Sample records for auxin binding protein

  1. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1. (United States)

    Feng, Mingxiao; Kim, Jae-Yean


    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

  2. Mechanism of Auxin Interaction with Auxin Binding Protein (ABP1): A Molecular Dynamics Simulation Study (United States)

    Bertoša, Branimir; Kojić-Prodić, Biserka; Wade, Rebecca C.; Tomić, Sanja


    Auxin Binding Protein 1 (ABP1) is ubiquitous in green plants. It binds the phytohormone auxin with high specificity and affinity, but its role in auxin-induced processes is unknown. To understand the proposed receptor function of ABP1 we carried out a detailed molecular modeling study. Molecular dynamics simulations showed that ABP1 can adopt two conformations differing primarily in the position of the C-terminus and that one of them is stabilized by auxin binding. This is in agreement with experimental evidence that auxin induces changes at the ABP1 C-terminus. Simulations of ligand egress from ABP1 revealed three main routes by which an auxin molecule can enter or leave the ABP1 binding site. Assuming the previously proposed orientation of ABP1 to plant cell membranes, one of the routes leads to the membrane and the other two to ABP1's aqueous surroundings. A network of hydrogen-bonded water molecules leading from the bulk water to the zinc-coordinated ligands in the ABP1 binding site was formed in all simulations. Water entrance into the zinc coordination sphere occurred simultaneously with auxin egress. These results suggest that the hydrogen-bonded water molecules may assist in protonation and deprotonation of auxin molecules and their egress from the ABP1 binding site. PMID:17766341

  3. Molecular dynamics simulations of the auxin-binding protein 1 in complex with indole-3-acetic acid and naphthalen-1-acetic acid. (United States)

    Grandits, Melanie; Oostenbrink, Chris


    Auxin-binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole-3-acetic acid (IAA) and the synthetic analog naphthalen-1-acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C-terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C-terminal helix. Conformational changes at the C-terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor.

  4. An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kDa polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Feldwisch, J.; Zettl, R.; Hesse, F.; Schell, J.; Palme, K. (Max-Planck-Inst. fuer Zuechtungsforschung, Koeln (West Germany))


    Plasma membrane vesicles were isolated from maize (Zea mays L.) coleoptile tissue by aqueous two-phase partitioning and assayed for homogeneity by the use of membrane-specific enzymatic assays. Using 5-azido-(7-{sup 3}H)indole-3-acetic acid (({sup 3}H)N{sub 3}IAA), the authors identified several IAA-binding proteins with the molecular masses of 60 kDa (pm60), 58 kDa (pm58), and 23 kDa (pm23). Using Triton X-114, they were able to selectively extract pm23 from the plasma membrane. They show that auxins and functional analogues compete with ({sup 3}H)N{sub 3}IAA for binding to pm23. They found that PAB130, a polyclonal antibody raised against auxin-binding protein 1 (ABP-1), recognized ABP-1 as well as pm23. This suggests that pm23 shares common epitopes with ABP-1. In addition, they identified an auxin-binding protein with a molecular mass of 24 kDa (pm24), which was detected in microsomal but not in plasma membrane vesicle preparations. Like pm23 this protein was extracted from membrane vesicles with Triton X-114. They designed a purification scheme allowing simultaneous purification of pm23 and pm24. Homogeneous pm23 and pm24 were obtained from coleoptile extracts after 7,000-fold purification.

  5. In vitro auxin binding to cellular membranes of cucumber fruits. (United States)

    Narayanan, K R; Mudge, K W; Poovaiah, B W


    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s).

  6. Prokaryotic Expression and Protein Purification of the Auxin Binding Protein 1 in Arabidopsis%拟南芥生长素结合蛋白ABP1的原核表达及蛋白纯化

    Institute of Scientific and Technical Information of China (English)

    刘智; 黄志刚; 吴尚虹; 彭琼; 于峰


    Objective: Auxin-binding protein can bind an auxins specifically, and can be used to study the mechanism of the signal transduction of auxin and bio-sensors. Methods: An auxin-binding protein gene (Auxin bing protein 1, ABP1) was obtained by RT-PCR from arabidopsis, and was cloned into the prokaryotic expression vector pGEX4T-l (pGEX4T-l-ABPl). Identified by digestion, PCR and DNA sequencing, the recombinant plasmid was transformed into the foreign bacteria BL21(DE3). The ABP1 protein was induced by IPTG and detected by SDS-PAGE. Results: The soluble fusion protein was expressed successfully with a molecular weight of 43 kDa. The protein was purified with GST affinity column. Conclusion: The prokaryotic expression and purity of GST-ABP1 protein show a way to development new auxin biosensor and also laid a foundation for the further study of auxin signal transduction and biosensor research.%目的:鉴于生长素结合蛋白(Auxin Binding Protein,ABP)能与生长素特异性结合,因而探讨研究其直接用于生长素信号转导机理和生物传感器的可能性与可行性.方法:通过RT-PCR获得拟南芥生长素结合蛋白1(Auxin bing protein 1,ABP1)的全长CDS,将其克隆到原核表达载体pGEX4T-1中,成功构建pGEX4T-1-ABP1重组表达载体.经酶切、PCR及DNA测序鉴定后,将阳性质粒转化表达受体菌BL21(DE3).加入异丙基-β-D-硫代半乳糖苷(IPTG)进行诱导后,取样进行SDS-PAGE分析.结果:成功表达出一个分子量约为43 kD的可溶性融合蛋白,并利用GST亲和柱纯化方式得到了ABP1.结论:通过原核表达并经GST柱纯化后获得ABP1,为生长素生物传感器的研制开辟新的途径.同时为进一步研究ABP1与生长素的信号转导机制和生长素在生物传感测定技术中的研究和应用奠定基础.

  7. The actin cytoskeleton may control the polar distribution of an auxin transport protein (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)


    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  8. Isolation of transcription factors binding auxin response elements using a yeast one-hybrid system

    Institute of Scientific and Technical Information of China (English)

    齐眉; 黄美娟; 陈凡


    Plant hormones play an important role during higher plant embryogenesis. Auxin is central to the development of vascular tissues, formation of lateral and adventitious roots, control of apical dominance, and tropic responses. Auxin response element (AuxRE), present in the promoters of many auxin-induced genes, can confer auxin responsiveness. Using carrot somatic embryo under specific developmental phase, a cDNA expression library was constructed. Several plasmids were recombined containing the tetramer of AuxRE as a bait. After screening by a yeast one-hy- brid system, one positive clone was confirmed and characterized. Electrophoretic mobility shift assay showed that AxRF1 protein expressed in yeast cell could bind AuxRE in vitro. It suggests that AxRF1 participates in regulation of the expression of auxin responsive gene during carrot somatic embryogenesis.

  9. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. (United States)

    Grones, Peter; Chen, Xu; Simon, Sibu; Kaufmann, Walter A; De Rycke, Riet; Nodzyński, Tomasz; Zažímalová, Eva; Friml, Jiří


    The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor.

  10. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro

    Institute of Scientific and Technical Information of China (English)

    Ke Yin; Xinxin Han; Zhihong Xu; Hongwei Xue


    Hormones are critical for cell differentiation,elongation, and division. The plant hormone auxin plays vital roles in plant growth and development and is essential for various physiologic processes. Previous studies showed that germin-like proteins (GLPs) are involved in multiple physiologic and developmental processes and that several GLP members could bind different auxin molecules. Here we showed that Arabidopsis thaliana GLP4 gene, which has a length of 660 bp and encodes a 219-aa polypeptide, contains the conserved auxin-binding region box A and hinds indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid (2,4-D) with low affinity, but not α-naphthaleneacetic acid, in vitro,by using assays equilibrium dialysis and nuclear magnetic resonance. This hinding character is different from that of auxin-binding protein 1, which does not hind 2,4-D. GLP4 is highly transcribed in various tissues, but it shows low transcription in roots and during embryo development. In addition, transcription of GLP4 is stimulated by auxin treatment. Suhcellular localization studies indicated that GLP4 protein is localized in the Golgi compartment and the N-terminus of GLP4 is crucial for its proper localization, which suggests that GLP4 may be involved in Goigi-dependent developmental processes.

  11. In Vitro Auxin Binding to Cellular Membranes of Cucumber Fruits 123 (United States)

    Narayanan, Komaratchi R.; Mudge, Kenneth W.; Poovaiah, B. W.


    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s). PMID:16661764

  12. Arabidopsis thaliana AUCSIA-1 regulates auxin biology and physically interacts with a kinesin-related protein.

    Directory of Open Access Journals (Sweden)

    Barbara Molesini

    Full Text Available Aucsia is a green plant gene family encoding 44-54 amino acids long miniproteins. The sequenced genomes of most land plants contain two Aucsia genes. RNA interference of both tomato (Solanum lycopersicum Aucsia genes (SlAucsia-1 and SlAucsia-2 altered auxin sensitivity, auxin transport and distribution; it caused parthenocarpic development of the fruit and other auxin-related morphological changes. Here we present data showing that the Aucsia-1 gene of Arabidopsis thaliana alters, by itself, root auxin biology and that the AtAUCSIA-1 miniprotein physically interacts with a kinesin-related protein. The AtAucsia-1 gene is ubiquitously expressed, although its expression is higher in roots and inflorescences in comparison to stems and leaves. Two allelic mutants for AtAucsia-1 gene did not display visible root morphological alterations; however both basipetal and acropetal indole-3-acetic acid (IAA root transport was reduced as compared with wild-type plants. The transcript steady state levels of the auxin efflux transporters ATP BINDING CASSETTE subfamily B (ABCB ABCB1, ABCB4 and ABCB19 were reduced in ataucsia-1 plants. In ataucsia-1 mutant, lateral root growth showed an altered response to i exogenous auxin, ii an inhibitor of polar auxin transport and iii ethylene. Overexpression of AtAucsia-1 inhibited primary root growth. In vitro and in vivo protein-protein interaction experiments showed that AtAUCSIA-1 interacts with a 185 amino acids long fragment belonging to a 2712 amino acids long protein of unknown function (At4g31570. Bioinformatics analysis indicates that the AtAUCSIA-1 interacting protein (AtAUCSIA-1IP clusters with a group of CENP-E kinesin-related proteins. Gene ontology predictions for the two proteins are consistent with the hypothesis that the AtAUCSIA-1/AtAUCSIA-1IP complex is involved in the regulation of the cytoskeleton dynamics underlying auxin biology.

  13. Protein ubiquitination in auxin signaling and transport

    NARCIS (Netherlands)

    Santos Maraschin, Felipe dos


    What makes plant shoots grow towards the light, and plant roots grow down into the soil? This was a question that Charles Darwin asked himself, and his experiments more than a century ago to find the answer laid the basis for the identification of the growth hormone auxin. Auxin, or indole-3-acetic

  14. A G-Box-Binding Protein from Soybean Binds to the E1 Auxin-Response Element in the Soybean GH3 Promoter and Contains a Proline-Rich Repression Domain. (United States)

    Liu, Z. B.; Hagen, G.; Guilfoyle, T. J.


    The E1 promoter fragment (-249 to -203) is one of three auxin-response elements (AuxREs) in the soybean (Glycine max L.) GH3 promoter (Z.-B. Liu, T. Ulmasov, X. Shi, G. Hagen, T.J. Guilfoyle [1994] Plant Cell 6: 645-657). Results presented here further characterize and delimit the AuxRE within the E1 fragment. The E1 fragment functioned as an AuxRE in transgenic tobacco (Nicotiana tabacum L.) plants, as well as in transfected protoplasts. The AuxRE within E1 contains a G-box, and this G-box was used to clone a G-box-binding factor (GBF) from soybean (SGBF-2). This 45-kD GBF contains an N-terminal proline-rich domain and a C-terminal basic/leucine zipper DNA-binding domain. Gel-mobility shift assays were used to characterize the binding specificity of SGBF-2. Antiserum raised against recombinant SGBF-2 was used to further characterize SGBF-2 and antigenically related GBFs in soybean nuclear extracts. Co-transfection assays with effector and reporter plasmids in carrot (Daucus carota L.) protoplasts indicated that the N-terminal proline-rich domain of SGBF-2 functioned as a repression domain in both basal and auxin-inducible transcription.

  15. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina


    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  16. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. (United States)

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês C R; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus


    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  17. Auxin response factors. (United States)

    Chandler, John William


    Auxin signalling involves the activation or repression of gene expression by a class of auxin response factor (ARF) proteins that bind to auxin response elements in auxin-responsive gene promoters. The release of ARF repression in the presence of auxin by the degradation of their cognate auxin/indole-3-acetic acid repressors forms a paradigm of transcriptional response to auxin. However, this mechanism only applies to activating ARFs, and further layers of complexity of ARF function and regulation are being revealed, which partly reflect their highly modular domain structure. This review summarizes our knowledge concerning ARF binding site specificity, homodimer and heterodimer multimeric ARF association and cooperative function and how activator ARFs activate target genes via chromatin remodelling and evolutionary information derived from phylogenetic comparisons from ARFs from diverse species. ARFs are regulated in diverse ways, and their importance in non-auxin-regulated pathways is becoming evident. They are also embedded within higher-order transcription factor complexes that integrate signalling pathways from other hormones and in response to the environment. The ways in which new information concerning ARFs on many levels is causing a revision of existing paradigms of auxin response are discussed.

  18. PIN protein phosphorylation by plant AGC3 kinases and its role in polar auxin transport

    NARCIS (Netherlands)

    Huang, Fang


    Polar cell-to-cell transport of plant hormone auxin mediated by plasma membrane (PM)-localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that

  19. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton (United States)

    Muday, G. K.


    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  20. Research Progresses on Auxin Response Factors

    Institute of Scientific and Technical Information of China (English)

    Hai-Bin Wei; Bai-Ming Cui; Yan-Li Ren; Juan-Hua Li; Wei-Bin Liao; Nan-Fei Xu; Ming Peng


    Auxin response factors (ARFs), a family of transcription factors, have been discovered recently. The ARFs bind specifically to the auxin response elements (AuxREs) within promoters of primary auxin responsive genes and function as activators or repressors. The ARFs contain three domains, namely a conserved Nterminal DNA-binding domain, a non-conserved middle region, and a conserved C-terminal dirnerization domain. The ARFs can form a protein complex with auxin/indoleacetic acid through homodimerization or heterodimerization. The particular protein-protein interaction may play a key role in modulating the expression of early auxin responsive genes. The identification of ARF mutations in Arabidopsis helps to demonstrate/dissect the function of ARFs in the normal growth and development of plants. Phylogenetic analysis also reveals some interesting protein evolution points in the ARF family.

  1. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)


    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  2. Inter-regulation of the unfolded protein response and auxin signaling. (United States)

    Chen, Yani; Aung, Kyaw; Rolčík, Jakub; Walicki, Kathryn; Friml, Jiří; Brandizzi, Federica


    The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.

  3. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth (United States)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)


    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  4. Protein Binding Pocket Dynamics. (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C


    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  5. Comparative studies of effect of auxin and ethylene on permeability and synthesis of RNA and protein. (United States)

    Sacher, J A; Salminen, S O


    The effects of ethylene on permeability and RNA and protein synthesis were assayed over a 6 to 26 hr period in tissue sections from avocado (Persea gratissima Gaertn. F., var. Fuerte), both pulp and peel of banana (Musa sapientum L., var. Gros Michel), bean endocarp (Phaseolus vulgaris L., var. Kentucky Wonder Pole beans) and leaves of Rhoeo discolor. Ethylene had no effect on permeability in 4 of the 5 tissues, but sometimes enhanced solute uptake in banana peel; it had either no effect or an inhibitory effect on synthesis of RNA and protein in sections from fruits of avocado and banana. Auxin (alpha-naphthalene acetic acid) stimulated synthesis of RNA and protein in bean endocarp and Rhoeo leaf sections, whereas ethylene inhibited both basal and auxin-induced synthesis. It is concluded that in these tissues the auxin effect is not an ethylene effect.

  6. Keeping it all together: auxin-actin crosstalk in plant development. (United States)

    Zhu, Jinsheng; Geisler, Markus


    Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.

  7. Auxin regulation of cell polarity in plants. (United States)

    Pan, Xue; Chen, Jisheng; Yang, Zhenbiao


    Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.

  8. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. (United States)

    Löfke, Christian; Dünser, Kai; Scheuring, David; Kleine-Vehn, Jürgen


    The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.

  9. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. (United States)

    Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O'Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June


    In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.

  10. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors

    Directory of Open Access Journals (Sweden)

    Toyoaki Natsume


    Full Text Available Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.

  11. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. (United States)

    Natsume, Toyoaki; Kiyomitsu, Tomomi; Saga, Yumiko; Kanemaki, Masato T


    Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID) technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES) cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.

  12. Seek and Ye Shall [eventually] Find: The End of the Search for the Auxin Receptor

    Institute of Scientific and Technical Information of China (English)

    Lawrence HOBBIE


    The mechanism by which the plant hormone auxin regulates gene expression has been shown to involve regulated degradation, through the ubiquitin-proteasome pathway, of transcriptional repressor proteins. However, the key first component in this pathway, the receptor that binds auxin and initiates auxin signaling, has remained a mystery. Two recent papers identify the F-box protein TIR1, part of the complex that attaches ubiquitin to its targets, as an auxin receptor. This breakthrough reveals a new mode of signal transduction and lays the groundwork for a more complete understanding of auxin physiology.

  13. Specificity patterns indicate that auxin exporters and receptors are the same proteins. (United States)

    Hössel, D; Schmeiser, C; Hertel, R


    A study of transport and action of synthetic auxin analogues can help to identify transporters and receptors of this plant hormone. Both aspects--transportability and action on growth--were tested with 2-naphthoxyacetic acid (2-NOA) and compared across several plant species. 2-NOA stimulates elongation effectively at low concentrations in petioles of the gymnosperm Ginkgo biloba L., in hypocotyls or internodes of the dicot legumes, mung bean (Vigna mungo L.) and pea (Pisum sativum L.), in cotyledons of onion (Allium cepa L.) and in leaf bases of chive (Allium schoenoprasum L.), the latter two of the monocot order Asparagales. In contrast, elongation of coleoptile segments of maize (Zea mays L.) is poorly responsive to 2-NOA. Significant auxin-like transport of 2-NOA was observed in segments of mung bean hypocotyls, pea internodes, and chive leaf bases, but not in segments of the grass coleoptiles. Thus, for the two assays, elongation and polar transportability, the same difference in ligand specificity was observed between the grass and all other species assayed. This finding supports the hypothesis that a common protein mediates auxin efflux as well as auxin action on elongation.

  14. Cellulose binding domain proteins (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy


    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Role of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development



    Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible...

  16. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases (United States)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin


    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  17. Composite structure of auxin response elements. (United States)

    Ulmasov, T; Liu, Z B; Hagen, G; Guilfoyle, T J


    The auxin-responsive soybean GH3 gene promoter is composed of multiple auxin response elements (AuxREs), and each AuxRE contributes incrementally to the strong auxin inducibility to the promoter. Two independent AuxREs of 25 bp (D1) and 32 bp (D4) contain the sequence TGTCTC. Results presented here show that the TGTCTC element in D1 and D4 is required but not sufficient for auxin inducibility in carrot protoplast transient expression assays. Additional nucleotides upstream of TGTCTC are also required for auxin inducibility. These upstream sequences showed constitutive activity and no auxin inducibility when part or all of the TGTCTC element was mutated or deleted. In D1, the constitutive element overlaps the 5' portion of TGTCTC; in D4, the constitutive element is separated from TGTCTC. An 11-bp element in D1, CCTCGTGTCTC, conferred auxin inducibility to a minimal cauliflower mosaic virus 35S promoter in transgenic tobacco seedlings as well as in carrot protoplasts (i.e., transient expression assays). Both constitutive elements bound specifically to plant nuclear proteins, and the constitutive element in D1 bound to a recombinant soybean basic leucine zipper transcription factor with G-box specificity. To demonstrate further the composite nature of AuxREs and the ability of the TGTCTC element to confer auxin inducibility, we created a novel AuxRE by placing a yeast GAL4 DNA binding site adjacent to the TGTCTC element. Expression of a GAL4-c-Rel transactivator in the presence of this novel AuxRE resulted in auxin-inducible expression. Our results indicate that at least some AuxREs have a composite structure consisting of a constitutive element adjacent to a conserved TGTCTC element that confers auxin inducibility.

  18. Expression pattern of the CsPK3 auxin-responsive protein kinase gene. (United States)

    Chono, M; Suzuki, Y; Nemoto, K; Yamane, H; Murofushi, N; Yamaguchi, I


    We have previously cloned a cDNA of a putative serine/threonine protein kinase gene named CsPK3 from cucumber, the mRNA level of which was up-regulated by auxin and down-regulated by light irradiation. To examine the CsPK3 gene expression in detail, we cloned a genomic DNA of CsPK3 gene and made transgenic tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) plants containing the fused CsPK3 promoter-beta-glucuronidase gene. The beta-glucuronidase expression was detected in the shoot apex, vascular tissues, and the outermost layer of cortex. The histological distribution of CsPK3 mRNA in cucumber seedlings was supported by in situ hybridization, where the positive signals were observed in similar tissues as those observed by beta-glucuronidase staining. The responsiveness of the CsPK3 gene to auxin and light was also confirmed for beta-glucuronidase activity. The pattern of beta-glucuronidase staining changed during the development of the tobacco seedlings. The results of our experiment showed that CsPK3 was expressed in a wide variety of tissues and cells in which the developmental and growth controls by auxin are suggested.

  19. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. (United States)

    Tatematsu, Kiyoshi; Kumagai, Satoshi; Muto, Hideki; Sato, Atsuko; Watahiki, Masaaki K; Harper, Reneé M; Liscum, Emmanuel; Yamamoto, Kotaro T


    We have isolated a dominant, auxin-insensitive mutant of Arabidopsis thaliana, massugu2 (msg2), that displays neither hypocotyl gravitropism nor phototropism, fails to maintain an apical hook as an etiolated seedling, and is defective in lateral root formation. Yet other aspects of growth and development of msg2 plants are almost normal. These characteristics of msg2 are similar to those of another auxin-insensitive mutant, non-phototropic hypocotyl4 (nph4), which is a loss-of-function mutant of AUXIN RESPONSE FACTOR7 (ARF7) (Harper et al., 2000). Map-based cloning of the MSG2 locus reveals that all four mutant alleles result in amino acid substitutions in the conserved domain II of an Auxin/Indole-3-Acetic Acid protein, IAA19. Interestingly, auxin inducibility of MSG2/IAA19 gene expression is reduced by 65% in nph4/arf7. Moreover, MSG2/IAA19 protein binds to the C-terminal domain of NPH4/ARF7 in a Saccharomyces cerevisiae (yeast) two-hybrid assay and to the whole latter protein in vitro by pull-down assay. These results suggest that MSG2/IAA19 and NPH4/ARF7 may constitute a negative feedback loop to regulate differential growth responses of hypocotyls and lateral root formation.

  20. Ligand binding mechanics of maltose binding protein. (United States)

    Bertz, Morten; Rief, Matthias


    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  1. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis. (United States)

    Pierik, Ronald; Djakovic-Petrovic, Tanja; Keuskamp, Diederik H; de Wit, Mieke; Voesenek, Laurentius A C J


    Plants modify growth in response to the proximity of neighbors. Among these growth adjustments are shade avoidance responses, such as enhanced elongation of stems and petioles, that help plants to reach the light and outgrow their competitors. Neighbor detection occurs through photoreceptor-mediated detection of light spectral changes (i.e. reduced red:far-red ratio [R:FR] and reduced blue light intensity). We recently showed that physiological regulation of these responses occurs through light-mediated degradation of nuclear, growth-inhibiting DELLA proteins, but this appeared to be only part of the full mechanism. Here, we present how two hormones, auxin and ethylene, coregulate DELLAs but regulate shade avoidance responses through DELLA-independent mechanisms in Arabidopsis (Arabidopsis thaliana). Auxin appears to be required for both seedling and mature plant shoot elongation responses to low blue light and low R:FR, respectively. Auxin action is increased upon exposure to low R:FR and low blue light, and auxin inhibition abolishes the elongation responses to these light cues. Ethylene action is increased during the mature plant response to low R:FR, and this growth response is abolished by ethylene insensitivity. However, ethylene is also a direct volatile neighbor detection signal that induces strong elongation in seedlings, possibly in an auxin-dependent manner. We propose that this novel ethylene and auxin control of shade avoidance interacts with DELLA abundance but also controls independent targets to regulate adaptive growth responses to surrounding vegetation.

  2. Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Directory of Open Access Journals (Sweden)

    Pedro Jacob Christoffoleti


    Full Text Available Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1 alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF activation. As a result mRNA related with Abscisic Acid (ABA and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS, leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A. It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.

  3. Is ABP1 an Auxin Receptor Yet?

    Institute of Scientific and Technical Information of China (English)

    Jing-Hua Shi; Zhen-Biao Yang


    AUXIN BINDING PROTEIN 1 (ABP1)has long been proposed as an auxin receptor to regulate cell expansion. The embryo lethality of ABPI-null mutants demonstrates its fundamental role in plant development, but also hinders inves-tigation of its involvement in post-embryonic processes and its mode of action. By taking advantage of weak alleles and inducible systems, several recent studies have revealed a role for ABP1 in organ development, cell polarization, and shape formation. In addition to its role in the regulation of auxin-induced gene expression, ABP1 has now been shown to mod-ulate non-transcriptional auxin responses. ABP1 is required for activating two antagonizing ROP GTPase signaling path-ways involved in cytoskeletal reorganization and cell shape formation, and participates in the regulation of clathrin-mediated endocytosis to subsequently affect PIN protein distribution. These exciting discoveries provide indisputable ev-idence for the auxin-induced signaling pathways that are downstream of ABP1 function, and suggest intriguing mech-anisms for ABPl-mediated polar cell expansion and spatial coordination in response to auxin.

  4. Comparative Studies of Effect of Auxin and Ethylene on Permeability and Synthesis of RNA and Protein 1 (United States)

    Sacher, Joseph A.; Salminen, Seppo O.


    The effects of ethylene on permeability and RNA and protein synthesis were assayed over a 6 to 26 hr period in tissue sections from avocado (Persea gratissima Gaertn. F., var. Fuerte), both pulp and peel of banana (Musa sapientum L., var. Gros Michel), bean endocarp (Phaseolus vulgaris L., var. Kentucky Wonder Pole beans) and leaves of Rhoeo discolor. Ethylene had no effect on permeability in 4 of the 5 tissues, but sometimes enhanced solute uptake in banana peel; it had either no effect or an inhibitory effect on synthesis of RNA and protein in sections from fruits of avocado and banana. Auxin (α-naphthalene acetic acid) stimulated synthesis of RNA and protein in bean endocarp and Rhoeo leaf sections, whereas ethylene inhibited both basal and auxin-induced synthesis. It is concluded that in these tissues the auxin effect is not an ethylene effect. PMID:16657212

  5. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. (United States)

    Barbosa, Inês C R; Zourelidou, Melina; Willige, Björn C; Weller, Benjamin; Schwechheimer, Claus


    The directed cell-to-cell transport of the phytohormone auxin by efflux and influx transporters is essential for proper plant growth and development. Like auxin efflux facilitators of the PIN-FORMED (PIN) family, D6 PROTEIN KINASE (D6PK) from Arabidopsis thaliana localizes to the basal plasma membrane of many cells, and evidence exists that D6PK may directly phosphorylate PINs. We find that D6PK is a membrane-bound protein that is associated with either the basal domain of the plasma membrane or endomembranes. Inhibition of the trafficking regulator GNOM leads to a rapid internalization of D6PK to endomembranes. Interestingly, the dissociation of D6PK from the plasma membrane is also promoted by auxin. Surprisingly, we find that auxin transport-dependent tropic responses are critically and reversibly controlled by D6PK and D6PK-dependent PIN phosphorylation at the plasma membrane. We conclude that D6PK abundance at the plasma membrane and likely D6PK-dependent PIN phosphorylation are prerequisites for PIN-mediated auxin transport.

  6. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. (United States)

    Hayashi, Ken-ichiro; Neve, Joshua; Hirose, Masakazu; Kuboki, Atsuhito; Shimada, Yukihisa; Kepinski, Stefan; Nozaki, Hiroshi


    The plant hormone auxin is a master regulator of plant growth and development. By regulating rates of cell division and elongation and triggering specific patterning events, indole 3-acetic acid (IAA) regulates almost every aspect of plant development. The perception of auxin involves the formation of a ternary complex consisting of an F-box protein of the TIR1/AFB family of auxin receptors, the auxin molecule, and a member the Aux/IAA family of co-repressor proteins. In this study, we identified a potent auxin antagonist, α-(phenylethyl-2-oxo)-IAA, as a lead compound for TIR1/AFB receptors by in silico virtual screening. This molecule was used as the basis for the development of a more potent TIR1 antagonist, auxinole (α-[2,4-dimethylphenylethyl-2-oxo]-IAA), using a structure-based drug design approach. Auxinole binds TIR1 to block the formation of the TIR1-IAA-Aux/IAA complex and so inhibits auxin-responsive gene expression. Molecular docking analysis indicates that the phenyl ring in auxinole would strongly interact with Phe82 of TIR1, a residue that is crucial for Aux/IAA recognition. Consistent with this predicted mode of action, auxinole competitively inhibits various auxin responses in planta. Additionally, auxinole blocks auxin responses of the moss Physcomitrella patens, suggesting activity over a broad range of species. Our works not only substantiates the utility of chemical tools for plant biology but also demonstrates a new class of small molecule inhibitor of protein-protein interactions common to mechanisms of perception of other plant hormones, such as jasmonate, gibberellin, and abscisic acid.

  7. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants



    The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program. The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) and cellular auxin transport. We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-depend...

  8. Discrimination of Korean ginseng (Panax ginseng Meyer cultivar Chunpoong and American ginseng (Panax quinquefolius using the auxin repressed protein gene

    Directory of Open Access Journals (Sweden)

    Jong-Hak Kim


    Conclusion: These results suggest that great impact to prevent authentication of precise Chunpoong and other cultivars using the auxin repressed protein gene. We therefore present an effective method for the authentication of the Chunpoong cultivar of P. ginseng and P. quinquefolius.

  9. Role of actin in auxin transport and transduction of gravity (United States)

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  10. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn


    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  11. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  12. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)


    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  13. The prion protein binds thiamine. (United States)

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S


    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  14. 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Andrea Kreidenweiss

    Full Text Available Analysis of gene function in Plasmodium falciparum, the most important human malaria parasite, is restricted by the lack of robust and simple reverse genetic tools. Approaches to manipulate protein levels post-translationally are powerful tools to study protein-off effects especially in the haploid malaria parasite where genetic knockouts of essential genes are lethal. We investigated if the auxin-inducible degron system is functional in P. falciparum and found that degron-tagged yellow fluorescent protein levels were efficiently reduced upon addition of auxin which otherwise had no effect on parasite viability. The genetic components required in this conditional approach were co-expressed in P. falciparum by applying the small peptide 2A. 2A is a self-processing peptide from Foot-And-Mouth Disease virus that allows the whole conditional system to be accommodated on a single plasmid vector and ensures stoichiometric expression levels.

  15. Characterization of a protein kinase gene responsive to auxin and gibberellin in cucumber hypocotyls. (United States)

    Chono, M; Nemoto, K; Yamane, H; Yamaguchi, I; Murofushi, N


    By means of the PCR, cDNA clones encoding putative protein kinases have been obtained from cucumber hypocotyls. The abundance of the transcript of one of these genes, which was named CsPK3, increased on treatment with gibberellin (GA4) and/or auxin (IAA). We screened a cucumber cDNA library to clone CsPK3 cDNA. The cDNA clone (cCsPK3) encodes an open reading frame of 1,413 bp (471 amino acids), and its predicted amino acid sequence showed homology with those of serine/threonine protein kinases. Northern blot analysis indicated that IAA was more active than GA4 in increasing the level of CsPK3 mRNA in cucumber hypocotyls and that the increase in the level of CsPK3 mRNA on treatment with IAA was not inhibited by pretreatment with a protein synthesis inhibitor. The level of CsPK3 mRNA was high in hypocotyls of dark-grown cucumber seedlings and decreased to less than 50% of the original level within 15 min of the start of irradiation with white light.

  16. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. (United States)

    Leitner, Johannes; Petrášek, Jan; Tomanov, Konstantin; Retzer, Katarzyna; Pařezová, Markéta; Korbei, Barbara; Bachmair, Andreas; Zažímalová, Eva; Luschnig, Christian


    Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.

  17. Protein Geranylgeranyltransferase I Is Involved in Specific Aspects of Abscisic Acid and Auxin Signaling in Arabidopsis1 (United States)

    Johnson, Cynthia D.; Chary, S. Narasimha; Chernoff, Ellen A.; Zeng, Qin; Running, Mark P.; Crowell, Dring N.


    Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the β-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the β-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared α-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I. PMID:16183844

  18. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin (United States)

    Veluthambi, K.; Poovaiah, B. W.


    In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.

  19. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen;


    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology....

  20. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;


    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  1. Cellulose binding domain fusion proteins (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.


    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B;


    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  3. Master and servant: Regulation of auxin transporters by FKBPs and cyclophilins. (United States)

    Geisler, Markus; Bailly, Aurélien; Ivanchenko, Maria


    Plant development and architecture are greatly influenced by the polar distribution of the essential hormone auxin. The directional influx and efflux of auxin from plant cells depends primarily on AUX1/LAX, PIN, and ABCB/PGP/MDR families of auxin transport proteins. The functional analysis of these proteins has progressed rapidly within the last decade thanks to the establishment of heterologous auxin transport systems. Heterologous co-expression allowed also for the testing of protein-protein interactions involved in the regulation of transporters and identified relationships with members of the FK506-Binding Protein (FKBP) and cyclophilin protein families, which are best known in non-plant systems as cellular receptors for the immunosuppressant drugs, FK506 and cyclosporin A, respectively. Current evidence that such interactions affect membrane trafficking, and potentially the activity of auxin transporters is reviewed. We also propose that FKBPs andcyclophilins might integrate the action of auxin transport inhibitors, such as NPA, on members of the ABCB and PIN family, respectively. Finally, we outline open questions that might be useful for further elucidation of the role of immunophilins as regulators (servants) of auxin transporters (masters).

  4. Basis for changes in the auxin-sensitivity of Avena sativa (oat) leaf-sheath pulvini during the gravitropic response (United States)

    Kim, D.; Kaufman, P. B.


    During the gravitropic response, auxin-sensitivity of the lower flanks of leaf-sheath pulvini of Avena sativa (oat) is at least 1000-fold higher than those of the upper flanks and non-gravistimulated pulvini. When the pulvini are treated with 1 mM Ca2+, a 10-fold increase in auxin-sensitivity of the pulvini is observed. Related to this difference in auxin-sensitivity, in vitro activation of the vanadate-sensitive H(-)-ATPase by IAA was observed. Results show that the activation of the H(+)-ATPase by IAA is probably mediated by soluble protein factors and that the H(+)-ATPase prepared from the lower flanks is activated by IAA with a 1000-fold higher auxin-sensitivity as compared with that from the upper flanks of the graviresponding pulvini. Ammonium sulfate fractionation experiments show that these soluble protein factors are in the 30 to 60% fraction. Auxin-binding assays reveal that lower flanks contain more high-affinity soluble auxin-binding sites (kD; on the order of 10(-9) M) and less low-affinity soluble auxin-binding sites (kD; on the order of 10(-6) M) than upper flanks. It is concluded that differential auxin-sensitivity of graviresponding oat-shoot pulvini is achieved by the modulation of affinities of auxin-binding sites in upper and lower flanks of the pulvini, that Ca2+ is involved in such modulation, and that one of the probable cellular functions of these auxin binding sites is the activation of the proton pump on the plasma membranes.

  5. Protein binding assay for hyaluronate

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, B.E.; Underhill, C.B.


    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 or less of hyaluronate, and is unaffected by the presence of proteins.


    mechanism of auxin action on the enhancement of ethylene production is the formation of enzymes involved in ethylene biogenesis....The stimulation of ethylene production by auxin was inhibited by actinomycin D and other inhibitors of protein synthesis. It is concluded that the

  7. Regulation of auxin transport during gravitropism (United States)

    Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.

    Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including

  8. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. (United States)

    Shi, Ya-Fei; Wang, Da-Li; Wang, Chao; Culler, Angela Hendrickson; Kreiser, Molly A; Suresh, Jayanti; Cohen, Jerry D; Pan, Jianwei; Baker, Barbara; Liu, Jian-Zhong


    Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.

  9. Plant AGC protein kinases orient auxin-mediated differential growth and organogenesis

    NARCIS (Netherlands)

    Galván Ampudia, Carlos Samuel


    In view of their predominant sessile lifestyle, plants need to be able to adapt to changes in their environment. Environmental signals such as light and gravity modulate plant growth and architecture by redirecting polar cell-to-cell transport of auxin, thus causing changes in the distribution of th

  10. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Wen-Jing Jia; Yu-Jia Chu; Hong-Wei Xue


    Phosphatidylinositol monophosphate 5-kinase(PIP5K)catalyzes the synthesis of PI-4,5-bisphosphate(PtdIns(4,5)P2)by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring,and is involved in regulating multiple developmental processes and stress responses.We here report on the functional characterization of Arabidopsis PIP5K2,which is expressed during lateral root initiation and elongation,and whose expression is enhanced by exogenous auxin.The knockout mutant pip5k2 shows reduced lateral root formation,which could be recovered with exogenous auxin,and interestingly,delayed root gravity response that could not be recovered with exogenous auxin.Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2.In addition,analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P2 reduction,which hence results in suppressed cycling of PIN proteins(PIN2 and 3),and delayed redistribution of PIN2 and auxin under gravistimulation in pipSk2 roots.On the contrary,PtdIns(4,5)P2 significantly enhanced the vesicle trafficking and cycling of PIN proteins.These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response,and reveal a critical role of PIP5K2/Ptdlns(4,5)P2 in root development through regulation of PIN proteins,providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response,and new insights into the control of polar auxin transport.

  11. Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. (United States)

    Park, Jin-Young; Kim, Hye-Joung; Kim, Jungmook


    Most of Aux/IAA genes are rapidly induced by auxin. The Aux/IAA proteins are short-lived nuclear proteins sharing the four conserved domains. Domain II is critical for rapid degradation of Aux/IAA proteins. Among these gene family members, IAA1 is one of the earliest auxin-inducible genes. We used a steroid hormone-inducible system to reveal putative roles and downstream signaling of IAA1 in auxin response. Arabidopsis transgenic plants were generated expressing fusion protein of IAA1 (IAA1-GR) or IAA1 with a mutation in domain II (iaa1-GR) and the glucocorticoid hormone-binding domain (GR). IAA1-GR transgenic plants did not exhibit any discernable phenotypic differences by DEX treatment that allows nuclear translocation of the fusion protein. In contrast, diverse auxin-related physiological processes including gravitropism and phototropism were impaired by DEX treatment in roots, hypocotyls, stems, and leaves in iaa1-GR transgenic plants. Auxin induction of seven Aux/IAA mRNAs including IAA1 itself was repressed by DEX treatment, suggesting that IAA1 functions in the nucleus by mediating auxin response and might act as a negative feedback regulator for the expression of Aux/IAA genes including IAA1 itself. Auxin induction of Aux/IAA genes in the presence of cycloheximide can be repressed by DEX treatment, showing that the repression of transcription of the Aux/IAAs by the iaa1 mutant protein is primary. Wild-type IAA1-GR could not suppress auxin induction of IAA1 and IAA2. These results indicate that inhibition of auxin-activated transcription of Aux/IAA genes by the iaa1 mutant protein might be responsible for alteration of various auxin responses.

  12. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP- and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription

    Directory of Open Access Journals (Sweden)

    Berendzen Kenneth W


    Full Text Available Abstract Background In higher plants, a diverse array of developmental and growth-related processes is regulated by the plant hormone auxin. Recent publications have proposed that besides the well-characterized Auxin Response Factors (ARFs that bind Auxin Response Elements (AuxREs, also members of the bZIP- and MYB-transcription factor (TF families participate in transcriptional control of auxin-regulated genes via bZIP Response Elements (ZREs or Myb Response Elements (MREs, respectively. Results Applying a novel bioinformatic algorithm, we demonstrate on a genome-wide scale that singular motifs or composite modules of AuxREs, ZREs, MREs but also of MYC2 related elements are significantly enriched in promoters of auxin-inducible genes. Despite considerable, species-specific differences in the genome structure in terms of the GC content, this enrichment is generally conserved in dicot (Arabidopsis thaliana and monocot (Oryza sativa model plants. Moreover, an enrichment of defined composite modules has been observed in selected auxin-related gene families. Consistently, a bipartite module, which encompasses a bZIP-associated G-box Related Element (GRE and an AuxRE motif, has been found to be highly enriched. Making use of transient reporter studies in protoplasts, these findings were experimentally confirmed, demonstrating that GREs functionally interact with AuxREs in regulating auxin-mediated transcription. Conclusions Using genome-wide bioinformatic analyses, evolutionary conserved motifs have been defined which potentially function as AuxRE-dependent coupling elements to establish auxin-specific expression patterns. Based on these findings, experimental approaches can be designed to broaden our understanding of combinatorial, auxin-controlled gene regulation.

  13. Engineering RNA-binding proteins for biology


    Chen,Yu; Varani, Gabriele


    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequenc...

  14. Polar auxin transport: controlling where and how much (United States)

    Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)


    Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.

  15. Lead-Binding Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Harvey C. Gonick


    Full Text Available Lead-binding proteins are a series of low molecular weight proteins, analogous to metallothionein, which segregate lead in a nontoxic form in several organs (kidney, brain, lung, liver, erythrocyte. Whether the lead-binding proteins in every organ are identical or different remains to be determined. In the erythrocyte, delta-aminolevulinic acid dehydratase (ALAD isoforms have commanded the greatest attention as proteins and enzymes that are both inhibitable and inducible by lead. ALAD-2, although it binds lead to a greater degree than ALAD-1, appears to bind lead in a less toxic form. What may be of greater significance is that a low molecular weight lead-binding protein, approximately 10 kDa, appears in the erythrocyte once blood lead exceeds 39 μg/dL and eventually surpasses the lead-binding capacity of ALAD. In brain and kidney of environmentally exposed humans and animals, a cytoplasmic lead-binding protein has been identified as thymosin β4, a 5 kDa protein. In kidney, but not brain, another lead-binding protein has been identified as acyl-CoA binding protein, a 9 kDa protein. Each of these proteins, when coincubated with liver ALAD and titrated with lead, diminishes the inhibition of ALAD by lead, verifying their ability to segregate lead in a nontoxic form.

  16. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao


    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  17. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  18. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.


    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  19. Fractal aspects of calcium binding protein structures

    Energy Technology Data Exchange (ETDEWEB)

    Isvoran, Adriana [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)], E-mail:; Pitulice, Laura [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania); Craescu, Constantin T. [INSERM U759/Institute Curie-Recherche, Centre Universitaire Paris-Sud, Batiment 112, 91405 Orsay (France); Chiriac, Adrian [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)


    The structures of EF-hand calcium binding proteins may be classified into two distinct groups: extended and compact structures. In this paper we studied 20 different structures of calcium binding proteins using the fractal analysis. Nine structures show extended shapes, one is semi-compact and the other 10 have compact shapes. Our study reveals different fractal characteristics for protein backbones belonging to different structural classes and these observations may be correlated to the physicochemical forces governing the protein folding.

  20. Computational Prediction of RNA-Binding Proteins and Binding Sites. (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling


    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  1. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.


    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  2. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si


    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  3. Mercury-binding proteins of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Morris, J. E.; Calabrese, A.


    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  4. Auxin-driven patterning with unidirectional fluxes. (United States)

    Cieslak, Mikolaj; Runions, Adam; Prusinkiewicz, Przemyslaw


    The plant hormone auxin plays an essential role in the patterning of plant structures. Biological hypotheses supported by computational models suggest that auxin may fulfil this role by regulating its own transport, but the plausibility of previously proposed models has been questioned. We applied the notion of unidirectional fluxes and the formalism of Petri nets to show that the key modes of auxin-driven patterning-the formation of convergence points and the formation of canals-can be implemented by biochemically plausible networks, with the fluxes measured by dedicated tally molecules or by efflux and influx carriers themselves. Common elements of these networks include a positive feedback of auxin efflux on the allocation of membrane-bound auxin efflux carriers (PIN proteins), and a modulation of this allocation by auxin in the extracellular space. Auxin concentration in the extracellular space is the only information exchanged by the cells. Canalization patterns are produced when auxin efflux and influx act antagonistically: an increase in auxin influx or concentration in the extracellular space decreases the abundance of efflux carriers in the adjacent segment of the membrane. In contrast, convergence points emerge in networks in which auxin efflux and influx act synergistically. A change in a single reaction rate may result in a dynamic switch between these modes, suggesting plausible molecular implementations of coordinated patterning of organ initials and vascular strands predicted by the dual polarization theory.

  5. Predicting where small molecules bind at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Peter Walter

    Full Text Available Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP complexes and protein-ligand (PL complexes with known three-dimensional structures for which (1 one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2 the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10,000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.

  6. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M


    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four alpha-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located...... at the helix-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  7. Acyl-coenzyme A binding protein, ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Knudsen, J.; Poulsen, Flemming


    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four a-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located at the helix......-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  8. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis. (United States)

    Zhang, Min; Wang, Cuiping; Lin, Qingfang; Liu, Aihua; Wang, Ting; Feng, Xuanjun; Liu, Jie; Han, Huiling; Ma, Yan; Bonea, Diana; Zhao, Rongmin; Hua, Xuejun


    Auxin polar transport mediated by a group of Pin-formed (PIN) transporters plays important roles in plant root development. However, the mechanism underlying the PIN expression and targeting in response to different developmental and environmental stimuli is still not fully understood. Here, we report a previously uncharacterized gene SSR1, which encodes a mitochondrial protein with tetratricopeptide repeat (TPR) domains, and show its function in root development in Arabidopsis thaliana. In ssr1-2, a SSR1 knock-out mutant, the primary root growth was dramatically inhibited due to severely impaired cell proliferation and cell elongation. Significantly lowered level of auxin was found in ssr1-2 roots by auxin measurement and was further supported by reduced expression of DR5-driven reporter gene. As a result, the maintenance of the root stem cell niche is compromised in ssr1-2. It is further revealed that the expression level of several PIN proteins, namely, PIN1, PIN2, PIN3, PIN4 and PIN7, were markedly reduced in ssr1-2 roots. In particular, we showed that the reduced protein level of PIN2 on cell membrane in ssr1-2 is due to impaired retrograde trafficking, possibly resulting from a defect in retromer sorting system, which destines PIN2 for degradation in vacuoles. In conclusion, our results indicated that SSR1 is functioning in root development in Arabidopsis, possibly by affecting PIN protein expression and subcellular targeting.

  9. Periplasmic binding proteins: a versatile superfamily for protein engineering. (United States)

    Dwyer, Mary A; Hellinga, Homme W


    The diversity of biological function, ligand binding, conformational changes and structural adaptability of the periplasmic binding protein superfamily have been exploited to engineer biosensors, allosteric control elements, biologically active receptors and enzymes using a combination of techniques, including computational design. Extensively redesigned periplasmic binding proteins have been re-introduced into bacteria to function in synthetic signal transduction pathways that respond to extracellular ligands and as biologically active enzymes.

  10. Lipid Binding Proteins from Parasitic Platyhelmithes

    Directory of Open Access Journals (Sweden)

    Gabriela eAlvite


    Full Text Available Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs and fatty acid binding proteins (FABPs. Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesise their own lipids, these lipid-binding proteins are important molecules in these organisms.HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates.Despite that the knowledge of their function is scarce, the differences in their molecular organisation, ligand preferences, intra/extracellular localisation, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  11. Lipid binding proteins from parasitic platyhelminthes. (United States)

    Alvite, Gabriela; Esteves, Adriana


    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  12. Oligomerization of SCFTIR1 Is Essential for Aux/IAA Degradation and Auxin Signaling in Arabidopsis. (United States)

    Dezfulian, Mohammad H; Jalili, Espanta; Roberto, Don Karl A; Moss, Britney L; Khoo, Kerry; Nemhauser, Jennifer L; Crosby, William L


    The phytohormone auxin is a key regulator of plant growth and development. Molecular studies in Arabidopsis have shown that auxin perception and signaling is mediated via TIR1/AFB-Aux/IAA co-receptors that assemble as part of the SCFTIR1/AFB E3 ubiquitin-ligase complex and direct the auxin-regulated degradation of Aux/IAA transcriptional repressors. Despite the importance of auxin signaling, little is known about the functional regulation of the TIR1/AFB receptor family. Here we show that TIR1 can oligomerize in planta via a set of spatially clustered amino acid residues. While none of the residues identified reside in the interaction interface of the TIR1-Aux/IAA degron, they nonetheless regulate the binding of TIR1 to Aux/IAA substrate proteins and their subsequent degradation in vivo as an essential aspect of auxin signaling. We propose oligomerization of TIR1 as a novel regulatory mechanism in the regulation of auxin-mediated plant patterning and development.

  13. Haptenation: Chemical Reactivity and Protein Binding

    Directory of Open Access Journals (Sweden)

    Itai Chipinda


    Full Text Available Low molecular weight chemical (LMW allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.

  14. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action (United States)

    Yang, T.; Poovaiah, B. W.


    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  15. MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. (United States)

    Furutani, Masahiko; Nakano, Yasukazu; Tasaka, Masao


    In Arabidopsis, leaves and flowers form cyclically in the shoot meristem periphery and are triggered by local accumulations of the plant hormone auxin. Auxin maxima are established by the auxin efflux carrier PIN-formed1 (PIN1). During organ formation, two distinct types of PIN1 polarization occur. First, convergence of PIN1 polarity in the surface of the meristem creates local auxin peaks. Second, basipetal PIN1 polarization causes auxin to move away from the surface in the middle of an incipient organ primordium, thought to contribute to vascular formation. Several mathematical models have been developed in attempts to explain the PIN1 localization pattern. However, the molecular mechanisms that control these dynamic changes are unknown. Here, we show that loss-of-function in the MACCHI-BOU 4 (MAB4) family genes, which encode nonphototropic hypocotyl 3-like proteins and regulate PIN endocytosis, cause deletion of basipetal PIN1 polarization, resulting in extensive auxin accumulation all over the meristem surface from lack of a sink for auxin. These results indicate that the MAB4 family genes establish inward auxin transport from the L1 surface of incipient organ primordia by basipetal PIN1 polarization, and that this behavior is essential for the progression of organ development. Furthermore, the expression of the MAB4 family genes depends on auxin response. Our results define two distinct molecular mechanisms for PIN1 polarization during organ development and indicate that an auxin response triggers the switching between these two mechanisms.

  16. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport (United States)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  17. PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis. (United States)

    Müller, Christina Joy; Valdés, Ana Elisa; Wang, Guodong; Ramachandran, Prashanth; Beste, Lisa; Uddenberg, Daniel; Carlsbecker, Annelie


    Plant vascular tissues, xylem and phloem, differentiate in distinct patterns from procambial cells as an integral transport system for water, sugars, and signaling molecules. Procambium formation is promoted by high auxin levels activating class III homeodomain leucine zipper (HD-ZIP III) transcription factors (TFs). In the root of Arabidopsis (Arabidopsis thaliana), HD-ZIP III TFs dose-dependently govern the patterning of the xylem axis, with higher levels promoting metaxylem cell identity in the central axis and lower levels promoting protoxylem at its flanks. It is unclear, however, by what mechanisms the HD-ZIP III TFs control xylem axis patterning. Here, we present data suggesting that an important mechanism is their ability to moderate the auxin response. We found that changes in HD-ZIP III TF levels affect the expression of genes encoding core auxin response molecules. We show that one of the HD-ZIP III TFs, PHABULOSA, directly binds the promoter of both MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5, a key factor in vascular formation, and IAA20, encoding an auxin/indole acetic acid protein that is stable in the presence of auxin and able to interact with and repress MP activity. The double mutant of IAA20 and its closest homolog IAA30 forms ectopic protoxylem, while overexpression of IAA30 causes discontinuous protoxylem and occasional ectopic metaxylem, similar to a weak loss-of-function mp mutant. Our results provide evidence that HD-ZIP III TFs directly affect the auxin response and mediate a feed-forward loop formed by MP and IAA20 that may focus and stabilize the auxin response during vascular patterning and the differentiation of xylem cell types.

  18. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins. (United States)

    Clifton, Ben E; Jackson, Colin J


    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  19. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins (United States)

    Nixon, J. E.


    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  20. Information flow through calcium binding proteins (United States)

    Bak, Ji Hyun; Bialek, William


    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  1. ABP: a novel AMPA receptor binding protein. (United States)

    Srivastava, S; Ziff, E B


    We review the cloning of a novel AMPA receptor binding protein (ABP) that interacts with GluR2/3 and is homologous to GRIP. ABP is enriched in the PSD with GluR2 and is localized to the PSD by EM. ABP binds GluR2 via the C-terminal VXI motif through a Class I PDZ interaction. ABP and GRIP can also homo- and heteromultimerize. Thus, ABP and GRIP may be involved in AMPA receptor regulation and localization, by linking it to other cytoskeletal or signaling molecules. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors. We are currently investigating proteins that bind ABP and that may regulate the AMPA receptor.

  2. Development of a glucose binding protein biosensor (United States)

    Dweik, M.; Milanick, M.; Grant, S.


    Glucose binding protein (GBP) is a monomeric periplasmic protein. It is synthesized in the cytoplasm of Escherichia coli which functions as a receptor for transport D-glucose. GBP binds glucose with high affinity. The binding mechanism is based on a hinge motion due to the protein conformational change. This change was utilized as an optical sensing mechanism by applying Fluorescence Resonance Energy Transfer (FRET). The wild-type GBP lacks cysteine in its structure, but by introducing a single cysteine at a specific site by site-directed mutagenesis, this ensured single-label attachment at specific sites with a fluorescent probe. The other sites were amino sites, which were labeled with second fluorophore. The near IR FRET pair, Alexa Fluor 680 (AF680) and Alexa Fluor 750(AF750), was utilized. The AF680 targeted the amine sites, which was the donor fluorophore, while the AF750 labeled the single cysteine site, which was the acceptor fluorophore. The sensing system strategy was based on the fluorescence changes of the probe as the protein undergoes a structural change upon binding. This biosensor had the ability to detect down to 10 uM concentrations of glucose. Next the probes were uploaded into red blood cells via hypo osmotic dialysis. The sensor responded to glucose while encapsulated with the red cells. These results showed the feasibility of an intracellular glucose biosensor.

  3. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;


    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  4. Evolution and structural diversification of PILS putative auxin carriers in plants

    Directory of Open Access Journals (Sweden)

    Elena eFeraru


    Full Text Available The phytohormone auxin contributes to virtually every aspect of the plant development. The spatiotemporal distribution of auxin depends on a complex interplay between auxin metabolism and intercellular auxin transport. Intracellular auxin compartmentalization provides another link between auxin transport processes and auxin metabolism. The PIN-LIKES (PILS putative auxin carriers localize to the endoplasmic reticulum (ER and contribute to cellular auxin homeostasis. PILS proteins regulate intracellular auxin accumulation, the rate of auxin conjugation and subsequently, affect nuclear auxin signalling. Here, we investigate sequence diversification of the PILS family in Arabidopsis thaliana and provide insights into the evolution of these novel putative auxin carriers in plants. Our data suggest that PILS proteins are conserved throughout the plant lineage and expanded during higher plant evolution. PILS proteins diversified early during plant evolution into three clades. Besides the ancient Clade I encompassing non-land plant species, PILS proteins evolved into two clades. The diversification of Clade II and Clade III occurred already at the level of non-vascular plant evolution and, hence, both clades contain vascular and non-vascular plant species. Nevertheless, Clade III contains fewer non- and increased numbers of vascular plants, indicating higher importance of Clade III for vascular plant evolution. Notably, PILS proteins are distinct and appear evolutionarily older than the prominent PIN-FORMED auxin carriers. Moreover, we revealed particular PILS sequence divergence in Arabidopsis and assume that these alterations could contribute to distinct gene regulations and protein functions.

  5. Quantifying drug-protein binding in vivo.

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D


    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  6. Auxin and chloroplast movements. (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina


    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.

  7. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾


    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  8. Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter. (United States)

    Tang, Z; Sadka, A; Morishige, D T; Mullet, J E


    The soybean (Glycine max L. Merr. cv Williams 82) genes VspA and VspB encode vacuolar glycoprotein acid phosphatases that serve as vegetative storage proteins during seed fill and early stages of seedling growth. VspB expression is activated by jasmonates (JAs) and sugars and down-regulated by phosphate and auxin. Previous promoter studies demonstrated that VspB promoter sequences between -585 and -535 mediated responses to JA, and sequences between -535 and -401 mediated responses to sugars, phosphate, and auxin. In this study, the response domains were further delineated using transient expression of VspB promoter-beta-glucuronidase constructs in tobacco protoplasts. Sequences between -536 and -484 were identified as important for phosphate responses, whereas the region from -486 to -427 mediated sugar responses. Gel-shift and deoxyribonuclease-I footprinting assays revealed four DNA-binding sites between -611 and -451 of the soybean VspB promoter: one in the JA response domain, two in the phosphate response domain, and one binding site in the sugar response domain. The sequence CATTAATTAG present in the phosphate response domain binds soybean homeodomain leucine zipper proteins, suggesting a role for these transcription factors in phosphate-modulated gene expression.

  9. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. (United States)

    Remy, Estelle; Cabrito, Tânia R; Baster, Pawel; Batista, Rita A; Teixeira, Miguel C; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula


    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H(+)-coupled K(+) transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells.

  10. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert


    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  11. Auxin: simply complicated. (United States)

    Sauer, Michael; Robert, Stéphanie; Kleine-Vehn, Jürgen


    Auxin is a plant hormone involved in an extraordinarily broad variety of biological mechanisms. These range from basic cellular processes, such as endocytosis, cell polarity, and cell cycle control over localized responses such as cell elongation and differential growth, to macroscopic phenomena such as embryogenesis, tissue patterning, and de novo formation of organs. Even though the history of auxin research reaches back more than a hundred years, we are still far from a comprehensive understanding of how auxin governs such a wide range of responses. Some answers to this question may lie in the auxin molecule itself. Naturally occurring auxin-like substances have been found and they may play roles in specific developmental and cellular processes. The molecular mode of auxin action can be further explored by the utilization of synthetic auxin-like molecules. A second area is the perception of auxin, where we know of three seemingly independent receptors and signalling systems, some better understood than others, but each of them probably involved in distinct physiological processes. Lastly, auxin is actively modified, metabolized, and intracellularly compartmentalized, which can have a great impact on its availability and activity. In this review, we will give an overview of these rather recent and emerging areas of auxin research and try to formulate some of the open questions. Without doubt, the manifold facets of auxin biology will not cease to amaze us for a long time to come.

  12. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im


    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  13. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. (United States)

    van Noorden, Giel E; Kerim, Tursun; Goffard, Nicolas; Wiblin, Robert; Pellerone, Flavia I; Rolfe, Barry G; Mathesius, Ulrike


    We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.

  14. Polynucleotides encoding TRF1 binding proteins (United States)

    Campisi, Judith; Kim, Sahn-Ho


    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  15. Auxin biosynthesis and storage forms. (United States)

    Korasick, David A; Enders, Tara A; Strader, Lucia C


    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development.

  16. A ROP GTPase-dependent auxin signaling pahtway regulates the subcellular distribution of PIN2 in Arabidopsis roots

    NARCIS (Netherlands)

    Lin, D.; Nagawa, S.; Chen, J.; Cao, L.; Scheres, B.


    PIN-FORMED (PIN) protein-mediated auxin polar transport is critically important for development, pattern formation, and morphogenesis in plants. Auxin has been implicated in the regulation of polar auxin transport by inhibiting PIN endocytosis [1 and 2], but how auxin regulates this process is poorl

  17. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda


    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  18. A proteomics study of auxin effects in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Meiqing Xing; Hongwei Xue


    Many phytohormones regulate plant growth and development through modulating protein degradation.In this study,a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana,with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6,12,or 24 h).More than a thousand proteins were detected by using label-free shotgun method,and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment.By using the auxin receptor-deficient mutant,tir1-1,as control,comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased,respectively.Detailed analysis showed that among the altered proteins,some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis,chloroplast development,cytoskeleton,and intracellular signaling.Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects.These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.

  19. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier


    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...... nmol l-1 and 16 nmol l-1. The binding protein has a Stokes radius of 2.49 nm when saturated with cobalamin and 2.61 nm when unsaturated. It binds cobalamin over a broad range of pH and is able to bind cobinamide also. With immunohistochemistry, we find haptocorrin immunoreactivity in the mammary glands...

  20. Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins. (United States)

    Kotamarthi, Hema Chandra; Narayan, Satya; Ainavarapu, Sri Rama Koti


    Folding and unfolding studies on large, multidomain proteins are still rare despite their high abundance in genomes of prokaryotes and eukaryotes. Here, we investigate the unfolding properties of a 271 residue, two-domain ribose binding protein (RBP) from the bacterial periplasm using single-molecule force spectroscopy. We observe that RBP predominately unfolds via a two-state pathway with an unfolding force of ∼80 pN and an unfolding contour length of ∼95 nm. Only a small population (∼15%) of RBP follows three-state pathways. The ligand binding neither increases the mechanical stability nor influences the unfolding flux of RBP through different pathways. The kinetic partitioning between two-state and three-state pathways, which has been reported earlier for other periplasmic proteins, is also observed in RBP, albeit to a lesser extent. These results provide important insights into the mechanical stability and unfolding processes of large two-domain proteins and highlight the contrasting features upon ligand binding. Protein structural topology diagrams are used to explain the differences in the mechanical unfolding behavior of RBP with other periplasmic binding proteins.

  1. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai


    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  2. Landscape of protein-small ligand binding modes. (United States)

    Kasahara, Kota; Kinoshita, Kengo


    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  3. Evidence of oxidative attenuation of auxin signalling. (United States)

    Peer, Wendy Ann; Cheng, Yan; Murphy, Angus S


    Indole-3-acetic acid (IAA) is the principle auxin in Arabidopsis and is synthesized primarily in meristems and nodes. Auxin is transported to distal parts of the plant in response to developmental programming or environmental stimuli to activate cell-specific responses. As with any signalling event, the signal must be attenuated to allow the system to reset. Local auxin accumulations are thus reduced by conjugation or catabolism when downstream responses have reached their optima. In most cell types, localized auxin accumulation increases both reactive oxygen species (ROS) and an irreversible catabolic product 2-oxindole-3-acid acid (oxIAA). oxIAA is inactive and does not induce expression of the auxin-responsive reporters DR5 or 2XD0. Here it is shown that oxIAA is not transported from cell to cell, although it appears to be a substrate for the ATP-binding cassette subfamily G (ABCG) transporters that are positioned primarily on the outer lateral surface of the root epidermis. However, oxIAA and oxIAA-Glc levels are higher in ABCB mutants that accumulate auxin due to defective cellular export. Auxin-induced ROS production appears to be at least partially mediated by the NAD(P)H oxidase RbohD. oxIAA levels are higher in mutants that lack ROS-scavenging flavonoids (tt4) and are lower in mutants that accumulate excess flavonols (tt3). These data suggest a model where IAA signalling is attenuated by IAA catabolism to oxIAA. Flavonoids appear to buffer ROS accumulations that occur with localized increases in IAA. This buffering of IAA oxidation would explain some growth responses observed in flavonoid-deficient mutants that cannot be explained by their established role in partially inhibiting auxin transport.

  4. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein. (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J


    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  5. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors. (United States)

    Khakhar, Arjun; Bolten, Nicholas J; Nemhauser, Jennifer; Klavins, Eric


    An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthetic circuits. However, it remains challenging to build synthetic cellular communication systems in eukaryotes due to a lack of molecular modules that are orthogonal to the host machinery, easy to reconfigure, and scalable. Here, we present a novel cell-to-cell communication system in Saccharomyces cerevisiae (yeast) based on CRISPR transcription factors and the plant hormone auxin that exhibits several of these features. Specifically, we engineered a sender strain of yeast that converts indole-3-acetamide (IAM) into auxin via the enzyme iaaH from Agrobacterium tumefaciens. To sense auxin and regulate transcription in a receiver strain, we engineered a reconfigurable library of auxin-degradable CRISPR transcription factors (ADCTFs). Auxin-induced degradation is achieved through fusion of an auxin-sensitive degron (from IAA corepressors) to the CRISPR TF and coexpression with an auxin F-box protein. Mirroring the tunability of auxin perception in plants, our family of ADCTFs exhibits a broad range of auxin sensitivities. We characterized the kinetics and steady-state behavior of the sender and receiver independently as well as in cocultures where both cell types were exposed to IAM. In the presence of IAM, auxin is produced by the sender cell and triggers deactivation of reporter expression in the receiver cell. The result is an orthogonal, rewireable, tunable, and, arguably, scalable cell-cell communication system for yeast and other eukaryotic cells.

  6. Auxin transport sites are visualized in planta using fluorescent auxin analogs



    Fluorescent auxin analogs are designed to function as active auxins for the auxin transport system but to be inactive for auxin signaling. These fluorescent auxin analogs can mimic auxin via the transport system and be used to visualize inter- and intracellular auxin distribution in roots. These analogs allow imaging of auxin transport sites with high spatiotemporal resolution. Our fluorescent auxin system provides insight into auxin transport dynamics and subcellular auxin distribution.

  7. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family (United States)

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  8. Neuronal calcium-binding proteins and schizophrenia. (United States)

    Eyles, D W; McGrath, J J; Reynolds, G P


    Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings.

  9. ARF-Aux/IAA interactions through domain III/IV are not strictly required for auxin-responsive gene expression



    Auxin response factors (ARFs), together with auxin/indole acetic acid proteins (Aux/IAAs), are transcription factors that play key roles in regulating auxin-responsive transcription in plants. Current models for auxin signaling predict that auxin response is dependent on ARF-Aux/IAA interactions mediated by the related protein-protein interaction domain (i.e., referred to as the CTD) found in the ARF and Aux/IAA C-terminal regions. When auxin concentrations in a cell are low, ARF activators r...

  10. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  11. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿


    Martina L. Sanderson-Smith; Dowton, Mark; Ranson, Marie; Walker, Mark J.


    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G strep...

  12. Characterizing the morphology of protein binding patches. (United States)

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric


    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom

  13. Methyl-CpG binding proteins in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Guoping FAN; Leah HUTNICK


    Classical methyl-CpG binding proteins contain the conserved DNA binding motif methyl-cytosine binding domain (MBD), which preferentially binds to methylated CpG dinucleotides. These proteins serve as transcriptional repressors,mediating gene silencing via DNA cytosine methylation. Mutations in methyl-CpG binding protein 2 (MeCP2) have been linked to the human mental retardation disorder Rett syndrome, suggesting an important role for methyl-CpG binding proteins in brain development and function. This mini-review summarizes the recent advances in studying the diverse functions of MeCP2 as a prototype for other methyl-CpG binding proteins in the development and function of the vertebrate nervous system.

  14. Protein function annotation by local binding site surface similarity. (United States)

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N


    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.


    Institute of Scientific and Technical Information of China (English)

    ZHANGYong-Lian; ZHOUZong-Xun; ZHANGYou-Duan; PARKERMalcolmG


    Prostatic steroid binding protein (PSBP) is a major protein secreted in the rat ventral prostate (V.P.) and also one of the components in seminal fluid, The potential importance of this protein in male fertility emerged from its ability of binding cholesterol which might modulate the proportion of phospholipids and cholesterol in sperm making it suitable

  16. DBD2BS: connecting a DNA-binding protein with its binding sites



    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes c...

  17. Detection of secondary binding sites in proteins using fragment screening. (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren


    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  18. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization (United States)

    Kim, Soo-Hwan; Roux, Stanley J.


    Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.

  19. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited


    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.


    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  20. Lipopolysaccharide binding protein in preterm infants (United States)

    Behrendt, D; Dembinski, J; Heep, A; Bartmann, P


    Objective: To assess serum concentrations of lipopolysaccharide binding protein (LBP) in preterm infants with neonatal bacterial infection (NBI). Methods: Blood samples were analysed of 57 preterm (28+1 to 36+6, median 33+2 weeks gestation) and 17 term infants admitted to the neonatal intensive care unit within the first 72 hours of life with suspicion of NBI. Samples were obtained at first suspicion of sepsis and after 12 and 24 hours. Diagnosis of NBI was confirmed by raised concentrations of C reactive protein and/or interleukin 6. The influence of gestational age and labour was analysed. Results: Maximum LBP concentrations in infants with NBI were greatly increased compared with infants without NBI (13.0–46.0 µg/ml (median 20.0 µg/ml) v 0.6–17.4 µg/ml (median 4.2 µg/ml)). LBP concentrations in infected infants were not yet significantly raised when NBI was first suspected. The LBP concentrations of preterm infants were comparable to those of term infants. Regression analysis revealed no significant effect of labour or gestational age on LBP. Conclusions: Raised LBP concentrations indicate NBI in preterm and term infants. Preterm infants of > 28 weeks gestation seem to be capable of producing LBP as efficiently as term infants. Neonatal LBP concentrations are not influenced by labour. LBP may be a useful diagnostic marker of NBI in preterm infants. PMID:15499153

  1. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo


    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  2. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana


    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  3. Posttranslational modification and trafficking of PIN auxin efflux carriers. (United States)

    Löfke, Christian; Luschnig, Christian; Kleine-Vehn, Jürgen


    Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)


    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  5. Protein binding prodrugs : Synthesis and protein binding studies of didanonsine derivates


    Olberg, Dag Erlend


    A novel series of 5 -O-ester prodrugs of the anti-HIV drug 2 ,3 -dideoxyinosine (ddI,didanosine) were synthesized for the purpose of increasing protein binding. Hope was that these derivates would exhibit superior pharmacodynamic and pharmacokinetic properties against HIV-infection than the parent drug, didanosine. Ten compounds were synthesized, five fatty acid derivates and five dicarboxylic acid monoester derivates. The fatty acid- and dicarboxylic acid derivates had the sam...

  6. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening. (United States)

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua


    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  7. Topological Analyses of Protein-Ligand Binding: a Network Approach. (United States)

    Costanzi, Stefano


    Proteins can be conveniently represented as networks of interacting residues, thus allowing the study of several network parameters that can shed light onto several of their structural and functional aspects. With respect to the binding of ligands, which are central for the function of many proteins, network analysis may constitute a possible route to assist the identification of binding sites. As the bulk of this review illustrates, this has generally been easier for enzymes than for non-enzyme proteins, perhaps due to the different topological nature of the binding sites of the former over those of the latter. The article also illustrates how network representations of binding sites can be used to search PDB structures in order to identify proteins that bind similar molecules and, lastly, how codifying proteins as networks can assist the analysis of the conformational changes consequent to ligand binding.

  8. Cell plate-restricted association of Arabidopsis dynamin related proteins and PIN auxin efflux carriers is required for PIN endocytic trafficking during cytokinesis.

    NARCIS (Netherlands)

    Mravec, J.; Petrasek, J.; Li, N.; Boeren, J.A.; Karlova, R.B.; Kitakura, S.; Naramoto, S.; Nodzynski, T.; Dhonukshe, P.B.; Vries, de S.C.; Zazimalova, E.; Friml, J.


    The polarized transport of the phytohormone auxin [1], which is crucial for the regulation of different stages of plant development [ [2] and [3] ], depends on the asymmetric plasma membrane distribution of the PIN-FORMED (PIN) auxin efflux carriers [4 A. Vieten, M. Sauer, P.B. Brewer and J. Friml,

  9. Heterologous expression of a membrane-spanning auxin importer: implications for functional analyses of auxin transporters. (United States)

    Carrier, David John; Abu Bakar, Norliza Tendot; Lawler, Karen; Dorrian, James Matthew; Haider, Ameena; Bennett, Malcolm John; Kerr, Ian Derek


    Biochemical studies of plant auxin transporters in vivo are made difficult by the presence of multiple auxin transporters and auxin-interacting proteins. Furthermore, the expression level of most such transporters in plants is likely to be too low for purification and downstream functional analysis. Heterologous expression systems should address both of these issues. We have examined a number of such systems for their efficiency in expressing AUX1 from Arabidopsis thaliana. We find that a eukaryotic system based upon infection of insect cells with recombinant baculovirus provides a high level, easily scalable expression system capable of delivering a functional assay for AUX1. Furthermore, a transient transfection system in mammalian cells enables localization of AUX1 and AUX1-mediated transport of auxin to be investigated. In contrast, we were unable to utilise P. pastoris or L. lactis expression systems to reliably express AUX1.

  10. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Craescu Constantin T


    Full Text Available Abstract Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.

  11. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿ (United States)

    Sanderson-Smith, Martina L.; Dowton, Mark; Ranson, Marie; Walker, Mark J.


    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 μM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (Kd = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys96 and Lys101 reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg107 and His108 to alanine. Furthermore, mutagenesis of Arg107 and His108 abolished plasminogen binding by Prp despite the presence of Lys96 and Lys101 in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins. PMID:17012384

  12. The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. (United States)

    Sanderson-Smith, Martina L; Dowton, Mark; Ranson, Marie; Walker, Mark J


    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.

  13. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes. (United States)

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W


    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.

  14. Morphometric Analysis of Auxin-Mediated Development (United States)

    Lewis, Daniel

    Auxin controls many aspects of plant development through its effects on growth. Its distribution is controlled by specific tissue and organ level polar transport streams. The responses to environmental cues such as gravity light, nutrient availability are largely controlled by coordinated regulation of distinct auxin transport streams. Many plant responses to the environment involve changes in shape. Much can be learned about the underlying processes controlling plant form if the response is measured with sufficient resolution. Computer-aided analysis of digital images or 'machine vision' can be used to greatly increase the speed and consistency of data from a morphometric study of plant form. Advances in image acquisition and analysis pioneered at UW-Madison have allowed unprecedented resolution of the growth and gravitropism of Arabidopsis. A reverse genetic analysis was used to determine if the MDR-like ABC transporters influence auxin distribution important for plant development and the response to environmental cues in Arabidopsis. Mutations in MDR1 (At3g28860) reduce acropetal auxin transport in the root. This is correlated with deviation from the vertical axis. Mutations in MDR4 (At2g47000) reduce basipetal auxin transport in the root. This is correlated with hypergravitropism. It was theorized that reduced transport whithin the elongation zone is responsible for the increased curvature. Flavanols were found to regulate gravitropism upstream of MDR4. The mdr1 mdr4 double mutant showed additive but not synergistic phenotypes, suggesting that the two auxin transport streams are more independent than interdependent. MDR proteins seem to enhance auxin transport in situations where PIN-type effux alone is insufficient.

  15. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins. (United States)

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang


    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  16. The Relationship between auxin transport and maize branching. (United States)

    Gallavotti, Andrea; Yang, Yan; Schmidt, Robert J; Jackson, David


    Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.

  17. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd


    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  18. Quantitative analysis of pheromone-binding protein specificity


    Katti, S.; Lokhande, N.; D González; Cassill, A.; Renthal, R


    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-p...

  19. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin (United States)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.


    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  20. Characterization of the DNA binding properties of polyomavirus capsid protein (United States)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)


    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  1. Gravitropism in higher plant shoots. VI. Changing sensitivity to auxin in gravistimulated soybean hypocotyls (United States)

    Rorabaugh, P. A.; Salisbury, F. B.


    Although the Cholodny-Went model of auxin redistribution has been used to explain the transduction phase of gravitropism for over 60 years, problems are apparent, especially with dicot stems. An alternative to an auxin gradient is a physiological gradient in which lower tissues of a horizontal stem become more sensitive than upper tissues to auxin already present. Changes in tissue sensitivity to auxin were tested by immersing marked Glycine max Merrill (soybean) hypocotyl sections in buffered auxin solutions (0, 10(-8) to 10(-2) molar indoleacetic acid) and observing bending and growth of upper and lower surfaces. The two surfaces of horizontal hypocotyl sections responded differently to the same applied auxin stimulus; hypocotyls bent up (lower half grew more) in buffer alone or in low auxin levels, but bent down (upper half grew more) in high auxin. Dose-response curves were evaluated with Michaelis-Menten kinetics, with auxin-receptor binding analogous to enzyme-substrate binding. Vmax for the lower half was usually greater than that for the upper half, which could indicate more binding sites in the lower half. Km of the upper half was always greater than that of the lower half (unmeasurably low), which could indicate that upper-half binding sites had a much lower affinity for auxin than lower-half sites. Dose-response curves were also obtained for sections scrubbed' (cuticle abraded) on top or bottom before immersion in auxin, and gravitropic memory' experiments of L. Brauner and A. Hagar (1958 Planta 51: 115-147) were duplicated. [1-14C]Indoleacetic acid penetration was equal into the two halves, and endogenous plus exogenously supplied (not radiolabeled) free auxin in the two halves (by gas chromatography-selected ion monitoring-mass spectrometry) was also equal. Thus, differential growth occurred without free auxin redistribution, contrary to Cholodny-Went but in agreement with a sensitivity model.

  2. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. (United States)

    Xiao, Yongsheng; Wang, Yinsheng


    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  3. Calcium-binding proteins from human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Gogstad, G.O.; Krutnes, M.B.; Solum, N.O.


    Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with /sup 45/Ca/sup 2 +/ and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with /sup 45/Ca/sup 2 +/. These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4. Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with /sup 45/Ca/sup 2 +/ prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was weakly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelet-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIB-IIIa precipitate also became apparent. No increased incorporation of calcium occured in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of /sup 45/Ca/sup 2 +/.

  4. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo


    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  5. Affinity purification of sequence-specific DNA binding proteins.



    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed t...

  6. Stereoselective binding of chiral drugs to plasma proteins

    Institute of Scientific and Technical Information of China (English)

    Qi SHEN; Lu WANG; Hui ZHOU; Hui-di JIANG; Lu-shan YU; Su ZENG


    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body.The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity,which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles.In this review,the stereoselective binding of chiral drugs to human serum albumin (HSA),α1-acid glycoprotein (AGP)and lipoprotein,three most important proteins in human plasma,are detailed.Furthermore,the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed.Apart from the stereoselectivity of enantiomer-protein binding,enantiomer-enantiomer interactions that may induce allosteric effects are also described.Additionally,the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.

  7. Lipids and lipid binding proteins: a perfect match. (United States)

    Glatz, Jan F C


    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention.

  8. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques


    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  9. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S


    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  10. Comparative serum protein binding of anthracycline derivatives. (United States)

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P


    The binding of doxorubicin, iododoxorubicin, daunorubicin, epirubicin, pirarubicin, zorubicin, aclarubicin, and mitoxantrone to 600 microM human serum albumin and 50 microM alpha 1-acid glycoprotein was studied by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by high-performance liquid chromatography (HPLC) with fluorometric detection. Binding to albumin (600 microM) varied from 61% (daunorubicin) to 94% (iododoxorubicin). The binding to alpha 1-acid glycoprotein (50 microM) was more variable, ranging from 31% (epirubicin) to 64% (zorubicin), and was essentially related to the hydrophobicity of the derivatives. Simulations showed that the total serum binding varied over a broad range from 71% (doxorubicin) to 96% (iododoxorubicin). We recently reported that the binding to lipoproteins of a series of eight anthracycline analogues could be ascribed to chemicophysical determinants of lipophilicity [2]. The present study was conducted to evaluate in vitro the contribution of albumin and alpha 1-acid glycoprotein to the total serum binding of these drugs.

  11. Echinococcus granulosus fatty acid binding proteins subcellular localization. (United States)

    Alvite, Gabriela; Esteves, Adriana


    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  12. Predicting nucleic acid binding interfaces from structural models of proteins. (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael


    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure.

  13. Identification of AOSC-binding proteins in neurons

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; NIE Qin; XIN Xianliang; GENG Meiyu


    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer's Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  14. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T


    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  15. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization (United States)

    Wagner, Susanne; Green, Michael R.


    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  16. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Deshu Lin; Huibo Ren; Ying Fu


    In multicel ular plant organs, cel shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cel‐to‐cel communi-cation. Plants have a specific subfamily of the Rho GTPase family, usual y cal ed Rho of Plants (ROP), which serve as a critical signal transducer involved in many cel ular processes. In the last decade, important advances in the ROP‐mediated regulation of plant cel morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cel s. Especial y, the auxin‐ROP signaling networks have been demonstrated to control interdigitated growth of pavement cel s to form jigsaw‐puzzle shapes. Here, we review findings related to the discovery of this novel auxin‐signaling mecha-nism at the cel surface. This signaling pathway is to a large extent independent of the wel‐known Transport Inhibitor Response (TIR)–Auxin Signaling F‐Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane‐localized, transmembrane kinase (TMK) receptor‐like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self‐organizing feature al owing ROP proteins to serve as a bustling signal decoder and integrator for plant cel morphogenesis.

  17. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms. (United States)

    Chou, Shan-Ho; Galperin, Michael Y


    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.

  18. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. (United States)

    Takahashi, Koji; Hayashi, Ken-ichiro; Kinoshita, Toshinori


    The phytohormone auxin is a major regulator of diverse aspects of plant growth and development. The ubiquitin-ligase complex SCF(TIR1/AFB) (for Skp1-Cul1-F-box protein), which includes the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) auxin receptor family, has recently been demonstrated to be critical for auxin-mediated transcriptional regulation. Early-phase auxin-induced hypocotyl elongation, on the other hand, has long been explained by the acid-growth theory, for which proton extrusion by the plasma membrane H(+)-ATPase is a functional prerequisite. However, the mechanism by which auxin mediates H(+)-ATPase activation has yet to be elucidated. Here, we present direct evidence for H(+)-ATPase activation in etiolated hypocotyls of Arabidopsis (Arabidopsis thaliana) by auxin through phosphorylation of the penultimate threonine during early-phase hypocotyl elongation. Application of the natural auxin indole-3-acetic acid (IAA) to endogenous auxin-depleted hypocotyl sections induced phosphorylation of the penultimate threonine of the H(+)-ATPase and increased H(+)-ATPase activity without altering the amount of the enzyme. Changes in both the phosphorylation level of H(+)-ATPase and IAA-induced elongation were similarly concentration dependent. Furthermore, IAA-induced H(+)-ATPase phosphorylation occurred in a tir1-1 afb2-3 double mutant, which is severely defective in auxin-mediated transcriptional regulation. In addition, α-(phenylethyl-2-one)-IAA, the auxin antagonist specific for the nuclear auxin receptor TIR1/AFBs, had no effect on IAA-induced H(+)-ATPase phosphorylation. These results suggest that the TIR1/AFB auxin receptor family is not involved in auxin-induced H(+)-ATPase phosphorylation. Our results define the activation mechanism of H(+)-ATPase by auxin during early-phase hypocotyl elongation; this is the long-sought-after mechanism that is central to the acid-growth theory.

  19. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.


    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology...

  20. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.


    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  1. Helical propensity in an intrinsically disordered protein accelerates ligand binding

    DEFF Research Database (Denmark)

    Iesmantavicius, Vytautas; Dogan, Jakob; Jemth, Per;


    Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activatio...

  2. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B


    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl......-CoA esters containing more than eight carbon atoms and that the 3'-phosphate of the ribose accounts for almost half of the binding energy. Binding of acyl-CoA esters, with increasing chain length, to ACBP was clearly enthalpically driven with a slightly unfavorable entropic contribution. Accessible surface...... areas derived from the measured enthalpies were compared to those calculated from sets of three-dimensional solution structures and showed reasonable correlation, confirming the enthalphically driven binding. Binding of dodecanoyl-CoA to ACBP was studied at various temperatures and was characterized...

  3. Conformational thermodynamics of metal-ion binding to a protein (United States)

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua


    Conformational changes in proteins induced by metal-ions play extremely important role in various cellular processes and technological applications. Dihedral angles are suitable conformational variables to describe microscopic conformations of a biomacromolecule. Here, we use the histograms of the dihedral angles to study the thermodynamics of conformational changes of a protein upon metal-ion binding. Our method applied to Ca2+ ion binding to an important metalloprotein, Calmodulin, reveals different thermodynamic changes in different metal-binding sites. The ligands coordinating to Ca2+ ions also play different roles in stabilizing the metal-ion coordinated protein-structure. Metal-ion binding induce remarkable thermodynamic changes in distant part of the protein via modification of secondary structural elements.

  4. Fibronectin binding to protein A-containing staphylococci.


    Doran, J E; Raynor, R H


    Fibronectin (Fn) was found to bind to protein A-containing isolates of Staphylococcus aureus, but not to mutant strains devoid of this protein nor to clinical isolates of S. epidermidis. Fn was purified from human plasma by affinity chromatography on gelatin-Sepharose. After elution with 4 M urea, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified material detected no immunoglobulin contamination. This purified Fn was radiolabeled with 125I and used in binding assays. Quant...

  5. Theoretical studies of protein-protein and protein-DNA binding rates (United States)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  6. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.


    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for C4b-bindin

  7. Being a binding site: characterizing residue composition of binding sites on proteins. (United States)

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince


    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  8. Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening.

    Directory of Open Access Journals (Sweden)

    Arnab Bhattacherjee


    Full Text Available The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of using our method to discover new peptide-binding pockets on protein structures.

  9. 21 CFR 866.5765 - Retinol-binding protein immunological test system. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  10. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response. (United States)

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie


    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.

  11. Discodermolide interferes with the binding of tau protein to microtubules. (United States)

    Kar, Santwana; Florence, Gordon J; Paterson, Ian; Amos, Linda A


    We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.

  12. High-Fidelity DNA Sensing by Protein Binding Fluctuations

    CERN Document Server

    Tlusty, Tsvi; Libchaber, Albert; 10.1103/PhysRevLett.93.258103


    One of the major functions of RecA protein in the cell is to bind single-stranded DNA exposed upon damage, thereby triggering the SOS repair response.We present fluorescence anisotropy measurements at the binding onset, showing enhanced DNA length discrimination induced by adenosine triphosphate consumption. Our model explains the observed DNA length sensing as an outcome of out-of equilibrium binding fluctuations, reminiscent of microtubule dynamic instability. The cascade architecture of the binding fluctuations is a generalization of the kinetic proofreading mechanism. Enhancement of precision by an irreversible multistage pathway is a possible design principle in the noisy biological environment.


    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat


    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  14. Mapping of ligand-binding cavities in proteins. (United States)

    Andersson, C David; Chen, Brian Y; Linusson, Anna


    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs.

  15. Probing binding hot spots at protein-RNA recognition sites. (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad


    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity.

  16. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment (United States)

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert


    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  17. A Role for Auxin in Flower Development

    Institute of Scientific and Technical Information of China (English)

    Youfa Cheng; Yunde Zhao


    Auxin has long been implicated in many aspects of plant growth and development including flower development. However, the exact roles of auxin in flower development have not been well defined until the recent identification of auxin biosynthesis mutants. Auxin is necessary for the initiation of floral primordia,and the disruption of auxin biosynthesis, polar auxin transport or auxin signaling leads to the failure of flower formation. Auxin also plays an essential role in specifying the number and identity of floral organs.Further analysis of the relationship between the auxin pathways and the known flower development genes will provide critical information regarding mechanisms of organogenesis and pattern formation in plants.

  18. Competing binding of metal ions with protein studied by microdialysis

    Institute of Scientific and Technical Information of China (English)

    GUO; Ming(郭明); KONG; Liang(孔亮); MAO; Xiqin(毛希琴); LI; Xin(历欣); ZOU; Hanfa(邹汉法)


    A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.

  19. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve


    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter–reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  20. Structural Perspectives on the Evolutionary Expansion of Unique Protein-Protein Binding Sites. (United States)

    Goncearenco, Alexander; Shaytan, Alexey K; Shoemaker, Benjamin A; Panchenko, Anna R


    Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.

  1. Theoretical studies of binding of mannose-binding protein to monosaccharides (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi


    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  2. TALE proteins bind to both active and inactive chromatin. (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan


    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  3. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István


    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  4. Auxin transport sites are visualized in planta using fluorescent auxin analogs. (United States)

    Hayashi, Ken-ichiro; Nakamura, Shouichi; Fukunaga, Shiho; Nishimura, Takeshi; Jenness, Mark K; Murphy, Angus S; Motose, Hiroyasu; Nozaki, Hiroshi; Furutani, Masahiko; Aoyama, Takashi


    The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.

  5. Characterization of EhCaBP, a calcium-binding protein of Entamoeba histolytica and its binding proteins. (United States)

    Yadava, N; Chandok, M R; Prasad, J; Bhattacharya, S; Sopory, S K; Bhattacharya, A


    A novel calcium-binding protein (EhCaBP) has been recently identified and characterized from the protozoan parasite Entamoeba histolytica. In order to decipher the function of this protein, a few basic properties were investigated and compared with the ubiquitous Ca(2+)-signal transducing protein calmodulin (CaM). Indirect immunofluorescence and immunoprecipitation analyses using specific antibodies against EhCaBP suggest that it is a soluble cytoplasmic protein with no major post-translational modification. EhCaBP did not stimulate cAMP-phosphodiesterase activity, differentiating it from all known CaMs. Affinity chromatography of [35S]methionine-labelled proteins of E. histolytica trophozoites using EhCaBP-sepharose column showed Ca(2+)-dependent binding of a group of proteins. Radiolabelled proteins from the same extract also bound to CaM-sepharose. However, the proteins bound to the two columns were different as revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At least one of the EhCaBP-binding proteins became phosphorylated as revealed by in vivo phosphorylation analysis. The binding-proteins could not be detected in E. invadens (a species that is pathogenic in reptiles) and E. moshkovskii (which is found in the human gut but is not pathogenic), two species in which EhCaBP-like protein has not been found. Two distinct Ca(2+)-dependent protein kinases, which get activated by EhCaBP and CaM respectively, were detected in E. histolytica. These kinases require different levels of Ca2+ for their maximal activities. Affinity chromatography also showed the binding of protein kinase(s) to EhCaBP in a Ca(2+)-dependent manner. Our data suggest that there may be novel Ca(2+)-signal transduction pathway in E. histolytica mediated by EhCaBP.

  6. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;


    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...

  7. The role of auxin in temperature regulated hypocotyl elongation

    Energy Technology Data Exchange (ETDEWEB)

    Estelle, Mark [Univ. of California, San Diego, CA (United States)


    The major goal of this project was to determine how auxin mediates the response of Arabidopsis seedlings to increased ambient temperature. Previous studies have shown that the response is due, in part, to increased auxin biosynthesis via the IPA auxin biosynthetic pathway. This effect is related to increased transcription of genes that encode enzymes in this pathway. However, during the last year we have shown that transcription of key auxin regulated genes increases within minutes of a shift to elevated temperature. This response is probably to rapid to be explained by changes in the levels of auxin biosynthetic enzymes. Interestingly, we have recently discovered that temperature shift is associated with a rapid increase in the level of the auxin co-receptor TIR1. This change appears is the result of increased stability of the protein. At the same time, we have discovered that stability of TIR1 is dependent on the chaperone HSP9o and its co-chaperone SGT1. By using the specific HSP90 inhibitor GDA, we show that HSP90 is required for the temperature dependent change in TIR1 levels. We have also shown that HSP90 and SGT1 interact directly with TIR1. Our results also lead us to propose a new model in which the plant responds rapidly to changes in ambient temperature by directly regulating the TIR1/AFB receptor system, thus modulating the auxin signaling pathway.

  8. Early embryo development in Fucus distichus is auxin sensitive (United States)

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.


    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.

  9. Detergent activation of the binding protein in the folate radioassay

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.I.; Holm, J.; Lyngbye, J.


    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  10. CAG trinucleotide RNA repeats interact with RNA-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, B.A.; Eberwine, J.; Spencer, C. [Univ. of Pennsylvania, Philadelphia, PA (United States)


    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington`s disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to >37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and LJV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. 47 refs., 5 figs.

  11. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding. (United States)

    Streaker, Emily D; Gupta, Aditi; Beckett, Dorothy


    The Escherichia coli biotin repressor, an allosteric transcriptional regulator, is activated for binding to the biotin operator by the small molecule biotinyl-5'-AMP. Results of combined thermodynamic, kinetic, and structural studies of the protein have revealed that corepressor binding results in disorder to order transitions in the protein monomer that facilitate tighter dimerization. The enhanced stability of the dimer leads to stabilization of the resulting biotin repressor-biotin operator complex. It is not clear, however, that the allosteric response in the system is transmitted solely through the protein-protein interface. In this work, the allosteric mechanism has been quantitatively probed by measuring the biotin operator binding and dimerization properties of three biotin repressor species: the apo or unliganded form, the biotin-bound form, and the holo or bio-5'-AMP-bound form. Comparisons of the pairwise differences in the bioO binding and dimerization energetics for the apo and holo species reveal that the enhanced DNA binding energetics resulting from adenylate binding track closely with the enhanced assembly energetics. However, when the results for repressor pairs that include the biotin-bound species are compared, no such equivalence is observed.

  12. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela


    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  13. Auxin signaling modules regulate maize inflorescence architecture. (United States)

    Galli, Mary; Liu, Qiujie; Moss, Britney L; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L; Gallavotti, Andrea


    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.

  14. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis. (United States)

    Huang, Jia-bao; Liu, Huili; Chen, Min; Li, Xiaojuan; Wang, Mingyan; Yang, Yali; Wang, Chunling; Huang, Jiaqing; Liu, Guolan; Liu, Yuting; Xu, Jian; Cheung, Alice Y; Tao, Li-zhen


    ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.

  15. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G (United States)

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus


    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.

  16. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor. (United States)

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao


    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at

  17. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D


    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  18. Small molecules unravel complex interplay between auxin biology and endomembrane trafficking. (United States)

    Doyle, Siamsa M; Vain, Thomas; Robert, Stéphanie


    The establishment and maintenance of controlled auxin gradients within plant tissues are essential for a multitude of developmental processes. Auxin gradient formation is co-ordinated via local biosynthesis and transport. Cell to cell auxin transport is facilitated and precisely regulated by complex endomembrane trafficking mechanisms that target auxin carrier proteins to their final destinations. In turn, auxin and cross-talk with other phytohormones regulate the endomembrane trafficking of auxin carriers. Dissecting such rapid and complicated processes is challenging for classical genetic experiments due to trafficking pathway diversity, gene functional redundancy, and lethality in loss-of-function mutants. Many of these difficulties can be bypassed via the use of small molecules to modify or disrupt the function or localization of proteins. Here, we will review examples of the knowledge acquired by the use of such chemical tools in this field, outlining the advantages afforded by chemical biology approaches.

  19. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution. (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P


    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  20. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B;


    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence...... spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two...... and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains...

  1. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein. (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang


    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  2. Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers (United States)

    Yang, Jing; Yuan, Zheng; Meng, Qingcai; Huang, Guoqiang; Périn, Christophe; Bureau, Charlotte; Meunier, Anne-Cécile; Ingouff, Mathieu; Bennett, Malcolm J.; Liang, Wanqi; Zhang, Dabing


    The hormone auxin is critical for many plant developmental processes. Unlike the model eudicot plant Arabidopsis (Arabidopsis thaliana), auxin distribution and signaling in rice tissues has not been systematically investigated due to the absence of suitable auxin response reporters. In this study we observed the conservation of auxin signaling components between Arabidopsis and model monocot crop rice (Oryza sativa), and generated complementary types of auxin biosensor constructs, one derived from the Aux/IAA-based biosensor DII-VENUS but constitutively driven by maize ubiquitin-1 promoter, and the other termed DR5-VENUS in which a synthetic auxin-responsive promoter (DR5rev) was used to drive expression of the yellow fluorescent protein (YFP). Using the obtained transgenic lines, we observed that during the vegetative development, accumulation of DR5-VENUS signal was at young and mature leaves, tiller buds and stem base. Notably, abundant DR5-VENUS signals were observed in the cytoplasm of cortex cells surrounding lateral root primordia (LRP) in rice. In addition, auxin maxima and dynamic re-localization were seen at the initiation sites of inflorescence and spikelet primordia including branch meristems (BMs), female and male organs. The comparison of these observations among Arabidopsis, rice and maize suggests the unique role of auxin in regulating rice lateral root emergence and reproduction. Moreover, protein localization of auxin transporters PIN1 homologs and GFP tagged OsAUX1 overlapped with DR5-VENUS during spikelet development, helping validate these auxin response reporters are reliable markers in rice. This work firstly reveals the direct correspondence between auxin distribution and rice reproductive and root development at tissue and cellular level, and provides high-resolution auxin tools to probe fundamental developmental processes in rice and to establish links between auxin, development and agronomical traits like yield or root architecture. PMID

  3. A statistical mechanics handbook for protein-ligand binding simulation. (United States)

    Rocchia, Walter; Bonella, Sara


    In this work, the fundamental elements of statistical mechanics underlying the simulation of the protein-ligand binding process, such as statistical ensembles and the concept of microscopic estimators of macroscopic observables and free energy, are summarized in a self consistent fashion. Particular attention is then devoted to the introduction of some mathematical tools that are used in atomistic simulations aimed at estimating binding affinities and free energy profiles, and to the illustration of the origins of the difficulties encountered in this endeavor.

  4. Carotenoid Antenna Binding and Function in Retinal Proteins (United States)


    REPORT Carotenoid antenna binding and function in retinal proteins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Xanthorhodopsin, a proton pump from the...eubacterium Salinibacter ruber, is a unique dual chromophore system that contains, in addition to retinal, the carotenoid salinixanthin as a light... carotenoid ring near the retinal ring. Substitution of the small glycine with bulky tryptophan in this site eliminates binding. The second factor is the 4

  5. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity. (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang


    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  6. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    NARCIS (Netherlands)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; Almeida Engler, De Janice; Gheysen, Godelieve


    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins dur

  7. Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi. (United States)

    Jäger, Adriana V; De Gaudenzi, Javier G; Mild, Jesica G; Mc Cormack, Bárbara; Pantano, Sergio; Altschuler, Daniel L; Edreira, Martin M


    Cyclic AMP has been implicated as second messenger in a wide range of cellular processes. In the protozoan parasite Trypanosoma cruzi, cAMP is involved in the development of the parasite's life cycle. While cAMP effectors have been widely studied in other eukaryotic cells, little is known about cAMP's mechanism of action in T. cruzi. To date, only a cAMP-dependent protein kinase A (PKA) has been cloned and characterised in this parasite; however experimental evidence indicates the existence of cAMP-dependent, PKA-independent events. In order to identify new cAMP binding proteins as potential cAMP effectors, we carried out in silico studies using the predicted T. cruzi proteome. Using a combination of search methods 27 proteins with putative cNMP binding domains (CBDs) were identified. Phylogenetic analysis of the CBDs presented a homogeneous distribution, with sequences segregated into two main branches: one containing kinases-like proteins and the other gathering hypothetical proteins with different function or no other known. Comparative modelling of the strongest candidates provides support for the hypothesis that these proteins may give rise to structurally viable cyclic nucleotide binding domains. Pull-down and nucleotide displacement assays strongly suggest that TcCLB.508523.80 could bind cAMP and eventually be a new putative PKA-independent cAMP effector in T. cruzi.

  8. Interactome-Wide Prediction of Protein-Protein Binding Sites Reveals Effects of Protein Sequence Variation in Arabidopsis thaliana

    NARCIS (Netherlands)

    Valentim, F.L.; Neven, F.; Boyen, P.; Dijk, van A.D.J.


    The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in thos

  9. IQGAP1 and its binding proteins control diverse biological functions. (United States)

    White, Colin D; Erdemir, Huseyin H; Sacks, David B


    IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.

  10. Chromate Binding and Removal by the Molybdate-Binding Protein ModA. (United States)

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan


    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards.

  11. Metal toxicity and opportunistic binding of Pb2+ in proteins


    Kirberger, Michael; Wong, Hing C; Jiang, Jie; Yang, Jenny J.


    Lead toxicity is associated with various human diseases. While Ca2+ binding proteins such as calmodulin (CaM) are often reported to be molecular targets for Pb2+-binding and lead toxicity, the effect of Pb2+ on the Ca2+/CaM regulated biological activities cannot be described by the primary mechanism of ionic displacement (e.g., ionic mimicry). The focus of this study was to investigate the mechanism of lead toxicity through binding differences between Ca2+ and Pb2+ for CaM, an essential intra...

  12. Zinc-protein from rat prostate fluid binds epididymal spermatozoa. (United States)

    Sansone, G; Abrescia, P


    The detection and the isolation of a zinc-protein from the secretion of the rat dorsolateral prostate is described. The purification procedure, based on gel filtration and cationic exchange chromatography, allowed to separate a minor protein (Mr approximately 66,000) from free zinc ions and other secretory components. Two zinc ions were estimated to be associated with one molecule of isolated protein. The zinc-protein was labelled with 125I and then incubated at 37 degrees C with spermatozoa from rat epididymal cauda. Time-dependent in vitro binding of the radioactive protein to sperm cells was demonstrated. This binding was not affected by the presence of proteins from the seminal vesicle during the incubation, while it was blocked in the presence of an excess of unlabelled zinc-protein. After binding, the labelled spermatozoa were treated with a buffer containing 0.5% sodium deoxycholate and 40 mM EDTA; only very small amounts of label were removed from the cells, thus suggesting that the zinc-proteins were kept on the plasma membrane by interactions which do not involve merely hydrophobic bonds.

  13. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. (United States)

    Kami, Chitose; Allenbach, Laure; Zourelidou, Melina; Ljung, Karin; Schütz, Frédéric; Isono, Erika; Watahiki, Masaaki K; Yamamoto, Kotaro T; Schwechheimer, Claus; Fankhauser, Christian


    Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.

  14. Differential plasma protein binding to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F [School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia); Schiller, Tara; Musumeci, Anthony; Martin, Darren, E-mail: [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072 (Australia)


    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO{sub 2}, the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO{sub 2} and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  15. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins. (United States)

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael


    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  16. A general approach to visualize protein binding and DNA conformation without protein labelling. (United States)

    Song, Dan; Graham, Thomas G W; Loparo, Joseph J


    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein-DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein-DNA interactions.

  17. Reprogramming cellular events by poly(ADP-ribose)-binding proteins (United States)

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe


    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  18. Oxypred: Prediction and Classification of Oxygen-Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    S.; Muthukrishnan; Aarti; Garg; G.P.S.; Raghava


    This study describes a method for predicting and classifying oxygen-binding pro- teins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding pro- teins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Sec- ondly, an SVM module was developed based on amino acid composition, classify- ing the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemo- cyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins(available from

  19. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.


    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  20. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    Directory of Open Access Journals (Sweden)

    Patricia Müller-Moulé


    Full Text Available Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance.

  1. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance (United States)

    Müller-Moulé, Patricia; Nozue, Kazunari; Pytlak, Melissa L.; Palmer, Christine M.; Covington, Michael F.; Wallace, Andreah D.; Harmer, Stacey L.


    Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance. PMID:27761349

  2. Auxin transport in the evolution of branching forms. (United States)

    Harrison, C Jill


    I. II. III. IV. V. VI. VII. Acknowledgements References SUMMARY: Branching is one of the most striking aspects of land plant architecture, affecting resource acquisition and yield. Polar auxin transport by PIN proteins is a primary determinant of flowering plant branching patterns regulating both branch initiation and branch outgrowth. Several lines of experimental evidence suggest that PIN-mediated polar auxin transport is a conserved regulator of branching in vascular plant sporophytes. However, the mechanisms of branching and auxin transport and relationships between the two are not well known outside the flowering plants, and the paradigm for PIN-regulated branching in flowering plants does not fit bryophyte gametophytes. The evidence reviewed here suggests that divergent auxin transport routes contributed to the diversification of branching forms in distinct land plant lineages.

  3. Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit

    Institute of Scientific and Technical Information of China (English)

    Jeong Im Kim; Dongwon Baek; Hyeong Cheol Park; Hyun Jin Chun; Dong-Ha Oh; Min Kyung Lee; Joon-Yung Cha


    Indole-3-acetic acid (IAA),a major plant auxin,is produced in both tryptophan-dependent and tryptophanindependent pathways.A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan.Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins.We identified eight putative StYUC (Solanum tuberosum YUCCA)genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins.All include canonical,conserved YUCCA sequences:FATGY motif,FMO signature sequence,and FAD-binding and NADP-binding sequences.In addition,five genes were found with-50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases.Transgenic potato (Solanum tuberosum cv.Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves,increased height,erect stature,and longevity.Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss.The phenotype was correlated with reduced levels of reactive oxygen species in leaves.The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.

  4. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins. (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J


    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.

  5. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius


    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  6. Binding-regulated click ligation for selective detection of proteins. (United States)

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang


    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins.

  7. Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein

    Directory of Open Access Journals (Sweden)

    Biswas-Fiss Esther E


    Full Text Available Abstract Background Single-stranded DNA binding proteins (SSB are essential for DNA replication, repair, and recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA polymerase. Results We have cloned and purified SSB from Bacillus anthracis (SSBBA. In the absence of DNA, at concentrations ≤100 μg/ml, SSBBA did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein. Fluorescence anisotropy studies demonstrated that SSBBA bound ssDNA with high affinity comparable to other prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding. FRET analysis of oligo(dT70 binding suggested that SSBBA forms a tetrameric assembly upon ssDNA binding. This report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation of a transient tetrameric structure. Conclusions Unlike other prokaryotic SSB proteins, SSBBA from Bacillus anthracis appeared to be monomeric at concentrations ≤100 μg/ml as determined by SE-HPLC. SSBBA retained its ability to bind ssDNA with very high affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSBBA appears to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer formation. The structural features of SSBBA could promote facile assembly and disassembly of the protein-DNA complex required in processes such as DNA replication.

  8. Free enthalpies of replacing water molecules in protein binding pockets (United States)

    Riniker, Sereina; Barandun, Luzi J.; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F.


    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH3 group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH3 at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  9. Using the telobox to search for plant telomere binding proteins. (United States)

    Peška, Vratislav; Schrumpfová, Petra Procházková; Fajkus, Jiŕí


    Telobox is a Myb-related DNA-binding domain which is present in a number of yeast, plant and animal proteins. Its capacity to bind preferentially double-stranded telomeric DNA has been used in numerous studies to search for candidate telomeric proteins in various organisms, including plants. Here we provide an overview of these studies with a special emphasis on plants, where a specific subfamily of the proteins possessing the N-terminally positioned telobox is present in addition to more common C-terminal telobox proteins. We further demonstrate the presence of a telobox protein (CpTBP1) in Cestrum parqui, a plant lacking typical telomeres and telomerase. The protein shows nuclear localisation and association with chromatin. The role of this protein in ancestral and current telomere structure is discussed in the evolutionary context. Altogether, the present overview shows the importance of the telobox domain in a search for candidate telomere proteins but at the same time warns against oversimplified identification of any telobox protein with telomere structure without appropriate evidence of its telomeric localisation and function.

  10. Plant RNA binding proteins for control of RNA virus infection


    Huh, Sung Un; Paek, Kyung-Hee


    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  11. Fluorescence properties of porcine odorant binding protein Trp 16 residue

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Jihad Rene, E-mail: Jihad-Rene.Albani@univ-lille1.f [Laboratoire de Biophysique Moleculaire, Universite des Sciences et Technologies de Lille, F-59655 Villeneuve d' Ascq Cedex (France)


    Summary: The present work deals with fluorescence studies of adult porcine odorant binding protein at pH=7.5. At this pH, the protein is a dimer, each monomer contains one tryptophan residue. Our results show that tryptophan residue displays significant motions and emits with three fluorescence lifetimes. Decay associated spectra showed that the three lifetime's components emanate from sub-structures surrounded by the same microenvironment.

  12. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. (United States)

    Eklund, D Magnus; Thelander, Mattias; Landberg, Katarina; Ståldal, Veronika; Nilsson, Anders; Johansson, Monika; Valsecchi, Isabel; Pederson, Eric R A; Kowalczyk, Mariusz; Ljung, Karin; Ronne, Hans; Sundberg, Eva


    The plant hormone auxin plays fundamental roles in vascular plants. Although exogenous auxin also stimulates developmental transitions and growth in non-vascular plants, the effects of manipulating endogenous auxin levels have thus far not been reported. Here, we have altered the levels and sites of auxin production and accumulation in the moss Physcomitrella patens by changing the expression level of homologues of the Arabidopsis SHI/STY family proteins, which are positive regulators of auxin biosynthesis genes. Constitutive expression of PpSHI1 resulted in elevated auxin levels, increased and ectopic expression of the auxin response reporter GmGH3pro:GUS, and in an increased caulonema/chloronema ratio, an effect also induced by exogenous auxin application. In addition, we observed premature ageing and necrosis in cells ectopically expressing PpSHI1. Knockout of either of the two PpSHI genes resulted in reduced auxin levels and auxin biosynthesis rates in leafy shoots, reduced internode elongation, delayed ageing, a decreased caulonema/chloronema ratio and an increased number of axillary hairs, which constitute potential auxin biosynthesis sites. Some of the identified auxin functions appear to be analogous in vascular and non-vascular plants. Furthermore, the spatiotemporal expression of the PpSHI genes and GmGH3pro:GUS strongly overlap, suggesting that local auxin biosynthesis is important for the regulation of auxin peak formation in non-vascular plants.

  13. Identification of auxin responsive genes in Arabidopsis by cDNA array

    Institute of Scientific and Technical Information of China (English)


    The plant hormone auxin influences a variety of developmental and physiological processes. But the mechanism of its action is quite unclear. In order to identify and analyze the expression of auxin responsive genes, a cDNA array approach was used to screen for genes with altered expression from Arabidopsis suspension culture after IAA treatment and was identified 50 differentially expressed genes from 13824 cDNA clones. These genes were related to signal transduction, stress responses, senescence, photosynthesis, protein biosynthesis and transportation. The results provide the molecular evidence that auxin influences a variety of physiological processes and pave a way for further investigation of the mechanism of auxin action. Furthermore,we found that the expression of a ClpC (regulation subunit of Clp protease) was repressed by exogenous auxin, but increased in dark-induced senescing leaves. This suggests that ClpC may be a senescence-associated gene and can be regulated by auxin.

  14. Pumilio Puf domain RNA-binding proteins in Arabidopsis. (United States)

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong


    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35-39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such as humans and plants. In yeast and animals, they are involved in a variety of posttranscriptional RNA metabolism including RNA decay, RNA transport, rRNA processing and translational repression. However, their roles in plants are largely unknown. Recently, we have characterized the first member of the Puf family of RNA-binding proteins, APUM23, in Arabidopsis. Here, we discuss and summarize the diverse roles and targets of Puf proteins previously reported in other organisms and then highlight the potential regulatory roles of Puf proteins in Arabidopsis, using our recent study as an example.

  15. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins. (United States)

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E


    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.

  16. Calcium-binding ability of soy protein hydrolysates

    Institute of Scientific and Technical Information of China (English)

    Xiao Lan Bao; Mei Song; Jing Zhang; Yang Chen; Shun Tang Guo


    This present study investigated the ability of various soy protein hydrolysates (SPHs) in binding calcium. It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different proteases, which included: neutrase,flavourzyme, protease M and pepsin. The maximum level of Ca-bound (66.9 mg/g) occurred when protease M was used to hydrolyze soy protein. Peptide fragments exhibiting high Ca-binding capacity had molecular weights of either 14.4 or 8-9 kDa. The level of Ca-bound increased linearly with the increment of carboxyl content in SPHs, and further deamidation on SPHs from protease M improved Ca-binding of the hydrolysate.

  17. Flexibility of PCNA-protein interface accommodates differential binding partners.

    Directory of Open Access Journals (Sweden)

    Anthony M Pedley

    Full Text Available The expanding roles of PCNA in functional assembly of DNA replication and repair complexes motivated investigation of the structural and dynamic properties guiding specificity of PCNA-protein interactions. A series of biochemical and computational analyses were combined to evaluate the PIP Box recognition features impacting complex formation. The results indicate subtle differences in topological and molecular descriptors distinguishing both affinity and stoichiometry of binding among PCNA-peptide complexes through cooperative effects. These features were validated using peptide mimics of p85α and Akt, two previously unreported PCNA binding partners. This study characterizes for the first time a reverse PIP Box interaction with PCNA. Small molecule ligand binding at the PIP Box interaction site confirmed the adaptive nature of the protein in dictating overall shape and implicates allosterism in transmitting biological effects.

  18. Capacitance-modulated transistor detects odorant binding protein chiral interactions (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa


    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  19. Methods of use of cellulose binding domain proteins (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.


    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.


    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  1. RNA-protein binding kinetics in an automated microfluidic reactor. (United States)

    Ridgeway, William K; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R


    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA-protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic 'Riboreactor' has been designed and constructed to facilitate the study of kinetics of RNA-protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA-protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome.

  2. Structure fluctuations and conformational changes in protein binding

    CERN Document Server

    Ruvinsky, Anatoly M; Tuzikov, Alexander V; Vakser, Ilya A


    Structure fluctuations and conformational changes accompany all biological processes involving macromolecules. The paper presents a classification of protein residues based on the normalized equilibrium fluctuations of the residue centers of mass in proteins and a statistical analysis of conformation changes in the side-chains upon binding. Normal mode analysis and an elastic network model were applied to a set of protein complexes to calculate the residue fluctuations and develop the residue classification. Comparison with a classification based on normalized B-factors suggests that the B-factors may underestimate protein flexibility in solvent. Our classification shows that protein loops and disordered fragments are enriched with highly fluctuating residues and depleted with weakly fluctuating residues. To calculate the dihedral angles distribution functions, the configuration space was divided into cells by a cubic grid. The effect of protein association on the distribution functions depends on the amino a...

  3. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y;


    the highly conserved 60 amino acid homeodomain. This peptide antiserum recognized a protein species of molecular weight 63,000 in immunoblots of nuclear extracts obtained from several tumor cell lines. The predominant molecular weight 63,000 nuclear protein recognized by the peptide antiserum...... the same patients exhibited little immunoreactivity. Both the peptide antiserum and the polyclonal antiserum against the native protein immunoblotted a molecular weight 63,000 protein in nuclear extracts of tumor tissue, but not significantly in extracts of normal tissue. At the molecular level......Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from...

  4. Auxin response under osmotic stress. (United States)

    Naser, Victoria; Shani, Eilon


    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  5. Phage display screen for peptides that bind Bcl-2 protein. (United States)

    Park, Hye-Yeon; Kim, Joungmok; Cho, June-Haeng; Moon, Ji Young; Lee, Su-Jae; Yoon, Moon-Young


    Bcl-2 family proteins are key regulators of apoptosis associated with human disease, including cancer. Bcl-2 protein has been found to be overexpressed in many cancer cells. Therefore, Bcl-2 protein is a potential diagnostic target for cancer detection. In the present study, the authors have identified several Bcl-2 binding peptides with high affinity (picomolar range) from a 5-round M13 phage display library screening. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.

  6. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery


    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  7. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding (United States)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea


    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  8. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.


    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  9. DBD2BS: connecting a DNA-binding protein with its binding sites. (United States)

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao


    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein-DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD-DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein-DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at:,, and

  10. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.


    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that f

  11. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. (United States)

    Kamimoto, Yoshihisa; Terasaka, Kazuyoshi; Hamamoto, Masafumi; Takanashi, Kojiro; Fukuda, Shoju; Shitan, Nobukazu; Sugiyama, Akifumi; Suzuki, Hideyuki; Shibata, Daisuke; Wang, Bangjun; Pollmann, Stephan; Geisler, Markus; Yazaki, Kazufumi


    The phytohormone auxin is critical for plant growth and many developmental processes. Members of the P-glycoprotein (PGP/ABCB) subfamily of ATP-binding cassette (ABC) transporters have been shown to function in the polar movement of auxin by transporting auxin over the plasma membrane in both monocots and dicots. Here, we characterize a new Arabidopsis member of the ABCB subfamily, ABCB21/PGP21, a close homolog of ABCB4, for which conflicting transport directionalities have been reported. ABCB21 is strongly expressed in the abaxial side of cotyledons and in junctions of lateral organs in the aerial part, whereas in roots it is specifically expressed in pericycle cells. Membrane fractionation by sucrose density gradient centrifugation followed by Western blot showed that ABCB21 is a plasma membrane-localized ABC transporter. A transport assay with Arabidopsis protoplasts suggested that ABCB21 was involved in IAA transport in an outward direction, while naphthalene acetic acid (NAA) was a less preferable substrate for ABCB21. Further functional analysis of ABCB21 using yeast import and export assays showed that ABCB21 mediates the 1-N-naphthylphthalamic acid (NPA)-sensitive translocation of auxin in an inward direction when the cytoplasmic IAA concentration is low, whereas this transporter mediates outward transport under high internal IAA. An increase in the cytoplasmic IAA concentration by pre-loading of IAA into yeast cells abolished the IAA uptake activity by ABCB21 as well as ABCB4. These findings suggest that ABCB21 functions as a facultative importer/exporter controlling auxin concentrations in plant cells.

  12. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba


    are the oldest evolutionary derivatives followed by IF and HC (the latter being present only in reptiles and most but not all mammals). Our findings suggest that the only cobalamin-binding protein in zebrafish is an intermediate between the three human cobalamin binders. These findings support the hypothesis...

  13. A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1). (United States)

    Lugert, T; Werr, W


    South-western screening of lambda gt11 expression library with a fragment of the Shrunken promoter containing the initiator element resulted in cloning of a novel maize gene. The encoded initiator-binding protein (IBP1) interacts at the transcription start site of the Shrunken promoter. Analysis of the 680 amino acid (aa) long polypeptide revealed a novel bipartite DNA-binding domain at the carboxyl terminus. In its amino-terminal part, it is weakly related to Myb R-repeats but the following basic region is also essential for DNA binding. A region of similarity to the conserved 2.1 and 2.2 motifs in bacterial sigma-factors is located close to the IBP1 amino terminus. Two putative nuclear localization signals are compatible with the presence of antigenically related polypeptides in nuclear protein extracts. The IBP1 gene was mapped to the long arm of chromosome 9 (9L095); a second highly related gene IBP2 is located on the short arm of chromosome 1 (1S014). Both genes encode proteins sharing 93% similarity and are transcribed with similar activity in different plant organs. A small 82 nucleotide intron in the IBP2 transcript is found unspliced to a variable degree in different tissues. Translation of this incompletely processed transcript would result in a truncated amino-terminal polypeptide lacking the DNA-binding domain.

  14. Calcium binding proteins and calcium signaling in prokaryotes. (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna


    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  15. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar


    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  16. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J


    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  17. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. (United States)

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian


    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins.

  18. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Felipe Leal Valentim

    Full Text Available The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in those sequences. However, large-scale detection of protein interfaces remains a challenge. Here, we present a sequence- and interactome-based approach to mine interaction motifs from the recently published Arabidopsis thaliana interactome. The resultant proteome-wide predictions are available via and set the stage for further investigations of protein-protein binding sites. To assess our method, we first show that, by using a priori information calculated from protein sequences, such as evolutionary conservation and residue surface accessibility, we improve the performance of interface prediction compared to using only interactome data. Next, we present evidence for the functional importance of the predicted sites, which are under stronger selective pressure than the rest of protein sequence. We also observe a tendency for compensatory mutations in the binding sites of interacting proteins. Subsequently, we interrogated the interactome data to formulate testable hypotheses for the molecular mechanisms underlying effects of protein sequence mutations. Examples include proteins relevant for various developmental processes. Finally, we observed, by analysing pairs of paralogs, a correlation between functional divergence and sequence divergence in interaction sites. This analysis suggests that large-scale prediction of binding sites can cast light on evolutionary processes that shape protein-protein interaction networks.

  19. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

    NARCIS (Netherlands)

    Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; Schwab, R.; Weigel, D.; Meyerowitz, E.M.; Luschnig, C.; Offringa, R.; Friml, J.


    In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentif

  20. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. (United States)

    Hammerschmidt, S; Bethe, G; Remane, P H; Chhatwal, G S


    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10(-18) M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hLf binding significantly, indicating that the hLf receptor is proteinaceous. Binding assays performed with 63 clinical isolates belonging to different serotypes showed that 88% of the tested isolates interacted with hLf. Scatchard analysis showed the existence of two hLf-binding proteins with dissociation constants of 5.7 x 10(-8) and 2.74 x 10(-7) M. The receptors were purified by affinity chromatography, and internal sequence analysis revealed that one of the S. pneumoniae proteins was homologous to pneumococcal surface protein A (PspA). The function of PspA as an hLf-binding protein was confirmed by the ability of purified PspA to bind hLf and to competitively inhibit hLf binding to pneumococci. S. pneumoniae may use the hLf-PspA interaction to overcome the iron limitation at mucosal surfaces, and this might represent a potential virulence mechanism.

  1. Efficient and inexpensive method for purification of heparin binding proteins. (United States)

    Batra, Sumit; Sahi, Nilesh; Mikulcik, Kristen; Shockley, Heather; Turner, Camille; Laux, Zachary; Badwaik, Vivek D; Conte, Eric; Rajalingam, Dakshinamurthy


    Heparin binding (HB) proteins mediate a wide range of important cellular processes, which makes this class of proteins biopharmaceutically important. Engineering HB proteins may bring many advantages, but it necessitates cost effective and efficient purification methodologies compared to currently available methods. One of the most important classes of HB proteins are fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, we report an efficient off-column purification of FGF-1 from soluble fractions and purification of the D2 domain of FGFR from insoluble inclusion bodies, using a weak Amberlite cation (IRC) exchanger. FGF-1 and the D2 domain have been expressed in Escherichia coli and purified to homogeneity using IRC resin. This approach is an alternative to conventional affinity column chromatography, which exhibits several disadvantages, including time-consuming experimental procedures for purification and regeneration and results in the expensive production of recombinant proteins. Results of the heparin binding chromatography and steady state fluorescence experiments show that the FGF-1 and the D2 are in a native conformation. The findings of this study will not only aid an in-depth investigation of this class of proteins but will also provide avenues for inexpensive and efficient purification of other important biological macromolecules.

  2. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.


    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) ( has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN ( NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  3. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  4. FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins. (United States)

    Boyd, Jeffery M; Endrizzi, James A; Hamilton, Trinity L; Christopherson, Melissa R; Mulder, David W; Downs, Diana M; Peters, John W


    The periplasmic protein ApbE was identified through the analysis of several mutants defective in thiamine biosynthesis and was implicated as having a role in iron-sulfur cluster biosynthesis or repair. While mutations in apbE cause decreased activity of several iron-sulfur enzymes in vivo, the specific role of ApbE remains unknown. Members of the AbpE family include NosX and RnfF, which have been implicated in oxidation-reduction associated with nitrous oxide and nitrogen metabolism, respectively. In this work, we show that ApbE binds one FAD molecule per monomeric unit. The structure of ApbE in the presence of bound FAD reveals a new FAD-binding motif. Protein variants that are nonfunctional in vivo were generated by random and targeted mutagenesis. Each variant was substituted in the environment of the FAD and analyzed for FAD binding after reconstitution. The variant that altered a key tyrosine residue involved in FAD binding prevented reconstitution of the protein.

  5. Functional characterization of PaLAX1, a putative auxin permease, in heterologous plant systems. (United States)

    Hoyerová, Klára; Perry, Lucie; Hand, Paul; Lanková, Martina; Kocábek, Tomás; May, Sean; Kottová, Jana; Paces, Jan; Napier, Richard; Zazímalová, Eva


    We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants.

  6. The role of SEUSS in auxin response and floral organ patterning. (United States)

    Pfluger, Jennifer; Zambryski, Patricia


    Genetic and physiological analyses implicate auxin flux in patterning, initiation and growth of floral organs. Within the Arabidopsis flower, the ETTIN/ARF3 transcription factor responds to auxin to effect perianth organ number and reproductive organ differentiation. This work describes a modifier of ettin that causes filamentous, mispositioned outer whorl organs and reduced numbers of malformed stamens in the double mutant. The modifier was discovered to be a new allele of the seuss (seu) mutant. SEU encodes a novel protein that is predicted to transcriptionally co-repress the AGAMOUS floral organ identity gene. The effects of seu on ett are shown to be independent of the SEU-AG pathway. Furthermore, morphological, physiological and genetic evidence implicate SEU in auxin-regulated growth and development. seu has a pleiotropic phenotype that includes reductions in several classic auxin responses such as apical dominance, lateral root initiation, sensitivity to exogenous auxin and activation of the DR5 auxin response reporter. seu displays a synergistic interaction with the auxin response mutant pinoid, producing flowers with few outer whorl organs. Collectively, these data suggest that SEU is a novel factor affecting auxin response. A model is proposed in which SEU functions jointly with ETT in auxin response to promote floral organ patterning and growth.

  7. Protein universe containing a PUA RNA-binding domain. (United States)

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E


    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  8. Surface selective binding of nanoclay particles to polyampholyte protein chains (United States)

    Pawar, Nisha; Bohidar, H. B.


    Binding of nanoclay (Laponite) to gelatin-A and gelatin-B (both polyampholytes) molecules was investigated at room temperature (25 °C) both experimentally and theoretically. The stoichiometric binding ratio between gelatin and Laponite was found to be strongly dependent on the solution ionic strength. Large soluble complexes were formed at higher ionic strengths of the solution, a result supported by data obtained from light scattering, viscosity, and zeta potential measurements. The binding problem was theoretically modeled by choosing a suitable two-body screened Coulomb potential, U(R+)=(q-/2ɛ)[(Q-/R-)e-kR--(Q+/R+)e-kR+], where the protein dipole has charges Q+ and Q_ that are located at distances R+ and R_ from the point Laponite charge q- and the dispersion liquid has dielectric constant (ɛ). U(R+) accounted for electrostatic interactions between a dipole (protein molecule) and an effective charge (Laponite particle) located at an angular position θ. Gelatin-A and Laponite association was facilitated by a strong attractive interaction potential that led to preferential binding of the biopolymer chains to negatively charged face of Laponite particles. In the case of gelatin-B selective surf ace patch binding dominated the process where the positively charged rim and negatively charged face of the particles were selectively bound to the oppositely charged segments of the biopolymer. The equilibrium separation (Re) between the protein and nanoclay particle revealed monovalent salt concentration dependence given by Re˜[NaCl]α where α =0.6±0.2 for gelatin-A and α =0.4±0.2 for gelatin-B systems. The equilibrium separations were ≈30% less compared to the gelatin-A system implying preferential short-range ordering of the gelatin-B-nanoclay pair in the solvent.

  9. Structural and binding studies of SAP-1 protein with heparin. (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita


    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.

  10. Structural dynamics of cisplatin binding to histidine in a protein

    Directory of Open Access Journals (Sweden)

    Simon W. M. Tanley


    Full Text Available The platinum anti-cancer agents cisplatin and carboplatin bind to the histidine 15 residue in the model protein hen egg white lysozyme. By using temperatures either side of the protein glass transition state (∼180 K, several platinum binding modes are seen and show that not all these platinum modes are stable. In particular, the mean square displacement vibration amplitudes of the cisplatin and of the histidine to which it is bound are analysed in detail. As well as the multiple platinum peaks, the electron density for the His-15 side chain is weak to absent at 150 K and 200 K, which points to the imidazole ring of the His side chain sampling multiple positions. Most interestingly, the His-15 imidazole becomes more ordered at room temperature.

  11. Structural dynamics of cisplatin binding to histidine in a protein (United States)

    Tanley, Simon W. M.; Helliwell, John R.


    The platinum anti-cancer agents cisplatin and carboplatin bind to the histidine 15 residue in the model protein hen egg white lysozyme. By using temperatures either side of the protein glass transition state (∼180 K), several platinum binding modes are seen and show that not all these platinum modes are stable. In particular, the mean square displacement vibration amplitudes of the cisplatin and of the histidine to which it is bound are analysed in detail. As well as the multiple platinum peaks, the electron density for the His-15 side chain is weak to absent at 150 K and 200 K, which points to the imidazole ring of the His side chain sampling multiple positions. Most interestingly, the His-15 imidazole becomes more ordered at room temperature. PMID:26798779

  12. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. (United States)

    Xie, Q; Frugis, G; Colgan, D; Chua, N H


    Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.

  13. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation (United States)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong


    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at

  14. QSAR Models for the Prediction of Plasma Protein Binding

    Directory of Open Access Journals (Sweden)

    Zeshan Amin


    Full Text Available Introduction: The prediction of plasma protein binding (ppb is of paramount importance in the pharmacokinetics characterization of drugs, as it causes significant changes in volume of distribution, clearance and drug half life. This study utilized Quantitative Structure – Activity Relationships (QSAR for the prediction of plasma protein binding. Methods: Protein binding values for 794 compounds were collated from literature. The data was partitioned into a training set of 662 compounds and an external validation set of 132 compounds. Physicochemical and molecular descriptors were calculated for each compound using ACD labs/logD, MOE (Chemical Computing Group and Symyx QSAR software packages. Several data mining tools were employed for the construction of models. These included stepwise regression analysis, Classification and Regression Trees (CART, Boosted trees and Random Forest. Results: Several predictive models were identified; however, one model in particular produced significantly superior prediction accuracy for the external validation set as measured using mean absolute error and correlation coefficient. The selected model was a boosted regression tree model which had the mean absolute error for training set of 13.25 and for validation set of 14.96. Conclusion: Plasma protein binding can be modeled using simple regression trees or multiple linear regressions with reasonable model accuracies. These interpretable models were able to identify the governing molecular factors for a high ppb that included hydrophobicity, van der Waals surface area parameters, and aromaticity. On the other hand, the more complicated ensemble method of boosted regression trees produced the most accurate ppb estimations for the external validation set.

  15. Characterization of a Deswapped Triple Mutant Bovine Odorant Binding Protein

    Directory of Open Access Journals (Sweden)

    Roberto Favilla


    Full Text Available The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the β-barrel lipocalin scaffold.

  16. Vibrational Softening of a Protein on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Erica [Semmelweis University, Budapest, Hungary; Perahia, David [Ecole Normale Superieure de Cachan, Cachan, France; Smith, Jeremy C [ORNL; Merzel, Franci [National Institute of Chemistry, Solvenia


    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  17. Characterization of DNA-binding proteins from pea mitochondria

    DEFF Research Database (Denmark)

    Hatzack, F.A.; Dombrowski, S.; Brennicke, A.;


    in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp......We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still...... unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific...

  18. Maltose-Binding Protein (MBP, a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    Directory of Open Access Journals (Sweden)

    Raphael Reuten

    Full Text Available Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST, SlyD, and serum albumin (ser alb tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome, which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems.

  19. Are odorant-binding proteins involved in odorant discrimination? (United States)

    Steinbrecht, R A


    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination.

  20. Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein. (United States)

    Kim, Juri; Nagami, Sara; Lee, Kyu-Ho; Park, Soon-Jung


    End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102-238, but not rGlEB11-184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11-238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.

  1. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian


    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  2. Bile salt recognition by human liver fatty acid binding protein. (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael


    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  3. Expression profile and ligand-binding characterization of odorant-binding protein 2 in Batocera horsfieldi (Hope) (United States)

    Odorant-binding proteins (OBPs) are important components in insect olfactory systems that transport semiochemicals through the aqueous sensillum lymph to surface of olfactory receptor neurons. In this study, we cloned the cDNA of odorant-binding protein 2 (BhorOBP2) in Batocera horsfieldi (Hope) and...

  4. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude


    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.

  5. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  6. Prediction of Protein-DNA binding by Monte Carlo method (United States)

    Deng, Yuefan; Eisenberg, Moises; Korobka, Alex


    We present an analysis and prediction of protein-DNA binding specificity based on the hydrogen bonding between DNA, protein, and auxillary clusters of water molecules. Zif268, glucocorticoid receptor, λ-repressor mutant, HIN-recombinase, and tramtrack protein-DNA complexes are studied. Hydrogen bonds are approximated by the Lennard-Jones potential with a cutoff distance between the hydrogen and the acceptor atoms set to 3.2 Åand an angular component based on a dipole-dipole interaction. We use a three-stage docking algorithm: geometric hashing that matches pairs of hydrogen bonding sites; (2) least-squares minimization of pairwise distances to filter out insignificant matches; and (3) Monte Carlo stochastic search to minimize the energy of the system. More information can be obtained from our first paper on this subject [Y.Deng et all, J.Computational Chemistry (1995)]. Results show that the biologically correct base pair is selected preferentially when there are two or more strong hydrogen bonds (with LJ potential lower than -0.20) that bind it to the protein. Predicted sequences are less stable in the case of weaker bonding sites. In general the inclusion of water bridges does increase the number of base pairs for which correct specificity is predicted.

  7. Functional analysis of expressed peptides that bind yeast STE proteins. (United States)

    Caponigro, Giordano; Abedi, Majid; Kamb, Alexander


    Peptides are potentially useful for target validation and other reverse genetic applications. For instance, if a specific protein is susceptible to peptide inhibition, it may have a higher probability of being vulnerable to small molecules. We used the yeast two-hybrid technique to identify and study peptide binders for three yeast proteins involved in pheromone response: Ste11p, Ste18p, and Ste50p. A subset of peptide binders was shown to inhibit pheromone response in cells using two different functional assays. In addition, we utilized a variant of the yeast two-hybrid method to examine relative binding affinities based on competitive interactions in yeast. Our results suggest that binding affinity and inhibitory potency of peptides do not correlate perfectly and that peptide-protein interactions can be complex and unpredictable. Taken together these results suggest that while peptides are useful as in vivo inhibitors of protein function, caution must be exercised when choosing peptides for further studies and when inferring affinities from expression phenotypes.

  8. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit. (United States)

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N


    The ripening-specific genes MA-ACS1 (Musa acuminata ACC synthase1) and MA-ACO1 (M. acuminata ACC oxidase 1) are regulated in response to a wide variety of factors. Here, we have studied the differential transcript accumulation pattern and protein levels of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding and low temperature in preclimacteric banana fruit. We have shown that exogenous application of ethylene and auxin induced the expression of MA-ACS1, while MA-ACO1 showed marginal expression following ethylene treatment in preclimacteric stage. Auxin did not induce MA-ACO1 expression. Thus, auxin-treated banana fruits showed lower ethylene production rate as compared to ethylene-treated fruits. Conversely, wounding and cold treatment down-regulated the expression of both the genes and thus inhibited ethylene production. Furthermore, we have detected a GCC-box putative ethylene-responsive element (ERE)- and an auxin-responsive element (ARE)-specific DNA-binding activity in the banana pulp and studied the ethylene and auxin responsive characteristics of the GCC-box and ARE (TGTCTC) containing synthetic promoter fragments. In addition, we have detected an enhanced ethylene production rate and expression level of MA-ACS1 and MA-ACO1 genes along with a strong GCC-box-specific DNA-binding activity following exposure to constant dark period for 8d at the preclimacteric stage. Together, our study provides interesting information about the regulation of expression of MA-ACS1 and MA-ACO1 genes in response to various factors during ripening in banana fruit, which may have physiological relevance concerning ethylene biosynthesis during post-harvest conditions.

  9. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Institute of Scientific and Technical Information of China (English)

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn


    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  10. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. (United States)

    Lewis, Daniel R; Ramirez, Melissa V; Miller, Nathan D; Vallabhaneni, Prashanthi; Ray, W Keith; Helm, Richard F; Winkel, Brenda S J; Muday, Gloria K


    Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.

  11. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. (United States)

    Brunoud, Géraldine; Wells, Darren M; Oliva, Marina; Larrieu, Antoine; Mirabet, Vincent; Burrow, Amy H; Beeckman, Tom; Kepinski, Stefan; Traas, Jan; Bennett, Malcolm J; Vernoux, Teva


    Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.

  12. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein: Protein Redesign to Lower Protein-lignin Binding

    Energy Technology Data Exchange (ETDEWEB)

    Haarmeyer, Carolyn N. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Smith, Matthew D. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Chundawat, Shishir P. S. [Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing Michigan; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway New Jersey; Sammond, Deanne [Biosciences Center, National Renewable Energy Laboratory, Golden Colorado; Whitehead, Timothy A. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing Michigan 48824


    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active

  13. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation (United States)

    Barros, Marilia; Nanda, Hirsh


    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  14. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31 (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie


    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  15. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. (United States)

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads


    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  16. Dynamics of nucleosome invasion by DNA binding proteins. (United States)

    Tims, Hannah S; Gurunathan, Kaushik; Levitus, Marcia; Widom, Jonathan


    Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.

  17. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein (United States)

    Yang, T.; Poovaiah, B. W.


    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  18. Crystal structure of the Locusta migratoria odorant binding protein. (United States)

    Zheng, Jiangge; Li, Junru; Han, Lei; Wang, Yang; Wu, Wei; Qi, Xiaoxuan; Tao, Ye; Zhang, Long; Zhang, Ziding; Chen, Zhongzhou


    Locusta migratoria (Lmig) causes enormous losses to agricultural products, especially because it often infests the world with great swarms as locust plagues. Locusts find their plant hosts on which they feed through their olfactory system, in which odorant binding proteins (OBPs) play an important role. Previous study indicated that the amino acid sequences of LmigOBP showed low similarity to OBPs from other insect orders and we speculated that it might perform unique binding behavior. Here, we solved the first LmigOBP1 structure at 1.65Å, which is a monomer in solution and disulfide bonds play a key role in maintaining its function. We show that LmigOBP1 possesses a unique seventh α-helix, which is located at the surface with strong interactions with the LmigOBP1 scaffold consisting of other six α-helices. Moreover, the seventh α-helix forms a wall of an "L" shaped internal hydrophobic cavity to accommodate linear ligands, which is consistent with the binding experiments. We also demonstrate that the ligand-binding pocket in LmigOBP1 is greatly different from that in the closest homologs mosquito OBPs. Taken together, this study provides a structural basis for designing small inhibitors to control locust.

  19. Retinoic acid binding protein in normal and neopolastic rat prostate. (United States)

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D


    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  20. Cloud computing for protein-ligand binding site comparison. (United States)

    Hung, Che-Lun; Hua, Guan-Jie


    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  1. Cloud Computing for Protein-Ligand Binding Site Comparison

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung


    Full Text Available The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  2. RNA-binding protein Lin28 in cancer and immunity. (United States)

    Jiang, Shuai; Baltimore, David


    The highly conserved RNA-binding protein, Lin28, is involved in many biological processes, including development, reprogramming, pluripotency, and metabolism. Importantly, Lin28 functions as an oncogene, promoting tumor progression and metastasis in various human cancers. Lin28 can regulate gene expression either by directly binding to mRNAs or by blocking microRNA biogenesis, and the underlying mechanisms include Let-7-dependent and Let-7-independent modes of action. Recent evidence shows that Lin28 also plays a fundamental role in immunity. The roles of Lin28 in disease are complex and require characterization of its physiological functions in cancer and immunological contexts. Here we review emerging information on the role of Lin28 in cancer and immunity and the molecular mechanisms it uses. We discuss our present knowledge of the system and highlight remaining mysteries related to the functions of this small RNA-binding protein. This knowledge may lead to Lin28 becoming a diagnostic marker for cancer or immune-related diseases and a possible therapeutic target.

  3. The clinical significance of fatty acid binding proteins

    Directory of Open Access Journals (Sweden)

    Barbara Choromańska


    Full Text Available Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs that bind long-chain fatty acids (LCFA, and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum. So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration. The most important FABPs were isolated from the liver (L-FABP, heart (H-FABP, intestine (I-FABP, brain (B-FABP, epidermis (E-FABP and adipocytes (A-FABP. Determination of H-FABP is used in the diagnosis of myocardial infarction, and L-FABP in kidney lesions of different etiologies. It is postulated that FABPs play an important role in the pathogenesis of metabolic diseases. Elevated levels of A-FABP have been found in the pericardial fat tissue and were associated with cardiac dysfunction in obese people. A rise in A-FABP has been observed in patients with type II diabetes. I-FABP is known as a marker of cell damage in the small intestine. Increased concentration of B-FABP has been associated with human brain tumors such as glioblastoma and astrocytoma, as well as with neurodegenerative diseases (Alzheimer’s, Parkinson’s and other disorders of cognitive function. The aim of this work was to present current data on the clinical significance of fatty acid binding proteins.

  4. Optimalization of the competitive protein binding assays of functional metabolites of cholecalciferol

    Energy Technology Data Exchange (ETDEWEB)

    Justova, V.; Starka, L. (Karlova Univ., Prague (Czechoslovakia). 3. Interni Klinika)


    Competitive protein binding assays of metabolites of vitamin D were compared using different plasmatic binding proteins from normal and pathological subjects and tritium tracer techniques. The conditions of competitive protein binding assays are optimalized in respect to their routine clinical use.

  5. Genes encoding calmodulin-binding proteins in the Arabidopsis genome (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.


    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  6. Interplay between binding affinity and kinetics in protein-protein interactions. (United States)

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong


    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc.

  7. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  8. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E


    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  9. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying


    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  10. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4. (United States)

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V


    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  11. Control of nuclear organization by F-actin binding proteins. (United States)

    Pfisterer, Karin; Jayo, Asier; Parsons, Maddy


    The regulation of nuclear shape and deformability is a key factor in controlling diverse events from embryonic development to cancer cell metastasis, but the mechanisms governing this process are still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization, movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in control of nuclear plasticity and underline the importance of defining nuclear-associated roles for F-actin binding proteins in future.

  12. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication. (United States)

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel


    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  13. The MTA family proteins as novel histone H3 binding proteins

    Directory of Open Access Journals (Sweden)

    Wu Meng


    Full Text Available Abstract Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  14. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods. (United States)

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James


    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  15. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl


    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  16. DnaT is a PriC-binding protein. (United States)

    Huang, Chien-Chih; Huang, Cheng-Yang


    DnaT and PriC are replication restart primosomal proteins required for re-initiating chromosomal DNA replication. DnaT is a component of the PriA-dependent primosome, while PriC belongs to the PriC-dependent primosome. Whether DnaT can interact with PriC is still unknown. In this study, we define a direct interaction between PriC, a key initiator protein in PriC-mediated DNA replication restart, and DnaT, a DnaB/C complex loader protein, from Klebsiella pneumoniae. In fluorescence titrations, PriC bound to single-stranded DNA with a binding-site size of approximately 9 nt. Gold nanoparticle assay showed that the solution of DnaT-PriC changed from red to purple, which indicated the protein-protein interactions due to gold nanoparticle aggregate. In addition, this DnaT-PriC complex could be co-purified by the heparin HP column. Surface plasmon resonance analysis showed that the Kd value of DnaT bound to PriC was 2.9 × 10(-8) M. These results constitute a pioneering study of the DnaT-PriC interaction and present a putative link between the two independent replication restart pathways, namely, PriA- and PriC-dependent primosome assemblies. Further research can directly focus on determining how DnaT binds to the PriC-SSB-DNA tricomplex and regulates the PriC-dependent replication restart.

  17. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode.

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    Full Text Available BACKGROUND: Fatty acid (FA binding proteins (FABPs of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs of Taenia solium metacestode (TsM, a causative agent of neurocysticercosis (NC, shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2, which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15-95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1 and 8.4 (TsMFABP2. Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]aminoundecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions

  18. Expression characteristics of GFP driven by NAC1 promoter and its responses to auxin and gibberellin

    Institute of Scientific and Technical Information of China (English)

    WANG Youhua; DUAN Liusheng; LU Mengzhu; LI Zhaohu; WANG Minjie; ZHAI Zhixi


    A 1050 bp fragment upstream transcription start site of a transcription factor gene NAC1 in Arabidopsis thaliana was amplified and cloned into plasmid pRD420 to construct a green fluorescent protein(GFP) fusion system under the control of NAC1 promoter. Plasmids were introduced into tobacco by Agrobacterium mediated method to regenerate plants with NAC1-GFP gene, and expression pattern of NAC1-GFP and its responses to auxin and gibberellin (GA) were observed. GFP was found to accumulate specifically in root, and was detected after treatment of auxin, N-1-Naphthylphthalamic acid (NPA, an auxin antagonist) or GA3. It was indicated that the expression of GFP driven by NAC1 promoter was induced not only by auxin but also by GAs, suggesting that NAC1 mediated both the auxin signaling and the GAs signaling involved in lateral roots development.

  19. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai


    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  20. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter. (United States)

    Chandravanshi, Monika; Gogoi, Prerana; Kanaujia, Shankar Prasad


    For the de novo biosynthesis of phospholipids, byproducts such as sn-glycerol-3-phosphate (G3P) and glycerophosphocholine (GPC) of glycerophospholipid metabolic pathway are imported inside the cell by an ATP-binding cassette (ABC) transporter known as UgpABCE. Of which, UgpA and UgpE constitutes the transmembrane domains (TMDs), UgpC forms the dimer of ATP-hydrolyzing component and UgpB is the periplasmic substrate binding protein. Structurally, UgpABCE transporter displays similarity to the maltose ABC transporter of Escherichia coli; thus, has been grouped into the CUT1 (Carbohydrate Uptake Transporter-1) family of bacterial ABC transporters. Being a member of CUT1 family, several Ugp (Uptake glycerol phosphate) protein sequences in biological database(s) exhibit sequence and structure similarity to sugar ABC transporters and have been annotated as sugar binding proteins; one of such proteins is TTHA0379 from Thermus thermophilus HB8. Here, in this study, we used computational method(s) to distinguish UgpB and sugar binding proteins based on their primary and tertiary structure features. A comprehensive analysis of these proteins indicates that they are evolutionarily related to each other having common conserved features at their primary and tertiary structure levels. However, they display differences at their active sites owing to the dissimilarity in their ligand preferences. In addition, phylogenetic analysis of TTHA0379 along with UgpB and sugar binding proteins reveals that both the groups of proteins forms two distinct clades and TTHA0379 groups with UgpB proteins. Furthermore, analysis of the ligand binding pocket shows that all the essential features of glycerophosphocholine binding protein i.e. UgpB, are conserved in TTHA0379 as well. Combining these features, here, we designate TTHA0379 to be a GPC binding protein.

  1. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. (United States)

    Liu, Linchuan; Tong, Hongning; Xiao, Yunhua; Che, Ronghui; Xu, Fan; Hu, Bin; Liang, Chengzhen; Chu, Jinfang; Li, Jiayang; Chu, Chengcai


    Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

  2. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins. (United States)

    Ardi, Veronica C; Alexander, Leslie D; Johnson, Victoria A; McAlpine, Shelli R


    Heat shock protein 90 (Hsp90) accounts for 1-2% of the total proteins in normal cells and functions as a molecular chaperone that folds, assembles, and stabilizes client proteins. Hsp90 is overexpressed (3- to 6-fold increase) in stressed cells, including cancer cells, and regulates over 200 client and co-chaperone proteins. Hsp90 client proteins are involved in a plethora of cellular signaling events including numerous growth and apoptotic pathways. Since pathway-specific inhibitors can be problematic in drug-resistant cancers, shutting down multiple pathways at once is a promising approach when developing new therapeutics. Hsp90's ability to modulate many growth and signaling pathways simultaneously makes this protein an attractive target in the field of cancer therapeutics. Herein we present evidence that a small molecule modulates Hsp90 via binding between the N and middle domain and allosterically inhibiting the binding interaction between Hsp90 and four C-terminal binding client proteins: IP6K2, FKBP38, FKBP52, and HOP. These last three clients contain a tetratricopeptide-repeat (TPR) region, which is known to interact with the MEEVD sequence on the C-terminus of Hsp90. Thus, this small molecule modulates the activity between co-chaperones that contain TPR motifs and Hsp90's MEEVD region. This mechanism of action is unique from that of all Hsp90 inhibitors currently in clinical trials where these molecules have no effect on proteins that bind to the C-terminus of Hsp90. Further, our small molecule induces a Caspase-3 dependent apoptotic event. Thus, we describe the mechanism of a novel scaffold that is a useful tool for studying cell-signaling events that result when blocking the MEEVD-TPR interaction between Hsp90 and co-chaperone proteins.

  3. Oxysterol-related-binding-protein related Protein-2 (ORP2) regulates cortisol biosynthesis and cholesterol homeostasis. (United States)

    Escajadillo, Tamara; Wang, Hongxia; Li, Linda; Li, Donghui; Sewer, Marion B


    Oxysterol binding protein-related protein 2 (ORP2) is a lipid binding protein that has been implicated in various cellular processes, including lipid sensing, cholesterol efflux, and endocytosis. We recently identified ORP2 as a member of a protein complex that regulates glucocorticoid biosynthesis. Herein, we examine the effect of silencing ORP2 on adrenocortical function and show that the ORP2 knockdown cells exhibit reduced amounts of multiple steroid metabolites, including progesterone, 11-deoxycortisol, and cortisol, but have increased concentrations of androgens, and estrogens. Moreover, silencing ORP2 suppresses the expression of most proteins required for cortisol production and reduces the expression of steroidogenic factor 1 (SF1). ORP2 silencing also increases cellular cholesterol, concomitant with decreased amounts of 22-hydroxycholesterol and 7-ketocholesterol, two molecules that have been shown to bind to ORP2. Further, we show that ORP2 binds to liver X receptor (LXR) and is required for nuclear LXR expression. LXR and ORP2 are recruited to the CYP11B1 promoter in response to cAMP signaling. Additionally, ORP2 is required for the expression of other LXR target genes, including ABCA1 and the LDL receptor (LDLR). In summary, we establish a novel role for ORP2 in regulating steroidogenic capacity and cholesterol homeostasis in the adrenal cortex.

  4. Protein-protein binding before and after photo-modification of albumin (United States)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo


    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  5. Binding of Y-box proteins to RNA: involvement of different protein domains. (United States)

    Ladomery, M; Sommerville, J


    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  6. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi


    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  7. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes. (United States)

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J


    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  8. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    Directory of Open Access Journals (Sweden)

    Siprashvili Zurab


    Full Text Available Abstract Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions.

  9. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.


    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.


    Directory of Open Access Journals (Sweden)

    I. A. Orlovskaya


    Full Text Available Abstract. This review presents a summary of our data concerning in vivo and in vitro effects of recombinant TNF-binding protein from variola virus (VARVCrmB upon TNF-induced functional changes of human and murine cells. VARV-CrmB protein blocks TNF-induced production of IL-1β and IL-6 by human mononuclear cells, and their in vitro oxidation-related metabolic (OM activity. VARV-CrmB protein restores TNF-induced reduction of BFU-E+CFU-E colony-forming activity and normalizes TNF-induced effects upon CFU-GM formation in a colony-forming model of human and murine bone morrow cells (BMC. VARV-CrmB protein displays a pronounced in vivo alleviation of LPS-induced endotoxic shock symptoms in SPF BALB/C mice thus significantly increasing survival of experimental animals. Moreover, VARV-CrmBprotein decreases intensity of collagen-induced arthritis at early terms. Application of VARV-CrmB protein results in normalization of TNF-induced increase of migratory and OM activity of murine leukocytes, and exerts corrective effects upon colony-forming ability of murine hematopoietic precursors. Skin application of VARV-CrmB protein decreases leukocyte migration from a skin scrap in afferent phase of DNCB-induced contact reaction, as well as “ear oedema” index. Our results demonstrate TNF-blocking properties of VARVCrmB protein. In summary, our data allow to consider a recombinant variola virus VARV-CrmB as a new potential TNF-antagonist. Its effects can be explained by its ability of neutralizing TNF-induced activation of oxidation-related metabolic, cytokine-producing and migratory functions of effector cells in therapy of pathological inflammatory processes.

  11. Structural Biology of Nuclear Auxin Action. (United States)

    Dinesh, Dhurvas Chandrasekaran; Villalobos, Luz Irina A Calderón; Abel, Steffen


    Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.

  12. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun


    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  13. Purification of capping protein using the capping protein binding site of CARMIL as an affinity matrix. (United States)

    Remmert, Kirsten; Uruno, Takehito; Hammer, John A


    Capping protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here, we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST-fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function, and regulation.

  14. The telomere binding protein TRF2 induces chromatin compaction.

    Directory of Open Access Journals (Sweden)

    Asmaa M Baker

    Full Text Available Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  15. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story

    Directory of Open Access Journals (Sweden)

    Sabato D'Auria


    Full Text Available Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.

  16. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng


    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  17. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Knudsen, Jens; Færgeman, Nils J.


    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...... that depletion of ACBP in mammalian cells results in lethality, suggesting that ACBP is an essential protein....

  18. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1. (United States)

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina


    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  19. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression. (United States)

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M


    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears.

  20. Isolation and Purification of Thiamine Binding Protein from Mung Bean

    Directory of Open Access Journals (Sweden)



    Full Text Available Thiamine has fundamental role in energy metabolism. The organs mostly sensitive to the lack of thiamine levels in the body are the nervous system and the heart. Thiamine deficiency causes symptoms of polyneuritis and cardiovascular diseases. Because of its importance in the metabolism of carbohydrates, we need to measure the levels of thiamine in the body fluids by using an easy and inexpensive way without compromising the sensitivity and selectivity. An option to it is thiamine measurement based on the principle of which is analogous to ELISA, in which a thiamine binding protein (TBP act by replacing antibodies. The presence of TBP in several seeds have been reported by previous researchers, but the presence of TBP in mung beans has not been studied. This study was aimed to isolate and purify TBP from mung bean. The protein was isolated from mung bean through salting out by ammonium sulphate of 40, 70, and 90% (w/v. TBP has a negative charge as shown by cellulose acetate electrophoresis. The result obtained after salting out by ammonium sulphate was further purified bymeans of DEAE-cellulose chromatography and affinity chromatography. In precipitation of 90% of salting out method, one peak protein was obtained by using affinity chromatography. The protein was analyzed by SDS PAGE electrophoresis. The result of SDS PAGE electrophoresis showed that TBP has a molecular weight of 72.63 kDa.

  1. Rooting of carnation cuttings: The auxin signal


    Acosta, Manuel; Oliveros-Valenzuela, M Rocío; Nicolás, Carlos; Sánchez-Bravo, José


    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. Among other signals, auxin polarly transported through the stem plays a key role in the formation and growth of adventitious roots. Unlike in other plant species, auxin from mature leaves plays a decisive role in the rooting of carnation (Dianthus caryophyllus. L) cuttings. The gene DcAUX1, which codifies an auxin influx carrier involved in polar auxin transport, has now been cloned and charac...

  2. The binding cavity of mouse major urinary protein is optimised for a variety of ligand binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Pertinhez, Thelma A.; Ferrari, Elena; Casali, Emanuela [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Patel, Jital A. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Spisni, Alberto, E-mail: [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Smith, Lorna J., E-mail: [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)


    {sup 15}N and {sup 1}HN chemical shift data and {sup 15}N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the {beta}-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the {beta}-barrel cavity. These finding justify why MUP is able to adapt to allow for many successful binding partners.

  3. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. (United States)

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko


    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  4. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.


    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a concentration-depende

  5. HBV X protein interacts with cytoskeletal signaling proteins through SH3 binding. (United States)

    Feng, Huixing; Tan, Tuan Lin; Niu, Dandan; Chen, Wei Ning


    The aim of this study was to investigate interactions between cellular SH3-containing proteins and the proline-rich domain in Hepatitis B Virus (HBV) X protein (HBx) The proline-rich domain of HBx (amino acids 19-58) as well as the relevant site-directed mutagenesis (proline to alanine residues) were cloned into pGEX-5X-1 and expressed as GST-PXXP and GST-AXXA probes. Panomics SH3 domain arrays were probed using both GST-PXXP and GST-AXXA to identify potential interacting SH3 domain containing proteins. The specific interactions were confirmed by the immunoprecipitation of the full-length SH3 domain-containing protein. We report here the binding assay which demonstrated interaction between PXXP domain in HBx and the SH3-domain containing proteins, in particular various signaling proteins involved in cytoskeletal reorganization. Our findings were consistent with similar virus-host interactions via SH3 binding for other viruses such as hepatitis C virus (HCV) and human immunodeficiency virus (HIV) Further characterization of the proline-rich binding to SH3 domains could yield important information for the design of novel therapeutic measures against downstream disease causative effects of HBx in the liver cells.

  6. OB protein binds specifically to the choroid plexus of mice and rats. (United States)

    Devos, R; Richards, J G; Campfield, L A; Tartaglia, L A; Guisez, Y; van der Heyden, J; Travernier, J; Plaetinck, G; Burn, P


    Binding studies were conducted to identify the anatomical location of brain target sites for OB protein, the ob gene product. 125I-labeled recombinant mouse OB protein or alkaline phosphatase-OB fusion proteins were used for in vitro and in vivo binding studies. Coronal brain sections or fresh tissue from lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats were probed to identify potential central OB protein-binding sites. We report here that recombinant OB protein binds specifically to the choroid plexus. The binding of OB protein (either radiolabeled or the alkaline phosphatase-OB fusion protein) and its displacement by unlabeled OB protein was similar in lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats. These findings suggest that OB protein binds with high affinity to a specific receptor in the choroid plexus. After binding to the choroid plexus receptor, OB protein may then be transported across the blood-brain barrier into the cerebrospinal fluid. Alternatively, binding of OB protein to a specific receptor in the choroid plexus may activate afferent neural inputs to the neural network that regulates feeding behavior and energy balance or may result in the clearance or degradation of OB protein. The identification of the choroid plexus as a brain binding site for OB protein will provide the basis for the construction of expression libraries and facilitate the rapid cloning of the choroid plexus OB receptor.

  7. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity. (United States)

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura


    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  8. Interacting protein partners of Arabidopsis RNA binding protein AtRBP45b (United States)

    RNA binding proteins (RBPs) are important players in post-transcriptional gene regulation and shown to play an important role in normal development and in response to environmental perturbations. Arabidopsis RBP, AtRBP45b with triple RNA recognition motifs (RRMs) have are closely related to the yeas...

  9. Polar auxin transport: models and mechanisms

    NARCIS (Netherlands)

    Berkel, van K.; Boer, de R.J.; Scheres, B.; Tusscher, ten K.


    Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Her


    Experiments have been conducted to investigate a two-stage effect of auxin on abscission. The two stages were demonstrated on greenhouse-grown Black...the second stage - the stage which is stimulated by auxin . Similar experiments were performed with petioles of various lengths and ages. The...implications of these results indicate possible sites of auxin action on leaf abscission. (Author)

  11. Molecular cloning and expression of chicken carbohydrate response element binding protein and Max-like protein X gene homologues (United States)

    Carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) are transcription factors that are known to be key regulators of glucose metabolism and lipid synthesis in mammals. Since ChREBP and its co-activator Max-like protein X (Mlx) have not ...

  12. Elucidation of haem-binding sites in the actinobacterial protein HbpS

    NARCIS (Netherlands)

    Torda, Andrew E; Groves, Matthew R; Wedderhoff, Ina; Ortiz de Orué Lucana, Darío


    The extracellular haem-binding protein from Streptomyces reticuli (HbpS) has been shown to be involved in redox sensing and to bind haem. However, the residues involved in haem coordination are unknown. Structural alignments to distantly related haem-binding proteins from Mycobacterium tuberculosis

  13. DING proteins; novel members of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom. (United States)

    Berna, Anne; Bernier, François; Chabrière, Eric; Perera, Tekla; Scott, Ken


    PstS proteins are the cell-bound phosphate-binding elements of the ubiquitous bacterial ABC phosphate uptake mechanisms. Primary and tertiary structures, characteristic of pstS proteins, are conserved in proteins, which are expressed in secretory operons and induced by phosphate deprivation, in Pseudomonas species. There are two subsets of these proteins; AP proteins, which are alkaline phosphatases, and DING proteins, named for their N-terminal sequence, which are phosphate-binding proteins. Both form elements of a proposed phosphate-scavenging system in pseudomonads. DING proteins have also been isolated from many eukaryotic sources, and are associated with both normal and pathological functions in mammals. Their phosphate-binding function suggests a role in biomineralization, but the ability to bind other ligands may be related to signal transduction in eukaryotes. Though it has been claimed that all such proteins may originate from pseudomonads, many eukaryotic DING proteins have unique features which are incompatible with a bacterial origin.

  14. Characterization of RNA-Protein Interactions: Lessons from Two RNA-Binding Proteins, SRSF1 and SRSF2. (United States)

    Skrdlant, Lindsey; Lin, Ren-Jang


    SR proteins are a class of RNA-binding proteins whose RNA-binding ability is required for both constitutive and alternative splicing. While members of the SR protein family were once thought to have redundant functions, in-depth biochemical analysis of their RNA-binding abilities has revealed distinct binding profiles for each SR protein, that often lead to either synergistic or antagonistic functions. SR protein family members SRSF1 and SRSF2 are two of the most highly studied RNA-binding proteins. Here we examine the various methods used to differentiate SRSF1 and SRSF2 RNA-binding ability. We discuss the benefits and type of information that can be determined using each method.

  15. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans--A Nucleic Acid Binding Protein with Broad Substrate Specificity.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available SSB (single-stranded DNA-binding proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis.This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein. This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity. The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7 ± 1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100 °C and melting temperature (T(m is 100.2 °C as shown by differential scanning calorimetry (DSC analysis.NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids.

  16. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans—A Nucleic Acid Binding Protein with Broad Substrate Specificity (United States)

    Olszewski, Marcin; Balsewicz, Jan; Nowak, Marta; Maciejewska, Natalia; Cyranka-Czaja, Anna; Zalewska-Piątek, Beata; Piątek, Rafał; Kur, Józef


    Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids. PMID:25973760

  17. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju


    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  18. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  19. Roles of auxin transport and action in the gravity-regulated morphogenesis of cucumber seedlings (United States)

    Saito, Y.; Shimizu, M.; Hotta, T.; Dai-Hee, K.; Yanai, K.; Kamada, M.; Fujii, N.; Miyazawa, Y.; Takahashi, H.

    Cucumber Cucumis sativus L seedlings develop a specialized protuberance peg on the lower side of the transition zone between the hypocotyl and the root when seeds germinate in a horizontal position The peg plays an important role in pulling seedling out from the seed coat We have reported that cucumber seedlings potentially develop a peg on each side of the transition zone but peg development on the upper side is suppressed in response to gravity Auxin is the primary factor responsible for the induction or the suppression of peg formation Here we investigated the roles of auxin transport and action in the gravity-regulated formation suppression of the peg in cucumber seedlings When cucumber seedlings were treated with inhibitors of auxin efflux carrier a peg was formed not only on the lower side but also on the upper side of the gravistimulated transition zone suggesting that activation of auxin efflux carriers is required for the suppression of peg formation To identify auxin efflux carriers involved in the suppression of peg formation by graviresponse we isolated six cucumber cDNAs of PIN auxin efflux carrier genes and investigated their mRNA accumulation and protein expression Our results show that CsPIN1 and CsPIN6 could play a role in the redistribution of auxin in the transition zone To understand auxin action on peg formation suppression we next examined the transcriptional regulators for the expressions of auxin-responsive genes The results suggest that a higher level of auxin in the lower side of the

  20. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu


    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  1. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities. (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J


    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.

  2. Calciomics:prediction and analysis of EF-hand calcium binding proteins by protein engineering

    Institute of Scientific and Technical Information of China (English)

    YANG; Jenny; Jie


    Ca2+ plays a pivotal role in the physiology and biochemistry of prokaryotic and mammalian organisms.Viruses also utilize the universal Ca2+ signal to create a specific cellular environment to achieve coexistence with the host,and to propagate.In this paper we first describe our development of a grafting approach to understand site-specific Ca2+ binding properties of EF-hand proteins with a helix-loop-helix Ca2+ binding motif,then summarize our prediction and identification of EF-hand Ca2+ binding sites on a genome-wide scale in bacteria and virus,and next report the application of the grafting approach to probe the metal binding capability of predicted EF-hand motifs within the streptococcal hemoprotein receptor(Shr) of Streptococcus pyrogenes and the nonstructural protein 1(nsP1) of Sindbis virus.When methods such as the grafting approach are developed in conjunction with prediction algorithms we are better able to probe continuous Ca2+-binding sites that have been previously underrepresented due to the limitation of conventional methodology.

  3. RNA-binding proteins in plants: the tip of an iceberg? (United States)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)


    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  4. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif (United States)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.


    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  5. An auxin-responsive endogenous peptide regulates root development in Arabidopsis. (United States)

    Yang, Fengxi; Song, Yu; Yang, Hao; Liu, Zhibin; Zhu, Genfa; Yang, Yi


    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.

  6. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry. (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur


    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  7. Z-DNA binding protein from chicken blood nuclei (United States)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.


    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  8. Convolutional neural network architectures for predicting DNA–protein binding (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.


    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at Contact: Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  9. A computational model of the LGI1 protein suggests a common binding site for ADAM proteins.

    Directory of Open Access Journals (Sweden)

    Emanuela Leonardi

    Full Text Available Mutations of human leucine-rich glioma inactivated (LGI1 gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE, a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the β-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.

  10. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin


    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  11. Glycosylation status of vitamin D binding protein in cancer patients. (United States)

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R


    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.

  12. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    DEFF Research Database (Denmark)

    Schrøder, Jacob Morville

    in the biflagellate green alga Chlamydomonas (Pedersen et al., 2003), and is required for ciliogenesis in mouse fibroblasts (Schroder et al., 2007). However, the exact mechanism(s) involved and roles of the two additional mammalian members of the end binding (EB) protein family, EB2 and EB3, in ciliogenesis...... also form a heterodimeric complex that is likely to be functionally distinct from the homodimeric complexes (Komarova et al., 2009; De Groot et al., 2010). This thesis is based on experiments using small interfering (si) RNA and dominant-negative constructs to show that EB1 and EB3, but not EB2......, are required for assembly of primary cilia in cultured human cells. The EB3 - siRNA ciliary phenotype could be rescued by GFP-EB1 expression, and GFP-EB3 over expression resulted in elongated cilia. Transmission electron microscopy (TEM) revealed that EB3-depleted cells possess stumpy cilia, a disorganized...

  13. Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis

    DEFF Research Database (Denmark)

    Elhiti, Mohamed; Hebelstrup, Kim; Wang, Aiming;


    Suppression of the Arabidopsis GLB2, a type-2 nonsymbiotic hemoglobin, enhances somatic embryogenesis by increasing auxin production. In the glb2 knock-out line (GLB2 -/-) polarization of PIN1 proteins and auxin maxima occurred at the base of the cotyledons of the zygotic explants, which are the ...

  14. Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex (United States)

    Wang, Haoyong; Chong, Shaorong


    During overexpression of recombinant proteins in Escherichia coli, misfolded proteins often aggregate and form inclusion bodies. If an aggregation-prone recombinant protein is fused upstream (as an N-terminal fusion) to GFP, aggregation of the recombinant protein domain also leads to misfolding of the downstream GFP domain, resulting in a decrease or loss of fluorescence. We investigated whether the GFP domain could fold correctly if aggregation of the upstream protein domain was prevented in vivo by a coupled protein folding and binding interaction. Such interaction has been previously shown to occur between the E. coli integration host factors and , and between the domains of the general transcriptional coactivator cAMP response element binding protein (CREB)-binding protein and the activator for thyroid hormone and retinoid receptors. In this study, fusion of integration host factor or the CREB-binding protein domain upstream to GFP resulted in aggregation of the fusion protein. Coexpression of their respective partners, on the other hand, allowed soluble expression of the fusion protein and a dramatic increase in fluorescence. The study demonstrated that coupled protein folding and binding could be correlated to GFP fluorescence. A modified miniintein containing an affinity tag was inserted between the upstream protein domain and GFP to allow rapid purification and identification of the heterodimeric complex. The GFP coexpression fusion system may be used to identify novel protein-protein interactions that involve coupled folding and binding or protein partners that can solubilize aggregation-prone recombinant proteins.

  15. Mannan-binding lectin in cerebrospinal fluid: a leptomeningeal protein

    Directory of Open Access Journals (Sweden)

    Reiber Hansotto


    Full Text Available Abstract Background Mannan-binding lectin (MBL, a protein of the innate immune response is attracting increasing clinical interest, in particularly in relation to its deficiency. Due to its involvement in brain diseases, identifying the source of MBL in CSF is important. Analysis of cerebrospinal fluid (CSF can provide data that discriminates between blood-, brain-, and leptomeninges-derived proteins. To detect the source of MBL in CSF we need to consider three variables: the molecular size-dependent concentration gradient between CSF and blood, the variation in transfer between blood and CSF, and the CSF MBL concentration correlation with the albumin CSF/serum quotient (QAlb, i.e., with CSF flow rate. Methods MBL was assayed in samples of CSF and serum with an ELISA, coated with anti MBL antibodies. Routine parameters such as albumin-, immunoglobulin- CSF/serum quotients, oligoclonal IgG and cell count were used to characterize the patient groups. Groups comprised firstly, control patients without organic brain disease with normal CSF and normal barrier function and secondly, patients without inflammatory diseases but with increased QAlb, i.e. with a blood CSF barrier dysfunction. Results MBL concentration in CSF was at least five-fold higher than expected for a molecular-size-dependent passage from blood. Secondly, in a QIgM/QAlb quotient diagram (Reibergram 9/13 cases showed an intrathecal fraction in some cases over 80% of total CSF MBL concentration 3 The smaller inter-individual variation of MBL concentrations in CSF of the control group (CV = 66% compared to the MBL concentrations in serum (CV = 146% indicate an independent source of MBL in CSF. 4 The absolute MBL concentration in CSF increases with increasing QAlb. Among brain-derived proteins in CSF only the leptomeningeal proteins showed a (linear increase with decreasing CSF flow rate, neuronal and glial proteins are invariant to changes of QAlb. Conclusions MBL in CSF is

  16. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. (United States)

    Seidel, Susanne A I; Wienken, Christoph J; Geissler, Sandra; Jerabek-Willemsen, Moran; Duhr, Stefan; Reiter, Alwin; Trauner, Dirk; Braun, Dieter; Baaske, Philipp


    Look, no label! Microscale thermophoresis makes use of the intrinsic fluorescence of proteins to quantify the binding affinities of ligands and discriminate between binding sites. This method is suitable for studying binding interactions of very small amounts of protein in solution. The binding of ligands to iGluR membrane receptors, small-molecule inhibitorss to kinase p38, aptamers to thrombin, and Ca(2+) ions to synaptotagmin was quantified.

  17. Hepatitis B virus X protein interacts with β5 subunit of heterotrimeric guanine nucleotide binding protein

    Directory of Open Access Journals (Sweden)

    Chen Wei


    Full Text Available Abstract Background To isolate cellular proteins interacting with hepatitis B virus X protein (HBX, from HepG2 cells infected with hepatitis B virus (HBV. Results HBV particles were produced in culture medium of HepG2 cells transfected with the mammalian expression vector containing the linear HBV genome, as assessed by commercially available ELISA assay. A cDNA library was made from these cells exposed to HBV. From yeast two hybrid screening with HBX as bait, human guanine nucleotide binding protein β subunit 5L (GNβ5 was isolated from the cDNA library constructed in this study as a new HBX-interacting protein. The HBX-GNβ5 interaction was further supported by mammalian two hybrid assay. Conclusion The use of a cDNA library constructed from HBV-transfected HepG2 cells has resulted in the isolation of new cellular proteins interacting with HBX.

  18. Essential dynamics of the cellular retinol-binding protein - Evidence for ligand-induced conformational changes

    NARCIS (Netherlands)

    van Aalten, D.M.F.; Findlay, J.B.C.; Amadei, A; Berendsen, H.J.C.


    The cellular retinol-binding protein (CRBP) is an intracellular retinol carrier protein belonging to a family of hydrophobic ligand-binding proteins, It transports retinol to specific locations in the cell where, for instance, it is esterified for storage, Recently solved crystallographic structures

  19. Characterization of the retinoblastoma binding proteins RBP1 and RBP2

    DEFF Research Database (Denmark)

    Fattaey, A R; Helin, K; Dembski, M S;


    The retinoblastoma gene product, pRB, regulates cell proliferation by binding to and inhibiting the activity of key growth promoting proteins. Several cellular proteins have been shown to bind directly to pRB and the genes encoding a number of them have been isolated. The protein product of one...

  20. GH3-Mediated Auxin Conjugation Can Result in Either Transient or Oscillatory Transcriptional Auxin Responses. (United States)

    Mellor, Nathan; Bennett, Malcolm J; King, John R


    The conjugation of the phytohormone auxin to amino acids via members of the gene family GH3 is an important component in the auxin-degradation pathway in the model plant species Arabidopsis thaliana, as well as many other plant species. Since the GH3 genes are themselves up-regulated in response to auxin, providing a negative feedback on intracellular auxin levels, it is hypothesised that the GH3s have a role in auxin homoeostasis. To investigate this, we develop a mathematical model of auxin signalling and response that includes the auxin-inducible negative feedback from GH3 on the rate of auxin degradation. In addition, we include a positive feedback on the rate of auxin input via the auxin influx transporter LAX3, shown previously to be expressed in response to auxin and to have an important role during lateral root emergence. In the absence of the LAX3 positive feedback, we show that the GH3 negative feedback suffices to generate a transient transcriptional response to auxin in the shape of damped oscillations of the model system. When LAX3 positive feedback is present, sustained oscillations of the system are possible. Using steady-state analyses, we identify and discuss key parameters affecting the oscillatory behaviour of the model. The transient peak of auxin and subsequent transcriptional response caused by the up-regulation of GH3 represents a possible protective homoeostasis mechanism that may be used by plant cells in response to excess auxin.

  1. Auxins as Signals in Arbuscular Mycorrhiza Formation (United States)

    Güther, Mike


    Plant hormones such as auxin derivatives are likely signals during the establishment of an arbuscular mycorrhizal (AM) symbiosis. Although reports on auxin levels during AM in different plant species are contradictory, the contribution of auxins to the establishment of an AM symbiosis might be an important factor especially for the development of lateral roots which are the preferred infection sites for the fungi. In addition to evidence that different auxins could be elevated after colonization with AM fungi, there are also overlapping gene expression patterns between auxin-treated and AM-inoculated roots that provide further clues on auxin-triggered colonization events. Using an auxin-inducible promoter-reporter system it was shown that the reporter was strongly induced in AM colonized roots, although co-localization with AM fungi was not observed. Our data are discussed in frame of a model together with other plant hormones which might be involved in the AM colonization processes. PMID:19704695

  2. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants (United States)

    Yang, Tianbao; Poovaiah, B. W.


    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  3. The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes. (United States)

    Johnson, D G; Carayannopoulos, L; Capra, J D; Tucker, P W; Hanke, J H


    All immunoglobulin genes contain a conserved octanucleotide promoter element, ATGCAAAT, which has been shown to be required for their normal B-cell-specific transcription. Proteins that bind this octamer have been purified, and cDNAs encoding octamer-binding proteins have been cloned. Some of these proteins (referred to as OTF-2) are lymphoid specific, whereas at least one other, and possibly more (referred to as OTF-1), is found ubiquitously in all cell types. The exact role of these different proteins in directing the tissue-specific expression of immunoglobulin genes is unclear. We have identified two human pre-B-cell lines that contain extremely low levels of OTF-2 yet still express high levels of steady-state immunoglobulin heavy-chain mRNA in vivo and efficiently transcribe an immunoglobulin gene in vitro. Addition of a highly enriched preparation of OTF-1 made from one of these pre-B cells or from HeLa cells specifically stimulated in vitro transcription of an immunoglobulin gene. Furthermore, OFT-1 appeared to have approximately the same transactivation ability as OTF-2 when normalized for binding activity. These results suggest that OTF-1, without OTF-2, is sufficient for transcription of immunoglobulin genes and that OTF-2 alone is not responsible for the B-cell-specific regulation of immunoglobulin gene expression.

  4. The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.G.; Carayannopoulos, L.; Capra, J.D.; Tucker, P.W. (Dept. of Microbiology, Southwestern Medical Center at Dallas, Dallas, TX (US)); Hanke, J.H. (Central Research, Dept. of Molecular Genetics, Pfizer, Inc., Groton, CT (US))


    All immunoglobulin genes contain a conserved octanucleotide promoter element, ATGCAAAT, which has been shown to be required for their normal B-cell-specific transcription. Proteins that bind this octamer have been purified, and cDNAs encoding octamer-binding proteins have been cloned. Some of these proteins (referred to as OTF-2) are lymphoid specific, whereas at least one other, and possibly more (referred to as OTF-1), is found ubiquitously in all cell types. The exact role of these different proteins in directing the tissue-specific expression of immunoglobulin genes is unclear. The authors have identified two human pre-B-cell lines that contain extremely low levels of OTF-2 yet still express high levels of steady-state immunoglobulin heavy-chain mRNA in vivo and efficiently transcribe an immunoglobulin gene in vitro. Addition of a highly enriched preparation of OTF-1 made from one of these pre-B cells or from HeLa cells specifically stimulated in vitro transcription of an immunoglobulin gene. Furthermore, OFT-1 appeared to have approximately the same transactivation ability as OTF-2 when normalized for binding activity. These results suggest that OTF-1, without OTF-2, is sufficient for transcription of immunoglobulin genes and that OTF-2 alone is not responsible for the B-cell-specific regulation of immunoglobulin gene expression.

  5. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays. (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil


    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  6. Functional Characterization of PaLAX1, a Putative Auxin Permease, in Heterologous Plant Systems1[W][OA (United States)

    Hoyerová, Klára; Perry, Lucie; Hand, Paul; Laňková, Martina; Kocábek, Tomáš; May, Sean; Kottová, Jana; Pačes, Jan; Napier, Richard; Zažímalová, Eva


    We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants. PMID:18184737

  7. Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth. (United States)

    Löfke, Christian; Scheuring, David; Dünser, Kai; Schöller, Maria; Luschnig, Christian; Kleine-Vehn, Jürgen


    The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.

  8. In-silico characterization of Formin Binding Protein 4 Family of proteins. (United States)

    Das, Amit; Bhattacharya, Simanti; Bagchi, Angshuman; Dasgupta, Rakhi


    Members of the Formin Binding Protein 4 Family or the FNBP4 were indirectly reported to be associated with many of the biological processes. These proteins possess two WW domains. So far there are practically no reports regarding the characterization and classification of the protein by any means. Keeping in mind the importance of the proteins from this FNBP4 family, we have tried an in silico approach to come up with a comprehensive analysis of the proteins. We have analyzed the proteins by considering their sequence conservation, their phylogenetic distributions among the different organisms. We have also investigated the functional properties of the WW domains in the proteins. Finally, we have made an attempt to elucidate the structural details of the domains and predicted the possible modes of their interactions. Our findings show that FNBP4 is eukaryotic in its distribution and follows a trend of evolution where animal and plant homologues have evolved in an independent manner. While the WW domain is the only common motif present across the FNBP4 family of proteins, there are different classes (mainly two) of WW domains that are found among different FNBP4 proteins. Structure function predictions indicate a possible role of FNBP4 in either protein stabilization control or transcript processing. Our study on FNBP4 may therefore open up new avenues to generate new interest in this highly important but largely unexplored class of proteins. Future studies with proteins from this family may answer many important questions of protein-protein interactions in different biologically important processes.

  9. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. (United States)

    Wu, Hung-Jen; Henzie, Joel; Lin, Wan-Chen; Rhodes, Christopher; Li, Zhu; Sartorel, Elodie; Thorner, Jeremy; Yang, Peidong; Groves, Jay T


    We describe a solution-phase sensor of lipid-protein binding based on localized surface plasmon resonance (LSPR) of silver nanocubes. When silica-coated nanocubes are mixed in a suspension of lipid vesicles, supported membranes spontaneously assemble on their surfaces. Using a standard laboratory spectrophotometer, we calibrated the LSPR peak shift due to protein binding to the membrane surface and then characterized the lipid-binding specificity of a pleckstrin homology domain protein.

  10. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich


    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  11. Is vitamin D binding protein a novel predictor of labour?

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Vitamin D binding protein (VDBP has previously been identified in the amniotic fluid and cervicovaginal fluid (CVF of pregnant women. The biological functions of VDBP include acting as a carrier protein for vitamin D metabolites, the clearance of actin that is released during tissue injury and the augmentation of the pro-inflammatory response. This longitudinal observational study was conducted on 221 healthy pregnant women who spontaneously laboured and delivered either at term or preterm. Serial CVF samples were collected and VDBP was measured by ELISA. Binary logistic regression analysis was performed to assess the utility of VDBP as a predictor of labour. VDBP in the CVF did not change between 20 and 35 weeks' gestation. VDBP measured in-labour was significantly increased 4.2 to 7.4-fold compared to 4-7, 8-14 and 15-28 days before labour (P<0.05. VDBP concentration was 4.3-fold significantly higher at 0-3 days compared to 15-28 days pre-labour (P<0.05. The efficacy of VDBP to predict spontaneous labour onset within 3 days provided a positive and negative predictive value of 82.8% and 95.3% respectively (area under receiver operator characteristic curve  = 0.974. This longitudinal study of pregnant women suggests that VDBP in the CVF may be a useful predictor of labour.

  12. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis


    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  13. Protein:Ligand binding free energies: A stringent test for computational protein design. (United States)

    Druart, Karen; Palmai, Zoltan; Omarjee, Eyaz; Simonson, Thomas


    A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl-tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l-tyrosine (l-Tyr), compared to the analogs d-Tyr, p-acetyl-, and p-azido-phenylalanine (ac-Phe, az-Phe). We simulate l- and d-Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous "MD/GBSA" procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l-Tyr, ac- and az-Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l-Tyr or d-Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l-Tyr is the ligand and a d-Tyr specific mutant when d-Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln.

  14. Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXS. (United States)

    Buey, Rubén M; Monterroso, Begoña; Menéndez, Margarita; Diakun, Greg; Chacón, Pablo; Hermoso, Juan Antonio; Díaz, J Fernando


    Phosphocholine moieties decorating the pneumococcal surface are used as a docking station for a family of modular proteins, the so-called choline binding proteins or CBPs. Choline recognition is essential for CBPs function and may also be a determinant for their quaternary structure. There is little knowledge about modular arrangement or oligomeric structures in this family. Therefore, we have used the small angle X-ray scattering (SAXS) technique combined with analytical ultracentrifugation in order to model the three-dimensional envelope of two highly different CBPs: the phage encoded Cpl-1 lysozyme and the pneumococcal phosphorylcholine esterase Pce. Both enzymes have an N-terminal catalytic module and a C-terminal choline-binding module (CBM) that attaches them to the bacterial surface and comprises six and ten sequence repeats in Cpl-1 and Pce, respectively. SAXS experiments have shown an inherent conformational plasticity in Cpl-1 that accounts for the different relative position of these regions in the solution and crystal structures. Dimerization of Cpl-1 upon choline binding has been also visualised for the first time, and monomer-monomer interactions take place through the first CBR where a non-canonical choline binding site has now been identified. This mode of association seems to be independent of the absence or presence of the Cpl-1 catalytic module and reveals that the arrangement of the monomers differs from that previously found in the isolated CBM dimer of pneumococcal LytA amidase. In contrast, Pce displays the same modular disposition in the solution and crystal structures, and remains almost invariant upon choline binding. The present results suggest that protein dimerization and duplication of CBRs may be alternative but not equivalent ways of improving cell wall recognition by CBPs, since they provide different interaction geometries for choline residues present in (lipo)teichoic acids.

  15. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul;


    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate...... defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...

  16. Regulation of RNA binding proteins in trypanosomatid protozoan parasites. (United States)

    Romaniuk, María Albertina; Cervini, Gabriela; Cassola, Alejandro


    Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening parasites affecting people in Sub-saharan Africa or in the Americas. In these parasites the classic view of regulation of transcription initiation to modulate the products of a given gene cannot be applied. This is due to the presence of transcription start sites that give rise to long polycistronic units that need to be processed costranscriptionally by trans-splicing and polyadenylation to give mature monocistronic mRNAs. Posttranscriptional mechanisms such as mRNA degradation and translational repression are responsible for the final synthesis of the required protein products. In this context, RNA-binding proteins (RBPs) in trypanosomes have a relevant role as modulators of mRNA abundance and translational repression by associating to the 3' untranslated regions in mRNA. Many different RBPs have been proposed to modulate cohorts of mRNAs in trypanosomes. However, the current understanding of their functions lacks a dynamic view on the different steps at which these RBPs are regulated. Here, we discuss different evidences to propose regulatory events for different RBPs in these parasites. These events vary from regulated developmental expression, to biogenesis of cytoplasmic ribonucleoprotein complexes in the nucleus, and condensation of RBPs and mRNA into large cytoplasmic granules. Finally, we discuss how newly identified posttranslational modifications of RBPs and mRNA metabolism-related proteins could have an enormous impact on the modulation of mRNA abundance. To understand these modifications is especially relevant in these parasites due to the fact that the enzymes involved could be interesting targets for drug therapy.

  17. Regulation of RNA binding proteins in trypanosomatid protozoan parasites

    Institute of Scientific and Technical Information of China (English)

    María Albertina Romaniuk; Gabriela Cervini; Alejandro Cassola


    Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening parasites affecting people in Sub-saharan Africa or in the Americas. In these parasites the classic view of regulation of transcription initiation to modulate the products of a given gene cannot be applied. This is due to the presence of transcription start sites that give rise to long polycistronic units that need to be processed costranscriptionally by trans-splicing and polyadenylation to give mature monocistronic mRNAs. Posttranscriptional mechanisms such as mRNA degradation and translational repression are responsible for the final synthesis of the required protein products. In this context, RNA-binding proteins(RBPs) in trypanosomes have a relevant role as modulators of mRNA abundance and translational repression by associating to the 3’ untranslated regions in mRNA. Many different RBPs have been proposed to modulate cohorts of mRNAs in trypanosomes. However, the current understanding of their functions lacks a dynamic view on the different steps at which these RBPs are regulated. Here, we discuss different evidences to propose regulatory events for different RBPs in these parasites. These events vary from regulated developmental expression, to biogenesis of cytoplasmic ribonucleoprotein complexes in the nucleus, and condensation of RBPs and mRNA into large cytoplasmic granules. Finally, we discuss how newly identified posttranslational modifications of RBPs and mRNA metabolism-related proteins could have an enormous impact on the modulation of m RNA abundance. To understand these modifications is especially relevant in these parasites due to the fact that the enzymes involved could be interesting targets for drug therapy.

  18. Metal binding is critical for the folding and function of laminin binding protein, Lmb of Streptococcus agalactiae.

    Directory of Open Access Journals (Sweden)

    Preethi Ragunathan

    Full Text Available Lmb is a 34 kDa laminin binding surface adhesin of Streptococcus agalactiae. The structure of Lmb reported by us recently has shown that it consists of a metal binding crevice, in which a zinc ion is coordinated to three highly conserved histidines. To elucidate the structural and functional significance of the metal ion in Lmb, these histidines have been mutated to alanine and single, double and triple mutants were generated. These mutations resulted in insolubility of the protein and revealed altered secondary and tertiary structures, as evidenced by circular dichroism and fluorescence spectroscopy studies. The mutations also significantly decreased the binding affinity of Lmb to laminin, implicating the role played by the metal binding residues in maintaining the correct conformation of the protein for its binding to laminin. A highly disordered loop, proposed to be crucial for metal acquisition in homologous structures, was deleted in Lmb by mutation (ΔLmb and its crystal structure was solved at 2.6 Å. The ΔLmb structure was identical to the native Lmb structure with a bound zinc ion and exhibited laminin binding activity similar to wild type protein, suggesting that the loop might not have an important role in metal acquisition or adhesion in Lmb. Targeted mutations of histidine residues confirmed the importance of the zinc binding crevice for the structure and function of the Lmb adhesin.

  19. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein. (United States)

    Shepherd, Mark; Heath, Mathew D; Poole, Robert K


    NikA is a periplasmic binding protein involved in nickel uptake in Escherichia coli. NikA was identified as a heme-binding protein in the periplasm of anaerobically grown cells overexpressing CydDC, an ABC transporter that exports reductant to the periplasm. CydDC-overexpressing cells accumulate a heme biosynthesis-derived pigment, P-574. For further biochemical and spectroscopic analysis, unliganded NikA was overexpressed and purified. NikA was found to comigrate with both hemin and protoporphyrin IX during gel filtration. Furthermore, tryptophan fluorescence quenching titrations demonstrated that both hemin and protoporphyrin IX bind to NikA with similar affinity. The binding affinity of NikA for these pigments (Kd approximately 0.5 microM) was unaltered in the presence and absence of saturating concentrations of nickel, suggesting that these tetrapyrroles bind to NikA in a manner independent of nickel. To test the hypothesis that NikA is required for periplasmic heme protein assembly, the effects of a nikA mutation (nikA::Tn5, Km(R) insertion) on accumulation of P-574 by CydDC-overexpressing cells was assessed. This mutation significantly lowered P-574 levels, implying that NikA may be involved in P-574 production. Thus, in the reducing environment of the periplasm, NikA may serve as a heme chaperone as well as a periplasmic nickel-binding protein. The docking of heme onto NikA was modeled using the published crystal structure; many of the predicted complexes exhibit a heme-binding cleft remote from the nickel-binding site, which is consistent with the independent binding of nickel and heme. This work has implications for the incorporation of heme into b- and c-type cytochromes.

  20. Chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D/sub 3/: a study of analog binding

    Energy Technology Data Exchange (ETDEWEB)

    Kream, B.E.; Jose, M.J.L.; DeLuca, H.F.


    The structural features of 1,25-dihydroxyvitamin D/sub 3/ that permit its high affinity binding to a 3.7 S protein from chick intestinal cytosol were determined in a series of binding and competition experiments analyzed by sucrose density gradient centrifugation. Optimal binding to the 3.7 S protein was achieved when both 1..cap alpha..- and 25-hydroxyls were present in the vitamin D/sub 3/ molecule. Modification of the side chain by the introduction of a methyl on C-24 and a double bond on C-22,23 (1,25-dihydroxyvitamin D/sub 2/) did not alter the binding of 1,25-dihydroxyvitamin D/sub 3/, but significantly diminished the binding of 25-hydroxyvitamin D/sub 3/. However, introduction of a hydroxyl on C-24 decreased the ability of either 1,25-dihydroxyvitamin D/sub 3/ or 25-hydroxyvitamin D/sub 3/ to compete, especially when the 24-hydroxyl was in the S configuration. These results reveal that the 3.7 S protein requires specific ligand structural features for binding and suggest that metabolite discrimination by the chick intestinal receptor system is likely located in the 3.7 S cytosol protein.

  1. The highly abundant protein Ag-Ibp55 from Ascaridia galli represents a novel type of lipid-binding proteins

    NARCIS (Netherlands)

    Jordanova, R; Radoslavov, G; Fischer, P; Torda, A; Lottspeich, F; Boteva, R; Walter, RD; Bankov, [No Value; Liebau, E


    Lipid-binding proteins exhibit important functions in lipid transport, cellular signaling, gene transcription, and cytoprotection. Their functional analogues in nematodes are nematode polyprotein allergens/antigens and fatty acid and retinoid-binding proteins. This work describes a novel 55-kDa prot

  2. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. (United States)

    Peng, Zhenling; Kurgan, Lukasz


    Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We report first-of-its-kind computational method DisoRDPbind for high-throughput prediction of RNA, DNA and protein binding residues located in IDRs from protein sequences. DisoRDPbind is implemented using a runtime-efficient multi-layered design that utilizes information extracted from physiochemical properties of amino acids, sequence complexity, putative secondary structure and disorder and sequence alignment. Empirical tests demonstrate that it provides accurate predictions that are competitive with other predictors of disorder-mediated protein binding regions and complementary to the methods that predict RNA- and DNA-binding residues annotated based on crystal structures. Application in Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila melanogaster proteomes reveals that RNA- and DNA-binding proteins predicted by DisoRDPbind complement and overlap with the corresponding known binding proteins collected from several sources. Also, the number of the putative protein-binding regions predicted with DisoRDPbind correlates with the promiscuity of proteins in the corresponding protein-protein interaction networks. Webserver:

  3. Assessing protein-ligand docking for the binding of organometallic compounds to proteins. (United States)

    Ortega-Carrasco, Elisabeth; Lledós, Agusti; Maréchal, Jean-Didier


    Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein-ligand complementarities. Interestingly, while protein-ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state-of-the-art protein-ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein.

  4. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites. (United States)

    Weill, Nathanaël; Rognan, Didier


    Inferring the biological function of a protein from its three-dimensional structure as well as explaining why a drug may bind to various targets is of crucial importance to modern drug discovery. Here we present a generic 4833-integer vector describing druggable protein-ligand binding sites that can be applied to any protein and any binding cavity. The fingerprint registers counts of pharmacophoric triplets from the Calpha atomic coordinates of binding-site-lining residues. Starting from a customized data set of diverse protein-ligand binding site pairs, the most appropriate metric and a similarity threshold could be defined for similar binding sites. The method (FuzCav) has been used in various scenarios: (i) screening a collection of 6000 binding sites for similarity to different queries; (ii) classifying protein families (serine endopeptidases, protein kinases) by binding site diversity; (iii) discriminating adenine-binding cavities from decoys. The fingerprint generation and comparison supports ultra-high throughput (ca. 1000 measures/s), does not require prior alignment of protein binding sites, and is able to detect local similarity among subpockets. It is thus particularly well suited to the functional annotation of novel genomic structures with low sequence identity to known X-ray templates.

  5. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe


    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  6. A robust assay to measure DNA topology-dependent protein binding affinity. (United States)

    Litwin, Tamara R; Solà, Maria; Holt, Ian J; Neuman, Keir C


    DNA structure and topology pervasively influence aspects of DNA metabolism including replication, transcription and segregation. However, the effects of DNA topology on DNA-protein interactions have not been systematically explored due to limitations of standard affinity assays. We developed a method to measure protein binding affinity dependence on the topology (topological linking number) of supercoiled DNA. A defined range of DNA topoisomers at equilibrium with a DNA binding protein is separated into free and protein-bound DNA populations using standard nitrocellulose filter binding techniques. Electrophoretic separation and quantification of bound and free topoisomers combined with a simple normalization procedure provide the relative affinity of the protein for the DNA as a function of linking number. Employing this assay we measured topology-dependent DNA binding of a helicase, a type IB topoisomerase, a type IIA topoisomerase, a non-specific mitochondrial DNA binding protein and a type II restriction endonuclease. Most of the proteins preferentially bind negatively supercoiled DNA but the details of the topology-dependent affinity differ among proteins in ways that expose differences in their interactions with DNA. The topology-dependent binding assay provides a robust and easily implemented method to probe topological influences on DNA-protein interactions for a wide range of DNA binding proteins.

  7. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  8. Interspecies In Vitro Evaluation of Stereoselective Protein Binding for 3,4-Methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Wan Raihana Wan Aasim


    Full Text Available Abuse of 3,4-methylenedioxymethamphetamine (MDMA is becoming more common worldwide. To date, there is no information available on stereoselectivity of MDMA protein binding in humans, rats, and mice. Since stereoselectivity plays an important role in MDMA’s pharmacokinetics and pharmacodynamics, in this study we investigated its stereoselectivity in protein binding. The stereoselective protein binding of rac-MDMA was investigated using two different concentrations (20 and 200 ng/mL in human plasma and mouse and rat sera using an ultrafiltration technique. No significant stereoselectivity in protein binding was observed in both human plasma and rat serum; however, a significant stereoselective binding (p<0.05 was observed in mouse serum. Since the protein binding of MDMA in mouse serum is considerably lower than in humans and rats, caution should be exercised when using mice for in vitro studies involving MDMA.

  9. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. (United States)

    Parry, G; Delbarre, A; Marchant, A; Swarup, R; Napier, R; Perrot-Rechenmann, C; Bennett, M J


    The hormone auxin is transported in plants through the combined actions of diffusion and specific auxin influx and efflux carriers. In contrast to auxin efflux, for which there are well documented inhibitors, understanding the developmental roles of carrier-mediated auxin influx has been hampered by the absence of specific competitive inhibitors. However, several molecules that inhibit auxin influx in cultured cells have been described recently. The physiological effects of two of these novel influx carrier inhibitors, 1-naphthoxyacetic acid (1-NOA) and 3-chloro-4-hydroxyphenylacetic acid (CHPAA), have been investigated in intact seedlings and tissue segments using classical and new auxin transport bioassays. Both molecules do disrupt root gravitropism, which is a developmental process requiring rapid auxin redistribution. Furthermore, the auxin-insensitive and agravitropic root-growth characteristics of aux1 plants were phenocopied by 1-NOA and CHPAA. Similarly, the agravitropic phenotype of inhibitor-treated seedlings was rescued by the auxin 1-naphthaleneacetic acid, but not by 2,4-dichlorophenoxyacetic acid, again resembling the relative abilities of these two auxins to rescue the phenotype of aux1. Further investigations have shown that none of these compounds block polar auxin transport, and that CHPAA exhibits some auxin-like activity at high concentrations. Whilst results indicate that 1-NOA and CHPAA represent useful tools for physiological studies addressing the role of auxin influx in planta, 1-NOA is likely to prove the more useful of the two compounds.

  10. The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts. (United States)

    Rutschow, Heidi L; Baskin, Tobias I; Kramer, Eric M


    The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants. Radiolabeled auxin uptake was measured in protoplasts isolated from roots of Arabidopsis thaliana. This was done for the wild-type, under treatments with additional unlabeled auxin to saturate the influx carriers, and for the influx carrier mutant auxin resistant 1 (aux1). We also used flow cytometry to quantify the relative abundance of cells expressing AUX1-YFP in the assayed population. At pH 5.7, the majority of auxin influx into protoplasts - 75% - was mediated by the influx carrier AUX1. An additional 20% was mediated by other saturable carriers. The diffusive influx of auxin was essentially negligible at pH 5.7. The influx of auxin mediated by AUX1, expressed as a membrane permeability, was 1.5 ± 0.3 μm s(-1) . This value is comparable in magnitude to estimates of efflux permeability. Thus, auxin-transporting tissues can sustain relatively high auxin efflux and yet not become depleted of auxin.

  11. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography. (United States)

    Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen


    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded.

  12. Detection and properties of A-factor-binding protein from Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T. (Univ. of Tokyo (Japan))


    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding {sup 3}H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein.

  13. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. (United States)

    Tydell, C Chace; Yuan, Jun; Tran, Patti; Selsted, Michael E


    Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern recognition molecules of innate immunity that are conserved from insects to humans. Various PGRPs are reported to have diverse functions: they bind bacterial molecules, digest PGN, and are essential to the Toll pathway in Drosophila. One family member, bovine PGN recognition protein-S (bPGRP-S), has been found to bind and kill microorganisms in a PGN-independent manner, raising questions about the identity of the bPGRP-S ligand. Addressing this, we have determined the binding and microbicidal properties of bPGRP-S in a range of solutions approximating physiologic conditions. In this study we show that bPGRP-S interacts with other bacterial components, including LPS and lipoteichoic acid, with higher affinities than for PCP, as determined by their abilities to inhibit bPGRP-S-mediated killing of bacteria. Where and how PGRPs act in vivo is not yet clear. Using Immunogold electron microscopy, PGRP-S was localized to the dense/large granules of naive neutrophils, which contain the oxygen-independent bactericidal proteins of these cells, and to the neutrophil phagolysosome. In addition, Immunogold staining and secretion studies demonstrate that neutrophils secrete PGRP-S when exposed to bacteria. Bovine PGRP-S can mediate direct lysis of heat-killed bacteria; however, PGRP-S-mediated killing of bacteria is independent of this activity. Evidence that bPGRP-S has multiple activities and affinity to several bacterial molecules challenges the assumption that the PGRP family of proteins recapitulates the evolution of TLRs. Mammalian PGRPs do not have a single antimicrobial activity against a narrow range of target organisms; rather, they are generalists in their affinity and activity.

  14. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules

    NARCIS (Netherlands)

    Masereeuw, R.; Russel, F.G.M.


    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elabor

  15. The presence of phosphate-binding protein in inner mitochondrial membrane

    Directory of Open Access Journals (Sweden)



    Full Text Available Phosphate-binding protein(s was found in the inner mitochondrial membrane of calf heart by Sephadex G-200 and G-25 gel filtration. The binding activity was inhibited by N-ethylmaleimide and competed by a large amount of cold phosphate. The amount of phosphate bound to the fraction was 29 nmoles per mg of protein. Affinity chromatography with phosphate-bound Sepharose 4B confirmed the presence of phosphate-binding protein(s in the active fraction of mitochondrial membrane fractionated by gel filtration.

  16. Statistical analysis of structural determinants for protein-DNA-binding specificity. (United States)

    Corona, Rosario I; Guo, Jun-Tao


    DNA-binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA-binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein-DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein-DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein-DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA-binding proteins and structural variations. The results indicate that HS and MS DNA-binding domains have larger conformational changes upon DNA-binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147-1161. © 2016 Wiley Periodicals, Inc.

  17. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. (United States)

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A


    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  18. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  19. Generation of high-performance binding proteins for peptide motifs by affinity clamping


    Koide, Shohei; Huang, Jin


    We describe concepts and methodologies for generating “Affinity Clamps”, a new class of recombinant binding proteins that achieve high affinity and high specificity toward short peptide motifs of biological importance, which is a major challenge in protein engineering. The Affinity Clamping concept exploits the potential of nonhomologous recombination of protein domains in generating large changes in protein function and the inherent binding affinity and specificity of the so-called modular i...

  20. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. (United States)

    Willige, Björn C; Ahlers, Siv; Zourelidou, Melina; Barbosa, Inês C R; Demarsy, Emilie; Trevisan, Martine; Davis, Philip A; Roelfsema, M Rob G; Hangarter, Roger; Fankhauser, Christian; Schwechheimer, Claus


    Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.

  1. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Hilal Kazan

    Full Text Available Metazoan genomes encode hundreds of RNA-binding proteins (RBPs. These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.

  2. Sertoli cell origin of testicular androgen-binding protein (ABP)

    Energy Technology Data Exchange (ETDEWEB)

    Hagenaes, L. (Pediatric Endocrinology Unit, Stockholm); Ritzen, E.M.; Ploeen, L.; Hansson, V.; French, F.S.; Nayfeh, S.N.


    In this report it is suggested that the specific androgen-binding protein (ABP), previously shown to originate in the testes of rat and other species, is produced by the Sertoli cells. This suggestion is based upon the following experimental findings: (1) ABP was found in high concentrations in testicular efferent duct fluid but only in trace amounts in inter-tubular lymph. (2) ABP could be recovered from crude preparations of testes tubules, but not from Leydig cells from the same testes. (3) Testes whose germinal epithelium had been severely damaged by gamma irradiation showed no decrease in ABP content. The transport of ABP to epididymis was also preserved as judged from the levels of ABP in caput epididymis. (4) Testes that were completely devoid of germ cells following prenatal gamma irradiation showed high levels of ABP. These high levels approached zero following hypophysectomy, but could be restored by FSH administration to the hypophysectomized animals. ABP has been well characterized and now provides a valuable experimental tool as an indicator of Sertoli cell function.

  3. Placental Vitamin D-Binding Protein Expression in Human Idiopathic Fetal Growth Restriction

    Directory of Open Access Journals (Sweden)

    Alice F. Wookey


    Full Text Available Vitamin D-binding protein is a multifunctional serum protein with multiple actions related to normal health. Vitamin D-binding protein transports vitamin D and influences the metabolism of this key hormone but it also has additional immunomodulatory and actin-clearing properties. We investigated whether vitamin D-binding protein expression is altered in fetal growth restriction-associated placental dysfunction. Protein was extracted from 35 placentae derived from 17 healthy control subjects and 18 gestation-matched subjects with fetal growth restriction (FGR. FGR subjects were further subdivided as idiopathic (n=9 and nonidiopathic (n=9. Vitamin D-binding protein and 25(OH vitamin D were measured by ELISA and normalized to protein concentration. The results showed significantly reduced levels of placental vitamin D-binding protein (control versus FGR, p<0.05, Student’s t-test that were strongly associated with idiopathic fetal growth restriction (p<0.01, Kruskal-Wallis, whereas levels of vitamin D-binding protein were not associated with placental 25(OH vitamin D stores (p=0.295, Pearson’s correlation. As such, vitamin D-binding protein may be a factor in unexplained placental dysfunction associated with idiopathic fetal growth restriction and may potentially serve as a biomarker of this disease.

  4. Mycobacterial PE_PGRS Proteins Contain Calcium-Binding Motifs with Parallel β-roll Folds

    Institute of Scientific and Technical Information of China (English)

    Nandita; Bachhawat; Balvinder; Singh


    The PE_PGRS family of proteins unique to mycobacteria is demonstrated to con- rain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel/3-roll or parallel β-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE_PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE_PGRS proteins in the Ught of macrophage-pathogen interaction and pathogenesis is presented.

  5. The human fatty acid-binding protein family: Evolutionary divergences and functions

    Directory of Open Access Journals (Sweden)

    Smathers Rebecca L


    Full Text Available Abstract Fatty acid-binding proteins (FABPs are members of the intracellular lipid-binding protein (iLBP family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20 fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

  6. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E;


    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...

  7. Role of Auxin in orchid development. (United States)

    Darling-Novak, Stacey; Luna, Lila J; Gamage, Roshan N


    Auxin's capacity to regulate aspects of plant development has been well characterized in model plant systems. In contrast, orchids have received considerably less attention, but the realization that many orchid species are endangered has led to culture-based propagation studies which have unveiled some functions for auxin in this system. This mini-review summarizes the many auxin-mediated developmental responses in orchids that are consistent with model systems; however, it also brings to the forefront auxin responses that are unique to orchid development, namely protocorm formation and ovary/ovule maturation. With regard to shoot establishment, we also assess auxin's involvement in orchid germination, PLB formation, and somatic embryogenesis. Further, it makes evident that auxin flow during germination of the undifferentiated, but mature, orchid embryo mirrors late embryogenesis of typical angiosperms. Also discussed is the use of orchid protocorms in future phytohormone studies to better understand the mechanisms behind meristem formation and organogenesis.

  8. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands (United States)

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.


    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  9. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins (United States)

    Ingersoll, Christine M.; Strollo, Christen M.


    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  10. An Experimentally Based Computer Search Identifies Unstructured Membrane-binding Sites in Proteins (United States)

    Brzeska, Hanna; Guag, Jake; Remmert, Kirsten; Chacko, Susan; Korn, Edward D.


    Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro. PMID:20018884

  11. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria. (United States)

    Ogawara, Hiroshi


    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  12. Antibodies to Staphylococcus aureus Bone Sialoprotein-Binding Protein Indicate Infectious Osteomyelitis▿


    Persson, Lena; Johansson, Christian; Rydén, Cecilia


    Discrimination of soft tissue infection from osteomyelitis in diabetic foot infections is a common clinical problem. Staphylococcus aureus isolates from patients with osteomyelitis express bone sialoprotein-binding protein (Bbp) that binds the bone matrix protein bone sialoprotein. The serological assay with Bbp discriminated cases of osteomyelitis from soft tissue infections in patients with diabetic foot ulcers.

  13. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Wadum, Majken; Feddersen, Søren


    -CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes...

  14. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud;


    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  15. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    Energy Technology Data Exchange (ETDEWEB)

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F. (NIH)


    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  16. Effect of neomycin and protein S1 on the binding of streptomycin to the ribosome. (United States)

    Grisé-Miron, L; Brakier-Gingras, L


    The binding of [3H]dihydrostreptomycin to the 70-S ribosome or to the 30-S subunit has been investigated in the presence of neomycin by the Millipore filtration or the equilibrium dialysis procedure. It was observed that dihydrostreptomycin binds equally well to the 30-S subunit and the 70-S ribosome, and that neomycin stimulates the binding of dihydrostreptomycin to the ribosome by increasing the association constant and not by creating new binding sites. Specific removal of protein S1 from the 30-S subunit neither affected the binding of dihydrostreptomycin to the ribosome nor the stimulation of dihydrostreptomycin binding by neomycin.

  17. Protein L. A bacterial Ig-binding protein that activates human basophils and mast cells. (United States)

    Patella, V; Casolaro, V; Björck, L; Marone, G


    Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in

  18. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.


    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  19. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    A Bagaria; D Kumaran; S Burley; S Swaminathan


    The APT-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and nontransport related processes such as translation of RNA and DNA repair. typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport, and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP), and Ribose binding protein (RBP). Each of these proteins consits of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations hafve been reported and so for MBP. The closed/active form of the protein interacts with the ingral membrane component of the system in both transport and chemotaxis. Herein, they report 1.9 {angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound

  20. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul


    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  1. Autoantigenic proteins that bind recombinogenic sequences in Epstein-Barr virus and cellular DNA.



    We have identified conserved autoantigenic cellular proteins that bind to G-rich sequence motifs in recombinogenic regions of Epstein-Barr virus (EBV) DNA. This binding activity, called TRBP, recognizes the EBV terminal repeats, a locus responsible for interconversion of linear and circular EBV DNA. We found that TRBP also binds to EBV DNA sequences involved in deletion of EBNA2, a gene product required for immortalization. We show that TRBP binds sequences present in repetitive cellular DNA,...

  2. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie


    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  3. Binding of Solvent Molecules to a Protein Surface in Binary Mixtures Follows a Competitive Langmuir Model. (United States)

    Kulschewski, Tobias; Pleiss, Jürgen


    The binding of solvent molecules to a protein surface was modeled by molecular dynamics simulations of of Candida antarctica (C. antarctica) lipase B in binary mixtures of water, methanol, and toluene. Two models were analyzed: a competitive Langmuir model which assumes identical solvent binding sites with a different affinity toward water (KWat), methanol (KMet), and toluene (KTol) and a competitive Langmuir model with an additional interaction between free water and already bound water (KWatWat). The numbers of protein-bound molecules of both components of a binary mixture were determined for different compositions as a function of their thermodynamic activities in the bulk phase, and the binding constants were simultaneously fitted to the six binding curves (two components of three different mixtures). For both Langmuir models, the values of KWat, KMet, and KTol were highly correlated. The highest binding affinity was found for methanol, which was almost 4-fold higher than the binding affinities of water and toluene (KMet ≫ KWat ≈ KTol). Binding of water was dominated by the water-water interaction (KWatWat). Even for the three protein surface patches of highest water affinity, the binding affinity of methanol was 2-fold higher than water and 8-fold higher than toluene (KMet > KWat > KTol). The Langmuir model provides insights into the protein destabilizing mechanism of methanol which has a high binding affinity toward the protein surface. Thus, destabilizing solvents compete with intraprotein interactions and disrupt the tertiary structure. In contrast, benign solvents such as water or toluene have a low affinity toward the protein surface. Water is a special solvent: only few water molecules bind directly to the protein; most water molecules bind to already bound water molecules thus forming water patches. A quantitative mechanistic model of protein-solvent interactions that includes competition and miscibility of the components contributes a robust basis

  4. A Novel Approach for Identifying the Heme-Binding Proteins from Mouse Tissues

    Institute of Scientific and Technical Information of China (English)

    Xiaolei Li; Rong Wang; Zhongsheng Sun; Zuyuan Xu; Jingyue Bao; Xiuqing Zhang; Xiaoli Feng; Siqi Liu; Xiaoshan Wang; Kang Zhao; Zhengfeng Zhou; Caifeng Zhao; Ren Yan; Liang Lin; Tingting Lei; Jianning Yin


    Heme is a key cofactor in aerobic life, both in eukaryotes and prokaryotes. Because of the high reactivity of ferrous protoporphyrin IX, the reactions of heme in cells are often carried out through heme-protein complexes. Traditionally studies of hemebinding proteins have been approached on a case by case basis, thus there is a limited global view of the distribution of heme-binding proteins in different cells or tissues. The procedure described here is aimed at profiling hemne-binding proteins in mouse tissues sequentially by 1) purification of heme-binding proteins by hemeagarose, an affinity chromatographic resin; 2) isolation of heme-binding proteins by SDS-PAGE or two-dimensional electrophoresis; 3) identification of heme-binding proteins by mass spectrometry. In five mouse tissues, over 600 protein spots were visualized on 2DE gel stained by Commassie blue and 154 proteins were identified by MALDI-TOF, in which most proteins belong to heme related. This methodology makes it possible to globally characterize the heme-binding proteins in a biological system.

  5. A Novel Approach for Identifying the Heme—Binding Proteins from Mouse Tissues

    Institute of Scientific and Technical Information of China (English)

    XiaoleiLi; XiaoshanWang; KangZhao; ZhengfengZhou; CaifengZhao; RenYan; LiangLin; TingtingLei; JianningYin; RongWang; ZhongshengSun; ZuyuanXu; JingyueBao; XiugingZhang; XiaoliFeng; SiqiLiu


    Heme is a key cofactor in aerobic life,both in eukaryotes and prokaryotes.Because of the high reactivity of ferrous protoporphyrin IX,the reactions of heme in cells are often carried out through heme-protein complexes.Traditionally studies of hemebinding proteins have been approached on a case by case basis,thus there is a limited global view of the distribution of heme-binding proteins in different cells or tissues.The procedure described here is aimed at profiling heme-binding proteins in mouse tissues sequentially by 1)purification of heme-binding proteins by hemeagarose,an affinity chromatographic resin;2)isolation of heme-binding proteins by SDS-PAGE or two-dimensional electrophoresis;3)identification of heme-binding proteins by mass spectrometry.In five mouse tissues,over 600 protein spots were visualized on 2DE gel stained by Commassie blue and 154 proteins were identified by MALDI-TOF,in which most proteins belong to heme related.This methodology makes it possible to globally characterize the heme-binding proteins in a biological system.

  6. A DNA immunoprecipitation assay used in quantitative detection of in vitro DNA-protein complex binding. (United States)

    Kim, Min Young; Chae, Ji Hyung; Oh, Chang-Ho; Kim, Chul Geun


    To begin gene transcription, several transcription factors must bind to specific DNA sequences to form a complex via DNA-protein interactions. We established an in vitro method for specific and sensitive analyses of DNA-protein interactions based on a DNA immunoprecipitation (DIP) method. We verified the accuracy and efficiency of the DIP assay in quantitatively measuring DNA-protein binding using transcription factor CP2c as a model. With our DIP assay, we could detect specific interactions within a DNA-CP2c complex, with reproducible and quantitative binding values. In addition, we were able to effectively measure the changes in DNA-CP2c binding by the addition of a small molecule, FQI1 (factor quinolinone inhibitor 1), previously identified as a specific inhibitor of this binding. To identify a new regulator of DNA-CP2c binding, we analyzed several CP2c binding peptides and found that only one class of peptide severely inhibits DNA-CP2c binding. These data show that our DIP assay is very useful in quantitatively detecting the binding dynamics of DNA-protein complex. Because DNA-protein interaction is very dynamic in different cellular environments, our assay can be applied to the detection of active transcription factors, including promoter occupancy in normal and disease conditions. Moreover, it may be used to develop a targeted regulator of specific DNA-protein interaction.

  7. A recombinant triblock protein polymer with dispersant and binding properties for digital printing. (United States)

    Qi, Min; O'Brien, John P; Yang, Jianjun


    A structured triblock protein was designed to explore the potential of engineered peptides to function as high-performance ink dispersants and binders. The protein consists of three functional elements, including a pigment binding domain, a hydrophilic linker, and a printing surface binding domain. To construct such a chimeric protein, a carbon black binding peptide, FHENWPS, and a cellulose binding peptide, THKTSTQRLLAA, were identified from phage display libraries through biopanning, based on their strong and specific binding affinities to carbon black and cellulose. They were used as carbon black and cellulose binding domains, respectively, in a recombinant triblock protein. A linker sequence, PTPTPTPTPTPTPTPTPTPTPTP, was adapted from endoglucanase A of the bacterium Cellulomonas fimi, as a small, rigid, and hydrophilic interdomain linker. When incorporated into the triblock structure between the carbon black and cellulose binding sequences, the linker sufficiently isolates these two elements and allows dual binding activity. The structured triblock protein was shown to disperse carbon black particles and attach it to paper surfaces. Thus, the utility of structured proteins having useful dispersant and binding properties for digital printing inks was demonstrated.

  8. The role of Phe82 and Phe351 in auxin-induced substrate perception by TIR1 ubiquitin ligase: a novel insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Ge-Fei Hao

    Full Text Available It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1, a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA calculations, normal mode analysis, and hydrogen bond energy (HBE calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic