature chronological aging caused by differences in available nitrogen sources. Moreover, acidification of culture medium is generally associated with culture duration and cell density; thus, further studies are required on cell physiology of auxotrophic yeast strains during the stationary phase because an insufficient supply of essential amino acids may cause alterations in environmental conditions.

  18. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast. (United States)

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko


    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4(+) and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast.

  19. Identification, cloning and characterization of cysK, the gene encoding O-acetylserine (thiol)-lyase from Azospirillum brasilense, which is involved in tellurite resistance. (United States)

    Ramírez, Alberto; Castañeda, Miguel; Xiqui, María L; Sosa, Araceli; Baca, Beatriz E


    O-Acetylserine (thiol)-lyase (cysteine synthase) was purified from Azospirillum brasilense Sp7. After hydrolysis of the purified protein, amino acid sequences of five peptides were obtained, which permitted the cloning and sequencing of the cysK gene. The deduced amino acid sequence of cysteine synthase exhibited homology with several putative proteins from Alpha- and Gammaproteobacteria. Azospirillum brasilense Sp7 cysK exhibited 58% identity (72% similarity) with Escherichia coli K12 and Salmonella enterica serovar Typhimurium cysteine synthase proteins. An E. coli auxotroph lacking cysteine synthase loci could be complemented with A. brasilense Sp7 cysK. The 3.0-kb HindIII-EcoRI fragment bearing cysK contained two additional ORFs encoding a putative transcriptional regulator and dUTPase. Insertional disruption of the cysK gene did not produce a cysteine auxotroph, indicating that gene redundancy in the cysteine biosynthetic or other biosynthetic pathways exists in Azospirillum, as already described in other bacteria. Nitrogen fixation was not altered in the mutant strain as determined by acetylene reduction. However, this strain showed an eight-fold reduction in tellurite resistance as compared to the wild-type strain, which was only observed during growth in minimal medium. These data confirm earlier observations regarding the importance of cysteine metabolism in tellurite resistance.

  20. Genetic determination of ploidy level in Xanthophyllomyces dendrorhous. (United States)

    Hermosilla, Germán; Martínez, Claudio; Retamales, Patricio; León, Rubén; Cifuentes, Víctor


    Xanthophyllomyces dendrorhous (formely Phaffia rhodozyma) is a basidiomycetous yeast-like fungus that produces carotenoids useful for the food industry. Recently, its sexual cycle was reported but little is known about its genetic constitution. To inquire into the ploidy state of X. dendrorhous, biased mutant spectrum, genetic complementation and mitotic recombination analysis were used. A wild-type strain was subjected to N-methyl-N'-nitro-N-nitrosoguanidine mutagenic treatment. Auxotrophic and carotene mutants were forced to revert to the wild-type phenotype. Pigment producing and prototroph revertants behaved as diploid except for adenine less mutants. These results are in agreement with the limited spectrum of auxotrophs obtained in this strain for the ADE1 locus. To analyze the genetic characteristic of the adenine genetic marker of X. dendrorhous, protoplast fusion experiments with several adenine less mutants were performed. The experiments presented in this work suggest that the ATCC 2430 (UDC 67-385) strain of X. dendrorhous is diploid and a heterozygous constitution is proposed for the ADE1 locus.

  1. 产紫杉醇真菌N8菌株URA-3基因的敲除%Disruption of URA-3 gene of a paclitaxel-producing fungus N8

    Institute of Scientific and Technical Information of China (English)



    目的 为了解决产紫杉醇小孢拟盘多毛孢真菌N8基因操作的筛选标记缺乏的问题,构建N8菌株营养缺陷型菌株.方法 通过基因同源重组的方法定向敲除N8菌株中尿嘧啶合成途径中关键基因URA-3基因,然后利用分子生物学方法和添加一定浓度5-氟乳清酸(5-FOA)、尿嘧啶的基本培养基筛选获得转化子.结果 尿嘧啶营养缺陷型菌株在含有5-FOA和尿嘧啶的培养基上可以正常生长而野生型N8菌株无法生长.结论 成功构建产紫杉醇真菌N8菌株的尿嘧啶营养缺陷型菌株,可为其后续的基因功能研究奠定基础.%Objective In order to get genetic markers,an auxotrophic paclitaxel-producing fungus named Pestalotiopsis malicola N8 strain was isolated by genetic modification.Methods Based on the homologous recombination,URA-3 which is the key gene for uracil synthetic route of Pestalotiopsis malicola N8 strain was knocked out.The transformants were screened by minimal medium with the combination of 5-fluoroorotic acid (5-FOA) and uracil.Results The results showed that the uracil auxotrophic strain was able to grow in the minimal medium containing 5-FOA and uracil while the wild type strain was not.Conclusions The uracil auxotrophic strain can be used as a new selection marker for future gene function studies of N8 strain.

  2. 产紫杉醇真菌 Pestalotiopsis microspora NK17适合遗传筛选的培养基优化%Medium Optimization Suitable for Genetic Screening of Taxol-Producing Fungus Pestalotiopssi microspora NK17

    Institute of Scientific and Technical Information of China (English)

    陈龙飞; 朱项阳; 李莹莹; 张倩; 潘皎; 朱旭东


    Pestalotiopsi microspora NK17 has been proved could produce many useful secondary metabolites that pos-sesses values in medicine development, including parallel of yew alkane as well as preceding substance for coronary treatment, paclitaxel and pestalotiollide B etc.Since the nutritional requirement of the strain remains unknown, and the lack of an appropriate totally synthetic minimal medium, these have limited the genetic manipulation in its charac-ters and genetic levels.Especially a totally synthetic basic medium is the key prerequisite for screening works when u-sing auxotrophic strains to carry out genetic transformation.In this study, the growth of NK17 on several minimal media and their improved versions were screened and compared .A totally synthetic minimal medium with yeast nitro-gen source plus lactose and ( NH4 ) 2 SO4 was finally confirmed to be the most suitable for NK17 mycelial growth and screening for auxotroph.At the same time, the fermentation products of were studied, and successfully retro-mend screened the auxotroph using the medium with fairly good effects.%小孢拟盘多毛孢菌株NK17被证明能够产生多种具有药物开发价值的紫杉烷类似物以及冠心病治疗药物的前导物pestalotiollide B等次级代谢产物。由于是天然分离的菌株,该菌的营养要求未知,特别是缺少合适的全合成基础培养基,制约了实验室对其性状和基因水平的操作。尤其是在使用营养缺陷型菌株进行遗传转化时,全合成基础培养基是筛选工作的前提。对各种基础培养基进行筛选比较,最终确定酵母氮源加乳糖和硫酸铵的全合成基础培养基最适合NK17菌丝生长和营养缺陷型筛选。同时对该培养基的发酵产物进行了研究,成功应用该培养基进行了缺陷型回补筛选,效果较好。

  3. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers

    DEFF Research Database (Denmark)

    Guðbergsdóttir, Sóley Ruth; Deng, Ling; Chen, Zhengjun


    The adaptive immune CRISPR/Cas and CRISPR/Cmr systems of the crenarchaeal thermoacidophile Sulfolobus were challenged by a variety of viral and plasmid genes, and protospacers preceded by different dinucleotide motifs. The genes and protospacers were constructed to carry sequences matching...... individual spacers of CRISPR loci, and a range of mismatches were introduced. Constructs were cloned into vectors carrying pyrE/pyrF genes and transformed into uracil auxotrophic hosts derived from Sulfolobus solfataricus P2 or Sulfolobus islandicus REY15A. Most constructs, including those carrying different...... protospacer mismatches, yielded few viable transformants. These were shown to carry either partial deletions of CRISPR loci, covering a broad spectrum of sizes and including the matching spacer, or deletions of whole CRISPR/Cas modules. The deletions occurred independently of whether genes or protospacers...

  4. Hydrogen production as a novel process of wastewater treatment - studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Heguang Zhu [Tongji Univ., Shanghai (China). Inst. of Environmental Science; Ueda, Shunsaku [Utsunomiya Univ. (Japan). Dept. of Biological Productive Science; Asada, Yasio [Nihon Univ., Chiba (Japan). College of Science and Technology; Miyake, Jun [National Inst. for Advanced Interdisciplinary Research, Ibaraki (Japan)


    Attention is focusing on hydrogen production from wastewater, not only because hydrogen is a clean energy but also because it can be a process for wastewater treatment. In this paper, the characteristics of biological hydrogen production as a process of wastewater treatment is discussed by a comparison with methane production. The hydrogen production from tofu wastewater by anoxygenic phototrophic bacteria and its potential for wastewater treatment are reported. The possibility of co-cultivation with heterotrophic anaerobic bacteria was also investigated. As a solution to overcome the repressive effect of NH{sub 4}{sup +} on hydrogen production by anoxygenic phototrophic bacteria, a study was done using glutamine auxotroph which was obtained by chemical mutagenesis. To confirm that the mutation had occurred in DNA molecular level, the glutamine synthetase gene was cloned and sequenced. (Author)

  5. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Hazelton, Keith Z. [Yeshiva Univ., New York, NY (United States); Ho, Meng-Chaio [Yeshiva Univ., New York, NY (United States); Cassera, Maria B. [Yeshiva Univ., New York, NY (United States); Clinch, Keith [Industrial Research Ltd., Lower Hutt (New Zealand); Crump, Douglas R. [Industrial Research Ltd., Lower Hutt (New Zealand); Rosario Jr., Irving [Yeshiva Univ., New York, NY (United States); Merino, Emilio F. [Yeshiva Univ., New York, NY (United States); Almo, Steve C. [Yeshiva Univ., New York, NY (United States); Tyler, Peter C. [Industrial Research Ltd., Lower Hutt (New Zealand); Schramm, Vern L. [Yeshiva Univ., New York, NY (United States)


    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  6. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian;


    Corynebacterium glutamicum, a Gram-positive bacterium used for the production of various biochemicals, is naturally a biotin auxotroph. We introduced the biotin genes from Bacillus subtilis on a plasmid, pBIO, into a lysine-producing derivative (termed AHP-3) that has been described previously......, and achieved biotin prototrophy. We found that AHP-3, containing pBIO, was able to produce lysine in a medium lacking biotin and that the lysine yield on glucose was similar to what is obtained when using a medium containing biotin. However, there was a decrease in specific growth rate of 20% when the strain...... was cultivated without biotin, indicating a suboptimal intracellular concentration of biotin. In an attempt to locate the potential bottleneck, we added pimelic acid, an early biotin precursor, and found that growth rate could be restored fully, which demonstrates that the bottleneck is in pimeloyl-CoA (or...

  7. Accelerated molecular evolution of insect orthologues of ERG28/C14orf1: a link with ecdysteroid metabolism?

    Indian Academy of Sciences (India)

    Reiner A. Veitia; Laurence D. Hurst


    We have analysed the evolution of ERG28/C14orf1, a gene coding for a protein involved in sterol biosynthesis. While primary sequence of the protein is well conserved in all organisms able to synthesize sterols de novo, strong divergence is noticed in insects, which are cholesterol auxotrophs. In spite of this virtual acceleration, our analysis suggests that the insect orthologues are evolving today at rates similar to those of the remaining members of the family. A plausible way to explain this acceleration and subsequent stabilization is that Erg28 plays a role in at least two different pathways. Discontinuation of the cholesterogenesis pathway in insects allowed the protein to evolve as much as the function in the other pathway was not compromised.

  8. A Virulence-Reducing Mutation in the Postharvest Citrus Pathogen Alternaria citri. (United States)

    Katoh, H; Isshiki, A; Masunaka, A; Yamamoto, H; Akimitsu, K


    ABSTRACT Alternaria citri causes Alternaria black rot, a postharvest fruit disease, on a broad range of citrus cultivars. We previously described that an endopolygalacturonase minus mutant of A. citri caused significantly less black rot in citrus fruit. To search for other essential factors causing symptoms in addition to endopolygalacturonase, a random mutation analysis of pathogenicity was performed using restriction enzyme-mediated integration. Three isolates among 1,694 transformants of A. citri had a loss in pathogenicity in a citrus peel assay, and one of these three mutants was a histidine auxotroph. Gene AcIGPD that encodes imidazole glycerol phosphate dehydratase, the sixth enzyme in the histidine biosynthetic pathway, was cloned, and the mutant containing the disrupted target gene, AcIGPD, caused less black rot.

  9. Tumor-Targeting Salmonella typhimurium A1-R: An Overview. (United States)

    Hoffman, Robert M


    The present chapter reviews the development of the tumor-targeting amino-acid auxotrophic strain S. typhimurium A1 and the in vivo selection and characterization of the high-tumor-targeting strain S. typhimurium A1-R. Efficacy of S. typhimurium A1-R in nude-mouse models of prostate, breast, pancreatic, and ovarian cancer, as well as sarcoma and glioma in orthotopic mouse models is described. Also reviewed is efficacy of S. typhimurium A1-R targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma, breast-cancer brain metastasis, and experimental breast-cancer bone metastasis in orthotopic mouse models. The efficacy of S. typhimurium A1-R on pancreatic cancer stem cells, on pancreatic cancer in combination with anti-angiogenic agents, as well as on cervical cancer, soft-tissue sarcoma, and pancreatic cancer patient-derived orthotopic xenograft (PDOX) mouse models, is also described.

  10. Genetic Transformation of Wheat (Triticum aestivum L):A Review%小麦遗传转化研究进展

    Institute of Scientific and Technical Information of China (English)

    Abdul Razzaq; 马峙英; 王海波


    Gradual progress made in genetic transformation of wheat is presented in this paper. Information on promoters, antibiotic, herbicide and auxotrophic markers, and various traits of wheat modified through genetic transformation, is provided. In addition the methods used for wheat transformation are discussed. Though significant efforts have been made for genetic transformation of wheat mainly through particle bombardment method but transformation efficiency is still low for mass production of fertile transgenic plants. Studies on the inheritance of transgenes and its incorporation into commercial elite cultivars are not significant. Agrobacterium mediated transformation seems to have better prospects for wheat transformation in future due to its advantages over particle bombardment. In planta transformation of wheat tissues seems possible only with A grobacterium.

  11. A molecular genetic toolbox for Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Bredeweg, Erin L.; Pomraning, Kyle R.; Dai, Ziyu


    used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. Conclusions: These molecular and isogenetic tools are useful for live assessment...... of organelle-specific protein expression, and for localization of lipid biosynthetic enzymes or other proteins in Y. lipolytica. This work provides the Yarrowia community with tools for cell biology and metabolism research in Y. lipolytica for further development of biofuels and natural products........ Results: We have developed a set of genetic and molecular tools in order to expand capabilities of Y. lipolytica for both biological research and industrial bioengineering applications. In this work, we generated a set of isogenic auxotrophic strains with decreased non-homologous end joining for targeted...

  12. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. (United States)

    Moye, W S; Amuro, N; Rao, J K; Zalkin, H


    The yeast GDH1 gene encodes NADP-dependent glutamate dehydrogenase. This gene was isolated by complementation of an Escherichia coli glutamate auxotroph. NADP-dependent glutamate dehydrogenase was overproduced 6-10-fold in Saccharomyces cerevisiae bearing GDH1 on a multicopy plasmid. The nucleotide sequence of the 1362-base pair coding region and 5' and 3' flanking sequences were determined. Transcription start sites were located by S1 nuclease mapping. Regulation of GDH1 was not maintained when the gene was present on a multicopy plasmid. Protein secondary structure predictions identified a region with potential to form the dinucleotide-binding domain. The amino acid sequences of the yeast and Neurospora crassa enzymes are 63% conserved. Unlike the N. crassa gene, yeast GDH1 has no introns.

  13. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity. (United States)

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A


    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.

  14. Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production. (United States)

    McHenney, M A; Baltz, R H


    Streptomyces reseosporus, the producer of the cyclic lipopeptide antibiotic daptomycin, was shown to be a suitable host for molecular genetic manipulation. S. roseosporus does not appear to express significant restriction barriers based upon bacteriophage plaque formation studies. Plasmid DNA can be introduced into S. roseosporus by bacteriophage-FP43-mediated transduction and by conjugation from Escherichia coli. The streptomycete transposons Tn5096 and Tn5099, derived from IS493, transpose in S. roseosporus, and Tn5099-induced transposition mutants altered in the production of daptomycin, red pigment or black pigment were identified, and mapped to Dral and Asnl fragments. Three auxotrophic mutations (argB1, ade-1 and metB1) were identified among 100 individual Tn5096 insertions. Alignment and physical mapping of several Tn5099 insertions in Dral-E and Asnl-B fragments was facilitated by the presence of Dral and Asnl cleavage sites in Tn5099.

  15. Metabolic engineering of Torulopsis glabrata for malate production. (United States)

    Chen, Xiulai; Xu, Guoqiang; Xu, Nan; Zou, Wei; Zhu, Pan; Liu, Liming; Chen, Jian


    The yeast Torulopsis glabrata CCTCC M202019, which is used for industrial pyruvate production, was chosen to explore the suitability of engineering this multi-vitamin auxotrophic yeast for increased malate production. Various metabolic engineering strategies were used to manipulate carbon flux from pyruvate to malate: (i) overexpression of pyruvate carboxylase and malate dehydrogenase; (ii) identification of the bottleneck in malate production by model iNX804; (iii) simultaneous overexpression of genes RoPYC, RoMDH and SpMAE1. Using these strategies, 8.5gL(-1) malate was accumulated in the engineered strain T.G-PMS, which was about 10-fold greater than that of the control strain T.G-26. The results presented here suggest that T. glabrata CCTCC M202019 is a promising candidate for industrial malate production.

  16. Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. (United States)

    Han, Rui-Zhi; Xu, Guo-Chao; Dong, Jin-Jun; Ni, Ye


    Arginine deiminase (ADI) is an important arginine-degrading enzyme with wide applications, in particular as an anti-cancer agent for the therapy of arginine-auxotrophic tumors. In recent years, novel ADIs with excellent properties have been identified from various organisms, and crystal structures of ADI were investigated. To satisfy the requirements of potential therapeutic applications, protein engineering has been performed to improve the activity and properties of ADIs. In this mini-review, we systematically summarized the latest progress on identification and crystal structure of ADIs, and protein engineering strategies for improved enzymatic properties, such as pH optimum, K m and k cat values, and thermostability. We also outlined the PEGylation of ADI for improved circulating half-life and immunogenicity, as well as their performance in clinical trials. Finally, perspectives on extracellular secretion and property improvement of ADI were discussed.

  17. Ascospores of large-spored Metschnikowia species are genuine meiotic products of these yeasts

    DEFF Research Database (Denmark)

    Marinoni, G.; Piskur, Jure; Lachance, M.A.


    continentalis var. continentalis, and M. continentalis var. borealis. Asci were dissected and the segregation patterns for various phenotypes analyzed. In all cases (n = 47) both mating types (h(+) and h(-)) were recovered in pairs of sister spores, casting further uncertainty as to whether normal meiosis takes...... place. However, the segregation patterns for cycloheximide resistance and several auxotrophic markers were random, suggesting that normal meiosis indeed occurs. To explain the lack of second-division segregation of mating types, we concluded that crossing-over does not occur between the mating......-type locus and the centromere, and that meiosis I is tied to spore formation, which explains why the number of spores is limited to two. The latter assumption was also supported by fluorescence microscopy. The second meiotic division takes place inside the spores and is followed by the resorption of two...

  18. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. (United States)

    Bellemann, P; Geider, K


    Transposon Tn5, on a mobilizable ColE1 plasmid, on a Ti plasmid derepressed for bacterial transfer, and on the bacteriophage fd genome, was used to construct pathogenicity mutants of the fire blight pathogen Erwinia amylovora. Eleven nonpathogenic mutants were isolated from 1600 independent mutants screened. These mutants were divided into three types: auxotrophs, exopolysaccharide (EPS)-deficient mutants and a mutant of the dsp phenotype. According to their insertion sites the Tn5 mutants were mapped into several classes. Some of the mutants could be complemented with cosmid clones from a genomic library of the parent strain for EPS production on minimal agar. EPS-deficient mutants and the dsp mutant could complement each other to produce virulence symptoms on pear slices.

  19. The bifunctional dihydrofolate reductase thymidylate synthase of Tetrahymena thermophila provides a tool for molecular and biotechnology applications

    Directory of Open Access Journals (Sweden)

    Tiedtke Arno


    Full Text Available Abstract Background Dihydrofolate reductase (DHFR and thymidylate synthase (TS are crucial enzymes in DNA synthesis. In alveolata both enzymes are expressed as one bifunctional enzyme. Results Loss of this essential enzyme activities after successful allelic assortment of knock out alleles yields an auxotrophic marker in ciliates. Here the cloning, characterisation and functional analysis of Tetrahymena thermophila's DHFR-TS is presented. A first aspect of the presented work relates to destruction of DHFR-TS enzyme function in an alveolate thereby causing an auxotrophy for thymidine. A second aspect is to knock in an expression cassette encoding for a foreign gene with subsequent expression of the target protein. Conclusion This system avoids the use of antibiotics or other drugs and therefore is of high interest for biotechnological applications.

  20. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. (United States)

    Ohashi, Yoshiaki; Hirayama, Akiyoshi; Ishikawa, Takamasa; Nakamura, Seira; Shimizu, Kaori; Ueno, Yuki; Tomita, Masaru; Soga, Tomoyoshi


    Metabolic changes in response to histidine starvation were observed in histidine-auxotrophic Escherichia coli using a capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolomics technique. Prior to the analysis, we prepared an E. coli metabolome list of 727 metabolites reported in the literature. An improved method for metabolite extraction was developed, which resulted in higher extraction efficiency in phosphate-rich metabolites, e.g., ATP and GTP. Based on the results, 375 charged, hydrophilic intermediates in primary metabolisms were analysed simultaneously, providing quantitative data of 198 metabolites. We confirmed that the intracellular levels of intermediates in histidine biosynthesis are rapidly accumulated in response to a drop in histidine level under histidine-starved conditions. Simultaneously, disciplined responses were observed in the glycolysis, tricarboxylic acid cycle, and amino acid and nucleotide biosynthesis pathways as regulated by amino acid starvation.

  1. Isolation of the patC gene encoding the cystathionine beta-lyase of Lactobacillus delbrueckii subsp. bulgaricus and molecular analysis of inter-strain variability in enzyme biosynthesis. (United States)

    Aubel, Dominique; Germond, Jacques Edouard; Gilbert, Christophe; Atlan, Danièle


    The patC gene encoding the cystathionine beta-lyase (CBL) of Lactobacillus delbrueckii subsp. bulgaricus NCDO 1489 was cloned and expressed in Escherichia coli. Overexpression of CBL complemented the methionine auxotrophy of an E. coli metC mutant, demonstrating in vivo that this enzyme functions as a CBL. However, PatC is distinguishable from the MetC CBLs by a low identity in amino acid sequence, a sensitivity to iodoacetic acid, greater thermostability and a lower substrate affinity. Homologues of patC were detected in the 13 Lb. delbrueckii strains studied, but only seven of them showed CBL activity. In constrast to CBL(+) strains, all CBL-deficient strains analysed were auxotrophic for methionine. This supports the hypothesis that CBLs from lactobacilli are probably involved in methionine biosynthesis. Moreover, the results of this study suggest that post-transcriptional mechanisms account for the differences in CBL activities observed between strains of Lb. delbrueckii.

  2. Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes. (United States)

    Wu, Bo; Novelli, Jacopo; Jiang, Daojun; Dailey, Harry A; Landmann, Frédéric; Ford, Louise; Taylor, Mark J; Carlow, Clotilde K S; Kumar, Sanjay; Foster, Jeremy M; Slatko, Barton E


    Lateral gene transfer events between bacteria and animals highlight an avenue for evolutionary genomic loss/gain of function. Herein, we report functional lateral gene transfer in animal parasitic nematodes. Members of the Nematoda are heme auxotrophs, lacking the ability to synthesize heme; however, the human filarial parasite Brugia malayi has acquired a bacterial gene encoding ferrochelatase (BmFeCH), the terminal step in heme biosynthesis. BmFeCH, encoded by a 9-exon gene, is a mitochondrial-targeted, functional ferrochelatase based on enzyme assays, complementation, and inhibitor studies. Homologs have been identified in several filariae and a nonfilarial nematode. RNAi and ex vivo inhibitor experiments indicate that BmFeCH is essential for viability, validating it as a potential target for filariasis control.

  3. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.


    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  4. Beer brewing using a fusant between a sake yeast and a brewer's yeast. (United States)

    Mukai, N; Nishimori, C; Fujishige, I W; Mizuno, A; Takahashi, T; Sato, K


    Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.

  5. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Hove-Jensen, Bjarne; Garber, Bruce B.;


    This study describes the isolation and characterization of a mutant (strain GP122) of Salmonella typhimurium with a partial deficiency of phosphoribosylpyrophosphate (PRPP) synthetase activity. This strain was isolated in a purE deoD gpt purine auxotroph by a procedure designed to select guanosine......-utilizing mutants. Strain GP122 had roughly 15% of the PRPP synthetase activity and 25% of the PRPP pool of its parent strain. The mutant exhibited many of the predicted consequences of a decreased PRPP pool and a defective PRPP synthetase enzyme, including: poor growth on purine bases; decreased accumulation of 5...... phosphoribosyltransferase, enzymes involved in the pyrimidine de novo biosynthetic pathway; growth stimulation by PRPP-sparing compounds (e.g. guanosine, histidine); poor growth in low phosphate medium; and increased heat lability of the defective enzyme. This mutant strain also had increased levels of guanosine 5...

  6. Inhibitors of amino acids biosynthesis as antifungal agents. (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona


    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  7. Alterations induced in Escherichia Coli cells by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da [Federal University of Technology of Parana (CPGEI/UTFPR), Curitiba, PR (Brazil)]. E-mails:;;; Jesus, E.F.O. de; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails:;; Carlin, N.; Toledo, E.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica]. E-mail:


    Modifications occurred in Escherichia coli cells exposed to gamma radiation ({sup 60}Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  8. Multicolor bleach-rate imaging enlightens in vivo sterol transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sage, Daniel


    ) labelled with GFP-tagged RME-1 (GFP-RME-1) in the intestine of both, wild-type nematodes and mutant animals lacking intestinal gut granules (glo1-mutants). DHE-enriched intestinal organelles of glo1-mutants were decorated with GFPrme8, a marker for early endosomes. No co-localization was found......, dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel...... with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans....

  9. Cloning and sequencing of the trpE gene from Arthrobacter globiformis ATCC 8010 and several related subsurface Arthrobacter isolates

    Energy Technology Data Exchange (ETDEWEB)

    Chernova, T.; Viswanathan, V.K.; Austria, N.; Nichols, B.P.


    Tryptophan dependent mutants of Arthrobacter globiformis ATCC 8010 were isolated and trp genes were cloned by complementation and marker rescue of the auxotrophic strains. Rescue studies and preliminary sequence analysis reveal that at least the genes trpE, trpC, and trpB are clustered together in this organism. In addition, sequence analysis of the entire trpE gene, which encodes component I of anthranilate synthase, is described. Segments of the trpE gene from 17 subsurface isolates of Arthrobacter sp. were amplified by PCR and sequenced. The partial trpE sequences from the various strains were aligned and subjected to phylogenetic analysis. The data suggest that in addition to single base changes, recombination and genetic exchange play a major role in the evolution of the Arthrobacter genome.

  10. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Directory of Open Access Journals (Sweden)

    Miguelangel Cuenca

    Full Text Available Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala and meso-diaminopimelic acid (Dap and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (IgA response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  11. Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae. (United States)

    Wu, Hong; Ito, Kiyoshi; Shimoi, Hitoshi


    Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake yeasts. However, they are not found in many laboratory strains and strains used for wine making and beer brewing. This ORF was named BIO6 because it has 52% identity with BIO3, a biotin biosynthesis gene of a laboratory strain. Further research showed that yeasts without the BIO6 gene are auxotrophic for biotin, whereas yeasts holding the BIO6 gene are prototrophic for biotin. The BIO6 gene was disrupted in strain A364A, which is a laboratory strain with one copy of the BIO6 gene. Although strain A364A is prototrophic for biotin, a BIO6 disrupted mutant was found to be auxotrophic for biotin. The BIO6 disruptant was able to grow in biotin-deficient medium supplemented with 7-keto-8-amino-pelargonic acid (KAPA), while the bio3 disruptant was not able to grow in this medium. These results suggest that Bio6p acts in an unknown step of biotin synthesis before KAPA synthesis. Furthermore, we demonstrated that expression of the BIO6 gene, like that of other biotin synthesis genes, was upregulated by depletion of biotin. We conclude that the BIO6 gene is a novel biotin biosynthesis gene of S. cerevisiae.

  12. Glutamine synthetase/glutamate synthase ammonium-assimilating pathway in Schizosaccharomyces pombe. (United States)

    Perysinakis, A; Kinghorn, J R; Drainas, C


    Kinetic parameters of glutamine synthetase (GS) and glutamate synthase (glutamine-oxoglutarate aminotransferase) (GOGAT) activities, including initial velocity, pH, and temperature optima, as well as Km values, were estimated in Schizosaccharomyces pombe crude cell-free extracts. Five glutamine auxotrophic mutants of S. pombe were isolated following MNNG treatment. These were designated gln1-1,2,3,4,5, and their growth could be repaired only by glutamine. Mutants gln1-1,2,3,4,5 were found to lack GS activity, but retained wild-type levels of NADP-glutamate dehydrogenase (GDH), NAD-GDH, and GOGAT. One further glutamine auxotrophic mutant, gln1-6, was isolated and found to lack both GS and GOGAT but retained wild-type levels of NADP-GDH and NAD-GDH activities. Fortuitously, this isolate was found to harbor an unlinked second mutation (designated gog1-1), which resulted in complete loss of GOGAT activity but retained wild-type GS activity. The growth phenotype of mutant gog1-1 (in the absence of the gln1-6 mutation) was found to be indistinguishable from the wild type on various nitrogen sources, including ammonium as a sole nitrogen source. Double-mutant strains containing gog1-1 and gdh1-1 or gdh2-1 (mutations that result specifically in the abolition of NADP-GDH activity) result in a complete lack of growth on ammonium as sole nitrogen source in contrast to gdh or gog mutants alone.

  13. Natural transformation as a mechanism of horizontal gene transfer among environmental Aeromonas species. (United States)

    Huddleston, Jennifer R; Brokaw, Joshua M; Zak, John C; Jeter, Randall M


    Aeromonas species are common inhabitants of aquatic environments and relevant as human pathogens. Their potential as pathogens may be related in part to lateral transfer of genes associated with toxin production, biofilm formation, antibiotic resistance, and other virulence determinants. Natural transformation has not been characterized in aeromonads. DNA from wild-type, prototrophic strains that had been isolated from environmental sources was used as donor DNA in transformation assays with auxotrophs as the recipients. Competence was induced in 20% nutrient broth during the stationary phase of growth. Optimal transformation assay conditions for one chosen isolate were in Tris buffer with magnesium or calcium, pH 5-8, and a saturating concentration of 0.5 μg of DNA per assay (3.3 ng of DNA μl⁻¹) at 30°C. Sodium was also required and could not be replaced with ammonium, potassium, or lithium. The maximal transformation frequency observed was 1.95 × 10⁻³ transformants (recipient cell)⁻¹. A survey of environmental Aeromonas auxotrophic recipients (n=37), assayed with donor DNA from other wild-type environmental aeromonads under optimal assay conditions, demonstrated that 73% were able to act as recipients, and 100% were able to act as donors to at least some other aeromonads. Three different transformation groups were identified based on each isolates' ability to transform other strains with its DNA. The transformation groups roughly corresponded to phylogenetic groups. These results demonstrate that natural transformation is a general property of Aeromonas environmental isolates with implications for the genetic structures of coincident Aeromonas populations.

  14. Thermoadaptation-directed enzyme evolution in an error-prone thermophile derived from Geobacillus kaustophilus HTA426. (United States)

    Suzuki, Hirokazu; Kobayashi, Jyumpei; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi


    Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bacillus subtilis. The predominant mutations in G. kaustophilus were A · T→G · C and C · G→T · A transitions, implying that the high mutability of G. kaustophilus was attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair in G. kaustophilus, deletions of the mutSL, mutY, ung, and mfd genes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsic pyrF gene. Although the strain harboring Bacillus subtilis pyrF was also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generating B. subtilis PyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes.

  15. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien


    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

  16. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS. (United States)

    Cuenca, Miguelangel; Pfister, Simona P; Buschor, Stefanie; Bayramova, Firuza; Hernandez, Sara B; Cava, Felipe; Kuru, Erkin; Van Nieuwenhze, Michael S; Brun, Yves V; Coelho, Fernanda M; Hapfelmeier, Siegfried


    Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala) and meso-diaminopimelic acid (Dap) and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (Ig)A response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  17. Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Scott Severance


    Full Text Available Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme--a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 microM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA-mediated interference (RNAi in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival.

  18. Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy. (United States)

    Ramos, L S; Sinn, J P; Lehman, B L; Pfeufer, E E; Peter, K A; McNellis, T W


    Erwinia amylovora bacteria cause fire blight disease, which affects apple and pear production worldwide. The Erw. amylovora pyrC gene encodes a predicted dihydroorotase enzyme involved in pyrimidine biosynthesis. Here, we discovered that the Erw. amylovora pyrC244::Tn5 mutant was a uracil auxotroph. Unexpectedly, the Erw. amylovora pyrC244::Tn5 mutant grew as well as the wild-type in detached immature apple and pear fruits. Fire blight symptoms caused by the pyrC244::Tn5 mutant in immature apple and pear fruits were attenuated compared to those caused by the wild-type. The pyrC244::Tn5 mutant also caused severe fire blight symptoms in apple tree shoots. A plasmid-borne copy of the wild-type pyrC gene restored prototrophy and symptom induction in apple and pear fruit to the pyrC244::Tn5 mutant. These results suggest that Erw. amylovora can obtain sufficient pyrimidine from the host to support bacterial growth and fire blight disease development, although de novo pyrimidine synthesis by Erw. amylovora is required for full symptom development in fruits. Significance and impact of the study: This study provides information about the fire blight host-pathogen interaction. Although the Erwinia amylovora pyrC mutant was strictly auxotrophic for pyrimidine, it grew as well as the wild-type in immature pear and apple fruits and caused severe fire blight disease in apple trees. This suggests that Erw. amylovora can obtain sufficient pyrimidines from host tissue to support growth and fire blight disease development. This situation contrasts with findings in some human bacterial pathogens, which require de novo pyrimidine synthesis for growth in host blood, for example.

  19. L-缬氨酸产生菌JVHK597的选育及无机盐对其产酸量的影响%Breeding of of L-valine Producing Strain JVHK597 and Influence of Inorganic Salt on Its Acid Production

    Institute of Scientific and Technical Information of China (English)

    刘焕民; 葛向阳; 张伟国


    [目的]筛选L-缬氨酸高产菌株并研究其发酵条件.[方法]以黄色短杆菌(Brebvibacterium flavum)突变株ZGH61.28为出发菌株,采用紫外线(UV)、硫酸二乙酯(DES)和亚硝基胍(NTG)3种诱变剂进行诱变处理,通过摇瓶培养筛选出L-缬氨酸高产突变菌株.[结果]经过UV、DES和NTG3种诱变剂处理菌株ZGH6128,逐步获得菌株JVHK597,并具有Leu营养缺陷、Ile营养缺陷、Met营养缺陷、α-AB抗性、2-TA抗性5种遗传标记.在未优化的条件下,菌株JVHK597摇瓶发酵72 h的产酸量达41.2 g/L.8次传代试验结果表明,菌株JVHK597的产酸能力稳定,经鉴定,菌株JVHK597的基因型为(Leu-,Ile-,Met-,α-ABr,2 -TAr),遗传标记具有稳定性.发酵培养基中硫酸镁( MgSO4·7H2O)和磷酸二氢钾的含量分别为0.6和1.4 g/L时,最有利于菌株生产L-缬氨酸.[结论]试验筛选出了L-缬氨酸高产菌株JVHK597,并为其发酵培养提供了指导.%[Objective]The aim was to screen superior strain of L-valine and study its fermentation condition. [ Method] With the mutant strain ZGH6128 of Brebvibacterium flavum as initial strain, 3 kinds of mutagens of ultraviolet (UV), diethyl sulfate (DES) and nitrosoguani-dine (NTG) were used in its mutagene treatments, its superior mutant strain of L-valine was screened out through shaking culture. [ Result] The strain ZGH6128 was treated with 3 kinds of mutagens of UV, DES and NTG and the mutant strain JVHK597 was obtained progressively. This mutant strain possessed 5 genetic marks of Leu auxotroph, Ile auxotroph, Met auxotroph, a-AB resistance and 2-TA resistance. Under non-optimized condition, the production of acid from the strain JVHK597 reached 41.2 g/L after fermentation for 72 h. The experimental results of 8 passages showed that the acid producing ability of the strain JVHK597 was stable and its genotype was identified to be (Leu-, Ile-, Met-, α-AB', 2-TA') and its genetic marks had stability. When the contents of bitter salt (Mg

  20. Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota. (United States)

    Yuasa, Hajime J; Ball, Helen J


    Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme and is found in animals, fungi and bacteria. In fungi, its primary role is to supply nicotinamide adenine dinucleotide (NAD(+)) via the kynurenine pathway. A number of organisms possess more than one IDO gene, for example, mammals have IDO1 and IDO2 genes. We previously reported that the Pezizomycotina fungi commonly possess three types of IDO genes, IDOα, IDOβ and IDOγ. In this study, we surveyed the nature of IDO genes from Basidiomycota fungi, which are categorized into three subphyla (Agaricomycotina, Pucciniomycotina and Ustilaginomycotina). The Agaricomycotina fungi generally have three types of IDO genes (IDOa, IDOb and IDOc), which are distinct from Pezizomycotina three isozymes. Pucciniomycotina and Ustilaginomycotina species possess two types of IDO; one forms a monophyletic clade with Agaricomycotina IDOs in the phylogenetic tree, these IDOs are referred to as "typical Basidiomycota IDOs". The other is IDOγ, which showed more than 40% identity with Pezizomycotina and ciliate IDOγ. We previously demonstrated that IDO2 in mammals and IDOγ in Perzizomycotina fungi have much lower catalytic efficiencies in an in vitro assay, compared with the other IDO isoforms found in the respective species. We have developed a functional assay to determine whether particular IDO enzymes have sufficient enzymatic activity to rescue a yeast strain where IDO-deletion has rendered it auxotrophic for nicotinic acid. IDOα and IDOβ showed comparable catalytic efficiency, both of them could function in the Pezizomycotina fungal L-Trp metabolism. The catalytic efficiency and functional capacity of the Basidiomycota IDOa and IDOb were similar to Pezizomycotina IDOα/IDOβ. We found that Basidiomycota IDOc could not rescue the nicotinic acid auxotroph, similar to other IDO enzymes with low catalytic efficiency (mammalian IDO2 and most fungal IDOγ). Our study suggests that some fungal IDO enzymes function in

  1. Survival and mutant production induced by mutagenic agents in Metarhizium anisopliae Sobrevivência e obtenção de mutantes induzidos por agentes mutagênicos em Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    V. Kava - Cordeiro


    Full Text Available A wild strain of Metarhizium anisopliae, an entomopathogenic fungus, was submitted to three mutagenic agents: gamma radiation, ultraviolet light and nitrous acid. Survival curves were obtained and mutants were selected using different mutagenic doses which gave 1 to 5% survival. Morphological and auxotrophic mutants were isolated. Morphological mutants were grouped in a class with yellow conidia and other with pale vinaceous conidia as opposed to the green wild type conidia. Auxotrophic mutants had requirements for vitamin and aminoacid biosynthesis. More than 58% of the total auxotrophk mutants required proline/aipnine. Gamma radiation showed to be the most efficient mutagenic agent giving 0.2% of auxotrophk mutants followed by ultraviolet light (0.12% and nitrous acid (0.06%.The conidial colour and auxotrophk mutants isolated until now from M. anisopliae were reviewed.Uma linhagem selvagem do fungo entomopatogênico Metarhizium anisopliae foi submetida à ação de três agentes mutagênicos: radiação gama, luz ultravioleta e ácido nitroso. Curvas de sobrevivência foram obtidas para cada mutagênicos utilizado e mutantes foram selecionados a partir de doses dos mutagênicos que proporcionassem de 1 a 5% de sobrevivência. Mutantes morfológicos para a coloração de conídios e mutantes auxotróficos foram isolados. Mutantes para coloração de conidios foram agrupados em duas classes, uma com conídios amarelos e outra com conídios vinho pálido. Os mutantes auxotróficos obtidos foram deficientes para aminoácidos e vitaminas e mais de 58% deles eram auxotróficos para prolina/argmina. Radiação gama foi o mutagênico mais eficiente com uma porcentagem de obtenção de mulantes auxotróficos de aproximadamente 0,2%, seguido pela luz ultravioleta (0.12% e pelo ácido nitroso (0.06%.Os mulantes morfológicos e auxotróficos obtidos até o momento em Metarhizium anisopliae foram revistos.

  2. Rapid evolution of arginine deiminase for improved anti-tumor activity. (United States)

    Ni, Ye; Liu, Yongmei; Schwaneberg, Ulrich; Zhu, Leilei; Li, Na; Li, Lifeng; Sun, Zhihao


    Arginine deiminase (ADI), an arginine-degrading enzyme, has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors, such as melanomas and hepatocellular carcinomas. Based on our preliminary results, it was noticed that the optimum pH of ADI from Pseudomonas plecoglossicida (PpADI) was 6.0, and less than 10% of the activity was retained at pH 7.4 (pH of human plasma). Additionally, the K(m) value for wild-type ADI (WT-ADI) was 2.88 mM (pH 6.0), which is over 20 times of the serum arginine level (100-120 μM). These are two major limitations for PpADI as a potential anti-cancer drug. A highly sensitive and efficient high-throughput screening strategy based on a modified diacetylmonoxime-thiosemicarbazide method was established to isolate ADI mutants with higher activity and lower K(m) under physiological pH. Three improved mutants was selected from 650 variants after one round of ep-PCR, among which mutant 314 (M314: A128T, H404R, I410L) exhibiting the highest activity. Interestingly, sequence alignment shows that three amino acid substitutes in M314 are coincident with corresponding residues in ADI from Mycoplasma arginini. The specific activity of M314 (9.02 U/mg) is over 20-fold higher than that of WT-ADI (0.44 U/mg) at pH 7.4, and the K(m) value was reduced to 0.65 mM (pH 7.4). Noticeably, the pH optimum was shifted from 6.0 to 6.5 in M314. Homology model of M314 was constructed to understand the molecular basis of the improved enzymatic properties. This work could provide promising drug candidate for curing arginine-auxotrophic cancers.

  3. Evaluation of perfluorooctanoate for potential genotoxicity

    Directory of Open Access Journals (Sweden)

    John L. Butenhoff


    Full Text Available Perfluorooctanoate (PFOA is a fully fluorinated eight-carbon fatty acid analog with exceptional stability toward degradation that has been used as an industrial surfactant and has been detected in environmental and biological matrices. Exposures to PFOA in the workplace and in the environment have continuously stimulated investigations into its potential human health hazards. In this article, the results of fifteen unpublished genotoxicity assays conducted with perfluorooctanoate (as either the linear or linear/branched ammonium salt (APFO or the linear/branched sodium salt are reported and include: seven mutation assays (three in vitro reverse mutation assays with histidine auxotrophic strains of Salmonella typhimurium, two in vitro reverse mutation assays with the tryptophan auxotrophic Escherichia coli WP2uvr strain, one in vitro mitotic recombination (gene conversion assay with Saccharomyces cerevisiae D4, and an in vitro Chinese hamster ovary (CHO HGPRT forward mutation assay; seven studies to assess potential for chromosomal damage (three in vitro CHO chromosomal aberration studies, an in vitro human whole blood lymphocyte chromosomal aberration study, and three in vivo mouse micronucleus assays; and an in vitro C3H 10T1/2 cell transformation assay. Although PFOA has not been demonstrated to be metabolized, all in vitro assays were conducted both in the presence and in the absence of a mammalian hepatic microsomal activation system. These assays were originally described in twelve contract laboratory reports which have been available via the United States Environmental Protection Agency public docket (Administrative Record 226 for over a decade; however, the details of these assays have not been published previously in the open scientific literature. With the exception of limited positive findings at high and cytotoxic concentrations in some assay trials which reflected the likely consequence of cytotoxic disruption of normal cellular

  4. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus. (United States)

    Parsons, Joshua B; Frank, Matthew W; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O


    Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4 ) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.

  5. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana (United States)

    Chen, Jingjing; Lai, Yiling; Wang, Lili; Zhai, Suzhen; Zou, Gen; Zhou, Zhihua; Cui, Chunlai; Wang, Sibao


    Beauveria bassiana is an environmentally friendly alternative to chemical insecticides against various agricultural insect pests and vectors of human diseases. However, its application has been limited due to slow kill and sensitivity to abiotic stresses. Understanding of the molecular pathogenesis and physiological characteristics would facilitate improvement of the fungal performance. Loss-of-function mutagenesis is the most powerful tool to characterize gene functions, but it is hampered by the low rate of homologous recombination and the limited availability of selectable markers. Here, by combining the use of uridine auxotrophy as recipient and donor DNAs harboring auxotrophic complementation gene ura5 as a selectable marker with the blastospore-based transformation system, we established a highly efficient, low false-positive background and cost-effective CRISPR/Cas9-mediated gene editing system in B. bassiana. This system has been demonstrated as a simple and powerful tool for targeted gene knock-out and/or knock-in in B. bassiana in a single gene disruption. We further demonstrated that our system allows simultaneous disruption of multiple genes via homology-directed repair in a single transformation. This technology will allow us to study functionally redundant genes and holds significant potential to greatly accelerate functional genomics studies of B. bassiana. PMID:28368054

  6. Genetic and physiological variants of yeast selected from palm wine. (United States)

    Ezeronye, O U; Okerentugba, P O


    Genetic screening of 1200-palm wine yeasts lead to the selection of fourteen isolates with various genetic and physiological properties. Nine of the isolates were identified as Saccharamyces species, three as Candida species, one as Schizosaccharomyces species and one as Kluyveromyces species. Five of the isolates were wild type parents, two were respiratory deficient mutants (rho) and nine were auxotrophic mutants. Four isolates were heterozygous diploid (alphaa) and two were homozygous diploid (aa/alphaalpha) for the mating a mating types were further identified on mating with type loci. Four Mat alpha and four Mat a types were further identified on mating with standard haploid yeast strains. Forty-five percent sporulated on starvation medium producing tetrads. Fifty-two percent of the four-spored asci contained four viable spores. Maximum specific growth rate [micromax] of the fourteen isolates range from 0.13-0.26, five isolates were able to utilize exogenous nitrate for growth. Percentage alcohol production range between 5.8-8.8% for palm wine yeast, 8.5% for bakers' yeast and 10.4% for brewers yeast. The palm wine yeast were more tolerant to exogenous alcohol but had a low alcohol productivity. Hybridization enhanced alcohol productivity and tolerance in the palm wine yeasts.

  7. Elucidation of roles for vitamin B 12 in regulation of folate, ubiquinone, and methionine metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari; Anderson, Lindsey N.; Nandhikonda, Premchendar; Rodionova, Irina A.; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R. W.; Kim, Young-Mo; Metz, Thomas O.; Wright, Aaron T.


    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12. Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a new light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.

  8. Life without putrescine: disruption of the gene-encoding polyamine oxidase in Ustilago maydis odc mutants. (United States)

    Valdés-Santiago, Laura; Guzmán-de-Peña, Doralinda; Ruiz-Herrera, José


    In previous communications the essential role of spermidine in Ustilago maydis was demonstrated by means of the disruption of the genes encoding ornithine decarboxylase (ODC) and spermidine synthase (SPE). However, the assignation of specific roles to each polyamine in different cellular functions was not possible because the spermidine added to satisfy the auxotrophic requirement of odc/spe double mutants is partly back converted into putrescine. In this study, we have approached this problem through the disruption of the gene-encoding polyamine oxidase (PAO), required for the conversion of spermidine into putrescine, and the construction of odc/pao double mutants that were unable to synthesize putrescine by either ornithine decarboxylation or retroconversion from spermidine. Phenotypic analysis of the mutants provided evidence that putrescine is only an intermediary in spermidine biosynthesis, and has no direct role in cell growth, dimorphic transition, or any other vital function of U. maydis. Nevertheless, our results show that putrescine may play a role in the protection of U. maydis against salt and osmotic stress, and possibly virulence. Evidence was also obtained that the retroconversion of spermidine into putrescine is not essential for U. maydis growth but may be important for its survival under natural conditions.

  9. Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes (United States)

    Boitz, Jan M.; Gilroy, Caslin A.; Olenyik, Tamara D.; Paradis, Dustin; Perdeh, Jasmine; Dearman, Kristie; Davis, Madison J.; Yates, Phillip A.; Li, Yuexin; Riscoe, Michael K.; Ullman, Buddy


    ABSTRACT Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani. To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite. PMID:27795357

  10. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. (United States)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P


    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  11. Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. (United States)

    Maldonado-González, M Mercedes; Schilirò, Elisabetta; Prieto, Pilar; Mercado-Blanco, Jesús


    Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild-type PICF7, discarding these traits as relevant for its endophytic lifestyle.

  12. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase (United States)

    Lewis-Ballester, Ariel; Forouhar, Farhad; Kim, Sung-Mi; Lew, Scott; Wang, YongQiang; Karkashon, Shay; Seetharaman, Jayaraman; Batabyal, Dipanwita; Chiang, Bing-Yu; Hussain, Munif; Correia, Maria Almira; Yeh, Syun-Ru; Tong, Liang


    Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases. PMID:27762317

  13. Radiolabeling of infective third-stage larvae of Strongyloides stercoralis by feeding ( sup 75 Se)selenomethionine-labeled Escherichia coli to first- and second-stage larvae

    Energy Technology Data Exchange (ETDEWEB)

    Aikens, L.M.; Schad, G.A. (Univ. of Pennsylvania, Philadelphia (USA))


    A technique is described for radiolabeling Strongyloides stercoralis larvae with ({sup 75}Se)selenomethionine. Cultures of an auxotrophic methionine-dependent stain of Escherichia coli were grown in a medium containing Dulbecco's modified Eagle's medium supplemented with 5% nutrient broth, amino acids, and ({sup 75}Se)selenomethionine. When the {sup 75}Se-labeled bacterial populations were in the stationary phase of growth, cultures were harvested and the bacteria dispersed on agar plates to serve as food for S. stercoralis larvae. Use of nondividing bacteria is important for successful labeling because the isotope is not diluted by cell division and death of larvae attributable to overgrowth by bacteria is prevented. First-stage S. stercoralis larvae were recovered from feces of infected dogs and reared in humid air at 30 C on agar plates seeded with bacteria. After 7 days, infective third-stage larvae were harvested. The mean specific activity of 6 different batches of larvae ranged from 75 to 330 counts per min/larva with 91.8 +/- 9.5% of the population labeled sufficiently to produce an autoradiographic focus during a practicable, 6-wk period of exposure. Labeled infective larvae penetrated the skin of 10-day-old puppies and migrated to the small intestine, where the developed to adulthood.

  14. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. (United States)

    Peters-Wendisch, P; Götker, S; Heider, S A E; Komati Reddy, G; Nguyen, A Q; Stansen, K C; Wendisch, V F


    The Gram-positive Corynebacterium glutamicum is auxotrophic for biotin. Besides the biotin uptake system BioYMN and the transcriptional regulator BioQ, this bacterium possesses functional enzymes for the last three reactions of biotin synthesis starting from pimeloyl-CoA. Heterologous expression of bioF from the Gram-negative Escherichia coli enabled biotin synthesis from pimelic acid added to the medium, but expression of bioF together with bioC and bioH from E. coli did not entail biotin prototrophy. Heterologous expression of bioWAFDBI from Bacillus subtilis encoding another biotin synthesis pathway in C. glutamicum allowed for growth in biotin-depleted media. Stable growth of the recombinant was observed without biotin addition for eight transfers to biotin-depleted medium while the empty vector control stopped growth after the first transfer. Expression of bioWAFDBI from B. subtilis in C. glutamicum strains overproducing the amino acids l-lysine and l-arginine, the diamine putrescine, and the carotenoid lycopene, respectively, enabled formation of these products under biotin-depleted conditions. Thus, biotin-prototrophic growth and production by recombinant C. glutamicum were achieved.

  15. A Simple Method for Detecting Content of Biotin%一种简捷的生物素含量测定方法

    Institute of Scientific and Technical Information of China (English)

    郑巍振; 裘娟萍; 赵春田; 朱家荣


    为建立一种快速方便检测生物素含量的方法,采用生物素营养缺陷型菌株产氨短杆菌作为指示菌,研究了管碟法测定生物素含量的方法.研究结果表明,生物素浓度在15-95μg/L,平板指示菌生长圈直径大小与生物素浓度对数值呈一定线性关系,且线性良好,r=0.993 3;平均回收率为101.0%,相对标准偏差4.984%-7.573%.%In order to establish a convenient and rapid method to detect the content of biotin, the oxford plate assay system used to detect content of biotin was studied in this paper using Corynebacterium ammoniagenes, which is auxotrophic for biotin, as indicator bacteria. The results showed that a better linear relation between the diameter of the flat-panel indicator bacteria growth rings and the biotin concentration logarithm was obtained in the detected concentration range from 15 μg/L to 90 μg/L(r =0. 993 3). The average recovery rate of this measurement was 101. 0% and relative standard deviation( RSD) ranged from 4. 984% to 7. 573% .

  16. Mitochondrial DNA Ligase Is Dispensable for the Viability of Cultured Cells but Essential for mtDNA Maintenance* (United States)

    Shokolenko, Inna N.; Fayzulin, Rafik Z.; Katyal, Sachin; McKinnon, Peter J.; Wilson, Glenn L.; Alexeyev, Mikhail F.


    Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ0 phenotype. PMID:23884459

  17. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)

    朱冰; 俞冠翘; 朱家璧; 沈善炯


    The gdhA genes of IRC-3 GDH strain and IRC-8 GDH+ strain were cloned, and they both successfully complemented the nutritional lesion of an E. coli glutamate auxotroph, Q100 GDH". However, the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3. The gdhA genes of the wild type and mutant origin were sequenced separately. No nucleotide difference was detected between them. Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant. Additionally, no GDH inhibitor was found in the wild type strain IRC-3. It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression. Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the family I -type hexameric protein, while the GDH of Bacillus subtilis belongs to family II.

  18. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis

    Institute of Scientific and Technical Information of China (English)


    The gdhA genes of IRC-3 GDH-strain and IRC-8 GDH+ strain were cloned,and they both successfully complemented the nutritional lesion of an E.coli glutamate auxotroph,Q100 GDH-.However,the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3.The gdhA genes of the wild type and mutant origin were sequenced separately.No nucleotide difference was detected between them.Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant.Additionally,no GDH inhibitor was found in the wild type strain IRC-3.It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression.Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the familyⅠ-type hexameric protein,while the GDH of Bacillus subtilis belongs to family II.

  19. A universal mariner transposon system for forward genetic studies in the genus Clostridium.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available DNA transposons represent an essential tool in the armoury of the molecular microbiologist. We previously developed a catP-based mini transposon system for Clostridium difficile in which the expression of the transposase gene was dependent on a sigma factor unique to C. difficile, TcdR. Here we have shown that the host range of the transposon is easily extended through the rapid chromosomal insertion of the tcdR gene at the pyrE locus of the intended clostridial target using Allele-Coupled Exchange (ACE. To increase the effectiveness of the system, a novel replicon conditional for plasmid maintenance was developed, which no longer supports the effective retention of the transposon delivery vehicle in the presence of the inducer isopropyl β-D-1-thiogalactopyranoside (IPTG. As a consequence, those thiamphenicol resistant colonies that arise in clostridial recipients, following plating on agar medium supplemented with IPTG, are almost exclusively due to insertion of the mini transposon into the genome. The system has been exemplified in both Clostridium acetobutylicum and Clostridium sporogenes, where transposon insertion has been shown to be entirely random. Moreover, appropriate screening of both libraries resulted in the isolation of auxotrophic mutants as well as cells deficient in spore formation/germination. This strategy is capable of being implemented in any Clostridium species.

  20. Redefining the requisite lipopolysaccharide structure in Escherichia coli. (United States)

    Meredith, Timothy C; Aggarwal, Parag; Mamat, Uwe; Lindner, Buko; Woodard, Ronald W


    Gram-negative bacteria possess an asymmetric lipid bilayer surrounding the cell wall, the outer membrane (OM). The OM inner leaflet is primarily composed of various glycerophospholipids, whereas the outer leaflet predominantly contains the unique amphiphilic macromolecule, lipopolysaccharide (LPS or endotoxin). The majority of all gram-negative bacteria elaborate LPS containing at least one 2-keto 3-deoxy-D-manno-octulosonate (Kdo) molecule. The minimal LPS structure required for growth of Escherichia coli has long been recognized as two Kdo residues attached to lipid A, inextricably linking viability to toxicity. Here we report the construction and characterization of the nonconditional E. coli K-12 suppressor strain KPM22 that lacks Kdo and is viable despite predominantly elaborating the endotoxically inactive LPS precursor lipid IV(A). Our results challenge the established E. coli Kdo2-lipid A dogma, indicating that the previously observed and well-documented dependence of cell viability on the synthesis of Kdo stems from a lethal pleiotropy precipitated after the depletion of the carbohydrate, rather than an inherent need for the Kdo molecule itself as an indispensable structural component of the OM LPS layer. Inclusion of the inner membrane LPS transporter MsbA on a multicopy plasmid partially suppresses the lethal deltaKdo phenotype directly in the auxotrophic parent strain, suggesting increased rates of nonglycosylated lipid A transport can, in part, compensate for Kdo depletion. The unprecedented nature of a lipid IV(A) OM redefines the requisite LPS structure for viability in E. coli.

  1. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Directory of Open Access Journals (Sweden)

    Sebastian Felgner


    Full Text Available Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine.

  2. In vivo reshaping the catalytic site of nucleoside 2'-deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution. (United States)

    Kaminski, Pierre Alexandre; Dacher, Priscilla; Dugué, Laurence; Pochet, Sylvie


    Nucleoside 2'-deoxyribosyltransferases catalyze the transfer of 2-deoxyribose between bases and have been widely used as biocatalysts to synthesize a variety of nucleoside analogs. The genes encoding nucleoside 2'-deoxyribosyltransferase (ndt) from Lactobacillus leichmannii and Lactobacillus fermentum underwent random mutagenesis to select variants specialized for the synthesis of 2',3'-dideoxynucleosides. An Escherichia coli strain, auxotrophic for uracil and unable to use 2',3'-dideoxyuridine, cytosine, and 2',3'-dideoxycytidine as a source of uracil was constructed. Randomly mutated lactobacilli ndt libraries from two species, L. leichmannii and L. fermentum, were screened for the production of uracil with 2',3'-dideoxyuridine as a source of uracil. Several mutants suitable for the synthesis of 2',3'-dideoxynucleosides were isolated. The nucleotide sequence of the corresponding genes revealed a single mutation (G --> A transition) leading to the substitution of a small aliphatic amino acid by a nucleophilic one, A15T (L. fermentum) or G9S (L. leichmannii), respectively. We concluded that the "adaptation" of the nucleoside 2'-deoxyribosyltransferase activity to 2,3-dideoxyribosyl transfer requires an additional hydroxyl group on a key amino acid side chain of the protein to overcome the absence of such a group in the corresponding substrate. The evolved proteins also display significantly improved nucleoside 2',3'-didehydro-2',3'-dideoxyribosyltransferase activity.

  3. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. (United States)

    Eichhorn, Heiko; Lessing, Franziska; Winterberg, Britta; Schirawski, Jan; Kämper, Jörg; Müller, Philip; Kahmann, Regine


    In the smut fungus Ustilago maydis, a tightly regulated cAMP signaling cascade is necessary for pathogenic development. Transcriptome analysis using whole genome microarrays set up to identify putative target genes of the protein kinase A catalytic subunit Adr1 revealed nine genes with putative functions in two high-affinity iron uptake systems. These genes locate to three gene clusters on different chromosomes and include the previously identified complementing siderophore auxotroph genes sid1 and sid2 involved in siderophore biosynthesis. Transcription of all nine genes plus three additional genes associated with the gene clusters was also coregulated by iron through the Urbs1 transcription factor. Two components of a high-affinity iron uptake system were characterized in more detail: fer2, encoding a high-affinity iron permease; and fer1, encoding an iron multicopper oxidase. Fer2 localized to the plasma membrane and complemented an ftr1 mutant of Saccharomyces cerevisiae lacking a high-affinity iron permease. During pathogenic development, fer2 expression was confined to the phase of hyphal proliferation inside the plant. fer2 as well as fer1 deletion mutants were strongly affected in virulence. These data highlight the importance of the high-affinity iron uptake system via an iron permease and a multicopper oxidase for biotrophic development in the U. maydis/maize (Zea mays) pathosystem.

  4. A Ferroxidation/Permeation Iron Uptake System Is Required for Virulence in Ustilago maydis[W (United States)

    Eichhorn, Heiko; Lessing, Franziska; Winterberg, Britta; Schirawski, Jan; Kämper, Jörg; Müller, Philip; Kahmann, Regine


    In the smut fungus Ustilago maydis, a tightly regulated cAMP signaling cascade is necessary for pathogenic development. Transcriptome analysis using whole genome microarrays set up to identify putative target genes of the protein kinase A catalytic subunit Adr1 revealed nine genes with putative functions in two high-affinity iron uptake systems. These genes locate to three gene clusters on different chromosomes and include the previously identified complementing siderophore auxotroph genes sid1 and sid2 involved in siderophore biosynthesis. Transcription of all nine genes plus three additional genes associated with the gene clusters was also coregulated by iron through the Urbs1 transcription factor. Two components of a high-affinity iron uptake system were characterized in more detail: fer2, encoding a high-affinity iron permease; and fer1, encoding an iron multicopper oxidase. Fer2 localized to the plasma membrane and complemented an ftr1 mutant of Saccharomyces cerevisiae lacking a high-affinity iron permease. During pathogenic development, fer2 expression was confined to the phase of hyphal proliferation inside the plant. fer2 as well as fer1 deletion mutants were strongly affected in virulence. These data highlight the importance of the high-affinity iron uptake system via an iron permease and a multicopper oxidase for biotrophic development in the U. maydis/maize (Zea mays) pathosystem. PMID:17138696

  5. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. (United States)

    Mylonakis, Eleftherios; Ausubel, Frederick M; Perfect, John R; Heitman, Joseph; Calderwood, Stephen B


    We found that the well-studied nematode Caenorhabditis elegans can use various yeasts, including Cryptococcus laurentii and Cryptococcus kuetzingii, as a sole source of food, producing similar brood sizes compared with growth on its usual laboratory food source Escherichia coli OP50. C. elegans grown on these yeasts had a life span similar to (C. laurentii) or longer than (C. kuetzingii) those fed on E. coli. However, the human pathogenic yeast Cryptococcus neoformans killed C. elegans, and the C. neoformans polysaccharide capsule as well as several C. neoformans genes previously shown to be involved in mammalian virulence were also shown to play a role in C. elegans killing. These included genes associated with signal transduction pathways (GPA1, PKA1, PKR1, and RAS1), laccase production (LAC1), and the alpha mating type. C. neoformans adenine auxotrophs, which are less virulent in mammals, were also less virulent in C. elegans. These results support the model that mammalian pathogenesis of C. neoformans may be a consequence of adaptations that have evolved during the interaction of C. neoformans with environmental predators such as free-living nematodes and amoebae and suggest that C. elegans can be used as a simple model host in which C. neoformans pathogenesis can be readily studied.

  6. Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics. (United States)

    Duan, Yongping; Zhou, Lijuan; Hall, David G; Li, Wenbin; Doddapaneni, Harshavardhan; Lin, Hong; Liu, Li; Vahling, Cheryl M; Gabriel, Dean W; Williams, Kelly P; Dickerman, Allan; Sun, Yijun; Gottwald, Tim


    Citrus huanglongbing is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with a low-titer, phloem-limited infection by any of three uncultured species of alpha-Proteobacteria, 'Candidatus Liberibacter asiaticus', 'Ca. L. americanus', and 'Ca. L. africanus'. A complete circular 'Ca. L. asiaticus' genome has been obtained by metagenomics, using the DNA extracted from a single 'Ca. L. asiaticus'-infected psyllid. The 1.23-Mb genome has an average 36.5% GC content. Annotation revealed a high percentage of genes involved in both cell motility (4.5%) and active transport in general (8.0%), which may contribute to its virulence. 'Ca. L. asiaticus' appears to have a limited ability for aerobic respiration and is likely auxotrophic for at least five amino acids. Consistent with its intracellular nature, 'Ca. L. asiaticus' lacks type III and type IV secretion systems as well as typical free-living or plant-colonizing extracellular degradative enzymes. 'Ca. L. asiaticus' appears to have all type I secretion system genes needed for both multidrug efflux and toxin effector secretion. Multi-protein phylogenetic analysis confirmed 'Ca. L. asiaticus' as an early-branching and highly divergent member of the family Rhizobiaceae. This is the first genome sequence of an uncultured alpha-proteobacteria that is both an intracellular plant pathogen and insect symbiont.

  7. Efficient isotopic tryptophan labeling of membrane proteins by an indole controlled process conduct. (United States)

    Berger, Christian; Berndt, Sandra; Pichert, Annelie; Theisgen, Stephan; Huster, Daniel


    A protocol for the efficient isotopic labeling of large G protein-coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L-tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell-cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell-cell communication by the addition of indole during expression. Discrete concentrations of indole and (15) N2 -L-tryptophan at dedicated time points in the fermentation drastically increased the isotopic labeling efficiency. Isotope scrambling was only observed in glutamine, asparagine, and arginine side chains but not in the backbone. This strategy allows producing specifically tryptophan labeled membrane proteins at high concentrations avoiding the disadvantages of the often low yields of auxotrophic E. coli strains. In the fermentation process carried out according to this protocol, we produced ∼15 mg of tryptophan labeled neuropeptide Y receptor type 2 per liter medium.

  8. Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization. (United States)

    Yuan, Peipei; Cao, Weijia; Wang, Zhen; Chen, Kequan; Li, Yan; Ouyang, Pingkai


    Nitrogen source optimization combined with phased exponential L-tyrosine feeding was employed to enhance L-phenylalanine production by a tyrosine-auxotroph strain, Escherichia coli YP1617. The absence of (NH4)2SO4, the use of corn steep powder and yeast extract as composite organic nitrogen source were more suitable for cell growth and L-phenylalanine production. Moreover, the optimal initial L-tyrosine level was 0.3 g L(-1) and exponential L-tyrosine feeding slightly improved L-phenylalanine production. Nerveless, L-phenylalanine production was greatly enhanced by a strategy of phased exponential L-tyrosine feeding, where exponential feeding was started at the set specific growth rate of 0.08, 0.05, and 0.02 h(-1) after 12, 32, and 52 h, respectively. Compared with exponential L-tyrosine feeding at the set specific growth rate of 0.08 h(-1), the developed strategy obtained a 15.33% increase in L-phenylalanine production (L-phenylalanine of 56.20 g L(-1)) and a 45.28% decrease in L-tyrosine supplementation.

  9. Adsorption behavior of microbes on a QCM chip modified with an artificial siderophore-Fe3+ complex. (United States)

    Inomata, Tomohiko; Eguchi, Hiroshi; Funahashi, Yasuhiro; Ozawa, Tomohiro; Masuda, Hideki


    Three hydroxamate-type artificial siderophores with terminal NH(2) groups, tris[2-{3-(N-acyl-N-hydroxamino)propylamido}propyl]aminomethane (1-3, acyl-R group = Me, Et, and Ph, respectively), and their Fe(3+) complexes, 4-6, were prepared. The stability constant (log β) of 4 was estimated to be about 31 by its EDTA titration. The biological activities of 4-6 for Microbacterium flavescens, which is a hydroxamate-type siderophore, auxotrophic gram-positive microbe, clearly indicated that they permeated the cell membrane depending on their terminal bulky acyl-R groups. These artificial siderophore complexes, 4-6, were modified on Au electrode surfaces with the terminal NH(2) group (4-6/Au). The surface modification of 4-6 was confirmed by several electrochemical measurements. The quartz crystal microbalance (QCM) chips were also modified with 4-6. Microbe adsorption measurements using these modified QCM chips for M. flavescens, Pseudomonas putida, and Eschrichia coli were performed. The QCM chips have the ability to adsorb microbes selectively as a result of the differences in the interactions between the structures of Fe(3+)-artificial siderophore complexes and their receptors or binding proteins within the cell membrane.

  10. Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. (United States)

    Hickman, Mark J; Petti, Allegra A; Ho-Shing, Olivia; Silverman, Sanford J; McIsaac, R Scott; Lee, Traci A; Botstein, David


    A yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency. To identify the suppressor mutations, we used genome-wide single-nucleotide polymorphism and standard genetic analyses. The most common suppressors were loss-of-function mutations in OPI1, encoding a transcriptional repressor of phospholipid metabolism. Using a new system that allows rapid and specific degradation of Met4p, we could study the dynamic expression of all genes following loss of Met4p. Experiments using this system with and without Opi1p showed that Met4 activates and Opi1p represses genes that maintain levels of S-adenosylmethionine (SAM), the substrate for most methyltransferase reactions. Cells lacking Met4p grow normally when either SAM is added to the media or one of the SAM synthetase genes is overexpressed. SAM is used as a methyl donor in three Opi1p-regulated reactions to create the abundant membrane phospholipid, phosphatidylcholine. Our results show that rapidly growing cells require significant methylation, likely for the biosynthesis of phospholipids.

  11. Isolation of Trichoderma reesei pyrG Negative Mutant by UV Mutagenesis and Its Application in Transformation

    Institute of Scientific and Technical Information of China (English)

    LONG Hao; WANG Tian-hong; ZHANG Ying-kuan


    Two uridine auxotrophic mutants of Trichoderma reesei were isolated by resistance to 5-fluoroorotic acid after UV mutagenesis.One mutant,called M23,was complemented with the Aspergillus niger pyrG gene carded by plasmid pAB4-1.A mutated pyrG gene of M23 was cloned and DNA sequencing analysis indicated that a cytosine was inserted into the 934-939 oligo dC position of the pyrG coding region,resulted in a frameshift mutation.Transformation efficiency was approximately 200-300 transformants per microgram of DNA with plasmid pAB4-1.Stable transformants were obtained by monosporic culture and showed to be prototroph after successive propagation.Vitreoscilla hemoglobin expression plasmid pUCVHb was cotransformed with plasmid pAB4-1 and attained a transformation efficiency of 71.8% or of 26.1% with pAN7-1.Southern blot analysis of the transformants demonstrated that plasmid pUCVHb was integrated into the chromosomal DNA.The experimental results demonstrated that the pyrG-based system was more efficient and timesaving than the conventional hygromycin B resistance-based transformation system.

  12. A novel integrative expression vector for Sulfolobus species. (United States)

    Choi, Kyoung-Hwa; Hwang, Sungmin; Yoon, Naeun; Cha, Jaeho


    With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 (pyrE(sso)) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an α-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an α-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase (gdhA(saci)) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The α-glucosidase activity was confirmed by the hydrolysis of pNPαG. The pINEX vector should be applicable in delineating gene functions in this organism.

  13. Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius. (United States)

    Grogan, Dennis W; Hansen, Josh E


    Prokaryotic genomes acquire and eliminate blocks of DNA sequence by lateral gene transfer and spontaneous deletion, respectively. The basic parameters of spontaneous deletion, which are expected to influence the course of genome evolution, have not been determined for any hyperthermophilic archaeon. We therefore screened a number of independent pyrimidine auxotrophs of Sulfolobus acidocaldarius for deletions and sequenced those detected. Deletions accounted for only 0.4% of spontaneous pyrE mutations, corresponding to a frequency of about 10(-8) per cell. Nucleotide sequence analysis of five independent deletions showed no significant association of the endpoints with short direct repeats, despite the fact that several such repeats occur within the pyrE gene and that duplication mutations in pyrE reverted at high frequencies. Endpoints of the spontaneous deletions did not coincide with short inverted repeats or potential stem-loop structures. No consensus sequence common to all the deletions could be identified, although two deletions showed the potential of being stabilized by octanucleotide sequences elsewhere in pyrE, and another pair of deletions shared an octanucleotide at their 3' ends. The unusually low frequency and low sequence dependence of spontaneous deletions in the S. acidocaldarius pyrE gene compared to other genetic systems could not be explained in terms of possible constraints imposed by the 5-fluoroorotate selection.

  14. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. (United States)

    Berkner, Silvia; Grogan, Dennis; Albers, Sonja-Verena; Lipps, Georg


    The extreme thermoacidophiles of the genus Sulfolobus are among the best-studied archaea but have lacked small, reliable plasmid vectors, which have proven extremely useful for manipulating and analyzing genes in other microorganisms. Here we report the successful construction of a series of Sulfolobus-Escherichia coli shuttle vectors based on the small multicopy plasmid pRN1 from Sulfolobus islandicus. Selection in suitable uracil auxotrophs is provided through inclusion of pyrEF genes in the plasmid. The shuttle vectors do not integrate into the genome and do not rearrange. The plasmids allow functional overexpression of genes, as could be demonstrated for the beta-glycosidase (lacS) gene of S. solfataricus. In addition, we demonstrate that this beta-glycosidase gene could function as selectable marker in S. solfataricus. The shuttle plasmids differ in their interruption sites within pRN1 and allowed us to delineate functionally important regions of pRN1. The orf56/orf904 operon appears to be essential for pRN1 replication, in contrast interruption of the highly conserved orf80/plrA gene is tolerated. The new vector system promises to facilitate genetic studies of Sulfolobus and to have biotechnological uses, such as the overexpression or optimization of thermophilic enzymes that are not readily performed in mesophilic hosts.

  15. Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA. (United States)

    Nakamura, Takahiro; Pluskal, Tomáš; Nakaseko, Yukinobu; Yanagida, Mitsuhiro


    Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA.

  16. Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism. (United States)

    Romine, Margaret F; Rodionov, Dmitry A; Maezato, Yukari; Anderson, Lindsey N; Nandhikonda, Premchendar; Rodionova, Irina A; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R W; Kim, Young-Mo; Metz, Thomas O; Wright, Aaron T


    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12 Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.

  17. Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system. (United States)

    Heitzer, Markus; Zschoernig, Barbara


    The successful expression of foreign genes mainly depends on both a reliable method for transformation and a suitable promoter sequence. We created a series of modular plasmids that facilitate the rapid construction of large tandem vectors for transgene expression under the control of different promoter sequences in Chlamydomonas reinhardtii. Tandem vectors carrying expression cassettes for Renilla luciferase and a metabolic selection marker (ARG7) were manufactured by fusing two plasmids in vitro using Cre/lox site-specific recombination. Supercoiled and linear plasmids were used to transform an arginine auxotrophic Chlamydomonas strain, and rates of co-expression as well as levels of luciferase activity were monitored for frequently used promoters (HSP70A, LHCB1, PSAD, and the chimeric HSP70A/RBCS2). Linearized tandem vectors generally increased the co-expression frequency (up to 77%) compared with standard cotransformation protocols. Most transformants showed a single and complete integration event confirming the close linkage of active selectable marker and reporter gene within the nuclear genome. The analysis of luciferase activity showed expression levels within three orders of magnitude for the promoters used, with the artificial HSP70A/RRBCS2 being the most active. For 69% of all luminescent transformants carrying the HSP70A promoter luciferase expression was enhanced by heatshock, indicating physiological promoter function in a transgenic context.

  18. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. (United States)

    Avendaño, A; Deluna, A; Olivera, H; Valenzuela, L; Gonzalez, A


    It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to synthesize glutamate through an alternative pathway. A computer search for similarities between the GDH1 nucleotide sequence and the complete yeast genome was carried out. In addition to identifying its cognate sequence at chromosome XIV, the search found that GDH1 showed high identity with a previously recognized open reading frame (GDH3) of chromosome I. Triple mutants impaired in GDH1, GLT1, and GDH3 were obtained. These were strict glutamate auxotrophs. Our results indicate that GDH3 plays a significant physiological role, providing glutamate when GDH1 and GLT1 are impaired. This is the first example of a microorganism possessing three pathways for glutamate biosynthesis.

  19. Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins

    Directory of Open Access Journals (Sweden)

    Ying Ma


    Full Text Available In this paper, we present a novel, “single experiment” methodology based on genetic engineering of metabolic pathways for direct intracellular production of non-canonical amino acids from simple precursors, coupled with expanded genetic code. In particular, we engineered the intracellular biosynthesis of L-azidohomoalanine from O-acetyl-L-homoserine and NaN3, and achieved its direct incorporation into recombinant target proteins by AUG codon reassignment in a methionine-auxotroph E. coli strain. In our system, the host’s methionine biosynthetic pathway was first diverted towards the production of the desired non-canonical amino acid by exploiting the broad reaction specificity of recombinant pyridoxal phosphate-dependent O-acetylhomoserine sulfhydrylase from Corynebacterium glutamicum. Then, the expression of the target protein barstar, accompanied with efficient L-azidohomoalanine incorporation in place of L-methionine, was accomplished. This work stands as proof-of-principle and paves the way for additional work towards intracellular production and site-specific incorporation of biotechnologically relevant non-canonical amino acids directly from common fermentable sources.

  20. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans. (United States)

    Zhang, Bing; Yu, Qilin; Jia, Chang; Wang, Yuzhou; Xiao, Chenpeng; Dong, Yijie; Xu, Ning; Wang, Lei; Li, Mingchun


    Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.

  1. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor (United States)

    Huijbers, Mieke M. E.; Martínez-Júlvez, Marta; Westphal, Adrie H.; Delgado-Arciniega, Estela; Medina, Milagros; van Berkel, Willem J. H.


    Flavoenzymes are versatile biocatalysts containing either FAD or FMN as cofactor. FAD often binds to a Rossmann fold, while FMN prefers a TIM-barrel or flavodoxin-like fold. Proline dehydrogenase is denoted as an exception: it possesses a TIM barrel-like fold while binding FAD. Using a riboflavin auxotrophic Escherichia coli strain and maltose-binding protein as solubility tag, we produced the apoprotein of Thermus thermophilus ProDH (MBP-TtProDH). Remarkably, reconstitution with FAD or FMN revealed that MBP-TtProDH has no preference for either of the two prosthetic groups. Kinetic parameters of both holo forms are similar, as are the dissociation constants for FAD and FMN release. Furthermore, we show that the holo form of MBP-TtProDH, as produced in E. coli TOP10 cells, contains about three times more FMN than FAD. In line with this flavin content, the crystal structure of TtProDH variant ΔABC, which lacks helices αA, αB and αC, shows no electron density for an AMP moiety of the cofactor. To the best of our knowledge, this is the first example of a flavoenzyme that does not discriminate between FAD and FMN as cofactor. Therefore, classification of TtProDH as an FAD-binding enzyme should be reconsidered. PMID:28256579

  2. Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. (United States)

    Klinner, U; Fluthgraf, S; Freese, S; Passoth, V


    The fermentative and respiratory metabolism of Pichia stipitis wild-type strain CBS 5774 and the derived auxotrophic transformation recipient PJH53 trp5-10 his3-1 were examined in differentially oxygenated glucose cultures in the hermetically sealed Sensomat system. There was a good agreement of the kinetics of gas metabolism, growth, ethanol formation and glucose utilisation, proving the suitability of the Sensomat system for rapid and inexpensive investigation of strains and mutants for their respiratory and fermentative metabolism. Our study revealed respiro-fermentative growth by the wild-type strain, although the cultures were not oxygen-limited. The induction of respiro-fermentative behaviour was obviously due to the decrease in oxygen tension but not falling below a threshold of oxygen tension. The responses differed depending on the velocity of the decrease in oxygen tension. At high oxygenation (slow decrease in oxygen tension), ethanol production was induced but glucose uptake was not influenced. At low oxygenation, glucose uptake and ethanol formation increased during the first hours of cultivation. The transformation recipient PJH53 most probably carries a mutation that influences the response to a slow decrease in oxygen tension, since almost no ethanol formation was found under these conditions.

  3. Increase in UV mutagenesis by heat stress on UV-irradiated E. coli cells. (United States)

    Saha, Swati; Basu, Tarakdas


    When leu- auxotrophs of Escherichia coli, after UV irradiation, were grown at temperatures between 30 and 47°C, the frequency of UV-induced mutation from leu- to leu+ revertant increased as the UV dose and the temperature increased. For cells exposed to a UV dose of 45 J/m2, the mutation frequency at 47°C was 1.9 times that at 30°C; for a dose of 90 J/m2, it was 3.25 times; and for 135 J/m2, it was 4.8 times. Similar enhancement of reversion frequency was observed when the irradiated cells were grown at 30°C in the presence of a heat shock inducer, ethanol (8% v/v). Heat shock-mediated enhancement of UV mutagenesis did not occur in an E. coli mutant sigma 32 (heat shock regulator protein), but sigma 32 overexpression in the mutant strain (transformed with a sigma 32-bearing plasmid) increased the UV-induced mutation frequency. These results suggest that heat stress alone has no mutagenic property, but when applied to UV-damaged cells, it enhances the UV-induced frequency of cell mutation.

  4. Coexisting/Coexpressing Genomic Libraries (CoGeL) identify interactions among distantly located genetic loci for developing complex microbial phenotypes. (United States)

    Nicolaou, Sergios A; Gaida, Stefan M; Papoutsakis, Eleftherios T


    In engineering novel microbial strains for biotechnological applications, beyond a priori identifiable pathways to be engineered, it is becoming increasingly important to develop complex, ill-defined cellular phenotypes. One approach is to screen genomic or metagenomic libraries to identify genes imparting desirable phenotypes, such as tolerance to stressors or novel catabolic programs. Such libraries are limited by their inability to identify interactions among distant genetic loci. To solve this problem, we constructed plasmid- and fosmid-based Escherichia coli Coexisting/Coexpressing Genomic Libraries (CoGeLs). As a proof of principle, four sets of two genes of the l-lysine biosynthesis pathway distantly located on the E. coli chromosome were knocked out. Upon transformation of these auxotrophs with CoGeLs, cells growing without supplementation were found to harbor library inserts containing the knocked-out genes demonstrating the interaction between the two libraries. CoGeLs were also screened to identify genetic loci that work synergistically to create the considerably more complex acid-tolerance phenotype. CoGeL screening identified combination of genes known to enhance acid tolerance (gadBC operon and adiC), but also identified the novel combination of arcZ and recA that greatly enhanced acid tolerance by 9000-fold. arcZ is a small RNA that we show increases pH tolerance alone and together with recA.

  5. Inhibition of Bacillus subtilis growth and sporulation by threonine. (United States)

    Lamb, D H; Bott, K F


    A 1-mg/ml amount of threonine (8.4 mM) inhibited growth and sporulation of Bacillus subtilis 168. Inhibition of sporulation was efficiently reversed by valine and less efficiently by pyruvate, arginine, glutamine, and isoleucine. Inhibition of vegetative growth was reversed by asparate and glutamate as well as by valine, arginine, or glutamine. Cells in minimal growth medium were inhibited only transiently by very high concentrations of threonine, whereas inhibition of sporulation was permanent. Addition of threonine prevented the normal increase in alkaline phosphatase and reduced the production of extracellular protease by about 50%, suggesting that threonine blocked the sporulation process relatively early. 2-Ketobutyrate was able to mimic the effect of threonine on sporulation. Sporulation in a strain selected for resistance to azaleucine was partially resistant. Seventy-five percent of the mutants selected for the ability to grow vegetatively in the presence of high threonine concentrations were found to be simultaneously isoleucine auxotrophs. In at least one of these mutants, the threonine resistance phenotpye could not be dissociated from the isoleucine requirement by transformation. This mutation was closely linked to a known ilvA mutation (recombination index, 0.16). This strain also had reduced intracellular threonine deaminase activity. These results suggest that threonine inhibits B. subtilis by causing valine starvation.

  6. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution. (United States)

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef


    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy.

  7. Divergent roles of Salmonella pathogenicity island 2 and metabolic traits during interaction of S. enterica serovar typhimurium with host cells.

    Directory of Open Access Journals (Sweden)

    Stefanie U Hölzer

    Full Text Available The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied.

  8. Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater. (United States)

    Antony, Chakkiath Paul; Doronina, Nina V; Boden, Rich; Trotsenko, Yuri A; Shouche, Yogesh S; Murrell, J Colin


    A moderately haloalkaliphilic methylotrophic bacterium possessing the ribulose monophosphate pathway for carbon assimilation, designated MPL(T), was isolated from Lonar Lake sediment microcosms that were oxidizing methane for two weeks. The isolate utilized methanol and was an aerobic, Gram-negative, asporogenous, motile, short rod that multiplied by binary fission. The isolate required NaHCO(3) or NaCl for growth and, although not auxotrophic for vitamin B(12), had enhanced growth with vitamin B(12). Optimal growth occurred with 0.5-2% (w/v) NaCl, at 28-30 °C and at pH 9.0-10.0. The cellular fatty acid profile consisted primarily of straight-chain saturated C(16:0) and unsaturated C(16:1)ω7c and C(18:1)ω7c. The major ubiquinone was Q-8. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Cells accumulated ectoine as the main compatible solute. The DNA G+C content was 50.0 mol%. The isolate exhibited 94.0-95.4% 16S rRNA gene sequence similarity with the type strains of methylotrophs belonging to the genus Methylophaga and 31% DNA-DNA relatedness with the reference strain, Methylophaga alcalica VKM B-2251(T). It is proposed that strain MPL(T) represents a novel species, Methylophaga lonarensis sp. nov. (type strain MPL(T)=VKM B-2684(T)=MCC 1002(T)).

  9. Methylotroph cloning vehicle (United States)

    Hanson, Richard S.; Allen, Larry N.


    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  10. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. (United States)

    Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D; Todor, Horia; Tong, Kenneth; Kimsey, Harvey; Wapinski, Ilan; Galardini, Marco; Cabal, Angelo; Peters, Jason M; Hachmann, Anna-Barbara; Rudner, David Z; Allen, Karen N; Typas, Athanasios; Gross, Carol A


    A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria.

  11. Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism (United States)

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari; Anderson, Lindsey N.; Nandhikonda, Premchendar; Rodionova, Irina A.; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R. W.; Metz, Thomas O.; Wright, Aaron T.


    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12. Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism. PMID:28137868

  12. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    Directory of Open Access Journals (Sweden)

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  13. The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS1249, flanking the erythromycin resistance gene ermCX. (United States)

    Tauch, A; Kassing, F; Kalinowski, J; Pühler, A


    Analysis of the 50-kb R-plasmid pTP10 from the clinical isolate Corynebacterium xerosis M82B revealed that the erythromycin resistance gene, ermCX, is located on a 4524-bp composite transposable element, Tn5432. The ends of Tn5432 are identical, direct repeats of an insertion sequence, designated IS1249, encoding a putative transposase of the IS256 family. IS1249 consists of 1385 bp with 45/42 imperfect terminal inverted repeats. The nucleotide sequence of the 1754-bp Tn5432 central region is 99% identical to the previously sequenced erythromycin resistance region of the Corynebacterium diphtheriae plasmid pNG2. It encodes the erythromycin resistance gene, ermCX, and an ORF homologous to the amino-terminal end of the transposase of IS31831 from Corynebacterium glutamicum. Transposons with regions flanking the insertion sites were recovered from the C. glutamicum chromosome by a plasmid rescue technique. Insertion of Tn5432 created 8-bp target site duplications. A Tn5432-induced isoleucine/valine-auxotrophic mutant was found to carry the transposon in the 5' region of the ilvBNC cluster; in pTP10 the transposon is inserted in a region similar to replication and partitioning functions of the Enterococcus faecalis plasmid pAD1 and the Agrobacterium tumefaciens plasmid pTAR.

  14. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Jacobsen, Susanne; Hammer, Karin;


    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients, by compari......The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients......, by comparison of prototrophic wild-type strains and auxotrophic domesticated (daily) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L,. lactis subsp. cremoris...... laboratory strain MG1363, which was originally derived from a dairy strain, After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shack repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase...

  15. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. (United States)

    Ott, Patrick A; Carvajal, Richard D; Pandit-Taskar, Neeta; Jungbluth, Achim A; Hoffman, Eric W; Wu, Bor-Wen; Bomalaski, John S; Venhaus, Ralph; Pan, Linda; Old, Lloyd J; Pavlick, Anna C; Wolchok, Jedd D


    Background Arginine deiminase (ADI) is an enzyme that degrades arginine, an amino acid that is important for growth and development of normal and neoplastic cells. Melanoma cells are auxotrophic for arginine, because they lack argininosuccinatesynthetase (ASS), a key enzyme required for the synthesis of arginine. Patients and methods Patients with advanced melanoma were treated with 40, 80 or 160 IU/m(2) ADI-PEG 20 i.m. weekly. Primary endpoints were toxicity and tumor response, secondary endpoints included metabolic response by (18)FDG-PET, pharmacodynamic (PD) effects upon circulating arginine levels, and argininosuccinate synthetase tumor expression by immunohistochemistry. Results 31 previously treated patients were enrolled. The main toxicities were grade 1 and 2 adverse events including injection site pain, rash, and fatigue. No objective responses were seen. Nine patients achieved stable disease (SD), with 2 of these durable for >6 months. Four of the 9 patients with SD had uveal melanoma. PD analysis showed complete plasma arginine depletion in 30/31 patients by day 8. Mean plasma levels of ADI-PEG 20 correlated inversely with ADI-PEG 20 antibody levels. Immunohistochemical ASS expression analysis in tumor tissue was negative in 24 patients, whereas 5 patients had arginine depletion. Although no RECIST responses were observed, the encouraging rate of SD in uveal melanoma patients indicates that it may be worthwhile to evaluate ADI-PEG 20 in this melanoma subgroup.

  16. [Mechanism of arginine deiminase activity by site-directed mutagenesis]. (United States)

    Li, Lifeng; Ni, Ye; Sun, Zhihao


    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  17. PEGylation and pharmacological characterization of a potential anti-tumor drug, an engineered arginine deiminase originated from Pseudomonas plecoglossicida. (United States)

    Zhang, Long; Liu, Menghan; Jamil, Serwanja; Han, Ruizhi; Xu, Guochao; Ni, Ye


    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for arginine-auxotrophic tumors. PEGylation is one of the best methods to formulate a bioconjugated protein with extended physical stability and reduced immunogenicity. Here, PEGylation and pharmacological properties of an engineered ADI originated from Pseudomonas plecoglossicida were studied. Among polyethylene glycol (PEG) reagents with succinimidyl ester groups varying in size and linkers, three PEGylated products with high yield and catalytic activity were further characterized, named ADI-SS(20 kDa), ADI-SC(20 kDa), and ADI-SPA(20 kDa). In the pharmacodynamic/pharmacokinetic (PD/PK) studies with ADI-SPA(20 kDa), a remarkable improvement in circulating half-life compared with native ADI was observed. ADI-SPA(20 kDa) injections via intravenous, intramuscular and subcutaneous routes all exhibited superior efficacy than native ADI on depleting serum arginine. Additionally, our results demonstrated that single ADI-SPA(20 kDa) administration of 5 U/mouse via intravenous injection could maintain serum arginine at an undetectable level for 5 days with a half-life of 53.2 h, representing 11-fold improvement in half-life than that of the native ADI. In a mice H22 hepatocarcinoma model, ADI-SPA(20 kDa) dosage of 5 U per 5 days showed an inhibition rate of 95.02% on tumor growth during 15-day treatments.

  18. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. (United States)

    Delage, B; Luong, P; Maharaj, L; O'Riain, C; Syed, N; Crook, T; Hatzimichael, E; Papoudou-Bai, A; Mitchell, T J; Whittaker, S J; Cerio, R; Gribben, J; Lemoine, N; Bomalaski, J; Li, C-F; Joel, S; Fitzgibbon, J; Chen, L-T; Szlosarek, P W


    Tumours lacking argininosuccinate synthetase-1 (ASS1) are auxotrophic for arginine and sensitive to amino-acid deprivation. Here, we investigated the role of ASS1 as a biomarker of response to the arginine-lowering agent, pegylated arginine deiminase (ADI-PEG20), in lymphoid malignancies. Although ASS1 protein was largely undetectable in normal and malignant lymphoid tissues, frequent hypermethylation of the ASS1 promoter was observed specifically in the latter. A good correlation was observed between ASS1 methylation, low ASS1 mRNA, absence of ASS1 protein expression and sensitivity to ADI-PEG20 in malignant lymphoid cell lines. We confirmed that the demethylating agent 5-Aza-dC reactivated ASS1 expression and rescued lymphoma cell lines from ADI-PEG20 cytotoxicity. ASS1-methylated cell lines exhibited autophagy and caspase-dependent apoptosis following treatment with ADI-PEG20. In addition, the autophagy inhibitor chloroquine triggered an accumulation of light chain 3-II protein and potentiated the apoptotic effect of ADI-PEG20 in malignant lymphoid cells and patient-derived tumour cells. Finally, a patient with an ASS1-methylated cutaneous T-cell lymphoma responded to compassionate-use ADI-PEG20. In summary, ASS1 promoter methylation contributes to arginine auxotrophy and represents a novel biomarker for evaluating the efficacy of arginine deprivation in patients with lymphoma.

  19. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Yun, P.; Nadkarni, M.A.; Ghadikolaee, N.B.; Nguyen, K.A.; Lee, M.; Hunter, N.; Collyer, C.A. (Sydney)


    Porphyromonas gingivalis is an obligately anaerobic bacterium recognized as an aetiological agent of adult periodontitis. P. gingivalis produces cysteine proteinases, the gingipains. The crystal structure of a domain within the haemagglutinin region of the lysine gingipain (Kgp) is reported here. The domain was named K2 as it is the second of three homologous structural modules in Kgp. The K2 domain structure is a 'jelly-roll' fold with two anti-parallel {beta}-sheets. This fold topology is shared with adhesive domains from functionally diverse receptors such as MAM domains, ephrin receptor ligand binding domains and a number of carbohydrate binding modules. Possible functions of K2 were investigated. K2 induced haemolysis of erythrocytes in a dose-dependent manner that was augmented by the blocking of anion transport. Further, cysteine-activated arginine gingipain RgpB, which degrades glycophorin A, sensitized erythrocytes to the haemolytic effect of K2. Cleaved K2, similar to that found in extracted Kgp, lacks the haemolytic activity indicating that autolysis of Kgp may be a staged process which is artificially enhanced by extraction of the protein. The data indicate a functional role for K2 in the integrated capacity conferred by Kgp to enable the porphyrin auxotroph P. gingivalis to capture essential haem from erythrocytes.

  20. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    Directory of Open Access Journals (Sweden)

    Naama Tepper

    Full Text Available Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via

  1. A programmable Escherichia coli consortium via tunable symbiosis.

    Directory of Open Access Journals (Sweden)

    Alissa Kerner

    Full Text Available Synthetic microbial consortia that can mimic natural systems have the potential to become a powerful biotechnology for various applications. One highly desirable feature of these consortia is that they can be precisely regulated. In this work we designed a programmable, symbiotic circuit that enables continuous tuning of the growth rate and composition of a synthetic consortium. We implemented our general design through the cross-feeding of tryptophan and tyrosine by two E. coli auxotrophs. By regulating the expression of genes related to the export or production of these amino acids, we were able to tune the metabolite exchanges and achieve a wide range of growth rates and strain ratios. In addition, by inverting the relationship of growth/ratio vs. inducer concentrations, we were able to "program" the co-culture for pre-specified attributes with the proper addition of inducing chemicals. This programmable proof-of-concept circuit or its variants can be applied to more complex systems where precise tuning of the consortium would facilitate the optimization of specific objectives, such as increasing the overall efficiency of microbial production of biofuels or pharmaceuticals.

  2. Identification and characterization of four new GCD genes in Saccharomyces cerevisiae. (United States)

    Niederberger, P; Aebi, M; Hütter, R


    Mutant strains, resistant against the amino acid analogues 5-methyltryptophan, 5-fluorotryptophan and canavanine were isolated, starting with a trp2 leaky auxotrophic strain. Of 10 such strains, only four turned out to be of the "general control derepressed" (gcd) mutant type. Three other isolates were shown to be defective in the general amino acid permease system, while the remaining three strains displayed low spore viability and were not further investigated. Complementation tests amongst the four new gcd-mutant strains, including strain RH558 gcd2-1 isolated earlier, yielded five complementation groups: GCD2, GCD3, GCD4, GCD5, and GCD6. All mutant strains showed a dual phenotype, which was not separable by wild type backcrosses: "constitutive derepression" and "slow growth". Epistasis of all gcd mutations over gcn1-1, gcn2-1 and gcn3-1 was found with respect to both phenotypes, except for gcd5-1, which was lethal in these combinations. On the other hand gcn4-101 was found to be epistatic over all gcd mutations, but only with respect to the "constitutive derepression" phenotype, and not to "slow growth"; again the combination with gcd5-1 was lethal. Mutation gcd2-1 was mapped on chromosome VII, 50 cM from leu1 and 22 cM from ade6. A new model is discussed, in which GCD-genes are involved in the amino acid uptake into the vacuoles.

  3. A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process (United States)

    Schilling; Pfefferle; Bachmann; Leuchtenberger; Deckwer


    A specially designed model reactor based on a 42-L laboratory fermentor was equipped with six stirrers (Rushton turbines) and five cylindrical disks. In this model reactor, the mixing time, Theta(90), turned out to be 13 times longer compared with the 42-L standard laboratory fermentor fitted with two Rushton turbines and four wall-fixed longitudinal baffles. To prove the suitability of the model reactor for scaledown studies of mixing-time-dependent processes, parallel exponential fed-batch cultivations were carried out with the leucine-auxotrophic strain, Corynebacterium glutamicum DSM 5715, serving as a microbial test system. L‐Leucine, the process-limiting substrate, was fed onto the liquid surface of both reactors. Cultivations were conducted using the same inoculum material and equal oxygen supply. The model reactor showed reduced sugar consumption (-14%), reduced ammonium consumption (-19%), and reduced biomass formation (-7%), which resulted in a decrease in L-lysine formation (-12%). These findings were reflected in less specific enzyme activity, which was determined for citrate synthase (CS), phosphoenolpyruvate carboxylase (PEP-C), and aspartate kinase (AK). The reduced specific activity of CS correlated with lower CO(2) evolution (-36%) during cultivation. The model reactor represents a valuable tool to simulate the conditions of poor mixing and inhomogeneous substrate distribution in bioreactors of industrial scale. Copyright 1999 John Wiley & Sons, Inc.

  4. Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium. (United States)

    Douglas, Sarah M; Chubiz, Lon M; Harcombe, William R; Ytreberg, F Marty; Marx, Christopher J


    Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium, we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phenotypes that determine community dynamics. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymous mutations in metA, encoding homoserine trans-succinylase (HTS), were detected in each evolved S. enterica methionine cooperator and were shown to be necessary for cooperative consortia growth. Molecular modeling was used to predict that most of the non-synonymous mutations slightly increase the binding affinity for HTS homodimer formation. Despite this genetic parallelism and trend of increasing protein binding stability, these metA alleles gave rise to a wide range of phenotypic diversity in terms of individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet also had the slowest individual growth rates compared to less cooperative strains. Thus, although the genetic basis of adaptation was quite similar across independent origins of cooperative phenotypes, quantitative measurements of metabolite production were required to predict either the individual-level growth consequences or how these propagate to community-level behavior.

  5. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins. (United States)

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D


    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  6. CD8 Knockout Mice Are Protected from Challenge by Vaccination with WR201, a Live Attenuated Mutant of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Samuel L. Yingst


    Full Text Available CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals’ anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.

  7. The isolation of Staphylococcus aureus tea tree oil-reduced susceptibility mutants. (United States)

    Cuaron, Jesus A; Dulal, Santosh; Cooke, Peter H; Torres, Nathanial J; Gustafson, John E


    Tea tree oil (TTO)-reduced susceptibility (TTORS) mutants of two Staphylococcus aureus laboratory strains were isolated utilizing TTO gradient plates. Attempts to isolate TTORS mutants employing agar plates containing single TTO concentrations failed. All TTORS mutants demonstrated a small colony variant (SCV) phenotype and produced cells with a smaller diameter, as determined by scanning electron microscopy. The addition of SCV auxotrophic supplements to media did not lead to an increase in TTORS mutant colony size. Revertants were also isolated from the TTORS mutants following growth in drug-free media, and all revertant strains demonstrated phenotypes similar to their respective parent strains. Transmission electron microscopy revealed that an SH1000 TTORS mutant demonstrated a thinner cell wall and novel septal invaginations compared with parent strain SH1000. In addition, comparative genomic sequencing did not reveal any mutations in an SH1000 TTORS mutant previously linked to well-characterized SCV genotypes. This study demonstrates that TTO can select for a unique SCV phenotype.

  8. Unambiguous demonstration of triple-helix-directed gene modification. (United States)

    Barre, F X; Ait-Si-Ali, S; Giovannangeli, C; Luis, R; Robin, P; Pritchard, L L; Helene, C; Harel-Bellan, A


    Triple-helix-forming oligonucleotides (TFOs), which can potentially modify target genes irreversibly, represent promising tools for antiviral therapies. However, their effectiveness on endogenous genes has yet to be unambiguously demonstrated. To monitor endogenous gene modification by TFOs in a yeast model, we inactivated an auxotrophic marker gene by inserting target sequences of interest into its coding region. The genetically engineered yeast cells then were treated with psoralen-linked TFOs followed by UV irradiation, thus generating highly mutagenic covalent crosslinks at the target site whose repair could restore gene function; the number of revertants and spectrum of mutations generated were quantified. Results showed that a phosphoramidate TFO indeed reaches its target sequence, forms crosslinks, and generates mutations at the expected site via a triplex-mediated mechanism: (i) under identical conditions, no mutations were generated by the same TFO at two other loci in the target strain, nor in an isogenic control strain carrying a modified target sequence incapable of supporting triple-helix formation; (ii) for a given target sequence, whether the triplex was formed in vivo on an endogenous gene or in vitro on an exogenous plasmid, the nature of the mutations generated was identical, and consistent with the repair of a psoralen crosslink at the target site. Although the mutation efficiency was probably too low for therapeutic applications, our results confirm the validity of the triple-helix approach and provide a means of evaluating the effectiveness of new chemically modified TFOs and analogs.

  9. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, G.R.; Taylor, S.Y. (National Institute for Medical Research, London (England))


    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number.

  10. Aspects of DNA repair and nucleotide pool imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R.


    Evidence that optimum repair depends on adequate pools of deoxynucleotide triphosphates (dNTPs) comes from the study of pyrimidine auxotrophs of Ustilago maydis. These strains are sensitive to UV light and X-rays, and for pyr1-1 it has been shown that the intracellular concentration of dTTP is reduced about 7-fold. The survival curve of pyr1-1 after UV-treatment, and split dose experiments with wild-type cells, provide evidence for an inducible repair mechanism, which probably depends on genetic recombination. Although inducible repair saves cellular resources, it has the disadvantage of becoming ineffective at doses which are high enough to inactivate the repressed structural gene(s) for repair enzymes. It is clear that a wide variety of repair mechanisms have evolved to remove lesions which arise either spontaneously or as a result of damage from external agents. Nevertheless, it would be incorrect to assume that all species require all possible pathways of repair. It is now well established that the accuracy of DNA and protein synthesis depends on proof-reading or editing mechanisms. Optimum accuracy levels will evolve from the balance between error avoidance in macromolecular synthesis and physiological efficiency in growth and propagation.

  11. Phenotypic comparison of samdc and spe mutants reveals complex relationships of polyamine metabolism in Ustilago maydis. (United States)

    Valdés-Santiago, Laura; Cervantes-Chávez, José Antonio; Winkler, Robert; León-Ramírez, Claudia G; Ruiz-Herrera, José


    Synthesis of spermidine involves the action of two enzymes, spermidine synthase (Spe) and S-adenosylmethionine decarboxylase (Samdc). Previously we cloned and disrupted the gene encoding Spe as a first approach to unravel the biological function of spermidine in Ustilago maydis. With this background, the present study was designed to provide a better understanding of the role played by Samdc in the regulation of the synthesis of this polyamine. With this aim we proceeded to isolate and delete the gene encoding Samdc from U. maydis, and made a comparative analysis of the phenotypes of samdc and spe mutants. Both spe and samdc mutants behaved as spermidine auxotrophs, and were more sensitive than the wild-type strain to different stress conditions. However, the two mutants displayed significant differences: in contrast to spe mutants, samdc mutants were more sensitive to LiCl stress, high spermidine concentrations counteracted their dimorphic deficiency, and they were completely avirulent. It is suggested that these differences are possibly related to differences in exogenous spermidine uptake or the differential location of the respective enzymes in the cell. Alternatively, since samdc mutants accumulate higher levels of S-adenosylmethionine (SAM), whereas spe mutants accumulate decarboxylated SAM, the known opposite roles of these metabolites in the processes of methylation and differentiation offer an additional attractive hypothesis to explain the phenotypic differences of the two mutants, and provide insights into the additional roles of polyamine metabolism in the physiology of the cell.

  12. Identification of Moraxella bovis and related species from calves with IBK and goats by qualitative genetic transformation assay. (United States)

    Kodjo, A; Exbrayat, P; Richard, Y


    Eight Moraxella bovis strains isolated from bovine pink eye, 16 Moraxella bovis related strains isolated from healthy goats nasal flora, one nonhemolytic Moraxella sp. isolated from bovine conjunctivitis and different collection strains of Moraxella and Branhamella genus were studied through the combined use of qualitative genetic transformation assay and the ability to grow on a moraxella bovis defined medium (medium MB). Crude DNA extracted from the strains studied were used to transform two mutant auxotroph competent strains of Moraxella bovis CIP 103741 and CIP 103743. Non-specific positive transformation was obtained with mutant assay strain CIP 103743 when treated with DNA from caprine or bovine Moraxella strains, collection strains of Moraxella bovis, Moraxella lacunata, Moraxella nonliquefaciens and strains of Branhamella genus, whereas specific transformation was observed with mutant assay CIP 103741 when treated only with DNA from all the Moraxella bovis (collection and clinical isolates) and 14 of the 16 caprine Moraxella bovis related strains. The specificity and the simplicity of the test make it suitable for use in clinical laboratories.

  13. Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation. (United States)

    Fröhlich, Florian; Christiano, Romain; Walther, Tobias C


    Mass spectrometry (MS)-based quantitative proteomics has matured into a methodology able to detect and quantitate essentially all proteins of model microorganisms, allowing for unprecedented depth in systematic protein analyses. The most accurate quantitation approaches currently require lysine auxotrophic strains, which precludes analysis of most existing mutants, strain collections, or commercially important strains (e.g. those used for brewing or for the biotechnological production of metabolites). Here, we used MS-based proteomics to determine the global response of prototrophic yeast and bacteria to exogenous lysine. Unexpectedly, down-regulation of lysine synthesis in the presence of exogenous lysine is achieved via different mechanisms in different yeast strains. In each case, however, lysine in the medium down-regulates its biosynthesis, allowing for metabolic proteome labeling with heavy-isotope-containing lysine. This strategy of native stable isotope labeling by amino acids in cell culture (nSILAC) overcomes the limitations of previous approaches and can be used for the efficient production of protein standards for absolute SILAC quantitation in model microorganisms. As proof of principle, we have used nSILAC to globally analyze yeast proteome changes during salt stress.

  14. Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris. (United States)

    Budisa, Nediljko; Wenger, Waltraud; Wiltschi, Birgit


    We report the in vivo fluorination of the tryptophan, tyrosine, and phenylalanine residues in a glycosylation-deficient mutant of Candida antarctica lipase B, CalB N74D, expressed in the methylotrophic yeast Pichia pastoris and subsequently segregated into the growth medium. To achieve this, a P. pastoris strain auxotrophic for all three aromatic amino acids was supplemented with 5-fluoro-L-tryptophan, meta-fluoro-(DL)-tyrosine, or para-fluoro-L-phenylalanine during expression of CalB N74D. The residue-specific replacement of the canonical amino acids by their fluorinated analogs was confirmed by mass analysis. Although global fluorination induced moderate changes in the secondary structure of CalB N74D, the fluorous variant proteins were still active lipases. However, their catalytic activity was lower than that of the non-fluorinated parent protein while their resistance to proteolytic degradation by proteinase K remained unchanged. Importantly, we observed that the global fluorination prolonged the shelf life of the lipase activity, which is an especially useful feature for the storage of, e.g., therapeutic proteins. Our study represents the first step on the road to the production of biotechnologically and pharmacologically relevant fluorous proteins in P. pastoris.

  15. Design and characterization of auxotrophy-based amino acid biosensors.

    Directory of Open Access Journals (Sweden)

    Felix Bertels

    Full Text Available Efficient and inexpensive methods are required for the high-throughput quantification of amino acids in physiological fluids or microbial cell cultures. Here we develop an array of Escherichia coli biosensors to sensitively quantify eleven different amino acids. By using online databases, genes involved in amino acid biosynthesis were identified that - upon deletion - should render the corresponding mutant auxotrophic for one particular amino acid. This rational design strategy suggested genes involved in the biosynthesis of arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan, and tyrosine as potential genetic targets. A detailed phenotypic characterization of the corresponding single-gene deletion mutants indeed confirmed that these strains could neither grow on a minimal medium lacking amino acids nor transform any other proteinogenic amino acid into the focal one. Site-specific integration of the egfp gene into the chromosome of each biosensor decreased the detection limit of the GFP-labeled cells by 30% relative to turbidometric measurements. Finally, using the biosensors to determine the amino acid concentration in the supernatants of two amino acid overproducing E. coli strains (i.e. ΔhisL and ΔtdcC both turbidometrically and via GFP fluorescence emission and comparing the results to conventional HPLC measurements confirmed the utility of the developed biosensor system. Taken together, our study provides not only a genotypically and phenotypically well-characterized set of publicly available amino acid biosensors, but also demonstrates the feasibility of the rational design strategy used.

  16. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway. (United States)

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A; Ralser, Markus


    Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway.

  17. A MultiSite GatewayTM vector set for the functional analysis of genes in the model Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nagels Durand Astrid


    Full Text Available Abstract Background Recombinatorial cloning using the GatewayTM technology has been the method of choice for high-throughput omics projects, resulting in the availability of entire ORFeomes in GatewayTM compatible vectors. The MultiSite GatewayTM system allows combining multiple genetic fragments such as promoter, ORF and epitope tag in one single reaction. To date, this technology has not been accessible in the yeast Saccharomyces cerevisiae, one of the most widely used experimental systems in molecular biology, due to the lack of appropriate destination vectors. Results Here, we present a set of three-fragment MultiSite GatewayTM destination vectors that have been developed for gene expression in S. cerevisiae and that allow the assembly of any promoter, open reading frame, epitope tag arrangement in combination with any of four auxotrophic markers and three distinct replication mechanisms. As an example of its applicability, we used yeast three-hybrid to provide evidence for the assembly of a ternary complex of plant proteins involved in jasmonate signalling and consisting of the JAZ, NINJA and TOPLESS proteins. Conclusion Our vectors make MultiSite GatewayTM cloning accessible in S. cerevisiae and implement a fast and versatile cloning method for the high-throughput functional analysis of (heterologous proteins in one of the most widely used model organisms for molecular biology research.

  18. Assimilation of NAD(+) precursors in Candida glabrata. (United States)

    Ma, Biao; Pan, Shih-Jung; Zupancic, Margaret L; Cormack, Brendan P


    The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD(+)) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD(+). C. glabrata salvage pathways defined in this article allow NAD(+) to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD(+) via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD(+) sources during disseminated infection.

  19. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. (United States)

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe


    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.

  20. Circular permutation of a synthetic eukaryotic chromosome with the telomerator (United States)

    Mitchell, Leslie A.; Boeke, Jef D.


    Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the “telomerator,” a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes. PMID:25378705

  1. Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion.

    Directory of Open Access Journals (Sweden)

    Raphaëlle Laureau


    Full Text Available In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH, allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG. Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs in diploid strains without undergoing sexual reproduction.

  2. Salmonella typhimurium A1-R tumor targeting in immunocompetent mice is enhanced by a traditional Chinese medicine herbal mixture. (United States)

    Zhang, Yong; Zhang, Nan; Su, Shibing; Hoffman, Robert M; Zhao, Ming


    We have developed a bacterial cancer therapy strategy using the genetically-engineered strain Salmonella typhimurium A1-R (A1-R). A1-R is auxotrophic for leu and arg which attenuates bacterial growth in normal tissue but allows high tumor virulence. A1-R is effective against metastatic human and murine cancer cell lines in clinically-relevant nude-mouse models. However, A1-R treatment of tumors in immunocompetent mouse models with high doses is limited by toxicity. The current study evaluated a traditional Chinese medicine (TCM) herbal mixture in combination with A1-R therapy in a syngeneic metastatic immunocompetent mouse model of highly aggressive lung cancer. In a model of Lewis lung carcinoma, the combination of a TCM herbal mixture and S. typhimurium A1-R enabled bacteria to be safely administered at the large dose of 2 × 10(7) colony forming units once a week i.v. with increased treatment efficacy and reduced toxicity compared to monotherapy with A1-R. The herbal mixture prevented body weight loss, spleen weight gain and liver infection by A1-R, as well as hemorrhagic lesions on the skin, liver, and spleen, all observed with A1-R monotherapy. The results of the present study suggest that the combination of A1-R and TCM has important potential for therapy of highly aggressive types of cancer, including those which are resistant to standard therapy.

  3. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin.

    Directory of Open Access Journals (Sweden)

    Steve P Bernier

    Full Text Available High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin-antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin.

  4. Characterization of the Pivotal Carbon Metabolism of Streptococcus suis Serotype 2 under ex Vivo and Chemically Defined in Vitro Conditions by Isotopologue Profiling* (United States)

    Willenborg, Jörg; Huber, Claudia; Koczula, Anna; Lange, Birgit; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph


    Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [13C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid. PMID:25575595

  5. Characterization of the pivotal carbon metabolism of Streptococcus suis serotype 2 under ex vivo and chemically defined in vitro conditions by isotopologue profiling. (United States)

    Willenborg, Jörg; Huber, Claudia; Koczula, Anna; Lange, Birgit; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph


    Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [(13)C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid.

  6. Bioorthogonal probes for imaging sterols in cells. (United States)

    Jao, Cindy Y; Nedelcu, Daniel; Lopez, Lyle V; Samarakoon, Thilani N; Welti, Ruth; Salic, Adrian


    Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited. We introduce a robust and versatile method for sterol microscopy based on C19 alkyne cholesterol and oxysterol analogues. These sterol analogues are fully functional; they rescue growth of cholesterol auxotrophic cells and faithfully recapitulate the multiple roles that sterols play in Hedgehog signal transduction. Alkyne sterol analogues incorporate efficiently into cellular membranes and can be imaged with high resolution after copper(I)-catalyzed azide-alkyne cycloaddition reaction with fluorescent azides. We demonstrate the use of alkyne sterol probes for visualizing the subcellular distribution of cholesterol and for two-color imaging of sterols and choline phospholipids. Our imaging strategy should be broadly applicable to studying the role of sterols in normal physiology and disease.

  7. Nuclear hormone receptors put immunity on sterols. (United States)

    Santori, Fabio R


    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  8. Brucella, nitrogen and virulence. (United States)

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques


    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  9. Mitochondrial DNA ligase is dispensable for the viability of cultured cells but essential for mtDNA maintenance. (United States)

    Shokolenko, Inna N; Fayzulin, Rafik Z; Katyal, Sachin; McKinnon, Peter J; Wilson, Glenn L; Alexeyev, Mikhail F


    Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ(0) phenotype.

  10. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors. (United States)

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E


    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors.

  11. Solopathogenic strain formation strongly differs among Ustilaginaceae species. (United States)

    Sabbagh, Seyed Kazem; Diagne-Lèye, Gnagna; Naudan, Mathieu; Roux, Christophe Paul


    The pathogenicity of smut fungi is initiated by the fusion of two compatible saprotrophic yeasts that give rise to the formation of dikaryotic pathogenic hyphae. It has been described in the literature that complementation assays of auxotrophic yeasts of Ustilago maydis have allowed the isolation of diploid strains that are solopathogenic, i.e. pathogenic in the absence of mating. The occurrence of such strains from germinating teliospores was not investigated. We evaluated the ability of teliospores to generate solopathogenic strains in three species of smut fungi: Sporisorium reilianum f.sp. zeae, U. maydis and Moesziomyces penicillariae. Using an approach based on the stability of pseudohyphae of solopathogenic strains, we isolated the strain SRZS1 from teliospores of S. reilianum. Microscopic observations and analyses of mating-type alleles showed that SRZS1 is monokaryotic and diploid. Inoculation tests on maize plantlets indicated that SRZS1 is infectious. The same protocol was applied to polyteliosporal isolates from M. penicillariae, U. maydis and S. reilianum of diverse geographic origin. Surprisingly, all strains from teliospores of M. penicillariae were solopathogenic, whereas only few solopathogenic strains were obtained from the other two species. The possible incidence of solopathogenic strain production in the biology of these species is discussed.

  12. Comparison of the behavior of epiphytic fitness mutants of pseudomonas syringae under controlled and field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, G.A.; Lindow, S.E. (Univ. of California, Berkeley, CA (United States))


    The epiphytic fitness of four Tn5 of Pseudomonas syringae that exhibited reduced epiphytic fitness in the laboratory was evaluated under field conditions. The mutants differed more from the parental strain under field conditions than under laboratory conditions, in their survival immediately following inoculation onto bean leaves and in the size of the epiphytic populations that they established at near-wild type rates, while the others exhibited reduced survival only in the warmest, driest conditions tested and grew epiphytically at reduced rates or, in the case of one mutant, not at all. The presence of the parental strain, B728a, did not influence the survival or growth of three of the mutants under field conditions; however, one mutant, an auxotroph, established larger populations in the presence of B728a than in its absence, possibly because of cross-feeding by By28a in planta. Experiments with B728a demonstrated that established epiphytic populations survived exposure of leaves to dry conditions better than newly inoculated cells did and that epiphytic survival was not dependent on the cell density in the inoculum. Three of the mutants behaved similarly to two nonpathogenic strains of P. syringae, suggesting that the mutants may be altered in traits that are missing or poorly expressed in naturally occurring nonpathogenic epiphytes. 58 refs., 5 figs., 3 tabs.

  13. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation. (United States)

    Lin, Xiaorong; Chacko, Nadia; Wang, Linqi; Pavuluri, Yashwant


    Cryptococcus neoformans is the etiologic agent of cryptococcal meningitis that causes more than half a million deaths worldwide each year. This capsulated basidiomycetous yeast also serves as a model for micropathogenic studies. The ability to make stable mutants, either via ectopic integration or homologous recombination, has been accomplished using biolistic transformation. This technical advance has greatly facilitated the research on the basic biology and pathogenic mechanisms of this pathogen in the past two decades. However, biolistic transformation is costly, and its reproducibility varies widely. Here we found that stable ectopic integration or targeted gene deletion via homologous replacement could be accomplished through electroporative transformation. The stability of the transformants obtained through electroporation and the frequency of homologous replacement is highly dependent on the selective marker. A frequency of homologous recombination among the stable transformants obtained by electroporation is comparable to those obtained by biolistic transformation (∼10%) when dominant drug selection markers are used, which is much higher than what has been previously reported for electroporation when auxotrophic markers were used (0.001% to 0.1%). Furthermore, disruption of the KU80 gene or generation of gene deletion constructs using the split marker strategy, two approaches known to increase homologous replacement among transformants obtained through biolistic transformation, also increase the frequency of homologous replacement among transformants obtained through electroporation. Therefore, electroporation provides a low cost alternative for mutagenesis in Cryptococcus.

  14. Disruption of phospholipase B gene, PLB1, increases the survival of baker's yeast Torulaspora delbrueckii. (United States)

    Watanabe, Y; Imai, K; Oishi, H; Tamai, Y


    An uracil auxotrophic mutant of baker's yeast Torulaspora delbrueckii, which is resistant to 5-fluoro-orotic acid, was complemented by transformation with YEp24 which harbors 2 microns origin and URA3 derived from Saccharomyces cerevisiae. The phospholipase B in T. delbrueckii cells is active in both acidic and alkaline conditions. However, activity of phospholipase B gene (PLB1) in cells of disruption mutant (plb1:: URA3) was lost in both conditions, which indicates that all phospholipase B activity is encoded by a single gene (or a single polypeptide) in these yeast cells. Over-expression of PLB1 with YEp plasmid vector in T. delbrueckii cells showed approximately 2.5-fold increase in phospholipase B activity, comparing with that in wild-type cells. Cells of plb1 delta mutant showed increased survival when cells of plb1 delta mutant and wild-type strain were incubated in water at 30 degrees C. Cells of PLB1-over-expressed strain died rapidly even during the cultivation period, indicating that phospholipase B activity may be a determinant for the survival of this yeast.

  15. Construction of a Trp- commercial baker's yeast strain by using food-safe-grade dominant drug resistance cassettes. (United States)

    Estruch, Francisco; Prieto, José Antonio


    We have designed a food-safe-grade module for gene disruptions in commercial baker's yeast strains, which contains the G418 resistance cassette, KanMX4, flanked by direct repeats from the MEL1 gene of Saccharomyces cerevisiae. This module was used to obtain a Trp(-) auxotrophic mutant of the polyploid HY strain by successive targeting to the TRP1 locus and later in vivo excision of the kan(r) marker. Southern blot analysis indicated that HY contains five copies of the TRP1 gene. However, after four disruption rounds, a strain named HYtrpM(4), unable to grow in the absence of tryptophan, was selected. Southern and Northern analysis of HYtrpM(4) cells showed that a remaining functional wild-type copy was still present, suggesting that the level of phosphoribosylanthranylate isomerase activity, resulting from a single copy of TRP1, is too low to sustain growth. Accordingly, a high reversion frequency of the Trp(-) phenotype, through gene conversion, was found in cells of the mutant strain. Nevertheless, this was not a drawback for its use as a recipient strain of heterologous genes. Indeed, YEpACT-X24 transformants were stable after 25 generations and expressed and secreted high levels of active recombinant xylanase. These data indicate that the new Trp(-) strain can be used to generate a stable recombinant yeast that fulfils all the requirements and market criteria for commercial utilisation.

  16. Energy-related pollutants in the environment: the use of short-term tests for mutagenicity in the isolation and identification of biohazards. [Escherichia coli, Salmonella, animal cells, Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Epler, J. L.; Larimer, F. W.; Rao, T. K.; Nix, C. E.; Ho, T


    In an effort to gather information on the potential genetic hazards of existing or proposed energy generating or conversion systems, we have begun a correlated analytical and genetic analysis of a number of technologies. The work is divided into two phases: one dealing with known compounds expected to occur in the environment through energy production, conversion, or use; and the other dealing with actual samples from existing or experimental processes. To approach the problems of dealing with and the testing of large numbers of compounds, we set up a form of the tier system. Operating units utilizing Salmonella, E. coli, yeast, human leukocytes, mammalian cells, and Drosophila have been initiated. Various liquid-liquid extraction methods and column chromatographic separations have been applied to crude products and effluents from oil shale, coal liquefaction, and coal gasification processes. Mutagenicity of the various fractions is assayed using reversion of histidine-requiring auxotrophs of Salmonella typhimurium and comparative studies are carried out with the other genetic systems. In order to incorporate metabolic activation of these fractions and compounds, rat liver homogenates are used in the various assays. Results implicate chemicals occurring in the basic and the neutral fractions as potential genetic hazards. Chemical constituents of these fractions (identified or predicted) were tested individually for their mutagenic activity and correlated with the genetic monitoring.

  17. Gene therapy of mitochondrial DNA mutations: a brief, biased history of allotopic expression in mammalian cells. (United States)

    Zullo, S J


    Successful treatment of mitochondrial DNA (mtDNA) mutations might be possible by construction of mtDNA-encoded protein genes so that they can be inserted into the nuclear genome and the protein expressed in the mitochondria (allotopic expression). This technique would require individual assembly of all 13 mtDNA-encoded protein genes with an aminoterminal leader peptide that directs the cytoplasmic translated protein to the mitochondrial membrane. The 13 allotopic genes could be inserted into the nuclear genome of a patient's stem cell that had been "cured" of its nascent mtDNA via ethidium bromide treatment (rho-zero cell). The rho-zero cell would be a uridine auxotroph, and recovery from uridine auxotrophy would indicate successful transformation. The patient's own cells could then be returned to the patient's body. With a selective advantage of recovered oxidative phosphorylation, the transformed cells could replace cells with mtDNA mutations. Results of experiments by us on allotopically expressed CHO ATPase6 and of experiments by other workers suggest that there might be competition with endogenous mtDNA-encoded proteins if the particular protein gene is not removed from the endogenous mitochondrial genomes. Thus, it is likely that all 13 mtDNA-encoded protein genes will need to be allotopically expressed, with concomitant removal of all mtDNA genomes, in order for this form of mtDNA gene therapy to be successful.

  18. Gene modified Ecoli DH5 for the treatment of liver metastasis of colon cancer in nude mice%经基因改造大肠杆菌DH5对裸鼠结肠癌肝转移灶的治疗效果

    Institute of Scientific and Technical Information of China (English)

    姜宏华; 周辉; 张纪伟; 莱代莉; 子树明; 徐佶; 杜鹏; 杨宝仁; 崔龙


    Objective The operon of formic dehydrogenase gene which was sensitive to hypoxia, the promoter of lux gene which could perceive the difference of cell density, and diphtheria toxin gene were constructed by synthetic AND gate methods. Then all these kinds of gene were imported into auxotrophy Ecoli DH5α mutagenized by N-Methyl-N'-nitro-N-nitrosoguanidine (NTG), which was eventually injected into nude mice with colon cancer. And the efficacy of this gene modified Ecoli DH5α on the liver metastasis of colon cancer was observed. Methods The plasmid was constructed and imported into auxotrophy Ecoli DH5α, and then the Ecoli DH5α was injected into 10 nude mice to observe the toxicity, and was injected into 20 nude mice with liver metastasis of colon cancer to observe the efficacy. Results Ten mice injected with wild type of Ecoli DH5α were all dead, and only one was dead of those injected with auxotrophy Ecoli DH5α. The size of liver metastasis of colon cancer in mice injected with auxotrophs Ecoli DH5α which contained plasmid was smaller than that contained no plasmid. Conclusion The auxotrophs Ecoli DH5α is safe for normal mice, and has chemotaxis and anti-tumor effect toward cancer foci.%目的:利用"与"门(AND gate)方法对缺氧敏感的甲酸脱氢酶基因操纵子、能感知细胞密度差异的lux基因转录启动子、白喉毒素基因等基因进行构建,导入NTG诱导的减毒营养缺陷型DH5α大肠杆菌(Ecoli DH5α),注射入荷瘤鼠,观察其对结肠癌肝转移灶的作用.方法:先构建质粒,然后导入诱变后DH5α大肠杆菌,注射入10只裸鼠体内,观察其毒性.后对20只结肠癌肝转移的荷瘤鼠注射后观察疗效.结果:注射野生型DH5α大肠杆茵10只裸鼠均死亡,而注射营养缺陷型DH5α大肠杆茵只有1只死亡,与未转染质粒的营养缺陷型DH5α大肠杆菌相比,注射含质粒的营养缺陷型DH5α大肠杆菌荷瘤鼠的癌转移灶大小明显小于对照组.结论:含"与"

  19. AcMNPV e18基因酵母双杂交诱饵载体构建和转录自激活检测%Construction of an Yeast Two-Hybrid Bait Vector of Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) and Testing of Autonomous Transcriptional Activation

    Institute of Scientific and Technical Information of China (English)

    史瑞丽; 周晓伟; 黎路林


    The DNA sequence encoding an envelope protein,ODV-E18,of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was amplified by PCR and cloned into pGBKT7 to construct bait plasmid pGBKT7-e18 for yeast two-hybrid screening.The bait plasmid was used to transform yeast strains Y187 and AH109 respectively for assays on cytotoxity and autonomous transcriptional activation.Both transformed Y187 and AH109 cells formed white colonies on the plates with auxotroph SD/-Trp medium and X-gal,but could not grow on the plates with auxotroph SD/-Trp/-His or SD/-Trp/-Ade medium,showing that the BD-EI8 encoded by the bait plasmid could not activate transcription of the reporter genes.The Y187 cells transformed by the bait plasmid grew as fast as the ones transformed with the empty vector,indicating that BD-E18 was nontoxic to the cells.The results suggested that AcMNPV ODV-E18 is unlikely involved in regulation on transcription of host or virus genes,and that the coding sequence of El8 could be used as bait to screen a cDNA library of host insect for identification of proteins interacting with the viral protein.%用PCR方法扩增苜蓿银纹夜蛾核多角体病毒(Autographa californica multiple nueleopolyhedrovirus,AcMNPV)被膜蛋白ODV-E18基因,克隆至酵母双杂交诱饵栽体pGBKT7构建诱饵质粒pGBKT7-el8.将诱饵质粒分别转化酵母菌株Y187和AH109感受态细胞,被转化细胞在涂有X-gal的SD/-Trp营养缺陷型固体培养基上形成白色菌落;在SD/-Trp/-His和SD/-Trp/-Ade固体培养基上均不形成菌落,表明诱饵基因表达产物BD-E18在这两种细胞中都不能激活报告基因转录.pGBKT7-e18转化的Y187细胞在SD/-Trp营养缺陷型液体培养基中的生长速度与空载体转化细胞相同,显示BD-E18对酵母细胞无细胞毒性.结果表明,AcMNPV ODV-E18可能不直接参与对宿主细胞或病毒基因表达的调节,其编码基因可以作为诱饵基因通过筛查病毒宿主cDNA文库识别与其相互作用的蛋白质.

  20. Vitamin B1 in marine sediments: pore water concentration gradient drives benthic flux with potential biological implications

    Directory of Open Access Journals (Sweden)

    Danielle eMonteverde


    Full Text Available Vitamin B1, or thiamin, can limit primary productivity in marine environments, however the major marine environmental sources of this essential coenzyme remain largely unknown. Vitamin B1 can only be produced by organisms that possess its complete synthesis pathway, while other organisms meet their cellular B1 quota by scavenging the coenzyme from exogenous sources. Due to high bacterial cell density and diversity, marine sediments could represent some of the highest concentrations of putative B1 producers, yet these environments have received little attention as a possible source of B1 to the overlying water column. Here we report the first dissolved pore water profiles of B1 measured in cores collected in two consecutive years from Santa Monica Basin, CA. Vitamin B1 concentrations were fairly consistent between the two years ranging from 30 pM up to 770 pM. A consistent maximum at ~5 cm sediment depth covaried with dissolved concentrations of iron. Pore water concentrations were higher than water column levels and represented some of the highest known environmental concentrations of B1 measured to date, (over two times higher than maximum water column concentrations suggesting increased rates of cellular production and release within the sediments. A one dimensional diffusion-transport model applied to the B1 profile was used to estimate a diffusive benthic flux of ~0.7 nmol m 2 d-1. This is an estimated flux across the sediment-water interface in a deep sea basin; if similar magnitude B-vitamin fluxes occur in shallow coastal waters, benthic input could prove to be a significant B1-source to the water column and may play an important role in supplying this organic growth factor to auxotrophic primary producers.

  1. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning (United States)

    Alberca, Lucas N.; Sbaraglini, María L.; Balcazar, Darío; Fraccaroli, Laura; Carrillo, Carolina; Medeiros, Andrea; Benitez, Diego; Comini, Marcelo; Talevi, Alan


    Chagas disease is a parasitic infection caused by the protozoa Trypanosoma cruzi that affects about 6 million people in Latin America. Despite its sanitary importance, there are currently only two drugs available for treatment: benznidazole and nifurtimox, both exhibiting serious adverse effects and limited efficacy in the chronic stage of the disease. Polyamines are ubiquitous to all living organisms where they participate in multiple basic functions such as biosynthesis of nucleic acids and proteins, proliferation and cell differentiation. T. cruzi is auxotroph for polyamines, which are taken up from the extracellular medium by efficient transporters and, to a large extent, incorporated into trypanothione (bis-glutathionylspermidine), the major redox cosubstrate of trypanosomatids. From a 268-compound database containing polyamine analogs with and without inhibitory effect on T. cruzi we have inferred classificatory models that were later applied in a virtual screening campaign to identify anti-trypanosomal compounds among drugs already used for other therapeutic indications (i.e. computer-guided drug repositioning) compiled in the DrugBank and Sweetlead databases. Five of the candidates identified with this strategy were evaluated in cellular models from different pathogenic trypanosomatids ( T. cruzi wt, T. cruzi PAT12, T. brucei and Leishmania infantum), and in vitro models of aminoacid/polyamine transport assays and trypanothione synthetase inhibition assay. Triclabendazole, sertaconazole and paroxetine displayed inhibitory effects on the proliferation of T. cruzi (epimastigotes) and the uptake of putrescine by the parasite. They also interfered with the uptake of others aminoacids and the proliferation of infective T. brucei and L. infantum (promastigotes). Trypanothione synthetase was ruled out as molecular target for the anti-parasitic activity of these compounds.

  2. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis. (United States)

    Zhang, Lihua; Chen, Xianzhong; Chen, Zhen; Wang, Zezheng; Jiang, Shan; Li, Li; Pötter, Markus; Shen, Wei; Fan, You


    The diploid yeast Candida tropicalis, which can utilize n-alkane as a carbon and energy source, is an attractive strain for both physiological studies and practical applications. However, it presents some characteristics, such as rare codon usage, difficulty in sequential gene disruption, and inefficiency in foreign gene expression, that hamper strain improvement through genetic engineering. In this work, we present a simple and effective method for sequential gene disruption in C. tropicalis based on the use of an auxotrophic mutant host defective in orotidine monophosphate decarboxylase (URA3). The disruption cassette, which consists of a functional yeast URA3 gene flanked by a 0.3 kb gene disruption auxiliary sequence (gda) direct repeat derived from downstream or upstream of the URA3 gene and of homologous arms of the target gene, was constructed and introduced into the yeast genome by integrative transformation. Stable integrants were isolated by selection for Ura(+) and identified by PCR and sequencing. The important feature of this construct, which makes it very attractive, is that recombination between the flanking direct gda repeats occurs at a high frequency (10(-8)) during mitosis. After excision of the URA3 marker, only one copy of the gda sequence remains at the recombinant locus. Thus, the resulting ura3 strain can be used again to disrupt a second allelic gene in a similar manner. In addition to this effective sequential gene disruption method, a codon-optimized green fluorescent protein-encoding gene (GFP) was functionally expressed in C. tropicalis. Thus, we propose a simple and reliable method to improve C. tropicalis by genetic manipulation.

  3. Integrated Expression of the Oenococcus oeni mleA Gene in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-lin; LI Hua


    Malolactic enzyme is the function enzyme which catalyses the reaction for L-malate converting to L-lactic during malolactic fermentation (MLF). In this paper, researches concerning the malolactic enzyme gene mleA cloned from a patent strain Oenococcus oeni SD-2a screened in Chinese wine and integrated expressing in Saccharomyces cerevisiae were performed in order to carry out both alcoholic fermentation (AF) and malolactic fermentation (MLF) during winemaking, with a view to achieving a better control of MLF in enology. To construct the expression plasmid named pYILmleA, cloned mleA gene, PGKI promoter, and ADHl terminator were ligated and inserted into integrating vector YIpS. Yeast transformants were screened on SD/-Ura and identified by auxotrophic test, mating type test, and colony PCR. Target protein was detected by SDS-PAGE and the targeted gene integrated to the chromosome was detected by dot bloting hybridization. After the transformant was cultured in SD/-Ura adding glucose (10%) and L-malate (5 648 mg L-1) for 4 d, the culture supematant was collected and L-malate and L-lactic acid contents were detected by HPLC. 1 278-1 312 mg L-1 L-lactic acids were detected, while the comparative drop rates of L-malate were 20.18-20.85%. L-malate and L-lactic contents of the transformants showed extra significant difference and significant difference with the control ones by t-test respectively. The result indicated that the functional expression was achieved in recombinants S. cerevisiae.

  4. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species.

    Directory of Open Access Journals (Sweden)

    Ana Gutiérrez-Preciado

    Full Text Available Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria.

  5. Soil eukaryotic functional diversity, a metatranscriptomic approach. (United States)

    Bailly, Julie; Fraissinet-Tachet, Laurence; Verner, Marie-Christine; Debaud, Jean-Claude; Lemaire, Marc; Wésolowski-Louvel, Micheline; Marmeisse, Roland


    To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.

  6. Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sun Yuan


    Full Text Available Abstract Background Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression. Results In this study, we report that expression of the argCBH operon is induced in stationary phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative contributions of these two regulators to the expression of argH using operon-lacZ fusions. While ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required for full expression of this biosynthetic operon at low arginine concentrations (below 60 μM L-arginine, a level at which growth of an arginine auxotroph was limited by arginine. When the argCBH operon was fully de-repressed (arginine limited, levels of expression were only one third of those observed in ΔargR mutants, indicating that the argCBH operon is partially repressed by ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in ΔargR mutants relative to levels found in wild type, fully-repressed strains, and this expression was independent of RpoS. Conclusion The results of this study indicate that both derepression and positive control by RpoS are required for full control of arginine biosynthesis in stationary phase cultures of E. coli.

  7. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity (United States)

    Bosi, Emanuele; Monk, Jonathan M.; Aziz, Ramy K.; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø.


    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus. These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824

  8. Rational design of protein stability: effect of (2S,4R-4-fluoroproline on the stability and folding pathway of ubiquitin.

    Directory of Open Access Journals (Sweden)

    Maria D Crespo

    Full Text Available BACKGROUND: Many strategies have been employed to increase the conformational stability of proteins. The use of 4-substituted proline analogs capable to induce pre-organization in target proteins is an attractive tool to deliver an additional conformational stability without perturbing the overall protein structure. Both, peptides and proteins containing 4-fluorinated proline derivatives can be stabilized by forcing the pyrrolidine ring in its favored puckering conformation. The fluorinated pyrrolidine rings of proline can preferably stabilize either a C(γ-exo or a C(γ-endo ring pucker in dependence of proline chirality (4R/4S in a complex protein structure. To examine whether this rational strategy can be generally used for protein stabilization, we have chosen human ubiquitin as a model protein which contains three proline residues displaying C(γ-exo puckering. METHODOLOGY/PRINCIPAL FINDINGS: While (2S,4R-4-fluoroproline ((4R-FPro containing ubiquitinin can be expressed in related auxotrophic Escherichia coli strain, all attempts to incorporate (2S,4S-4-fluoroproline ((4S-FPro failed. Our results indicate that (4R-FPro is favoring the C(γ-exo conformation present in the wild type structure and stabilizes the protein structure due to a pre-organization effect. This was confirmed by thermal and guanidinium chloride-induced denaturation profile analyses, where we observed an increase in stability of -4.71 kJ·mol(-1 in the case of (4R-FPro containing ubiquitin ((4R-FPro-ub compared to wild type ubiquitin (wt-ub. Expectedly, activity assays revealed that (4R-FPro-ub retained the full biological activity compared to wt-ub. CONCLUSIONS/SIGNIFICANCE: The results fully confirm the general applicability of incorporating fluoroproline derivatives for improving protein stability. In general, a rational design strategy that enforces the natural occurring proline puckering conformation can be used to stabilize the desired target protein.

  9. Rational design of efficient modular cells. (United States)

    Trinh, Cong T; Liu, Yan; Conner, David J


    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  10. Identification and functional analysis of the erh1(+ gene encoding enhancer of rudimentary homolog from the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Marek K Krzyzanowski

    Full Text Available The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S.japonicus, but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1(+ is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1(+ have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1(+ in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol, inhibiting DNA replication (hydroxyurea, and destabilizing the plasma membrane (SDS; this hypersensitivity can be abolished by expression of S. pombe erh1(+ and, to a lesser extent, S. japonicus erh1(+ or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1(+ is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation.

  11. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum. (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping


    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  12. Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames

    Directory of Open Access Journals (Sweden)

    Hill Ryan E


    Full Text Available Abstract Background Bacillus anthracis is the causative agent of anthrax and a potential bioterrorism threat. Here we report the biochemical and structural characterization of B. anthracis (Ames alanine racemase (AlrBax, an essential enzyme in prokaryotes and a target for antimicrobial drug development. We also compare the native AlrBax structure to a recently reported structure of the same enzyme obtained through reductive lysine methylation. Results B. anthracis has two open reading frames encoding for putative alanine racemases. We show that only one, dal1, is able to complement a D-alanine auxotrophic strain of E. coli. Purified Dal1, which we term AlrBax, is shown to be a dimer in solution by dynamic light scattering and has a Vmax for racemization (L- to D-alanine of 101 U/mg. The crystal structure of unmodified AlrBax is reported here to 1.95 Å resolution. Despite the overall similarity of the fold to other alanine racemases, AlrBax makes use of a chloride ion to position key active site residues for catalysis, a feature not yet observed for this enzyme in other species. Crystal contacts are more extensive in the methylated structure compared to the unmethylated structure. Conclusion The chloride ion in AlrBax is functioning effectively as a carbamylated lysine making it an integral and unique part of this structure. Despite differences in space group and crystal form, the two AlrBax structures are very similar, supporting the case that reductive methylation is a valid rescue strategy for proteins recalcitrant to crystallization, and does not, in this case, result in artifacts in the tertiary structure.

  13. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm


    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  14. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi (United States)

    Reigada, Chantal; Valera-Vera, Edward A.; Sayé, Melisa; Errasti, Andrea E.; Avila, Carla C.; Miranda, Mariana R.; Pereira, Claudio A.


    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  15. Characterization of the lys2 gene of Acremonium chrysogenum encoding a functional alpha-aminoadipate activating and reducing enzyme. (United States)

    Hijarrubia, M J; Aparicio, J F; Casqueiro, J; Martín, J F


    A 5.2-kb NotI DNA fragment isolated from a genomic library of Acremonium chrysogenum by hybridization with a probe internal to the Penicillium chrysogenum lys2 gene, was able to complement an alpha-aminoadipate reductase-deficient mutant of P. chrysogenum (lysine auxotroph L-G-). Enzyme assays showed that the alpha-aminoadipate reductase activity was restored in all the transformants tested. The lys2-encoded enzyme catalyzed both the activation and reduction of alpha-aminoadipic acid to its semialdehyde, as shown by reaction of the product with p-dimethylaminobenzaldehyde. The reaction required NADPH, and was not observed in the presence of NADH. Sequence analysis revealed that the gene encodes a protein with relatively high similarity to members of the superfamily of acyladenylate-forming enzymes. The Lys2 protein contained all nine motifs that are conserved in the adenylating domain of this enzyme family, a peptidyl carrier domain, and a reduction domain. In addition, a new NADP-binding motif located at the N-terminus of the reduction domain that may form a Rossmann-like betaalphabeta-fold has been identified and found to be shared by all known Lys2 proteins. The lys2 gene was mapped to chromosome I (2.2 Mb, the smallest chromosome) of A. chrysogenum C10 (the chromosome that contains the "late" cephalosporin cluster) and is transcribed as a monocistronic 4.5-kb mRNA although at relatively low levels compared with the beta-actin gene.

  16. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. (United States)

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A


    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells.

  17. Protection against UV-induced toxicity and lack of mutagenicity of Antarctic Sanionia uncinata. (United States)

    Fernandes, A S; Mazzei, J L; Oliveira, C G; Evangelista, H; Marques, M R C; Ferraz, E R A; Felzenszwalb, I


    Antarctica moss Sanionia uncinata (Hedw.) Loeske is exposed in situ to damaging levels of ultraviolet (UV) radiation. This moss has the ability to respond to UV radiation exposure producing secondary metabolites such as flavonoids, and has been recommended as a potential source of photoprotective compounds and antioxidants. The aim of the present paper was to investigate the free-radical scavenging activity and mutagenic and photomutagenic properties of methanolic (ME), hydroethanolic (HE) and ethanolic (EE) extracts of S. uncinata. The phenolic contents were evaluated by high-performance liquid chromatography (HPLC) and spectrophotometry. The findings showed that ME and EE presented the highest phenolic contents and inhibited free radical-scavenging activity against 2,2'-diphenyl-1 picrylhydrazyl (DPPH) and the HPLC analysis indicated several classes of phenolic acids and flavonoids. The sun protection factors (SPF) were determined by an in vitro method and the results showed significant values. The SPF values of BZ-3 at 50μg/mL increased significantly in association with ME, HE and EE. The extracts did not induce mutagenicity in auxotrophic Salmonella typhimurium histidine and photomutagenicity was not detected in the TA102 and TA104 strains after exposure to UV-A at doses of up to 6.5J/cm(2) for the TA102 strain and up to 0.24J/cm(2) for the TA104 strain. In addition, with the exception of ME, all the extracts induced photoprotective effects in the presence of the TA104 strain at 0.04J/cm(2). The present results suggest that S. uncinata extracts did not induce photomutation and showed promise for photoprotection against the photobiological and ROS-inducing effects of the UV-A radiation.

  18. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. (United States)

    Lackner, Gerald; Peters, Eike Edzard; Helfrich, Eric J N; Piel, Jörn


    The as-yet uncultured filamentous bacteria "Candidatus Entotheonella factor" and "Candidatus Entotheonella gemina" live associated with the marine sponge Theonella swinhoei Y, the source of numerous unusual bioactive natural products. Belonging to the proposed candidate phylum "Tectomicrobia," Candidatus Entotheonella members are only distantly related to any cultivated organism. The Ca E. factor has been identified as the source of almost all polyketide and modified peptides families reported from the sponge host, and both Ca Entotheonella phylotypes contain numerous additional genes for as-yet unknown metabolites. Here, we provide insights into the biology of these remarkable bacteria using genomic, (meta)proteomic, and chemical methods. The data suggest a metabolic model of Ca Entotheonella as facultative anaerobic, organotrophic organisms with the ability to use methanol as an energy source. The symbionts appear to be auxotrophic for some vitamins, but have the potential to produce most amino acids as well as rare cofactors like coenzyme F420 The latter likely accounts for the strong autofluorescence of Ca Entotheonella filaments. A large expansion of protein families involved in regulation and conversion of organic molecules indicates roles in host-bacterial interaction. In addition, a massive overrepresentation of members of the luciferase-like monooxygenase superfamily points toward an important role of these proteins in Ca Entotheonella. Furthermore, we performed mass spectrometric imaging combined with fluorescence in situ hybridization to localize Ca Entotheonella and some of the bioactive natural products in the sponge tissue. These metabolic insights into a new candidate phylum offer hints on the targeted cultivation of the chemically most prolific microorganisms known from microbial dark matter.

  19. Viejos y nuevos enfoques para el desarrollo de vacunas contra la tuberculosis.

    Directory of Open Access Journals (Sweden)

    H. Bercovier


    Full Text Available Do we need renewed efforts to develop new vaccines to fight tuberculosis? Epidemiological data show that the decrease of the already low incidence of tuberculosis has stopped in developed countries. In certain Western countries the incidence of tuberculosis has even increased in the last ten years. In Africa and in Asia, a high incidence of tuberculosis is found similar to that of the Western world in the 1930s. Can we predict from the history of tuberculosis in Western Europe that the epidemic of tuberculosis in developing countries has reached his peak or is still developing? Revisited data from Europe show that the epidemic of tuberculosis started at least three centuries before it reached its apogee in the middle of the 19th century. The reasons for the decrease of tuberculosis in the first half of the 20th century in the Western world are still not well understood. Will public health measures and proper antibiotic treatment reduce and stop tuberculosis in Africa and in Asia or will the incidence of tuberculosis increase? Our ability to control the spread of the disease is complicated by the appearance of antibiotic resistant strains and HIV. Therefore, a better understanding of the molecular basis for the interaction between the bacilli and the hosts is necessary for the development of improved approaches for treatment and immunization. Cellular immunity and delayed type hypersensitivity (DTH are key processes in the course of mycobacterial infection and are involved in both primary and secondary infection as well as in the induction of protective immunity in the host. The different types of tuberculosis vaccines being reevaluated comprise: BCG with booster, oral BCG, modified BCG (multivalent, auxotrophic M. tuberculosis attenuated strains, M. tuberculosis secreted proteins or recombinant proteins with or without immunomodulators and DNA vaccines. These new vaccines inducing a good cellular immunity may contribute to the development of

  20. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    David M Bland

    Full Text Available Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.

  1. P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation.

    Directory of Open Access Journals (Sweden)

    João Filipe Menino

    Full Text Available Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37 °C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.

  2. Functional identification of APIP as human mtnB, a key enzyme in the methionine salvage pathway.

    Directory of Open Access Journals (Sweden)

    Camille Mary

    Full Text Available The methionine salvage pathway is widely distributed among some eubacteria, yeast, plants and animals and recycles the sulfur-containing metabolite 5-methylthioadenosine (MTA to methionine. In eukaryotic cells, the methionine salvage pathway takes place in the cytosol and usually involves six enzymatic activities: MTA phosphorylase (MTAP, EC, 5'-methylthioribose-1-phosphate isomerase (mtnA, EC, 5'-methylthioribulose-1-phosphate dehydratase (mtnB, EC:, 2,3-dioxomethiopentane-1-phosphate enolase/phosphatase (mtnC, EC, aci-reductone dioxygenase (mtnD, EC and 4-methylthio-2-oxo-butanoate (MTOB transaminase (EC 2.6.1.-. The aim of this study was to complete the available information on the methionine salvage pathway in human by identifying the enzyme responsible for the dehydratase step. Using a bioinformatics approach, we propose that a protein called APIP could perform this role. The involvement of this protein in the methionine salvage pathway was investigated directly in HeLa cells by transient and stable short hairpin RNA interference. We show that APIP depletion specifically impaired the capacity of cells to grow in media where methionine is replaced by MTA. Using a Shigella mutant auxotroph for methionine, we confirm that the knockdown of APIP specifically affects the recycling of methionine. We also show that mutation of three potential phosphorylation sites does not affect APIP activity whereas mutation of the potential zinc binding site completely abrogates it. Finally, we show that the N-terminal region of APIP that is missing in the short isoform is required for activity. Together, these results confirm the involvement of APIP in the methionine salvage pathway, which plays a key role in many biological functions like cancer, apoptosis, microbial proliferation and inflammation.

  3. Towards Reassignment of the Methionine Codon AUG to Two Different Noncanonical Amino Acids in Bacterial Translation

    Directory of Open Access Journals (Sweden)

    Alessandro De Simone


    Full Text Available Genetic encoding of noncanonical amino acids (ncAAs through sense codon reassignment is an efficient tool for expanding the chemical functionality of proteins. Incorporation of multiple ncAAs, however, is particularly challenging. This work describes the first attempts to reassign the sense methionine (Met codon AUG to two different ncAAs in bacterial protein translation. Escherichia coli methionyl-tRNA synthetase (MetRS charges two tRNAs with Met: tRNAfMet initiates protein synthesis (starting AUG codon, whereas elongator tRNAMet participates in protein elongation (internal AUG codon(s. Preliminary in vitro experiments show that these tRNAs can be charged with the Met analogues azidohomoalanine (Aha and ethionine (Eth by exploiting the different substrate specificities of EcMetRS and the heterologous MetRS / tRNAMet pair from the archaeon Sulfolobus acidocaldarius, respectively. Here, we explored whether this configuration would allow a differential decoding during in vivo protein initiation and elongation. First, we eliminated the elongator tRNAMet from a methionine auxotrophic E. coli strain, which was then equipped with a rescue plasmid harboring the heterologous pair. Although the imported pair was not fully orthogonal, it was possible to incorporate preferentially Eth at internal AUG codons in a model protein, suggesting that in vivo AUG codon reassignment is possible. To achieve full orthogonality during elongation, we imported the known orthogonal pair of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS / tRNAPyl and devised a genetic selection system based on the suppression of an amber stop codon in an important glycolytic gene, pfkA, which restores enzyme functionality and normal cellular growth. Using an evolved PylRS able to accept Met analogues, it should be possible to reassign the AUG codon to two different ncAAs by using directed evolution. This work is licensed under a Creative Commons Attribution 4.0 International

  4. Functional characterization of the origin of replication of pRN1 from Sulfolobus islandicus REN1H1. (United States)

    Joshua, Chijioke J; Perez, Luis D; Keasling, Jay D


    Plasmid pRN1 from Sulfolobus islandicus REN1H1 is believed to replicate by a rolling circle mechanism but its origin and mechanism of replication are not well understood. We sought to create minimal expression vectors based on pRN1 that would be useful for heterologous gene expression in S. acidocaldarius, and in the process improve our understanding of the mechanism of replication. We constructed and transformed shuttle vectors that harbored different contiguous stretches of DNA from pRN1 into S. acidocaldarius E4-39, a uracil auxotroph. A 232-bp region 3' of orf904 was found to be critical for pRN1 replication and is therefore proposed to be the putative origin of replication. This 232-bp region contains a 100-bp stem-loop structure believed to be the double-strand origin of replication. The loop of the 100-bp structure contains a GTG tri-nucleotide motif, a feature that was previously reported to be important for the primase activity of Orf904. This putative origin and the associated orf56 and orf904 were identified as the minimal replicon of pRN1 because transformants of plasmids lacking any of these three features were not recovered. Plasmids lacking orf904 and orf56 but harboring the putative origin were transformable when orf904 and orf56 were provided in-trans; a 75-bp region 5' of the orf904 start codon was found to be essential for this complementation. Detailed knowledge of the pRN1 origin of replication will broaden the application of the plasmid as a genetic tool for Sulfolobus species.

  5. Functional characterization of the origin of replication of pRN1 from Sulfolobus islandicus REN1H1.

    Directory of Open Access Journals (Sweden)

    Chijioke J Joshua

    Full Text Available Plasmid pRN1 from Sulfolobus islandicus REN1H1 is believed to replicate by a rolling circle mechanism but its origin and mechanism of replication are not well understood. We sought to create minimal expression vectors based on pRN1 that would be useful for heterologous gene expression in S. acidocaldarius, and in the process improve our understanding of the mechanism of replication. We constructed and transformed shuttle vectors that harbored different contiguous stretches of DNA from pRN1 into S. acidocaldarius E4-39, a uracil auxotroph. A 232-bp region 3' of orf904 was found to be critical for pRN1 replication and is therefore proposed to be the putative origin of replication. This 232-bp region contains a 100-bp stem-loop structure believed to be the double-strand origin of replication. The loop of the 100-bp structure contains a GTG tri-nucleotide motif, a feature that was previously reported to be important for the primase activity of Orf904. This putative origin and the associated orf56 and orf904 were identified as the minimal replicon of pRN1 because transformants of plasmids lacking any of these three features were not recovered. Plasmids lacking orf904 and orf56 but harboring the putative origin were transformable when orf904 and orf56 were provided in-trans; a 75-bp region 5' of the orf904 start codon was found to be essential for this complementation. Detailed knowledge of the pRN1 origin of replication will broaden the application of the plasmid as a genetic tool for Sulfolobus species.

  6. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Directory of Open Access Journals (Sweden)

    Renwick C J Dobson

    Full Text Available In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL (E.C. is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA to L,L-diaminopimelate (L,L-DAP, in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL. The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  7. Exploration of structure-function relationships in Escherichia coli cystathionine γ-synthase and cystathionine β-lyase via chimeric constructs and site-specific substitutions. (United States)

    Manders, Adrienne L; Jaworski, Allison F; Ahmed, Mohammed; Aitken, Susan M


    Cystathionine γ-synthase (CGS) and cystathionine β-lyase (CBL) share a common structure and several active-site residues, but catalyze distinct side-chain rearrangements in the two-step transsulfuration pathway that converts cysteine to homocysteine, the precursor of methionine. A series of 12 chimeric variants of Escherichia coli CGS (eCGS) and CBL (eCBL) was constructed to probe the roles of two structurally distinct, ~25-residue segments situated in proximity to the amino and carboxy termini and located at the entrance of the active-site. In vivo complementation of methionine-auxotrophic E. coli strains, lacking the genes encoding eCGS and eCBL, demonstrated that exchange of the targeted regions impairs the activity of the resulting enzymes, but does not produce a corresponding interchange of reaction specificity. In keeping with the in vivo results, the catalytic efficiency of the native reactions is reduced by at least 95-fold, and α,β versus α,γ-elimination specificity is not modified. The midpoint of thermal denaturation monitored by circular dichroism, ranges between 59 and 80°C, compared to 66°C for the two wild-type enzymes, indicating that the chimeric enzymes adopt a stable folded structure and that the observed reductions in catalytic efficiency are due to reorganization of the active site. Alanine-substitution variants of residues S32 and S33, as well as K42 of eCBL, situated in proximity to and within, respectively, the targeted amino-terminal region were also investigated to explore their role as determinants of reaction specificity via positioning of key active-site residues. The catalytic efficiency of the S32A, S33A and the K42A site-directed variants of eCBL is reduced by less than 10-fold, demonstrating that, while these residues may participate in positioning S339, which tethers the catalytic base, their role is minor.

  8. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. (United States)

    Bosi, Emanuele; Monk, Jonathan M; Aziz, Ramy K; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø


    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world.

  9. New and Redesigned pRS Plasmid Shuttle Vectors for Genetic Manipulation of Saccharomycescerevisiae. (United States)

    Chee, Mark K; Haase, Steven B


    We have constructed a set of 42 plasmid shuttle vectors based on the widely used pRS series for use in the budding yeast Saccharomyces cerevisiae and the bacterium Escherichia coli. This set of pRSII plasmids includes new shuttle vectors that can be used with histidine and adenine auxotrophic laboratory yeast strains carrying mutations in the genes HIS2 and ADE1, respectively. Our pRSII plasmids also include updated versions of commonly used pRS plasmids from which common restriction sites that occur within their yeast-selectable biosynthetic marker genes have been removed to increase the availability of unique restriction sites within their polylinker regions. Hence, our pRSII plasmids are a complete set of integrating, centromere and 2μ episomal plasmids with the biosynthetic marker genes ADE2, HIS3, TRP1, LEU2, URA3, HIS2, and ADE1 and a standardized selection of at least 16 unique restriction sites in their polylinkers. Additionally, we have expanded the range of drug selection options that can be used for PCR-mediated homologous replacement using pRS plasmid templates by replacing the G418-resistance kanMX4 cassette of pRS400 with MX4 cassettes encoding resistance to phleomycin, hygromycin B, nourseothricin, and bialaphos. Finally, in the process of generating the new plasmids, we have determined several errors in existing publicly available sequences for several commonly used yeast plasmids. Using our updated sequences, we constructed pRS plasmid backbones with a unique restriction site for inserting new markers to facilitate future expansion of the pRS series.

  10. Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major. (United States)

    Lye, Lon-Fye; Kang, Song Ok; Nosanchuk, Joshua D; Casadevall, Arturo; Beverley, Stephen M


    Aromatic amino acid hydroxylases (AAAH) typically use tetrahydrobiopterin (H(4)B) as the cofactor. The protozoan parasite Leishmania major requires biopterin for growth and expresses strong salvage and regeneration systems to maintain H(4)B levels. Here we explored the consequences of genetic manipulation of the sole L. major phenylalanine hydroxylase (PAH) to explore whether it could account for the Leishmania H(4)B requirement. L. major PAH resembles AAAHs of other organisms, bearing eukaryotic-type domain organization, and conservation of key catalytic residues including those implicated in pteridine binding. A pah(-) null mutant and an episomal complemented overexpressing derivative (pah-/+PAH) were readily obtained, and metabolic labeling studies established that PAH was required to hydroxylate Phe to Tyr. Neither WT nor overexpressing lines were able to hydroxylate radiolabeled tyrosine or tryptophan, nor to synthesize catecholamines. WT but not pah(-) parasites showed reactivity with an antibody to melanin when grown with l-3,4-dihydroxyphenylalanine (L-DOPA), although the reactive product is unlikely to be melanin sensu strictu. WT was auxotrophic for Phe, Trp and Tyr, suggesting that PAH activity was insufficient to meet normal Tyr requirements. However, pah(-) showed an increased sensitivity to Tyr deprivation, while the pah(-)/+PAH overexpressor showed increased survival and could be adapted to grow well without added Tyr. pah(-) showed no alterations in H(4)B-dependent differentiation, as established by in vitro metacyclogenesis, or survival in mouse or macrophage infections. Thus Leishmania PAH may mitigate but not alleviate Tyr auxotrophy, but plays no essential role in the steps of the parasite infectious cycle. These findings suggest PAH is unlikely to explain the Leishmania requirement for biopterin.

  11. Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. (United States)

    Awasthy, Disha; Gaonkar, Sheshagiri; Shandil, R K; Yadav, Reena; Bharath, Sowmya; Marcel, Nimi; Subbulakshmi, Venkita; Sharma, Umender


    Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M. tuberculosis. The mutant strain was found to be auxotrophic for all of the three branched-chain amino acids (isoleucine, leucine and valine), when grown with either C(6) or C(2) carbon sources, suggesting that the ilvB1 gene product is the major AHAS in M. tuberculosis. Depletion of these branched chain amino acids in the medium led to loss of viability of the DeltailvB1 strain in vitro, resulting in a 4-log reduction in colony-forming units after 10 days. Survival kinetics of the mutant strain cultured in macrophages maintained with sub-optimal concentrations of the branched-chain amino acids did not show any loss of viability, indicating either that the intracellular environment was rich in these amino acids or that the other AHAS catalytic subunits were functional under these conditions. Furthermore, the growth kinetics of the DeltailvB1 strain in mice indicated that although this mutant strain showed defective growth in vivo, it could persist in the infected mice for a long time, and therefore could be a potential vaccine candidate.

  12. Kluyveromyces marxianus as a host for heterologous protein synthesis. (United States)

    Gombert, Andreas K; Madeira, José Valdo; Cerdán, María-Esperanza; González-Siso, María-Isabel


    The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.

  13. Δ(1-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation.

    Directory of Open Access Journals (Sweden)

    Ziting Yao

    Full Text Available Proline dehydrogenase (Prodh and Δ(1-pyrroline-5-carboxylate dehydrogenase (P5Cdh are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ(1-pyrroline-5-carboxylate (P5C content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica.

  14. A nutritional conditional lethal mutant due to pyridoxine 5'-phosphate oxidase deficiency in Drosophila melanogaster. (United States)

    Chi, Wanhao; Zhang, Li; Du, Wei; Zhuang, Xiaoxi


    The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases.

  15. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice.

    Directory of Open Access Journals (Sweden)

    Tsungai Ivai Jongwe

    Full Text Available Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA vaccines expressing HIV-1C mosaic Gag (GagM were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C.

  16. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles.

    Directory of Open Access Journals (Sweden)

    Yen Kuan Ng

    Full Text Available Sophisticated genetic tools to modify essential biological processes at the molecular level are pivotal in elucidating the molecular pathogenesis of Clostridium difficile, a major cause of healthcare associated disease. Here we have developed an efficient procedure for making precise alterations to the C. difficile genome by pyrE-based allelic exchange. The robustness and reliability of the method was demonstrated through the creation of in-frame deletions in three genes (spo0A, cwp84, and mtlD in the non-epidemic strain 630Δerm and two genes (spo0A and cwp84 in the epidemic PCR Ribotype 027 strain, R20291. The system is reliant on the initial creation of a pyrE deletion mutant, using Allele Coupled Exchange (ACE, that is auxotrophic for uracil and resistant to fluoroorotic acid (FOA. This enables the subsequent modification of target genes by allelic exchange using a heterologous pyrE allele from Clostridium sporogenes as a counter-/negative-selection marker in the presence of FOA. Following modification of the target gene, the strain created is rapidly returned to uracil prototrophy using ACE, allowing mutant phenotypes to be characterised in a PyrE proficient background. Crucially, wild-type copies of the inactivated gene may be introduced into the genome using ACE concomitant with correction of the pyrE allele. This allows complementation studies to be undertaken at an appropriate gene dosage, as opposed to the use of multicopy autonomous plasmids. The rapidity of the 'correction' method (5-7 days makes pyrE(- strains attractive hosts for mutagenesis studies.

  17. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M.


    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  18. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. (United States)

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael


    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1)  h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol.

  19. P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation (United States)

    Menino, João Filipe; Saraiva, Margarida; Gomes-Rezende, Jéssica; Sturme, Mark; Pedrosa, Jorge; Castro, António Gil; Ludovico, Paula; Goldman, Gustavo H.; Rodrigues, Fernando


    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis. PMID:24066151

  20. Teriflunomide (Leflunomide Promotes Cytostatic, Antioxidant, and Apoptotic Effects in Transformed Prostate Epithelial Cells: Evidence Supporting a Role for Teriflunomide in Prostate Cancer Chemoprevention

    Directory of Open Access Journals (Sweden)

    Numsen Hail, Jr


    Full Text Available Teriflunomide (TFN is an inhibitor of de novo pyrimidine synthesis and the active metabolite of leflunomide. Leflunomide is prescribed to patients worldwide as an immunomodulatory and anti-inflammatory disease-modifying prodrug. Leflunomide inhibited the growth of human prostate cancer xenographs in mice, and leflunomide or TFN promoted cytostasis and/or apoptosis in cultured cells. These findings suggest that TFN could be useful in prostate cancer chemoprevention. We investigated the possible mechanistic aspects of this tenet by characterizing the effects of TFN using premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. TFN promoted a dose- and time-dependent cytostasis or apoptosis induction in these cells. The cytostatic effects of TFN, which were reversible but not by the presence of excess uridine in the culture medium, included diminished cellular uridine levels, an inhibition in oxygen consumption, a suppression of reactive oxygen species (ROS generation, S-phase cell cycle arrest, and a conspicuous reduction in the size and number of the nucleoli in the nuclei of these cells. Conversely, TFN's apoptogenic effects were characteristic of catastrophic mitochondrial disruption (i.e., a dissipation of mitochondrial inner transmembrane potential, enhanced ROS production, mitochondrial cytochrome c release, and cytoplasmic vacuolization and followed by DNA fragmentation. The respiration-deficient derivatives of the DU-145 cells, which are also uridine auxotrophs, were markedly resistant to the cytostatic and apoptotic effects of TFN, implicating de novo pyrimidine synthesis and mitochondrial bioenergetics as the primary targets for TFN in the respiration competent cells. These mechanistic findings advocate a role for TFN and mitochondrial bioenergetics in prostate cancer chemoprevention.

  1. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. (United States)

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn


    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts.

  2. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. (United States)

    Wu, Fe-Lin Lin; Yeh, Tzyy-Harn; Chen, Ying-Luen; Chiu, Yu-Chin; Cheng, Ju-Chen; Wei, Ming-Feng; Shen, Li-Jiuan


    Recombinant arginine deiminase (rADI) has been used in clinical trials for arginine-auxotrophic cancers. However, the emergence of rADI resistance, due to the overexpression of argininosuccinate synthetase (AS), has introduced an obstacle in its clinical application. Here, we have proposed a strategy for the intracellular delivery of rADI, which depletes both extracellular and intracellular arginine, to restore the sensitivity of rADI-resistant cancer cells. In this study, the C terminus of heparin-binding hemagglutinin adhesion protein from Mycobacterium tuberculosis (HBHAc), which contains 23 amino acids, was used to deliver rADI into rADI-resistant human breast adenocarcinoma cells (MCF-7). Chemical conjugates (l- and d-HBHAc-SPDP-rADI) and a recombinant fusion protein (rHBHAc-ADI) were produced. l- and d-HBHAc-SPDP-rADI showed a significantly higher cellular uptake of rADI by MCF-7 cells compared to that of rADI alone. Cell viability was significantly decreased in a dose-dependent manner in response to l- and d-HBHAc-SPDP-rADI treatments. In addition, the ratio of intracellular concentration of citrulline to arginine in cells treated with l- and d-HBHAc-SPDP-rADI was significantly increased by 1.4- and 1.7-fold, respectively, compared with that obtained in cells treated with rADI alone (p < 0.001). Similar results were obtained with the recombinant fusion protein rHBHAc-ADI. Our study demonstrates that the increased cellular uptake of rADI by HBHAc modification can restore the sensitivity of rADI treatment in MCF-7 cells. rHBHAc-ADI may represent a novel class of antitumor enzyme with an intracellular mechanism that is independent of AS expression.

  3. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. (United States)

    Bowles, Tawnya L; Kim, Randie; Galante, Joseph; Parsons, Colin M; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J


    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is underexpressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non-neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG-ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG-ADI on the in vivo growth of pancreatic xenografts was examined. Eighty-seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG-ADI specifically inhibited growth of those cell lines lacking ASS. PEG-ADI treatment induced caspase activation and induction of apoptosis. PEG-ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by approximately 50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG-ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed.

  4. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20). (United States)

    Burrows, Natalie; Cane, Gaelle; Robson, Mathew; Gaude, Edoardo; Howat, William J; Szlosarek, Peter W; Pedley, R Barbara; Frezza, Christian; Ashcroft, Margaret; Maxwell, Patrick H


    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.

  5. Tomato LeTHIC is an Fe-requiring HMP-P synthase involved in thiamine synthesis and regulated by multiple factors. (United States)

    Zhao, Weina; Cheng, Xudong; Huang, Zongan; Fan, Huajie; Wu, Huilan; Ling, Hong-Qing


    Thiamine is a key primary metabolite which is necessary for the viability of all organisms. It is a dietary requirement for mammals because only prokaryotes, fungi and plants are thiamine prototrophs. In contrast to the well documented biosynthetic mechanism in bacteria, much remains to be deciphered in plants. In this work, a tomato thiamine-auxotrophic (thiamineless, tl) mutant was characterized. The tl mutant occurs due to inactivation of LeTHIC transcription as a result of insertion of a large unknown DNA fragment in its 5'-untranslated region. Expression of wild-type LeTHIC in tl plants was able to complement the mutant to wild type. LeTHIC possessed the same function as E.cTHIC [an Escherichia coli 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase involved in synthesis of the pyrimidine moiety of thiamine] because expression of LeTHIC rescued THIC-deficient strains of E. coli under culture conditions without thiamine supplementation, suggesting that plants employ a bacteria-like route of pyrimidine moiety synthesis. LeTHIC is an Fe-S cluster protein localized in chloroplasts, and Fe is required for maintenance of its enzyme activity because Fe deficiency resulted in a significant reduction of thiamine content in tomato leaves. Further, we also showed that the expression of LeTHIC is tightly regulated at the transcriptional and post-transcriptional level by multiple factors, such as light, Fe status and thiamine pyrophosphate (TPP)-riboswitch. The results clearly demonstrated that a feedback regulation mechanism is involved in synthesis of the pyrimidine moiety for controlling thiamine synthesis in tomato. Our results provide a new insight into understanding the molecular mechanism of thiamine biosynthesis in plants.

  6. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. (United States)

    Li, Y; Hugenholtz, J; Chen, J; Lun, S-Y


    The effect of agitation speeds on the performance of producing pyruvate by a multi-vitamin auxotrophic yeast, Torulopsis glabrata, was investigated in batch fermentation. High pyruvate yield on glucose (0.797 g g(-1)) was achieved under high agitation speed (700 rpm), but the glucose consumption rate was rather low (1.14 g l(-1) h(-1)). Glucose consumption was enhanced under low agitation speed (500 rpm), but the pyruvate yield on glucose decreased to 0.483 g g(-1). Glycerol production was observed under low agitation speed and decreased with increasing agitation speed. Based on process analysis and carbon flux distribution calculation, a two-stage oxygen supply control strategy was proposed, in which the agitation speed was controlled at 700 rpm in the first 16 h and then switched to 500 rpm. This was experimentally proven to be successful. Relatively high concentration of pyruvate (69.4 g l(-1)), high pyruvate yield on glucose (0.636 g g(-1)), and high glucose consumption rate (1.95 g l(-1)h(-1)) were achieved by applying this strategy. The productivity (1.24 g l(-1) h(-1)) was improved by 36%, 23% and 31%, respectively, compared with fermentations in which agitation speeds were kept constant at 700 rpm, 600 rpm, and 500 rpm. Experimental results indicate that the difference between the performances for producing pyruvate under a favorable state of oxygen supply (dissolved oxygen concentration >50%) was caused by the different regeneration pathways of NADH generated from glycolysis.

  7. A Novel Glutamyl (Aspartyl-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application.

    Directory of Open Access Journals (Sweden)

    Timo Stressler

    Full Text Available Lactic acid bacteria (LAB are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl specific aminopeptidase (PepA; EC Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%, differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C, the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity than for Lc-PepA (2% residual activity. EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition.

  8. Expression of the mammalian renal peptide transporter PEPT2 in the yeast Pichia pastoris and applications of the yeast system for functional analysis. (United States)

    Döring, F; Michel, T; Rösel, A; Nickolaus, M; Daniel, H


    It has recently been identified the PEPT2 cDNA encodes the high affinity proton-coupled peptide transporter in rabbit kidney cortex. PEPT2 represents a 729 amino acid protein with 12 putative transmembrane domains that mediates H+/H3O+ dependent electrogenic transmembrane transport of di- and tripeptides and of selected peptidomimetics. Here the functional expression of PEPT2 in the methylotropic yeast Pichia pastoris is described under the control of a methanol inducible promoter. Western blot analysis of Pichia cell membranes prepared from a recombinant clone identified a protein with an apparent molecular mass of about 85-87 kDa. Peptide uptake into cells expressing PEPT2 was up to 80 times higher than in control cells. Cells of recombinant clones showed a saturable peptide transport activity for the hydrolysis resistant dipeptide 3H-D-Phe-Ala with an app. K0.5 of 0.143 +/- 0.016 mM. Inhibition of 3H-D-Phe-Ala uptake by selected di- and tripeptides and beta-lactam antibiotics revealed the same substrate specificity as obtained in renal membrane vesicles or for PEPT2 when expressed in Xenopus laevis oocytes. A novel fluorescence based assay for assessing transport function based on a coumarin-labeled fluorescent peptide analogue has also been developed. Moreover, using a histidyl auxotrophe strain a PEPT2 expressing cell clone in which transport function can be monitored by a simple yeast growth test was established. In conclusion, this is one of only a few reports on successful functional expression of mammalian membrane transport proteins in yeast. The high expression level will provide a simple means for future studies either on the structure-affinity relationship for substrate interaction with PEPT2 or for selection of mutants generated by random mutagenesis.

  9. Polyamine-independent Expression of Caenorhabditis elegans Antizyme. (United States)

    Stegehake, Dirk; Kurosinski, Marc-André; Schürmann, Sabine; Daniel, Jens; Lüersen, Kai; Liebau, Eva


    Degradation of ornithine decarboxylase, the rate-limiting enzyme of polyamine biosynthesis, is promoted by the protein antizyme. Expression of antizyme is positively regulated by rising polyamine concentrations that induce a +1 translational frameshift required for production of the full-length protein. Antizyme itself is negatively regulated by the antizyme inhibitor. In our study, the regulation of Caenorhabditis elegans antizyme was investigated, and the antizyme inhibitor was identified. By applying a novel GFP-based method to monitor antizyme frameshifting in vivo, we show that the induction of translational frameshifting also occurs under stressful conditions. Interestingly, during starvation, the initiation of frameshifting was independent of polyamine concentrations. Because frameshifting was also prevalent in a polyamine auxotroph double mutant, a polyamine-independent regulation of antizyme frameshifting is suggested. Polyamine-independent induction of antizyme expression was found to be negatively regulated by the peptide transporter PEPT-1, as well as the target of rapamycin, but not by the daf-2 insulin signaling pathway. Stress-dependent expression of C. elegans antizyme occurred morely slowly than expression in response to increased polyamine levels, pointing to a more general reaction to unfavorable conditions and a diversion away from proliferation and reproduction toward conservation of energy. Interestingly, antizyme expression was found to drastically increase in aging individuals in a postreproductive manner. Although knockdown of antizyme did not affect the lifespan of C. elegans, knockdown of the antizyme inhibitor led to a significant reduction in lifespan. This is most likely caused by an increase in antizyme-mediated degradation of ornithine decarboxylase-1 and a resulting reduction in cellular polyamine levels.

  10. Biochemical and functional characterization of phosphoserine aminotransferase from Entamoeba histolytica, which possesses both phosphorylated and non-phosphorylated serine metabolic pathways. (United States)

    Ali, Vahab; Nozaki, Tomoyoshi


    The enteric protozoan parasite Entamoeba histolytica is a unicellular eukaryote that possesses both phosphorylated and non-phosphorylated serine metabolic pathways. In the present study, we described enzymological and functional characterization of phosphoserine aminotransferase (PSAT) from E. histolytica. E. histolytica PSAT (EhPSAT) showed maximum activity for the forward reaction at basic pH, dissimilar to mammalian PSAT, which showed sharp neutral optimum pH. EhPSAT activity was significantly inhibited by substrate analogs, O-phospho-d-serine, O-phospho-l-threonine, and O-acetylserine, suggesting possible regulation of the amoebic PSAT by these metabolic intermediates. Fractionation of the whole parasite lysate and rEhPSAT by anion exchange chromatography verified that EhPSAT represents a dominant PSAT activity. EhPSAT showed a close kinship to PSAT from bacteroides based on amino acid alignment and phylogenetic analyses, suggesting that E. histolytica gained this gene from bacteroides by lateral gene transfer. Comparisons of kinetic properties of recombinant PSAT from E. histolytica and Arabidopsis thaliana showed that EhPSAT possesses significantly higher affinity toward glutamate than the A. thaliana counterpart, which may be explained by significant differences in the isoelectric point and the substitution of arginine, which is involved the binding to the gamma-carboxylate moiety of glutamate, in Escherichia coli PSAT, to serine or threonine in E. histolytica or A. thaliana PSAT, respectively. Heterologous expression of EhPSAT successfully rescued growth defect of a serine-auxotrophic E. coli strain KL282, where serC was deleted, confirming its in vivo role in serine biosynthesis. Together with our previous demonstration of phosphoglycerate dehydrogenase, the present study reinforces physiological significance of the phosphorylated pathway in amoeba.

  11. Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins.

    Directory of Open Access Journals (Sweden)

    Nancy J Phillips

    Full Text Available Neisseria gonorrhoeae, the causative agent of gonorrhea, can form biofilms in vitro and in vivo. In biofilms, the organism is more resistant to antibiotic treatment and can serve as a reservoir for chronic infection. We have used stable isotope labeling by amino acids in cell culture (SILAC to compare protein expression in biofilm and planktonic organisms. Two parallel populations of N. gonorrhoeae strain 1291, which is an arginine auxotroph, were grown for 48 h in continuous-flow chambers over glass, one supplemented with (13C(6-arginine for planktonic organisms and the other with unlabeled arginine for biofilm growth. The biofilm and planktonic cells were harvested and lysed separately, and fractionated into three sequential protein extracts. Corresponding heavy (H planktonic and light (L biofilm protein extracts were mixed and separated by 1D SDS-PAGE gels, and samples were extensively analyzed by liquid chromatography-mass spectrometry. Overall, 757 proteins were identified, and 152 unique proteins met a 1.5-fold cutoff threshold for differential expression with p-values <0.05. Comparing biofilm to planktonic organisms, this set included 73 upregulated and 54 downregulated proteins. Nearly a third of the upregulated proteins were involved in energy metabolism, with cell envelope proteins making up the next largest group. Of the downregulated proteins, the largest groups were involved in protein synthesis and energy metabolism. These proteomics results were compared with our previously reported results from transcriptional profiling of gonococcal biofilms using microarrays. Nitrite reductase and cytochrome c peroxidase, key enzymes required for anaerobic growth, were detected as highly upregulated in both the proteomic and transcriptomic datasets. These and other protein expression changes observed in the present study were consistent with a shift to anaerobic respiration in gonococcal biofilms, although changes in membrane proteins not

  12. Biosynthetic incorporation of telluromethionine into dihydrofolate reductase and crystallographic analysis of the distribution of tellurium atoms in the protein molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kunkle, M.G.; Lewinski, K.; Boles, J.O.; Dunlap, R.B.; Odom, J.D.; Lebioda, L. [Univ. of South Carolina, Columbia, SC (United States)


    Recent successes in crystallographic studies of proteins with methionine (Met) residues replaced with SeMet, pioneered by Hendrickson and coworkers, inspired us to replace Met with TeMet in Escherichia coli dihydrofolate reductase (DHFR). E. coli DHFR, which catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate, consists of 159 residues, 5 of which are Met. TeMet was incorporated into DHFR using the Met auxotroph, E. coli DL41, carrying the expression vector pWT8 with an IPTG inducible promoter and ampicillin resistance gene. The enzyme was purified by successive chromatography on Q-Sepharose and PHenyl Sepharose resins, yielding milligram quantities of homogeneous enzyme with a specific activity of 40 units/mg. TeMet DHFR exhibits kinetic properties similar to those of wt DHFR. Amino acid analysis indicated 3 authentic Met residues in TeMet DHFR, whereas atomic absorption spectroscopy detected 2 Te per protein molecule. Amino acid sequence analysis results suggested that only authentic Met was present in the first three Met positions (1,16,and 20). Crystals of Te-DHFR were grown in the presence of methotrexate from PEG 4000 and were isomorphous with wt-DHFR crystals grown from ethanol. Difference Fourier maps and restrained least-squares refinement show very little, if any, Te in the first three Met positions: Met{sup 1}, Met{sup 16}, and Met{sup 20}, whereas the occupancy of Te in positions 42 and 92 is 0.64. Apparently, the process of folding, subsequent purification, and crystallization select DHFR molecules with Te in Met{sup 42} and Met{sup 92}. Replacing Met with TeMet provides an internal probe that should facilitate structural and mechanistic studies of proteins.

  13. Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms. (United States)

    Ridgway, Neale D; Lagace, Thomas A


    The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions of these two mechanisms, we examined CCTalpha expression and PtdCho synthesis by the CDP-choline pathway in cholesterol and fatty acid auxotrophic CHO M19 cells inducibly expressing constitutively active nuclear forms of SREBP1a or SREBP2. Induction of either SREBP resulted in increased expression of mRNAs for sterol-regulated genes, elevated fatty acid and cholesterol synthesis (>10-50-fold) and increased PtdCho synthesis (2-fold). CCTalpha mRNA was increased 2-fold by enforced expression of SREBP1a or SREBP2. The resultant increase in CCTalpha protein and activity (2-fold) was restricted primarily to the soluble fraction of cells, and increased CCTalpha activity in vivo was not detected. Inhibition of the synthesis of fatty acids or their CoA esters by cerulenin or triacsin C respectively following SREBP induction effectively blocked the accompanying elevation in PtdCho synthesis. Thus PtdCho synthesis was driven by increased synthesis of fatty acids or a product thereof. These data show that transcriptional activation of CCTalpha is modest relative to that of other SREBP-regulated genes, and that stimulation of PtdCho synthesis by SREBPs in CHO cells is due primarily to increased fatty acid synthesis.

  14. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival.

    Directory of Open Access Journals (Sweden)

    João Daniel Santos Fernandes

    Full Text Available Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR. We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8. The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i quality of nitrogen (Nitrogen Catabolism Repression, NCR and carbon sources (Carbon Catabolism Repression, CCR, (ii amino acid availability in the extracellular environment (SPS-sensing and (iii nutritional deprivation (Global Amino Acid Control, GAAC. This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.

  15. Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families

    Energy Technology Data Exchange (ETDEWEB)

    Suchi, Mariko; Mizuno, Haruo; Tsuboi, Takashi [Nagoya City Univ. Medical School (Japan)] [and others


    Uridine monophosphate (UMP) synthase is a bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT) and orotidine-5{prime}-monophosphate decarboxylase (ODC). Loss of either enzymatic activity results in hereditary orotic aciduria, a rare autosomal recessive disorder characterized by retarded growth, anemia, and excessive urinary excretion of orotic acid. We have isolated the UMP synthase chromosomal gene from a {lambda}EMBL-3 human genomic library and report a single-copy gene spanning {approximately}15 kb. The UMP synthase genomic structure encodes six exons ranging in size from 115 bp to 672 bp, and all splicing junctions adhere to the canonical GT/AG rule. Cognate promoter elements implicated in glucocorticoid- and cAMP-mediated regulation as well as in liver-, myeloid-, and lymphocyte-specific expression are located within the 5{prime} flanking sequence. Molecular investigation of UMP synthase deficiency in a Japanese orotic aciduria patient revealed mutations R96G (A- to-G transition; nt 286) and G429R (G-to-C transversion; nt 1285) in one allele and V109G (T-to-G transversion; nt 326) in the other allele. Expression of human UMP synthase cDNAs containing these mutations in pyrimidine auxotrophic Escherichia coli and in recombinant baculovirus-infected Sf21 cells demonstrates impaired activity presumably associated with the urinary orotic acid substrate accumulations observed in vivo. We further establish the identity of two polymorphisms, G213A ({nu} = .26) and 440 Gpoly ({nu} = .27) located in exons 3 and 6, respectively, which did not significantly compromise either OPRT or ODC function. 76 refs., 5 figs., 7 tabs.

  16. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity. (United States)

    Peng, Ri-He; Tian, Yong-Sheng; Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong


    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis), was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli)), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis) were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli). To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  17. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis. (United States)

    Fulde, Marcus; Willenborg, Joerg; Huber, Claudia; Hitzmann, Angela; Willms, Daniela; Seitz, Maren; Eisenreich, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph


    The arginine-ornithine antiporter (ArcD) is part of the Arginine Deiminase System (ADS), a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-(13)C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT) strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth in chemically defined media supplemented with arginine when compared to the WT strain, suggesting that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  18. A live attenuated Salmonella Enteritidis secreting detoxified heat labile toxin enhances mucosal immunity and confers protection against wild-type challenge in chickens. (United States)

    Lalsiamthara, Jonathan; Kamble, Nitin Machindra; Lee, John Hwa


    A live attenuated Salmonella Enteritidis (SE) capable of constitutively secreting detoxified double mutant Escherichia coli heat labile toxin (dmLT) was developed. The biologically adjuvanted strain was generated via transformation of a highly immunogenic SE JOL1087 with a plasmid encoding dmLT gene cassette; the resultant strain was designated JOL1641. A balanced-lethal host-vector system stably maintained the plasmid via auxotrophic host complementation with a plasmid encoded aspartate semialdehyde dehydrogenase (asd) gene. Characterization by western blot assay revealed the dmLT subunit proteins in culture supernatants of JOL1641. For the investigation of adjuvanticity and protective efficacy, chickens were immunized via oral or intramuscular routes with PBS, JOL1087 and JOL1641. Birds immunized with JOL1641 showed significant (P ≤ 0.05) increases in intestinal SIgA production at the 1(st) and 2(nd) weeks post-immunization via oral and intramuscular routes, respectively. Interestingly, while both strains showed significant splenic protection via intramuscular immunization, JOL1641 outperformed JOL1087 upon oral immunization. Oral immunization of birds with JOL1641 significantly reduced splenic bacterial counts. The reduction in bacterial counts may be correlated with an adjuvant effect of dmLT that increases SIgA secretion in the intestines of immunized birds. The inclusion of detoxified dmLT in the strain did not cause adverse reactions to birds, nor did it extend the period of bacterial fecal shedding. In conclusion, we report here that dmLT could be biologically incorporated in the secretion system of a live attenuated Salmonella-based vaccine, and that this construction is safe and could enhance mucosal immunity, and protect immunized birds against wild-type challenge.

  19. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    Directory of Open Access Journals (Sweden)

    Ri-He Peng

    Full Text Available The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli, while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P and phosphoenolpyruvate (PEP. The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  20. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Marcus eFulde


    Full Text Available The arginine-ornithine antiporter (ArcD is part of the Arginine Deiminase System (ADS, a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth rate in chemically defined media supplemented with arginine when compared to the WT strain, indicating that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  1. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. (United States)

    Hart, Bryan E; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D; Lukose, Regy; Souther, Sommer J R; Rayasam, Swati D G; Saelens, Joseph W; Chen, Ching-Ju; Seay, Sarah A; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E; Ng, Tony W; Tobin, David M; Porcelli, Steven A; Larsen, Michelle H; Schmitz, Joern E; Haynes, Barton F; Jacobs, William R; Lee, Sunhee; Frothingham, Richard


    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches.

  2. Predominant Acidilobus-like populations from geothermal environments in yellowstone national park exhibit similar metabolic potential in different hypoxic microbial communities. (United States)

    Jay, Z J; Rusch, D B; Tringe, S G; Bailey, C; Jennings, R M; Inskeep, W P


    High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems.

  3. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts. (United States)

    Moon, Hye Yun; Lee, Dong Wook; Sim, Gyu Hun; Kim, Hong-Jin; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kang, Bo-Kyu; Kim, Jong Man; Kang, Hyun Ah


    The traditional yeast Saccharomyces cerevisiae has been widely used as a host system to produce recombinant proteins and metabolites of great commercial value. To engineer recombinant yeast that stably maintains expression cassettes without an antibiotic resistance gene, we developed new multiple integration cassettes by exploiting the non-transcribed spacer (NTS) of ribosomal DNA (rDNA) in combination with defective selection markers. The 5' and 3'-fragments of rDNA-NTS2 were used as flanking sequences for the expression cassettes carrying a set of URA3, LEU2, HIS3, and TRP1 selection markers with truncated promoters of different lengths. The integration numbers of NTS-based expression cassettes, ranging from one to ∼30 copies, showed a proportional increase with the extent of decreased expression of the auxotrophic markers. The NTS-based cassettes were used to construct yeast strains expressing the capsid protein of red-spotted grouper necrosis virus (RG-NNVCP) in a copy number-dependent manner. Oral administration of the recombinant yeast, harboring ∼30 copies of the integrated RG-NNVCP cassettes, provoked efficient immune responses in mice. In contrast, for the NTS cassettes expressing a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, the integrant carrying only 4 copies was screened as the highest producer of squalene, showing a 150-fold increase compared to that of the wild-type strain. The multiple integrated cassettes were stably retained under prolonged nonselective conditions. Altogether, our results strongly support that rDNA-NTS integrative cassettes are useful tools to construct recombinant yeasts carrying optimal copies of a desired expression cassette without an antibiotic marker gene, which are suitable as oral vaccines or feed additives for animal and human consumption.

  4. Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis. (United States)

    Li, Meng; Meng, Qiu; Fu, Huihui; Luo, Qixia; Gao, Haichun


    As type II fatty acid synthesis is essential for the growth of Escherichia coli, its many components are regarded as potential targets for novel antibacterial drugs. Among them, β-ketoacyl-acyl carrier protein (ACP) synthase (KAS) FabB is the exclusive factor for elongation of the cis-3-decenoyl-ACP (cis-3-C10-ACP). In our previous study, we presented evidence to suggest that this may not be the case in Shewanella oneidensis, an emerging model gammaproteobacterium renowned for its respiratory versatility. Here, we identified FabF1, another KAS, as a functional replacement for FabB in S. oneidensis In fabB(+) or desA(+) (encoding a desaturase) cells, which are capable of making unsaturated fatty acids (UFA), FabF1 is barely produced. However, UFA auxotroph mutants devoid of both fabB and desA genes can be spontaneously converted to suppressor strains, which no longer require exogenous UFAs for growth. Suppression is caused by a TGTTTT deletion in the region upstream of the fabF1 gene, resulting in enhanced FabF1 production. We further demonstrated that the deletion leads to transcription read-through of the terminator for acpP, an acyl carrier protein gene immediately upstream of fabF1 There are multiple tandem repeats in the region covering the terminator, and the TGTTTT deletion, as well as others, compromises the terminator efficacy. In addition, FabF2 also shows an ability to complement the FabB loss, albeit substantially less effectively than FabF1.

  5. The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography. (United States)

    Canyuk, B; Focia, P J; Eakin, A E


    The role of an invariant aspartic acid (Asp137) in hypoxanthine phosphoribosyltransferases (HPRTs) was examined by site-directed and saturation mutagenesis, functional analysis, and X-ray crystallography using the HPRT from Trypanosoma cruzi. Alanine substitution (D137A) resulted in a 30-fold decrease of k(cat), suggesting that Asp137 participates in catalysis. Saturation mutagenesis was used to generate a library of mutant HPRTs with random substitutions at position 137, and active enzymes were identified by complementation of a bacterial purine auxotroph. Functional analyses of the mutants, including determination of steady-state kinetic parameters and pH-rate dependence, indicate that glutamic acid or glutamine can replace the wild-type aspartate. However, the catalytic efficiency and pH-rate profile for the structural isosteric mutant, D137N, were similar to the D137A mutant. Crystal structures of four of the mutant enzymes were determined in ternary complex with substrate ligands. Structures of the D137E and D137Q mutants reveal potential hydrogen bonds, utilizing several bound water molecules in addition to protein atoms, that position these side chains within hydrogen bond distance of the bound purine analogue, similar in position to the aspartate in the wild-type structure. The crystal structure of the D137N mutant demonstrates that the Asn137 side chain does not form interactions with the purine substrate but instead forms novel interactions that cause the side chain to adopt a nonfunctional rotamer. The results from these structural and functional analyses demonstrate that HPRTs do not require a general base at position 137 for catalysis. Instead, hydrogen bonding sufficiently stabilizes the developing partial positive charge at the N7-atom of the purine substrate in the transition-state to promote catalysis.

  6. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Stefania eDe Benedetti


    Full Text Available For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly.D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L- alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  7. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites. (United States)

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng


    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis.

  8. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development. (United States)

    Deniskin, Roman; Frame, I J; Sosa, Yvett; Akabas, Myles H


    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  9. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus. (United States)

    Atehnkeng, Joseph; Donner, Matthias; Ojiambo, Peter S; Ikotun, Babatunde; Augusto, Joao; Cotty, Peter J; Bandyopadhyay, Ranajit


    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro-ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co-inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non-utilizing (nit(-)) mutants. To determine genetic diversity and distribution of VCGs across agro-ecological zones, 832 nit(-) mutants from 52 locations in 11 administrative districts were paired with one self-complementary nitrate auxotroph tester-pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro-ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5  = 0.96) of VCGs were high across all agro-ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance

  10. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III-reducing subsurface environments.

    Directory of Open Access Journals (Sweden)

    Aklujkar Muktak


    Full Text Available Abstract Background Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of

  11. Coordinated expression of two key enzyme genes pheA and aroF in phenylalanine biosynthesis pathway%苯丙氨酸生物合成关键酶基因pheA与aroF协同表达

    Institute of Scientific and Technical Information of China (English)

    芦佳; 黄坤央; 赵越; 徐琪寿; 郭军; 黄英武


    Objective:To develop a metabolically engineered E..coli strain for the overproduction of L-phenylalanine through optimization of protein expressions of two key genes pheA and aroF involved in L-phenylalanine biosynthesis pathway.Methods:We constructed two recombinant plasmids pZEI2-RBS-AF and pZE12-AF based on designing the DNA sequences of intergenic regulatory region between pheA and aroF.PheA and aroF protein expressions were observed by SDS-PAGE.Engineered E.coli strains were obtained by transforming the above two plasmids into an auxotrophic strain MGA and fermented for L- phenylalanine production.ResuLts: L- phenylalanine yield of the engineered strain MG△pZE12-AF was almost twice as high as that of the engineered strain MG△pZE12 -RBS-AR It was achieved by coordinated tandem expression of pheA and aroR Conclusion: Coordinated expression of L- phenylalanine biosynthesis enzymes can be obtained by adjusting intergenic regulatory sequences between tandem enzyme genes. It provides a new approach to improve the yield of engineered L-phenylalanine producing strain.%目的:优化L-苯丙氨酸生物合成通路上的关键酶基因pheA、aroF的蛋白表达,构建高产L-苯丙氨酸的工程菌株。方法:通过设计酶基因的间隔调控序列,分别构建重组质粒pZE12-RBS—AF和pZE12-AF,SDS—PAGE观察蛋白表达量,转入营养缺陷菌MGA中构建工程菌,并发酵培养。结果:工程菌MG△pZE12-AF苯丙氨酸的产量比工程菌MG△pZE12-RBs—AF高1倍,实现了L-苯丙氨酸生物合成关键酶基因pheA和aroF协同,匹配表达。结论:调整串联酶基因之间的间隔调控序列可实现苯丙氨酸合成酶基因的协同表达,提供了-种新的提高苯丙氨酸工程菌产量的方法。

  12. Yeast-based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites (United States)

    Frame, I. J.; Deniskin, Roman; Rinderspacher, Alison; Katz, Francine; Deng, Shi-Xian; Moir, Robyn D.; Adjalley, Sophie H.; Coburn-Flynn, Olivia; Fidock, David A.; Willis, Ian M.; Landry, Donald W.; Akabas, Myles H.


    Equilibrative transporters are potential drug targets, however most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64,560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2–2 µM). These nine compounds completely blocked [3H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5–50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5–50 µM). Wild-type (WT) parasite IC50 values were up to four-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development. PMID:25602169

  13. Effects of cholesterol and lipoproteins on endocytosis by a monocyte-like cell line. (United States)

    Esfahani, M; Scerbo, L; Lund-Katz, S; DePace, D M; Maniglia, R; Alexander, J K; Phillips, M C


    The human monocyte/macrophage-like cell line U937 is a cholesterol auxotroph. Incubation of these cells in the growth medium in which delipidated fetal calf serum has been substituted for fetal calf serum depletes cellular cholesterol and inhibits growth. The cholesterol requirement of these cells for growth can be satisfied by human low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL), but not by high-density lipoprotein (HDL). U937 cells can bind and degrade LDL via a high-affinity site and this recognition is altered by acetylation of LDL. This indicates that these cells express relatively high LDL receptor activity and low levels of the acetyl-LDL receptor. The cells were used to study the role of cholesterol in lectin-mediated and fluid-phase endocytosis. Growth of the cells in the medium containing delipidated fetal calf serum results in impairment of both concanavalin A-mediated endocytosis of horseradish peroxidase and concanavalin A-independent endocytosis of Lucifer Yellow. Supplementation of the medium with cholesterol prevents cellular cholesterol depletion, supports growth and stimulates Lucifer Yellow endocytosis but fails to restore horseradish peroxidase endocytosis. However, if the cells are incubated in the presence of no less than 40 micrograms LDL protein/ml to maintain normal cell cholesterol levels, concanavalin A-mediated endocytosis of horseradish peroxidase is activated. The effect of LDL is specific since neither VLDL nor HDL3 at the same protein concentration activates horseradish peroxidase uptake by the cells. Furthermore, the activation of endocytosis by LDL is not inhibited by the inclusion of heparin or acetylation of the LDL indicating that binding of LDL to the LDL receptor is not required for these effects. The mediation of activation of horseradish peroxidase endocytosis by the lectin is presumed to involve binding of LDL to concanavalin A associated with the cell surface which in turn stimulates horseradish

  14. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. (United States)

    Lee, Ki-Sung; Kim, Jun-Seob; Heo, Paul; Yang, Tae-Jun; Sung, Young-Je; Cheon, Yuna; Koo, Hyun Min; Yu, Byung Jo; Seo, Jin-Ho; Jin, Yong-Su; Park, Jae Chan; Kweon, Dae-Hyuk


    Kluyveromyces marxianus is now considered one of the best choices of option for industrial applications of yeast because the strain is able to grow at high temperature, utilizes various carbon sources, and grows fast. However, the use of K. marxianus as a host for industrial applications is still limited. This limitation is largely due to a lack of knowledge on the characteristics of the promoters since the time and amount of protein expression is strongly dependent on the promoter employed. In this study, four well-known constitutive promoters (P(CYC), P(TEF), P(GPD), and P(ADH)) of Saccharomyces cerevisiae were characterized in K. marxianus in terms of protein expression level and their stochastic behavior. After constructing five URA3-auxotrophic K. marxianus strains and a plasmid vector, four cassettes each comprising one of the promoters--the gene for the green fluorescence protein (GFP)--CYC1 terminator (T(CYC)) were inserted into the vector. GFP expression under the control of each one of the promoters was analyzed by reverse transcription PCR, fluorescence microscopy, and flow cytometer. Using these combined methods, the promoter strength was determined to be in the order of P(GPD) > P(ADH) ∼ P(TEF) > P(CYC). All promoters except for the P(CYC) exhibited three distinctive populations, including non-expressing cells, weakly expressing cells, and strongly expressing cells. The relative ratios between populations were strongly dependent on the promoter and culture time. Forward scattering was independent of GFP fluorescence intensity, indicating that the different fluorescence intensities were not just due to different cell sizes derived from budding. It also excluded the possibility that the non-expressing cells resulted from plasmid loss because plasmid stability was maintained at almost 100 % over the culture time. The same cassettes, cloned into a single copy plasmid pRS416 and transformed into S. cerevisiae, showed only one population. When the

  15. Zolav®: a new antibiotic for the treatment of acne

    Directory of Open Access Journals (Sweden)

    Dinant A


    Full Text Available Alexa Dinant,1 Ramiz A Boulos2,3 1AXD Pty Ltd, Semaphore Park, 2School of Chemical and Physical Sciences, Flinders University, Bedford Park, 3Boulos & Cooper Pharmaceuticals Pty Ltd, Port Adelaide, SA, Australia Background: Acne is a prominent skin condition affecting >80% of teenagers and young adults and ~650 million people globally. Isotretinoin, a vitamin A derivative, is currently the standard of care for treatment. However, it has a well-established teratogenic activity, a reason for the development of novel and low-risk treatment options for acne. Objective: To investigate the effectiveness of Zolav®, a novel antibiotic as a treatment for acne vulgaris. Materials and methods: Minimum inhibitory concentration of Zolav® against Propionibacterium acnes was determined by following a standard protocol using Mueller-Hinton broth and serial dilutions in a 96-well plate. Cytotoxicity effects on human umbilical vein endothelial cells and lung cells in the presence of Zolav® were investigated by determining the growth inhibition (GI50 concentration, total growth inhibition concentration, and the lethal concentration of 50% (LC50. The tryptophan auxotrophic mutant of Escherichia coli strain, WP2 uvrA (ATCC 49979, was used for the AMES assay with the addition of Zolav® tested for its ability to reverse the mutation and induce bacterial growth. The in vivo effectiveness of Zolav® was tested in a P. acnes mouse intradermal model where the skin at the infection site was removed, homogenized, and subjected to colony-forming unit (CFU counts. Results: Susceptibility testing of Zolav® against P. acnes showed a minimum inhibitory concentration of 2 µg/mL against three strains with no cytotoxicity and no mutagenicity observed at the highest concentrations tested, 30 µM and 1,500 µg/plate, respectively. The use of Zolav® at a concentration of 50 µg/mL (q8h elicited a two-log difference in CFU/g between the treatment group and the control

  16. Bion M1. Peculiarities of life activities of microbes in 30-day spaceflight (United States)

    Viacheslav, Ilyin; Korshunov, Denis; Morozova, Julia; Voeikova, Tatiana; Tyaglov, Boris; Novikova, Liudmila; Krestyanova, Irina; Emelyanova, Lydia

    The aim of this work was to analyze the influence of space flight factors ( SFF) to microorganism strains , exposed inside unmanned spacecraft Bion M-1 during the 30- day space flight. Objectives of the work - the study of the influence of the SFF exchange chromosomal DNA in crosses microorganisms of the genus Streptomyces; the level of spontaneous phage induction of lysogenic strains fS31 from Streptomyces lividans 66 and Streptomyces coelicolor A3 ( 2 ) on the biosynthesis of the antibiotic tylosin strain of Streptomyces fradiae; survival electrogenic bacteria Shewanella oneidensis MR- 1 is used in the microbial fuel cell As a result of this work it was found that the SFF affect the exchange of chromosomal DNA by crossing strains of Streptomyces. Was detected polarity crossing , expressed in an advantageous contribution chromosome fragment of one of the parent strains in recombinant offspring. This fact may indicate a more prolonged exposure of cells in microgravity and , as a consequence, the transfer of longer fragments of chromosomal DNA This feature is the transfer of genetic material in microgravity could lead to wider dissemination and horizontal transfer of chromosomal and plasmid DNA of symbiotic microflora astronauts and other strains present in the spacecraft. It was shown no effect on the frequency of recombination PCF and the level of mutation model reversion of auxotrophic markers to prototrophy It was demonstrated that PCF increase the level of induction of cell actinophage fS31 lysogenic strain of S. lividans 66, but did not affect the level of induction of this phage cells S. coelicolor A3 ( 2). It is shown that the lower the level of synthesis PCF antibiotic aktinorodina (actinorhodin) in lysogenic strain S. coelicolor A3 ( 2). 66 Strains of S. lividans and S. coelicolor A3 ( 2 ) can be used as a biosensor for studying the effect on microorganisms PCF It is shown that the effect of the PCF reduces synthesis of tylosin and desmicosyn S. fradiae at

  17. Continuous catalytic hydrogenation of polyaromatic hydrocarbon compounds in hydrogen-supercritical carbon dioxide. (United States)

    Yuan, Tao; Fournier, Anick R; Proudlock, Raymond; Marshall, William D


    A continuous hydrogenation device was evaluated for the detoxification of selected tri-, tetra-, or pentacyclic polyaromatic hydrocarbon (PAH) compounds {anthracene, phenanthrene, chrysene, and benzo[a]pyrene (B[a]P)} by hydrogenation. A substrate stream in hexane, 0.05-1.0% (w/v), was mixed with hydrogen-carbon dioxide (H2-CO2, 5-30% v/v) and delivered to a heated reactor column (25 cm x 1 cm) containing palladium supported on gamma alumina (Pd0/gamma-Al2O3) that was terminated with a capillary restrictor. The flow rate from the reactor, approximately 800 mL min(-1) decompressed gas, corresponded to 4 mL min(-1) fluid under the operating conditions of the trials. Reaction products were recovered by passing the reactor effluent through hexane. At 90 degrees C, the anthracene or phenanthrene substrate was hydrogenated only partially to octahydro and dodecahydro species and contained only a minor quantity of totally hydrogenated products. For substrates with increasing numbers of fused aromatic rings, the hydrogenation efficiency was decreased further. However, at an increasing temperature (90-150 degrees C) and increasing mobile phase flow rate (20.68 MPa corresponding to 2100 mL min(-1) decompressed gas), B[a]P and chrysene were hydrogenated, virtuallytotally, to their corresponding perhydro analogues (eicosahydrobenzo[a]pyrenes and octadecahydrochrysenes), respectively. That this approach might be useful for decontaminating soil extracts was supported by companion in vitro trials in which the substrate and products were assayed for mutagenic activity with five bacterial strains that are auxotrophic for histidine (Salmonella typhimurium TA98, TA100, TA1535, and TA1537) or tryptophan (Escherichia coliWP2 uvrA), using the bacterial reverse mutation assay (modified Ames test). Generally, substantial increases in revertant colony counts were not observed with any of the strains following exposure to the hydrogenation products in the absence or presence of the 10 or 30

  18. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Isocitrate deyhdrogenase (IDH is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P(+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG and the NAD(PH/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kan(r of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn(2+ was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD(+ dependent and its apparent Km for NAD(+ was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two "stably phosphorylated" mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of "phosphorylation mechanism" used by their bacterial

  19. Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102. (United States)

    Wang, Peng; Song, Ping; Jin, Mingming; Zhu, Guoping


    Isocitrate deyhdrogenase (IDH) is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P)(+)-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG) and the NAD(P)H/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kan(r) of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH) may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn(2+) was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD(+) dependent and its apparent Km for NAD(+) was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two "stably phosphorylated" mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine) containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of "phosphorylation mechanism" used by their bacterial NADP

  20. Uptake of biotin by Chlamydia Spp. through the use of a bacterial transporter (BioY and a host-cell transporter (SMVT.

    Directory of Open Access Journals (Sweden)

    Derek J Fisher

    Full Text Available Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB and/or transport (bioY. Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613 from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF. Type II ECFs are typically composed of a transport specific component (S and a chromosomally unlinked energy module (AT. Intriguingly, Chlamydia lack recognizable AT modules. Using (3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module and capacity (apparent K(m of 3.35 nM and V(max of 55.1 pmol×min(-1×mg(-1. Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT, which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin

  1. Selective Intracellular Delivery of Recombinant Arginine Deiminase (ADI) Using pH-Sensitive Cell Penetrating Peptides To Overcome ADI Resistance in Hypoxic Breast Cancer Cells. (United States)

    Yeh, Tzyy-Harn; Chen, Yun-Ru; Chen, Szu-Ying; Shen, Wei-Chiang; Ann, David K; Zaro, Jennica L; Shen, Li-Jiuan


    Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with p

  2. 精氨酸脱亚胺酶基因在大肠杆菌中的克隆、表达及纯化%Cloning, Expression and Purification of Arginine Deiminase from Pseudomonas plecoglossicida CGMCC2039 in Escherichia coli BL21 (DE3)

    Institute of Scientific and Technical Information of China (English)

    刘咏梅; 倪晔; 李娜; 李利峰; 孙志浩


    Arginine deiminase (ADI)an arginine degrading enzymehas been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumorssuch as melanomas and hepatocellular carcinomas (HCCs). In this studythe arc A gene that encodes ADI was cloned from P. Plecoglossicida CGMCC2039 which was isolated and identified by our laboratory previously. The arcA gene was subcloned into expression vector pET24a and its product ADI was over-expressed in Escherichia coli BL2HDE3). The effects of different IPTG concentrationsinduction temperatures and induction time were investigated. Under the optimal expression conditions the enzyme activity reached to 2. 04 U/mL broth. The rADI was purified using DEAE Fast Flow anion exchange and Superdex? 200 gel filtration column chromatography. The rADI had a molecular mass of about 92. 6 kDaand comprised a homodimer of 46 kDa in the native condition. The specific activity of rADI was determined to be 20. 9 U/mg at pH 6. 0 and 37℃.%通过PCR扩增得到菌株编码ADI的arcA基因,并构建表达载体pET24a-ADI.将该载体导入大肠杆菌BL21(DE3),获得高效表达ADI基因的重组菌.对ADI诱导表达条件进行优化,结果发现宿主菌在A600达到1.0时加入0.2 mmol/L异丙基-β-D-口硫代半乳糖苷(IPTG),在30℃诱导4h酶活最高,为2.04 U/mL发酵液.经超声波破碎、HiPrep DEAE FF阴离子交换层析、SuperdexTM 200凝胶过滤层析,可获得SDS-PAGE电泳纯重组精氨酸脱亚胺酶(rADI).rADI相对分子质量大小为92 600,由两个相同亚基组成,纯化后的rADI比酶活达20.9 U/mg.

  3. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    Directory of Open Access Journals (Sweden)

    Carrier Patrick


    Full Text Available Abstract Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols. The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1 showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas

  4. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.


    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  5. Identification of a bacteria-like ferrochelatase in Strongyloides venezuelensis, an animal parasitic nematode.

    Directory of Open Access Journals (Sweden)

    Eiji Nagayasu

    Full Text Available Heme is an essential molecule for vast majority of organisms serving as a prosthetic group for various hemoproteins. Although most organisms synthesize heme from 5-aminolevulinic acid through a conserved heme biosynthetic pathway composed of seven consecutive enzymatic reactions, nematodes are known to be natural heme auxotrophs. The completely sequenced Caenorhabditis elegans genome, for example, lacks all seven genes for heme biosynthesis. However, genome/transcriptome sequencing of Strongyloides venezuelensis, an important model nematode species for studying human strongyloidiasis, indicated the presence of a gene for ferrochelatase (FeCH, which catalyzes the terminal step of heme biosynthesis, whereas the other six heme biosynthesis genes are apparently missing. Phylogenetic analyses indicated that nematode FeCH genes, including that of S. venezuelensis (SvFeCH have a fundamentally different evolutionally origin from the FeCH genes of non-nematode metazoa. Although all non-nematode metazoan FeCH genes appear to be inherited vertically from an ancestral opisthokont, nematode FeCH may have been acquired from an alpha-proteobacterium, horizontally. The identified SvFeCH sequence was found to function as FeCH as expected based on both in vitro chelatase assays using recombinant SvFeCH and in vivo complementation experiments using an FeCH-deficient strain of Escherichia coli. Messenger RNA expression levels during the S. venezuelensis lifecycle were examined by real-time RT-PCR. SvFeCH mRNA was expressed at all the stages examined with a marked reduction at the infective third-stage larvae. Our study demonstrates the presence of a bacteria-like FeCH gene in the S. venezuelensis genome. It appeared that S. venezuelensis and some other animal parasitic nematodes reacquired the once-lost FeCH gene. Although the underlying evolutionary pressures that necessitated this reacquisition remain to be investigated, it is interesting that the presence of Fe

  6. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ayako Chino

    Full Text Available BACKGROUND: Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC, is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. METHODOLOGY/PRINCIPAL FINDINGS: We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp. No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. CONCLUSIONS/SIGNIFICANCE: We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different

  7. Construction of the Transformation System in Aspergillus nidulans for Manganese Peroxidases Gene of White-Rot Fungus Lenzites gibbosa%偏肿革裥菌 MnP基因在构巢曲霉中转化方法的建立1)

    Institute of Scientific and Technical Information of China (English)


      对已经构建好的携带有白腐菌偏肿革裥菌(Lenzites gibbosa)锰过氧化物酶完整编码序列基因的载体质粒pMDTM18-T/Lg-mnp、以及整合型表达载体质粒pLB01分别双酶切,然后进行连接构建了重组质粒pLB01/Lg-mnp。对构巢曲霉(Aspergillus nidulans)尿嘧啶尿苷营养缺陷体菌株TN02A7进行了制备分生孢子原生质体酶解方法的摸索。结果表明:将溶壁酶、纤维素酶和蜗牛酶3种酶以1∶1∶1的比例混合,能有效地使构巢曲霉的分生孢子形成原生质体。采用PEG/CaCl2介导的原生质体转化方法成功地将L.gibbosa的MnP基因转入到了构巢曲霉中,获得了携带有白腐菌基因的构巢曲霉转化子菌株。%We digested the integrated expression vectors pLB01 and pMDTM 18-T/Lg-mnp by restriction endonuclease XbaI and BamHI, respectively, and then connected them by T4 DNA ligase to construct the recombinant plasmid pLB01/Lg-mnp. We explored the methods how the conidiophores of auxotrophic stain TN02A7 of Aspergillus nidulans were transformed to protoplasts by different cell wall lyases.Lywallzyme, cellulase and snailase mixed together by 1 ∶1 ∶1 can effectively make the spores become protoplasts.By PEG/CaCl2 mediated protoplast transformation method, a manganese peroxidase gene of Lenzites gibbosa is successfully transferred to TN02A7.

  8. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1 for antimalarial drug development

    Directory of Open Access Journals (Sweden)

    Roman Deniskin


    Full Text Available Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs. Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1. Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1 homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine and pyrimidines ([3H]uridine, whereas wild type (fui1Δ yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM, compared to guanosine (14.9 μM and adenosine (142 μM. For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range. IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1. The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel

  9. Heterologous Transformation and Expression of Hericium erinaceum Manganese Peroxidase 1 Gene in Aspergillus nidulans%猴头菌锰过氧化物酶1基因在构巢曲霉的异源转化与表达

    Institute of Scientific and Technical Information of China (English)

    尹立伟; 池玉杰


    The recombinant plasmid pLB01/He-mnp1 which contains a gene encoding for manganese peroxidase (He-mnp1) from Hericium erinaceum CB1 was transformated into protoplasts of auxotrophic stain TN02A7 of Aspergillus nidulans by means of protoplast transformation method mediated by PEG/CaC12so as to enhance MnP production.A transformant stain TN02A7-He-mnp1 of A.nidulans was gained,the gene He-mnp1 was expressed under the control of alcohol dehydrogenase alcA (p) promoter.The transformant stain TN02A7-He-mnp1,auxotrophic stain TN02A7,wild stain of A.nidulans WJA01,and H.erinaceum CB1 were cultured under the same lignin condition and detected the MnP activity.The results showed that TN02A7-He-mnp1 could produce MnP activity in the absence and presence of heme,but the MnP activity was up to 38.31 U · L-1 on 96h with 0.05 g · L-1 heme which was 8.64 times higher than that without heme but less than that of H.erinaceum CB1,whereas TN02A7 and WJA01 could not produce MnP activity at any time,indicating that the gene He-mnp1 had been successfully transformed into TN02A7-He-mnp1 and expressed in lignin environment,and the heme was one of the restrictive factors for rescombinant mnp gene to express in A.nidulans.The study provides a new method to produce MnP and enhance MnP yield.%为提高猴头菌菌株CB1锰过氧化物酶(MnP)基因的表达产量,采用PEG/CaCl2介导的原生质体转化方法,将携带有He-mnp1的重组质粒pLB01/He-mnp1转入到构巢曲霉尿嘧啶尿苷营养缺陷菌株TN02A7的原生质体中,获得了转化子菌株TN02A 7-He-mnp1,并在乙醇脱氢酶启动子alcA(P)控制下实现了异源表达.将TN02A7-He-mnp1、TN02A7、构巢曲霉野生型菌株WJA01、猴头菌菌株CB1在相同的木质素环境下进行培养并检测MnP酶活性,结果表明:转化子菌株TN02A7-He-mnp1在0.05 g· L-1血红素的情况下、诱导96 h后酶活性最高为38.31 U·L-1,比不添加血红素的酶活力高8.64倍,但比猴头菌菌株CB1

  10. OsRUS1酵母双杂交诱饵载体的构建及其自激活作用检测%Construction of OsRus1 Yeast Two-Hybrid Bait Vectors and Detection of Their Self-activated Activity

    Institute of Scientific and Technical Information of China (English)

    潘家强; 侯学文


    采用PCR技术扩增水稻(Oryza sativa L)根UV-B敏感基因1(ROOT UV-B SENSITIVE 1,RUS1)四个不同片段[OsRUS1(1-1782)、OsRUS1(1-504)、OsRUS1(510-1282)、OsRUS1(1188-1782)],连接到T载体pMD18-T-Simple上,测序无误后分别亚克隆到诱饵载体pGBKT7上,酶切和测序结果表明构建的4个OsRUS1基因片段的诱饵载体构建成功,读码框正确;转化重组载体于酵母感受态细胞Y187中,用LacZ、MEL1活性检测法和营养缺陷型培养基SD-Trp-DO培养法进行自激活检测和毒性检测,结果表明诱饵载体对酵母菌株Y187没有转录激活活性和毒害作用.说明构建的4个OsRUS1基因片段的诱饵载体可以用于酵母双杂交系统中,为下一步从水稻cDNA文库中筛选互作蛋白奠定了基础.%Four fragments of rice (Oryza sativa L) ROOT UV-B SENSITIVE 1 (OsRUSl), OsRUSl (1-1782), OsRUSl (1-504), OsRUSl (510-1282), OsRUSl (1188-1782), were amplified by PCR from cloned OsRUSl, and were ligated with pMD18-T-Simple, then transformed to E.coli TOP10 competent cell. The positive clones were selected and sequenced. The confirmed fragments were subcloned to bait vector pGBKT7. The four constructed pCBKT7 bait vectors were further confirmed by enzyme digestion and sequencing. The confirmed pGBKT7 bait vectors were transformed to Y187 yeast competent cell. The self-activation and toxicity of the plasmids to host yeast Y187 by LaeZ and MEL1 activity assays and culturing in auxotroph medium SD-Trp-DO. Results showed that the four constructed plasmids had no self-transcriptional activity and not toxicity to yeast strain Y187. The four bait vectors constructed could be used in yeast two hybrid system, which laid the foundation for screening interactional proteins of OsRUS1 from rice cDNA library.

  11. Inhibition and Structure of Trichomonas vaginalis Purine Nucleoside Phosphorylase with Picomolar Transition State Analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldo-Matthis,A.; Wing, C.; Ghanem, M.; Deng, H.; Wu, P.; Gupta, A.; Tyler, P.; Evans, G.; Furneaux, R.; et al.


    Trichomonas vaginalis is a parasitic protozoan purine auxotroph possessing a unique purine salvage pathway consisting of a bacterial type purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase. Thus, T. vaginalis PNP (TvPNP) functions in the reverse direction relative to the PNPs in other organisms. Immucillin-A (ImmA) and DADMe-Immucillin-A (DADMe-ImmA) are transition stte mimics of adenosine with geometric and electrostatic features that resemble early and late transition states of adenosine at the transition state stabilized by TvPNP. ImmA demonstrates slow-onset tight-binding inhibition with TvPNP, to give an equilibrium dissociation constant of 87 pM, an inhibitor release half-time of 17.2 min, and a K{sub m}/K{sub d} ratio of 70,100. DADMe-ImmA resembles a late ribooxacarbenium ion transition state for TvPNP to give a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, and a K{sub m}/K{sub d} ratio of 203,300. The tight binding of DADMe-ImmA supports a late S{sub N}1 transition state. Despite their tight binding to TvPNP, ImmA and DADMe-ImmA are weak inhibitors of human and P. falciparum PNPs. The crystal structures of the TvPNP-ImmA{center_dot}PO{sub 4} and TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4} ternary complexes differ from previous structures with substrate anologues. The tight binding with DADMe-ImmA is in part due to a 2.7 {angstrom} ionic interaction between a PO{sub 4} oxygen and the N1 cation of the hydroxypyrrolidine and is weaker in the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure at 3.5 {angstrom}. However, the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure includes hydrogen bonds between the 2'-hydroxyl and the protein that are not present in TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4}. These structures explain why DADMe-ImmA binds tighter than ImmA. Immucillin-H is a 12 nM inhibitor of TvPNP but a 56 pM inhibitor of human PNP. And this difference is explained by isotope

  12. Screening of novel proteins that interact with FLA8-C terminal from Dunaliella salina using yeast two-hybrid system%与杜氏盐藻驱动蛋白Ⅱ动力亚基C端相互作用的新蛋白的酵母双杂交筛选

    Institute of Scientific and Technical Information of China (English)

    李靓; 崔柳青; 王瑞莉; 毛丽红; 韩康; 柴丹丹; 薛乐勋


    目的:用酵母双杂交的方法筛选与杜氏盐藻驱动蛋白Ⅱ动力亚基(FLA8)C端相互作用的蛋白.方法:设计特异性引物(上下游分别引入EcoRⅠ和BamHⅠ酶切位点),扩增FLA8 C端(433个氨基酸)cDNA,与穿梭载体pGBKT7连接以构建诱饵表达载体,然后转化酵母菌株Y187和AH109,Western blot法检测诱饵蛋白在转化酵母菌株内的表达.通过自激活实验和毒性实验检测诱饵表达载体是否适合利用酵母双杂交的方法筛选相互作用蛋白.转化诱饵质粒的酵母菌株Y187与AH109(文库菌)杂交,待三叶形合子形成后用营养缺陷型培养基和α-半乳糖苷酶活性实验筛选阳性克隆,并对阳性克隆进行测序.结果:成功构建了pGBKT7-FLA8-C双杂交诱饵载体;经检测该载体的表达产物对Y187和AH109均无自激活和毒性作用,可用于酵母双杂交实验;杂交后筛选得到2个阳性克隆,测序结果显示为鞭毛结合蛋白107(FAP107)和含蛋白结合结构域的预测蛋白.结论:成功筛选得到了与杜氏盐藻驱动蛋白Ⅱ动力亚基C端相互作用的蛋白,分别为FAP107和预测蛋白.%Aim : To isolate proteins that interact with C-Lerminal region oi FLA8 which is the motor subunit of kinesin II from Dunaliella salina. Methods:The coding sequences of FLA8-C( 433 aa )was cloned into the pGBKT7 as bait and transformed into Y187 and AH109 yeast strains,and then the transcriptional activation and toxicity were tested. Yeast two-hybrid method was performed to screen the Dunaliella salina cDNA expression library. The positive clones were screened by auxotroph culture and assayed for α-galactosidase activity according the manufacturer s instructions. The cDNA fragments of prey proteins from positive colonies were detected by colony PCR. Results :The results showed that the FLA8-C is suitable for two-hybrid library screening. Sequence analysis on positive colonies showed that they were flagellar associated protein 107( FAP107 )and

  13. 利用定点突变法研究精氨酸脱亚胺酶活性的影响机制%Mechanism of arginine deiminase activity by site-directed mutagenesis

    Institute of Scientific and Technical Information of China (English)

    李利锋; 倪晔; 孙志浩


    精氨酸脱亚胺酶(ADI)是一种针对精氨酸缺陷型癌症(如:肝癌、黑素瘤)的新药,目前处于临床三期试验.文中通过定点突变技术分析了精氨酸脱亚胺酶的特定氨基酸位点对酶活力的影响机制.针对已报道的关键氨基酸残基A128、H404、I410,采用QuikChange法进行定点突变,获得ADI突变株M1 (A128T)、M2 (H404R)、M3 (I410L)和M4 (A128T/H404R).将突变株在大肠杆菌BL21 (DE3)中进行重组表达,并对纯化获得的突变蛋白进行酶学性质研究.结果表明,突变位点A128T和H404R对ADI最适pH的提高,生理中性(pH 7.4)条件下的酶活力和稳定性的提高,以及Km值的降低均具有显著的作用.研究结果为阐明ADI的酶活力影响机制和蛋白质的理性改造提供了一定的依据.%Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants Ml (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced Km value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  14. 应用酵母双杂交筛选系统从药用植物中发现Aβ聚集抑制剂%Application of a yeast two-hybrid based screening system in the identification of amyloid-beta aggregation inhibitors in pharmaceutical plants

    Institute of Scientific and Technical Information of China (English)

    王丽威; 杨雁芳; 张英涛


    including HIS3,ADE2,lacZ and MEL1.The expression of the reporter genes rendered the multiple auxotrophic yeast cells capable of growing on the synthetic SD media lacking adenine and histidine.Growth arrest was used as a marker for screening Aβ aggregation inhibitors in this system,and the evaluation of Rhodiola species revealed potential resources for the development of Aβ aggregation inhibitors.

  15. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. (United States)

    Qu, Na; He, Xiu-ping; Guo, Xue-na; Liu, Nan; Zhang, Bo-run


    In the process of beer storage and transportation, off-flavor can be produced for oxidation of beer. Sulphite is important for stabilizing the beer flavor because of its antioxidant activity. However, the low level of sulphite synthesized by the brewing yeast is not enough to stabilize beer flavor. Three enzymes involve sulphite biosynthesis in yeast. One of them, APS kinase (encoded by MET14) plays important role in the process of sulphite formation. In order to construct high sulphite-producing brewing yeast strain for beer production, MET14 gene was cloned and overexpressed in industrial strain of Saccharomyces cerevisiae. Primer 1 (5'-TGTGAATTCCTGTACACCAATGGCTACT-3', EcoR I) and primer 2 (5'-TATAAGCTTGATGA GGTGGATGAAGACG-3', HindIII) were designed according to the MET14 sequence in GenBank. A 1.1kb DNA fragment containing the open reading frame and terminator of MET14 gene was amplified from Saccharomyces cerevisiae YSF-5 by PCR, and inserted into YEp352 to generate recombinant plasmid pMET14. To express MET14 gene properly in S. cerevisiae, the recombinant expression plasmids pPM with URA3 gene as the selection marker and pCPM with URA3 gene and copper resistance gene as the selection marker for yeast transformation were constructed. In plasmid pPM, the PGK1 promoter from plasmid pVC727 was fused with the MET14 gene from pMET14, and the expression cassette was inserted into the plasmid YEp352. The dominant selection marker, copper-resistance gene expression cassette CUP1-MTI was inserted in plasmid pPM to result in pCPM. Restriction enzyme analysis showed that plasmids pPM and pCPM were constructed correctly. The laboratory strain of S. cerevisiae YS58 with ura3, trp1, leu2, his4 auxotroph was transformed with plasmid pPM. Yeast transformants were screened on synthetic minimal medium (SD) containing leucine, histidine and tryptophan. The sulphite production of the transformants carrying pPM was 2 fold of that in the control strain YS58, which showed that the

  16. 赤苷脉通注射液的致突变研究%Mutagenicity study of Chiganmaitong Injection

    Institute of Scientific and Technical Information of China (English)

    侯艳; 白文霞; 龚英菲


    Objective To explore mutagenicity of Chiganmaitong Injection. Methods Three types of tests were performed:Salmonella typhimurium histidine auxotrophic strain reverse mutation assay (Ames test) , Chinese hamster lung fibroblasts (CHL) chromosomal aberration test and mouse bone marrow micronucleus test. Results In Ames test,for Chiganmaitong Injection in 312. 5-5 000 μg ? Dish-1 dose range, with S9 or not, the number of revertant colonies salmonella typhimurium histidine-deficient TA97, TA98, TA100, TA102 and TA1535 five bacteria had no dose-dependent increase; In chromosome aberration test, in the non-activation conditions or metabolic activation conditions, in 1 200,600,and 300 μg ? mL-1 concentration, the cell chromosome aberration had no dose-dependent increased; In micronucleus test, in 1 150,575 and 287. 5 mg ? Kg-1 dose group, there was no statistically significant difference between test sample group and blank control group. Conclusion In the experimental conditions, Ames test, CHL cell chromosome aberration test and mouse bone marrow micronucleus test results were negative,therefore, Chiganmaitong Injection has no mutagenic effect.%目的 探讨中药制剂赤苷脉通注射液的致突变性.方法 采用鼠伤寒沙门氏组氨酸营养缺陷型菌株回复突变实验(Ames实验)、中国仓鼠肺成纤维细胞(CHL)染色体畸变实验和小鼠骨髓微核实验来检测赤苷脉通注射液的致突变作用.结果 Ames实验中,赤苷脉通注射液在312.5~5 000 μg·皿 -1剂量范围内,无论加或不加S9,鼠伤寒沙门氏菌组氨酸缺陷型TA97,TA98,TA100,TA102和TA1535 5株菌的回复突变菌落数均未出现剂量依赖性的增加;染色体畸变实验中,非活化条件或代谢活化条件下,药物质量浓度为1 200,600和300 μg·mL -1时,细胞的染色体畸变率均未出现剂量依赖性增加;微核实验中,在1 150,575和287.5 mg·kg -1剂量组中均未见骨髓中含微核的嗜多染红细胞数增加.结论 在该

  17. Optimization of fermentation process in skim milk with ST-ⅢLactobacillus plantarum%植物乳杆菌ST-Ⅲ脱脂乳的发酵工艺优化

    Institute of Scientific and Technical Information of China (English)

    华宝珍; 李莎; 徐爱才; 徐志平; 马成杰


    Fermented milk is increasingly used as a carrier of probiotics for their potential health functions. Because the concentration of viable probiotics is the key factor to health functions, it should be higher than the recommended concentration for probiotics (106 CFU/g). However, there are many products with low viability of probiotics in the market. It is very important and necessary for the milk industry to increase the count of viable probiotics in yogurt. In addition, survival during the passage through the gastrointestinal tract is generally considered a key feature for probiotics to preserve their expected health functions. However, the traditional yogurt starters (Streptococcus thermophilus and Lactobacillus bulgaricus) have weak tolerance to acid and bile salt and hence limit therapeutic effects. Lactobacillus plantarum has been demonstrated that it can survive in the human intestine and tolerate acid and bile salt. Moreover, it has a lot of precious therapeutic effects, such as precipitating and assimilating cholesterols, lowering blood sugar, diminishing inflammation and improving immunity. Hence, L.plantarumhas become one of research hotspots in recent years. Lactobacillus plantarum ST-Ⅲ strain (CGMCC No.0847) is a probiotics and has ability to tolerate acid and bile salts as well as grow in the lower intestinal tract. It also be proved to have ability to precipitate and assimilate cholesterols in vitro andin vivo. However L.plantarumST-Ⅲ strain is auxotrophic and has weak ability to grow in skim milk and clot milk by acidification. In this study, to increase the concentration of viableL.plantarumST-Ⅲ and elucidate the factors restricting growth ofL.plantarumST-Ⅲ in skim milk, the fermentation conditions were researched and optimized. The effects of soybean polypeptide concentration, manganese gluconate concentration, inoculum size of S. thermophilus and fermentation temperature on the pH and living cell count ofL.plantarumST-Ⅲ of fermented milk

  18. Improving the Enzymatic Properties of Arginine Deiminase by Random Mutagenesis with Rational Design%随机突变结合理性设计改进生理pH下精氨酸脱亚胺酶的性质

    Institute of Scientific and Technical Information of China (English)

    刘梦晗; 倪晔; 张龙; 章凯; 孙志浩


    精氨酸脱亚胺酶(arginine deiminase,EC,ADI)因其可作为精氨酸营养缺陷型肿瘤细胞的靶向治疗药物而受到广泛关注.目前,支原体来源的重组ADI处于肝癌和黑素瘤的三期临床研究阶段.作为药用酶,当前报道的ADI在体内生理条件下普遍存在酶活低、半衰期短、底物亲和性弱等局限性.本研究结合随机突变及基于理性设计的定点突变两种方法,对研究室前期自主筛选得到的变形假单胞菌Pseudomonas plecoglossicida来源的ADI经一轮定向进化后所获优势突变株M314(A128T/H404R/I410L)进行分子改造.通过对随机突变法获得的1480个突变株进行96孔板高通量筛选,得到优良突变株M173 (A128T/H404R/I410L/K272R);同时,基于同源序列比对及ADI蛋白三维结构同源建模,采用PyMOL软件理性预测和分析其活性中心及附近保守区域氨基酸位点对蛋白功能的影响,选择了6个位点D78E、L223I、P230I、S245D、A275N、R400M分别在M314的基础上进行定点突变,最终获得优势突变株M04(A128T/H404R/I410L/S245D).通过对突变株的酶学性质以及动力学参数分析发现:生理pH值下,突变株M173的酶比活(12.32 U/mg)在M314(9.02 U/mg)的基础上提升36.59%,Kcat/Km提高52.36%;而突变株M04的最适pH由6.5升高至7.0,更接近体内生理pH,其比酶活(14.66 U/mg)较M314提升62.53%,Kcat/Km提高了37.12%.综上结果,本研究结合两种分子改造方法成功地对该ADI在生理pH条件下的酶活和酶学性质进行了改良,并为蛋白质的分子改造策略提供了理论基础和实验依据.%Arginine deiminase (ADI, EC was recently recognized as a drug target for arginine-auxotrophic tumors. Recombinant ADI from Mycoplasma arginini is currently being tested for the treatment of hepatocellular carcinomas ( HCCs) and melanomas in phase HI trials. The demanded improvement microbial ADIs includes to increase the substrate affinity, specific