WorldWideScience

Sample records for auxiliary water systems

  1. Aging assessment of PWR [Pressurized Water Reactor] Auxiliary Feedwater Systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1988-01-01

    In support of the Nuclear Regulatory Commission's Nuclear Plant Aging Research (NPAR) Program, Oak Ridge National Laboratory is conducting a review of Pressurized Water Reactor Auxiliary Feedwater Systems. Two of the objectives of the NPAR Program are to identify failure modes and causes and identify methods to detect and track degradation. In Phase I of the Auxiliary Feedwater System study, a detailed review of system design and operating and surveillance practices at a reference plant is being conducted to determine failure modes and to provide an indication of the ability of current monitoring methods to detect system degradation. The extent to which current practices are contributing to aging and service wear related degradation is also being assessed. This paper provides a description of the study approach, examples of results, and some interim observations and conclusions. 1 fig., 1 tab

  2. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  3. Improvement of Equipment reliability for Auxiliary Feed Water System

    Energy Technology Data Exchange (ETDEWEB)

    Deok, Lee Sang; Kwan, Lee Yong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    According to AP913 ER) of INPO, Number of the event related to equipment is higher than others like external or human performance. In the top 25 systems, Auxiliary feed water system is the seventh highest among systems. AWFS consists of many component and complex system and Main Function of AFWS is to supply feedwater to the steam generators for the removal of heat from the RCS(Reactor Coolant System) in event the main feedwater system is unavailable following a transient or accident. Reliability of component means how well operate on demands and monitoring is necessary to keep track of condition of component. If component performance is lower than the required value, corrective action for failure mode should be done. The objective of this study is focused to improve of AF pump by adding the tasks of SHR(System Health Report) into the task of system engineer walkdown of PMT(Preventive Maintenance Template). Increasing the reliability of AF pump will contribute to improvement of reliability of AFWS. Based on operating history, there was high vibration of AF pump during performance test. In that case, there were a lot of maintenance works for normal operation of AF pump. Vibration problem related pump can't be detected by tasks of SE walkdown because it's not running during normal operation except for surveillance test. CHR(Component Health Report) of AF pump in AFWS can be made from necessary part which means monitoring and functional failure because problem of Stand-by pump can be covered by conducting monitoring and analysis of functional failure. To improve reliability of AF pump, walkdown of PMT and SHR should be conducted both in accordance with surveillance test frequency. Health of AF pump based on operation history can be verified first and then can find out which parts of pump are weak. Finally, weak part can be managed intensively and failure can be reduced according to SE walkdown. But this work can be risky and burdensome because all parts of

  4. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Amaya, Daniel; Carlevaris, Rodolfo; Patrignani, A.; Ramilo, L.; Santecchia, A.; Vindrola, C.

    2000-01-01

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100MWt, about 25MWe).CAREM design is based on light water integrated reactor with slightly enriched uranium.In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented.Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor

  5. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Amaya, Daniel; Carlevaris, Rodolfo; Patrignani, Alberto; Santecchia, Alberto; Vindrola, Carlos; Ramilo, Lucia B.

    2000-01-01

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100 M Wt, about 25 M We). CAREM design is based on light water integrated reactor with slightly enriched uranium. In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented. Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor. (author)

  6. Auxiliary systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1981-01-01

    Systems included under the heading ''Reactor Auxillary Systems'' are those immediately involved with the reactor operation. These include the systems for dosing and letdown of reactor coolant, as well as for the chemical dosing, purification and treatment of the reactor coolant and the cooling system in the controlled area. The ancillary systems are mainly responsible for liquid and gaseous treatment and the waste treatment for final storage. (orig.)

  7. Introduction to deaerator in auxiliary water supply system of nuclear power plant

    International Nuclear Information System (INIS)

    Dong Jianguo; Zhou Xia; Lei Yongxia

    2015-01-01

    The paper introduces the operation theory and thermal calculation and verification requirements for the deaerator in the auxiliary water supply system of nuclear power plant. In addition, it describes the key factors in terms of function, structure, design and fabrication of equipment. (authors)

  8. Operation auxiliary system (SAO)

    International Nuclear Information System (INIS)

    Lolich, J.; Santome, D.; Drexler, J.

    1990-01-01

    This work presents an auxiliary system for nuclear power plants operation (SAO). The development purpose consisted in a computing supervision system to be installed at different sites of a reactor, mainly in the control room. The inclusion of this system to a nuclear power plant minimizes the possibility of human error for the facility operation. (Author) [es

  9. Studying the dynamical characteristics of pumps in NPP unit auxiliary water system under operational conditions

    International Nuclear Information System (INIS)

    Belyaev, S.G.; Puzanov, A.I.; Belikov, V.P.; Dizik, B.S.

    1990-01-01

    Hydrodynamic loads appearing in the flow-through part of pump aggregates of the system of auxiliary water supply in NPP with variations in the operation modes are investigated. It is shown that during operation of centrifugal pumps the position of the mode on the pump characteristic plot must be controlled. When the mode point exceeds the limits of the working zone it results in a considerable increase of dynamic loads: pressure pulsation and vibration. As the flow rate increase the decrease in dynamic loads is recorded at low frequencies of about 2-4 Hz

  10. Assessment of a potential rapid condensation induced water hammer in a passive auxiliary feedwater system

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Byung Soo; Do, Kyu Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Moody, Frederick J. [General Electric (Retired), CA (United States)

    2012-10-15

    A passive auxiliary feedwater system (PAFS) which is incorporated in the APR+ system is a kind of closed natural circulation loop. The PAFS has no operating functions during normal plant operation, but it has a dedicated safety function of the residual heat removal following initiating events, including the unlikely event of the most limiting single failure occurring coincident with a loss of offsite power, when the feedwater system becomes inoperable or unavailable. Even in the unlikely event of a station blackout, the isolation valves can be opened either by DC power or manual operation and then the PAFS can also provide adequate condensate to the steam generator (SG). The PAFS piping in the vicinity of each of the two SGs is designed to minimize the potential for destructive water hammer during start up operation by setting the stroke time for full close or full open of the condensate isolation valves upon receipt of a passive auxiliary feedwater actuation signal. The temperature of the stagnant condensate water and its surrounding tubes and piping during the reactor normal operation modes may fall to the ambient temperature. A possible concern is the introduction of saturated steam into the PAFS recirculation pipe downstream of the PCHX in the beginning of the PAFS operation. Although the steam introduction rate is expected to be slow, a rapid condensation rate is expected due to the initial cold surrounding temperature in the pipe, which could result in a localized pressure reduction and the propagation of decompression and velocity disturbances into the condensate water leg, which might cause the sudden closure of check valves and associated water hammer. Thus, it is requisite for the licensing review of the PAFS design to confirm if destructive water hammers will not be produced due to such rapid condensation induced decompressions in the system. This paper addresses an assessment of the potential local decompressions which could result from the steam

  11. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  12. Reliability study of the auxiliary feed-water system of a pressurized water reactor by faults tree and Bayesian Network

    International Nuclear Information System (INIS)

    Lava, Deise Diana; Borges, Diogo da Silva; Guimarães, Antonio Cesar Ferreira; Moreira, Maria de Lourdes

    2017-01-01

    This paper aims to present a study of the reliability of the Auxiliary Feed-water System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10 -3 . (author)

  13. Reliability study of the auxiliary feed-water system of a pressurized water reactor by faults tree and Bayesian Network

    Energy Technology Data Exchange (ETDEWEB)

    Lava, Deise Diana; Borges, Diogo da Silva; Guimarães, Antonio Cesar Ferreira; Moreira, Maria de Lourdes, E-mail: deise_dy@hotmail.com, E-mail: diogosb@outlook.com, E-mail: tony@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper aims to present a study of the reliability of the Auxiliary Feed-water System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10{sup -3}. (author)

  14. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  15. Sea water take-up facility for cooling reactor auxiliary

    International Nuclear Information System (INIS)

    Numata, Noriko; Mizutani, Akira; Hirako, Shizuka; Uchiyama, Yuichi; Oda, Atsushi.

    1997-01-01

    The present invention provides an improvement of a cooling sea water take-up facility for cooling auxiliary equipments of nuclear power plant. Namely, an existent sea water take-up facility for cooling reactor auxiliary equipments has at least two circulation water systems and three independent sea water systems for cooling reactor auxiliary equipments. In this case, a communication water channel is disposed, which connects the three independent sea water systems for cooling reactor auxiliary equipments mutually by an opening/closing operation of a flow channel partitioning device. With such a constitution, even when any combination of two systems among the three circulation water systems is in inspection at the same time, one system for cooling the reactor auxiliary equipments can be kept operated, and one system is kept in a stand-by state by the communication water channel upon periodical inspection of water take-up facility for cooling the auxiliary equipments. As a result, the sea water take-up facility for cooling auxiliary equipments of the present invention have operation efficiency higher than that of a conventional case while keeping the function and safety at the same level as in the conventional case. (I.S.)

  16. Aging assessment of auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1989-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The study has reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results. 7 figs

  17. Lower Snake River Little Goose and Lower Granite Locks and Dams: Adult Fishway Systems Emergency Auxiliary Water Supply

    National Research Council Canada - National Science Library

    Wielick, Rolf

    2000-01-01

    The National Marine Fisheries Service (NMFS), Endangered Species Act, Biological Opinion issued March 2, 1995, require the US Army Corps of Engineers to develop an emergency auxiliary water supply (EAWS...

  18. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  19. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  20. Auxiliary feedwater system aging study

    International Nuclear Information System (INIS)

    Kueck, J.D.

    1992-01-01

    The Phase 1 Auxiliary Feedwater (AFW) System Aging Study, NUREG/CR-5404 V1, focused on how and to what extent the various AFW system component types fail, how the failures have been and can be detected, and on the value of current testing requirements and practices. This follow-on study, which will be provided in full in NUREG/CR-5404 V2, provides a closure to the Phase 1 Study. For each of the component types and for the various sources of component failure identified in the Phase 1 Study, the methods of failure detection were designated and tabulated and the following findings became evident: Instrumentation and Control (I and C) related failures dominated the group of failures that were detected during demand conditions; many of the potential failure sources not detectable by the current monitoring practices were related to the I and C portion of the system; some component failure modes are actually aggravated by conventional test methods; and several important system functions did not undergo any function verification test. The goal of this follow-on study was to categorize and evaluate the deficiencies in testing identified by Phase 1 and to make specific recommendations for corrective action. In addition, this study presents discussions of alternate, state-of-the-art test methods, and provides a proposed Auxiliary Feedwater Pump test at normal operating pressure which should do much to verify system operability while eliminating degradation

  1. Support on water chemistry and processes for nuclear power plant auxiliary systems

    International Nuclear Information System (INIS)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B.; Allemandi, W.; Fernandez, A.N.; Ovando, L.

    2002-01-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D 2 O/H 2 O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D 2 O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  2. Support on water chemistry and processes for nuclear power plant auxiliary systems

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B. [Unidad de Actividad Quimica, Gcia. Centro Atomico Constituyentes, Comision Nacional de Energia, Buenos Aires (Argentina); Allemandi, W.; Fernandez, A.N.; Ovando, L. [Central Nuclear Embalse, Nucleoelectrica Argentina S.A. (Argentina)

    2002-07-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D{sub 2}O/H{sub 2}O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D{sub 2}O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  3. Specific features of auxiliary water supply at underground NPPs

    International Nuclear Information System (INIS)

    Pergamenshchik, B.K.; Pavlov, A.S.

    1991-01-01

    Specific features of auxiliary water supply systems for underground NPPs related to peculiarities of NPP basis equipment arrangement, are considered. Circulation water supply scheme, in which water cooling storage basin (cooling towers) with operational area corresponding to NPP power is on the surface and has traditional design, is proposed. Sufficiently high efficiency of the arrangement proposed is proved

  4. Auxiliary feedwater system aging study

    International Nuclear Information System (INIS)

    Kueck, J.D.

    1993-07-01

    This report documents the results of a Phase I follow-on study of the Auxiliary Feedwater (AFW) System that has been conducted for the US Regulatory Commission's Nuclear Plant Aging research Program. The Phase I study found a number of significant AFW System functions that are not being adequately tested by conventional test methods and some that are actually being degraded by conventional testing. Thus, it was decided that this follow-on study would focus on these testing omissions nd equipment degradation. The deficiencies in current monitoring and operating practice are categorized and evaluated. Areas of component degradation caused by current practice are discussed. Recommendations are made for improved diagnostic methods and test procedures

  5. Auxiliary reactor for a hydrocarbon reforming system

    Science.gov (United States)

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  6. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  7. Operating experiences and degradation detection for auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.; Farmer, W.S.

    1992-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The results of the study are documented in NUREG/CR-5404, Vol. 1, Auxiliary Feedwater System Aging Study. The study reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results

  8. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  9. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  10. 30 CFR 57.8529 - Auxiliary fan systems

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fan systems 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems When auxiliary fan systems are used, such systems shall...

  11. System Study: Auxiliary Feedwater 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  12. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system

    International Nuclear Information System (INIS)

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport [sr

  13. Comparative Studies of the Operation Method of Solar Energy Water Heating System with Auxiliary Heat Pump Heater%热泵辅助供热太阳能热水系统运行模式对比分析

    Institute of Scientific and Technical Information of China (English)

    林辩启; 罗会龙; 王浩; 田盼雨

    2015-01-01

    太阳能热水系统与热泵辅助供热合理结合可取长补短,有效降低建筑能耗。简要概述了空气源热泵、水源热泵、地源热泵辅助供热太阳能热水系统的结构形式及其运行模式。在此基础上,对比分析了热泵辅助供热太阳能热水系统各种典型运行模式的特点及其适用的应用环境。%The appropriate combination of solar water heating system and heat pump auxiliary heating is an effective way to reduce the building energy consumption. The structure and operation method of solar water heating system with different auxiliary heating, such as air-source heat pump, water-source heat pump, and soil-source heat pump, were introduced briefly. The characteristics of all kinds of solar water heating system with auxiliary heating were compared and analyzed. The suitable application environment of solar water heating system with auxiliary heating was also presented.

  14. Major factors in critical equipment reliability - Auxiliary systems; The development of an auxiliary system

    International Nuclear Information System (INIS)

    Forsthoffer, W.E.

    1992-01-01

    In this article, the author details the development of an actual auxiliary system in order to fully understand the function of each major component and how it contributes to the total operation and reliability of the system. Only after the function of an auxiliary system is thoroughly understood, can one proceed to discuss specifications, design audits, testing, operation and preventive maintenance. The application selected will be to develop a pressurized lubrication and steam turbine control oil system for the critical equipment unit. This example was selected since many readers will be familiar with this type and because it provides a good foundation towards understanding fluid sealing systems. In the exercise that follow, he will define the system requirements and determine the system parameters. This information will then be used for component sizing

  15. Auxiliary water supply device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In the device of the present invention, a cooling condensation means is disposed to a steam discharge channel of a turbine for driving pumps to directly return condensates to the reactor, so that the temperature of the suppression pool water is not elevated. Namely, the cooling condensation means for discharged steams is disposed to the discharge channel of the turbine. The condensate channel from the cooling condensation means is connected to a sucking side of the turbine driving pump. With such a constitution, when the reactor is isolated from a main steam system, reactor scram is conducted. Although the reactor water level is lowered by the reactor scram, the lowering of the reactor water level is prevented by supplementing cooling water by the turbine driving pump using steams generated in the reactor as a power source. The discharged steams after driving the turbine are cooled and condensated by the cooling condensation means by way of the discharge channel and returned to the reactor again by way of the condensate channel. With such procedures, since the temperature of suppression pool water is not elevated, there is no need to operate other cooling systems. In addition, auxiliary water can be supplied for a long period of time. (I.S.)

  16. Auxiliary accelerating system for TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Zach, M.; Fong, K.; Laxdal, R.; Mackenzie, G.H.; Pacak, V.; Pearson, J.; Richardson, J.R.; Stanford, G.; Worsham, R.

    1990-06-01

    A 92 MHz auxiliary accelerating cavity has been designed and manufactured for installation in the TRIUMF cyclotron. Operating at the fourth harmonic of the RF with a peak voltage of 150 kV, it almost doubles the present energy gain per turn in the 400-500 MeV range, and reduces by ∼50% the stripping loss of the H - beam. This significant improvement will allow a substantial increase in the extracted current above the present routine level of 150μA while maintaining the same levels of residual radioactivity. The system is completed and being commissioned. A description of the design and commissioning procedures is presented, and results of beam tests given. (Author) 7 refs., 5 figs

  17. Energy consumption of auxiliary systems of electric cars

    Directory of Open Access Journals (Sweden)

    Evtimov Ivan

    2017-01-01

    Full Text Available The paper analyzes the power demand of the auxiliary systems of electric cars. On the basis of existing electric cars an analysis of energy consumption of different auxiliary systems is done. As a result possibilities for rational use of these systems have been proposed, which can increase the mileage per one charge of the battery.

  18. PWR auxiliary systems, safety and emergency systems, accident analysis, operation

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1976-01-01

    The author presents a description of PWR auxiliary systems like volume control, boric acid control, coolant purification, -degassing, -storage and -treatment system and waste processing systems. Residual heat removal systems, emergency systems and containment designs are discussed. As an accident analysis the author gives a survey over malfunctions and disturbances in the field of reactor operations. (TK) [de

  19. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  20. Decontamination of the reactor pressure vessel and further internals and auxiliary systems in the German boiling water reactor Isar-1; Dekontamination des RDB inkl. der Einbauten wie Dampftrockner und Wasserabscheider sowie der angeschlossenen Hilfssysteme im deutschen Siedewasserreaktor ISAR 1

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael; Sempere Belda, Luis; Basu, Ashim; Topf, Christian [AREVA GmbH, Erlangen (Germany). Abt. Chemistry Services; Erbacher, Thomas; Hiermer, Thomas; Schnurr, Bernhard; Appeldorn, Thomas van [E.ON Kernkraft GmbH, Kernkraftwerk ISAR, Essenbach (Germany). Abt. Maschinentechnik; Volkmann, Christian [ESG Engineering Services GmbH, Greifswald (Germany)

    2015-12-15

    The German nuclear power plant ISAR 1 (KKI 1), a 878 MWe boiling water reactor of KWU design, was shut down on March 17{sup th}, 2011. With the objective to minimize the plants activity inventory accompanied by the reduction of contact dose rates of systems and components the project 'decontamination of the RPV incl. steam dryer and water separator and the connected auxiliary systems' was implemented in the first quarter of 2015. One major focus within the project was the specific in-situ decontamination of the steam dryer.

  1. Progress on radio frequency auxiliary heating system designs in ITER

    International Nuclear Information System (INIS)

    Makowski, M.; Bosia, G.; Elio, F.

    1996-09-01

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined

  2. Seismic Qualification of Auxiliary Feed Water Control Valve

    International Nuclear Information System (INIS)

    Hwang, K. M.; Jang, J. B.; Kim, J. K.; Suh, Y. P.

    2006-01-01

    Although domestic nuclear power industry has almost accomplished technical independence, Auxiliary Feed Water Control Valve (AFWCV) is still depending on import. In order to jump to advanced nation in nuclear power industry, it is very important to achieve technical independence in designing and manufacturing AFWCV. At last, AFWCV is self-manufactured using the domestic technology under the financial support of the government. Therefore, the seismic qualification is carried out to verify the safety and operability of AFWCV against the earthquake in this study

  3. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  4. Development of KALIMER auxiliary sodium and cover gas management system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Woon; Hwang, Sung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author).

  5. Simulation of a passive auxiliary feedwater system with TRACE5

    Energy Technology Data Exchange (ETDEWEB)

    Lorduy, María; Gallardo, Sergio; Verdú, Gumersindo, E-mail: maloral@upv.es, E-mail: sergalbe@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), València (Spain)

    2017-07-01

    The study of the nuclear power plant accidents occurred in recent decades, as well as the probabilistic risk assessment carried out for this type of facility, present human error as one of the main contingency factors. For this reason, the design and development of generation III, III+ and IV reactors, which include inherent and passive safety systems, have been promoted. In this work, a TRACE5 model of ATLAS (Advanced Thermal- Hydraulic Test Loop for Accident Simulation) is used to reproduce an accidental scenario consisting in a prolonged Station BlackOut (SBO). In particular, the A1.2 test of the OECD-ATLAS project is analyzed, whose purpose is to study the primary system cooling by means of the water supply to one of the steam generators from a Passive Auxiliary Feedwater System (PAFS). This safety feature prevents the loss of secondary system inventory by means of the steam condensation and its recirculation. Thus, the conservation of a heat sink allows the natural circulation flow rate until restoring stable conditions. For the reproduction of the test, an ATLAS model has been adapted to the experiment conditions, and a PAFS has been incorporated. >From the simulation test results, the main thermal-hydraulic variables (pressure, flow rates, collapsed water level and temperature) are analyzed in the different circuits, contrasting them with experimental data series. As a conclusion, the work shows the TRACE5 code capability to correctly simulate the behavior of a passive feedwater system. (author)

  6. Probabilistic cloning with supplementary information contained in the quantum states of two auxiliary systems

    International Nuclear Information System (INIS)

    Li, Lvjun; Qiu, Daowen

    2007-01-01

    In probabilistic cloning with two auxiliary systems, we consider and compare three different protocols for the success probabilities of cloning. We show that, in certain circumstances, it may increase the success probability to add an auxiliary system to the probabilistic cloning machine having one auxiliary system, but we always can find another cloning machine with one auxiliary system having the same success probability as that with two auxiliary systems

  7. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  8. Specifying the auxiliary heating system on TFCX

    International Nuclear Information System (INIS)

    Metzler, D.H.

    1983-01-01

    This paper reviews the status of heating systems for the TFCX-S (all superconducting coil) and TFCX-H (hybrid coil) options. Three systems were defined; preheating (electron), current drive, and bulk (ion) heating. Application of systems engineering techniques facilitated fruitful discussions of requirements and their impact on equipment between physicists and engineers. A low-cost, flexible combination of systems allows plasma experiments using all rf startup and current drive

  9. Auxiliary cooling device for power plant

    International Nuclear Information System (INIS)

    Yamanoi, Kozo.

    1996-01-01

    An auxiliary cooling sea water pipeline for pumping up cooling sea water, an auxiliary cooling sea water pipeline and a primary side of an auxiliary cooling heat exchanger are connected between a sea water taking vessel and a sea water discharge pit. An auxiliary cooling water pump is connected to an auxiliary water cooling pipeline on the second side of the auxiliary cooling heat exchanger. The auxiliary cooling water pipeline is connected with each of auxiliary equipments of a reactor system and each of auxiliary equipments of the turbine system connected to a turbine auxiliary cooling water pipeline in parallel. During ordinary operation of the reactor, heat exchange for each of the auxiliary equipments of the reactor and heat exchange for each of the equipments of the turbine system are conducted simultaneously. Since most portions of the cooling devices of each of the auxiliary equipments of the reactor system and each of the auxiliary equipments of the turbine system can be used in common, the operation efficiency of the cooling device is improved. In addition, the space for the pipelines and the cost for the equipments can be reduced. (I.N.)

  10. Auxiliary buildings

    International Nuclear Information System (INIS)

    Lakner, I.; Lestyan, E.

    1979-01-01

    The nuclear power station represents a complicated and a particular industrial project. Consequently, the design of the auxiliary buildings serving the power station (offices, kitchen, refreshment room, workshops, depots, water treatment plant building, boiler houses, etc.) requires more attention than usual. This chapter gives a short survey of the auxiliary buildings already completed and discusses the problems of their design, location and structure. (author)

  11. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  12. Energic, Exergic, Exergo‐economic investigation and optimization of auxiliary cooling system (ACS equipped with compression refrigerating system (CRS

    Directory of Open Access Journals (Sweden)

    Omid Karimi Sadaghiyani

    2017-09-01

    Full Text Available Heller main cooling tower as air-cooled heat exchanger is used in the combined cycle power plants (CCPP to reduce the temperature of condenser. In extreme summer heat, the efficiency of the cooling tower is reduced and it lessens performance of Steam Turbine Generation (STG unit of Combined Cycle Power Plant (CCPP. Thus, the auxiliary cooling system (ACS is equipped with compression refrigerating system (CRS. This auxiliary system is linked with the Heller main cooling tower and improves the performance of power plant. In other words, this auxiliary system increases the generated power of STG unit of CCPP by decreasing the temperature of returning water from cooling tower Therefore, in the first step, the mentioned auxiliary cooling system (ACS as a heat exchanger and compression refrigerating system (CRS have been designed via ASPEN HTFS and EES code respectively. In order to validate their results, these two systems have been built and theirs experimentally obtained data have been compared with ASPEN and EES results. There are good agreements between results. After that, exergic and exergo-economic analysis of designed systems have been carried out. Finally, the compression refrigerating system (CRS has been optimized via Genetic Algorithm (GA. Increasing in exergy efficiency (ε from 14.23% up to 36.12% and decreasing the total cost rate (ĊSystem from 378.2 ($/h to 308.2 ($/h are as results of multi-objective optimization.

  13. Entanglement Capacity of Two-Qubit Unitary Operator with the Help of Auxiliary System

    International Nuclear Information System (INIS)

    Hu Baolin; Di Yaomin

    2007-01-01

    The entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α 1 = α 2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α 3 may play active role to the entanglement capacity when auxiliary systems are allowed.

  14. Experimental fast reactor JOYO MK-III functional test. Primary auxiliary cooling system test

    International Nuclear Information System (INIS)

    Karube, Koji; Akagi, Shinji; Terano, Toshihiro; Onuki, Osamu; Ito, Hideaki; Aoki, Hiroshi; Odo, Toshihiro

    2004-03-01

    This paper describes the results of primary auxiliary cooling system, which were done as a part of JOYO MK-III function test. The aim of the tests was to confirm the operational performance of primary auxiliary EMP and the protection system including siphon breaker of primary auxiliary cooling system. The items of the tests were: (Test No.): (Test item). 1) SKS-117: EMP start up test. 2) SKS-118-1: EMP start up test when pony motor running. 3) SKS-121: Function test of siphon breaker. The results of the tests satisfied the required performance, and demonstrated successful operation of primary auxiliary cooling system. (author)

  15. Analysis of steam-generator tube-rupture events combined with auxiliary-feedwater control-system failure for Three Mile Island-Unit 1 and Zion-Unit 1 pressurized water reactors

    International Nuclear Information System (INIS)

    Nassersharif, B.

    1986-01-01

    A steam-generator tube-rupture (SGTR) event combined with loss of all offsite alternating-current power and failure of the auxiliary-feedwater (AFW) control system has been investigated for the Three Mile Island-Unit 1 (TMI-1) and Zion-Unit 1 (Zion-1) pressurized water reactors. The Transient Reactor Analysis Code was used to simulate the accident sequence for each plant. The objectives of the study were to predict the plant transient response with respect to tube-rupture flow termination, extent of steam generator overfill, and thermal-hydraulic conditions in the steam lines. Two transient cases were calculated: (1) a TMI-1 SGTR and runaway-AFW transient, and (2) a Zion-1 SGTR and runaway-AFW transient. Operator actions terminated the tube-rupture flow by 1342 s (22.4 min) and 1440 s (24.0 min) for TMI-1 and Zion-1, respectively, but AFW injection was continued. The damaged steam generator (DSG) overfilled by 1273 s (21.2 min) for the TMI-1 calculation and by 1604 s (26.7 min) for the Zion-1 calculation. The DSG steam lines were completely filled by 1500 s (25 min) and 2000 s (33.3 min) for TMI-1 and Zion-1, respectively. The maximum subcooling in the steam lines was approx.63 K (approx.113 0 F) for TMI-1 and approx.44 K (approx.80 0 F) for Zion-1

  16. Chemistry and radiochemistry strategies supported by FA3-EPRTM and UK-EPRTM auxiliary systems: performances and control

    International Nuclear Information System (INIS)

    Tigeras, Arancha; Fourment, Pierre; Elgallaf; Anas; Chupin, Antoine; Fauvel, Nicola

    2012-09-01

    The design and the operation of auxiliary systems play an essential role in: - the preservation of the primary circuit integrity, - the prevention of hydrogen risk, - the control of the boron concentration and radioactivity, - the application of pH and zinc programmes. While the source term generation mainly depends on the primary circuit material and primary coolant chemistry conditioning, the source term spreading is directly linked to the auxiliary systems treatment and performances. Indeed, the auxiliary systems regulate the boron, hydrogen, lithium and zinc injection as well as the countermeasures to ensure the reactivity control and the hazardous H 2 /O 2 mixture prevention. The main principles governing the chemistry and radiochemistry in the auxiliary systems are based on the application of: - Design features for hydrogen and boron management. - Criteria for selecting the appropriate material of each system considering the functional requirements and the source term build up reduction. - Measures for minimizing the activity deposition on the surfaces of components and pipings. - Adequate and reliable systems of purification for reducing the accumulation of liquid/gas radioactivity and impurities in the circuits and for optimizing the waste production. - Chemistry program for limiting the material corrosion of auxiliary systems and preventing the source term transfer to the core. - Appropriate sampling locations and equipment to monitor the chemistry and radiochemistry parameters. This paper describes the operation of the main auxiliary systems of FLAMANVILLE3-EPR TM and UK-EPR- TM participating in the chemistry/radiochemistry management such as Chemical and Volume Control System (CVCS), Reactor Borated Water Make-up System (RBWMS), Coolant Treatment System (CTS), Gaseous Waste Processing System (GWPS), Fuel Pool Purification System (PTR [FPPS/FPCS]) also. The performances requested to these systems and the chemistry programs applied to them are discussed

  17. Auxiliary equipment for cooling water in a reactor

    International Nuclear Information System (INIS)

    Konno, Yasuhiro; Sakairi, Toshiaki.

    1975-01-01

    Object: To effectively make use of pressure energy of reactor water, which has heretofore been discarded, to enable supply of emergency power supply of high reliability and to prevent spreading of environmental contamination. Structure: Sea water pumped by a sea water supply pump is fed to a heat exchanger. Reactor water carried through piping on the side to be cooled is removed in heat by the heat exchanger to be cooled and returned, and then again returned to the reactor. On the other hand, sea water heated by the heat exchanger is fed to a water wheel to drive the water wheel, after which it is discharged into a discharging path. A generator may be directly connected to the water wheel to use the electricity generated by the generator as the emergency power source. (Kamimura, M.)

  18. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  19. Steady state flow evaluations for passive auxiliary feedwater system of APR

    International Nuclear Information System (INIS)

    Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho

    2012-01-01

    This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results

  20. A probabilistic evaluation of the Shearon Harris Nuclear Power Plant auxiliary feedwater isolation system

    International Nuclear Information System (INIS)

    Anoba, R.C.

    1989-01-01

    This paper reports on a fault tree approach that was used to evaluate the safety significance of modifying the Shearon Harris Auxiliary Feedwater Isolation System. The design modification was a result of on-site reviews which identified a single failure in the Auxiliary Feedwater Isolation circuitry

  1. Auxiliary System Load Schemes in Large Thermal and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kuzle, I.; Bosnjak, D.; Pandzic, H.

    2010-01-01

    Uninterrupted auxiliary system power supply in large power plants is a key factor for normal operation, transient states, start-ups and shutdowns and particularly during fault conditions. Therefore, there are many challenges in designing the main electrical system as well as the auxiliary systems power supply. Depending upon the type of fuel used and the environmental control system required, a thermal power plant may consume as much as 10% of its total generation for auxiliary power, while a nuclear power plant may require only 4 - 6% auxiliaries. In general, the larger the power generating plant, the higher the voltage selected for the AC auxiliary electric system. Most stations in the 75 to 500 MW range utilize 4,2 kV as the base auxiliary system voltage. Large generating stations 500 - 1000 MW and more use voltage levels of 6,9 kV and more. Some single dedicated loads such as electric driven boiler feed pumps are supplied ba a 13,8 kV bus. While designing the auxiliary electric system, the following areas must be considered: motor starting requirements, voltage regulation requirements, short-circuit duty requirements, economic considerations, reliability and alternate sources. Auxiliary power supply can't be completely generalized and each situation should be studied on its own merits to determine the optimal solution. Naturally, nuclear power plants have more reliability requirements and safety design criteria. Main coolant-pump power supply and continuity of service to other vital loads deserve special attention. This paper presents an overview of some up-to-date power plant auxiliary load system concepts. The main types of auxiliary loads are described and the electric diagrams of the modern auxiliary system supply concepts are given. Various alternative sources of auxiliary electrical supply are considered, the advantages and disadvantages of these are compared and proposals are made for high voltage distribution systems around the thermal and nuclear plant

  2. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  3. Performance evaluation of a state-of-the-art solar air-heating system with auxiliary heat pump

    Science.gov (United States)

    1980-01-01

    The system in Solar House 2 consists of 57.9 sq. m. of Solaron Series 300 Collectors, 10.3 cu. m. of pebble bed storage, domestic water preheating capability and a Carrier air-to-air heat pump as an auxiliary heater. Although the control subsystem was specially constructed to facilitate experimental changes and data reduction, the balance of the solar system was assembled with off-the-shelf components. Since all components of the system are commercially available the system is considered to be a state of the art solar air-heating system. The system design is one that is recommended for residential and small office buildings.

  4. Single-tube condensation experiment in Passive Auxiliary Feedwater System of APR1400+

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Wook; No, Hee Cheon; Yun, Bong Yo; Jeon, Byong Guk [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Conventional Korean nuclear power plants, Advanced Power Reactors (APR), are characterized by an active cooling system. However, Active cooling system may not prevent significant damage without any AC power source available for its operation as vividly illustrated through the recent Fukushima incident. In the APR1400+ to be designed, an independent passive cooling system was added in order to overcome the aforementioned shortcomings. In the Passive Auxiliary Feedwater System (PAFS), gravity force and density difference between steam and water are used. The system comprises of 240 condensation tubes to efficiently remove decay heat. Before applying the PAFS to APR1400+, the system's safety and heat removal performance must be verified. The present study experimentally evaluates the heat removal performance of a single tube in the PAFS. The objectives of SCOP (Single-tube Condensation experiment facility of PAFS) are the evaluation of the heat removal performance in the tube of the PAFS and database construction under various tube designs and test conditions. Reaching these objectives, we developed advanced measurement techniques for the amount of moisture, heat flux, and water film thickness.

  5. Aiming of Kirkpatrick-Baez microscope based on auxiliary optical system

    International Nuclear Information System (INIS)

    Huang Shengling; Mu Baozhong; Yi Shengzhen; Wang Xin; Wang Zhanshan; Ding Yongkun; Miao Wenyong; Dong Jianjun

    2009-01-01

    An auxiliary optical system has been designed, which can provide precise positioning for aiming Kirkpatrick-Baez (KB) microscope object location. An 8 keV X-ray imaging system by KB microscope with periodic multilayer films has been designed. The field of view and depth of field in the resolution of 5 μm are got, and then the corresponding point and depth of field in diagnostic experiments are calculated. Based on the object-image relations and precision of the KB microscope, an auxiliary visible light imaging system is designed and X-ray imaging experiments are performed, which can achieve equivalent aiming between the visible imaging system and the KB microscope. The results show that ±20 μm vertical axis plane and ±300 μm axial accuracy are achieved through the auxiliary optical path, which can meet the object point positioning requirements of the KB microscope. (authors)

  6. Review of the Shearon Harris Unit 1 auxiliary feedwater system reliability analysis

    International Nuclear Information System (INIS)

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1986-02-01

    This report presents the results of a review of the Auxiliary Feedwater System Reliability Analysis for the Shearon Harris Nuclear Power Plant (SHNPP) Unit 1. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125-V dc/120-V ac power. The scope, methodology, and failure data are prescribed by NUREG-0611 for other Westinghouse plants

  7. Computer determination of event maps with application to auxiliary supply systems

    International Nuclear Information System (INIS)

    Wredenberg, L.; Billinton, R.

    1975-01-01

    A method of evaluating the reliability of sequential operations in systems containing standby and alternate supply facilities is presented. The method is based upon the use of a digital computer for automatic development of event maps. The technique is illustrated by application to a nuclear power plant auxiliary supply system. (author)

  8. Reliability analysis of the auxiliary feedwater system; Analiza zanesljivosti sistema pomozne napajalne vode

    Energy Technology Data Exchange (ETDEWEB)

    Susnik, J; Dusic, M [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1984-07-01

    The reliability of a NPP auxiliary feedwater system is evaluated using the fault tree analysis. The system is analyzed during the time interval 0 to 6 hours with the computer package program PREP/KITT which is described in more detail. (author)

  9. Reduction of residual gas in a sputtering system by auxiliary sputter of rare-earth metal

    International Nuclear Information System (INIS)

    Li Dejie

    2002-01-01

    In film deposition by sputtering, the oxidation and nitrification of the sputtered material lead to degradation of film quality, particularly with respect to metal sulfide films. We propose to use auxiliary sputtering as a method to produce a fresh film of rare-earth metal, usually dysprosium (Dy), that absorbs the active gases in a sputtering system, greatly reducing the background pressure and protecting the film from oxidation and nitrification effectively. The influence of the auxiliary sputtering power consumption, sputtering time, and medium gas pressure on the background pressure in the vacuum chamber is investigated in detail. If the auxiliary sputtering power exceeds 120 W and the sputtering time is more than 4 min, the background pressure is only one fourth of the ultimate pressure pumped by an oil diffusion pump. The absorption activity of the sputtered Dy film continues at least an hour after completion of the auxiliary sputter. Applied to film deposition of Ti and ZnS, this technique has been proven to be effective. For the Ti film, the total content of N and O is reduced from 45% to 20% when the auxiliary sputtering power of Dy is 120 W, and the sputtering time is 20 min. In the case of ZnS, the content of O is reduced from 8% to 2%

  10. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    Science.gov (United States)

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  11. Progress in the integration of the ITER plant systems in auxiliary buildings

    International Nuclear Information System (INIS)

    Kotamäki, M.; Cordier, J.-J.; Kuehn, I.; Perrin, J.-L.; Sweeney, S.; Villedary, B.

    2016-01-01

    Highlights: • Usage of 3D CAD model in ITER configuration management presented. • 3D CAD models efficient in configuration and interface management. • Costly and schedule delaying changes avoided with proper interface management. • ITER buildings construction progressing. - Abstract: The ITER Tokamak machine is located in the center of Tokamak complex buildings consisting of Tokamak, Diagnostic, and Tritium buildings. Around the Tokamak complex there are over 30 auxiliary buildings housing various plant systems serving the Tokamak machine either directly or indirectly. The layout and space allocation of each auxiliary building and plant systems housed by the building are represented in the so-called Configuration Management Models (CMM). These are light 3D CAD models that define the required space envelope and the physical interfaces between the systems and the buildings and in-between the systems. The paper describes the CMM and interface management processes of the ITER auxiliary buildings and plant systems, and discusses the preparations for the plant installation phase. In addition, the current baseline configuration of the ITER plant systems in auxiliary buildings is described together with the recent developments in the configuration of different systems, as well as the current status of the construction of the buildings.

  12. Progress in the integration of the ITER plant systems in auxiliary buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kotamäki, M., E-mail: miikka.kotamaki@iter.org; Cordier, J.-J.; Kuehn, I.; Perrin, J.-L.; Sweeney, S.; Villedary, B.

    2016-11-01

    Highlights: • Usage of 3D CAD model in ITER configuration management presented. • 3D CAD models efficient in configuration and interface management. • Costly and schedule delaying changes avoided with proper interface management. • ITER buildings construction progressing. - Abstract: The ITER Tokamak machine is located in the center of Tokamak complex buildings consisting of Tokamak, Diagnostic, and Tritium buildings. Around the Tokamak complex there are over 30 auxiliary buildings housing various plant systems serving the Tokamak machine either directly or indirectly. The layout and space allocation of each auxiliary building and plant systems housed by the building are represented in the so-called Configuration Management Models (CMM). These are light 3D CAD models that define the required space envelope and the physical interfaces between the systems and the buildings and in-between the systems. The paper describes the CMM and interface management processes of the ITER auxiliary buildings and plant systems, and discusses the preparations for the plant installation phase. In addition, the current baseline configuration of the ITER plant systems in auxiliary buildings is described together with the recent developments in the configuration of different systems, as well as the current status of the construction of the buildings.

  13. Development of Intelligent Auxiliary System for Customized Physical Fitness and Healthcare

    Directory of Open Access Journals (Sweden)

    Huang Chung-Chi

    2016-01-01

    Full Text Available With the advent of global high-tech industry and commerce era, the sedentary reduces opportunities of physical activity. And physical fitness and health of people is getting worse and worse. At present, the shortage of physical fitness instructors greatly affected the effectiveness of health promotion. Therefore, it is necessary to develop an auxiliary system which can reduce the workload of instructors and enhance physical fitness and health for people. But current general physical fitness and healthcare system is hard to meet individualized needs. The main purpose of this research is to develop an intelligent auxiliary system for customized physical fitness and healthcare. It records all processes of physical fitness and healthcare system by wireless sensors network. The results of intelligent auxiliary systems for customized physical fitness and healthcare will be generated by fuzzy logic Inference. It will improve individualized physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent auxiliary system for customized physical fitness and healthcare.

  14. Preliminary report on the development of rf auxiliary heating systems for TEPR-1

    International Nuclear Information System (INIS)

    Reed, B.W.; Bowen, O.N.; Hill, H.M.; Lawson, J.Q.; Newman, W.G.; Sivo, A.J.

    1977-12-01

    Conceptual designs for 50 MW (expandable to 100 MW) ICRF and LHRF heating systems suitable for auxiliary heating of the TEPR-1 plasma to ignition temperatures are presented. Engineering milestones are enumerated and the extensions of current technology required for successful completion of the project are identified

  15. Auxiliary feedwater system risk-based inspection guide for the North Anna nuclear power plants

    International Nuclear Information System (INIS)

    Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1992-10-01

    In a study sponsored by the US Nuclear regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. North Anna was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the North Anna plant

  16. Auxiliary feedwater system risk-based inspection guide for the Palo Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Sloan, J.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Palo Verde was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Palo Verde plants

  17. Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1994-05-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant

  18. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant

  19. Auxiliary feedwater system risk-based inspection guide for the Maine Yankee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gore, B.F.; Vo, T.V.; Moffitt, N.E.; Bumgardner, J.D.

    1992-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. The information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Maine Yankee was selected as one of a series of plants for study. ne product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Maine Yankee plant

  20. Auxiliary feedwater system risk-based inspection guide for the Byron and Braidwood nuclear power plants

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1991-07-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Byron and Braidwood were selected for the fourth study in this program. The produce of this effort is a prioritized listing of AFW failures which have occurred at the plants and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Byron/Braidwood plants. 23 refs., 1 fig., 1 tab

  1. Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V.; Garner, L.W.

    1993-08-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant

  2. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Vehec, T.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant

  3. Auxiliary feedwater system risk-based inspection guide for the Ginna Nuclear Power Plant

    International Nuclear Information System (INIS)

    Pugh, R.; Gore, B.F.; Vo, T.V.; Moffitt, N.E.

    1991-09-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Ginna was selected as the eighth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Ginna plant. 23 refs., 1 fig., 1 tab

  4. An optimal power management system for a regenerative auxiliary power system for delivery refrigerator trucks

    International Nuclear Information System (INIS)

    Mohagheghi Fard, Soheil; Khajepour, Amir

    2016-01-01

    Highlights: • A new anti-idling system for refrigerator trucks is proposed. • This system enables regenerative braking. • An innovative two-level controller is proposed for the power management system. • A fast dynamic programming technique to find real-time SOC trajectory is proposed. • In addition to idling elimination, this system reduces fuel consumption. - Abstract: Engine idling of refrigerator trucks during loading and unloading contributes to greenhouse gas emissions due to their increased fuel consumption. This paper proposes a new anti-idling system that uses two sources of power, battery and engine-driven generator, to run the compressor of the refrigeration system. Therefore, idling can be eliminated because the engine is turned OFF and the battery supplies auxiliary power when the vehicle is stopped for loading or unloading. This system also takes advantage of regenerative braking for increased fuel savings. The power management of this system needs to satisfy two requirements: it must minimize fuel consumption in the whole cycle and must ensure that the battery has enough energy for powering the refrigeration system when the engine is OFF. To meet these objectives, a two-level controller is proposed. In the higher level of this controller, a fast dynamic programming technique that utilizes extracted statistical features of drive and duty cycles of a refrigerator truck is used to find suboptimal values of the initial and final SOC of any two consecutive loading/unloading stops. The lower level of the controller employs an adaptive equivalent fuel consumption minimization (A-ECMS) to determine the split ratio of auxiliary power between the generator and battery for each segment with initial and final SOC obtained by the high-level controller. The simulation results confirm that this new system can eliminate idling of refrigerator trucks and reduce their fuel consumption noticeably such that the cost of replacing components is recouped in a

  5. Common-cause failure analysis of McGuire Unit 2 auxiliary feedwater system

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Fowler, R.D.; Summitt, R.L.; Logan, B.W.

    1982-01-01

    A powerful method for qualitative common cause failure analysis (CCFA) of nuclear power plant systems was developed by EG and G Idaho at the Idaho National Engineering Laboratory. As a cooperative project to demonstrate and evaluate the usefulness of the method, the Duke Power Company agreed to allow a CCFA of the auxiliary feedwater system (AFWS) in their McGuire Nuclear Station Unit 2. The results of the CCFA are the subject of this discussion

  6. Advance monitoring of turbine generators and auxiliary systems

    International Nuclear Information System (INIS)

    Bloemers, D.

    2005-01-01

    The STUDIS turbine generator diagnosing system has been designed for diagnosing and early fault detection as a prerequisite for status-dependent preventive maintenance. Based on the data collected in the monitoring part, which are gathered continously, checked extensively and compressed any deviations from normal behavior as well as potential defects are detected and reported in an expert system. In addition, STUDIS can also be used as a mobile system for problem analysis. STUDIS is not meant to replace experts, but is able to relieve them of routine evaluations of defects whose causes and effects as well as symptoms are known, and to make their work more effective. The advanced operating architecture allows unkilled users to detect familiar faults and defects quickly and respond promptly. Experts will find an extensive toolbox above all for complex analyses of malfunctions. The point of departure for operating staff and experts alike is the so-called ''magic eye'', a highly condensed survey of relevant measurement and assessment parameters of the entire turbine generator relative to tolerance bands determined as a function of the operating point. The power of Studies in elucidating faults and defects is explained by a practical case of a blade defect in a gas turbine. (orig.)

  7. Test system design for Hardware-in-Loop evaluation of PEM fuel cells and auxiliaries

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, Guenter; Moore, Robert M. [Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI (United States)

    2006-07-14

    In order to evaluate the dynamic behavior of proton exchange membrane (PEM) fuel cells and their auxiliaries, the dynamic capability of the test system must exceed the dynamics of the fastest component within the fuel cell or auxiliary component under test. This criterion is even more critical when a simulated component of the fuel cell system (e.g., the fuel cell stack) is replaced by hardware and Hardware-in-Loop (HiL) methodology is employed. This paper describes the design of a very fast dynamic test system for fuel cell transient research and HiL evaluation. The integration of the real time target (which runs the simulation), the test stand PC (that controls the operation of the test stand), and the programmable logic controller (PLC), for safety and low-level control tasks, into one single integrated unit is successfully completed. (author)

  8. Analysis of design of auxiliary system of Booshehr Nuclear Power Plant

    International Nuclear Information System (INIS)

    Naseh Hasanzadeh, M.

    1999-01-01

    Power plant's internal auxiliary system has an important role in its safety operation. Because of the decay heat and safety aspects in the nuclear power plants, this role is more important. In this thesis, operation of the nuclear power plant with PWR reactor is studied and deferent nuclear systems described. In the next section all electrical loads in the Booshehr Nuclear Power Plant identified and feeding methods of each load is determined. by use of the single line diagram of the internal auxiliary system, the nominal rating of all electrical devices as transformers, inverters, Ups, diesel generators and etc. is determined. In the following, short circuit calculations performed and by above conclusion, rating values of circuit breakers is determined. At last the starting problems of electrical motors is studied and the results of motor's behavior at starting moment is discussed

  9. Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    Kyu Cho, Hyoung; Cho, Yun Je; Yoon, Han Young

    2014-01-01

    Graphical abstract: - Highlights: • PAFS is designed to replace a conventional active auxiliary feedwater system. • Multi-D T/H analysis code, CUPID was coupled with the 1-D system analysis code MARS. • The coupled CUPID and MARS was applied for the multi-scale analysis of the PAFS test facility. • The simulation result showed that the coupled code can reproduce important phenomena in PAFS. - Abstract: For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. In the present study, the CUPID code was coupled with a system analysis code MARS in order to apply it for the multi-scale thermal-hydraulic analysis of the passive auxiliary feedwater system (PAFS). The PAFS is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+), which is intended to completely replace the conventional active auxiliary feedwater system. For verification of the coupling and validation of the coupled code, the PASCAL test facility was simulated, which was constructed with an aim of validating the cooling and operational performance of the PAFS. The two-phase flow phenomena of the steam supply system including the condensation inside the heat exchanger tube were calculated by MARS while the natural circulation and the boil-off in the large water pool that contains the heat exchanger tube were simulated by CUPID. This paper presents the description of the PASCAL facility, the coupling method and the simulation results using the coupled code

  10. Operation of the main feedwater system turbopump following plant trip with total failure of the auxiliary feedwater system

    International Nuclear Information System (INIS)

    Lucas Alvaro, A.M. de; Rosa Martinez, B. de la; Alcaide, F.; Toledano Camara, C.

    1993-01-01

    The Auxiliary Feedwater System (AF) is a safeguard system which has been designed to supply feedwater to the steam generators, cool the primary system and remove decay heat from the reactor when the main feedwater pumps fail due to loss of power or any other reason. Thus, when plant trip occurs, the AF system pumps start up automatically, allowing removal of decay heat from the reactor. However, even though this system (2 motor-driven pumps and 1 turbopump) is highly reliable, injection of water to the steam generators must be ensured when it fails completely. To do this, if plant trip has not been caused by loss of off site power or failure of the Main Feedwater System (FW) turbopumps, one of these turbopumps can be used to achieve removal of decay heat. Since a large amount of steam is consumed by these turbopumps, an analysis has been performed to determine whether one of these pumps can be used and what actions are necessary to inject water into the steam generators. Results show that, for the case in question, a FW turbopump can be used to remove decay heat from the reactor. (author)

  11. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships

    International Nuclear Information System (INIS)

    Strazza, C.; Del Borghi, A.; Costamagna, P.; Traverso, A.; Santin, M.

    2010-01-01

    Fuel cells own the potential for significant environmental improvements both in terms of air quality and climate protection. Through the use of renewable primary energies, local pollutant and greenhouse gas emissions can be significantly minimized over the full life cycle of the electricity generation process, so that marine industry accounts renewable energy as its future energy source. The aim of this paper is to evaluate the use of methanol in Solid Oxide Fuel Cells (SOFC), as auxiliary power systems for commercial vessels, through Life Cycle Assessment (LCA). The LCA methodology allows the assessment of the potential environmental impact along the whole life cycle of the process. The unit considered is a 20 kWel fuel cell system. In a first part of the study different fuel options have been compared (methanol, bio-methanol, natural gas, hydrogen from cracking, electrolysis and reforming), then the operation of the cell fed with methanol has been compared with the traditional auxiliary power system, i.e. a diesel engine. The environmental benefits of the use of fuel cells have been assessed considering different impact categories. The results of the analysis show that fuel production phase has a strong influence on the life cycle impacts and highlight that feeding with bio-methanol represents a highly attractive solution from a life cycle point of view. The comparison with the conventional auxiliary power system shows extremely lower impacts for SOFCs.

  12. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  13. Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    International Nuclear Information System (INIS)

    Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry

    2006-01-01

    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H 2 O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)

  14. The integrated design of the ITER magnets and their auxiliary systems

    International Nuclear Information System (INIS)

    Huget, M.

    1999-01-01

    The magnet system design for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration to meet performance and operation requirements, including reliability and maintainability, in a cost effective manner. This paper identifies the requirements of long inductive burn time, large number of tokamak pulses, operational flexibility for the poloidal field (PF) system, magnet reliability and the cost constraints as the main design drivers. Key features of the magnet system which stem from these design drivers are described, together with interfaces and integration aspects of certain auxiliary systems. (author)

  15. The integrated design of the ITER magnets and their auxiliary systems

    International Nuclear Information System (INIS)

    Huguet, M.

    2001-01-01

    The magnet system design for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration to meet performance and operation requirements, including reliability and maintainability, in a cost effective manner. This paper identifies the requirements of long inductive burn time, large number of tokamak pulses, operational flexibility for the poloidal field (PF) system, magnet reliability and the cost constraints as the main design drivers. Key features of the magnet system which stem from these design drivers are described, together with interfaces and integration aspects of certain auxiliary systems. (author)

  16. PSA effect analysis of a design modification of the auxiliary feedwater system for a Westinghouse type plant

    International Nuclear Information System (INIS)

    Bae, Yeon Kyoung; Lee, Eun Chan

    2012-01-01

    The auxiliary feedwater system is an important system used to mitigate most accidents considered in probabilistic safety assessment (PSA). The reference plant has produced electric power for about thirty years. Due to age related deterioration and lack of parts, a turbine driven auxiliary feedwater pump (TD AFWP), some valves, and piping of the auxiliary feedwater system should be replaced. This change includes relocation of some valves, installation of valves for maintenance of the steam generator, and a new cross tie line. According to the design change, the Final Safety Analysis Report (FSAR) has been revised. Therefore, this design modification affects the PSA. It is thus necessary to assess the improvement of plant safety. In this paper, the impact of the design change of the auxiliary feedwater system on the PSA is assessed. The results demonstrate that this modification considering the plant safety decreased the total CDF

  17. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  18. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  19. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    1998-01-01

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  20. Probabilistic analysis of reactor safety - The auxiliary feedwater system of Angra I

    International Nuclear Information System (INIS)

    Oliveira, L.C.R. da L.C. de.

    1981-09-01

    The unavailability of the auxiliary feedwater system (AFWS) of Angra-1, was calculated. The fault tree analysis technique was used, considering two diferent types of contribution to system unavailability: The one due to hard-ware failure and the contribution due to test and maintenance which was separately analysed. The COMBO-and SAMPLE computer codes were used. The results have shown that the AFWS of Angra-1 contains enough redundancy to guarantee a safe operation under the conditions analysed, best values having been obtained for the unavailability of AFWS of Angra 1 with those codes than with the WASH-1400. (E.G.) [pt

  1. A data acquisition and storage system for the ion auxiliary propulsion system cyclic thruster test

    Science.gov (United States)

    Hamley, John A.

    1989-01-01

    A nine-track tape drive interfaced to a standard personal computer was used to transport data from a remote test site to the NASA Lewis mainframe computer for analysis. The Cyclic Ground Test of the Ion Auxiliary Propulsion System (IAPS), which successfully achieved its goal of 2557 cycles and 7057 hr of thrusting beam on time generated several megabytes of test data over many months of continuous testing. A flight-like controller and power supply were used to control the thruster and acquire data. Thruster data was converted to RS232 format and transmitted to a personal computer, which stored the raw digital data on the nine-track tape. The tape format was such that with minor modifications, mainframe flight data analysis software could be used to analyze the Cyclic Ground Test data. The personal computer also converted the digital data to engineering units and displayed real time thruster parameters. Hardcopy data was printed at a rate dependent on thruster operating conditions. The tape drive provided a convenient means to transport the data to the mainframe for analysis, and avoided a development effort for new data analysis software for the Cyclic test. This paper describes the data system, interfacing and software requirements.

  2. Research of Tai-chi-chuan auxiliary training system based on Kinect

    Directory of Open Access Journals (Sweden)

    Zhihong XUE

    2017-04-01

    Full Text Available In order to promote the scientific standardization of Tai-chi-chuan teaching and training, a Tai-chi-chuan auxiliary training system based on Kinect motion capture technology and extraction of the angle feature and speed feature is proposed and designed. The dynamic time planning algorithm (DTW sampling corresponding frame is applied to replace the traditional method of sampling the key frame. The auxiliary training system consists of learning module, action acquisition module and action scoring module. Learning module with stan-dard action teaching video, to meet the requirements of students learning; action acquisition module uses Microsoft developed Kinect equipment to realize data acquisition of the spatial coordinates of the human skeleton in Tai-chi-chuan action, and through filtered noise reduction and the occlusion point data processing the skeleton data is saved. The scoring module constructs the test sequence based on the 16 angle features of eight key joint nodes and the instantaneous velocity characteristics of 20 joint nodes. By comparing with the standard sequence in real time, the original scoring rules is used to achieve the scoring function, which provides students with intuitive and reliable training recommendations, so as to improve the efficiency of learning. By increasing the number of sensors, further designing and optimizing data fusion and filtering algorithm, combining with Microsoft’s Kinect2.0 version, the system can also be applied to medical rehabilitation, physical training analysis and evaluation, virtual reality and human-computer interaction, etc.

  3. Thermal transport properties of helium, helium--air mixtures, water, and tubing steel used in the CACHE program to compute HTGR auxiliary heat exchanger performance

    International Nuclear Information System (INIS)

    Tallackson, J.R.

    1976-02-01

    A description is presented of the thermal transport properties of the materials involved in digital computer calculations of heat transfer rates by the core auxiliary heat exchangers in large HTGR nuclear steam supply systems. These materials are pure helium, mixtures of helium with common gases having molecular weights in the range of 28 to 32, alloy steel tubing, and water. For use in programmed computations the viscosity, thermal conductivity, and specific heat are represented primarily by equations augmented by curves and tabulations. Materials supporting the development and selection of the property equations are included

  4. Vehicle Integrated Photovoltaics for Compression Ignition Vehicles: An Experimental Investigation of Solar Alkaline Water Electrolysis for Improving Diesel Combustion and a Solar Charging System for Reducing Auxiliary Engine Loads

    Science.gov (United States)

    Negroni, Garry Inocentes

    Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated

  5. Auxiliary Sensor-Based Borehole Transient Electromagnetic System for the Nondestructive Inspection of Multipipe Strings

    Directory of Open Access Journals (Sweden)

    Bo Dang

    2017-08-01

    Full Text Available Transient electromagnetic (TEM techniques are widely used in the field of geophysical prospecting. In borehole detection, the nondestructive inspection (NDI of a metal pipe can be performed efficiently using the properties of eddy currents. However, with increasing concern for safety in oil and gas production, more than one string of pipe is used to protect wellbores, which complicates data interpretation. In this paper, an auxiliary sensor-based borehole TEM system for the NDI of multipipe strings is presented. On the basis of the characteristics of the borehole TEM model, we investigate the principle behind the NDI of multipipe strings using multiple time slices of induced electromotive force (EMF in a single sensor. The results show that the detection performance of NDI is strongly influenced by eddy-current diffusion in the longitudinal direction. To solve this problem, we used time slices of the induced EMF in both the main and auxiliary sensors. The performance of the proposed system was verified by applying it to an oil well with a production casing and liner. Moreover, field experiments were conducted, and the results demonstrate the effectiveness of the proposed method.

  6. A Source Term Calculation for the APR1400 NSSS Auxiliary System Components Using the Modified SHIELD Code

    International Nuclear Information System (INIS)

    Park, Hong Sik; Kim, Min; Park, Seong Chan; Seo, Jong Tae; Kim, Eun Kee

    2005-01-01

    The SHIELD code has been used to calculate the source terms of NSSS Auxiliary System (comprising CVCS, SIS, and SCS) components of the OPR1000. Because the code had been developed based upon the SYSTEM80 design and the APR1400 NSSS Auxiliary System design is considerably changed from that of SYSTEM80 or OPR1000, the SHIELD code cannot be used directly for APR1400 radiation design. Thus the hand-calculation is needed for the portion of design changes using the results of the SHIELD code calculation. In this study, the SHIELD code is modified to incorporate the APR1400 design changes and the source term calculation is performed for the APR1400 NSSS Auxiliary System components

  7. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Carroll, D.G.; Chen, C.; Crane, C.; Dalton, R.; Taylor, J.R.; Tosunoglu, S.; Weymouth, T.

    1993-01-01

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS

  8. Methodology for testing a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available A laboratory system for remote monitoring and control of an asynchronous motor controlled by a soft starter and contemporary measuring and control devices has been developed and built. This laboratory system is used for research and in teaching. A study of the principles of operation, setting up and examination of intelligent energy meters, soft starters and PLC has been made as knowledge of the relevant software products is necessary. This is of great importance because systems for remote monitoring and control of energy consumption, efficiency and proper operation of the controlled objects are very often used in different spheres of industry, in building automation, transport, electricity distribution network, etc. Their implementation in electric vehicles for remote monitoring and control on auxiliary machines is also possible and very useful. In this paper, a methodology of tests is developed and some experiments are presented. Thus, an experimental verification of the developed methodology is made.

  9. An auxiliary frequency tracking system for general purpose lock-in amplifiers

    Science.gov (United States)

    Xie, Kai; Chen, Liuhao; Huang, Anfeng; Zhao, Kai; Zhang, Hanlu

    2018-04-01

    Lock-in amplifiers (LIAs) are designed to measure weak signals submerged by noise. This is achieved with a signal modulator to avoid low-frequency noise and a narrow-band filter to suppress out-of-band noise. In asynchronous measurement, even a slight frequency deviation between the modulator and the reference may lead to measurement error because the filter’s passband is not flat. Because many commercial LIAs are unable to track frequency deviations, in this paper we propose an auxiliary frequency tracking system. We analyze the measurement error caused by the frequency deviation and propose both a tracking method and an auto-tracking system. This approach requires only three basic parameters, which can be obtained from any general purpose LIA via its communications interface, to calculate the frequency deviation from the phase difference. The proposed auxiliary tracking system is designed as a peripheral connected to the LIA’s serial port, removing the need for an additional power supply. The test results verified the effectiveness of the proposed system; the modified commercial LIA (model SR-850) was able to track the frequency deviation and continuous drift. For step frequency deviations, a steady tracking error of less than 0.001% was achieved within three adjustments, and the worst tracking accuracy was still better than 0.1% for a continuous frequency drift. The tracking system can be used to expand the application scope of commercial LIAs, especially for remote measurements in which the modulation clock and the local reference are separated.

  10. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  11. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  12. San Onofre/Zion auxiliary feedwater system seismic fault tree modeling

    International Nuclear Information System (INIS)

    Najafi, B.; Eide, S.

    1982-02-01

    As part of the study for the seismic evaluation of the San Onofre Unit 1 Auxiliary Feedwater System (AFWS), a fault tree model was developed capable of handling the effect of structural failure of the plant (in the event of an earthquake) on the availability of the AFWS. A compatible fault tree model was developed for the Zion Unit 1 AFWS in order to compare the results of the two systems. It was concluded that if a single failure of the San Onofre Unit 1 AFWS is to be prevented, some weight existing, locally operated locked open manual valves have to be used for isolation of a rupture in specific parts of the AFWS pipings

  13. MTX [Microwave Tokamak Experiment] diagnostic and auxiliary systems for confinement, transport, and plasma physics studies

    International Nuclear Information System (INIS)

    Hooper, E.B.; Allen, S.L.; Casper, T.A.; Thomassen, K.I.

    1989-01-01

    This note describes the diagnostics and auxiliary systems on the Microwave Tokamak Experiment (MTX) for confinement, transport, and other plasma physics studies. It is intended as a reference on the installed and planned hardware on the machine for those who need more familiarity with this equipment. Combined with the tokamak itself, these systems define the opportunities and capabilities for experiments in the MTX facility. We also illustrate how these instruments and equipment are to be used in carrying out the MTX Operations Plan. Near term goals for MTX are focussed on the absorption and heating by the microwave beam from the FEL, but the Plan also includes using the facility to study fundamental phenomena in the plasma, to control MHD activity, and to drive current noninductively

  14. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  15. Summary of ACSL Simulations of the MSRE Auxiliary Charcoal Bed Vacuum System

    Energy Technology Data Exchange (ETDEWEB)

    Damiano, B

    2000-10-26

    The simulation of the Auxiliary Charcoal Bed (ACB) Vacuum System was performed to evaluate the original vacuum system design, detect and identify design deficiencies, investigate the effects of proposed corrections on system performance, and generally aid in refining the system design before construction and mockup testing. The simulation was performed by using the Advanced Continuous Simulation Language (ACSL). The vacuum system design goals are to provide approximately 20 SCFM of both booster gas and purge gas through the system and maintain a flow of approximately 40 SCFM with a velocity of 50 to 75 f/sec at the entrance to the cyclone separator. The model results showed that the original system design was incapable of meeting the system performance goals. Further simulations showed that the following modifications to the original vacuum system design were required to make the system performance acceptable; (1) Remove valve PCV4. (2) Modify the flow controllers FTC3 and FTC4 from the original flow range of 0-17.6 SCFM (0-500 SLM) to 0-35.3 SCFM (0-1000 SLM). (3) Replace the bellows sealed valves SV-1, SV-3A, SV-3B, SV-4A, and SV-4B with less restrictive ball valves. The simulation results saved considerable time and effort by identifying flaws in the original system design. Early identification of these flaws and the use of the simulation model to investigate possible solutions allowed corrective modifications to be made before construction of the mock up test facility.

  16. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system; Izvestaj o sigurnosti nuklearnog reaktora RA, Knjiga 8, Pomocni sistemi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport. [Serbo-Croat] Ova knjiga obuhvata opis pomocnih sistem reaktora RA: sistem specijalne ventilacije, sistem specijalne kanalizacije, vruce komore, sistemi za unutrasnji transport. Ventilacioni sistem je znacajan deo sistema zastite i sigurnosti reaktora. Njegova je uloga da onemoguci disperziju radioaktivnih cestica u okolinu. Sistem specijalne kanalizacije sastoji se od agregata, cevovoda i rezervoara sa sigurnosnom armaturom i ima zadatak da prihvata i u sebe deponuje radioaktivne otpadne vode iz objekarta reaktora RA. U zgradi reaktora RA postoje vruce komore koje su namenjene za proizvodnju zatvorenih izvora zracenje, ukljucujuci i mehanicku obradu, prepakivanje i transport.

  17. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  18. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    International Nuclear Information System (INIS)

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-01-01

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  19. Research of grounding capacitive current of neutral non-grounding auxiliary system in nuclear power plants

    International Nuclear Information System (INIS)

    Yang Shan; Liu Li; Huang Xiaojing

    2014-01-01

    In the domestic and abroad standards, the grounding capacitive current limitation in the non-grounding electric auxiliary system is less than 10 A. Limiting capacitive current in the standard aims to speed up the arc extinguishing to reduce the duration of arc over-voltage, but not to prevent the arc producing, The arc over-voltage harm is related to the multiple, frequency and duration of the over-voltage. When the insulation vulnerabilities appear in the equipment, the arc over-voltage may result in insulation vulnerabilities of the electrical equipment breakdown, which leads to multiple, short-circuit accidents. The cable connector, accessory and electromotor winding are all insulation vulnerabilities. Setting the arc suppression coil which can counteract the grounding capacitive current makes the arc vanish quickly. Using the casting bus which remarkably reduces the ground capacitance of the electric transmission line makes the equipment safer. (authors)

  20. Systems for Nuclear Auxiliary Power annual report, government fiscal year 1976/TQ

    International Nuclear Information System (INIS)

    1976-01-01

    The overall objective of the Systems for Nuclear Auxiliary Power (SNAP) Program is to continue system and component engineering activities relating to the zirconium hydride (ZrH) reactor. The specific objectives for FY 1976/TQ were to: (1) study standardized ZrH reactor space power systems and components, (2) perform preconceptual analysis and design of ZrH reactor--organic Rankine power systems for subsea applications, (3) conduct fuel and hydrogen barrier investigations, (4) perform system studies in support of the Department of Defense and their contractors as directed by ERDA, (5) test components, and (6) provide for material disposal and facility surveillance. In the study, representative systems which utilize Brayton, Rankine, and Stirling cycle power conversion units as well as thermoelectric modules, are analyzed at power levels of 10, 25, 50, and 75 kWe. Waste heat rejection is accomplished by concentric, cylindrical space radiators which can be nested during launch for space shuttle integration. Subsequent studies, which supported this effort, were completed and provided useful information on system reliability and survivability

  1. Space shuttle auxiliary propulsion system design study. Phase C report: Oxygen-hydrogen RCS/OMS integration study

    Science.gov (United States)

    Bruns, A. E.; Regnier, W. W.

    1972-01-01

    A comparison of the concepts of auxiliary propulsion systems proposed for the space shuttle vehicle is discussed. An evaluation of the potential of integration between the reaction control system and the orbit maneuvering system was conducted. Numerous methods of implementing the various levels of integration were evaluated. Preferred methods were selected and design points were developed for two fully integrated systems, one partially integrated system, and one separate system.

  2. Chemistry control approach of pre commissioning and power operation of primary and auxiliary system of KGS-3 and 4 and trouble shooting made

    International Nuclear Information System (INIS)

    Bennet Raj, N.; Sahu, B.S.; Kumar, Vineet; Valluri, J.

    2008-01-01

    KGS (Kaiga Generating Station) 3 and 4 is a 220 MWe pressurized heavy water reactor (PHWR) using heavy water (D 2 O) as moderator and primary heat coolant and the secondary system is light water which is used to make the steam for generating the power. The chemistry control approach made for the successful commissioning and subsequent power operation of the unit is discussed here. The chemistry control is of two parts first part covers the pre commissioning chemistry control and the second part covers the commissioning chemistry control. During commissioning all systems were preserved by proper chemistry control and regular recirculation of system to avoid stagnancy. The major pre commissioning and commissioning chemistry control are depicted below: Pre commissioning chemistry control of primary heat transport (PHT) system and auxiliaries; Pre commissioning chemistry control of moderator system; Primary heat transport system hot conditioning with light water; Commissioning chemistry control of End Shield System (ESC) and Calandria Vault Cooling (CVC) system; Heavy water addition and its chemistry control in moderator system; and Heavy water addition and its chemistry control in PHT system. During power operation dew point in annular gas monitoring system (AGMS) of KGS unit 3 was maintaining in higher side under recirculation. The increase of dew point could be due to ingress of heavy water or light water. A new device was developed to collect condensate and the chemistry of the condensate was checked. The result indicated the ingress of light water. (author)

  3. Reliability analysis of 2 types of auxiliary feedwater system for PWR

    International Nuclear Information System (INIS)

    Ekariansyah, Andi Sofrany

    2002-01-01

    This paper will explain the application of Fault Three Method for analyzing the system reliability of Auxiliary Feedwater System with 2 different configurations taken from PWR type nuclear power plant (NPP) in the USA. The first configuration of Braidwood NPP (design A) basically consists of 1 motor driven pump and 1 diesel driven pump. The second configuration of Haddam Neck NPP (Design B) consists of 2 turbine driven pumps. Based on the P and ID and success criteria the fault trees are constructed to estimate the system failure probabilities quantified from software code PIRAS 1.0. The result shows the second configuration (Design B) with 2 turbine driven pumps have the higher failure probability of 1,06 x 10 - 2 compared with design A of 1,09 x 10 - 3 . The modification of both systems are also tried to analyze its effect to the end result. Qualitatively, the common cause failures of 2 turbine driven pumps contribute to the highest risk of system failure probability. Combination with 1 turbine driven pump and 1 motor driven pump or 1 diesel driven pump will increase the system reliability about 80% and 50% without considering if this configuration is possible to realize in a real plant

  4. Study on enhancement of heat transfer of reactor vessel auxiliary cooling system of fast breeder reactor

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Ueda, Nobuyuki; Furuya, Masahiro

    1996-01-01

    A reactor vessel auxiliary cooling system (RVACS), which is one of the decay heat removal systems of the fast breeder reactor (FBR), has passive safety as well as high reliability. However, the heat removal capability is relatively small, because its heat exchange is dependent on the natural convection of the air. The objectives of this report are to propose a heat transfer medium to enhance the heat transfer and to confirm the heat transfer performance of this system by experimental and analytical studies. From these studies, the following main results were obtained. (1) A porous plate with 5 mm thickness, 5 mm pore diameter, 92% porosity, was found to have the highest enhancement of heat transfer. (2) The heat transfer enhancement was demonstrated by large scale heat transfer experiments. Also, the heat transfer correlations, which can be used in the plant transient analyses, were derived from the experimental results. (3) Analysing the transient conditions of conventional pool-type FBR by means of the system analysis code, the applicable range of this system was assumed from the capability of the RVACS with porous plates. As a result, this type of RVACS was found to be applicable to conventional pool-type FBRs with capacity of about 500 MWe or less. (author)

  5. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    Science.gov (United States)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  6. Accuracy Solution of Boundary Problems in Electrostatics for Systems "Conductors-Dielectrics" by Means of Auxiliary Charges

    CERN Document Server

    Topuriya, T P

    2004-01-01

    The analysis has been carried out on checking the influence of auxiliary charges on solution accuracy of boundary problems of electrostatics for systems "conductors-dielectrics". This accuracy depends on the number of charges and configuration of their allocation. The extended round dielectric in the electric field of a parallel-plate capacitor was taken as a physical model.

  7. Probabilistic common cause failure modeling for auxiliary feedwater system after the introduction of flood barriers

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Yamaguchi, Akira; Takata, Takashi

    2013-01-01

    Causal inference is capable of assessing common cause failure (CCF) events from the viewpoint of causes' risk significance. Authors proposed the alpha decomposition method for probabilistic CCF analysis, in which the classical alpha factor model and causal inference are integrated to conduct a quantitative assessment of causes' CCF risk significance. The alpha decomposition method includes a hybrid Bayesian network for revealing the relationship between component failures and potential causes, and a regression model in which CCF parameters (global alpha factors) are expressed by explanatory variables (causes' occurrence frequencies) and parameters (decomposed alpha factors). This article applies this method and associated databases needed to predict CCF parameters of auxiliary feedwater (AFW) system when defense barriers against internal flood are introduced. There is scarce operation data for functionally modified safety systems and the utilization of generic CCF databases is of unknown uncertainty. The alpha decomposition method has the potential of analyzing the CCF risk of modified AFW system reasonably based on generic CCF databases. Moreover, the sources of uncertainty in parameter estimation can be studied. An example is presented to demonstrate the process of applying Bayesian inference in the alpha decomposition process. The results show that the system-specific posterior distributions for CCF parameters can be predicted. (author)

  8. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  9. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  10. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor

    International Nuclear Information System (INIS)

    Merced D, J. E.

    2016-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  11. Study on decay heat removal capability of reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    Nishi, Y.; Kinoshita, I.

    1991-01-01

    The reactor vessel auxiliary cooling system (RVACS) is a simple, Passive decay heat removal system for an LMFBR. However, the heat removal capacity of this system is small compared to that of an immersed type of decay heat exchanger. In this study, a high-porosity porous body is proposed to enhance the RVACS's heat transfer performance to improve its applicability. The objectives of this study are to propose a new method which is able to use thermal radiation effectively, to confirm its heat removal capability and to estimate its applicability limit of RVACS for an LMFBR. Heat transfer tests were conducted in an experimental facility with a 3.5 m heat transfer height to evaluate the heat transfer performance of the high-porosity porous body. Using the experimental results, plant transient analyses were performed for a 300 MWe pool type LMFBR under a Total Black Out (TBO) condition to confirm the heat removal capability. Furthermore, the relationship between heat removal capability and thermal output of a reactor were evaluated using a simple parameter model

  12. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  13. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  14. Auxiliary feedwater system risk-based inspection guide for the Beaver Valley, Units 1 and 2 nuclear power plants

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Vehec, T.A.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Rossbach, L.W.; Sena, P.P. III

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Beaver Valley Units 1 and 2 were selected as two of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at Beaver Valley Units 1 and 2

  15. Auxiliary feedwater system risk-based inspection guide for the J.M. Farley Nuclear Power Plant

    International Nuclear Information System (INIS)

    Vo, T.V.; Pugh, R.; Gore, B.F.; Harrison, D.G.

    1990-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment(PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. J. M. Farley was selected as the second plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important at the J. M. Farley plant. 23 refs., 1 fig., 1 tab

  16. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  17. D and D of a plutonium research laboratory and related auxiliary systems

    International Nuclear Information System (INIS)

    Diaz Arocas, P.; Martinez Ortega, A.; Sama Colao, J.; Garcia Diaz, A.; Torre Rodriguez, J.; Diaz Diaz, J.L.; Argiles, E.; Garrido, C.

    2010-01-01

    CIEMAT, former Junta de Energia Nuclear (JEN) started nuclear research at the 60. decade, focussed on the development of pacific uses of Nuclear Energy. At that time, CIEMAT research and pilot plants developed involved the whole nuclear fuel cycle steps. It means from the uranium recovery to the spent fuel reprocessing. With this scope a plutonium research laboratory was constructed and operated from 1961 to the 90's focussed on chemistry of plutonium studies, separation processes and radiochemical analyses, in order to assist the working pilot plants at the Centre. Thereafter, as the result of the changes on the research objectives of CIEMAT, the plutonium laboratory suffered several modifications and finally it was safety stopped due to the obsolescence of its equipments and auxiliary systems. Present paper shows the D and D activities performed and techniques developed to avoid alpha emitter contamination. In every dismantling phase there were established the measures of operational radiological protection adapted to the radiological risk. Dosimetric controls realized during dismantlement showed that incorporation of radionuclides was not detected. Radiological final control was performed applying the derived levels of declassification to request the installation decommissioning. (authors)

  18. Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A

    International Nuclear Information System (INIS)

    Xu Weidong; Xuan Weimin; Yao Lieying; Wang Yingqiao

    2012-01-01

    The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 μs. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.

  19. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    International Nuclear Information System (INIS)

    Hughes, Joel T.; Blandford, Edward D.

    2016-01-01

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  20. Experimental investigation of a directionally enhanced DHX concept for high temperature Direct Reactor Auxiliary Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Joel T.; Blandford, Edward D., E-mail: edb@unm.edu

    2016-07-15

    Highlights: • A novel directional heat exchanger design has been developed. • Hydrodynamic tests have been performed on the proposed design. • Heat transfer performance is inferred by hydrodynamic results. • Results are discussed and future work is suggested. - Abstract: The use of Direct Reactor Auxiliary Cooling Systems (DRACSs) as a safety-related decay heat removal system for advanced reactors has developed historically through the Sodium Fast Reactor (SFR) community. Beginning with the EBR-II, DRACSs have been utilized in a large number of past and current SFR designs. More recently, the DRACS has been adopted for Fluoride Salt-Cooled High-Temperature Reactors (FHRs) for similar decay heat removal functions. In this paper we introduce a novel directionally enhanced DRACS Heat Exchanger (DHX) concept. We present design options for optimizing such a heat exchanger so that shell-side heat transfer is enhanced in one primary coolant flow direction and degraded in the opposite coolant flow direction. A reduced-scale experiment investigating the hydrodynamics of a directionally enhanced DHX was built and the data collected is presented. The concept of thermal diodicity is expanded to heat exchanger technologies and used as performance criteria for evaluating design options. A heat exchanger that can perform as such would be advantageous for use in advanced reactor concepts where primary coolant flow reversal is expected during Loss-of-Forced-Circulation (LOFC) accidents where the ability to circulate coolant is compromised. The design could also find potential use in certain advanced Sodium Fast Reactor (SFR) designs utilizing fluidic diode concepts.

  1. PS auxiliary magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Units of the PS auxiliary magnet system. The picture shows how the new dipoles, used for vertical and horizontal high-energy beam manipulation, are split for installation and removal so that it is not necessary to break the accelerator vacuum. On the right, adjacent to the sector valve and the windings of the main magnet, is an octupole of the set.

  2. Fuel consumption reduction by shutoff of auxiliary aggregates, e.g. water pumps; Moeglichkeiten zur Kraftstoffverbrauchsreduzierung durch Nebenaggregateabschaltung am Beispiel der Wasserpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Eifler, G. [ElringKlinger Motortechnik GmbH, Idstein (Germany)

    2007-07-01

    A significant amount of power which is produced by modern combustion engines is used for driving the auxiliaries. Because of the fact that the modules are designed according to the most extreme case of demand which ever could happen the auxiliaries are mostly operating under low efficiency circumstances - especially when the vehicle is driving at low load and speed in inner city areas. In this publication the coolant water pump was taken for an example to show how significant benefits in fuel economy can be achieved by switching off the auxiliaries if possible. The operating behaviour will not only be discussed in the European test-cycle but also in special city cycles under real conditions. The results will be compared to the fuel consumption saving potentials which can be realized when introducing new combustion processes into series production. (orig.)

  3. Auxiliary feedwater system risk-based inspection guide for the Diablo Canyon Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gore, B.F.; Vo, T.V.; Harrison, D.G.

    1990-08-01

    This document presents a compilation of auxiliary feedwater (AFW) system failure information which has been screened for risk significance in terms of failure frequency and degradation of system performance. It is a risk-prioritized listing of failure events and their causes that are significant enough to warrant consideration in inspection planning at Diablo Canyon. This information is presented to provide inspectors with increased resources for inspection planning at Diablo Canyon. The risk importance of various component failure modes was identified by analysis of the results of probabilistic risk assessments (PRAs) for many pressurized water reactors (PWRs). However, the component failure categories identified in PRAs are rather broad, because the failure data used in the PRAs is an aggregate of many individual failures having a variety of root causes. In order to help inspectors to focus on specific aspects of component operation, maintenance and design which might cause these failures, an extensive review of component failure information was performed to identify and rank the root causes of these component failures. Both Diablo Canyon and industry-wide failure information was analyzed. Failure causes were sorted on the basis of frequency of occurrence and seriousness of consequence, and categorized as common cause failures, human errors, design problems, or component failures. This information permits an inspector to concentrate on components important to the prevention of core damage. Other components which perform essential functions, but which are not included because of high reliability or redundancy, must also be addressed to ensure that degradation does not increase their failure probabilities, and hence their risk importances. 23 refs., 1 fig., 1 tab

  4. Reliability analysis of the auxiliary feedwater system of Angra-1 including common cause failures using the multiple greek letter model

    International Nuclear Information System (INIS)

    Lapa, Celso Marcelo Franklin.

    1996-05-01

    The use of redundancy to increase the reliability of industrial systems make them subject to the occurrence of common cause events. The industrial experience and the results of safety analysis studies have indicated that common cause failures are the main contributors to the unreliability of plants that have redundant systems, specially in nuclear power plants. In this Thesis procedures are developed in order to include the impact of common cause failures in the calculation of the top event occurrence probability of the Auxiliary Feedwater System in a typical two-loop Nuclear Power Plant (PWR). For this purpose the Multiple Greek Letter Model is used. (author). 14 refs., 10 figs., 11 tabs

  5. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    Coura, J.G.

    1986-01-01

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author) [pt

  6. Weyl functions, the inverse problem and special solutions for the system auxiliary to the nonlinear optics equation

    International Nuclear Information System (INIS)

    Sakhnovich, Alexander

    2008-01-01

    A Borg–Marchenko-type uniqueness theorem (in terms of the Weyl function) is obtained here for the system auxiliary to the N-wave equation. A procedure to solve the inverse problem is used for this purpose. The asymptotic condition on the Weyl function, under which the inverse problem is uniquely solvable, is completed by a new and simple sufficient condition on the potential, which implies this asymptotic condition. The evolution of the Weyl function is discussed and the solution of an initial-boundary-value problem for the N-wave equation follows. Explicit solutions of an inverse problem are obtained. The system with a shifted argument is treated

  7. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    . Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept......Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  8. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  9. Test facility for auxiliary cooling system (ACS) of fast breeder reactor for Power Reactor and Nuclear Fuel Development Corporation (PNC)

    International Nuclear Information System (INIS)

    1983-01-01

    In preparation of constructing ''Monju'', a prototype fast breeder reactor, PNC has been pushing forward its research and development projects and the ACS was constructed under these projects. The auxiliary cooling system is an important engineered safety feature, and is used for safe removal of heat from the reactor at the shutdown. The ACS serves as a means of testing and assessing the auxiliary cooling system for the ''Monju'' and is designed and manufactured to have one fifth capacity of the Monju. The air heat exchanger and the ACS system was designed to withstand higher temperature range of the conventional design code (MITI-501), and finned tubes were applied for effective heat removal. Preheating system was designed to heat up the whole system over 200 0 C within 20 hours to prevent sodium from freezing. Basic performance of ACS was verified satisfactorily by a series of performance tests, such as start up test, flow rate measurement and preheating test before delivery. The experience from designing and construction of ACS and data obtained by these tests will be very instructive for designing and construction of the ''Monju''. (author)

  10. Design and setting up of a system for remote monitoring and control on auxiliary machines in electric vehicles

    Directory of Open Access Journals (Sweden)

    Dimitrov Vasil

    2017-01-01

    Full Text Available Systems for remote monitoring and control of the proper operation, energy consumption, and efficiency of the controlled objects are very often used in different spheres of industry, in the electricity distribution network, etc. Various types of intelligent energy meters, PLCs and other control devices are involved in such systems. Proper operation of the auxiliary machines in electric vehicles is of great importance and implementation of a system for their remote monitoring and control is useful and ensures reliability and increased efficiency. A system has been designed and built using contemporary devices. An asynchronous motor is controlled by a soft starter and opportunities for remote monitoring (by an intelligent energy meter and control (by a PLC and Touch panel have been provided. Soft starters are widely used in industry for control on asynchronous drives when speed regulation is not a mandatory requirement. They are cheaper than inverters and frequency converters and allow for temporal reduction of the torque and current surge during start-up, as well as smooth deceleration. Therefore they can also be used in electric vehicles to control auxiliary machines (pumps, fans, air coolers, compressors, etc.. The present paper presents a methodology for their design and setting up.

  11. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  12. Sensitivity Analysis of Core Damage by Loss of Auxiliary Feed Water during the Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo Jae; Chung, Soon Il; Hwang, Su Hyun; Lee, Kyung Jin; Lee, Byung Chul [FNC Tech., Yongin (Korea, Republic of); Yun, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the reactor core damage time for OPR1000 type Nuclear Power Plant (NPP) was analyzed to develop a strategy to handle ELAP and to apply to the EOP. The reactor core damage time in the ELAP condition was calculated according to the time of Auxiliary Feedwater (AFW) loss. Fukushima accident was caused by long hours of Station Black Out (SBO) caused by natural disaster beyond Design Based Accident (DBA) criteria. It led to the reactor core damage. After the accident, the regulatory authorities of each country (Japan, US, EU, IAEA, and etc.) recommended developing the necessary systems and strategies in order to cover up the Extended Loss of All AC Power (ELAP) such as one occurred in the Fukushima accident. And the need of procedure or guideline to cope with ELAP has been raised through the stress test for Wolsong Nuclear Power Plant unit 1. Current Emergency Operating Procedures (EOP) used in domestic nuclear power plant are seemed to be insufficient to cope with ELAP. Therefore, it has been required to be improved. As the result, the time of AFW loss in the ELAP condition influences greatly on core damage time.

  13. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  14. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  15. Derivation of the mass factors for decommissioning cost estimation of low contaminated auxiliary systems

    International Nuclear Information System (INIS)

    Poskas, G.

    2015-01-01

    Ignalina NPP was operating two RBMK-1500 reactors. Unit 1 was closed at the end of 2004, and Unit 2 - at the end of 2009. Now they are under decommissioning. Decommissioning has been started from the reactor's periphery, with dismantling of non-contaminated and low contaminated equipment and installations. This paper discusses a methodology for derivation of mass factors for preliminary decommissioning costing at NPP when the number of inventory items is significant, and separate consideration of each inventory item is impossible or impractical for preliminary decommissioning plan, especially when the level of radioactive contamination is very low. The methodology is based on detailed data analysis of building V1 taking into account period and inventory based activities, investment and consumables and other decommissioning approach- related properties for building average mass factors. The methodology can be used for cost estimation of preliminary decommissioning planning of NPP auxiliary buildings with mostly very low level contamination. (authors)

  16. Study of the reliability of the Auxiliary Feedwater System of a LWR nuclear power plant through the Fault Tree and Bayesian Network

    International Nuclear Information System (INIS)

    Lava, Deise Diana

    2016-01-01

    This paper aims to present a study of the reliability of the Auxiliary Feedwater System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10 -3 . (author)

  17. Computation of Ground-State Properties in Molecular Systems: Back-Propagation with Auxiliary-Field Quantum Monte Carlo.

    Science.gov (United States)

    Motta, Mario; Zhang, Shiwei

    2017-11-14

    We address the computation of ground-state properties of chemical systems and realistic materials within the auxiliary-field quantum Monte Carlo method. The phase constraint to control the Fermion phase problem requires the random walks in Slater determinant space to be open-ended with branching. This in turn makes it necessary to use back-propagation (BP) to compute averages and correlation functions of operators that do not commute with the Hamiltonian. Several BP schemes are investigated, and their optimization with respect to the phaseless constraint is considered. We propose a modified BP method for the computation of observables in electronic systems, discuss its numerical stability and computational complexity, and assess its performance by computing ground-state properties in several molecular systems, including small organic molecules.

  18. Theory of energy level and its application in water-loop heat pump system

    International Nuclear Information System (INIS)

    Yu, Qi Dong

    2017-01-01

    Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.

  19. The Acquisition of Auxiliary Syntax: A Longitudinal Elicitation Study. Part 1: Auxiliary BE

    Science.gov (United States)

    Theakston, Anna L.; Rowland, Caroline F.

    2009-01-01

    Purpose: The question of how and when English-speaking children acquire auxiliaries is the subject of extensive debate. Some researchers posit the existence of innately given Universal Grammar principles to guide acquisition, although some aspects of the auxiliary system must be learned from the input. Others suggest that auxiliaries can be…

  20. A niching genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization

    International Nuclear Information System (INIS)

    Sacco, W.F.; Lapa, Celso M.F.; Pereira, C.M.N.A.; Oliveira, C.R.E. de

    2006-01-01

    This article extends previous efforts on genetic algorithms (GAs) applied to a nuclear power plant (NPP) auxiliary feedwater system (AFWS) surveillance tests policy optimization. We introduce the application of a niching genetic algorithm (NGA) to this problem and compare its performance to previous results. The NGA maintains a populational diversity during the search process, thus promoting a greater exploration of the search space. The optimization problem consists in maximizing the system's average availability for a given period of time, considering realistic features such as: (i) aging effects on standby components during the tests; (ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; (iii) components have distinct test parameters (outage time, aging factors, etc.) and (iv) tests are not necessarily periodic. We find that the NGA performs better than the conventional GA and the island GA due to a greater exploration of the search space

  1. Transient freezing of molten salts in pipe-flow systems: Application to the direct reactor auxiliary cooling system (DRACS)

    International Nuclear Information System (INIS)

    Le Brun, N.; Hewitt, G.F.; Markides, C.N.

    2017-01-01

    Highlights: • A thermo-hydraulic model has been proposed to simulate the transient freezing of molten salts in complex piping systems. • The passive safety system DRACS in Generation-IV, molten salt reactor is susceptible to failure due to salt freezing. • For the prototypical 0.2 MW reactor considered in this study considerable freezing occurs after 20 minutes leading to reactor temperatures above 900 °C within 4 hours. • Conservative criteria for the most important/least known variables in the design of DRACS have been discussed. • Over-conservative approaches in designing the NDHX should be used with caution as they can promote pipe clogging due to freezing. - Abstract: The possibility of molten-salt freezing in pipe-flow systems is a key concern for the solar-energy industry and a safety issue in the new generation of molten-salt reactors, worthy of careful consideration. This paper tackles the problem of coolant solidification in complex pipe networks by developing a transient thermohydraulic model and applying it to the ‘Direct Reactor Auxiliary Cooling System’ (DRACS), the passive-safety system proposed for the Generation-IV molten-salt reactors. The results indicate that DRACS, as currently envisioned, is prone to failure due to freezing in the air/molten-salt heat exchanger, which can occur after approximately 20 minutes, leading to reactor temperatures above 900 °C within 4 hours. The occurrence of this scenario is related to an unstable behaviour mode of DRACS in which newly formed solid-salt deposit on the pipe walls acts to decrease the flow-rate in the secondary loop, facilitating additional solid-salt deposition. Conservative criteria are suggested to facilitate preliminary assessments of early-stage DRACS designs. The present study is, to the knowledge of the authors, the first of its kind in serving to illustrate possible safety concerns in molten-salt reactors, which are otherwise considered very safe in the literature. Furthermore

  2. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  3. Auxiliary equipment cooling circuit in nuclear reactors

    International Nuclear Information System (INIS)

    Yanagisawa, Ko.

    1986-01-01

    Purpose: To prevent the propagation of bacterias that transform NO 2 into NO 3 in auxiliary equipment coolants using corrosion inhibitors of nitrite type in BWR type reactors. Method: In auxiliary equipments coolant systems, water quality is controlled by using purified water as supplement water and nitrite such as Na 2 NO 2 as the corrosion inhibitors. However, in the circumstance where dissolved oxygen is present, bacteria propagate to oxidize NO 2 into NO 3 . Thus, NO 2 at 200 ppm is reduced to 20 ppm. In view of the above, a surge tank supplied from water supplement line is connected in series and a deaeration device is disposed thereto. Since the presence of dissolved oxygen causes the bacteria to propagate it is desired that the dissolved oxygen density in the supplement water is less than 5 ppm. Deaeration and pressure reduction in the surge tank can remove the dissolved oxygen, prevent NO 3 increase and also prevent stress corrosion cracks in the system pipeways. (Horiuchi, T.)

  4. GER values and environmental impact scores production of auxiliaries for the water chain; GER-waarden en milieu-impactscores productie van hulpstoffen in de waterketen

    Energy Technology Data Exchange (ETDEWEB)

    Afman, M.; Bijleveld, M. [CE Delft, Delft (Netherlands); Mulder, M. [Mrabella Mulder Waste Water Management, Utrecht (Netherlands)

    2012-03-15

    Alternative processes are available for both wastewater treatment at sewage works and drinking water preparation at water production plants. Some of these involve greater use of chemicals and auxiliary materials, and an important issue is therefore how the energy savings achieved with a particular option compare with the energy required to produce the auxiliaries in question. Against this background a study was carried out to assess the energy consumption of auxiliaries production. For the auxiliaries most frequently used the following were determined: (1) the energy impact of production, expressed as the Gross Energy Requirements (GER) of the materials in question, broken down into renewable versus non-renewable energy; and (2) the environmental impact of production, expressed as a single indicator according to the ReCiPe methodology. The report also provides 'user recommendations' for the calculated values (what they should and should not be used for) and an explanation of the methodology used. The study dovetails with the STOWA research programme 'The Energy Plant', a study exploring the potential for reducing the energy consumption of sewage works to such an extent as to make them net suppliers of energy [Dutch] Voor de behandeling van afvalwater in een rioolwaterzuiveringsinstallatie (RWZI) en de bereiding van drinkwater bij waterproductiebedrijven bestaan alternatieve processen. Sommige processen zorgen voor een hogere dosering van chemicaliën en hulpstoffen in het zuiveringsproces. Een belangrijk aandachtspunt hierbij is of de energiebesparing die behaald wordt met een zuiveringsvariant, opweegt tegen de energie-impact van de productie van de benodigde hulpstoffen. Om deze reden is een studie uitgevoerd gericht op het energieverbruik van de productie van de hulpstoffen. Van de meest gebruikte hulpstoffen zijn bepaald: (1) de energie-impact van de productie van de hulpstoffen, uitgedrukt in de GER-waarde (bruto primaire energie) van de

  5. The analysis of the functional role of man and machine in the control of a notional auxiliary feedwater system

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Codazzi, A.; Decortis, F.

    1991-01-01

    We will describe here the simulation of a moderately complex plant, i.e. the Auxiliary Feedwater System (AFWS) of a nuclear power plant, which has been developed for interacting with a cognitive model of operator in a simulation framework of man-machine system studies as well as with an external operator for verifying and validating the hypotheses of the theoretical model by experimental studies. In order to develop such simulation, which must be very flexible for satisfying the needs of interaction with an operator as well as with a cognitive model, a number of special conditions have been respected: the model of functional behaviour of the system has been extended to include the logic of control mechanisms, i.e. components, indicators and actuators; the control tasks for a number of sequences has been developed; the robustness of physical model has been tested in whole possible configuration of the plant; and finally, the interface of the simulation with the model for dynamic failures of components has also been granted. In this paper, these aspects of the deterministic model of the AFWS will be firstly presented in detail. Then, the interface of the plant simulation with an external user or with the cognitive model of the operator will be described focusing on the analysis of the control task. Finally, we will attempt to integrate our approach in an overall framework of taxonomy for studying human actions in complex work context

  6. Participation of Empresarios Agrupados in engineering of the Tokamak systems and auxiliary buildings

    International Nuclear Information System (INIS)

    Fernandez del Palacio, V.

    2013-01-01

    The Architect Engineering works comprise approximately the design of 32 buildings and structures, some of them very simple and others extremely complex. 32 buildings include nuclear buildings, as the Toyama, tritium, or the building of emergency diesel and buildings conventional and the building of the site services. Systems including those related to systems within a building they reach conventional, while interfaces with process systems are countless. Grouped entrepreneurs led the design of the mechanical (PBS65) systems and Electric (PBS43) actively participating in the design of systems of fire proofing of buildings and site. During the development of engineering accident of Fukushima works directly affect in the design of the systems.

  7. Modifications done in the IPR-R1 reactor and their auxiliary systems

    International Nuclear Information System (INIS)

    Maretti Junior, F.; Amorim, V.A. de; Coura, J.G.

    1986-01-01

    The improvements done in the IPR-R1 reactor for adequateness of operation conditions and increase of irradiation sample capability. The cooling systems, reactor pool, system of control rods were substituted. The optimization of transfer pneumatic system was done. (M.C.K.) [pt

  8. Optimal Scheduling of a Battery Energy Storage System with Electric Vehicles’ Auxiliary for a Distribution Network with Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2015-09-01

    Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.

  9. Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems.

    Science.gov (United States)

    Broecker, Peter; Trebst, Simon

    2016-12-01

    In the absence of a fermion sign problem, auxiliary-field (or determinantal) quantum Monte Carlo (DQMC) approaches have long been the numerical method of choice for unbiased, large-scale simulations of interacting many-fermion systems. More recently, the conceptual scope of this approach has been expanded by introducing ingenious schemes to compute entanglement entropies within its framework. On a practical level, these approaches, however, suffer from a variety of numerical instabilities that have largely impeded their applicability. Here we report on a number of algorithmic advances to overcome many of these numerical instabilities and significantly improve the calculation of entanglement measures in the zero-temperature projective DQMC approach, ultimately allowing us to reach similar system sizes as for the computation of conventional observables. We demonstrate the applicability of this improved DQMC approach by providing an entanglement perspective on the quantum phase transition from a magnetically ordered Mott insulator to a band insulator in the bilayer square lattice Hubbard model at half filling.

  10. Parallel island genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Lapa, Celso M.F.

    2003-01-01

    In this work, we focus the application of an Island Genetic Algorithm (IGA), a coarse-grained parallel genetic algorithm (PGA) model, to a Nuclear Power Plant (NPP) Auxiliary Feedwater System (AFWS) surveillance tests policy optimization. Here, the main objective is to outline, by means of comparisons, the advantages of the IGA over the simple (non-parallel) genetic algorithm (GA), which has been successfully applied in the solution of such kind of problem. The goal of the optimization is to maximize the system's average availability for a given period of time, considering realistic features such as: i) aging effects on standby components during the tests; ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; iii) components have distinct test parameters (outage time, aging factors, etc.) and iv) tests are not necessarily periodic. In our experiments, which were made in a cluster comprised by 8 1-GHz personal computers, we could clearly observe gains not only in the computational time, which reduced linearly with the number of computers, but in the optimization outcome

  11. Auxiliary verbs in Dinka

    DEFF Research Database (Denmark)

    Andersen, Torben

    2007-01-01

    Dinka, a Western Nilotic language, has a class of auxiliary verbs which is remarkable in the following four respects: (i) It is unusually large, comprising some 20 members; (ii) it is grammatically homogeneous in terms of both morphology and syntax; (iii) most of the auxiliary verbs correspond...... to adverbs in languages like English, while the rest are tense-aspect markers; and (iv) it is possible to combine several auxiliary verbs in a single clause. For some of the auxiliary verbs there are extant full verbs from which they have evolved. To some extent, therefore, it is possible to observe what...

  12. Solutions of system of P1 equations without use of auxiliary differential equations coupled

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  13. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    Science.gov (United States)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  14. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  15. Simplified analysis of PRISM RVACS [Reactor Vessel Auxiliary Cooling System] performance without liner spill-over

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1990-01-01

    Simplified analysis of the performance of the PRISM RVACS decay heat removal system under off-normal conditions, i.e., without the liner spill-over, is described. Without the spilling of hot-pool sodium over the liner and the resultant down-flow along the inside of the reactor vessel wall, the RVACS system performance becomes dominated by the radial heat condition and radiation. Simple estimates of the resulting heat conduction and radiation processes support GE's contention that the RVACS performance is not severely impacted by the absence of spillover, and can improve significantly if sodium has leaked into the region between the reactor and containment vessels. 7 refs

  16. Assessment of Flow Instability in Passive Auxiliary Feedwater System (PAFS) Using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cheon, Jong; Kim, Han-Gon [KHNP, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the occurrence possibility of both instabilities in PAFS is assessed with the best-estimate thermal hydraulic code, RELAP5. From the RELAP5 code analysis, the Ledinegg instability might not occur in PAFS. The DWO might occur in PAFS but the effect of the oscillation on the heat removal capacity of PAFS was not large. Therefore, it is concluded that PAFS is safe in terms of flow instabilities. Since PAFS is two-phase flow system, flow instabilities may occur. Flow instabilities may cause the severe deterioration of heat removal capability of PAFS due to the reduction of the condensate flow. For the reliable operation of PAFS, it is required to assess the flow instabilities in PAFS. The Ledinegg-type instability and the Density Wave Oscillation (DWO) are the representative static flow instability and the dynamic flow instability, respectively.

  17. Definition of an auxiliary processor dedicated to real-time operating system kernels

    Science.gov (United States)

    Halang, Wolfgang A.

    1988-01-01

    In order to increase the efficiency of process control data processing, it is necessary to enhance the productivity of real time high level languages and to automate the task administration, because presently 60 percent or more of the applications are still programmed in assembly languages. This may be achieved by migrating apt functions for the support of process control oriented languages into the hardware, i.e., by new architectures. Whereas numerous high level languages have already been defined or realized, there are no investigations yet on hardware assisted implementation of real time features. The requirements to be fulfilled by languages and operating systems in hard real time environment are summarized. A comparison of the most prominent languages, viz. Ada, HAL/S, LTR, Pearl, as well as the real time extensions of FORTRAN and PL/1, reveals how existing languages meet these demands and which features still need to be incorporated to enable the development of reliable software with predictable program behavior, thus making it possible to carry out a technical safety approval. Accordingly, Pearl proved to be the closest match to the mentioned requirements.

  18. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  19. Evaluation of the performance of the systems cooling auxiliary of the Almaraz NPP turbine building; Evaluacion del rendimiento de los sistemas de refrigeracion auxiliar del edificio de turbinas de CNA

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Carmona, G.

    2011-07-01

    After the successive performance improvements, to evacuate the thermal loads, and maintain acceptable temperatures throughout the year, added an auxiliary cooling system of the building of turbine, TCA system, composed of 5 shot forced by unit cooling towers.

  20. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  1. A moving image system for cardiovascular nuclear medicine. A dedicated auxiliary device for the total capacity imaging system for multiple plane dynamic colour display

    International Nuclear Information System (INIS)

    Iio, M.; Toyama, H.; Murata, H.; Takaoka, S.

    1981-01-01

    The recent device of the authors, the dedicated multiplane dynamic colour image display system for nuclear medicine, is discussed. This new device is a hardware-based auxiliary moving image system (AMIS) attached to the total capacity image processing system of the authors' department. The major purpose of this study is to develop the dedicated device so that cardiovascular nuclear medicine and other dynamic studies will include the ability to assess the real time delicate processing of the colour selection, edge detection, phased analysis, etc. The auxiliary system consists of the interface for image transferring, four IC refresh memories of 64x64 matrix with 10 bit count depth, a digital 20-in colour TV monitor, a control keyboard and a control panel with potentiometers. This system has five major functions for colour display: (1) A microcomputer board can select any one of 40 different colour tables preset in the colour transformation RAM. This key also provides edge detection at a certain level of the count by leaving the optional colour and setting the rest of the levels at 0 (black); (2) The arithmetic processing circuit performs the operation of the fundamental rules, permitting arithmetic processes of the two images; (3) The colour level control circuit is operated independently by four potentiometers for four refresh image memories, so that the gain and offset of the colour level can be manually and visually controlled to the satisfaction of the operator; (4) The simultaneous CRT display of the maximum four images with or without cinematic motion is possible; (5) The real time movie interval is also adjustable by hardware, and certain frames can be freezed with overlapping of the dynamic frames. Since this system of AMIS is linked with the whole capacity image processing system of the CPU size of 128kW, etc., clinical applications are not limited to cardiovascular nuclear medicine. (author)

  2. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  3. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  4. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  5. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  6. Operation and Control of a Direct-Driven PMSG-Based Wind Turbine System with an Auxiliary Parallel Grid-Side Converter

    Directory of Open Access Journals (Sweden)

    Jiawei Chu

    2013-07-01

    Full Text Available In this paper, based on the similarity, in structure and principle, between a grid-connected converter for a direct-driven permanent magnet synchronous generator (D-PMSG and an active power filter (APF, a new D-PMSG-based wind turbine (WT system configuration that includes not only an auxiliary converter in parallel with the grid-side converter, but also a coordinated control strategy, is proposed to enhance the low voltage ride through (LVRT capability and improve power quality. During normal operation, the main grid-side converter maintains the DC-link voltage constant, whereas the auxiliary grid-side converter functions as an APF with harmonic suppression and reactive power compensation to improve the power quality. During grid faults, a hierarchical coordinated control scheme for the generator-side converter, main grid-side converter and auxiliary grid-side converter, depending on the grid voltage sags, is presented to enhance the LVRT capability of the direct-driven PMSG WT. The feasibility and the effectiveness of the proposed system’s topology and hierarchical coordinated control strategy were verified using MATLAB/Simulink simulations.

  7. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  8. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  9. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    International Nuclear Information System (INIS)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyoung-Ho

    2014-01-01

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection

  10. 46 CFR 58.25-10 - Main and auxiliary steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main and auxiliary steering gear. 58.25-10 Section 58.25... AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-10 Main and auxiliary steering gear. (a) Power-operated main and auxiliary steering gear must be separate systems that are independent throughout their...

  11. Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2016-01-01

    Deep generative models parameterized by neural networks have recently achieved state-of-the-art performance in unsupervised and semi-supervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave...... the generative model unchanged but make the variational distribution more expressive. Inspired by the structure of the auxiliary variable we also propose a model with two stochastic layers and skip connections. Our findings suggest that more expressive and properly specified deep generative models converge...... faster with better results. We show state-of-the-art performance within semi-supervised learning on MNIST (0.96%), SVHN (16.61%) and NORB (9.40%) datasets....

  12. Smart SDHW systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2000-01-01

    The aim of the project is to develop smart solar domestic hot water (SDHW) systems. A smart SDHW is a system in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top an...

  13. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  14. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  15. Auxiliary partial liver transplantation

    NARCIS (Netherlands)

    C.B. Reuvers (Cornelis Bastiaan)

    1986-01-01

    textabstractIn this thesis studies on auxiliary partial liver transplantation in the dog and the pig are reported. The motive to perform this study was the fact that patients with acute hepatic failure or end-stage chronic liver disease are often considered to form too great a risk for successful

  16. Bacillus Probiotic Enzymes: External Auxiliary Apparatus to Avoid Digestive Deficiencies, Water Pollution, Diseases, and Economic Problems in Marine Cultivated Animals.

    Science.gov (United States)

    Olmos Soto, Jorge

    Exploitation of marine fishes is the main source of several life-supporting feed compounds such as proteins, lipids, and carbohydrates that maintain the production of most trading marine organisms by aquaculture. However, at this rate the marine inventory will go to the end soon, since fishery resources are finite. In this sense, the availability of the principal ingredients obtained from marine fishes is going to decrease considerably, increasing the diet prices and affecting the economy of this activity. Therefore, aquaculture industry needs to find nonexpensive land unconventional resources of protein, carbohydrates, and lipids and use bacterial probiotics to improve digestion-assimilation of these unfamiliar compounds. Bacillus subtilis is a cosmopolitan probiotic bacterium with a great enzymatic profile that could improve nutrient digestion-assimilation, induce healthy growth, and avoid water pollution, decreasing economic problems and increasing yields in the aquaculture industry. In this chapter, we present how Bacillus enzymes can help marine animals to assimilate nutrients from unconventional and economic plant resources. © 2017 Elsevier Inc. All rights reserved.

  17. Multicomponent analysis of fat- and water-soluble vitamins and auxiliary substances in multivitamin preparations by qNMR.

    Science.gov (United States)

    Eiff, Julia; Monakhova, Yulia B; Diehl, Bernd W K

    2015-04-01

    A nuclear magnetic resonance (NMR) spectroscopic method was tested to control 12 vitamins and accompanying substances in multivitamin preparations. The limits of detection (LODs) and limits of quantification (LOQs) varied in the 9.0-77.0 mg/kg and in the 34.5-93.5 mg/kg range, respectively. The coefficients of variation (CVs) ranged between 0.9% and 12%. The (1)H NMR spectra showed linearity for the 140-260 mg sample weight (R(2) > 0.918). The NMR spectra of multivitamin preparations showed the presence of different degradation products of ascorbic acid. The NMR method was applied to 13 different multivitamin preparations including tablets, capsules, and effervescent tablets with average recovery rates between 85% and 132%. A number of accompanying substances (citric acid, mannitol, saccharin, cyclamate, sum of steviol glycosides, and butylhydroxytoluene) were additionally identified and quantified. NMR was found to be suitable for the simultaneous qualitative measurement of water- and fat-soluble vitamins and accompanying substances and shows some promise for quantitative determination of at least 5 vitamins (B1, B3, B5, B6, and E) in multivitamin preparations.

  18. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  19. Methodology for carrying out energy diagnosis in auxiliaries systems in thermal electrical central stations; Metodologia para realizar un diagnostico energetico en sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Nebradt Garcia, Jesus [Comision Federal de Electricidad (CFE), Mexico, D. F. (Mexico); Rojas Hidalgo, Ismael; Huante Perez, Liborio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    One of the potential areas for energy saving in Central Electric Power Plants are the auxiliaries system, so as to based in a preliminary energy diagnosis and considering that energy saving measures would be taken, going from the instrumentation, operational changes in equipment, as well as in using velocity variators in motors, it turns out to be that the energy consumption of auxiliaries at 75% load in a 150 MW thermal power plant varies from 3% to 4% and for the case of a 350 MW power plant the energy consumption of the auxiliaries represents 2 to 3.5%. Nowadays this consumption are above 6%. Considering that the country has 40 units with capacities varying from 150 to 350 MW, the economical and the fuel saving would be substantial. This paper will present a summary of the methodology to be used to carry out this type of projects. [Espanol] Una de las areas potenciales de ahorro de energia en centrales termoelectricas son los sistemas auxiliares, de tal manera que basados en un diagnostico energetico preliminar y considerando que se aplicarian las medidas de ahorro de energia que van desde la instrumentacion, cambios operativos en equipos, asi como el uso de variadores de velocidad en motores, se tienen que los consumos de auxiliares para un 75% de carga en una central termoelectrica de 150 MW varian desde un 3% hasta un 4% y para el caso de una central termoelectrica de 350 MW, el consumo de auxiliares representa del 2 al 3.5%. Hoy en dia dichos consumos estan por encima del 6%. Si consideramos que el pais cuenta con 40 unidades que varian desde 150 MW hasta 350 MW, entonces los ahorros economicos y de combustible serian impactantes. La presente ponencia mostrara un resumen de la metodologia a emplear para la realizacion de este tipo de proyectos.

  20. Methodology for carrying out energy diagnosis in auxiliaries systems in thermal electrical central stations; Metodologia para realizar un diagnostico energetico en sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Nebradt Garcia, Jesus [Comision Federal de Electricidad (CFE), Mexico, D. F. (Mexico); Rojas Hidalgo, Ismael; Huante Perez, Liborio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    One of the potential areas for energy saving in Central Electric Power Plants are the auxiliaries system, so as to based in a preliminary energy diagnosis and considering that energy saving measures would be taken, going from the instrumentation, operational changes in equipment, as well as in using velocity variators in motors, it turns out to be that the energy consumption of auxiliaries at 75% load in a 150 MW thermal power plant varies from 3% to 4% and for the case of a 350 MW power plant the energy consumption of the auxiliaries represents 2 to 3.5%. Nowadays this consumption are above 6%. Considering that the country has 40 units with capacities varying from 150 to 350 MW, the economical and the fuel saving would be substantial. This paper will present a summary of the methodology to be used to carry out this type of projects. [Espanol] Una de las areas potenciales de ahorro de energia en centrales termoelectricas son los sistemas auxiliares, de tal manera que basados en un diagnostico energetico preliminar y considerando que se aplicarian las medidas de ahorro de energia que van desde la instrumentacion, cambios operativos en equipos, asi como el uso de variadores de velocidad en motores, se tienen que los consumos de auxiliares para un 75% de carga en una central termoelectrica de 150 MW varian desde un 3% hasta un 4% y para el caso de una central termoelectrica de 350 MW, el consumo de auxiliares representa del 2 al 3.5%. Hoy en dia dichos consumos estan por encima del 6%. Si consideramos que el pais cuenta con 40 unidades que varian desde 150 MW hasta 350 MW, entonces los ahorros economicos y de combustible serian impactantes. La presente ponencia mostrara un resumen de la metodologia a emplear para la realizacion de este tipo de proyectos.

  1. Auxiliary programs for resonance parameter storage and retrieval system REPSTOR. XTOREP, ETOREP, REPTOINP, REPRENUM, REPIMRG, TREP, PASSIGN, JCONV

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Kikuchi, Yasuyuki; Fukahori, Tokio

    1999-06-01

    This report describes functions and usage of eight auxiliary computer programs for REPSTOR that is a computer program for collecting the resonance parameters and evaluating them. The programs are XTOREP to convert the experimental data in EXFOR to the REPSTOR input data, ETOREP to convert the data in ENDF format to the REPSTOR input data, REPTOINP to change the data in a REPSTOR file into the REPSTOR input format, REPRENUM to renumber the level number of resonance levels, REPIMRG to merge the XTOREP output data sets, TREP to calculate mean values of resonance parameters, widths of individual resonances, etc., PASSIGN to assign orbital angular momentum by using Bayse theorem, and JCONV to assign total spin. (author)

  2. Simulation of water hammer phenomena using the system code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Bratfisch, Christoph; Koch, Marco K. [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2017-07-15

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  3. Simulation of water hammer phenomena using the system code ATHLET

    International Nuclear Information System (INIS)

    Bratfisch, Christoph; Koch, Marco K.

    2017-01-01

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  4. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  5. Auxiliary office chair

    OpenAIRE

    Pascual Osés, Maite

    2007-01-01

    The aim of this project is to develop an auxiliary office chair, which favorably will compete with the existing chairs on the market. Evolutions of ergonomical survey in the work environment and on the configuration of offices require new products which fulfill the requirements properly. In order to achieve it a survey about office chairs has been carried out: types, characteristics, ways of usage and products on the market besides a large antropometrical study and ergonomics related to work ...

  6. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  7. Energy saving in the auxiliaries consumption for circulation water pumps optimizing the thermal regime; Ahorro en el consumo de auxiliares por bombas de agua de circulacion optimando el regimen termico

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Martinez, Roni [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    A methodology is proposed that should be followed in any thermal electric power plant to determine the load value at which a unit requires a second circulation water pump without affecting the thermal regime and avoiding an excessive auxiliaries consumption in partial loads. In applying this method the power plant would have an energy saving equivalent to the auxiliaries consumption during an hour, when the unit as operating at full load. [Espanol] Se propone una metodologia que debe seguirse en cualquier central termoelectrica para determinar el valor de la carga en la cual una unidad requiere de la segunda bomba de agua de circulacion sin afectar el regimen termico y evitadose un excesivo consumo de auxiliares en cargas parciales. Al aplicar este metodo la central tendria un ahorro de energia equivalente al consumo de auxiliares durante una hora cuando la unidad esta generando su maxima carga.

  8. Energy saving in the auxiliaries consumption for circulation water pumps optimizing the thermal regime; Ahorro en el consumo de auxiliares por bombas de agua de circulacion optimando el regimen termico

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Martinez, Roni [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    A methodology is proposed that should be followed in any thermal electric power plant to determine the load value at which a unit requires a second circulation water pump without affecting the thermal regime and avoiding an excessive auxiliaries consumption in partial loads. In applying this method the power plant would have an energy saving equivalent to the auxiliaries consumption during an hour, when the unit as operating at full load. [Espanol] Se propone una metodologia que debe seguirse en cualquier central termoelectrica para determinar el valor de la carga en la cual una unidad requiere de la segunda bomba de agua de circulacion sin afectar el regimen termico y evitadose un excesivo consumo de auxiliares en cargas parciales. Al aplicar este metodo la central tendria un ahorro de energia equivalente al consumo de auxiliares durante una hora cuando la unidad esta generando su maxima carga.

  9. Nuclear reactors with auxiliary boiler circuit

    International Nuclear Information System (INIS)

    George, B.V.; Cook, R.K.

    1976-01-01

    A gas-cooled nuclear reactor has a main circulatory system for the gaseous coolant incorporating one or more main energy converting units, such as gas turbines, and an auxiliary circulatory system for the gaseous coolant incorporating at least one steam generating boiler arranged to be heated by the coolant after its passage through the reactor core to provide steam for driving an auxiliary steam turbine, such an arrangement providing a simplified start-up procedure also providing emergency duties associated with long term heat removal on reactor shut down

  10. Auxiliary power unit for moving a vehicle

    Science.gov (United States)

    Akasam, Sivaprasad [Peoria, IL; Johnson, Kris W [Peoria, IL; Johnson, Matthew D [Peoria, IL; Slone, Larry M [Washington, IL; Welter, James Milton [Chillicothe, IL

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  11. Window-mounted auxiliary solar heater

    Science.gov (United States)

    Anthony, K. G.; Herndon, E. P.

    1977-01-01

    System uses hot-air collectors, no thermal storage, and fan with thermostat switches. At cost of heating efficiency, unit could be manufactured and sold at price allowing immediate entry to market as auxiliary heating system. Its simplicity allows homeowner installation, and maintenance is minimal.

  12. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  13. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  14. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  15. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  16. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems produce more net power than the sum of the power produced by individual power plants at low turbine inlet temperatures and brine based systems produce more power at high turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  17. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor; Desarrollo de la interface de usuario para la visualizacion de los sistemas auxiliares del reactor nuclear Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Merced D, J. E.

    2016-07-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  18. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the

  19. Auxiliary Heat Exchanger Flow Distribution Test

    International Nuclear Information System (INIS)

    Kaufman, J.S.; Bressler, M.M.

    1983-01-01

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop

  20. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  1. Circuito elétrico auxiliar para intubação das vias lacrimais Auxiliary electrical device for lacrimal system intubation

    Directory of Open Access Journals (Sweden)

    José Byron Vicente Dias Fernandes

    2000-10-01

    Full Text Available Objetivo: Apresentam num circuito elétrico auxiliar para a intubação de vias lacrimais. Método: Descreve-se o dispositivo e sua utilização em 40 pacientes com obstrução congênita ou traumática das vias lacrimais. Resultados: O estudo das características elétricas do aparelho mostrou suas vantagens em relação a outros dispositivos citados na literatura. O uso do aparelho facilitou a recuperação das sondas de Crawford em todos os pacientes. Conclusão: O CAI mostrou-se eficiente e seguro sendo que seu emprego permitiu uma rápida localização e apreensão da sonda de Crawford na cavidade nasal.Purpose: To present an auxiliary electrical circuit (CAI for lacrimal system intubation. Method: The device is described as well as its application to 40 patients with congenital and traumatic lacrimal obstruction. Results: An electrical characteristics study of CAI was performed and compared to other instruments reported in the literature, showing its advantages. Its use helped the retrieval of Crawford probes in all patients. Conclusions: CAI is safe and effective. Its use allows a quick localization and retrieval of Crawford probe even when performed by trainee physicians not familiar with lacrimal anatomy.

  2. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  3. Prototype Solar Domestic Hot Water Systems (A collation of Quarterly Reports)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report is a collection of quarterly reports from Solar Engineering and Manufacturing Company (SEMCO) covering the period from November 1976 through September 1977. SEMCO, under NASA/MSFC Contract NAS8-32248, is developing two prototype solar domestic hot water systems consisting of the following subsystems: collector, storage, control, transport, and auxiliary energy. These two systems are being installed at sites in Loxahatchee, Florida (OTS-27) and Macon, Georgia (OTS-28).

  4. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  5. Cox17 Protein Is an Auxiliary Factor Involved in the Control of the Mitochondrial Contact Site and Cristae Organizing System.

    Science.gov (United States)

    Chojnacka, Magdalena; Gornicka, Agnieszka; Oeljeklaus, Silke; Warscheid, Bettina; Chacinska, Agnieszka

    2015-06-12

    The mitochondrial contact site and cristae organizing system (MICOS) is a recently discovered protein complex that is crucial for establishing and maintaining the proper inner membrane architecture and contacts with the outer membrane of mitochondria. The ways in which the MICOS complex is assembled and its integrity is regulated remain elusive. Here, we report a direct link between Cox17, a protein involved in the assembly of cytochrome c oxidase, and the MICOS complex. Cox17 interacts with Mic60, thereby modulating MICOS complex integrity. This interaction does not involve Sco1, a partner of Cox17 in transferring copper ions to cytochrome c oxidase. However, the Cox17-MICOS interaction is regulated by copper ions. We propose that Cox17 is a newly identified factor involved in maintaining the architecture of the MICOS complex. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Identification of source and recharge zones in an aquifer system from water stable isotope. Case Study Bajo Cauca Antioqueno

    International Nuclear Information System (INIS)

    Palacio B, Paola Andrea; Betancur V, Teresita

    2008-01-01

    Hydrology and hydrogeochemical are auxiliary techniques to valid conceptual hydrogeology an recharge models. Stable isotopes from water trace sources and path flow and Tritium indicates age. This paper is about the use of D 18, D 2H y 3H to study the aquifer system on Bajo Cauca antioqueno

  7. 46 CFR 182.620 - Auxiliary means of steering.

    Science.gov (United States)

    2010-10-01

    ... TONS) MACHINERY INSTALLATION Steering Systems § 182.620 Auxiliary means of steering. (a) Except as... personnel hazards during normal or heavy weather operation. (b) A suitable hand tiller may be acceptable as...

  8. Hybrid mesons with auxiliary fields

    International Nuclear Information System (INIS)

    Buisseret, F.; Mathieu, V.

    2006-01-01

    Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the π 1 (1600) and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique (also known as the einbein field method) to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body q system with an excited flux tube, or a three-body qg system. We also compute the masses of the 1 -+ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models. (orig.)

  9. 76 FR 28795 - Privacy Act of 1974; Department of Homeland Security United States Coast Guard-024 Auxiliary...

    Science.gov (United States)

    2011-05-18

    ... 1974; Department of Homeland Security United States Coast Guard-024 Auxiliary Database System of... Security/United States Coast Guard-024 Auxiliary Database (AUXDATA) System of Records.'' This system of...: United States Coast Guard Auxiliary Database (AUXDATA). Security classification: Unclassified. System...

  10. Study on primary coolant system depressurization effect factor in pressurized water reactor

    International Nuclear Information System (INIS)

    Ji Duan; Cao Xuewu

    2006-01-01

    The progression of high-pressure core melting severe accident induced by very small break loss of coolant accident plus the loss of main feed water and auxiliary feed water failure is studied, and the entry condition and modes of primary cooling system depressurization during the severe accident are also estimated. The results show that the temperature below 650 degree C is preferable depressurization input temperature allowing recovery of core cooling, and the available and effective way to depressurize reactor cooling system and to arrest very small break loss of coolant accident sequences is activating pressurizer relief valves initially, then restoring the auxiliary feedwater and opening the steam generator relief valves. It can adequately reduce the primary pressure and keep the capacity loop of long-term core cooling. (authors)

  11. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  12. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  13. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  14. Improving Energy Efficiency of Auxiliaries

    International Nuclear Information System (INIS)

    Carl T. Vuk

    2001-01-01

    The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines

  15. Performance of a directly-coupled PV water pumping system

    International Nuclear Information System (INIS)

    Mokeddem, Abdelmalek; Midoun, Abdelhamid; Kadri, D.; Hiadsi, Said; Raja, Iftikhar A.

    2011-01-01

    Highlights: → Directly coupled PV water pumping system installed and performance studied. → Configured for two static heads, operate without electronic control and auxiliary power. → The system attains steady state soon after any abrupt change. → Cost effective and useful for low head communicating wells system. - Abstract: This paper describes the experimental study carried out to investigate the performance of a simple, directly coupled dc photovoltaic (PV) powered water pumping system. The system comprises of a 1.5 kWp PV array, dc motor and a centrifugal pump. The experiment was conducted over a period of 4 months and the system performance was monitored under different climatic conditions and varying solar irradiance with two static head configurations. Although the motor-pump efficiency did not exceed 30%, which is typical for directly-coupled photovoltaic pumping systems, such a system is clearly suitable for low head irrigation in the remote areas, not connected to the national grid and where access to water comes as first priority issue than access to technology. The system operates without battery and complex electronic control, therefore not only the initial cost is low but also maintenance, repairing and replacement cost can be saved. The study showed that directly coupled system attains steady state soon after any abrupt change.

  16. Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system

    Directory of Open Access Journals (Sweden)

    Fortelný Zdeněk

    2012-04-01

    Full Text Available The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous mixtures of refrigerants and absorbents. The working mixture isn’t only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.

  17. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  18. Aspectual auxiliary verbs in Xitsonga

    African Journals Online (AJOL)

    Kate H

    Let him always come' e. á vá hátl-é vá yá étlélà. OPT 3PL quickly-OPT 3PL go sleep. 'Let them quickly go to bed'. 3.4 Negative markers. Negation is marked on AA verbs. The auxiliary verb hatla 'quickly' is negated in three tenses.

  19. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  20. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soft colunm after test with enough long time. We adopt the test data of sample soil colunms in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  1. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  2. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant; Um modelo de manutencao centrada em confiabilidade aplicada ao sistema de agua de alimentacaco auxiliar de uma usina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson Borges

    1998-01-15

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  3. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  4. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  5. Modeling a hierarchical structure of factors influencing exploitation policy for water distribution systems using ISM approach

    Science.gov (United States)

    Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta

    2017-12-01

    Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.

  6. 33 CFR 5.47 - Auxiliary ensign.

    Science.gov (United States)

    2010-07-01

    ... matching blue Coast Guard Auxiliary emblem is centered. The white slash shall be at a 70 degree angle, rising away from the hoist. (c) The Auxiliary emblem consists of a disk with the shield of the Coat of...

  7. Intrinsically safe electrical installations, auxiliary circuits and electric communication equipment

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1981-11-19

    Technical progress has not stopped short of electrical systems in mining, so that three new chapters are new included in the VDE regulations leaflet No. 0118 on 'Installation of electrical systems in underground coal mining'. The regulations on intrinsically safe electric systems, auxiliary circuits and communication systems are briefly described, and grounds for the regulations are presented. The regulations already take account of European regulations on intrinsic safety which will soon be published in a European Regulation on Mine Explosions. In the chapters on auxiliary circuits and communication systems, protection against direct contact, fires, and explosions is discussed as well as the further goal of reliable signal transmission.

  8. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  9. Retrofitting Conventional Electric Domestic Hot Water Heaters to Solar Water Heating Systems in Single-Family Houses—Model Validation and Optimization

    Directory of Open Access Journals (Sweden)

    Luis R. Bernardo

    2013-02-01

    Full Text Available System cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. In this study, the TRNSYS simulation models of the retrofitting solar thermal system were validated against measurements. Results show that the validated models are in good agreement with measurements. On an annual basis a deviation of 2.5% out of 1099 kWh was obtained between the auxiliary energy from results and from the simulation model for a complete system. Using the validated model a system optimization was carried out with respect to control strategies for auxiliary heating, heat losses and volume of auxiliary storage. A sensitivity analysis was carried out regarding different volumes of retrofitted hot water boiler, DHW profiles and climates. It was estimated that, with adequate improvements, extended annual solar fractions of 60%, 78% and 81% can be achieved for Lund (Sweden, Lisbon (Portugal and Lusaka (Zambia, respectively. The correspondent collector area was 6, 4 and 3 m2, respectively. The studied retrofitted system achieves a comparable performance with conventional solar thermal systems with the potential to reduce the investment cost.

  10. 45 CFR 707.10 - Auxiliary aids.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Auxiliary aids. 707.10 Section 707.10 Public Welfare Regulations Relating to Public Welfare (Continued) COMMISSION ON CIVIL RIGHTS ENFORCEMENT OF... § 707.10 Auxiliary aids. (a) The Agency shall furnish appropriate auxiliary aids where necessary to...

  11. 7 CFR 15b.37 - Auxiliary aids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Auxiliary aids. 15b.37 Section 15b.37 Agriculture... ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Other Aid, Benefits, or Services § 15b.37 Auxiliary aids... appropriate auxiliary aids to persons with impaired sensory, manual, or speaking skills, where necessary to...

  12. 30 CFR 57.6161 - Auxiliary facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary facilities. 57.6161 Section 57.6161...-Underground Only § 57.6161 Auxiliary facilities. (a) Auxiliary facilities used to store explosive material near work places shall be wooden, box-type containers equipped with covers or doors, or facilities...

  13. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  14. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  15. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  16. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  17. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hosein, E-mail: hkhalafi@aeoi.org.i [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2010-10-15

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  18. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    International Nuclear Information System (INIS)

    Aghoyeh, Reza Gholizadeh; Khalafi, Hosein

    2010-01-01

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  19. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  20. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  1. Linearized curvatures for auxiliary fields in the de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-09-19

    New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.

  2. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  3. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  4. Study of the reliability of the Auxiliary Feedwater System of a LWR nuclear power plant through the Fault Tree and Bayesian Network; Estudo de confiabilidade do Sistema Auxiliar de Agua de Alimentacao de uma central nuclear a agua leve por arvore de falhas e rede Bayesiana

    Energy Technology Data Exchange (ETDEWEB)

    Lava, Deise Diana

    2016-10-01

    This paper aims to present a study of the reliability of the Auxiliary Feedwater System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10{sup -3}. (author)

  5. Auxiliary bearing design considerations for gas cooled reactors

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Rodwell, E.

    2001-01-01

    The need to avoid contamination of the primary system, along with other perceived advantages, has led to the selection of electromagnetic bearings (EMBs) in most ongoing commercial-scale gas cooled reactor (GCR) designs. However, one implication of magnetic bearings is the requirement to provide backup support to mitigate the effects of failures or overload conditions. The demands on these auxiliary or 'catcher' bearings have been substantially escalated by the recent development of direct Brayton cycle GCR concepts. Conversely, there has been only limited directed research in the area of auxiliary bearings, particularly for vertically oriented turbomachines. This paper explores the current state-of-the-art for auxiliary bearings and the implications for current GCR designs. (author)

  6. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Shih, Chunkuan [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Lin, Hao-Tzu [Atomic Energy Council, Taiwan (China). Inst. of Nuclear Energy Research

    2013-07-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  7. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    International Nuclear Information System (INIS)

    Chen, Che-Hao; Shih, Chunkuan; Wang, Jong-Rong; Lin, Hao-Tzu

    2013-01-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  8. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  9. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  10. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of auxiliary heat sources on energy efficiency of active solar heating systems%辅助热源对主动式太阳能供暖系统节能性的影响

    Institute of Scientific and Technical Information of China (English)

    于国清; 周继瑞

    2015-01-01

    According to the solar fraction and the energy efficiency of auxiliary heating equipments, analyses the effects of different auxiliary heat sources on the energy efficiency of active solar heating systems by converting energy consumption to primary energy,and believes that the active solar heating system must satisfy certain conditions for achieving energy saving effect.The results indicate that the auxiliary heat source and the solar fraction have a great impact on the energy efficiency of solar heating systems.Compared to the gas-fired boiler heating alone,the solar heating system assisted by electric heating is energy efficient only when the solar fraction is greater than 65.4%,which is very difficult to achieve for many real systems.The primary energy consumption of the solar heating system assisted by heat pump is lower in general instances (when the average COP of heat pump is 2.5,the solar fraction should be greater than 7%).When heat pumps with average COP above 3.0 or gas-fired boilers are used as auxiliary heat sources,the solar heating system is energy efficient,and the higher the solar fraction is,the more obvious the energy saving effect is.%根据太阳能贡献率和辅助加热设备的能源效率,将系统的能耗折算成一次能源,分析不同辅助热源对太阳能供暖系统节能性的影响,认为主动式太阳能供暖系统要达到节能效果必须满足一定的前提条件。研究结果表明:辅助热源方式和太阳能贡献率对系统的节能性影响很大;相对于燃气锅炉单独供暖,电加热辅助太阳能供暖系统只有在太阳能贡献率高于65.4%时才节能,而大多数系统的太阳能贡献率很难达到这么高,因此要尽量避免使用;热泵辅助太阳能供暖系统在大多数情况下都是节能的(热泵的平均 COP =2.5时,太阳能贡献率需高于7%);采用平均COP 高于3.0的热泵或采用燃气锅炉作为辅助热源时,系统都是节

  12. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    Gao Mingshan; Yang Guojun; Xu Yang; Zhao Lei; Yu Suyuan

    2005-01-01

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  13. Auxiliary controller for time-to-digital converter module readout

    International Nuclear Information System (INIS)

    Ermolin, Yu.V.

    1992-01-01

    The KD-225 auxiliary controller for time-to-digital converter module readout in the SUMMA crate is described. After readout and preliminary processing the data are written in the P-140 buffer memory module. The controller is used in the FODS-2 experimental setup data acquisition system. 12 refs.; 1 fig

  14. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  15. Auxiliary basis expansions for large-scale electronic structure calculations.

    Science.gov (United States)

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  16. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000 Btu/hr...

  17. 47 CFR 73.1675 - Auxiliary antennas.

    Science.gov (United States)

    2010-10-01

    ... Class A TV licensees may request a decrease from the authorized facility's ERP in the license application. An FM, TV or Class A TV licensee may also increase the ERP of the auxiliary facility in a license... licensed main facility as an auxiliary facility with an ERP less than or equal to the ERP specified on the...

  18. 78 FR 27321 - Revision of Auxiliary Regulations

    Science.gov (United States)

    2013-05-10

    ... Auxiliary organizational structure, extending civil liability protection to Auxiliary units and members, and... entities. C. Assistance for Small Entities If you think that your business, organization, or governmental..., explain why you think your business or organization qualifies, how and to what degree this rule would...

  19. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  20. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  1. Orthodontic springs and auxiliary appliances: assessment of magnetic field interactions associated with 1.5 T and 3 T magnetic resonance systems

    International Nuclear Information System (INIS)

    Kemper, J.; Priest, A.N.; Adam, G.; Schulze, D.; Kahl-Nieke, B.; Klocke, A.

    2007-01-01

    The objective of this paper is to evaluate magnetic field interactions at 1.5 and 3 T for 20 orthodontic devices used for fixed orthodontic therapy. Twenty springs and auxiliary parts made from varying ferromagnetic alloys were tested for magnetic field interactions in the static magnetic field at 1.5 and 3 T. Magnetic translational force F z (in millinewtons) was evaluated by determining the deflection angle β [American Society for Testing and Materials (ASTM standard test method)]. Magnetic-field-induced rotational force F rot was qualitatively determined using a five-point scale. β was found to be >45 in 13(15) devices at 1.5(3) T and translational force F z exceeded gravitational force F g on the particular object [F z 10.17-261.4 mN (10.72-566.4 mN) at 1.5(3) T]. F z was found to be up to 24.1(47.5)-fold higher than F g at 1.5(3) T. Corresponding to this, F rot on the objects was shown to be high at both field strengths (≥ +3). Three objects (at 1.5 T) and one object (at 3 T) showed deflection angles rot was found to be ≥ +3 at both field strengths. For the remaining objects, β was below 45 and torque measurements ranged from 0 to +2. Of 20 objects investigated for magnetic field interactions at 1.5(3) T, 13(15) were unsafe in magnetic resonance (MR), based on the ASTM criteria of F z . The implications of these results for orthodontic patients undergoing MRI are discussed. (orig.)

  2. Orthodontic springs and auxiliary appliances: assessment of magnetic field interactions associated with 1.5 T and 3 T magnetic resonance systems

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, J.; Priest, A.N.; Adam, G. [University Medical Center of Hamburg-Eppendorf, Clinic of Diagnostic and Interventional Radiology, Hamburg (Germany); Schulze, D. [University Hospital of Freiburg, Department of Oral and Maxillofacial Surgery, Freiburg (Germany); Kahl-Nieke, B.; Klocke, A. [University Medical Center of Hamburg-Eppendorf, Department of Orthodontics, Hamburg (Germany)

    2007-02-15

    The objective of this paper is to evaluate magnetic field interactions at 1.5 and 3 T for 20 orthodontic devices used for fixed orthodontic therapy. Twenty springs and auxiliary parts made from varying ferromagnetic alloys were tested for magnetic field interactions in the static magnetic field at 1.5 and 3 T. Magnetic translational force F{sub z} (in millinewtons) was evaluated by determining the deflection angle {beta} [American Society for Testing and Materials (ASTM standard test method)]. Magnetic-field-induced rotational force F{sub rot} was qualitatively determined using a five-point scale. {beta} was found to be >45 in 13(15) devices at 1.5(3) T and translational force F{sub z} exceeded gravitational force F{sub g} on the particular object [F{sub z} 10.17-261.4 mN (10.72-566.4 mN) at 1.5(3) T]. F{sub z} was found to be up to 24.1(47.5)-fold higher than F{sub g} at 1.5(3) T. Corresponding to this, F{sub rot} on the objects was shown to be high at both field strengths ({>=} +3). Three objects (at 1.5 T) and one object (at 3 T) showed deflection angles <45 , but F{sub rot} was found to be {>=} +3 at both field strengths. For the remaining objects, {beta} was below 45 and torque measurements ranged from 0 to +2. Of 20 objects investigated for magnetic field interactions at 1.5(3) T, 13(15) were unsafe in magnetic resonance (MR), based on the ASTM criteria of F{sub z}. The implications of these results for orthodontic patients undergoing MRI are discussed. (orig.)

  3. Dynamic optimization of maintenance and improvement planning for water main system: Periodic replacement approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Choi, Go Bong; Lee, Jong Min [Seoul National University, Seoul (Korea, Republic of); Suh, Jung Chul [Samchully Corporation, Seoul (Korea, Republic of)

    2016-01-15

    This paper proposes a Markov decision process (MDP) based approach to derive an optimal schedule of maintenance, rehabilitation and replacement of the water main system. The scheduling problem utilizes auxiliary information of a pipe such as the current state, cost, and deterioration model. The objective function and detailed algorithm of dynamic programming are modified to solve the periodic replacement problem. The optimal policy evaluated by the proposed algorithm is compared to several existing policies via Monte Carlo simulations. The proposed decision framework provides a systematic way to obtain an optimal policy.

  4. Component Data Base for Space Station Resistojet Auxiliary Propulsion

    Science.gov (United States)

    Bader, Clayton H.

    1988-01-01

    The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.

  5. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  6. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  7. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  8. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  9. Comparison of auxiliary feedwater and EDRS operation during natural circulation of MRX

    International Nuclear Information System (INIS)

    Kim, Jae Hak; Park, Goon Cherl

    1997-01-01

    The MRX is an integral type ship reactor with 100 MWt power, which is designed by Japan Atomic Energy Research Institute. It is characterized by integral type PWR, in-vessel type control rod drive mechanism, water-filled containment vessel and passive decay heat removal system. Marine reactor should have high passive safety. Therefore, in this study, we simulated the loss of flow accident to verify the passive decay heat removal by natural circulation using RETRAN-03 code. auxiliary feed water systems are used for decay heat removal mechanism and results are compared with the loss of flow accident analysis using emergency decay heat removal system by JAERI. Results are very similar to case of EDRS 1 loop operation in JAERI analysis and decay heat is successfully removed by natural circulation

  10. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  11. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  12. Analysis of systems for hot water supply with solar energy utilization

    International Nuclear Information System (INIS)

    Zlateva, M.

    2001-01-01

    The results from the analysis of the hot water consumption of a group of hotels in the Black See resort Albena are presented. Structural schemes of hot water solar systems with flat plate collectors have been synthesized. By the synthesis have been analyzed the type of the consumers, the operating period, the existing heating plants, the auxiliary energy source - electricity. The change of the solar fraction by different performance of the system have been investigated. A comparative analysis of the alternative solutions has been fulfilled. The most advantageous solution has been chosen on the basis of the evaluation of the pay-back period, the life cycle savings and the benefit-cost ratio. The effect of the changing economic characteristics on the economic efficiency have been investigated. The risk for the investments has been examined. It had been proved that for the conditions in Bulgarian Black See region the use of solar energy for hot water producing is economic reasonable. (author)

  13. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  14. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  15. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  16. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  17. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  18. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Corletti, M.M.; Schulz, T.L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures

  19. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  20. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  1. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  2. Experimental investigation of a Hybrid Solar Drier and Water Heater System

    International Nuclear Information System (INIS)

    Mohajer, Alireza; Nematollahi, Omid; Joybari, Mahmood Mastani; Hashemi, Seyed Ahmad; Assari, Mohammad Reza

    2013-01-01

    Highlights: • A Hybrid Solar Drier and Water Heater System experimentally investigated. • Using collected data, GIS maps were plotted for solar energy of Khuzestan Province. • System is presented which facilitates a dual-purpose solar collector. • The system includes a 100 l water storage tank, a solar dryer with 5 trays. • Experiments were carried out to dry vegetables (parsley, dill and coriander). - Abstract: Drying process is of great importance in food industries. One of the best methods of food drying is using solar dryers. For initial estimation of solar energy, calculations were made for statistical information measured by Renewable Energy Organization of Iran. Using collected data, GIS maps were plotted for solar energy of Khuzestan Province, Iran. In this study, a new hybrid system is presented which facilitates a dual-purpose solar collector to simultaneously support a dryer system and provide consumptive hot water. The system includes a 100 l water storage tank, a solar dryer with 5 trays, and a dual-purpose collector. Experiments were carried out to dry a mixture of vegetables (parsley, dill and coriander) at constant air and water flow rates. Besides, an electrical heater has been used as an auxiliary source for heating. The results indicated that the system optimally dried the vegetables and simultaneously provided the consumptive hot water

  3. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  4. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  5. Participation of Empresarios Agrupados in engineering of the Tokamak systems and auxiliary buildings; Participacion de Empresarios Agrupados en la Ingenieria de los sistemas de tokamak y edificios auxiliares

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez del Palacio, V.

    2013-07-01

    The Architect Engineering works comprise approximately the design of 32 buildings and structures, some of them very simple and others extremely complex. 32 buildings include nuclear buildings, as the Toyama, tritium, or the building of emergency diesel and buildings conventional and the building of the site services. Systems including those related to systems within a building they reach conventional, while interfaces with process systems are countless. Grouped entrepreneurs led the design of the mechanical (PBS65) systems and Electric (PBS43) actively participating in the design of systems of fire proofing of buildings and site. During the development of engineering accident of Fukushima works directly affect in the design of the systems.

  6. 30 CFR 75.331 - Auxiliary fans and tubing.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be— (1...

  7. Contributions to the research programs in nuclear and industrial electronics, domestic production of instrumentation, safety and control systems and equipment for nuclear reactors and auxiliary installations

    International Nuclear Information System (INIS)

    Talpariu, C; Talpariu, J.; Matei, C.

    2001-01-01

    Domestic production of component system and equipment for the control and safety of nuclear facilities was one of the priority objective of the Nuclear Research Institute Pitesti. The problems addressed were particularly related to design and production of analog and digital equipment for measurements, triggering and display of the values of process parameters as well as to regulating complex functions of this equipment. Associated to this effort were the research works concerning: - reliability and in-service life-time of the electronic components and equipment in the safety and control systems for nuclear processes; - radiation endurance of industrial electronic components; utilization of whirling currents in calandria tube testing; - expert systems and applications in nuclear reactor control and safety; design and testing methods of process real time software packages for safety in control critical systems for nuclear domain. There are presented characteristics of the following equipment: 1. amplifier for ionization chambers with triggering comparator circuits for the CANDU 600 reactor shut down system; 2. amplifier for ionization chambers without triggering comparator circuits for power regulating system; 3. safety and regulating computerized system for C9 and C5 cans; 4. acquisition system for dosimetric data in nuclear facilities; 5. program able digital comparator for the reactor shut down system; 6. stationary gamma areal monitors for CANDU 600 reactors and other nuclear facilities

  8. Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics

    OpenAIRE

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.

    2017-01-01

    We describe a framework to significantly reduce the computational effort to evaluate large deviation functions of time integrated observables within nonequilibrium steady states. We do this by incorporating an auxiliary dynamics into trajectory based Monte Carlo calculations, through a transformation of the system's propagator using an approximate guiding function. This procedure importance samples the trajectories that most contribute to the large deviation function, mitigating the exponenti...

  9. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production

    International Nuclear Information System (INIS)

    Uday Kumar, N.T.; Mohan, Gowtham; Martin, Andrew

    2016-01-01

    Highlights: • Solar driven cogeneration system integrating membrane distillation technology is developed. • System utilizes solar thermal energy for the operations without auxiliary heaters. • Three different system integrations are experimentally investigated in UAE. • Economical benefits of solar cogeneration system is also reported. - Abstract: A novel solar thermal cogeneration system featuring the provision of potable water with membrane distillation in combination with domestic hot water supply has been developed and experimentally analyzed. The system integrates evacuated tube collectors, thermal storage, membrane distillation unit, and heat exchangers with the overall goals of maximizing the two outputs while minimizing costs for the given design conditions. Experiments were conducted during one month’s operation at AURAK’s facility in UAE, with average peak global irradiation levels of 650 W/m"2. System performance was determined for three integration strategies, all utilizing brackish water (typical conductivity of 20,000 μs/cm) as a feedstock: Thermal store integration (TSI), which resembles a conventional indirect solar domestic hot water system; Direct solar integration (DSI) connecting collectors directly to the membrane distillation unit without thermal storage; and Direct solar with thermal store integration (DSTSI), a combination of these two approaches. The DSTSI strategy offered the best performance given its operational flexibility. Here the maximum distillate productivity was 43 L/day for a total gross solar collector area of 96 m"2. In terms of simultaneous hot water production, 277 kWh/day was achieved with this configuration. An economic analysis shows that the DSTSI strategy has a payback period of 3.9 years with net cumulative savings of $325,000 during the 20 year system lifetime.

  10. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer

    International Nuclear Information System (INIS)

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-01-01

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  11. Auxiliary/Master microprocessor CAMAC Crate Controller applications

    International Nuclear Information System (INIS)

    Barsotti, E.

    1975-01-01

    The need for further sophistication of an already complex serial CAMAC control system at Fermilab led to the development of an Auxilary/Master CAMAC Crate Controller. The controller contains a Motorola 6800 microprocessor, 2K bytes of RAM, and 8K bytes of PROM memory. Bussed dataway lines are time shared with CAMAC signals to provide memory expansion and direct addressing of peripheral devices without the need of external cabling. The Auxiliary/Master Crate Controller (A/MCC) can function as either a Master, i.e., stand alone, crate controller or as an Auxiliary controller to Fermilab's Serial Crate Controller (SCC). Two modules, one single- and one double-width, make up an A/MCC. The microprocessor has one nonmaskable and one maskable vectored interrupt. Time sharing the dataway between SCC programmed and block transfer generated dataway cycles and A/MCC operations still allows a 99 percent microprocessor CPU busy time. Since the conception of the A/MCC, there has been an increasing number of control system-related projects proposed which would not have been possible or would have been very difficult to implement without such a device. The first such application now in use at Fermilab is a stand-alone control system for a mass spectrometer experiment in the Main Ring Internal Target Area. This application in addition to other proposed A/MCC applications, both stand-alone and auxiliary, is discussed

  12. Hybrid solar-PLG system for industrial scale steam and hot water generation; Sistema hibrido solar-GLP para geracao de vapor e agua quente em escala industrial

    Energy Technology Data Exchange (ETDEWEB)

    Saidel, Marco A.; Monteiro, Marcio D.; Gimenes, Andre L.V.; Fujii, Ricardo J. [Universidade de Sao Paulo (GEPEA/EPUSP), SP (Brazil). Dept. Engenharia Energia e Automacao Eletricas. Grupo de Energia], e-mail: saidel@pea.usp.br, e-mail: marcio.monteiro@poli.usp.br, e-mail: gimenes@gmail.com, e-mail: fujii@gmail.com

    2008-07-01

    This paper presents an initiative conceived for attending to objectives of the PUREFA (Program for Rational Use of Energy and Alternative Sources) of the Sao Paulo university, Brazil. The indicative consists of the implantation of a solar collector system for pre-heating of the water used in the production of the steam consumed at the university restaurant, with a production of 5800 meals per day. This system (auxiliary to the original steam boiler) pre-heats the water of the boiler minimizing the energy expenses for the production of steam and hot water.

  13. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  14. The Acquisition of Auxiliary Syntax: A Longitudinal Elicitation Study. Part 2: The Modals and Auxiliary DO

    Science.gov (United States)

    Rowland, Caroline F.; Theakston, Anna L.

    2009-01-01

    Purpose: The study of auxiliary acquisition is central to work on language development and has attracted theoretical work from both nativist and constructivist approaches. This study is part of a 2-part companion set that represents a unique attempt to trace the development of auxiliary syntax by using a longitudinal elicitation methodology. The…

  15. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  16. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  17. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  18. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  19. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  20. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  1. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  2. Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings

    International Nuclear Information System (INIS)

    Zhao Jingxiong; Yang Guojun; Li Yue; Yu Suyuan

    2012-01-01

    Active magnetic bearings (AMB) have been selected to support the rotor of primary helium circulator in commercial 10 Mega-Walt High Temperature Gas-cooled Reactor (HTR-10). In an AMB system, the auxiliary bearings are necessary to protect the AMB components in case of losing power. This paper performs the impact simulation of Magnetically Suspended Rotor in HTR-10 Helium Circulator being dropped into the auxiliary bearings using the finite element program ABAQUS. The dynamic response and the strain field of auxiliary bearings are analyzed. The results achieved by the numerical analysis are in agreement with the experiment results. Therefore, the feasibility of the design of auxiliary bearing and the possibility of using the AMB system in the HTR are proved. (authors)

  3. Advanced technology components for model GTP305-2 aircraft auxiliary power system. Final report 6 May 75-15 Jul 79

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Large, G.D.

    1980-02-01

    The GTP305-2 Advanced APU is a single shaft, all shaft power engine incorporating an axial-centrifugal compressor, a reverse flow annular combustor and a radial-axial turbine. Cycle analyses indicated a 10-percent high pressure compressor flow increase improved matching characteristics with the low pressure compressor. The combustion system is a reverse flow annular combustor with an air-assist/airblast fuel injection system. The radial-axial turbine stage is characterized by an integrally cast turbine rotor and a cast exhaust duct assembly. The Integrated Components Assembly (ICA) rig consists of the combustor and turbines with a dummy mass on the shaft to simulate the compressor. ICA testing was conducted to establish component performance at design operating conditions. ICA and cold air aerodynamic testing of the turbine stage and cooling flow effects, indicates design efficiency goals were exceeded. ICA test results, cold-air testing and combustion system parameters were input to the cycle model. Room temperature strain-control LCF tests were performed and results analyzed on a Weibull distribution. Data analysis indicated LCF life improvement was obtained through HIP and heat treatment.

  4. Builtin vs. auxiliary detection of extrapolation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Miles Arthur; Kegelmeyer, W. Philip,

    2013-02-01

    A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.

  5. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  6. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ashkan Ghanbarzadeh Dagheyan

    2018-01-01

    Full Text Available Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients’ overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1 missing newly formed or small tumors; and (2 false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH indicates that using Digital Breast Tomosynthesis (DBT can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1% between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10% between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1 imaging a bearing ball immersed in sunflower oil and (2 computing the heat Specific Absorption Rate (SAR due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  7. An experimental study of solar desalination using free jets and an auxiliary hot air stream

    Science.gov (United States)

    Eid, Eldesouki I.; Khalaf-Allah, Reda A.; Dahab, Mohamed A.

    2018-04-01

    An experimental study for a solar desalination system based on jet-humidification with an auxiliary perpendicular hot air stream was carried out at Suez city, Egypt 29.9668°N, 32.5498°E. The tests were done from May to October 2016. The effects of nozzles situations and nozzle diameter with and without hot air stream on fresh water productivity were monitored. The results show that; the lateral and downward jets from narrow nozzles have more productivities than other situations. The hot air stream has to be adapted at a certain flow rate to get high values of productivity. The system productivity is (5.6 L/m 2 ), the estimated cost is (0.030063 / L) and the efficiency is 32.8%.

  8. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  9. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  10. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  11. Installation package - SIMS prototype system 1A

    Science.gov (United States)

    1976-01-01

    This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.

  12. Generating Selected Color using RGB, Auxiliary Lights, and Simplex Search

    Directory of Open Access Journals (Sweden)

    Kim HyungTae

    2015-01-01

    Full Text Available A mixed light source generates various colors, with the potential to adjust intensities of multiple LEDs, which makes it possible to generate arbitrary colors. Currently, PCs and OSs provide color selection windows that can obtain the RGB or HSL color coordinates of a user’s selection. Mixed light sources are usually composed of LEDs in the primary colors, with LEDs in auxiliary colors such as white and yellow used in a few cases. When using auxiliary color LEDs, the number of LED inputs, the dimming levels, is larger than the number of elements in the color coordinate, which causes an under-determined problem. This study proposed how to determine the dimming levels of LEDs based on the selected color. Commercial LEDs have di_erent optical power values and impure color coordinates, even if they are RGB. Hence, the characteristics of the LEDs were described using a linear model derived from the tri-stimulus values (an XYZ color coordinate model and dimming levels. Color mixing models were derived for the arbitrary number of auxiliary color LEDs. The under-determined problem was solved using a simplex search method without an inverse matrix operation. The proposed method can be applied to a machine vision system and an RGBW light mixer for semiconductor inspection. The dimming levels, obtained using the proposed method were better than derived using other methods.

  13. New energy conversion processes and neglected auxiliary systems - a treasure trove for energy service providers; Neue Techniken und vernachlaessigte Nebenanlagen - eine Fundgrube fuer Energiedienstleister

    Energy Technology Data Exchange (ETDEWEB)

    Jochem, E.

    1998-12-31

    The paper shows that apart from the risks, the deregulation of the energy sector also offered new chances, which recently materialized in three emerging independent trends, initiating innovative approaches for energy conversion and applications and demand for new knowledge-based, near-production energy services as a new field for engineers: Providers of energy efficiency-related technology widen their capabilities by adding the new business segment of energy service marketing. Industrial energy users more strongly consider outsourcing of energy conversion systems and the relevant contracting schemes as an option for reducing energy costs. Public enterprise as energy users started following this trend, all the more as insufficient financial resources do not permit them to reinvest. The paper discusses the conversion processes which currently open up promising chances for energy service producers. (orig./CB) [Deutsch] Neben Gefahren, die inhaerentes Merkmal der Liberalisierung sind, zeichnen sich drei unabhaengige Entwicklungen ab, die innovative Initiativen in der Energiewandlung und -nutzung staerken und wissensintensive produktionsnahe Dienstleistungen als zentrale Aufgabe fuer den Ingenieur initieren: - Die Energieeffizienz-Technologieanbieter nehmen die Energiedienstleistungen in ihre Angebotspalette auf. - Die betrieblichen Energieanwender beginnen zunehmend, ueber das Outsourcing energiewandelnder Anlagen Energiekosten zu senken. - Die oeffentliche Hand als Energieanwender beginnt aehnlich zu denken, zumal sie infolge der hohen Verschuldung unzureichende finanzielle Mittel fuer Reinvestitionen hat. Hierueber sei kurz berichtet, bevor auf die Techniken eingegangen wird, die sich besonders aus heutiger Sicht fuer Energiedienstleister eignen. (orig./RHM)

  14. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  15. Comparative investigation of conventional and R744 auxiliary heating systems in motor cars with low fuel consumption on the basis of a 1.9 l TDI engine; Vergleich konventioneller Zuheizsysteme mit R744-Zuheizsystemen in Automobilen mit geringem Kraftstoffverbrauch auf Basis eines 1,9 l TDI Motors

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, B.; Feuerecker, G.; Heinle, D.; Strauss, T. [Behr GmbH und Co. KG, Stuttgart (Germany). Entwicklungszentrum

    2003-07-01

    The heat emitted by modern consumption-optimized engines, especially diesel engines, is so low that auxiliary heating systems are required for thermal comfort. With R744 air conditioning systems, the air conditioner can be used as auxiliary heating system. The contribution therefore compares conventional PTC and fuel based auxiliary heating systems with three R744 auxiliary heating systems (air-to-air heat pump, coolant-to-air heat pump, and delta process). Simulations were carried out in order to compare heat-up, fuel consumption, and cost. The simulation models were used for calculating demand-oriented heating at different ambient temperatures with a 1.9 l TDI engine. The BEHR software BISS (Behr Integrierte System Simulation) was used as simulation tool. The performance of the heat pump was significantly lower than the performance of conventional auxiliary heating systems at all temperatures. On the other hand, the additional fuel consumption as referred to performance was 15 percent lower than for conventional heating systems. The PTC system had the best cost/profit ratio. (orig.) [German] Der Anteil verbrauchsoptimierter Verbrennungsmotoren, insbesondere Diesel, ist in Europa in den letzten Jahren rasant gestiegen. Die Waermeabgabe dieser Motoren ist inzwischen so niedrig, dass fuer eine rasche und komfortable Aufheizung der Fahrzeugkabine Zuheizsysteme eingesetzt werden muessen. Beim Einsatz von Kohlendioxid (R744) als Kaeltemittel einer Klimaanlage, ist auch ein Betrieb der Klimaanlage als Zuheizsystem denkbar. In diesem Beitrag werden die konventionellen Zuheizsysteme PTC-Zuheizer und Brennstoffzuheizer mit drei R744-Zuheizsystemen mittels Simulation bezueglich Aufheizverhalten, Kraftstoffverbrauch und Kosten bewertet. Die R744 Zuheizsysteme sind Luft-Luft Waermepumpe, Kuehlmittel-Luft-Waermepumpe und Dreiecksprozess. Mit den Simulationsmodellen wurden Berechnungen einer bedarfsorientierten Aufheizung fuer verschiedene Umgebungstemperaturen auf Basis eines

  16. Curricular Guidelines for Dental Auxiliary Radiology.

    Science.gov (United States)

    Journal of Dental Education, 1981

    1981-01-01

    AADS curricular guidelines suggest objectives for these areas of dental auxiliary radiology: physical principles of X-radiation in dentistry, related radiobiological concepts, principles of radiologic health, radiographic technique, x-ray films and intensifying screens, factors contributing to film quality, darkroom, and normal variations in…

  17. Computation within the auxiliary field approach

    International Nuclear Information System (INIS)

    Baeurle, S.A.

    2003-01-01

    Recently, the classical auxiliary field methodology has been developed as a new simulation technique for performing calculations within the framework of classical statistical mechanics. Since the approach suffers from a sign problem, a judicious choice of the sampling algorithm, allowing a fast statistical convergence and an efficient generation of field configurations, is of fundamental importance for a successful simulation. In this paper we focus on the computational aspects of this simulation methodology. We introduce two different types of algorithms, the single-move auxiliary field Metropolis Monte Carlo algorithm and two new classes of force-based algorithms, which enable multiple-move propagation. In addition, to further optimize the sampling, we describe a preconditioning scheme, which permits to treat each field degree of freedom individually with regard to the evolution through the auxiliary field configuration space. Finally, we demonstrate the validity and assess the competitiveness of these algorithms on a representative practical example. We believe that they may also provide an interesting possibility for enhancing the computational efficiency of other auxiliary field methodologies

  18. Vacuum switchgear for power station auxiliary switchboards

    International Nuclear Information System (INIS)

    Coombs, P.E.

    1992-01-01

    Sizewell B is the first UK power station in which vacuum switchgear is used for the auxiliary switchboards. Previously the 3.3kV, 6.6kV or 11kV switchgear has used air-break circuit breakers and fused air-break contactors, known as motor starting devices or fused switching devices (FSD). The use of vacuum interrupters is therefore a new technology in this application, although it has been established in the UK distribution network and in industrial installations from the mid 1970s. Vacuum switchgear was already in use in the USA for power station auxiliary switchgear at the time that it was proposed for Sizewell B. The Sizewell B high voltage auxiliary switchgear comprises eight Unit and Station Auxiliary Switchboards at 3.3kV and 11kV, and four 3.3kV Essential Switchboards for the essential safety related circuits, making a total of 65 circuit breakers plus FSD panels. (Author)

  19. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  20. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  1. Loss Model and Efficiency Analysis of Tram Auxiliary Converter Based on a SiC Device

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2017-12-01

    Full Text Available Currently, the auxiliary converter in the auxiliary power supply system of a modern tram adopts Si IGBT as its switching device and with the 1700 V/225 A SiC MOSFET module commercially available from Cree, an auxiliary converter using all SiC devices is now possible. A SiC auxiliary converter prototype is developed during this study. The author(s derive the loss calculation formula of the SiC auxiliary converter according to the system topology and principle and each part loss in this system can be calculated based on the device datasheet. Then, the static and dynamic characteristics of the SiC MOSFET module used in the system are tested, which aids in fully understanding the performance of the SiC devices and provides data support for the establishment of the PLECS loss simulation model. Additionally, according to the actual circuit parameters, the PLECS loss simulation model is set up. This simulation model can simulate the actual operating conditions of the auxiliary converter system and calculate the loss of each switching device. Finally, the loss of the SiC auxiliary converter prototype is measured and through comparison it is found that the loss calculation theory and PLECS loss simulation model is valuable. Furthermore, the thermal images of the system can prove the conclusion about loss distribution to some extent. Moreover, these two methods have the advantages of less variables and fast calculation for high power applications. The loss models may aid in optimizing the switching frequency and improving the efficiency of the system.

  2. Kansas Water Quality Action Targeting System (KATS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This system is a revision of the original KATS system developed in 1990 as a tool to aid resource managers target Kansas valuable and vulnerable water resources for...

  3. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  4. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  5. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  6. Results of an aging-related failure survey of light water safety systems and components

    International Nuclear Information System (INIS)

    Meale, B.M.; Satterwhite, D.G.; MacDonald, P.E.

    1988-01-01

    The collection and evaluation of operating experience data are necessary in determining the effects of aging on the safety of operating nuclear plants. This paper presents the final results of a two-year research effort evaluating aging impacts on components in light water reactor systems. This research was performed as a part of the Nuclear Plant Aging Research program, sponsored by the US Nuclear Regulatory Commission. Two unique types of data analyses were performed. In the first, an aging-survey study, aging-related failure data for fifteen light water reactor systems were obtained from the Nuclear Plant Reliability Data System (NPRDS). These included safety, support, and power conversion systems. A computerized sort of these records classified each record into one of five generic categories, based on the utility's choice of the failure's NPRDS cause category. Systems and components within the systems that were most affected by aging were identified. In the second analysis, information on aging-related reported causes of failures was evaluated for component failures reported to NPRDS for auxiliary feedwater, high pressure injection, service water, and Class 1E electrical power distribution systems. 3 refs., 13 figs., 4 tabs

  7. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  8. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  9. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  10. The English Primary Auxiliary Verbs: A Linguistic Theoretical Exercise

    African Journals Online (AJOL)

    Nekky Umera

    Abstract. Obviously, the fact remains that English Language is a sensitive Language ... Even though the English auxiliary verbs are of two kinds: Primary and Modal auxiliary ..... Therefore we are of the opinion that most speakers lack adequate.

  11. Design and scope of impact of auxiliary lanes : technical report.

    Science.gov (United States)

    2014-06-01

    For decades, Texas Department of Transportation districts have constructed auxiliary lanes to support interchange : ramp operations and to resolve congestion proximate to freeway entrance and exit ramps. While auxiliary lanes are : built throughout T...

  12. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  13. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  14. Auxiliary Library Explorer (ALEX) Development

    Science.gov (United States)

    2016-02-01

    Implementation RAM random access memory RSG Research Services Group SQL Structured Query Language TIFF Tagged Image File Format TF-IDF Term Frequency–Inverse...Document Frequency UNCLASSIFIED vii DST-Group–TN–1492 UNCLASSIFIED UCS Unified Computing System UTF-8 UCS Transformation Format 8-bit VBA Visual Basic...four language columns. In order to access these subjects more easily, a consolidation across these columns is performed. UNCLASSIFIED 3 DST-Group–TN

  15. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  16. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  17. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  18. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  19. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  20. Regulatory analysis for the resolution of Generic Issue 130: Essential service water system failures at multi-unit sites

    International Nuclear Information System (INIS)

    Leung, V.; Basdekas, D.; Mazetis, G.

    1991-06-01

    The essential service water system (ESWS) is required to provide cooling in nuclear power plants during normal operation and accident conditions. The ESWS typically supports component cooling water heat exchangers, containment spray heat exchangers, high-pressure injection pump oil coolers, emergency diesel generators, and auxiliary building ventilation coolers. Failure of the ESWS function could lead to severe consequences. This report presents the regulatory analysis for GI-130, ''Essential Service Water System Failures at Multi-Unit Sites.'' The risk reduction estimates, cost/benefit analyses, and other insights gained during this effort have shown that implementation of the recommendations will significantly reduce risk and that these improvements are warranted in accordance with the backfit rule, 10 CFR 50.109(a)(3). 19 refs., 16 tabs

  1. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    Directory of Open Access Journals (Sweden)

    Nutakki Tirumala Uday Kumar

    2017-04-01

    Full Text Available Water is the most desirable and sparse resource in Gulf cooperation council (GCC region. Utilization of point-of-use (POU water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

  2. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  3. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  4. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  5. 14 CFR 29.757 - Hull and auxiliary float strength.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...

  6. Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice

    KAUST Repository

    Park, Jincheol; Liang, Faming

    2012-01-01

    of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model

  7. One-year assessment of a solar space/water heater--Clinton, Mississippi

    Science.gov (United States)

    1981-01-01

    Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.

  8. Radioactive waste management practices with KWU-boiling water reactors

    International Nuclear Information System (INIS)

    Queiser, H.

    1976-01-01

    A Kraftwerk Union boiling water reactor is used to demonstrate the reactor auxiliary systems which are applied to minimize the radioactive discharge. Based on the most important design criteria the philosophy and function of the various systems for handling the off-gas, ventilation air, waste water and concentrated waste are described. (orig.) [de

  9. Analysis of Buoyancy Module Auxiliary Installation Technology Based on Numerical Simulation

    Science.gov (United States)

    Xu, Songsen; Jiao, Chunshuo; Ning, Meng; Dong, Sheng

    2018-04-01

    To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system (SPS), a buoyancy module auxiliary installation technology was proposed by loading buoyancy modules on the SPS to reduce the lifting weight. Two models are established, namely, the SPS lowering-down model and the buoyancy module floating-up model. The main study results are the following: 1) When the buoyancy module enters the water under wave condition, the amplitude of tension fluctuation is twice that when SPS enters water; 2) Under current condition, the displacement of SPS becomes three times larger because of the existence of the buoyancy module; 3) After being released, the velocity of the buoyancy module increases to a large speed rapidly and then reaches a balancing speed gradually. The buoyancy module floats up at a balancing speed and rushes out from the water at a pop-up distance; 4) In deep water, the floating-up velocity of the buoyancy module is related to its mass density and shape, and it is not related to water depth; 5) A drag parachute can reduce floating-up velocity and pop-up distance effectively. Good agreement was found between the simulation and experiment results.

  10. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  11. Dual temperature concentration system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In a dual temperature isotope exchange system--exemplified by exchange of deuterium and protium between water and hydrogen sulfide gas in hot and cold towers, in which the feed stream (water) containing the desired isotope is passed through a pair of towers maintained at different temperatures wherein it effects isotope exchange with countercurrently circulated auxiliary fluid (H 2 S) and is impoverished in said isotope and then disposed of, e.g. discharged to waste,--the flow of isotope enriched auxiliary fluid between said towers (hot H 2 S saturated with water vapor) is divided and a part thereof is adjusted in its temperature (to cold tower conditions) and then passed to the auxiliary fluid impoverishing (cold) tower, while the remainder of the divided flow of such enriched auxiliary fluid is passed through a subsequent isotope concentration treatment to produce a product more highly enriched in the desired isotope and wherein it is also adjusted in its temperature and is impoverished in said isotope during said subsequent treatment before it is delivered to the said auxiliary fluid impoverishing (cold) tower. Certain provisions are made for returning to the hot tower liquid carried as vapor by the remainder of the divided flow to the subsequent isotope concentration treatment, for recovering sensible and latent heat, and for reducing passage of auxiliary fluid to waste

  12. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  13. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  14. Modified Darboux transformations with foreign auxiliary equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2011-01-01

    We construct a new type of first-order Darboux transformations for the stationary Schroedinger equation. In contrast to the conventional case, our Darboux transformations support arbitrary (foreign) auxiliary equations. We show that among other applications, our formalism can be used to systematically construct Darboux transformations for Schroedinger equations with energy-dependent potentials, including a recent result (Lin et al., 2007) as a special case. -- Highlights: → We generalize the Darboux transformation for the Schroedinger equation. → By admitting arbitrary auxiliary functions, we provide a new tool for generating solutions. → As a special case we recover a recent result on energy-dependent potentials. → We extend the latter result to very general energy-dependence.

  15. Eigenstates with the auxiliary field method

    Energy Technology Data Exchange (ETDEWEB)

    Semay, Claude [Service de Physique Nucleaire et Subnucleaire, Universite de Mons-UMONS, 20 Place du Parc, 7000 Mons (Belgium); Silvestre-Brac, Bernard, E-mail: claude.semay@umons.ac.b, E-mail: silvestre@lpsc.in2p3.f [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France)

    2010-07-02

    The auxiliary field method is a powerful technique to obtain approximate closed-form energy formulas for eigenequations in quantum mechanics. Very good results can be obtained for Schroedinger and semirelativistic Hamiltonians with various potentials, even in the case of many-body problems. This method can also provide approximate eigenstates in terms of well-known wavefunctions, for instance harmonic oscillator or hydrogen-like states, but with a characteristic size which depends on quantum numbers. In this paper, we consider two-body Schroedinger equations with linear, logarithmic and exponential potentials and show that analytical approximations of the corresponding eigenstates can be obtained with the auxiliary field method, with very good accuracy in some cases.

  16. Eigenstates with the auxiliary field method

    International Nuclear Information System (INIS)

    Semay, Claude; Silvestre-Brac, Bernard

    2010-01-01

    The auxiliary field method is a powerful technique to obtain approximate closed-form energy formulas for eigenequations in quantum mechanics. Very good results can be obtained for Schroedinger and semirelativistic Hamiltonians with various potentials, even in the case of many-body problems. This method can also provide approximate eigenstates in terms of well-known wavefunctions, for instance harmonic oscillator or hydrogen-like states, but with a characteristic size which depends on quantum numbers. In this paper, we consider two-body Schroedinger equations with linear, logarithmic and exponential potentials and show that analytical approximations of the corresponding eigenstates can be obtained with the auxiliary field method, with very good accuracy in some cases.

  17. Models of the Water Systems in Mauritius

    OpenAIRE

    Toth, F.L.

    1992-01-01

    Criteria for sustainable development in terms of managing a nation's water resources include the availability of water in required quantity and appropriate quality. This paper presents a set of water models developed for the IIASA/UNFPA Mauritius Project for use as an integral part of a system of models including demographic, economic, and land use models. The paper identifies the most important factors determining the available freshwater resources in Mauritius (climate, geology, hydrology),...

  18. Auxiliary facilities on nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Tsujimura, Shotaro; Takigami, Yoshio.

    1989-01-01

    The nuclear ship 'MUTSU' has been moored at SEKINEHAMA, MUTU City in AOMORI Prefecture and several tests and works are being carried out on the ship. The construction of the auxiliary facilities for these works on the ship was completed in safety in August 1988. After that the facilities have fulfilled their function. The outlines of design, fabrication and construction of the facilities are described in this paper. (author)

  19. Categorical Data Fusion Using Auxiliary Information

    OpenAIRE

    Fosdick, Bailey K.; DeYoreo, Maria; Reiter, Jerome P.

    2015-01-01

    In data fusion, analysts seek to combine information from two databases comprised of disjoint sets of individuals, in which some variables appear in both databases and other variables appear in only one database. Most data fusion techniques rely on variants of conditional independence assumptions. When inappropriate, these assumptions can result in unreliable inferences. We propose a data fusion technique that allows analysts to easily incorporate auxiliary information on the dependence struc...

  20. Model predictions for auxiliary heating in spheromaks

    International Nuclear Information System (INIS)

    Fauler, T.K.; Khua, D.D.

    1997-01-01

    Calculations are presented of the plasma temperature waited for under auxiliary heating in spheromaks. A model, ensuring good agreement of earlier experiments with joule heating results, is used. The model includes heat losses due to magnetic fluctuations and shows that the plasma temperatures of the kilo-electron-volt order may be achieved in a small device with the radius of 0.3 m only

  1. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  2. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  3. Water masers in the Kronian system

    NARCIS (Netherlands)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco; Fernández, J. A.; Lazzaro, D.; Prialnik, D.; Schulz, R.

    2010-01-01

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we

  4. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  5. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    use of the Photovoltaic system for water pumping is explored. .... employed to advantage for rural Ethiopia are solar energy, wind ... Kwh/sq.m/day and with a yearly average of about .... equator. Well Data : Total head 62m ... Investment return in photovoltaic potable water ... without any considerable change in performance.

  6. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  7. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  8. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  9. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  10. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  11. Solar combisystems with forecast control to increase the solar fraction and lower the auxiliary energy cost

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2011-01-01

    Solar Combi systems still need quite a lot of auxiliary energy especially in small systems without seasonal storage possibilities. The control of the auxiliary energy input both in time and power is important to utilize as much as possible of the solar energy available from the collectors and also...... energy sources. It can be either direct electric heating elements or a heat pump upgrading ambient energy in the air, ground, solar collector or waste heat from the house. The paper describes system modeling and simulation results. Advanced laboratory experiments are also starting now with three...

  12. Aging and low-flow degradation of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1991-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  13. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  14. Adjustable speed drives improve circulating water system

    International Nuclear Information System (INIS)

    Dent, R.A.; Dicic, Z.

    1994-01-01

    This paper illustrates the integration of electrical and mechanical engineering requirements to produce a solution to past problems and future operating demands. The application of adjustable speed drives in the modifications of the circulating water system at Indian Point No. 3 Nuclear Power Plant provided increased operating flexibility, efficiency and avoided otherwise costly renovations to the plant electrical systems. Rectification of the original inadequate design of the circulating water system, in addition to maximizing plant efficiency consistent with environmental considerations, formed the basis for this modification. This entailed replacement of all six circulating water pumps and motors and physical modifications to the intake system. This paper details the methodology used in this engineering task. The new system was installed successfully and has been operating reliably and economically for the past eight years

  15. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  16. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  17. VLTI auxiliary telescopes: a full object-oriented approach

    Science.gov (United States)

    Chiozzi, Gianluca; Duhoux, Philippe; Karban, Robert

    2000-06-01

    The Very Large Telescope (VLT) Telescope Control Software (TCS) is a portable system. It is now in use or will be used in a whole family of ESO telescopes VLT Unit Telescopes, VLTI Auxiliary Telescopes, NTT, La Silla 3.6, VLT Survey Telescope and Astronomical Site Monitors in Paranal and La Silla). Although it has been developed making extensive usage of Object Oriented (OO) methodologies, the overall development process chosen at the beginning of the project used traditional methods. In order to warranty a longer lifetime to the system (improving documentation and maintainability) and to prepare for future projects, we have introduced a full OO process. We have taken as a basis the United Software Development Process with the Unified Modeling Language (UML) and we have adapted the process to our specific needs. This paper describes how the process has been applied to the VLTI Auxiliary Telescopes Control Software (ATCS). The ATCS is based on the portable VLT TCS, but some subsystems are new or have specific characteristics. The complete process has been applied to the new subsystems, while reused code has been integrated in the UML models. We have used the ATCS on one side to tune the process and train the team members and on the other side to provide a UML and WWW based documentation for the portable VLT TCS.

  18. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  19. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  20. Distilled Water Distribution Systems. Laboratory Design Notes.

    Science.gov (United States)

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  1. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  2. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  3. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  4. Terminal Sliding Mode Control with Unidirectional Auxiliary Surfaces for Hypersonic Vehicles Based on Adaptive Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Naibao He

    2015-01-01

    Full Text Available A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces.

  5. Design and operation of the LAMPF Auxiliary Controller. High-speed remote processing on the CAMAC dataway

    International Nuclear Information System (INIS)

    Machen, D.R.

    1979-02-01

    A CAMAC Auxiliary Controller has been developed to further the concepts of distributed processing in both process control and experiment data-acquisition systems. The Auxiliary Controller is built around a commercially available 16-bit microcomputer and a high-speed bit-sliced microprocessor capable of instruction execution times of 140 ns. The modular nature of the controller allows the user to tailor the controller capabilities to the system problem, while maintaining the interface techniques of the CAMAC Standard

  6. Service water system aging assessment - Phase I

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Zimmerman, P.W.; Gore, M.L.

    1988-01-01

    The Service Water System (SWS) represents the final heat transfer loop between decay heat generated in the nuclear core and the safe dispersal of that heat energy in the environment. It is the objective of this investigation to demonstrate that aging phenomena can be identified and quantified such that aging degradation of system components can be detected and mitigated prior to the reduction of system availability to below an acceptable threshold. The approach used during the Phase I task was to (1) perform a literature search of government and private sector reports which relate to service water, aging related degradation, and potential methodologies for analysis; (2) assemble a data base which contains all the commercial power plants in the US, their Service Water System configuration, characteristics, and water source; (3) obtain and examine the available service water data from large generic data bases, i.e. NPRDS, LER, NPE, inspection reports, and other relevant plant reference data; (4) perform a fault tree analysis of a typical plant service water systems to examine failure propagation and understand specific input requirements of probabilistic risk analyses; (5) develop an in-depth questionnaire protocol for examining the information resource at a power plant which is not available through data base query and visit a central station power plant and solicit the required information; (6) analyze the information obtained from the in-depth plant interrogation and draw contrasts and conclusions with the data base information; (7) utilize the plant information to perform an interim assessment of service water system degradation mechanisms and focus future investigations. This paper addresses the elements of this task plan numbered 1, 3, 6, and 7. The remaining items are detailed in the phase-I report

  7. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  8. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  9. 40 CFR 60.692-3 - Standards: Oil-water separators.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Oil-water separators. 60.692... Emissions From Petroleum Refinery Wastewater Systems § 60.692-3 Standards: Oil-water separators. (a) Each oil-water separator tank, slop oil tank, storage vessel, or other auxiliary equipment subject to the...

  10. Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas

    International Nuclear Information System (INIS)

    Upshaw, Charles R.; Rhodes, Joshua D.; Webber, Michael E.

    2017-01-01

    Highlights: • Hydronic integrated rainwater thermal storage (ITHERST) system concept presented. • ITHERST system modeled to assess peak electric load shifting and water savings. • Case study shows 75% peak load reduction and 9% increase in energy consumption. • Potable rainwater collection could provide ∼50–90% of water used for case study. - Abstract: The United States’ built environment is a significant direct and indirect consumer of energy and water. In Texas, and other parts of the Southern and Western US, air conditioning loads, particularly from residential buildings, contribute significantly to the peak electricity load on the grid, straining transmission. In parallel, water resources in these regions are strained by growing populations and shrinking supplies. One potential method to address both of these issues is to develop integrated thermal energy and auxiliary water (e.g. rainwater, greywater, etc.) storage and management systems that reduce peak load and freshwater consumption. This analysis focuses on a proposed integrated thermal energy and rainwater storage (ITHERST) system that is incorporated into a residential air-source chiller/heat pump with hydronic distribution. This paper describes a step-wise hourly thermodynamic model of the thermal storage system to assess on-peak performance, and a daily volume-balance model of auxiliary water collection and consumption to assess water savings potential. While the model is generalized, this analysis uses a case study of a single family home in Austin, Texas to illustrate its capabilities. The results indicate this ITHERST system could reduce on-peak air conditioning electric power demand by over 75%, with increased overall electric energy consumption of approximately 7–9%, when optimally sized. Additionally, the modeled rainwater collection reduced municipal water consumption by approximately 53–89%, depending on the system size.

  11. Design and Experiment of Auxiliary Bearing for Helium Blower of HTR-PM

    International Nuclear Information System (INIS)

    Yang Guojun; Shi Zhengang; Liu Xingnan; Zhao Jingjing

    2014-01-01

    The helium blower is the important equipment for HTR-PM. Active magnetic bearing (AMB) instead of mechanical bearing is selected to support the rotor of the helium blower. However, one implication of AMB is the requirement to provide the auxiliary bearing to mitigate the effects of failures or overload conditions. The auxiliary bearing is used to support the rotor when the AMB fails to work. It must support the dropping rotor and bear the great impact force and friction heat. The design of the auxiliary bearing is one of the challenging problems in the whole system. It is very important for the helium blower with AMB of HTR-PM to make success. The rotor’s length of helium blower of HTR-PM is about 3.3 m, its weight is about 4000 kg and the rotating speed is 4000 r/min. The axial load is 4500kg, and the radial load is 1950kg. The angular contact ball bearing was selected as the auxiliary bearing. The test rig has been finished. It is difficult to analyze the falling course of the rotor. The preliminary analysis of the dropping rotor was done in the special condition. The impact force of auxiliary bearing was computed for the axial and radial load. And the dropping test of the blower rotor for HTR-10 will be introduced also in this paper. Results offer the important theoretical base for the protector design of the helium blower with AMB for HTR-PM. (author)

  12. Dynamic analysis of auxiliary buildings in nuclear power plants

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Madhava Rao, A.S.; Warudkar, A.S.

    1989-01-01

    All nuclear power plants have a large number of auxiliary buildings housing various services and control systems required for the operation of the plant. Illustrative examples are turbine building, control building, service building etc. These buildings are seismically qualified as Class I or Class II structures. Usually, these auxiliary buildings are of low rise type with two or three floors and floor heights varying from five to eight meters and of framed construction in steel or concrete or a combination of both the materials. The floors are usually staggered with large cutouts and may not extend over the full area in plan. Some of the bays are often of double story height with the columns continuous over a story in order to accommodate cranes and other equipment. The structural elements supporting the roof may consist of steel roof trusses instead of beams. The seismic analysis of these structures involves the formulation of the analytical model that can simulate the physical behavior of the structure as close as possible taking into consideration the practical aspects. The criteria adopted to formulate the mathematical model has an important bearing on the evaluated dynamic characteristics and seismic response

  13. The performance of a mobile air conditioning system with a water cooled condenser

    International Nuclear Information System (INIS)

    Di Battista, Davide; Cipollone, Roberto

    2015-01-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels.In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase. (paper)

  14. The performance of a mobile air conditioning system with a water cooled condenser

    Science.gov (United States)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  15. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  16. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  17. Pressurizer /Auxiliary Spray Piping Stress Analysis For Determination Of Lead Shielding Maximum Allow Able Load

    International Nuclear Information System (INIS)

    Setjo, Renaningsih

    2000-01-01

    Piping stress analysis for PZR/Auxiliary Spray Lines Nuclear Power Plant AV Unit I(PWR Type) has been carried out. The purpose of this analysis is to establish a maximum allowable load that is permitted at the time of need by placing lead shielding on the piping system on class 1 pipe, Pressurizer/Auxiliary Spray Lines (PZR/Aux.) Reactor Coolant Loop 1 and 4 for NPP AV Unit one in the mode 5 and 6 during outage. This analysis is intended to reduce the maximum amount of radiation dose for the operator during ISI ( In service Inspection) period.The result shown that the maximum allowable loads for 4 inches lines for PZR/Auxiliary Spray Lines is 123 lbs/feet

  18. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  19. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  20. Research on vibration properties of auxiliary bearing cage used in HTR-10 GT project

    International Nuclear Information System (INIS)

    Qin Qingquan; Yang Guojun; Shi Zhengang; Yu Suyuan

    2009-01-01

    Auxiliary Bearings (ABs) is one of the most important parts in Active Magnetic Bearing (AMB) system, which was used in HTR-10 GT project. This paper uses finite element method to analyze the centrifugal stress and free vibration properties of the cage according to its work condition. And different geometric parameters of the cage that has effects on its vibration performance are discussed. The results show that the highest centrifugal stress is in the middle of the cage side sill. The low odder vibration modes of the cage can be induced when the auxiliary bearings are working. Proper geometric parameters and ball pocket number can enhance the performance of the cage. (authors)

  1. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  2. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  3. Solar Water-Heater Design Package

    Science.gov (United States)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  4. Generic description of facilities at the shaft head (auxiliary entrance installations) of deep geological repositories

    International Nuclear Information System (INIS)

    2016-10-01

    In a deep geological repository, the access structures function as the link between the surface and the installations and structures at the disposal level. In the planned implementation scenarios, at least two access structures will be in operation up to the time of closure of the repository. The radioactive waste will be transported via the main access from the surface to the disposal level during emplacement operations. For the construction and operation of a deep geological repository, additional access structures are required. These auxiliary accesses and the associated surface infrastructure (e.g. shaft head installations) form the subject of this report. To provide as broad and comprehensive a description as possible, seven types of auxiliary access facilities are defined; these are characterised in line with the current status of planning and their functions and impacts are described. During construction, operation and dismantling of auxiliary access facilities, the usual conventional safety measures (inter alia) have to be observed (e.g. groundwater protection, fire prevention, facility security, accident prevention). Regarding the 'Ordinance on Protection against Major Accidents' no large quantities of hazardous materials, i.e. above the corresponding threshold quantities, are to be expected in the auxiliary access facilities. Proper handling and compliance with applicable regulations in all phases will ensure no hazard to humans and the environment. As no handling of radioactive materials is foreseen in the auxiliary access facilities, and because exhaust air and waste water from the controlled zones of a repository will, in principle, be removed via the main access and not the auxiliary accesses, a safety-relevant emission of radioactive substances and transport of contaminated material can be ruled out for the auxiliary access facilities during both normal operation and also in the case of an accident. Based on the information presented in

  5. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  6. Water electrolysis system refurbishment and testing

    Science.gov (United States)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  7. CLASSIFICATION OF THE MGR SITE WATER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site water system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  8. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  9. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  10. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  11. Water distribution systems design optimisation using metaheuristics ...

    African Journals Online (AJOL)

    The topic of multi-objective water distribution systems (WDS) design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including several multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary ...

  12. Water column separation in power plant circulating water systems

    International Nuclear Information System (INIS)

    Papadakis, C.N.

    1977-01-01

    Power plant circulating water system condensers operate with a siphon. Column separation is a common occurence in such condensers during low pressure transients. The assumptions that no gas evolves from solution leads to very conservative values of maximum pressures upon rejoining of separated column. A less conservative method led to the development of a macroscopic mathematical model including the presence of air and vapor in a cavity which forms at the top of the condenser. The method of characteristics is used to solve the equations. A case study is analyzed to illustrate the applicability of the developed mathematical model and to provide comparisons of the results obtained

  13. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  14. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  15. Potentiometric determination of chloride ions in circulating water systems of the Kirishinefteorgsintez production association

    International Nuclear Information System (INIS)

    Sukhova, N.S.; Skatina, L.I.

    1993-01-01

    The chloride content of circulating water and wastewater in industrial plants is one of the important indexes of contamination. The increasingly stringent sanitary and ecological requirements that have been imposed on wastewater are making it necessary to monitor the chloride content on a regular basis. It is difficult to use the mercurometric method of chloride determination that has been recommended for use in petroleum refineries in analyzing turbid of dark-colored waters with high contents of organic matter. Also, when the mercurometric method is used, accurate control of pH must be maintained in order to achieve good reproducibility of results. The authors are proposing a rapid method for monitoring the content of chloride ions in circulating water systems by potentiometric titration of a sample in a medium of glacial acetic acid by a 0.01 M solution of silver nitrate with the silver indicator electrode and a silver chloride auxiliary electrode EVL-1MZ, filled with a saturated solution of potassium nitrate. The potential is measured 30 sec after it has been established, in a type pH-121 potentiometer. The titration is performed from a microburette with a scale division of 0.02 cm 3 , with constant stirring of the test solution by means of a magnetic stirrer

  16. Auxiliary VHF transmitter to aid recovery of solar Argos/GPS PTTs

    Science.gov (United States)

    Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh

    2014-01-01

    While conducting greater sage-grouse (Centrocercus urophasianus) research, we found that solar-powered global positioning systems platform transmitter terminals (GPS PTTs) can be lost if the solar panel does not receive adequate sunlight. Thus, we developed 5-g (mortality sensor included; Prototype A) and 9.8-g (no mortality sensor; Prototype B) auxiliary very high...

  17. On Estimating Quantiles Using Auxiliary Information

    Directory of Open Access Journals (Sweden)

    Berger Yves G.

    2015-03-01

    Full Text Available We propose a transformation-based approach for estimating quantiles using auxiliary information. The proposed estimators can be easily implemented using a regression estimator. We show that the proposed estimators are consistent and asymptotically unbiased. The main advantage of the proposed estimators is their simplicity. Despite the fact the proposed estimators are not necessarily more efficient than their competitors, they offer a good compromise between accuracy and simplicity. They can be used under single and multistage sampling designs with unequal selection probabilities. A simulation study supports our finding and shows that the proposed estimators are robust and of an acceptable accuracy compared to alternative estimators, which can be more computationally intensive.

  18. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  19. Bistable energy harvesting enhancement with an auxiliary linear oscillator

    Science.gov (United States)

    Harne, R. L.; Thota, M.; Wang, K. W.

    2013-12-01

    Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.

  20. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  1. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  2. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  3. Secondary systems of PWR and BWR

    International Nuclear Information System (INIS)

    Schindler, N.

    1981-01-01

    The secondary systems of a nuclear power plant comprises the steam, condensate and feedwater cycle, the steam plant auxiliary or ancillary systems and the cooling water systems. The presentation gives a general review about the main systems which show a high similarity of PWR and BWR plants. (orig./RW)

  4. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  5. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  6. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System%封闭系统正冻土水流的一个计算模型

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soil column after test with enough long time. We adopt the test data of sample soil columns in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  7. Design of auxiliary shield for remote controlled metallographic microscope

    International Nuclear Information System (INIS)

    Matsui, Hiroki; Okamoto, Hisato

    2014-06-01

    The remote controlled optical microscope installed in the lead cell at the Reactor Fuel Examination Facility (RFEF) in Japan Atomic Energy Agency (JAEA) has been upgraded to a higher performance unit to study the effect of the microstructural evolution in clad material on the high burn-up fuel behavior under the accident condition. The optical pass of the new microscope requires a new through hole in the shielding lead wall of the cell. To meet safety regulations, auxiliary lead shieldings were designed to cover the lost shielding function of the cell wall. Particle and Heavy Ion Transport Code System (PHITS) was used to calculate and determine the shape and setting positions of the shielding unit. Seismic assessments of the unit were also performed. (author)

  8. Development of the APR+ Auxiliary Building General Arrangement (GA)

    International Nuclear Information System (INIS)

    Moon, Hyung Keun; Park, Young Sheop; Kang, Yong Chul

    2011-01-01

    The general arrangement (GA) drawing of a nuclear power plant is the most basic drawing which contains all of the plant equipment, systems, and rooms. Therefore, it should be issued at an early design stage to provide the contours of the overall plant structure. This type of drawing is typically used widely throughout the design stages. The development project of APR+ (Advanced Power Reactor+), as a succeeding model of the APR1400 (Advanced Power Reactor 1400) design, has its own GA that encompasses all of its power buildings. This was developed starting in October of 2009. Among several of the buildings in this design, the Auxiliary Building (AB) is one of the most important buildings to produce electricity, and to protect against undesirable radiation emissions. This paper focuses on the design characteristics of the general arrangement of the AB

  9. Auxiliary fields in the geometrical relativistic particle dynamics

    International Nuclear Information System (INIS)

    Amador, A; Bagatella, N; Rojas, E; Cordero, R

    2008-01-01

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles

  10. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  11. Army Energy and Water Reporting System Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  12. 14 CFR 25.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 25.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for starting...

  13. 14 CFR 23.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 23.1142... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on the... power unit. [Doc. No. 26344, 58 FR 18974, Apr. 9, 1993] ...

  14. 14 CFR 29.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 29.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for starting...

  15. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  16. The Range of Gapping and the Status of Auxiliaries.

    Science.gov (United States)

    Warner, A. R.

    Full verbs and auxiliaries are subject to gapping. In the simplest cases, this construction type involves apparent ellipsis within one or more clausal conjuncts under identity with the finite verb or auxiliary of a preceding conjunct. It has often been suggested that the apparent ellipsis must involve at least a verb. Some researchers see in the…

  17. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  18. Impact of environmental regulations on control of copper ion concentration in the DIII-D cooling water system

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1993-10-01

    Tokamaks and industrial users are faced with the task of maintaining closed-loop, low conductivity, low impurity, cooling water systems. Operating these systems concentrates the impurities in the water requiring subsequent disposal. Environmental regulations are making this increasingly difficult. This paper will discuss the solution to the problem of removing and disposing of copper ions in the DIII-D low conductivity water system. Since the commissioning of the Doublet facility, the quality of the water in the 3000 gpm system that cools the DIII-D vacuum vessel coils, power supplies and auxiliary heating components has been controlled with mixed-bed ion exchangers. Low ion levels, particularly copper, are required to operate this equipment. In early 1992, the company that leases and regenerates DIII-D ion exchangers said they no longer can accept these resin beds for regeneration due to the level of copper ion on the resin. This change in policy, a change that has been adopted throughout their industry, was necessary to assure that the Metropolitan Sewerage System of the City of San Diego stays in compliance with State of California regulations and EPA-mandated national pretreatment standards and regulations. A cost effective solution was implemented which utilizes a reverse osmosis filtration system with the ion exchangers for make-up water. Levels of copper ion disposed to the sewer are in compliance with government standards. These measures have thus far proved effective in maintaining low conductivity and overall good quality cooling water. Specifically, this paper discusses DIII-D deionized cooling water quality requirements and an affective means to meet these requirements in order to be in compliance with government regulations for copper ion disposal. The problems discussed, the alternatives considered and the approach taken would be readily applicable to any deionized cooling water system containing copper where EPA standards and regulations are mandated

  19. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  20. Biofouling and biocorrosion in industrial water systems.

    Science.gov (United States)

    Coetser, S E; Cloete, T E

    2005-01-01

    Corrosion associated with microorganisms has been recognized for over 50 years and yet the study of microbiologically influenced corrosion (MIC) is relatively new. MIC can occur in diverse environments and is not limited to aqueous corrosion under submerged conditions, but also takes place in humid atmospheres. Biofouling of industrial water systems is the phenomenon whereby surfaces in contact with water are colonized by microorganisms, which are ubiquitous in our environment. However, the economic implications of biofouling in industrial water systems are much greater than many people realize. In a survey conducted by the National Association of Corrosion Engineers of the United States ten years ago, it was found that many corrosion engineer did not accept the role of bacteria in corrosion, and many of then that did, could not recognize and mitigate the problem. Biofouling can be described in terms of its effects on processes and products such as material degradation (bio-corossion), product contamination, mechanical blockages, and impedance of heat transfer. Microorganisms distinguish themselves from other industrial water contaminants by their ability to utilize available nutrient sources, reproduce, and generate intra- and extracellular organic and inorganic substances in water. A sound understanding of the molecular and physiological activities of the microorganisms involved is necessary before strategies for the long term control of biofouling can be format. Traditional water treatment strategies however, have largely failed to address those factors that promote biofouling activities and lead to biocorrosion. Some of the major developments in recent years have been a redefinition of biofilm architecture and the realization that MIC of metals can be best understood as biomineralization.

  1. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent,

  2. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  3. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  4. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  5. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  6. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  7. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  8. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  9. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  10. Radioecological models for inland water systems

    International Nuclear Information System (INIS)

    Raskob, W.; Popov, A.; Zheleznyak, M.J.

    1998-04-01

    Following a nuclear accident, radioactivity may either be directly discharged into rivers, lakes and reservoirs or - after the re-mobilisation of dry and wet deposited material by rain events - may result in the contamination of surface water bodies. These so-called aquatic exposure pathways are still missing in the decision support system IMIS/PARK. Therefore, a study was launched to analyse aquatic and radioecological models with respect to their applicability for assessing the radiation exposure of the population. The computer codes should fulfil the following requirements: 1. to quantify the impact of radionuclides in water systems from direct deposition and via runoff, both dependent on time and space, 2. to forecast the activity concentration in water systems (rivers and lakes) and sediment, both dependent on time and space, and 3. to assess the time dependent activity concentration in fish. To that purpose, a literature survey was conducted to collect a list of all relevant computer models potentially suitable for these tasks. In addition, a detailed overview of the key physical process was provided, which should be considered in the models. Based on the three main processes, 9 codes were selected for the runoff from large watersheds, 19 codes for the river transport and 14 for lakes. (orig.) [de

  11. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  12. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  13. Operator Support System for Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Shen Shifei

    1996-01-01

    Operator Support System for Pressurized Water Reactor (OSSPWR) has been developed under the sponsorship of IAEA from August 1994. The project is being carried out by the Department of Engineering Physics, Tsinghua University, Beijing, China. The Design concepts of the operator support functions have been established. The prototype systems of OSSPWR has been developed as well. The primary goal of the project is to create an advanced operator support system by applying new technologies such as artificial intelligence (AI) techniques, advanced communication technologies, etc. Recently, the advanced man-machine interface for nuclear power plant operators has been developed. It is connected to the modern computer systems and utilizes new high performance graphic displays. (author). 6 refs, 4 figs

  14. Wind-powered aqueduct systems

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    The MITRE Corporation is proposing to develop a preliminarydesign for a system that would use large-scale wind-driven units to provide power for the pumping of water from the main reservoir to auxiliary reservoirs in other parts of an aqueduct system. The study would include a comparison of the cost and effectiveness of alternative methods of performing such operations.

  15. Energy reduction for a dual circuit cooling water system using advanced regulatory control

    International Nuclear Information System (INIS)

    Muller, C.J.; Craig, I.K.

    2016-01-01

    Highlights: • Potentially reduce energy required by a dual circuit cooling water system by 30%. • Accomplished using an advanced regulatory control and switching strategy. • No formal process model is required. • Can be implemented on control system hardware commonly used in industry. - Abstract: Various process utilities are used in the petrochemical industry as auxiliary variables to facilitate the addition/removal of energy to/from the process, power process equipment and inhibit unwanted reaction. Optimisation activities usually focus on the process itself or on the utility consumption though the generation and distribution of these utilities are often overlooked in this regard. Many utilities are prepared or generated far from the process plant and have to be transported or transmitted, giving rise to more losses and potential inefficiencies. To illustrate the potential benefit of utility optimisation, this paper explores the control of a dual circuit cooling water system with focus on energy reduction subject process constraints. This is accomplished through the development of an advanced regulatory control (ARC) and switching strategy which does not require the development of a system model, only rudimentary knowledge of the behaviour of the process and system constraints. The novelty of this manuscript lies in the fact that it demonstrates that significant energy savings can be obtained by applying ARC to a process utility containing both discrete and continuous dynamics. Furthermore, the proposed ARC strategy does not require a plant model, uses only existing plant equipment, and can be implemented on control system hardware commonly used in industry. The simulation results indicate energy saving potential in the region of 30% on the system under investigation.

  16. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Binggang Cao

    2010-10-01

    Full Text Available Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H2 optimal control and H∞ robust control, a H2/H∞ controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source.

  17. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Min Ye [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang’an University, Xi’an (China); Sengjie Jiao [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang’an University, Xi’an (China); Binggang Cao [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an (China)

    2010-09-15

    Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs) has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H2 optimal control and H-infinity robust control, a H2/H-infinity controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source.

  18. Energy Recovery for the Main and Auxiliary Sources of Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ye, M.; Jiao, S. [Key Laboratory for Highway Construction Technology and Equipment of Ministry of Education, Chang' an University, Xi' an 710064 (China); Cao, B. [School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-10-15

    Based on the traditional regenerative braking electrical circuit, a novel energy recovery system for the main and auxiliary sources of electric vehicles (EVs) has been developed to improve their energy efficiency. The electrical circuit topology is presented in detail. During regenerative braking, the recovered mechanical energy is stored in both the main source and the auxiliary source at the same time. The mathematical model of the proposed system is derived step by step. Combining the merits and defects of H{sub 2} optimal control and H{sub {infinity}} robust control, a H{sub 2}/H{sub {infinity}} controller is designed to guarantee both the system performance and robust stability. The perfect match between the simulated and experimental results validates the notion that the proposed novel energy recovery system is both feasible and effective, as more energy is recovered than that with the traditional energy recovery systems, in which recovered energy is stored only in the main source. (authors)

  19. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor; Li, Zhenyu; Valladares Linares, Rodrigo; Amy, Gary

    2013-01-01

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily

  20. Aging assessment of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1987-01-01

    ORNL is conducting aging assessments of auxiliary feedwater pumps to provide recommendations for monitoring and assessing the severity of time-dependent degradation as well as to recommend maintenance and replacement practices. Cornerstones of these activities are the identification of failure modes and causes and ranking of causes. Failure modes and causes of interest are those due to aging and service wear. Design details, functional requirements, and operating experience data were used to identify failure modes and causes and to rank the latter. Based on this input, potentially useful inspection, surveillance, and condition monitoring methods that are currently available for use or in the developmental stage were examined and recommendations made. The methods selected are listed and discussed in terms of use and information to be obtained. Relationships between inspection, surveillance, and monitoring and maintenance practices entered prominently into maintenance recommendations. These recommendations, therefore, embrace predictive as well as corrective and preventative maintenance practices. The recommendations are described, inspection details are discussed, and periodic inspection and maintenance interval guidelines are given. Surveillance testing at low-flow conditions is also discussed. It is shown that this type of testing can lead to accelerated aging

  1. Natural convection in an asymmetrically heated vertical channel with an adiabatic auxiliary plate

    International Nuclear Information System (INIS)

    Taieb, Soumaya; Hatem, Laatar Ali; Balti, Jalloul

    2013-01-01

    The effect of an auxiliary plate on natural convection in an asymmetrically heated channel is studied numerically in laminar regime. The computational procedure is made by solving the unsteady two dimensional Navier-Stokes and energy equations. This nonlinear system is integrated by a finite volume approach and then solved in time using the projection method, allowing the decoupling pressure from velocity. More than hundred simulations are performed to determine the best positions of the auxiliary plate that enhance the induced mass flow and the heat transfer rate for modified Rayleigh numbers ranging from Ra m = 10 2 to Ra m = 10 5 . Contour maps are plotted and then used to precise the enhancement rates of the mass flow and the heat transfer for any position of the auxiliary plate in the channel. The numerical results (velocity, pressure and temperature fields) provide detailed information about the evolution of the flow structure according to the geometry considered in this study. In addition, they permit to explain why the mass flow rate and Nusselt number are enhanced for certain positions of the auxiliary plate and are on the contrary deteriorated for others. (authors)

  2. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  3. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.

    1996-01-01

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  4. Modeling and stability analysis for the upper atmosphere research satellite auxiliary array switch component

    Science.gov (United States)

    Wolfgang, R.; Natarajan, T.; Day, J.

    1987-01-01

    A feedback control system, called an auxiliary array switch, was designed to connect or disconnect auxiliary solar panel segments from a spacecraft electrical bus to meet fluctuating demand for power. A simulation of the control system was used to carry out a number of design and analysis tasks that could not economically be performed with a breadboard of the hardware. These tasks included: (1) the diagnosis of a stability problem, (2) identification of parameters to which the performance of the control system was particularly sensitive, (3) verification that the response of the control system to anticipated fluctuations in the electrical load of the spacecraft was satisfactory, and (4) specification of limitations on the frequency and amplitude of the load fluctuations.

  5. A concept of passive safety pressurized water reactor system with inherent matching nature of core heat generation and heat removal

    International Nuclear Information System (INIS)

    Murao, Yoshio; Araya, Fumimasa; Iwamura, Takamichi; Okumura, Keisuke

    1995-01-01

    The reduction of manpower in operation and maintenance by simplification of the system are essential to improve the safety and the economy of future light water reactors. At the Japan Atomic Energy Research Institute (JAERI), a concept of a simplified passive safety reactor system JPSR was developed for this purpose and in the concept minimization of developing work and conservation of scale-up capability in design were considered. The inherent matching nature of core heat generation and heat removal rate is introduced by the core with high reactivity coefficient for moderator density and low reactivity coefficient for fuel temperature (Doppler effect) and once-through steam generators (SGs). This nature makes the nuclear steam supply system physically-slave for the steam and energy conversion system by controlling feed water mass flow rate. The nature can be obtained by eliminating chemical shim and adopting in-vessel control rod drive mechanism (CRDM) units and a low power density core. In order to simplify the system, a large pressurizer, canned pumps, passive residual heat removal systems with air coolers as a final heat sink and passive coolant injection system are adopted and the functions of volume and boron concentration control and seal water supply are eliminated from the chemical and volume control system (CVCS). The emergency diesel generators and auxiliary component cooling system of 'safety class' for transferring heat to sea water as a final heat sink in emergency are also eliminated. All of systems are built in the containment except for the air coolers of the passive residual heat removal system. The analysis of the system revealed that the primary coolant expansion in 100% load reduction in 60 s can be mitigated in the pressurizer without actuating the pressure relief valves and the pressure in 50% load change in 30 s does not exceed the maximum allowable pressure in accidental conditions in regardless of pressure regulation. (author)

  6. Sodium-water reaction product flow system

    Energy Technology Data Exchange (ETDEWEB)

    Shirataki, K; Wada, H

    1978-11-18

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system.

  7. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Shirataki, Koji; Wada, Hozumi.

    1978-01-01

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  8. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  9. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  10. Water quality diagnosis system for power plant

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Fukumoto, Toshihiko

    1991-01-01

    An AI diagnose system for the water quality control of a BWR type reactor is divided into a general diagnosing section for generally classifying the water quality conditions of the plant depending on a causal relation between the symptom of the water quality abnormality and its causes, generally diagnosing the position and the cause of the abnormality and ranking the items considered to be the cause, and a detail diagnosing section for a further diagnosis based on the result of the diagnosis in the former section. The general diagnosing section provides a plurality of threshold values showing the extent of the abnormality depending on the cause to the causal relation between the causes and the forecast events previously formed depending on the data of process sensors in the plant. Since the diagnosis for the abnormality and normality is given not only as an ON or OFF mode but also as the extent thereof, it can enter the detailed diagnosis in the most plausible order, based on a plurality of estimated causes, to enable to find the case and take a counter-measure in an early stage. (N.H.)

  11. Reducing Auxiliary Energy Consumption of Heavy Trucks by Onboard Prediction and Real-time Optimization

    OpenAIRE

    Khodabakhshian, Mohammad; Feng, Lei; Börjesson, Stefan; Lindgärde, Olof; Wikander, Jan

    2017-01-01

    The electric engine cooling system, where the coolant pump and the radiator fan are driven by electric motors, admits advanced control methods to decrease auxiliary energy consumption. Recent publications show the fuel saving potential of optimal control strategies for the electric cooling system through offline simulations. These strategies often assume full knowledge of the drive cycle and compute the optimal control sequence by expensive global optimization methods. In reality, the full dr...

  12. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  13. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  14. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  15. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    Science.gov (United States)

    Houser, P. R.

    2013-05-01

    biomass would improve soil-moisture retrieval by avoiding the need for auxiliary vegetation information. This multivariable water-cycle observation system must be integrated with high-resolution, application relevant prediction systems to optimize their information content and utility is addressing critical water cycle issues. One such vision is a real-time ultra-high resolution locally-moasiced global land modeling and assimilation system, that overlays regional high-fidelity information over a baseline global land prediction system. Such a system would provide the best possible local information for use in applications, while integrating and sharing information globally for diagnosing larger water cycle variability. In a sense, this would constitute a hydrologic telecommunication system, where the best local in-situ gage, Doppler radar, and weather station can be shared internationally, and integrated in a consistent manner with global observation platforms like the multivariable water cycle mission. To realize such a vision, large issues must be addressed, such as international data sharing policy, model-observation integration approaches that maintain local extremes while achieving global consistency, and methods for establishing error estimates and uncertainty.

  16. Solar system design for water pumping

    Science.gov (United States)

    Abdelkader, Hadidi; Mohammed, Yaichi

    2018-05-01

    In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  17. Solar system design for water pumping

    Directory of Open Access Journals (Sweden)

    Abdelkader Hadidi

    2018-01-01

    Full Text Available In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  18. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  19. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  20. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped