WorldWideScience

Sample records for auxiliary cooling system

  1. Engine Auxiliary System Guideline: Cooling Systems

    OpenAIRE

    Kela, Suvi

    2015-01-01

    The thesis was done for Wärtsilä Technical Services organization. The assignment was to consolidate a guideline for cooling systems as an engine auxiliary system covering the Wärtsilä 4-stroke engines currently in production. The guideline was to include information considering both marine and power plants installations. The sources of information were internal documentation from Wärtsilä, literature review and discussions with Wärtsilä cooling system experts. The guideline includes informati...

  2. A study on the decay heat removal capability of a reactor vessel auxiliary cooling system

    International Nuclear Information System (INIS)

    A reactor vessel auxiliary cooling system (RVACS) is a potential candidate as a fully passive decay heat removal system for small FBRs. In this study the heat transfer performance of a collector with fins is discussed through experiment and the evaluation method is proposed for the heat removal capability of the system. (author)

  3. Auxiliary systems

    International Nuclear Information System (INIS)

    For a undisturbed reactor operation, the various Auxiliary and Ancillary Systems must function perfectly with the Reactor Coolant System together. While the Auxiliary Systems are directly connected to the Reactor Coolant System and therefore have contact with the Reactor Coolant, the Ancillary Systems perform tasks which do not directly influence reactor operation and in part are necessary exclusively for environment protection. The design criteria of the individual systems are a result of these tasks, especially in relation to availability, operational readiness and probability of failure. (orig.)

  4. Evaluation of thermal striping for the plugging system in the secondary auxiliary cooling system in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Isozaki, Kazunori; Ogawa, Tooru; Kubo, Atsuhiko; Aoki, Hiroshi; Ozawa, Kenji [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Sugaya, Kazushi

    1998-05-01

    Scrutiny based on the convenient evaluation to verify whether we have the place where thermal striping in the pipe confluence part was thought to be a primary factor for the heavy accident or not has been done in JOYO. As the result, the big temperature difference ({Delta}Tin) existed at the inner pipe confluence part of the plugging system in the secondary main and auxiliary cooling system. Therefore, detailed evaluation of thermal striping was needed. With the thermocouples of high response installed, the temperature fluctuation in outer surface of the pipe was measured on the secondary auxiliary plugging system for the reason why the temperature difference ({Delta}Tin) was the biggest. And, the temperature fluctuation in inner surface of the pipe and stress occurring in the pipe plate thickness direction was evaluated by means of non-linear structure analysis system FINAS`. The above-mentioned evaluation results were as follows. (1) The maximum temperature fluctuation occurring in the pipe was always located from the center of inner pipe confluence to 10 mm position of the down-stream side. (2) The maximum temperature fluctuation range was about 33degC in outer surface of the pipe. And, controlling frequency of the temperature fluctuation was 0.04 Hz and 0.09 Hz. (3) Time delay was almost never contained in the temperature fluctuation elements between inner and outer surface of the pipe. And, the big temperature distribution did not occur in the pipe plate thickness direction was confirmed that the big temperature distribution did not occur in the pipe plate thickness direction. The temperature fluctuation range in the pipe inner surface was almost the same as that of the pipe outer surface. It was confirmed that the stress occurring there was enough lowered than the design fatigue limit of SUS304 which was the materials in the confluence part of the plugging system inner part in the secondary main and auxiliary cooling system. (J.P.N.)

  5. Separate-effect Test for Cooling Performance of PAFS(Passive Auxiliary Feedwater System)

    International Nuclear Information System (INIS)

    APR+ (Advanced Power Reactor Plus) is a next generation nuclear power plant being developed in Korea. It adopts PAFS (Passive Auxiliary Feedwater System) for the steam generator (SG) instead of an active auxiliary feedwater system for the conventional nuclear power plant (NPP). It can replace the conventional active auxiliary feedwater system for the SG by a passive way. It is composed of a steam-supply line, a condensation heat exchanger, a return-water line, and a PCCT (Passive Condensate Cooling Tank). When the water level in the SG becomes lower than 25% of the wide range of the water level transmitter during an accident situation, the actuation valve at the return-water line is open and then the natural convection flow of the PAFS can be made. To validate a cooling performance of PAFS, separate effect test loop, which is named PASCAL (PAFS Condensing heat removal Assessment Loop) was constructed at KAERI (Korea Atomic Energy Research Institute) for investigating the cooling capability of the condensation heat exchanger and the characteristic of the natural convection. This study focuses on the experimental study of the separate effect test with PASCAL facility. From the experimental results, two-phase flow phenomena in the condensation heat exchanger and PCCT are investigated for the verification of the design of PAFS

  6. Separate-effect Test for Cooling Performance of PAFS(Passive Auxiliary Feedwater System)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Uhn; Kim, Seok; Kang, Kyung Ho; Yun, Byong Jo; Kim, Bok Duk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    APR+ (Advanced Power Reactor Plus) is a next generation nuclear power plant being developed in Korea. It adopts PAFS (Passive Auxiliary Feedwater System) for the steam generator (SG) instead of an active auxiliary feedwater system for the conventional nuclear power plant (NPP). It can replace the conventional active auxiliary feedwater system for the SG by a passive way. It is composed of a steam-supply line, a condensation heat exchanger, a return-water line, and a PCCT (Passive Condensate Cooling Tank). When the water level in the SG becomes lower than 25% of the wide range of the water level transmitter during an accident situation, the actuation valve at the return-water line is open and then the natural convection flow of the PAFS can be made. To validate a cooling performance of PAFS, separate effect test loop, which is named PASCAL (PAFS Condensing heat removal Assessment Loop) was constructed at KAERI (Korea Atomic Energy Research Institute) for investigating the cooling capability of the condensation heat exchanger and the characteristic of the natural convection. This study focuses on the experimental study of the separate effect test with PASCAL facility. From the experimental results, two-phase flow phenomena in the condensation heat exchanger and PCCT are investigated for the verification of the design of PAFS

  7. Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines

    Science.gov (United States)

    Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)

    2001-01-01

    This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.

  8. Experimental program for validation of cooling and operational performance of the APR+ Passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    PAFS (Passive Auxiliary Feedwater System) is one of the advanced passive safety systems adopted in the APR+ (Advanced Power Reactor plus), which is intended to completely replace the conventional active auxiliary feedwater system. PAFS cools down the steam generator's secondary side, and eventually removes the decay heat from the reactor core by introducing a natural driving force mechanism; i.e., condensing steam in nearly horizontal U-tubes submerged inside the passive condensation cooling tank (PCCT). With an aim of validating the cooling and operational performance of the PAFS, an experimental program is in progress at KAERI (Korea Atomic Energy Research Institute), which is composed of two kinds of tests; the separate effect test and the integral effect test. The separate effect test, PASCAL (PAFS Condensing Heat Removal Assessment Loop), is in progress to experimentally investigate the condensation heat transfer and natural convection phenomena in PAFS. The integral effect test is being performed to confirm the operational performance of the PAFS coupled with the other reactor coolant systems (RCS) using the thermal hydraulic integral effect test facility, ATLAS (Advanced Thermal hydraulic test Loop for Accident Simulation). This paper summarizes the up to date experimental results of the separate effect test and the integral effect test for PAFS from a cooling and operational performance point of view

  9. Experimental study on the operational and the cooling performance of the APR+ passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    The passive auxiliary feedwater system (PAFS) is one of the advanced safety features adopted in the APR+ which is intended to completely replace the conventional active auxiliary feedwater system. The PAFS cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by introducing a natural driving force mechanism; i.e., condensing steam in nearly-horizontal U-tubes submerged inside the passive condensation cooling tank (PCCT). With an aim of validating the cooling and operational performance of the PAFS, the separate effect test, PASCAL (PAFS Condensing Heat Removal Assessment Loop), is being performed to experimentally investigate the condensation heat transfer and natural convection phenomena in the PAFS. A single nearly-horizontal U-tube whose dimension is same as the prototypic U-tube of the APR+ PAFS is simulated in the PASCAL test. By performing the PASCAL test, the major thermal-hydraulic parameters such as local/overall heat transfer coefficients, fluid temperature inside the tube, wall temperature of the tube, and pool temperature distribution in the PCCT were produced not only to evaluate the current condensation heat transfer model but also to present database for the safety analysis related with the PAFS. (authors)

  10. Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system

    International Nuclear Information System (INIS)

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very

  11. Auxiliary systems

    International Nuclear Information System (INIS)

    Systems included under the heading ''Reactor Auxillary Systems'' are those immediately involved with the reactor operation. These include the systems for dosing and letdown of reactor coolant, as well as for the chemical dosing, purification and treatment of the reactor coolant and the cooling system in the controlled area. The ancillary systems are mainly responsible for liquid and gaseous treatment and the waste treatment for final storage. (orig.)

  12. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  13. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    International Nuclear Information System (INIS)

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  14. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    International Nuclear Information System (INIS)

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS

  15. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, F.J. (Oak Ridge National Lab., TN (United States)); Carroll, D.G. (General Electric Co., San Jose, CA (United States)); Chen, C. (Tennessee Univ., Knoxville, TN (United States)); Crane, C.; Dalton, R. (Florida Univ., Gainesville, FL (United States)); Taylor, J.R. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)); Tosunoglu, S. (Texas Univ., Austin, TX (United States))

    1993-01-01

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS.

  16. Pb-17Li auxiliary and purification systems: design of the auxiliary Pb-Li loop for helium cooled lithium lead test blanket module

    International Nuclear Information System (INIS)

    This technical report describes the Pb-17Li auxiliary system proposed for Helium Cooled Lithium Lead (HCLL) Test Blanket Module (TBM) that will be installed and tested in ITER. The Pb-17Li auxiliary should ensure feeding and circulation of Pb-17Li liquid metal in this breeding blanket and removal of tritium produced by a nuclear reaction in TBM. The container with the Pb-17Li auxiliary system (dimensions HxLxW: 2.315 m x 2.19 m x 1.6 m) will be placed as close as possible to the TBM to prevent tritium permeation from the connection piping. The report describes developed design of the Pb-17Li auxiliary system that is from the functional point of view divided into the following parts: main circuit, detritization unit and cold trap, dosing and sampling systems, heating and cooling systems, and shielding and insulation. The Pb-17Li circuit is a closed loop with forced circulation of Pb-17Li. From the tank that, at the same time, is a Pb-17Li storage tank, liquid metal is pumped into the TBM where tritium is produced. The flow velocity in the Pb-17Li system will be controlled in the range of 0.1 to 1 kg/s. Pb-17Li outlet temperature from the TBM is 550 deg C. Tritium is removed from Pb-17Li in a detritiation unit. Corrosion products and impurities are removed in a cold trap. Design of the key system components as well as their structure material are described. The technical report determines and describes the Pb-17Li auxiliary system operating modes such as filling, start-up, operation at nominal parameters, shut-down, emergency operation and sampling. Also, the limits and terms of the Pb-17Li auxiliary system safe operation are defined. Requirements for the Pb-17Li auxiliary system installation, testing and maintenance are discussed. In conclusion, recommendations for further developments of the Pb-17Li auxiliary system are proposed. (author)

  17. Passive Condensation Cooling Tank (PCCT) Water Level Effect for Cooling Performance of Passive Auxiliary Feedwater System (PAFS)

    International Nuclear Information System (INIS)

    APR+ (Advanced Power Reactor Plus) is a next generation nuclear power plant being developed in Korea. It adopts PAFS (Passive Auxiliary Feedwater System) for the steam generator (SG) instead of an active auxiliary feedwater system for the conventional nuclear power plant (NPP). The passive safety system is advantageous in that it can enhance the reliability and reduce the effect of operator mistakes, which have been fundamental weak points as indicated in the safety analysis including the PSA (Probability Safety Assessment). The PAFS can replace the conventional active auxiliary feedwater system for the SG by a passive way. A schematic diagram of the PAFS for the APR+ is shown in Figure 1. It is composed of a steam-supply line, a condensation heat exchanger, a return-water line, and a PCCT (Passive Condensate Cooling Tank). When the water level in the SG becomes lower than 25% of the wide range of the water level transmitter during an accident situation, the actuation valve at the return water line is open and then the natural convection flow of the PAFS can be made. It cools down the secondary system of the SG by heat transfer at the condensation heat exchanger installed in the PCCT. The steam generated from the SG in the high pressure condition is condensed in the condensation heat exchanger tube. The absolute pressure at the top of PCCT is maintained at an atmospheric pressure, so that natural convection accompanying boiling heat transfer at the outside wall of the heat exchanger tubes occurs in the PCCT pool side. Since the heat exchanger and the PCCT are located at a higher elevation than the SG, condensate water can be returned back to the SG with a natural driving force. From the experiment, two-phase flow phenomena in the horizontal heat exchanger and PCCT were investigated and the cooling capability of the condensation heat exchanger was validated. Test results showed that the design of the condensation heat exchanger in PAFS could satisfy the requirement

  18. Passive Condensation Cooling Tank (PCCT) Water Level Effect for Cooling Performance of Passive Auxiliary Feedwater System (PAFS)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok; Bae, Byoung Uhn; Cho, Yun Je; Kim, Bok Deuk; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, Byong Jo [Pusan National University, Busan (Korea, Republic of)

    2011-10-15

    APR+ (Advanced Power Reactor Plus) is a next generation nuclear power plant being developed in Korea. It adopts PAFS (Passive Auxiliary Feedwater System) for the steam generator (SG) instead of an active auxiliary feedwater system for the conventional nuclear power plant (NPP). The passive safety system is advantageous in that it can enhance the reliability and reduce the effect of operator mistakes, which have been fundamental weak points as indicated in the safety analysis including the PSA (Probability Safety Assessment). The PAFS can replace the conventional active auxiliary feedwater system for the SG by a passive way. A schematic diagram of the PAFS for the APR+ is shown in Figure 1. It is composed of a steam-supply line, a condensation heat exchanger, a return-water line, and a PCCT (Passive Condensate Cooling Tank). When the water level in the SG becomes lower than 25% of the wide range of the water level transmitter during an accident situation, the actuation valve at the return water line is open and then the natural convection flow of the PAFS can be made. It cools down the secondary system of the SG by heat transfer at the condensation heat exchanger installed in the PCCT. The steam generated from the SG in the high pressure condition is condensed in the condensation heat exchanger tube. The absolute pressure at the top of PCCT is maintained at an atmospheric pressure, so that natural convection accompanying boiling heat transfer at the outside wall of the heat exchanger tubes occurs in the PCCT pool side. Since the heat exchanger and the PCCT are located at a higher elevation than the SG, condensate water can be returned back to the SG with a natural driving force. From the experiment, two-phase flow phenomena in the horizontal heat exchanger and PCCT were investigated and the cooling capability of the condensation heat exchanger was validated. Test results showed that the design of the condensation heat exchanger in PAFS could satisfy the requirement

  19. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100 M Wt, about 25 M We). CAREM design is based on light water integrated reactor with slightly enriched uranium. In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented. Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor. (author)

  20. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100MWt, about 25MWe).CAREM design is based on light water integrated reactor with slightly enriched uranium.In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented.Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor

  1. Scaling analysis for the direct reactor auxiliary cooling system for FHRs

    International Nuclear Information System (INIS)

    Highlights: • A scaling analysis for the direct reactor auxiliary cooling system is performed. • Key dimensionless numbers are developed and similarity laws are proposed. • A scaling methodology that consists of core scaling and loop scaling is developed. • Scientific design of a scaled-down high-temperature DRACS facility is obtained. - Abstract: The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and to activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from

  2. Scaling analysis for the direct reactor auxiliary cooling system for FHRs

    International Nuclear Information System (INIS)

    The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and to activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from both the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a scientific design of a scaled-down high-temperature DRACS test facility

  3. Experimental study of the start-up transient effect on cooling performance of the PAFS (Passive Auxiliary Feedwater System)

    International Nuclear Information System (INIS)

    PAFS (Passive Auxiliary Feedwater System) is a passive cooling system on the secondary system of APR+ (Advanced Power Reactor Plus). It can replace the conventional active cooling system for auxiliary feedwater injection to the steam generator by a passive way, and it cools down the secondary system of the steam generator by heat transfer at the condensation heat exchanger installed in the PCCT (Passive Condensation Cooling Tank). To validate a cooling performance of PAFS, a separate effect test loop has been constructed at KAERI (Korea Atomic Energy Research Institute), which is named PASCAL (PAFS Condensing heat removal Assessment Loop). It simulates a single tube of the horizontal heat exchanger, which is equivalent to 1/240 of the prototype according to a volumetric scaling methodology. In this study, two-phase flow phenomena in a horizontal heat exchanger and PCCT (Passive Condensate Cooling Tank) for the facility were experimentally investigated and the cooling capability of the condensation heat exchanger was validated in the initial start-up transient state. (author)

  4. Evaluation of Effect of N2 Gas on the Cooling Capability of Passive Auxiliary Feedwater System

    International Nuclear Information System (INIS)

    Advanced Power Reactor Plus (APR+), a next generation nuclear power plant in Korea, adopts Passive Auxiliary Feedwater System (PAFS) to replace the conventional active auxiliary feedwater system. Because PAFS removes decay heat from the reactor core, it is required to verify the performance of PAFS in postulated accidents cases. In addition, an effect of non-condensable gas such as N2 gas on the heat removal capability of PAFS should be evaluated since the non-condensable gas may deteriorate a condensation heat transfer through the condensation heat exchanger in PAFS. In this study, MARS code is used to evaluate the effect of N2 gas

  5. An experimental study on the validation of cooling capability for the Passive Auxiliary Feedwater System (PAFS) condensation heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok; Bae, Byoung-Uhn; Cho, Yun-Je; Park, Yu-Sun; Kang, Kyoung-Ho [Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Yun, Byong-Jo, E-mail: bjyun@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan, 609-735 (Korea, Republic of)

    2013-07-15

    Highlights: • PAFS is designed to replace a conventional active Auxiliary Feedwater System. • A SET facility is constructed for investigating the thermal-hydraulic behavior of the PAFS system. • Experimental results proved that the PCHX design satisfied the heat removal requirements. • Results of the MARS-KS code provided a conservative prediction of the heat transfer phenomena. -- Abstract: The Passive Auxiliary Feedwater System (PAFS) is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+). PAFS is designed to replace a conventional active Auxiliary Feedwater System (AFWS). The PAFS cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by a natural circulation mechanism, i.e., condensing steam in nearly horizontal U-tubes submerged inside a pool. A separate effect test facility was constructed with the aim of validating the cooling and operational performance of the PAFS. The PAFS Condensing Heat Removal Assessment Loop (PASCAL) was constructed by simulating a single Passive Condensation Heat Exchanger (PCHX) tube submerged in the Passive Condensation Cooling Tank (PCCT) according to the volumetric scaling methodology. Quasi-steady state (SS) test cases and PCCT level decrease (PL) were sequentially performed with the steam generator heater power set at 540 kW to investigate the thermal-hydraulic behavior of the PAFS system and the characteristics of the natural circulation in the loop. The experimental results proved that the current PCHX design satisfied the heat removal requirement for cooling down the reactor core during an accident condition. Therefore, the PAFS can replace a conventional active AFWS in the APR+ by utilizing the two-phase natural circulation flow. The Multi-dimensional Analysis of Reactor Safety, KINS Standard Version (MARS-KS), a thermal hydraulic system analysis code, was utilized to validate the present experimental data. The results of the MARS

  6. An experimental study on the validation of cooling capability for the Passive Auxiliary Feedwater System (PAFS) condensation heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • PAFS is designed to replace a conventional active Auxiliary Feedwater System. • A SET facility is constructed for investigating the thermal-hydraulic behavior of the PAFS system. • Experimental results proved that the PCHX design satisfied the heat removal requirements. • Results of the MARS-KS code provided a conservative prediction of the heat transfer phenomena. -- Abstract: The Passive Auxiliary Feedwater System (PAFS) is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+). PAFS is designed to replace a conventional active Auxiliary Feedwater System (AFWS). The PAFS cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by a natural circulation mechanism, i.e., condensing steam in nearly horizontal U-tubes submerged inside a pool. A separate effect test facility was constructed with the aim of validating the cooling and operational performance of the PAFS. The PAFS Condensing Heat Removal Assessment Loop (PASCAL) was constructed by simulating a single Passive Condensation Heat Exchanger (PCHX) tube submerged in the Passive Condensation Cooling Tank (PCCT) according to the volumetric scaling methodology. Quasi-steady state (SS) test cases and PCCT level decrease (PL) were sequentially performed with the steam generator heater power set at 540 kW to investigate the thermal-hydraulic behavior of the PAFS system and the characteristics of the natural circulation in the loop. The experimental results proved that the current PCHX design satisfied the heat removal requirement for cooling down the reactor core during an accident condition. Therefore, the PAFS can replace a conventional active AFWS in the APR+ by utilizing the two-phase natural circulation flow. The Multi-dimensional Analysis of Reactor Safety, KINS Standard Version (MARS-KS), a thermal hydraulic system analysis code, was utilized to validate the present experimental data. The results of the MARS

  7. Separate and integral effect tests for validation of cooling and operational performance of the APR+ passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    The passive auxiliary feedwater system (PAFS) is one of the advanced safety features adopted in the APR+, which is intended to completely replace the conventional active auxiliary feedwater system. With an aim of validating the cooling and operational performance of PAFS, an experimental program is in progress at KAERI, which is composed of two kinds of tests; the separate effect test and the integral effect test. The separate effect test, PASCAL (PAFS Condensing Heat Removal Assessment Loop), is being performed to experimentally investigate the condensation heat transfer and natural convection phenomena in PAFS. A single, nearly-horizontal U-tube, whose dimensions are the same as the prototypic U-tube of the APR+ PAFS, is simulated in the PASCAL test. The PASCAL experimental result showed that the present design of PAFS satisfied the heat removal requirement for cooling down the reactor core during the anticipated accident transients. The integral effect test is in progress to confirm the operational performance of PAFS, coupled with the reactor coolant systems using the ATLAS facility. As the first integral effect test, an FLB (feedwater line break) accident was simulated for the APR+. From the integral effect test result, it could be concluded that the APR+ has the capability of coping with the hypothetical FLB accident by adopting PAFS and proper set-points of its operation.

  8. Operation auxiliary system (SAO)

    International Nuclear Information System (INIS)

    This work presents an auxiliary system for nuclear power plants operation (SAO). The development purpose consisted in a computing supervision system to be installed at different sites of a reactor, mainly in the control room. The inclusion of this system to a nuclear power plant minimizes the possibility of human error for the facility operation. (Author)

  9. Design and Development of a Small Heat Exchanger as Auxiliary Cooling System for Domestic and Industrial Applications

    Directory of Open Access Journals (Sweden)

    L.O.Ogunleye

    2013-11-01

    Full Text Available The epileptic supply of power from the national grid in Nigeria has made many industries to engage Internal Combustion Engine generators as alternative to providing energy required for production. The excessive use of these machines has mostly altered their effective performance, thereby necessitating more frequent maintenance or repair than recommended by the manufacturers. Frequent break-downs of these machines reduce rate of production of these industries and by extension, this adversely affects the economy development of the country. A known engineering enterprise in Kano; North West region of Nigeria due to the same factor stated above, subjected her 30 kvagenerator to run almost throughout the working hours of the week. Initially, the generator run perfectly within the manufacturer recommended 100 hours of operation before conducting maintenance works. After sometime, due to excessive use, the generator hardly met half the required service hours before overheating and this resulted in frequent damage of the gasket and repair of the valve outlets, consequently increased the cost of maintenance. A Small Tube and Shell Heat Exchanger with parallel/counter flow that would serve as an auxiliary cooling system for the radiator was designed and developed.

  10. Simplified analysis of PRISM RVACS [Reactor Vessel Auxiliary Cooling System] performance without liner spill-over

    International Nuclear Information System (INIS)

    Simplified analysis of the performance of the PRISM RVACS decay heat removal system under off-normal conditions, i.e., without the liner spill-over, is described. Without the spilling of hot-pool sodium over the liner and the resultant down-flow along the inside of the reactor vessel wall, the RVACS system performance becomes dominated by the radial heat condition and radiation. Simple estimates of the resulting heat conduction and radiation processes support GE's contention that the RVACS performance is not severely impacted by the absence of spillover, and can improve significantly if sodium has leaked into the region between the reactor and containment vessels. 7 refs

  11. Auxiliary bearing design considerations for gas cooled reactors

    International Nuclear Information System (INIS)

    The need to avoid contamination of the primary system, along with other perceived advantages, has led to the selection of electromagnetic bearings (EMBs) in most ongoing commercial-scale gas cooled reactor (GCR) designs. However, one implication of magnetic bearings is the requirement to provide backup support to mitigate the effects of failures or overload conditions. The demands on these auxiliary or 'catcher' bearings have been substantially escalated by the recent development of direct Brayton cycle GCR concepts. Conversely, there has been only limited directed research in the area of auxiliary bearings, particularly for vertically oriented turbomachines. This paper explores the current state-of-the-art for auxiliary bearings and the implications for current GCR designs. (author)

  12. Evaluation of Effect of N2 Gas on the Cooling Capability of Passive Auxiliary Feedwater System (PAFS) in APR+

    International Nuclear Information System (INIS)

    In Korea, Advanced Power Reactor Plus (APR+) has being developed by adding passive safety features to Advanced Power Reactor 1400MWe (APR1400). Passive Auxiliary Feedwater System (PAFS) is one of passive system adopted in the APR+ to replace the conventional active auxiliary feedwater system. Because PAFS removes decay heat from the reactor core, it is required to verify the performance of PAFS in postulated accidents cases. In addition, an effect of noncondensable gas on the heat removal capability of PAFS should be evaluated since the non-condensable gas may deteriorate a condensation heat transfer through the condensation heat exchanger in PAFS. In this study, the effect of N2 gas was evaluated using MARS

  13. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn, E-mail: bubae@kaeri.re.kr; Kim, Seok; Park, Yu-Sun; Kang, Kyoung-Ho

    2014-08-15

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection.

  14. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    International Nuclear Information System (INIS)

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection

  15. Theoretic analysis on separation efficiency of wire mesh mist eliminator of high-temperature gas-cooled reactor helium purification and auxiliary system

    International Nuclear Information System (INIS)

    Helium purification and helium auxiliary system is one of important systems guaranteeing the safe operation of high-temperature gas-cooled reactor. Wire mesh mist eliminator in this system is one of the key components. It is used to separate waste water containing tritium, and remove moisture after reactor accident. Base on the ideal fluid model and packing pad model developed by Carpenter, a calculation model was presented for separation efficiency of mist eliminator. The calculation program SEP-WMME was developed based on the model. The calculation results fit well with experiment results. Theoretic analysis was carried out for the mist eliminator of regeneration system in HTR-PM helium purification system engineering validation test loop. The analysis results show that the inlet velocity is an important parameter for mist eliminator in regeneration system. When the inlet velocity is above 3.0 m/s, high separation efficiency will be obtained. The number of wire mesh layers also affects the separation efficiency remarkably. When the number of layers increases further to some extent, the separation efficiency increase becomes insignificant. The number of layers should be chosen properly by considering pressure loss. Additionally, the diameter of wire is an important parameter related to separation efficiency. The separation efficiency increases with the decrease of the wire diameter. The analysis is significant for structure design, optimization and safe operation of mist eliminator in helium purification and helium auxiliary system. (authors)

  16. Discussion on RELAP5 and RETRAN3D Modeling for Passive Condensate Cooling Tank of Passive Auxiliary Feedwater System in APR+

    International Nuclear Information System (INIS)

    Domestic nuclear industry has started the development of APR+ as a Korean specific reactor for the export strategy. In the development of APR+ a passive auxiliary feedwater system (PAFS) has been considered as a noticeable candidate of improved design. The outline of PAFS and passive condensate cooling tank (PCCT) containing horizontal heat exchanger is shown in Fig. 1. For the successful design of PAFS, performance analyses or safety analyses are prerequisite using best estimate thermal hydraulic codes such as RELAP5 or RETRAN3D. Because of the inherent features of RELAP5 or RETRAN3D, pool model and condensation in horizontal tube have not been well-setup nor widely studied. This paper discusses about the PCCT phenomena including steam condensation in horizontal tube and pool heat transfer, and RELAP5 and RETRAN3D modeling

  17. Design a Close Loop Cooling System for EA-P1 and Its Auxiliaries to Prevent Loss of Domestic Water

    International Nuclear Information System (INIS)

    Any one of four machines i.e. EA-P1, EA-J4, EA-J5 and EA-J6 may be used to develop vacuum in water box side of main condenser in KANUPP. As per design and operating experience, most efficient one is EA-P1. But since it consumes ample quantity of domestic water which is already very short at KANUPP (even tankers are purchased), its use is avoided. If water used for its cooling is prevented from going to waste and is recycled. EA-P1 operation may be resumed thereby improving efficiency of condenser. We made a close loop for EA-P1 in order to prevent water from going to waste. For this purpose we suggested two close loop schemes and discuss their advantages and drawbacks. Feasibility of both schemes is present in this report and efficient one is proposed for installation at KANUPP. (author)

  18. Auxiliary feedwater system aging study

    International Nuclear Information System (INIS)

    This report documents the results of a Phase I follow-on study of the Auxiliary Feedwater (AFW) System that has been conducted for the US Regulatory Commission's Nuclear Plant Aging research Program. The Phase I study found a number of significant AFW System functions that are not being adequately tested by conventional test methods and some that are actually being degraded by conventional testing. Thus, it was decided that this follow-on study would focus on these testing omissions nd equipment degradation. The deficiencies in current monitoring and operating practice are categorized and evaluated. Areas of component degradation caused by current practice are discussed. Recommendations are made for improved diagnostic methods and test procedures

  19. Evaluation of Effect of N{sub 2} Gas on the Cooling Capability of Passive Auxiliary Feedwater System (PAFS) in APR+

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yun Je; Kang, Kyong Ho; Yun, Byong Jo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In Korea, Advanced Power Reactor Plus (APR+) has being developed by adding passive safety features to Advanced Power Reactor 1400MWe (APR1400). Passive Auxiliary Feedwater System (PAFS) is one of passive system adopted in the APR+ to replace the conventional active auxiliary feedwater system. Because PAFS removes decay heat from the reactor core, it is required to verify the performance of PAFS in postulated accidents cases. In addition, an effect of noncondensable gas on the heat removal capability of PAFS should be evaluated since the non-condensable gas may deteriorate a condensation heat transfer through the condensation heat exchanger in PAFS. In this study, the effect of N{sub 2} gas was evaluated using MARS

  20. Design Characteristics of the Passive Auxiliary Feedwater System in APR+

    International Nuclear Information System (INIS)

    The passive auxiliary feedwater system (PAFS) is a typical passive safety system implemented for the APR+. The auxiliary feedwater system (AFWS) in the APR1400, which is the reference plant of the APR+, consists of two motor driven pumps, two turbine driven pumps, two water storage tanks, and related pipes and valves. The AFWS feeds emergency water to steam generators to cool down the reactor coolant system when the main feedwater is lost. To enhance the safety, the PAFS replaces the AFWS with a passive condensation heat exchanger (PCHX), a passive condensation cooling tank (PCCT), and a few valves and pipes in the APR+ design. In this paper, we propose the design requirements and conceptual design of the PAFS in order to evaluate the operability of the PAFS, to develop the APR+'s general arrangements for the auxiliary building, and to identify the important parameters to be quantified by experiments

  1. Performance analysis of a Passive Auxiliary Feedwater System in APR+

    International Nuclear Information System (INIS)

    The Advanced Power Reactor Plus (APR+), which is a GEN III+ reactor based on the APR1400, is being developed in Korea. In order to enhance the safety of the APR+, a passive auxiliary feedwater system (PAFS) has been adopted in the APR+. The PAFS replaces the conventional active auxiliary feedwater system (AFWS) by introducing a natural driving force mechanism while maintaining the system function of cooling the primary side and removing the decay heat. The purpose of this paper is to evaluate the performance of the PAFS under design basis events using best-estimated thermalhydraulic codes

  2. Radio frequency auxiliary heating systems design in ITER

    International Nuclear Information System (INIS)

    A combination of radio frequency (RF) auxiliary heating systems will provide at least one half of the required 100 MW of auxiliary power in ITER. Five of the 20 equatorial ports are assigned to RF heating systems. Recent work has focused on developing an integrated equatorial port-plug design concept for all of the RF auxiliary heating systems as well as other equatorial port systems such as diagnostics. Common features of the design approach include the use of identical interfaces to services such as cooling water, vacuum, mechanical connection to the vessel, and maintenance. Based on the integrated port concept, a high level of design integration has been achieved for the RF heating systems. Implementation of the integrated design concept has been accomplished without significantly affecting the individual system performance and with limited impact on the torus layout. (author)

  3. The auxiliary system design retrofits of the different coolant pump

    International Nuclear Information System (INIS)

    The coolant pump auxiliary systems retrofits are introduced in detail according to the different type of coolant pumps. The retrofit reasons of the chemical and volume control system, component cooling water system, Nuclear Nitrogen Storage and Distribution System, Vent and drain system, etc. are investigated. The most extraordinary change takes place in the chemical and volume control system and cooling water system. The charging flow temperature of re- generative heat exchanger and discharge flow of charging pump will be changed according to the difference coolant pump seal flow distribution. The commercial CFD software Flow master is employed to validate the charging capability. The other auxiliary systems' retrofits are also introduced in the end of this paper. (authors)

  4. An Intelligent Auxiliary Vacuum Brake System

    OpenAIRE

    Tong, Chia-Chang; Lin, Jhih-Yu; Li, Shih-Fan; Li, Jiun-Yi

    2009-01-01

    The purpose of this paper focuses on designing an intelligent, compact, reliable, and robust auxiliary vacuum brake system (VBS) with Kalman filter and self-diagnosis scheme. All of the circuit elements in the designed system are integrated into one programmable system-on-chip (PSoC) with entire computational algorithms implemented by software. In this system, three main goals are achieved: (a) Kalman filter and hysteresis controller algorithms are employed within PSoC chip by software to sur...

  5. System Study: Auxiliary Feedwater 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2014-12-31

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  6. System Study: Auxiliary Feedwater 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  7. Cooling systems

    International Nuclear Information System (INIS)

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  8. PWR auxiliary systems, safety and emergency systems, accident analysis, operation

    International Nuclear Information System (INIS)

    The author presents a description of PWR auxiliary systems like volume control, boric acid control, coolant purification, -degassing, -storage and -treatment system and waste processing systems. Residual heat removal systems, emergency systems and containment designs are discussed. As an accident analysis the author gives a survey over malfunctions and disturbances in the field of reactor operations. (TK)

  9. Auxiliary-Arc Electrodes for MHD Systems

    International Nuclear Information System (INIS)

    The important role of electrode phenomena in the operation of magneto aerodynamic machines is well known. In particular, the voltage drops which occur in the boundary layer in the immediate neighbourhood of the electrode may reduce the output of the apparatus. These voltage drops are caused partly by the increased resistance presented by the boundary layer in the neighbourhood of the electrode when the latter is appreciably colder than the gas, and partly by the fact that the electrode is not at a temperature sufficient to be emissive. Auxiliary-arc electrodes that have been constructed and tested seem to provide a solution both of the cold boundary layer problem and of the cathode emissivity problem. For this purpose an arc is established between a refractory metal cathode placed behind and clear of the generator wall and an anode forming part of the wall. The arc column can be activated by a rotational movement under the effect of a magnetic field, which may be that of the machine itself. The mechanical arrangement of the electrodes is such that, with a weak flow of gas (argon for example), it is possible to maintain a protective atmosphere around the arc cathode, while the arc anode is strongly cooled by the wall. The gas flow also has the effect of forcing the arc column towards the stream, thus increasing the conductivity of the boundary layer. Furthermore, the arc column behaves as a virtual cathode, from which a sizeable electron current can be extracted. Electrodes constructed on this principle have been tested on gas streams composed of fuel-oil combustion products. By using them as cathodes it has been possible to extract a current of 5 A without the voltage drop between the electrode and the gas exceeding 10 V. Comparative tests have been carried out with cooled metal electrodes, in which case the voltage drop is of the order of 120 V. The arc electrodes tested have operated for several hours without any apparent damage. In spite of the energy which has

  10. Auxiliary Heating Systems for the Ignitor Project

    Science.gov (United States)

    Sassi, M.; Mantovani, S.; Coppi, B.

    2013-10-01

    Auxiliary plasma heating systems directed at extending the range of plasma regimes that can be accessed by Ohmic heating only are important components of the Ignitor machine. In order to affect the entire plasma column an appropriate ICRH systemhas been designed and components of it have been tested. The adoption of a 280 GHz system affecting, by ECRH, the outer edge of the plasma column has been proposed in order to influence temperature and density profiles in this important region. The ICRH system will operate over the range 80-120 MHz, consistent with magnetic fields in the range 9-13 T. The maximum delivered power goes from 8 MW (at 80 MHz) to 6 MW (at 120 MHz) distributed over 4 ports. A full size prototype of the VTL between the port flange and the antenna straps, with the external support and precise guiding system has been constructed. The innovative quick latching system located at the end of the coaxial cable has been successfully tested, providing perfect interference with the spring Be-Cu electrical contacts. Vacuum levels of 10-6, compatible with the limit of material degassing, and electrical tests up to 12 kV without discharges have been obtained. Special attention was given to the finishing of the inox surfaces, and to the TIG welds. U.S. DOE sponsored.

  11. Construction Report of Separate Effect Test Facility for Passive Auxiliary Feedwater System (PASCAL)

    International Nuclear Information System (INIS)

    A separate effect test facility for PAFS(Passive Auxiliary Feedwater System, PAFS), PASCAL, was constructed to evaluate the cooling performance of PAFS and the condensation heat transfer models. This report includes the scope of the separate effect tests, the design of PASCAL facility, and measuring principles. From the design and construction of the separate effect test facility, PASCAL facility was composed of the fluid system, the auxiliary system, the measurement system, the electricity system, the control system and the data acquisition system. This report will be utilized to make the experiment procedure and perform the test

  12. The development of a passive auxiliary feedwater system in APR+

    International Nuclear Information System (INIS)

    The Advanced Power Reactor Plus (APR+) is being developed in Korea. APR+ is a GEN III+ reactor on the basis of the APR1400. To meet the requirements of GEN III+ reactors, the economics and the safety of the APR+ are further enhanced. One of the basic principles of APR+ safety systems is the adoption of hybrid safety systems. Passive safety systems replace the current active safety systems from an economic point of view. The passive aux. feedwater system (PAFS) is one of the passive safety features adopted in the APR+. The PAFS replaces the conventional active auxiliary feedwater system by introducing a natural driving force mechanism while maintaining the system's basic Junction of cooling down the primary side and removing the decay heat. In order to satisfy the single failure criterion, the PAFS is composed of two independent trains. Each train has one steam condensing heat exchanger of 100% capability and one PCCT (Passive Condensation Cooling water Tank) of 100% capability. Basic design is underway and separate effect tests and integral effect tests will be performed to demonstrate the performance of the PAFS. (authors)

  13. Conceptual design of the integral test loop (II) : Safety system and auxiliary system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, Chul Hwa; Choi, Byeong Hae; Chung Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the results of the conceptual design work on the safety system and auxiliary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the safety and auxiliary systems is the same as that applied to the primary and secondary systems of the ITL as follows ; Reference plant : Korean Standard Nuclear Plant (KSNP), Height ratio :1/1, Volume ration: 1/200, Temperature, Pressure : Real plant conditions, The safety system contains a safety depressurization system (SDS) and a safety injection system (SIS). And the auxiliary system comprises a containment system, a shutdown cooling system (SCS), a volume control system (VCS), a makeup water system and a component cooling water system (CCWS). This conceptual design report describes the configurations and operation of the systems of the reference plant, and also describes the design philosophy of the corresponding components and systems of the ITL. In addition, this report specifies the design criteria and technical specifications of each component and system of the ITL. 6 refs., 11 figs., 21 tabs. (Author)

  14. The German and English Auxiliary Systems and Complex Predicates

    Science.gov (United States)

    McCormick, Terrence C.

    1976-01-01

    This paper explores the auxiliary systems of English and German and the use of the auxiliary verbs in various complex predicate structures in the two languages. It aims at alleviating two types of problems in learning German involving governing patterns and ordering problems in clauses. (CHK)

  15. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  16. Scaling Analysis of Separate Effect Test Facility for PAFS (Passive Auxiliary Feedwater System)

    International Nuclear Information System (INIS)

    PAFS (Passive Auxiliary Feedwater System) is one of the passive cooling systems of APR+. It can replace the conventional active system for auxiliary feedwater injection to the steam generator. A diagram of PAFS in APR+ is shown in Figure 1. It cools down the secondary system by heat transfer at a horizontal U-tube heat exchanger in PCCT (Passive Condensation Cooling Tank). To validate a performance of PAFS, separate effect test loop is being developed, which is named as PASCAL(PAFS Condensing heat removal Assessment Loop). This study aims at analyzing the scaling effect of PASCAL by MARS (Multi-dimensional Analysis for Reactor Safety) code analysis. Transient simulation results for the case of LOCV(Loss of Condenser Vacuum) scenario were compared between PASCAL and prototype

  17. Scaling Analysis of Separate Effect Test Facility for PAFS (Passive Auxiliary Feedwater System)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Uhn; Yun, Byong Jo; Bae, Sung Won; Song, Chul Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    PAFS (Passive Auxiliary Feedwater System) is one of the passive cooling systems of APR+. It can replace the conventional active system for auxiliary feedwater injection to the steam generator. A diagram of PAFS in APR+ is shown in Figure 1. It cools down the secondary system by heat transfer at a horizontal U-tube heat exchanger in PCCT (Passive Condensation Cooling Tank). To validate a performance of PAFS, separate effect test loop is being developed, which is named as PASCAL(PAFS Condensing heat removal Assessment Loop). This study aims at analyzing the scaling effect of PASCAL by MARS (Multi-dimensional Analysis for Reactor Safety) code analysis. Transient simulation results for the case of LOCV(Loss of Condenser Vacuum) scenario were compared between PASCAL and prototype

  18. Operating experiences and degradation detection for auxiliary feedwater systems

    International Nuclear Information System (INIS)

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The results of the study are documented in NUREG/CR-5404, Vol. 1, Auxiliary Feedwater System Aging Study. The study reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results

  19. Auxiliary DCP data acquisition system. [airborne system

    Science.gov (United States)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  20. MARS calculation of PAFS (passive auxiliary feedwater system) heat exchanger in APR+

    International Nuclear Information System (INIS)

    APR+ (Advanced Power Reactor Plus), the next generation nuclear power plant in Korea, adopts PAFS (Passive Auxiliary Feedwater System) as one of the advanced safety feature. To design the condensation heat exchanger in PAFS, the two-phase flow phenomena in horizontal U-tube and PCCT (Passive Condensate Cooling Tank) were investigated by MARS calculation. By benchmarking with NOKO experimental result, MARS code showed a reasonable capability to quantitatively predict the condensation in horizontal tube heat exchanger. And the design of PAFS heat exchanger was proved to sufficiently remove the decay heat by the condensation heat transfer without any active auxiliary feedwater system

  1. MARS calculation of PAFS (passive auxiliary feedwater system) heat exchanger in APR+

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Uhn; Yun, Byong Jo; Bae, Sung Won; Choi, Ki Yong; Song, Chul Hwa [KAERI, Daejeon (Korea, Republic of); Cheon, Jong [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2009-07-01

    APR+ (Advanced Power Reactor Plus), the next generation nuclear power plant in Korea, adopts PAFS (Passive Auxiliary Feedwater System) as one of the advanced safety feature. To design the condensation heat exchanger in PAFS, the two-phase flow phenomena in horizontal U-tube and PCCT (Passive Condensate Cooling Tank) were investigated by MARS calculation. By benchmarking with NOKO experimental result, MARS code showed a reasonable capability to quantitatively predict the condensation in horizontal tube heat exchanger. And the design of PAFS heat exchanger was proved to sufficiently remove the decay heat by the condensation heat transfer without any active auxiliary feedwater system.

  2. Progress on radio frequency auxiliary heating system designs in ITER

    International Nuclear Information System (INIS)

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined

  3. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  4. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floo...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  5. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non...

  6. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes of ...

  7. Design study of cooling system for tokamak fusion reactor

    International Nuclear Information System (INIS)

    Design study of the reactor cooling system for a tokamak fusion reactor has been carried out. In the cooling system of an experimental 150 MWt fusion reactor, to grasp the plant concept and clarify the R and D items the main cooling system and the tritium recovery system were designed and the auxiliary system was examined. In the cooling system of a commercial 2000 MWt fusion reactor, to study the plant and environment safety the main cooling system and the tritium recovery system were designed, including the evaluation of water leakage and tritium penetration in the steam generators. (auth.)

  8. Specifying the auxiliary heating system on TFCX

    International Nuclear Information System (INIS)

    This paper reviews the status of heating systems for the TFCX-S (all superconducting coil) and TFCX-H (hybrid coil) options. Three systems were defined; preheating (electron), current drive, and bulk (ion) heating. Application of systems engineering techniques facilitated fruitful discussions of requirements and their impact on equipment between physicists and engineers. A low-cost, flexible combination of systems allows plasma experiments using all rf startup and current drive

  9. Energy simulation of solar assisted absorption system and examination of clearness index effects on auxiliary heating

    International Nuclear Information System (INIS)

    The smog and pollutants in the atmospheric air of heavily populated urban areas are anticipated to have substantial adverse effects on the collection of solar energy and the performance of solar energy systems. The objectives of this study are (a) to develop a simulation model for analyzing the performance of a water-LiBr solar assisted absorption system with an auxiliary heating source and (b) to examine the effects of clearness index on the auxiliary heating requirements. To achieve the objectives, a numerical model for a water-LiBr solar assisted absorption system is developed, and the influence of a reduction in the clearness index, based on actual recorded data, is investigated for constant and time varying cooling loads. Under the condition of peak solar gain on July 21, when a 1000 m2 solar collector is designed to provide 70% of the heating energy required for a constant cooling load of 1265 MJ/h (=100 refrigeration tons), as the system coefficient of performance decreases due to higher ambient temperatures, it is found that a reduction in the clearness index from 0.63 to 0.52 results in a 67% increase in auxiliary heating required of the boiler. It is concluded that accounting for clearness index data is necessary for accurate prediction of solar energy collection

  10. Air cooling system

    International Nuclear Information System (INIS)

    A procedure for cooling the steam from a turbine used in conjunction with a power nuclear reactor has been described in the main patent. According to said procedure, use is made of a circuit where a two-phase mixture is circulated, said closed circuit connecting the turbine condenser to a cooling tower. According to the present addition patent, the cooling structure is provided with cooling fins previously hollowed in view of increasing the interface between the fluid and said structure, which improves the performance of the system

  11. Cooling System Analysis

    OpenAIRE

    Almeida, Fernando Jorge Gonçalves; Cruz, João Pedro Brás da

    2012-01-01

    ABSTRACT This master thesis report describes the behavior of a cooling system based on the power consumption and power losses during the velocity range. The thesis is a report of the behavior of the cooling system to understand were we having more needs to cold down the system. It was used a excel sheet to describe the values of power, losses and efficiencies of the various components of the cooling. With the excel sheets built we studied various cases in the system to show ...

  12. Aging assessment of PWR [Pressurized Water Reactor] Auxiliary Feedwater Systems

    International Nuclear Information System (INIS)

    In support of the Nuclear Regulatory Commission's Nuclear Plant Aging Research (NPAR) Program, Oak Ridge National Laboratory is conducting a review of Pressurized Water Reactor Auxiliary Feedwater Systems. Two of the objectives of the NPAR Program are to identify failure modes and causes and identify methods to detect and track degradation. In Phase I of the Auxiliary Feedwater System study, a detailed review of system design and operating and surveillance practices at a reference plant is being conducted to determine failure modes and to provide an indication of the ability of current monitoring methods to detect system degradation. The extent to which current practices are contributing to aging and service wear related degradation is also being assessed. This paper provides a description of the study approach, examples of results, and some interim observations and conclusions. 1 fig., 1 tab

  13. Indigenous manufacturing realization of twin source and its auxiliary system

    International Nuclear Information System (INIS)

    operation) as well as Vacuum mode (DNB type vacuum immersed operation). The Twin Source shall be manufactured as per ASME guidelines for pressure vessel. Experiments on the Twin Source are foreseen in the near future, as all the auxiliary systems like 180 kW, RF generator system, vacuum vessel with Pumping station, Cooling water system, Data acquisition and control system (DACS) and other power supply systems are already installed in the lab premises. The paper discusses the FEA based engineering design, simplified manufacturing design, manufacturing experience with highlighting quality control and the system integration activities undertaken for the TWIN source test facility. (author)

  14. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floo...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented.......In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...

  15. Personal Cooling System

    Science.gov (United States)

    1986-01-01

    Cool Head, a personal cooling system for use in heat stress occupations, is a spinoff of a channeled cooling garment for space wear. It is portable and includes a heat exchanger, control display unit, liquid reservoir and temperature control unit. The user can eliminate 40 to 60 percent of his body's heat storage and lower heart rate by 50 to 80 beats a minute. The system is used by the Army, Navy, crop dusting pilots, heavy equipment operators and auto racing drivers and is marketed by Life Enhancement Technologies, LLC. Further applications are under consideration.

  16. Superconductor rotor cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  17. Alternative Room Cooling System

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available The rapidly growing population results in an increasing demand for much more residential and commercial buildings, which leads to vertical growth of the buildings and needs proper ventilation of those buildings. Natural air ventilation system is not sufficient for conventional building structures. Hence fans and air-conditioners are must to meet the requirement of proper ventilation as well as space conditioning. Globally building sector consumes largest energy in heating, cooling, ventilation and space conditioning. This load can be minimized by the application of solar chimney and modification in building structure for heating, cooling, ventilation and space conditioning. Passive solar cooling is a subject of interest to provide cooling by using the sun, a powerful energy source. This is done for ensuring human comfort in hot climates. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers defines Comfort as ‘that state of mind which expresses satisfaction with the thermal environment.’ The present paper describes the development of a solar passive cooling system, which can provide thermal cooling throughout the summer season in hot and humid climates. The constructed passive system works on natural convection mode of air. Such system reduces the inside temperature of up to 5°C from the atmospheric temperature. Temperature can further be reduced by the judicious use of night ventilation.

  18. Core cooling systems

    International Nuclear Information System (INIS)

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  19. Analysis of Condensation Phenomena in PAFS (Passive Auxiliary Feedwater System) Horizontal Heat Exchanger of APR+

    International Nuclear Information System (INIS)

    APR+ (Advanced Power Reactor Plus) is the next generation nuclear power plant in Korea. It adopts PAFS (Passive Auxiliary Feedwater System) on the secondary system. It can replace the conventional active system for auxiliary feedwater injection to the steam generator, and it enable to supply the coolant by a passive system. It cools down the secondary system by heat transfer at a horizontal U-tube in PCCT (Passive Condensate Cooling Tank). High pressure steam flow from the steam generator is condensed in the horizontal heat exchanger. The water in PCCT is maintained at an atmospheric pressure, so that boiling heat transfer at the outside wall of heat exchanger and natural convection occur in PCCT pool. The heat exchanger and PCCT is higher than steam generator, so condensate can be drained and injected to feedwater system without any active system. This study aims at design of the horizontal heat exchanger in PAFS. It should remove the heat generated in the steam generator. To satisfy this requirement, a system code analysis is conducted. The amount of condensation heat transfer is investigated by MARS (Multi-dimensional Analysis for Reactor Safety) code analysis

  20. Analysis of Condensation Phenomena in PAFS (Passive Auxiliary Feedwater System) Horizontal Heat Exchanger of APR+

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Uhn; Yun, Byong Jo; Bae, Sung Won; Choi, Ki Yong; Song, Chul Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cheon, Jong [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2009-10-15

    APR+ (Advanced Power Reactor Plus) is the next generation nuclear power plant in Korea. It adopts PAFS (Passive Auxiliary Feedwater System) on the secondary system. It can replace the conventional active system for auxiliary feedwater injection to the steam generator, and it enable to supply the coolant by a passive system. It cools down the secondary system by heat transfer at a horizontal U-tube in PCCT (Passive Condensate Cooling Tank). High pressure steam flow from the steam generator is condensed in the horizontal heat exchanger. The water in PCCT is maintained at an atmospheric pressure, so that boiling heat transfer at the outside wall of heat exchanger and natural convection occur in PCCT pool. The heat exchanger and PCCT is higher than steam generator, so condensate can be drained and injected to feedwater system without any active system. This study aims at design of the horizontal heat exchanger in PAFS. It should remove the heat generated in the steam generator. To satisfy this requirement, a system code analysis is conducted. The amount of condensation heat transfer is investigated by MARS (Multi-dimensional Analysis for Reactor Safety) code analysis.

  1. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  2. Waveguide cooling system

    Science.gov (United States)

    Chen, B. C. J.; Hartop, R. W. (Inventor)

    1981-01-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  3. Steady state flow evaluations for passive auxiliary feedwater system of APR

    International Nuclear Information System (INIS)

    This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results

  4. 20--500 watt AMTEC auxiliary electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenok, J.F. III; Sievers, R.K. [Advanced Modular Power Systems, Inc., Ann Arbor, MI (United States)

    1996-12-31

    Numerous design studies have been completed on Alkali Metal Thermal to Electric Converter (AMTEC) power systems for space applications demonstrating their substantial increase in performance. Recently design studies have been initiated to couple AMTEC power conversion with fossil fueled combustion systems. This paper describes the results of a Phase 1 SBIR effort to design an innovative, efficient, reliable, long life AMTEC Auxiliary Electric Power System (AEPS) for remote site applications (20--500 watts). The concept uses high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated with a combustor and recuperator. These multi-tube AMTEC cells are low cost, reliable, long life static converters. AMTEC technology is ideal for auxiliary electric power supplies that must operate reliably over a broad range of temperatures, fuel sources, power levels, and operational specifications. The simplicity, efficiency (20% systems) and modularity of this technology allow it to fill applications as varied as light-weight backpacks, remote site power supplies, and military base power. Phase 1 demonstrated the feasibility of a 20% system design, and showed that the development needs to focus on identifying long life AMTEC cell components, determining the AMTEC cell and system reliability, and demonstrating that a 20 watt AMTEC system is 3--5 times more efficient than existing systems for the same application.

  5. Prototype solar heating and cooling systems, including potable hot water

    Science.gov (United States)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  6. Passive containment cooling system

    Science.gov (United States)

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  7. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  8. Assembly auxiliary system for narrow cabins of spacecraft

    Science.gov (United States)

    Liu, Yi; Li, Shiqi; Wang, Junfeng

    2015-09-01

    Due to the narrow space and complex structure of spacecraft cabin, the existing asssembly systems can not well suit for the assembly process of cabin products. This paper aims to introduce an assembly auxiliary system for cabin products. A hierarchical-classification method is proposed to re-adjust the initial assembly relationship of cabin into a new hierarchical structure for efficient assembly planning. An improved ant colony algorithm based on three assembly principles is established for searching a optimizational assembly sequence of cabin parts. A mixed reality assembly environment is constructed with enhanced information to promote interaction efficiency of assembly training and guidance. Based on the machine vision technology, the inspection of left redundant objects and measurement of parts distance in inner cabin are efficiently performed. The proposed system has been applied to the assembly work of a spacecraft cabin with 107 parts, which includes cabin assembly planning, assembly training and assembly quality inspection. The application result indicates that the proposed system can be an effective assistant tool to cabin assembly works and provide an intuitive and real assembly experience for workers. This paper presents an assembly auxiliary system for spacecraft cabin products, which can provide technical support to the spacecraft cabin assembly industry.

  9. ATLAS - Liquid Cooling Systems

    CERN Document Server

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  10. Twelve solar-heating/cooling systems: Design and development

    Science.gov (United States)

    1980-01-01

    Two quarterly reports describe first 6 months of development on single family, multifamily, and commercial installations in Minneapolis area. Reports discuss basic requirements, and reasons for selecting specific configurations. Systems consist of liquid cooled flat plate collectors, two fluid loops, and gas-fired forced-air auxiliary heat source.

  11. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  12. Single-tube condensation experiment in Passive Auxiliary Feedwater System of APR1400+

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Wook; No, Hee Cheon; Yun, Bong Yo; Jeon, Byong Guk [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Conventional Korean nuclear power plants, Advanced Power Reactors (APR), are characterized by an active cooling system. However, Active cooling system may not prevent significant damage without any AC power source available for its operation as vividly illustrated through the recent Fukushima incident. In the APR1400+ to be designed, an independent passive cooling system was added in order to overcome the aforementioned shortcomings. In the Passive Auxiliary Feedwater System (PAFS), gravity force and density difference between steam and water are used. The system comprises of 240 condensation tubes to efficiently remove decay heat. Before applying the PAFS to APR1400+, the system's safety and heat removal performance must be verified. The present study experimentally evaluates the heat removal performance of a single tube in the PAFS. The objectives of SCOP (Single-tube Condensation experiment facility of PAFS) are the evaluation of the heat removal performance in the tube of the PAFS and database construction under various tube designs and test conditions. Reaching these objectives, we developed advanced measurement techniques for the amount of moisture, heat flux, and water film thickness.

  13. Single-tube condensation experiment in Passive Auxiliary Feedwater System of APR1400+

    International Nuclear Information System (INIS)

    Conventional Korean nuclear power plants, Advanced Power Reactors (APR), are characterized by an active cooling system. However, Active cooling system may not prevent significant damage without any AC power source available for its operation as vividly illustrated through the recent Fukushima incident. In the APR1400+ to be designed, an independent passive cooling system was added in order to overcome the aforementioned shortcomings. In the Passive Auxiliary Feedwater System (PAFS), gravity force and density difference between steam and water are used. The system comprises of 240 condensation tubes to efficiently remove decay heat. Before applying the PAFS to APR1400+, the system's safety and heat removal performance must be verified. The present study experimentally evaluates the heat removal performance of a single tube in the PAFS. The objectives of SCOP (Single-tube Condensation experiment facility of PAFS) are the evaluation of the heat removal performance in the tube of the PAFS and database construction under various tube designs and test conditions. Reaching these objectives, we developed advanced measurement techniques for the amount of moisture, heat flux, and water film thickness.

  14. Interaction region design and auxiliary detector systems for an EIC

    Directory of Open Access Journals (Sweden)

    Petti R.

    2016-01-01

    Full Text Available There are a number of exciting physics opportunities at a future electron-ion collider facility. One possible design for such a facility is eRHIC, where the current RHIC facility located at Brookhaven National Lab would be transformed into an electron-ion collider. It is imperative for a seamless integration of auxiliary detector systems into the interaction region design to have a machine that meets the needs for the planned physics analyses, as well as take into account the space constraints due to the tunnel geometry and the necessary beam line elements. In this talk, we describe the current ideas for integrating a luminosity detector, electron polarimeter, roman pots, and a low Q2-tagger into the interaction region for eRHIC.

  15. Hybrid radiator cooling system

    Energy Technology Data Exchange (ETDEWEB)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  16. Seismic qualification of PWR plant auxiliary feedwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14.

  17. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  18. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.;

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... source. Heat is used for dehumidification, whereas water is used for cooling and electricity for auxiliaries. An empirical DW model is built based on polynomial fits to manufacturer data. The DPC model is based on first principles, implementing heat and mass transfer using a 1D finite volume scheme and...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of...

  19. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  20. Auxiliary signal processing system for a multiparameter radar

    Science.gov (United States)

    Chandrasekar, V.; Gray, G. R.; Caylor, I. J.

    1993-01-01

    The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card and personal computer controller. With the use of such a concept, an auxiliary processor was implemented for the NCAR CP-2 radar during a 1991 summer field campaign and allowed measurement of additional polarimetric parameters, namely, the differential phase and the copolar cross correlation. Sample data are presented from both the auxiliary and existing radar signal processors.

  1. Design of condensation heat exchanger for the PAFS (Passive Auxiliary Feedwater System) of APR+ (Advanced Power Reactor Plus)

    International Nuclear Information System (INIS)

    Highlights: ► Condensation heat exchanger for the PAFS (Passive Auxiliary Feedwater System) was designed. ► The requirement of the heat removal rate and the prevention of water hammer phenomena were considered. ► The proposed design of the heat exchanger satisfied the requirement of the passive heat removal system. - Abstract: The APR+ (Advanced Power Reactor Plus), a next generation nuclear power plant in Korea, has adopted the PAFS (Passive Auxiliary Feedwater System) on the secondary system of the steam generator (SG) as an advanced safety feature. It is intended to replace the conventional auxiliary feedwater system, which consists of active components for the SG in a passive way. It removes decay heat from the reactor core by cooling down the secondary system of the SG using a condensation heat exchanger installed in the PCCT (Passive Condensation Cooling Tank). The objective of this study is to design a condensation heat exchanger for the PAFS and to evaluate the cooling performance for the proposed design using the thermal hydraulic system analysis code, MARS (Multi-dimensional Analysis for Reactor Safety). Requirements such as the heat removal capacity and the prevention of water hammer were preferentially considered to determine the design parameters of the heat exchanger tube. The MARS code analysis result showed that the proposed design of the PAFS heat exchanger is able to cool down the required amount of decay heat. The distribution of a liquid volume fraction and flow regime predicted by the MARS code shows that the proposed design of the heat exchanger excludes the water hammer inside the tube. Estimation of a two-phase flow pressure drop indicates that the pressure drop inside the tube is negligible compared to the total pressure drop in the PAFS. From the MARS code analysis, it is concluded that the proposed design of the condensation heat exchanger in the PAFS satisfies the overall criteria for the performance of the passive heat removal

  2. Investigation on Ledinegg Instability in Condensate Tube of Passive Auxiliary Feedwater System

    International Nuclear Information System (INIS)

    Passive Auxiliary Feedwater System (PAFS) is one of advanced safety features under development for Advanced Power Reactor Plus (APR+). Because the condensate flow is driven by natural circulation, it is important to ensure not to induce instabilities inside the condensate tube in PAFS for the effective cooling capability. Among the flow instabilities, the Ledineggtype instability may cause the severe deterioration of heat removal capability of PAFS since it can reduce the condensate flow even with slight change of pressure loss. Because the Ledinegg instability occurs when the pressure drop decreases with increasing flow, to evaluate the behavior of the pressure drop according to the change of mass flow rate is essential. For this reason, one-dimensional, integrated flow model is formulated and two-phase flow characteristics in the condensate tube are mathematically solved

  3. Modelization of cooling system components

    International Nuclear Information System (INIS)

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  4. Analysis of a potential two phase flow instability in a PWR passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    The APR+ incorporates a passive auxiliary feedwater system (PAFS). The PAFS is comprised of two separate mechanical divisions. Each division is a closed loop which is aligned to feed condensed water to its corresponding steam generator (SG), and is equipped with one passive condensation heat exchanger (PCHX), some associated isolation/drain/vent valves, check valves, instrumentation and control, and pipes. The PAFS is designed to start its operation after reactor trip and maintain its function of residual heat removal for 8 hours or longer without AC power or operator action, and to ensure a subsequent cooldown of RCS to the shutdown cooling entry conditions. During the PAFS operation mode, steam in the SG secondary side moves up due to buoyancy force and passes through the main steam line, and then flows into the PCHX where steam is condensed inside the tubes of which the outer wall surfaces are cooled by the water stored in a condensation cooling tank. The condensate is passively fed into the SG economizer by gravity. Because a natural circulation loop is susceptible to two phase flow instability, it is requisite to confirm the PAFS is designed adequately to avoid the potential challenges to its operational safety due to the instability. This paper addresses an analytical model for assessing if the loop has possible thermal and fluid mechanical characteristics which could lead to an undesirable unstable or oscillating water level in the APR+ PAFS

  5. Automotive Cooling and Lubricating Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  6. Experiences in solar cooling systems

    Science.gov (United States)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  7. Improvement of Equipment reliability for Auxiliary Feed Water System

    International Nuclear Information System (INIS)

    According to AP913 ER) of INPO, Number of the event related to equipment is higher than others like external or human performance. In the top 25 systems, Auxiliary feed water system is the seventh highest among systems. AWFS consists of many component and complex system and Main Function of AFWS is to supply feedwater to the steam generators for the removal of heat from the RCS(Reactor Coolant System) in event the main feedwater system is unavailable following a transient or accident. Reliability of component means how well operate on demands and monitoring is necessary to keep track of condition of component. If component performance is lower than the required value, corrective action for failure mode should be done. The objective of this study is focused to improve of AF pump by adding the tasks of SHR(System Health Report) into the task of system engineer walkdown of PMT(Preventive Maintenance Template). Increasing the reliability of AF pump will contribute to improvement of reliability of AFWS. Based on operating history, there was high vibration of AF pump during performance test. In that case, there were a lot of maintenance works for normal operation of AF pump. Vibration problem related pump can't be detected by tasks of SE walkdown because it's not running during normal operation except for surveillance test. CHR(Component Health Report) of AF pump in AFWS can be made from necessary part which means monitoring and functional failure because problem of Stand-by pump can be covered by conducting monitoring and analysis of functional failure. To improve reliability of AF pump, walkdown of PMT and SHR should be conducted both in accordance with surveillance test frequency. Health of AF pump based on operation history can be verified first and then can find out which parts of pump are weak. Finally, weak part can be managed intensively and failure can be reduced according to SE walkdown. But this work can be risky and burdensome because all parts of CHR are not

  8. Integral effect test on operational performance of the PAFS (Passive Auxiliary Feedwater System) for a FLB (Feedwater Line Break) accident

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Uhn; Kim, Seok; Park, Yu Sun; Kim, Bok Deuk; Kang, Kyoung Ho [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    PAFS (Passive Auxiliary Feedwater System) is one of the advanced safety features adopted in the APR+, which is intended to completely replace a conventional active auxiliary feedwater system. It cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by adopting a natural convection mechanism; i.e., condensing steam in the PCHX (Passive Condensation Heat Exchanger) submerged inside the PCCT (Passive Condensate Cooling Tank). The test facility, ATLAS PAFS, was constructed to experimentally investigate the thermal hydraulic behavior in the primary and secondary systems of the APR+ during the transient when the PAFS is actuated. Among the anticipated accidents with the PAFS actuation, the FLB (Feedwater Line Break) was considered as the most important accident in evaluating the cooling capability of the PAFS, during the development of PIRT (Phenomena Identification and Ranking Table) of the PAFS. In this study, the PAFS FLB EC 01 test was performed to simulate a break on the pipe connected to the SG 1 economizer, which was analyzed as the most severe case in the APR+ SSAR (Standard Safety Analysis Report). The main objectives of this test were not only to provide physical insight into the system response of the APR+ during the FLB accident but also to produce an integral effect test data to validate a thermal hydraulic safety analysis code.

  9. Integral effect test on operational performance of the PAFS (Passive Auxiliary Feedwater System) for a FLB (Feedwater Line Break) accident

    International Nuclear Information System (INIS)

    PAFS (Passive Auxiliary Feedwater System) is one of the advanced safety features adopted in the APR+, which is intended to completely replace a conventional active auxiliary feedwater system. It cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by adopting a natural convection mechanism; i.e., condensing steam in the PCHX (Passive Condensation Heat Exchanger) submerged inside the PCCT (Passive Condensate Cooling Tank). The test facility, ATLAS PAFS, was constructed to experimentally investigate the thermal hydraulic behavior in the primary and secondary systems of the APR+ during the transient when the PAFS is actuated. Among the anticipated accidents with the PAFS actuation, the FLB (Feedwater Line Break) was considered as the most important accident in evaluating the cooling capability of the PAFS, during the development of PIRT (Phenomena Identification and Ranking Table) of the PAFS. In this study, the PAFS FLB EC 01 test was performed to simulate a break on the pipe connected to the SG 1 economizer, which was analyzed as the most severe case in the APR+ SSAR (Standard Safety Analysis Report). The main objectives of this test were not only to provide physical insight into the system response of the APR+ during the FLB accident but also to produce an integral effect test data to validate a thermal hydraulic safety analysis code

  10. Low-cost auxiliary system for broadband NMR on strongly magnetic systems

    DEFF Research Database (Denmark)

    Nevald, Rolf; Hansen, Poul Erik

    1978-01-01

    A low cost auxiliary system consisting of He cryostat, superconducting magnet, and sample holder assembly with field probe has been constructed. The system meets the requirements of NMR on strongly paramagnetic or ordered magnetic materials, which are accurate temperature settings over a wide range...

  11. Development of the Phenomena Identification Ranking Table (PIRT) for the Passive Auxiliary Feedwater System (PAFS) of the APR+

    International Nuclear Information System (INIS)

    The APR+ (Advanced Power Reactor plus) is a Gen- III+ pressurized water reactor (PWR) of which the standard design is currently being developed in Korea. This reactor adopts new design features which are believed to contribute not only to enhancement in nuclear safety but also to improvement in economic competitiveness. While the conventional nuclear power plants have utilized the active cooling systems, the APR+ adopts two types of passive safety features; an advanced fluidic device (FD+) and a passive auxiliary feedwater system (PAFS). The PAFS is one of the passive cooling systems of the APR+ which can replace an active system for auxiliary feedwater injection to a steam generator. A schematic diagram of the PAFS is shown in Fig. 1. It cools down the secondary system by heat transfer at horizontal heat exchangers in a PCCT (Passive Condensation Cooling Tank). High pressure steam flow from the steam generator is condensed in the horizontal heat exchanger, and the water in the PCCT pool is evaporated by a boiling heat transfer at the outside wall of the heat exchanger. With an aim of validating the cooling and operational performance of the PAFS, a separate effect test, PASCAL (PAFS Condensing heat removal Assessment Loop) is being performed at KAERI (Korea Atomic Energy Research Institute). In this study, Phenomena Identification and Ranking Table (PIRT) has been developed for identifying the major parameters affecting the thermal-hydraulic phenomena which originate from the adoption of the PAFS in the APR+. The PIRT process can be widely used to improve a safety analysis code for a new application and to establish experimental programs and to support the resolution of the licensing issues. The PIRT process used in this study follows the methodology previously applied in the APR1400 (Advanced Power Reactor 1400 MWe) PIRTs for large break loss of coolant accident (LBLOCA) and direct vessel injection (DVI) line break events

  12. Development of the Phenomena Identification Ranking Table (PIRT) for the Passive Auxiliary Feedwater System (PAFS) of the APR+

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Chung, Bub Dong; Kang, Kyoung Ho; Kang, Han Ok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, Byong Jo [Pusan National University, Busan (Korea, Republic of); Bang, Young Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Seong, Ho Je [KEPCO E and C, Yongin (Korea, Republic of); Hong, Soon Joon [FNC Technology Co. Ltd., Seoul (Korea, Republic of); Sim, Suk Ku [EN2t Inc., Daejeon (Korea, Republic of)

    2012-05-15

    The APR+ (Advanced Power Reactor plus) is a Gen- III+ pressurized water reactor (PWR) of which the standard design is currently being developed in Korea. This reactor adopts new design features which are believed to contribute not only to enhancement in nuclear safety but also to improvement in economic competitiveness. While the conventional nuclear power plants have utilized the active cooling systems, the APR+ adopts two types of passive safety features; an advanced fluidic device (FD+) and a passive auxiliary feedwater system (PAFS). The PAFS is one of the passive cooling systems of the APR+ which can replace an active system for auxiliary feedwater injection to a steam generator. A schematic diagram of the PAFS is shown in Fig. 1. It cools down the secondary system by heat transfer at horizontal heat exchangers in a PCCT (Passive Condensation Cooling Tank). High pressure steam flow from the steam generator is condensed in the horizontal heat exchanger, and the water in the PCCT pool is evaporated by a boiling heat transfer at the outside wall of the heat exchanger. With an aim of validating the cooling and operational performance of the PAFS, a separate effect test, PASCAL (PAFS Condensing heat removal Assessment Loop) is being performed at KAERI (Korea Atomic Energy Research Institute). In this study, Phenomena Identification and Ranking Table (PIRT) has been developed for identifying the major parameters affecting the thermal-hydraulic phenomena which originate from the adoption of the PAFS in the APR+. The PIRT process can be widely used to improve a safety analysis code for a new application and to establish experimental programs and to support the resolution of the licensing issues. The PIRT process used in this study follows the methodology previously applied in the APR1400 (Advanced Power Reactor 1400 MWe) PIRTs for large break loss of coolant accident (LBLOCA) and direct vessel injection (DVI) line break events

  13. Performance of evacuated tubular solar collectors in a residential heating and cooling system

    Science.gov (United States)

    Duff, W. S.; Loef, G. O. G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season is discussed. The systems comprised an experimental evacuated tubular solar collector, a nonfreezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. The system is compared with CSU Solar Houses I, II and III. The experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well insulated heat storage tank. Day time electric auxiliary heating is avoided by use of off peak electric heat storage.

  14. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a...

  15. The dynamic responses of the soil-auxiliary buildings structure interaction system

    International Nuclear Information System (INIS)

    The dynamic responses of the soil-auxiliary buildings structure interaction system in the nuclear power plant are concerned. The main distinguished feature of this study is that the extreme un-symmetry of the auxiliary buildings and reactor containment are considered. A Synthetical mechanical model for study is established. Finally, the analysis of the dynamic response of the Qinshan Nuclear Power Plant structure is taken as a simple example of applying this method and the numerical results are given

  16. Disturbance in the power system caused by auxiliary DC installation failure of switchyard

    Energy Technology Data Exchange (ETDEWEB)

    Mesic, M. [HEP Transmission System Operator, Zagreb (Croatia); Tesnjak, S.; Skok, S. [Zagreb Univ. (Croatia). Faculty of Electrical Engineering and Computing

    2008-07-01

    Auxiliary direct current (DC) installation failures can lead to outages in power plants and compromise the security of power systems. In this study, a simplified stationary model was used to simulate an auxiliary DC installation in a switchyard. The aim of the study was to evaluate new International Electrotechnical Commission (IEC) standards for auxiliary DC installation dimensioning and analysis. Criteria included the dimensioning and selection of batteries; the calculation of conductor heating; voltage drop calculations; conductor squares in relation to permanent currents; and the evaluation of protection elements. The new standards were compared with the previous auxiliary system installation methodology. Results of the study suggested that the new standard has introduced significant improvements in short circuit current calculation. Laboratory tests for the measurement of short circuits showed that the active network has less of an impact on the auxiliary system than previous measuring methods. Alterations to the IEC standard will be required as a result of limitations to the short circuit current and new rectifier technology. Results of the study will be used to develop a new model and scheme for dimensioning and analyzing auxiliary DC installations. 9 refs., 4 tabs., 5 figs.

  17. Containment vessel, its auxiliary system and plant air conditioning system of advanced thermal reactor Fugen

    International Nuclear Information System (INIS)

    The functional requirement for, the design and the construction of, and the functional test on the containment vessel, its auxiliary system, the plant air conditioning and ventilation system of the advanced thermal reactor, Fugen, are described in detail. The main specifications of the containment vessel are as follows: The type enclosed cylinder, the maximum operating pressure 1.35 kg/cm2g, the maximum operating temperature 100 deg C, the leak rate 0.4%/day, the inner diameter 36 m. The height 64 m, the volume 40,900 m3, and the material JIS G3118, SGV-49. The containment vessel is provided with an hatch of 5 m diameter for carrying equipments in two air locks, many high and low voltage cable penetrations, pipe penetrations, a transfer shoot and isolation values. The functions and the specifications of the containment vessel and its auxiliary equipments are explained. The relating auxiliary systems are composed of the containment vessel spray system, the pool facility for steam blow-down, the recirculation system for the air in the vessel, the annulus evacuation system and its pressure control devices, the pressure measuring instruments and pressure relief valves and the temperature measuring devices for the containment vessel, and the object, function, layout and installation of these systems are explained. Concerning the air conditioning system, each main building has the special subsystem, and they are introduced. The progress stage of construction works and the procedure and results of the functional test at the site are described. (Nakai, Y.)

  18. Experimental Study on the PAFS (Passive Auxiliary Feedwater System) during the Quasisteady State and the MSSV Open

    International Nuclear Information System (INIS)

    APR+ (Advanced Power Reactor Plus) is a GEN-III+ nuclear power plant being developed in Korea. The PAFS (Passive Auxiliary Feedwater System) is one of the advanced safety features adopted in the APR+, which is intended to completely replace the conventional active auxiliary feedwater system. With an aim of validating the cooling and operational performance of the PAFS, the experimental program of the separate effect test is in progress at KAERI (Korea Atomic Energy Research Institute). The test facility, PASCAL (PAFS Condensing heat removal Assessment Loop) was constructed to experimentally investigate the condensation heat transfer and natural convection phenomena in the PAFS. In this study, six tests were performed for validating cooling performance of the PAFS during a quasi-steady state. With a given thermal power of electrical heaters in the steam generator from 200 kW to 750 kW (SS-200-P1, SS-300-P1, SS-400-P1, SS-650, and SS-750-P1), a heat removal rate in the PCHX was measured and the characteristics of the natural convection in the loop were investigated. In the test of MSSV open, the thermal hydraulic behavior in the system was investigated after an abrupt open and close of the MSSV

  19. Experimental Study on the PAFS (Passive Auxiliary Feedwater System) during the Quasisteady State and the MSSV Open

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Uhn; Kim, Seok; Park, Yu Sun; Kim, Bok Deuk; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    APR+ (Advanced Power Reactor Plus) is a GEN-III+ nuclear power plant being developed in Korea. The PAFS (Passive Auxiliary Feedwater System) is one of the advanced safety features adopted in the APR+, which is intended to completely replace the conventional active auxiliary feedwater system. With an aim of validating the cooling and operational performance of the PAFS, the experimental program of the separate effect test is in progress at KAERI (Korea Atomic Energy Research Institute). The test facility, PASCAL (PAFS Condensing heat removal Assessment Loop) was constructed to experimentally investigate the condensation heat transfer and natural convection phenomena in the PAFS. In this study, six tests were performed for validating cooling performance of the PAFS during a quasi-steady state. With a given thermal power of electrical heaters in the steam generator from 200 kW to 750 kW (SS-200-P1, SS-300-P1, SS-400-P1, SS-650, and SS-750-P1), a heat removal rate in the PCHX was measured and the characteristics of the natural convection in the loop were investigated. In the test of MSSV open, the thermal hydraulic behavior in the system was investigated after an abrupt open and close of the MSSV

  20. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  1. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    Science.gov (United States)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  2. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    Science.gov (United States)

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  3. Dynamic modelling and response characteristics of a magnetic bearing rotor system including auxiliary bearings

    Science.gov (United States)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1993-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.

  4. Aiming of Kirkpatrick-Baez microscope based on auxiliary optical system

    International Nuclear Information System (INIS)

    An auxiliary optical system has been designed, which can provide precise positioning for aiming Kirkpatrick-Baez (KB) microscope object location. An 8 keV X-ray imaging system by KB microscope with periodic multilayer films has been designed. The field of view and depth of field in the resolution of 5 μm are got, and then the corresponding point and depth of field in diagnostic experiments are calculated. Based on the object-image relations and precision of the KB microscope, an auxiliary visible light imaging system is designed and X-ray imaging experiments are performed, which can achieve equivalent aiming between the visible imaging system and the KB microscope. The results show that ±20 μm vertical axis plane and ±300 μm axial accuracy are achieved through the auxiliary optical path, which can meet the object point positioning requirements of the KB microscope. (authors)

  5. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    International Nuclear Information System (INIS)

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality

  6. System for cooling a cabinet

    OpenAIRE

    Smith, Anders; Bahl, Christian; Linderoth, Søren

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume of heat transfer fluid and connected between said one or more cold side heat exchangers and the cold side of the magnetic regenerator, wherein the cooling system is configured to provide a first flow cy...

  7. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    Science.gov (United States)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  8. Compressor bleed cooling fluid feed system

    Science.gov (United States)

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  9. Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system

    Energy Technology Data Exchange (ETDEWEB)

    Kyu Cho, Hyoung, E-mail: chohk@snu.ac.kr [Seoul National University, Department of Nuclear Engineering, Seoul 151-742 (Korea, Republic of); Cho, Yun Je; Yoon, Han Young [Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-07-01

    Graphical abstract: - Highlights: • PAFS is designed to replace a conventional active auxiliary feedwater system. • Multi-D T/H analysis code, CUPID was coupled with the 1-D system analysis code MARS. • The coupled CUPID and MARS was applied for the multi-scale analysis of the PAFS test facility. • The simulation result showed that the coupled code can reproduce important phenomena in PAFS. - Abstract: For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. In the present study, the CUPID code was coupled with a system analysis code MARS in order to apply it for the multi-scale thermal-hydraulic analysis of the passive auxiliary feedwater system (PAFS). The PAFS is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+), which is intended to completely replace the conventional active auxiliary feedwater system. For verification of the coupling and validation of the coupled code, the PASCAL test facility was simulated, which was constructed with an aim of validating the cooling and operational performance of the PAFS. The two-phase flow phenomena of the steam supply system including the condensation inside the heat exchanger tube were calculated by MARS while the natural circulation and the boil-off in the large water pool that contains the heat exchanger tube were simulated by CUPID. This paper presents the description of the PASCAL facility, the coupling method and the simulation results using the coupled code.

  10. Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • PAFS is designed to replace a conventional active auxiliary feedwater system. • Multi-D T/H analysis code, CUPID was coupled with the 1-D system analysis code MARS. • The coupled CUPID and MARS was applied for the multi-scale analysis of the PAFS test facility. • The simulation result showed that the coupled code can reproduce important phenomena in PAFS. - Abstract: For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. In the present study, the CUPID code was coupled with a system analysis code MARS in order to apply it for the multi-scale thermal-hydraulic analysis of the passive auxiliary feedwater system (PAFS). The PAFS is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+), which is intended to completely replace the conventional active auxiliary feedwater system. For verification of the coupling and validation of the coupled code, the PASCAL test facility was simulated, which was constructed with an aim of validating the cooling and operational performance of the PAFS. The two-phase flow phenomena of the steam supply system including the condensation inside the heat exchanger tube were calculated by MARS while the natural circulation and the boil-off in the large water pool that contains the heat exchanger tube were simulated by CUPID. This paper presents the description of the PASCAL facility, the coupling method and the simulation results using the coupled code

  11. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  12. Cooling system for electronic components

    Science.gov (United States)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  13. Computer determination of event maps with application to auxiliary supply systems

    International Nuclear Information System (INIS)

    A method of evaluating the reliability of sequential operations in systems containing standby and alternate supply facilities is presented. The method is based upon the use of a digital computer for automatic development of event maps. The technique is illustrated by application to a nuclear power plant auxiliary supply system. (author)

  14. Performance of turbine auxiliaries and service systems at Rajasthan Atomic Power Station

    International Nuclear Information System (INIS)

    Performance of the turbine auxiliaries and service systems at the Rajasthan Atomic Power Station, India are described. Some of the specific problems encountered in connection with the feed water, turbine governing and common services like compressed air, chilled water, water treatment and chlorination systems are outlined. (K.B.)

  15. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  16. Operation of the main feedwater system turbopump following plant trip with total failure of the auxiliary feedwater system

    International Nuclear Information System (INIS)

    The Auxiliary Feedwater System (AF) is a safeguard system which has been designed to supply feedwater to the steam generators, cool the primary system and remove decay heat from the reactor when the main feedwater pumps fail due to loss of power or any other reason. Thus, when plant trip occurs, the AF system pumps start up automatically, allowing removal of decay heat from the reactor. However, even though this system (2 motor-driven pumps and 1 turbopump) is highly reliable, injection of water to the steam generators must be ensured when it fails completely. To do this, if plant trip has not been caused by loss of off site power or failure of the Main Feedwater System (FW) turbopumps, one of these turbopumps can be used to achieve removal of decay heat. Since a large amount of steam is consumed by these turbopumps, an analysis has been performed to determine whether one of these pumps can be used and what actions are necessary to inject water into the steam generators. Results show that, for the case in question, a FW turbopump can be used to remove decay heat from the reactor. (author)

  17. Cooling system for reactor container

    International Nuclear Information System (INIS)

    Purpose: To effectively cool a reactor container upon reactor shutdown with no intrusion of metal corrosion products in coolants into the main steam pipe in a BWR type reactor. Constitution: A clean up system comprising a pipeway, a recycling pump, a non-regenerative heat exchanger and a primary coolant purifier and a regenerative heat exchanger is provided branched from a residual heat removing system and the clean up system is connected by way of a valve to a feedwater pipeway, as well as connected by way of the pipeway to the main steam pipeway at the midway of two main steam separation valves outside of the reactor container. This enables to prevent metal corrosion products floating on the surface of reactor water from introducing into the main steam pipe when the pressure vessel is filled with water. Then, since the pressure vessel is filled with primary coolants, the pressure vessel can be cooled uniformly in a short time. (Ikeda, J.)

  18. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  19. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    International Nuclear Information System (INIS)

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power

  20. Auxiliary control system for irradiation specimen automatic transmission based on configuration software

    International Nuclear Information System (INIS)

    Auxiliary control system realizes sequential control and trace display and automatic transmission for irradiated specimen, which bases on configuration software (MCGS) and industrial control computer as the control platform. The system uses digital I/O cards to establish system state detection and output control arrays. It is showed that the structure posses stable, reliable and security characteristics and well meets the needs of specimen transmission and controlling in industrial automation. (authors)

  1. Cooling system for superconducting magnet

    Science.gov (United States)

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  2. Cooling system for modern trunk diesel locomotives

    OpenAIRE

    Мошенцев, Ю. Л.; Гогоренко, А. А.; Минчев, Д. С.

    2011-01-01

    The existing and alternative schemes of engine cooling system for modern trunk diesel locomotives are considered. The method for comparison of various schemes of cooling system with the purpose to find the most compact and effective of them is offered. Slow flow systems are the most appropriate as it is shown. The optimal scheme of cooling system, that permits to increase supercharging air-cooling efficiency to 0,94…0,96 it is been selected.

  3. Equipment Reliability Improvement for Koeberg Nuclear Power Plant Auxiliary Feedwater System

    International Nuclear Information System (INIS)

    This paper investigated how the performance of the Koeberg Auxiliary Feedwater System could be improved using the 'maintenance rule'. As a conclusion, this paper figured out AFWS pumps and the TDP control circuit need special attention in improving the reliability of the AFWS, this lead to an improved maintenance strategy for the system. The purpose of this study is to apply maintenance rule to enhance the Auxiliary Feedwater System (AFWS) maintenance strategy at Koeberg Nuclear Power Plant (KNPP). Currently, Koeberg AFWS health status is red, needing an improvement. This study seeks to use maintenance rule to identify components that enable AFWS to fulfill its essential functions so as to focus maintenance resources and have the greatest beneficial impact on improving reliability and availability of the system

  4. Analysis of Steam Condensation in a Finned Tube of Air-Water Combined Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Taesoon; Bae, S. W.; Kim, K. H.; Park, Y. S.; Park, H. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A Passive Auxiliary Feedwater System (PAFS) is one of the passive cooling systems of the existing power plant and the operating period is 8 hours because of the limited capacity of the cooling water tank. Therefore, to increase the operating period from 8 to 72 hours for an existing PAFS, the capacity of the cooling water tank should be increased up to 3-4 times. To resolve the excessive increase of the cooling tank volume in water cooling systems, an air-water combined passive cooling system is proposed. In this combined cooling system, the core cooling during the initial stage of an accident having high decay power depends on the water cooling systems such as PAFS. For the later phase of an accident, an air-cooling system is applied to the core cooling. In the operation of the air-cooling system, the steam from the cooling water tank of the PAFS is condensed and recirculated to the cooling water tank by an air-cooling heat exchanger. In this way, the increase of the cooling water tank volume can be minimized. To design an air-water combined cooling system, the steam condensation characteristics of an air-cooling heat exchanger tube was calculated using a CFX code. The results show that the air velocities around the tube at the steam inlet/outlet regions are quite different with each other. Therefore, dense installation of thermocouples at the tube bottom region is required to measure the steam condensation in the tube. Otherwise, the detection and measurement of steam condensation at the steam inlet region may be very difficult. The velocity distribution of air is not uniform and the distributions of air temperature and velocity around the heat exchanger tube are strongly asymmetric. In the design of the measurement system of the test facility, the problems mentioned above should be considered.

  5. Analysis of Steam Condensation in a Finned Tube of Air-Water Combined Cooling System

    International Nuclear Information System (INIS)

    A Passive Auxiliary Feedwater System (PAFS) is one of the passive cooling systems of the existing power plant and the operating period is 8 hours because of the limited capacity of the cooling water tank. Therefore, to increase the operating period from 8 to 72 hours for an existing PAFS, the capacity of the cooling water tank should be increased up to 3-4 times. To resolve the excessive increase of the cooling tank volume in water cooling systems, an air-water combined passive cooling system is proposed. In this combined cooling system, the core cooling during the initial stage of an accident having high decay power depends on the water cooling systems such as PAFS. For the later phase of an accident, an air-cooling system is applied to the core cooling. In the operation of the air-cooling system, the steam from the cooling water tank of the PAFS is condensed and recirculated to the cooling water tank by an air-cooling heat exchanger. In this way, the increase of the cooling water tank volume can be minimized. To design an air-water combined cooling system, the steam condensation characteristics of an air-cooling heat exchanger tube was calculated using a CFX code. The results show that the air velocities around the tube at the steam inlet/outlet regions are quite different with each other. Therefore, dense installation of thermocouples at the tube bottom region is required to measure the steam condensation in the tube. Otherwise, the detection and measurement of steam condensation at the steam inlet region may be very difficult. The velocity distribution of air is not uniform and the distributions of air temperature and velocity around the heat exchanger tube are strongly asymmetric. In the design of the measurement system of the test facility, the problems mentioned above should be considered

  6. A Model of Ship Auxiliary System for Reliable Ship Propulsion

    OpenAIRE

    Martinović, Dragan; Tudor, Mato; Bernečić, Dean

    2012-01-01

    The main purpose of a vessel is to transport goods and passengers at minimum cost. Out of the analysis of relevant global databases on ship machinery failures, it is obvious that the most frequent failures occur precisely on the generator-running diesel engines. Any failure in the electrical system can leave the ship without propulsion, even if the main engine is working properly. In that case, the consequences could be devastating: higher running expenses, damage to the ship, oil spill or su...

  7. Analysis of design of auxiliary system of Booshehr Nuclear Power Plant

    International Nuclear Information System (INIS)

    Power plant's internal auxiliary system has an important role in its safety operation. Because of the decay heat and safety aspects in the nuclear power plants, this role is more important. In this thesis, operation of the nuclear power plant with PWR reactor is studied and deferent nuclear systems described. In the next section all electrical loads in the Booshehr Nuclear Power Plant identified and feeding methods of each load is determined. by use of the single line diagram of the internal auxiliary system, the nominal rating of all electrical devices as transformers, inverters, Ups, diesel generators and etc. is determined. In the following, short circuit calculations performed and by above conclusion, rating values of circuit breakers is determined. At last the starting problems of electrical motors is studied and the results of motor's behavior at starting moment is discussed

  8. Turbine airfoil with ambient cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  9. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships

    International Nuclear Information System (INIS)

    Fuel cells own the potential for significant environmental improvements both in terms of air quality and climate protection. Through the use of renewable primary energies, local pollutant and greenhouse gas emissions can be significantly minimized over the full life cycle of the electricity generation process, so that marine industry accounts renewable energy as its future energy source. The aim of this paper is to evaluate the use of methanol in Solid Oxide Fuel Cells (SOFC), as auxiliary power systems for commercial vessels, through Life Cycle Assessment (LCA). The LCA methodology allows the assessment of the potential environmental impact along the whole life cycle of the process. The unit considered is a 20 kWel fuel cell system. In a first part of the study different fuel options have been compared (methanol, bio-methanol, natural gas, hydrogen from cracking, electrolysis and reforming), then the operation of the cell fed with methanol has been compared with the traditional auxiliary power system, i.e. a diesel engine. The environmental benefits of the use of fuel cells have been assessed considering different impact categories. The results of the analysis show that fuel production phase has a strong influence on the life cycle impacts and highlight that feeding with bio-methanol represents a highly attractive solution from a life cycle point of view. The comparison with the conventional auxiliary power system shows extremely lower impacts for SOFCs.

  10. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  11. Application of reliability-centered maintenance to the auxiliary feedwater system at San Onofre Nuclear Generating Station

    International Nuclear Information System (INIS)

    Reliability-centered maintenance (RCM) is a systematic methodology for defining applicable and effective preventive maintenance (PM) tasks. In 1984, the Electric Power Research Institute (EPRI) studied the air transport industry's RCM program as a candidate for technology transfer to the nuclear power industry. EPRI initiated two RCM pilot projects that directly utilized the RCM methodology developed by the aviation industry. The first RCM application was to the component cooling water systems of Florida Power and Light's Turkey Point Units 3 and 4. The second application was to the main feedwater system at Duke Power's McGuire Station. The results of these studies clearly indicate the benefits of the system-oriented RCM approach, and many areas for cost-effective improvements to PM programs were identified. After the completion of these two pilot studies, Southern California Edison and EPRI initiated an application of RCM to the auxiliary feedwater (AFW) system at the San Onofre Nuclear Generating Station, Unit 2. In contrast to the previous EPRI-sponsored applications to normally operating systems, the AFW system is a standby safety system. The study results demonstrate the usefulness of extending the RCM methodology to standby safety systems. The specific results show promise of reducing the PM costs for the AFW system at San Onofre while maintaining highly reliable system performance. The recommendations from this study are currently being considered for implementation by the plant maintenance staff

  12. Creating and manipulating non-Abelian anyons in cold atom systems using auxiliary bosons

    Science.gov (United States)

    Zhang, Yuhe; Sreejith, G. J.; Jain, J. K.

    2015-08-01

    The possibility of realizing bosonic fractional quantum Hall effect in ultracold atomic systems suggests a new route to producing and manipulating anyons, by introducing auxiliary bosons of a different species that capture quasiholes and thus inherit their nontrivial braiding properties. States with localized quasiholes at any desired locations can be obtained by annihilating the auxiliary bosons at those locations. We explore how this method can be used to generate non-Abelian quasiholes of the Moore-Read Pfaffian state for bosons at filling factor ν =1 . We show that a Hamiltonian with an appropriate three-body interaction can produce two-quasihole states in two distinct fusion channels of the topological "qubit." Characteristics of these states that are related to the non-Abelian nature can be probed and verified by a measurement of the effective relative angular momentum of the auxiliary bosons, which is directly related to their pair distribution function. Moore-Read states of more than two quasiholes can also be produced in a similar fashion. We investigate some issues related to the experimental feasibility of this approach, in particular, how large the systems should be for a realization of this physics and to what extent this physics carries over to systems with the more standard two-body contact interaction.

  13. New materials for cooling systems

    International Nuclear Information System (INIS)

    New materials based on rubber-vulcanite compounds and used for manufacturing cooling tower elements and coating's of hydraulic structure surfaces are proposed and their production technology is described. A series of studies on physicomechanical and chemical characteristics and hydroaerothermal parameters of cooling tower elements and coatings revealed an obvious advantage of these materials over existing ones. The materials proposed provide high efficiency of cooling tower elements, hydraulic structures and the cooling tower as a whole

  14. National Ignition Facility subsystem design requirements laser auxiliary subsystem SSDR 1.3.5

    International Nuclear Information System (INIS)

    This system design requirement document establishes the performance, design, development and test requirements for the NIF Laser Auxiliary Systems. The Laser Auxiliary Systems consist of: a. Gas Cooling System; b. Low conductivity cooling water system; C. Deionized cooling water system; d. Electrical power distribution system. The gas cooling system will be used for cooling the main laser amplifier flashlamps and some smaller quantities will be used for purging Pockels cells and for diode pumps in preamplifier. The low conductivity cooling water system will be used for cooling the capacitor banks. The deionized cooling water system will be used to cool the multi-pass amplifier in the OPG PAM. Electrical power will be required for the OPG systems, Pockels cells, power conditioning, and amplifier support equipment

  15. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  16. European lead cooled system (ELSY)

    International Nuclear Information System (INIS)

    The international Generation IV (GEN IV) initiative has once more highlighted that fast reactors are indispensable for a sustainable development of the Nuclear Energy. Europe has historically a large experience in the field of sodium-cooled fast reactors and recently has made a big effort in the development of the Lead-Bismuth Eutectic (LBE) technology for use in the sub-critical reactors, starting from the Russian technology for the submarine propulsion programme. The evolution from the LBE technology towards the pure lead technology is a natural and logical way because lead is less expensive, less corrosive and of lesser radiological concern. Lead has chemical and neutronic characteristics which are unique for a safe fast reactor. Molten lead, namely, operates at low pressure and high temperature, is relatively inert to air and water. The ELSY consortium intends to design a Lead-cooled Fast Reactor (LFR) system that complies with all GEN IV goals and gives assurance of investment protection. The EC FP6-ELSY project aims to demonstrate that it is possible to design a competitive and safe fast critical reactor using simple engineered technical features. ELSY is a 36-months project (starting September 1, 2006) partially funded as a Specific Targeted Research Project entitled to the European Commission

  17. The integrated design of the ITER magnets and their auxiliary systems

    International Nuclear Information System (INIS)

    The magnet system design for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration to meet performance and operation requirements, including reliability and maintainability, in a cost effective manner. This paper identifies the requirements of long inductive burn time, large number of tokamak pulses, operational flexibility for the poloidal field (PF) system, magnet reliability and the cost constraints as the main design drivers. Key features of the magnet system which stem from these design drivers are described, together with interfaces and integration aspects of certain auxiliary systems. (author)

  18. LiOH as corrosion inhibitor for component cooling water system in PWR

    International Nuclear Information System (INIS)

    The cooling water system for the auxiliary machines and coolers in the primary cooling system of a PWR forms closed loops, and has the function to prevent the release of fluid containing radioactive substances even if leak occurs in the primary cooling system. This system is mainly composed of carbon steel, and copper and its alloys are used for the sea water cooling. The auxiliary machines and coolers in the primary cooling system are made of stainless steel. Therefore, the rust prevention method used for this system must be effective for these metals or must not give harmful effect. As the rust prevention method for the plants in operation, chromic acid process and hydrazine process have been used, but the environmental pollution by chrome and the ammonia attack on copper alloys may occur. As the rust prevention process to improve these problems, LiOH method was examined. This cooling water system comprises four pumps, four water coolers, one surge tank, pipes and valves, and the water quality control in the system is explained. The rust prevention effect of LiOH for carbon steel, copper and its alloys was examined. Particular consideration is not required in the case of copper and its alloys, but pH higher than 12 is unsuitalbe. For the perfect rust prevention of carbon steel, the dissolved oxygen concentration must be less than 0.1 ppn, and pH must be more than 10. (Kako,I.)

  19. Nuclear reactors with auxiliary boiler circuit

    International Nuclear Information System (INIS)

    A gas-cooled nuclear reactor has a main circulatory system for the gaseous coolant incorporating one or more main energy converting units, such as gas turbines, and an auxiliary circulatory system for the gaseous coolant incorporating at least one steam generating boiler arranged to be heated by the coolant after its passage through the reactor core to provide steam for driving an auxiliary steam turbine, such an arrangement providing a simplified start-up procedure also providing emergency duties associated with long term heat removal on reactor shut down

  20. HIRFL-CSR electron cooling system

    International Nuclear Information System (INIS)

    Electron cooling technique will be applied to the proposed Lanzhou heavy ion cooler-storage ring (HIRFL-CSR). A electron cooling device with a maximum electron energy of 165 keV and maximum current density of 0.244 A/cm2 is planned to cool heavy ions up to energies of 300 MeV/u. The preliminary design for the cooling system is presented

  1. PSA effect analysis of a design modification of the auxiliary feedwater system for a Westinghouse type plant

    International Nuclear Information System (INIS)

    The auxiliary feedwater system is an important system used to mitigate most accidents considered in probabilistic safety assessment (PSA). The reference plant has produced electric power for about thirty years. Due to age related deterioration and lack of parts, a turbine driven auxiliary feedwater pump (TD AFWP), some valves, and piping of the auxiliary feedwater system should be replaced. This change includes relocation of some valves, installation of valves for maintenance of the steam generator, and a new cross tie line. According to the design change, the Final Safety Analysis Report (FSAR) has been revised. Therefore, this design modification affects the PSA. It is thus necessary to assess the improvement of plant safety. In this paper, the impact of the design change of the auxiliary feedwater system on the PSA is assessed. The results demonstrate that this modification considering the plant safety decreased the total CDF

  2. Feasibility of AN Ecrh System for Jet:. Plant Layout, Auxiliaries and Services

    Science.gov (United States)

    Lennholm, M.; Bouquey, F.; Braune, H.; Farthing, J.; Garavaglia, S.; Giruzzi, G.; Granucci, G.; Jennison, M.; Parkin, A.

    2011-02-01

    A study conducted over the last year to asses the desirability and feasibility of installing an ECRH system on the JET tokamak has concluded that such a system is indeed both desirable and feasible. Details of physics studies, launcher and transmission line design, and power supplies are presented elsewhere in these proceedings. This paper concentrates on the logistical implications of installing this system at JET. The paper addresses issues such as port allocation and plant location. The study has concluded that a new building will be needed to house the ECRH plant. Building layout proposals are presented together with considerations regarding the required auxiliary equipment.

  3. Fort St. Vrain helium circulator auxiliary systems: dynamic performance evaluation and acceptance tests

    International Nuclear Information System (INIS)

    The purpose of the tests described is to show that the dynamic performance of the Fort St. Vrain helium circulator auxiliary systems satisfies all the guidelines and criteria established and agreed to by Public Service Company of Colorado (PSC), Proto-Power, and General Atomic Company (GA). Specifically, it is shown that transfers to and from backup bearing water and helium purification system transients do not cause any circulator trips. Furthermore, at PSC's request, in an effort to resolve any NFSC questions concerning these systems, the satisfactory repeatability of their dynamic performance is shown beyond any doubt.

  4. Conceptual design of passive containment cooling system based on APR+

    International Nuclear Information System (INIS)

    The accident of the Fukushima nuclear power plant left a profound message toward the need for a passive cooling system which can operate under the extended station blackout. These days, nuclear institutions in Korea are developing Advanced Power Reactor Plus (APR+). Its distinct characteristic lies on the passive auxiliary feed water system (PAFS) which removes decay heat to a passive condensation cooling tank (PCCT) by natural convection. Though the system is expected to work well under station blackout, the system becomes useless under the loss of coolant accident (LOCA) combined with station blackout. This paper aims at using existing heat exchangers of PAFS and PCCT under LOCA to cool the reactor as well as the containment in a fully passive way. To enhance the condensation rate of heat exchangers in PCCT, we need to produce convective flow in the PCCS heat exchangers. Therefore, the whole region of the concrete containment is divided into 3 chambers: inner, outer, PCCS chambers. An outer chamber is disposed to collect non-condensable gas. The condensate is stored in a condensate storage tank (CST) and injected into the reactor by gravity. This system makes a closed circuit to work indefinitely. A scoping analysis for the containment pressure is performed as a function of various parameters: outer chamber volume and number of tubes in heat exchangers. (author)

  5. Optimization of Solar Cooling System in Latvia

    OpenAIRE

    Shipkovs, Janis; Shipkovs, Peteris; Snegirjovs, Andrejs; Ļebedeva, Kristina; Kashkarova, Galina; Migla, Lana; Lekavicius, Vidas

    2015-01-01

    The paper presents optimization of Solar Cooling System in Latvia using the modelling of solar cooling system which was created by dynamic simulation program. The model is similar to the existing real solar cooling system in the Institute of Physical Energetics. The precision of the model was tested by comparing it with real equipment. Simulations were carried out using metrological data of different European countries. Simulation results, dependency of heat carrier average temperature and pr...

  6. Rankine-cycle heating and cooling systems

    Science.gov (United States)

    1979-01-01

    Design for domestic or commercial solar heating and cooling system based on rankine heat pump cycle includes detailed drawings, performance data, equipment specifications, and other pertinent information.

  7. Maintenance centered on reliability applied to a NPP auxiliary feedwater system

    International Nuclear Information System (INIS)

    The main objective of maintenance in a NPP is to assure that structures, systems and components will perform their design functions with reliability and/or availability in order to allow a safe and economic electric power generation. Reliability-Centered Maintenance (RCM) is a method of systematic review to either develop or optimize Preventive Maintenance Programs. This paper presents the objectives, concepts, organization and methods used in the application of RCM to NPP. Some application examples are include in this paper, considering some components of the Auxiliary Feedwater System of a generic Westinghouse designed two-loop PWR NPP. (author). 4 refs., 3 figs

  8. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  9. Probabilistic analysis of reactor safety - The auxiliary feedwater system of Angra I

    International Nuclear Information System (INIS)

    The unavailability of the auxiliary feedwater system (AFWS) of Angra-1, was calculated. The fault tree analysis technique was used, considering two diferent types of contribution to system unavailability: The one due to hard-ware failure and the contribution due to test and maintenance which was separately analysed. The COMBO-and SAMPLE computer codes were used. The results have shown that the AFWS of Angra-1 contains enough redundancy to guarantee a safe operation under the conditions analysed, best values having been obtained for the unavailability of AFWS of Angra 1 with those codes than with the WASH-1400. (E.G.)

  10. Conceptual Design of Passive Containment Cooling System Based on APR+

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byongguk; No, Heecheon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    Passive Auxiliary Feedwater System (PAFS) is expected to work well under extended SBO, but is vulnerable to extended SBO coupled with loss of coolant accident (LOCA). Various reactors have been developed, such as AP1000, ESBWR, and KERENA, with passive containment cooling systems (PCCSs) dealing with the accident scenario of SBO with LOCA. The performance of the PCCSs is already or almost validated. Though PCCS is well adopted into BWRs, there has been no success in PWRs with concrete containment. In this paper, we suggest a new PCCS based on APR+ and represent scoping analysis results. The Fukushima accident proved the importance of treating extended SBO. To deal with extended SBO with LOCA scenario, the PCCS based on APR+ is suggested and evaluated roughly for the first time as a PWR with concrete containment.

  11. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  12. A versatile energy management system for large integrated cooling systems

    OpenAIRE

    Du Plessis, Gideon Edgar; Liebenberg, Leon; Mathews, Edward Henry; Du Plessis, Johan Nicolaas

    2013-01-01

    Large, energy intensive cooling systems are found on deep level mines to supply chilled service water and cool ventilation air to the mine. The need exists for a simple, real-time energy management tool for large, integrated cooling systems. A versatile energy management system was developed for the large cooling systems of deep mines as a typical example of a generic systems-based energy management tool. The system connects to the SCADA systems of mines and features a hierarchica...

  13. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  14. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    This paper deals with the description of the control of three cooling water parameters, as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, a permanent and accurate control of the cooling water is needed. This is achieved through this system, which allows the simultaneous measurement of the water parameters such as: conductivity, temperature and the maximum and minimum water levels. The monitoring of a fourth parameter, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author)

  15. Seismic design of ITER component cooling water system-1 piping

    International Nuclear Information System (INIS)

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3. This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event. (author)

  16. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  17. Biomedical Application of Aerospace Personal Cooling Systems

    Science.gov (United States)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (Pcooling and recovery periods.

  18. Evaluation of the APR+ Passive Auxiliary Feedwater System Performance during Main Feedwater Line Break Accident using MARS-KS

    International Nuclear Information System (INIS)

    Ever since the Nuclear Power Plant (NPP) started commercial operation, advanced NPPs have been developed to enhance performance and safety as well as the economics of the plant. As a part of a regulatory safety research of the advanced nuclear reactors, MARS-KS regulatory safety analysis code has been selected to evaluate the performance of the Passive Auxiliary Feedwater System (PAFS) during Main Feedwater Line Break (MFLB) accident of the APR+ (Advanced Power Reactor+) which is under development by Korea Hydro and Nuclear Power (KHNP). The results of the APR+ MFLB analysis and the performance of the PAFS are presented herein. MATS-KS MFLB analysis shows that the MARS-KS code well simulates dynamic thermal hydraulic behavior of the MFLB and maximum RCS pressure satisfies the acceptance criteria of 120% design RCS pressure for the MFLB accident. APR+ PAFS effectively removes the core decay heat by the natural circulation during the MFLB accidents, however, comprehensive performance of the PAFS should be evaluated against the design basis of 8 hours core heat removal until the conditions for the initiation of the Shutdown Cooling System (350 .deg. F and 400 psia) are met

  19. Evaluation of the APR+ Passive Auxiliary Feedwater System Performance during Main Feedwater Line Break Accident using MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Minjeong; Ralph, Marigomena; Sim, S. K. [Environment and Energy Technology, Inc., Daejeon (Korea, Republic of); Bang, Youngseok [KINS, Daejeon (Korea, Republic of)

    2013-05-15

    Ever since the Nuclear Power Plant (NPP) started commercial operation, advanced NPPs have been developed to enhance performance and safety as well as the economics of the plant. As a part of a regulatory safety research of the advanced nuclear reactors, MARS-KS regulatory safety analysis code has been selected to evaluate the performance of the Passive Auxiliary Feedwater System (PAFS) during Main Feedwater Line Break (MFLB) accident of the APR+ (Advanced Power Reactor+) which is under development by Korea Hydro and Nuclear Power (KHNP). The results of the APR+ MFLB analysis and the performance of the PAFS are presented herein. MATS-KS MFLB analysis shows that the MARS-KS code well simulates dynamic thermal hydraulic behavior of the MFLB and maximum RCS pressure satisfies the acceptance criteria of 120% design RCS pressure for the MFLB accident. APR+ PAFS effectively removes the core decay heat by the natural circulation during the MFLB accidents, however, comprehensive performance of the PAFS should be evaluated against the design basis of 8 hours core heat removal until the conditions for the initiation of the Shutdown Cooling System (350 .deg. F and 400 psia) are met.

  20. Chemistry and radiochemistry strategies supported by FA3-EPRTM and UK-EPRTM auxiliary systems: performances and control

    International Nuclear Information System (INIS)

    The design and the operation of auxiliary systems play an essential role in: - the preservation of the primary circuit integrity, - the prevention of hydrogen risk, - the control of the boron concentration and radioactivity, - the application of pH and zinc programmes. While the source term generation mainly depends on the primary circuit material and primary coolant chemistry conditioning, the source term spreading is directly linked to the auxiliary systems treatment and performances. Indeed, the auxiliary systems regulate the boron, hydrogen, lithium and zinc injection as well as the countermeasures to ensure the reactivity control and the hazardous H2/O2 mixture prevention. The main principles governing the chemistry and radiochemistry in the auxiliary systems are based on the application of: - Design features for hydrogen and boron management. - Criteria for selecting the appropriate material of each system considering the functional requirements and the source term build up reduction. - Measures for minimizing the activity deposition on the surfaces of components and pipings. - Adequate and reliable systems of purification for reducing the accumulation of liquid/gas radioactivity and impurities in the circuits and for optimizing the waste production. - Chemistry program for limiting the material corrosion of auxiliary systems and preventing the source term transfer to the core. - Appropriate sampling locations and equipment to monitor the chemistry and radiochemistry parameters. This paper describes the operation of the main auxiliary systems of FLAMANVILLE3-EPRTM and UK-EPR-TM participating in the chemistry/radiochemistry management such as Chemical and Volume Control System (CVCS), Reactor Borated Water Make-up System (RBWMS), Coolant Treatment System (CTS), Gaseous Waste Processing System (GWPS), Fuel Pool Purification System (PTR [FPPS/FPCS]) also. The performances requested to these systems and the chemistry programs applied to them are discussed

  1. Steady-state dynamic behavior of an auxiliary bearing supported rotor system

    Science.gov (United States)

    Xie, Huajun; Flowers, George T.; Lawrence, Charles

    1995-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, support stiffness, and damping is studied. It is found that imbalance may change the rotor responses dramatically in terms of frequency contents at certain operating speeds. Subharmonic responses of 2nd order through 10th order are all observed except the 9th order. Chaotic phenomenon is also observed. Jump phenomena (or double-valued responses) of both hard-spring type and soft-spring type are shown to occur at low operating speeds for systems with low auxiliary bearing damping or large clearance even with relatively small imbalance. The effect of friction between the shaft and the inner race of the bearing is also discussed.

  2. Feasibility study of helically coiled tube condensation heat exchanger for a passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    The Passive Auxiliary Feedwater System (PAFS) with nearly-horizontal heat exchangers is one of passive safety features of APR+ (Advanced Power Reactor Plus) which provides the auxiliary feedwater by means of natural circulation with condensation. It is feasible to increase the heat transfer capacity of the PAFS by employing a helically coiled heat exchanger due to additional secondary flow effect by centrifugal force. In addition, a compact and flexible design can be achieved in a fixed volume by using the helically coiled heat exchanger, which is one of the most important merits of implementing this heat exchanger. In this paper, the helically coiled heat exchanger has been employed for the PAFS instead of nearly-horizontal heat exchanger. In order to evaluate the heat transfer performance of the helically coiled heat exchanger, an in-tube condensation heat transfer correlation by Wongwises has been introduced into the system analysis code, MARS-KS. A comparative numerical study was conducted for both heat exchangers. The result shows that helically coiled heat exchanger has 20% higher heat transfer efficiency than existing nearly-horizontal heat exchanger. (author)

  3. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author)

  4. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    Science.gov (United States)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  5. Modifications done in the IPR-R1 reactor and their auxiliary systems

    International Nuclear Information System (INIS)

    The improvements done in the IPR-R1 reactor for adequateness of operation conditions and increase of irradiation sample capability. The cooling systems, reactor pool, system of control rods were substituted. The optimization of transfer pneumatic system was done. (M.C.K.)

  6. Salient aspects on the choice of classs 3 system - the diesel generating sets - engine, auxiliaries (Paper No. 2.5)

    International Nuclear Information System (INIS)

    The class 3 system is a basic requirement in all nuclear installations. Selection of this major equipment and associated auxiliaries plays an important role in the overall performance and reliability of the whole system. This paper deals with various sub-systems of class 3 power like engine, alternator, auxiliaries. It deals with method of arriving at capacity of sets based on connected loads, starting requirement and choice of engine based on site conditions, fuel used, duty, speed, mean effective pressures, typical layout of set and auxiliaries with its various sub-systems. Various engine starting methods, advantages and disadvantages, area requirements, choice of foundation, general guidlines for installation, testing and commissioning of medium size plant will be discussed in reference to applicable codes and practices. (author). 3 refs., 1 fig

  7. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  8. Assessing influence of the auxiliary emergency feedwater system on Rivne-1,2 WWER-440/213 core damage frequency

    International Nuclear Information System (INIS)

    The influence of the auxiliary emergency feedwater system on Rivne-1 ana 2 core damage frequency is assessed in this paper. The influence is assessed by means of probabilistic safety analysis methods. Results of preliminary and already implemented designs of the system are compared. Besides, the paper presented specifics of modeling the system elements

  9. Assessment of a potential rapid condensation induced water hammer in a passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    A passive auxiliary feedwater system (PAFS) which is incorporated in the APR+ system is a kind of closed natural circulation loop. The PAFS has no operating functions during normal plant operation, but it has a dedicated safety function of the residual heat removal following initiating events, including the unlikely event of the most limiting single failure occurring coincident with a loss of offsite power, when the feedwater system becomes inoperable or unavailable. Even in the unlikely event of a station blackout, the isolation valves can be opened either by DC power or manual operation and then the PAFS can also provide adequate condensate to the steam generator (SG). The PAFS piping in the vicinity of each of the two SGs is designed to minimize the potential for destructive water hammer during start up operation by setting the stroke time for full close or full open of the condensate isolation valves upon receipt of a passive auxiliary feedwater actuation signal. The temperature of the stagnant condensate water and its surrounding tubes and piping during the reactor normal operation modes may fall to the ambient temperature. A possible concern is the introduction of saturated steam into the PAFS recirculation pipe downstream of the PCHX in the beginning of the PAFS operation. Although the steam introduction rate is expected to be slow, a rapid condensation rate is expected due to the initial cold surrounding temperature in the pipe, which could result in a localized pressure reduction and the propagation of decompression and velocity disturbances into the condensate water leg, which might cause the sudden closure of check valves and associated water hammer. Thus, it is requisite for the licensing review of the PAFS design to confirm if destructive water hammers will not be produced due to such rapid condensation induced decompressions in the system. This paper addresses an assessment of the potential local decompressions which could result from the steam

  10. Assessment of a potential rapid condensation induced water hammer in a passive auxiliary feedwater system

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Byung Soo; Do, Kyu Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Moody, Frederick J. [General Electric (Retired), CA (United States)

    2012-10-15

    A passive auxiliary feedwater system (PAFS) which is incorporated in the APR+ system is a kind of closed natural circulation loop. The PAFS has no operating functions during normal plant operation, but it has a dedicated safety function of the residual heat removal following initiating events, including the unlikely event of the most limiting single failure occurring coincident with a loss of offsite power, when the feedwater system becomes inoperable or unavailable. Even in the unlikely event of a station blackout, the isolation valves can be opened either by DC power or manual operation and then the PAFS can also provide adequate condensate to the steam generator (SG). The PAFS piping in the vicinity of each of the two SGs is designed to minimize the potential for destructive water hammer during start up operation by setting the stroke time for full close or full open of the condensate isolation valves upon receipt of a passive auxiliary feedwater actuation signal. The temperature of the stagnant condensate water and its surrounding tubes and piping during the reactor normal operation modes may fall to the ambient temperature. A possible concern is the introduction of saturated steam into the PAFS recirculation pipe downstream of the PCHX in the beginning of the PAFS operation. Although the steam introduction rate is expected to be slow, a rapid condensation rate is expected due to the initial cold surrounding temperature in the pipe, which could result in a localized pressure reduction and the propagation of decompression and velocity disturbances into the condensate water leg, which might cause the sudden closure of check valves and associated water hammer. Thus, it is requisite for the licensing review of the PAFS design to confirm if destructive water hammers will not be produced due to such rapid condensation induced decompressions in the system. This paper addresses an assessment of the potential local decompressions which could result from the steam

  11. Biomedical Application of Aerospace Personal Cooling Systems

    Science.gov (United States)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (P<0.05) lower than during the control period, approx. 0.2 - 0.5C, for both men and women wearing any of the four different garments. The corresponding ear temperatures were significantly (P<0.05) decreased approx.0.2 - 0.4C by the end of the recovery period. Compared to the control period, no significant differences were found in rectal temperatures during cooling and

  12. Summary of ACSL Simulations of the MSRE Auxiliary Charcoal Bed Vacuum System

    International Nuclear Information System (INIS)

    The simulation of the Auxiliary Charcoal Bed (ACB) Vacuum System was performed to evaluate the original vacuum system design, detect and identify design deficiencies, investigate the effects of proposed corrections on system performance, and generally aid in refining the system design before construction and mockup testing. The simulation was performed by using the Advanced Continuous Simulation Language (ACSL). The vacuum system design goals are to provide approximately 20 SCFM of both booster gas and purge gas through the system and maintain a flow of approximately 40 SCFM with a velocity of 50 to 75 f/sec at the entrance to the cyclone separator. The model results showed that the original system design was incapable of meeting the system performance goals. Further simulations showed that the following modifications to the original vacuum system design were required to make the system performance acceptable; (1) Remove valve PCV4. (2) Modify the flow controllers FTC3 and FTC4 from the original flow range of 0-17.6 SCFM (0-500 SLM) to 0-35.3 SCFM (0-1000 SLM). (3) Replace the bellows sealed valves SV-1, SV-3A, SV-3B, SV-4A, and SV-4B with less restrictive ball valves. The simulation results saved considerable time and effort by identifying flaws in the original system design. Early identification of these flaws and the use of the simulation model to investigate possible solutions allowed corrective modifications to be made before construction of the mock up test facility

  13. Summary of ACSL Simulations of the MSRE Auxiliary Charcoal Bed Vacuum System

    Energy Technology Data Exchange (ETDEWEB)

    Damiano, B

    2000-10-26

    The simulation of the Auxiliary Charcoal Bed (ACB) Vacuum System was performed to evaluate the original vacuum system design, detect and identify design deficiencies, investigate the effects of proposed corrections on system performance, and generally aid in refining the system design before construction and mockup testing. The simulation was performed by using the Advanced Continuous Simulation Language (ACSL). The vacuum system design goals are to provide approximately 20 SCFM of both booster gas and purge gas through the system and maintain a flow of approximately 40 SCFM with a velocity of 50 to 75 f/sec at the entrance to the cyclone separator. The model results showed that the original system design was incapable of meeting the system performance goals. Further simulations showed that the following modifications to the original vacuum system design were required to make the system performance acceptable; (1) Remove valve PCV4. (2) Modify the flow controllers FTC3 and FTC4 from the original flow range of 0-17.6 SCFM (0-500 SLM) to 0-35.3 SCFM (0-1000 SLM). (3) Replace the bellows sealed valves SV-1, SV-3A, SV-3B, SV-4A, and SV-4B with less restrictive ball valves. The simulation results saved considerable time and effort by identifying flaws in the original system design. Early identification of these flaws and the use of the simulation model to investigate possible solutions allowed corrective modifications to be made before construction of the mock up test facility.

  14. Filter for reactor emergency cooling system

    International Nuclear Information System (INIS)

    The invention describes the design of a filter for the emergency cooling system. The new type of filter can be rinsed by flushing water backwards through the filter. The arrangement will prevent the filter from being silt up

  15. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  16. Control device for emergency core cooling systems

    International Nuclear Information System (INIS)

    Purpose: To prevent erroneous operations due to repeated start and stop of emergency core cooling systems, as well as control the reactor water level to an appropriate position in the reactor of a BWR type nuclear power plants, in case of loss of coolants accident, in particular, stick open troubles of a releaf valve, by appropriately maintaining the reactor water level. Constitution: Water either from a condensate storage tank or from a pressure suppression chamber is sprayed into a reactor by an emergency core cooling system pump by way of a feedwater line. In the emergency core cooling system, signals prepared by the addition of the flow rate measured by a flowmeter mounted to the releaf valve air exhaust pipe and the flow rate in other exhaust pipe measured by other flowmeter and signals obtained by the flowmeter for the pump exit are inputted into a comparator circuit. The signals therefrom are transmitted to the control device for the emergency core cooling system pump to control the flow rate in the emergency core cooling system. If the flow rate in the relief valve is decreased, the flow rate in the emergency core cooling system is also decreased to equalize the flow rates from and into the core. Thus, the core liquid level can be kept constant, whereby the water inventry is maintained and the safety of the cladding tube is maintained even if the water level system is failed to make the level monitor impossible. (Seki, T.)

  17. Analysis of Heat Removal Capability of PAFS (Passive Auxiliary Feedwater System) in APR (Advanced Power Reactor Plus)

    International Nuclear Information System (INIS)

    As passive safety features for nuclear power plants receive increasing attention, South Korea has designed PAFS (Passive Auxiliary Feedwater System) for APR+ (Advanced Power Reactor Plus). Because the PAFS replaces a conventional active auxiliary feedwater system and plays a role in the ultimate heat sink for decay heat, it is necessary to evaluate the heat removal capability of PAFS under postulated accidents conditions. Therefore, the performance analysis is carried out for two accident cases: Loss of Condenser Vacuum (LOCV) and Feedwater Line Break (FLB) accidents. For the analysis, MARS-KS code is used and MARS-KS model is developed by adding PAFS model to the existing APR1400 model

  18. Analysis of Heat Removal Capability of PAFS (Passive Auxiliary Feedwater System) in APR (Advanced Power Reactor Plus)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y. J.; Kang, K. H.; Yun, B. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    As passive safety features for nuclear power plants receive increasing attention, South Korea has designed PAFS (Passive Auxiliary Feedwater System) for APR+ (Advanced Power Reactor Plus). Because the PAFS replaces a conventional active auxiliary feedwater system and plays a role in the ultimate heat sink for decay heat, it is necessary to evaluate the heat removal capability of PAFS under postulated accidents conditions. Therefore, the performance analysis is carried out for two accident cases: Loss of Condenser Vacuum (LOCV) and Feedwater Line Break (FLB) accidents. For the analysis, MARS-KS code is used and MARS-KS model is developed by adding PAFS model to the existing APR1400 model.

  19. Assessment of Heat Removal Capability of Passive Auxiliary Feedwater System using MARS Code

    International Nuclear Information System (INIS)

    Passive Auxiliary Feedwater System (PAFS) is one of advanced safety features under development for Advanced Power Reactor Plus (APR+). Because PAFS removes decay heats from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of PAFS under the postulated accidents conditions. The target accidents cases analyzed in this study are the Loss of Condenser Vacuum (LOCV) and the Main Feedwater Line Break (MFLB). In the case of LOCV accident, PAFS in both loops are available but a single loop is operational in MFLB accident condition. Thus, these two accidents scenario are the proper selection to evaluate the capability of PAFS. For the analysis, MARS code is utilized and MARS model for PAFS is developed

  20. Operational experiences with solar air collector driven desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Eicker, Ursula; Schneider, Dietrich; Schumacher, Juergen [Faculty of Civil Engineering, Building Physics and Economics, University of Applied Sciences Stuttgart, Schellingstrasse 24, D-70174 Stuttgart (Germany); Ge, Tianshu; Dai, Yanjun [Faculty of Civil Engineering, Building Physics and Economics, University of Applied Sciences Stuttgart, Schellingstrasse 24, D-70174 Stuttgart (Germany); Institute of Refrigeration and Cryogenics, Solar Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Component performance and seasonal operational experiences have been analysed for desiccant cooling systems powered by solar air collectors. Measurements during the commissioning phase in Spain (public library) and in Germany (production hall) showed that the dehumidification efficiency of the sorption rotors was 80% and the humidification efficiency of the contact evaporators was 85-86%. Only in a two-stage desiccant system monitored in China (laboratory building), a dehumidification efficiency of 88% was reached. The rotary heat exchangers only had 62-68% measured heat recovery efficiency, which is lower than specified. Seasonal performance monitoring carried out in the German installation showed that average seasonal COP's were close to 1.0, when related to all operation hours. COP's increase if low regeneration temperatures are used with low dehumidification rates, which is often sufficient for moderate German climatic conditions, but much less so in the humid Chinese climate. Electrical COP's for the German system including air distribution were between 1.7 and 4.6 and reach values of 7.4, when only additional pressure drops of the desiccant unit are considered. It could be shown that conventional control strategies lead to high auxiliary energy consumption, for example if fixed heating setpoint temperatures are used. Furthermore the solar air collector energy yield was very low in the German system, as regeneration was only used when all other options such as humidification at high air volume flows did not reduce the room air temperature enough. The studies showed that the measured auxiliary energy consumption could be reduced to near zero, if regeneration temperature setpoints were not fixed to constant values. The solar air collector efficiency was good at about 50% both for the flat plate collectors used in Spain and Germany and the Chinese vacuum tube solution. A cost analysis demonstrated the viability of the concept, if some funding of

  1. Effectiveness-weighted control of cooling system components

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  2. Effectiveness-weighted control method for a cooling system

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  3. Feasibility Study on Passive Auxiliary Feedwater System in Loss of Condenser Vacuum Accident

    International Nuclear Information System (INIS)

    Nuclear leading countries are developing and constructing technology intensive pressurized water reactors (PWRs) such as AP1000 (United State), EPR (Europe), and US-APWR (Japan), and these advanced reactors adopt several passive safety features in order to enhance the safety and reliability. Domestic advanced reactor APR1400 already completed the earlier development in 2002, and technology gap from the nuclear leading countries become large. In particular, China requires technology transfer in the order of new power plant construction. Thus it is expected difficult to export the power plant to the newly developing countries without our own technology. Therefore, the improvement of competitive power and establishment of infra structure of advanced nuclear industry through innovative technology enhancement are urgent and essential to international competitive marketing. Passive safety features have been always adopted as an improved design concept in the development of innovative reactor design. Domestic nuclear industry has stated the development of APR+ as a Korean specific reactor for the export strategy. In the development of APR+ a passive auxiliary feedwater system (PAFS) has been considered as a noticeable candidate of improved design. Reference 2 reported that the adoption of PAFS, which can replace the auxiliary feedwater system, can prevent core damage in the accident of station black out (SBO), since Class 1E DC power operates the related valves, and 8 hours hot standby operation of plant without operation action is achievable. This PAFS contributes to the safety and economics, in that it decreases the core damage frequency 26% from 2.45E- 06/r-y to 1.80E-06/r-y, and it saves the construction cost 20 million Kr-Won. This paper discusses on the performance of PAFS for the accident of loss of condenser vacuum as a precursor of detailed design specification

  4. Feasibility Study on Passive Auxiliary Feedwater System in Loss of Condenser Vacuum Accident

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Lee, Byung Chul [FNC Tech., Daejeon (Korea, Republic of); Cheon, Jong; Kim, Han Gon [NETEC, Daejeon (Korea, Republic of)

    2009-05-15

    Nuclear leading countries are developing and constructing technology intensive pressurized water reactors (PWRs) such as AP1000 (United State), EPR (Europe), and US-APWR (Japan), and these advanced reactors adopt several passive safety features in order to enhance the safety and reliability. Domestic advanced reactor APR1400 already completed the earlier development in 2002, and technology gap from the nuclear leading countries become large. In particular, China requires technology transfer in the order of new power plant construction. Thus it is expected difficult to export the power plant to the newly developing countries without our own technology. Therefore, the improvement of competitive power and establishment of infra structure of advanced nuclear industry through innovative technology enhancement are urgent and essential to international competitive marketing. Passive safety features have been always adopted as an improved design concept in the development of innovative reactor design. Domestic nuclear industry has stated the development of APR+ as a Korean specific reactor for the export strategy. In the development of APR+ a passive auxiliary feedwater system (PAFS) has been considered as a noticeable candidate of improved design. Reference 2 reported that the adoption of PAFS, which can replace the auxiliary feedwater system, can prevent core damage in the accident of station black out (SBO), since Class 1E DC power operates the related valves, and 8 hours hot standby operation of plant without operation action is achievable. This PAFS contributes to the safety and economics, in that it decreases the core damage frequency 26% from 2.45E- 06/r-y to 1.80E-06/r-y, and it saves the construction cost 20 million Kr-Won. This paper discusses on the performance of PAFS for the accident of loss of condenser vacuum as a precursor of detailed design specification.

  5. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  6. Temporary cooling system for critical loads during Recirculation Cooling Water (RCW) system outage

    International Nuclear Information System (INIS)

    As part of the Point Lepreau Refurbishment Project, Recirculation Cooling Water (RCW) system will be shutdown for maintenance activity. During the RCW outage, alternate cooling flow for critical heat loads such as Spent Fuel Bay (SFB), D2O vapour dryers and Instrument Air Compressor Coolers will be provided through a temporary cooling system to remove approximately 3MW of heat. This paper describes a practical strategy to build in the temporary cooling system for this project. Major equipment involved, piping modifications required and system reliability analysis are also addressed. (author)

  7. Cooling system with automated seasonal freeze protection

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  8. Simulation on Cooling System of Automotive Waste Heat Thermoelectric Generator

    OpenAIRE

    Xiaohong Yuan; Sufen Yuan; Changsheng Chen; Yadong Deng

    2013-01-01

    The cooling system of automobile waste heat Thermoelectric Generator (TEG) is researched in the study. Integrated model of cooling system and vehicle is built based on GT-Cool, analysis of the different cooling ways shows that when using independent cooling system, the ratio between power consumption and output is high and system performance is poor; By using integrated cooling system, the expectation of keep constant engine warm up time and synchronous change of water temperature between dif...

  9. Reliability analysis of 2 types of auxiliary feedwater system for PWR

    International Nuclear Information System (INIS)

    This paper will explain the application of Fault Three Method for analyzing the system reliability of Auxiliary Feedwater System with 2 different configurations taken from PWR type nuclear power plant (NPP) in the USA. The first configuration of Braidwood NPP (design A) basically consists of 1 motor driven pump and 1 diesel driven pump. The second configuration of Haddam Neck NPP (Design B) consists of 2 turbine driven pumps. Based on the P and ID and success criteria the fault trees are constructed to estimate the system failure probabilities quantified from software code PIRAS 1.0. The result shows the second configuration (Design B) with 2 turbine driven pumps have the higher failure probability of 1,06 x 10 -2 compared with design A of 1,09 x 10-3. The modification of both systems are also tried to analyze its effect to the end result. Qualitatively, the common cause failures of 2 turbine driven pumps contribute to the highest risk of system failure probability. Combination with 1 turbine driven pump and 1 motor driven pump or 1 diesel driven pump will increase the system reliability about 80% and 50% without considering if this configuration is possible to realize in a real plant

  10. Rust Inhibitor And Fungicide For Cooling Systems

    Science.gov (United States)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  11. Residential solar-heating/cooling system

    Science.gov (United States)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  12. Prototype solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  13. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  14. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. Experimental Test of the Concept of Long-term Passive Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Recently emergency cooling tank is a great concern of passive cooling system for the safety of nuclear reactor. For the long-term operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger due to exhausted water supply. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection at tubes of the steam cooling heat exchanger. In this study, an experimental setup was figure out by measuring water level inside emergency cooling tank for the validation of the concept of long-term passive cooling system of emergency cooling tank. An experimental setup was figure out by measuring water level inside emergency cooling tank for the validation of the concept of long-term passive cooling system of emergency cooling tank. Natural circulation of condensing flow was identified by passive cooling system of emergency cooling tank experimentally

  16. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    Science.gov (United States)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  17. Analysis of PAFS (Passive Auxiliary Feedwater System) horizontal heat exchanger in APR+ and the scale-up capability of experimental loop

    International Nuclear Information System (INIS)

    APR+ (Advanced Power Reactor Plus) is the next generation nuclear power plant in Korea. It adopts PAFS (Passive Auxiliary Feedwater System) on the secondary system. It can replace the conventional active system for auxiliary feedwater injection to the steam generator, and it enables the coolant to be supplied by a passive system. It cools down the secondary system by heat transfer at a horizontal U-tube in PCCT (Passive Condensation Cooling Tank). High pressure steam flow from the steam generator is condensed in the horizontal heat exchanger. The water in PCCT is maintained at an atmospheric pressure, so that boiling heat transfer at the outside wall of heat exchanger and natural convection occur in PCCT pool. The heat exchanger and PCCT is higher than the steam generator, so condensate can be drained and injected to feedwater system without any active system. This study aims at analyzing the heat removal capacity for the design of the horizontal heat exchanger in PAFS. To design the condensation heat exchanger in PAFS, and the two-phase flow phenomena in horizontal U-tube and were investigated by MARS (Multi-dimensional Analysis for Reactor Safety, a thermal hydraulic system analysis code) calculation. By benchmarking with NOKO experimental result, MARS code showed a reasonable capability to quantitatively predict the condensation in horizontal tube heat exchanger. For the design of PAFS heat exchanger in APR+, the calculation results proved to sufficiently remove the decay heat of 138 MW in total by the condensation heat transfer without any active auxiliary feedwater system during TLOFW (Total Loss of Feed Water) accident. In the analysis, the distribution of thermal equilibrium quality and local liquid fraction in the horizontal U-tube was also investigated. In order to experimentally investigate the condensation phenomena and natural convection in PAFS, a test loop with a single horizontal U-tube and PCCT is under construction at KAERI (Korea Atomic Energy

  18. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  19. Three decades of experience with cooling water system of a fast reactor

    International Nuclear Information System (INIS)

    The cooling water system constitutes the terminal heat exchange system for the fast breeder test reactor (FBTR) which is a sodium cooled fast reactor of 40 MWt capacity. It transfers the residual heat to atmosphere through a cooling tower. Cooling water system of FBTR comprises two sub-systems namely condenser cooling water system and service water system. Condenser cooling water is circulated through main condenser, dump condenser, condensate cooler, generator air cooler and turbine oil cooler. Service water system removes heat from several heat exchangers of auxiliary systems like air compressor, cold trap cooling, nitrogen plant, Biological Shield Cooling (BSC), Diesel Generator (DG) and steam-water system sample coolers. The cooling water system consists of an open recirculating type with an induced draft cooling tower as the ultimate heat sink. Initially, Palar river water was used as the cooling medium. At present, due to scarcity of river water, sub soil water and output from Nuclear Desalination Demonstration Plant (NDDP) are also used as cooling water. The material of construction of pipe line is carbon steel and the heat exchanger tube and other equipment materials are copper, admiralty brass, aluminium brass, bronze, Cu-Ni and carbon steel. The construction of the cooling water system of FBTR was completed in 1980. Since then the sub-systems were commissioned one by one. Whenever a sub system was commissioned, it generated a lot of impurities which affected the existing treatment programme. Sodium hexa meta phosphate treatment, Langelier Index monitoring, chlorination, global and target dispersant addition at high heat flux heat exchanger, chemical cleaning of corroded pipelines, corrosion monitoring, side stream filtration, addition of phosphonate-based corrosion inhibitor, broad spectrum biocide and specific biocide for iron oxidising bacteria are some of the phases of the cooling water treatment programme. At present, corrosion rates are generally

  20. Probabilistic common cause failure modeling for auxiliary feedwater system after the introduction of flood barriers

    International Nuclear Information System (INIS)

    Causal inference is capable of assessing common cause failure (CCF) events from the viewpoint of causes' risk significance. Authors proposed the alpha decomposition method for probabilistic CCF analysis, in which the classical alpha factor model and causal inference are integrated to conduct a quantitative assessment of causes' CCF risk significance. The alpha decomposition method includes a hybrid Bayesian network for revealing the relationship between component failures and potential causes, and a regression model in which CCF parameters (global alpha factors) are expressed by explanatory variables (causes' occurrence frequencies) and parameters (decomposed alpha factors). This article applies this method and associated databases needed to predict CCF parameters of auxiliary feedwater (AFW) system when defense barriers against internal flood are introduced. There is scarce operation data for functionally modified safety systems and the utilization of generic CCF databases is of unknown uncertainty. The alpha decomposition method has the potential of analyzing the CCF risk of modified AFW system reasonably based on generic CCF databases. Moreover, the sources of uncertainty in parameter estimation can be studied. An example is presented to demonstrate the process of applying Bayesian inference in the alpha decomposition process. The results show that the system-specific posterior distributions for CCF parameters can be predicted. (author)

  1. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  2. Analysis of cooling systems for hypersonic aircraft

    Science.gov (United States)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1991-01-01

    A computer program has been written to analyze cooling systems of hypersonic aircraft. This computer program called NASP/SINDA is written into the SINDA'85 command structure and uses the SINDA'85 finite difference subroutines. Both internal fluid flow and heat transfer must be analyzed, because increased heating causes a decrease in the flow of the coolant. Also local hot spots will cause a redistribution of the coolant in the system. Both steady state and transient analyses have been performed. Details of empirical correlations are presented. Results for two cooling system applications are given.

  3. Preliminary simulation of the PAF (Passive Auxiliary Feedwater System) Using The Cupid Code

    International Nuclear Information System (INIS)

    After the Fukushima accident, an emphasis has been given to the implementation of an inherent passive safety system of a nuclear reactor. The PAFS is one of the advanced safety features applied to the APR+ (Advanced Power Reactor +) of Korea aiming to change the conventional active safety system into passive one. The PAFS is consisted of two cooling systems, PCHX (Passive Condensation Heat Exchanger) and PCCT (Passive Condensation Cooling Tank). In this research, the PCCT is independently simulated using the CUPID code, in which a natural circulation happens. The PCCT is modelled using a two-dimensional area and the sub-structures inside the tank are modelled using a porous medium. For the validation of simulations, the collapsed water level, the natural circulation velocities, and the liquid temperature are investigated quantitatively. The results show the simulated natural circulation using the CUPID code coinciding well with the experimental results

  4. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain/loss of...

  5. New SPS cooling system "The day after"

    CERN Document Server

    Arduini, Gianluigi; CERN. Geneva. ST Division

    2002-01-01

    During the shutdown from November 2000 until May 2001, major modifications of the cooling system of SPS have been carried out in the frame of the refurbishment and restructuring of the water network on CERN sites (Water Project). Since the new configuration is based on a closed circuit loop, the most important consequence is the increase of the cooling water temperature from 11°C to a reference temperature of 25 °C on the primary circuit. After a brief overview of the performance statistics in 2001 of the new cooling system, a preliminary analysis of the impact of the new temperature working point will be given. Special attention will be focused on those aspects that proved to be critical for reliable equipment operation as well as on the observed consequences on reproducibility of machine parameters and finally the capability of the system for future expansions. Recommendations and possible improvements will also be outlined.

  6. Technological innovations for FBR reactor cooling system

    International Nuclear Information System (INIS)

    The fast breeder reactor (FBR) is expected to be commercialized early in the 21st century. In order to realize this goal, technological innovations are desired in order to extensively enhance economic performance, and improvement of the reactor cooling system is of primary importance in this regard. Over the past 10 years, Toshiba has developed a succession of new technologies in the field of reactor cooling systems, including a compact type intermediate heat exchanger (IHX), an integral once-through type steam generator (SG), a double-wall-tube type steam generator, and a sodium-immersed high-temperature type electromagnetic pump (EMP). As a synthesis of the fruits of such research and development we have formulated innovative concepts for a reactor cooling system and its constituent components. These advances in research and development activities will significantly contribute to the commercialization of FBRs. (author)

  7. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    International Nuclear Information System (INIS)

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  8. Emergency core cooling system simplification

    International Nuclear Information System (INIS)

    Studies and development programs at AECL over the last several years have been directed at simplification of the ECC system, with the objective of increasing reliability, reducing cost, and reducing maintenance and testing costs. This work has resulted in a substantial simplification of the ECC system for CANDU 9, including a reduction in the number of valves of over 50% relative to previous plants. This paper reviews the CANDU 9 ECC system design, and reviews the ''one-way'' rupture disc and floating ball seal development programs

  9. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  10. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    International Nuclear Information System (INIS)

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant

  11. Auxiliary feedwater system risk-based inspection guide for the Virgil C. Summer Nuclear Power Plant

    International Nuclear Information System (INIS)

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the emergency/auxiliary feedwater (EFW/AFW) system at press water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses costing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify genetic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Virgil C. Summer plant was selected as one m a series of plants for study. The product of this effort is a priority listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at Virgil C. Summer plant

  12. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  13. Mining a coal seam below a heating goaf with a force auxiliary ventilation system at Longhua underground coal mine, China

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Xie Jun; Xue Sheng; Wang Haiyang

    2015-01-01

    Extraction of a coal seam which lies not far below a heating goaf can be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel 30110 of the #3?1 coal seam, which is about 30–40 m below the heating goaf of the #2?2 seam at Longhua underground coal mine, Shanxi Province, China. Booster fans and ventilation control devices such as doors and regulators were used in the system. The results show that, provided that a force auxiliary ventilation system is properly designed to achieve a pressure balance between a panel and its overlying goaf, the system can be used to extract a coal seam overlain by a heating goaf. This paper describes the design, installation and performance of the ventilation system during the extraction and recovery phases of the panel 30110.

  14. Active mass damper system for high-rise buildings using neural oscillator and position controller considering stroke limitation of the auxiliary mass

    Science.gov (United States)

    Hongu, J.; Iba, D.; Nakamura, M.; Moriwaki, I.

    2016-04-01

    This paper proposes a problem-solving method for the stroke limitation problem, which is related to auxiliary masses of active mass damper systems for high-rise buildings. The proposed method is used in a new simple control system for the active mass dampers mimicking the motion of bipedal mammals, which has a neural oscillator synchronizing with the acceleration response of structures and a position controller. In the system, the travel distance and direction of the auxiliary mass of the active mass damper is determined by reference to the output of the neural oscillator, and then, the auxiliary mass is transferred to the decided location by using a PID controller. The one of the purpose of the previouslyproposed system is stroke restriction problem avoidance of the auxiliary mass during large earthquakes by the determination of the desired value within the stroke limitation of the auxiliary mass. However, only applying the limited desired value could not rigorously restrict the auxiliary mass within the limitation, because the excessive inertia force except for the control force produced by the position controller affected on the motion of the auxiliary mass. In order to eliminate the effect on the auxiliary mass by the structural absolute acceleration, a cancellation method is introduced by adding a term to the control force of the position controller. We first develop the previously-proposed system for the active mass damper and the additional term for cancellation, and verity through numerical experiments that the new system is able to operate the auxiliary mass within the restriction during large earthquakes. Based on the comparison of the proposed system with the LQ system, a conclusion was drawn regarding which the proposed neuronal system with the additional term appears to be able to limit the stroke of the auxiliary mass of the AMD.

  15. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  16. A cooling water system copper corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Pulkrabek, J.W.

    1998-07-01

    The plant has four units that have been operating normally for 12--33 years. Two of the units are 70 MW sister units that have copper alloy once-through condensers. The other two units are 350 MW and 500 MW units with copper alloy condensers and cooling towers. No cooling water related tube leaks had been experienced. Until 1993, the only chemicals used were sulfuric acid for pH control of the cooling tower systems and chlorine for biological control. The units were chlorinated for one hour per day per condenser. In early July 1992, their copper grab sample at the plant discharge to the river exceeded the weekly environmental limit. In fact, it was so high that there was a slim chance of coming in under their monthly average copper limit unless something was done quickly. The result of this incident was an extensive study of their plant wastewater and cooling systems. The study revealed that the elevated copper problem had existed sporadically for several years. Initially, copper control was achieved by altering the wastewater treatment processes and cooling tower blowdown flow path. Two extended trials, one with tolyltriazole (TTA) and one with a chemically modified benzotriazole (BZT) were performed. Optimal control of copper corrosion was eventually achieved by the application of a TTA treatment program in which the feed rates are adjusted based on on-line corrosion monitoring measurements. This report documents experiences and results over the past six years.

  17. PCM Passive Cooling System Containing Active Subsystems

    Science.gov (United States)

    Blanding, David E.; Bass, David I.

    2005-01-01

    A multistage system has been proposed for cooling a circulating fluid that is subject to intermittent intense heating. The system would be both flexible and redundant in that it could operate in a basic passive mode, either sequentially or simultaneously with operation of a first, active cooling subsystem, and either sequentially or simultaneously with a second cooling subsystem that could be active, passive, or a combination of both. This flexibility and redundancy, in combination with the passive nature of at least one of the modes of operation, would make the system more reliable, relative to a conventional cooling system. The system would include a tube-in-shell heat exchanger, within which the space between the tubes would be filled with a phase-change material (PCM). The circulating hot fluid would flow along the tubes in the heat exchanger. In the basic passive mode of operation, heat would be conducted from the hot fluid into the PCM, wherein the heat would be stored temporarily by virtue of the phase change.

  18. Independent system of after-heat removal in a sodium cooled fast neutron reactor

    International Nuclear Information System (INIS)

    A system of after-heat removal in sodium cooled fast reactor is described. The device, according to the main patent, is characterized in that each coolant loop includes, in parallel to the secondary sodium circuit, an auxiliary secondary circuit in which a chemically inert gas removes heat from the primary sodium; said auxiliary secondary circuit comprises at least one gas turbine fed with said inert gas and working in closed-cycle with power production. In the present variant the gas turbine also works at least one of the primary sodium pumps and, if required, at least one of the secondary sodium pumps and at least one of the main or emergency pumps feeding the steam generator

  19. Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A

    Science.gov (United States)

    Xu, Weidong; Xuan, Weimin; Yao, Lieying; Wang, Yingqiao

    2012-03-01

    The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 μs. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.

  20. 40 CFR 91.307 - Engine cooling system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 91.307 Section... cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at... maintain sufficient engine cooling during dynamometer operation....

  1. 40 CFR 90.307 - Engine cooling system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 90.307 Section... Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to... fan(s) may be used to maintain sufficient engine cooling during engine dynamometer operation....

  2. Analytical studies of the heat removal capability of a passive auxiliary feedwater system (PAFS)

    International Nuclear Information System (INIS)

    Highlights: ► The MARS model was developed by adding the PAFS model to the APR1400 model. ► Analysis results show that the capacity of PAFS is sufficient to remove the decay heat in the LOCV and FLB accident cases. ► The PAFS control logic for MSIV has the advantages of maintaining the feedwater inventory in the intact side. - Abstract: As passive safety features for nuclear power plants receive increasing attention, various studies have been conducted to develop safety systems for third-generation (GEN-III) nuclear power plants that are driven by passive systems, such as natural circulation, gravity, and resistance to high temperatures. Thus, South Korea has designed the Advanced Power Reactor Plus (APR+) with a two-loop PWR and 1500 MWe by adding passive safety features to the Advanced Power Reactor 1400 MWe (APR1400). The Passive Auxiliary Feedwater System (PAFS) is one of several passive safety systems being designed for the APR+, and extensive studies are being conducted to complete its design and to verify its feasibility. Because the PAFS removes decay heat from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of the PAFS under hypothetical accident conditions. Therefore, in this paper, after introducing the characteristics of the PAFS and its design requirements, a performance analysis of the PAFS is performed for two accident cases: Loss of Condenser Vacuum (LOCV) and Feedwater Line Break (FLB). For the analysis, the Multi-dimensional Analysis of Reactor Safety (MARS) code is used, and a MARS model is developed by adding the PAFS model to the existing APR1400 model. The analysis results show that the PAFS has enough capacity to remove decay heat under the postulated accident conditions. In addition, the adequacy of modified control logic for main steam isolation valve (MSIV) is validated by comparing the traditional control logic.

  3. Indirect Evaporative Pre-Cooled Compressor Cooling System Performance under Various Outdoor Air Humidity Conditions

    OpenAIRE

    Brahmanis, A; Lešinskis, A

    2013-01-01

    The present study is devoted to efficiency evaluation of a combined indirect evaporative – compressor cooling system under various outdoor air humidity conditions of temperate climate. The investigated system is located in the recently restored historical building, The Art Museum Riga Bourse, which was initially built in the middle of the 19th century. The indirect adiabatic chiller supplies cooled fluid to the conventional cooling system, consisting of ventilation cooling coils and fan-coil ...

  4. Evaluation of Active Cooling Systems for Non-Residential Buildings

    OpenAIRE

    M.A. Othuman Mydin

    2014-01-01

    Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air...

  5. Turbine airfoil with laterally extending snubber having internal cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  6. Holistic Modeling, Design & Analysis of Integrated Stirling and Auxiliary Clean Energy Systems for Combined Heat and Power Applications

    Science.gov (United States)

    Nayak, Amrit Om

    The research revolves around the development of a model to design and analyze Stirling systems. Lack of a standard approach to study Stirling systems and difficulty in generalizing existing approaches pose stiff challenges. A stable mathematical model (integrated second order adiabatic and dynamic model) is devised and validated for general use. The research attempts to design compact combined heat and power (CHP) system to run on multiple biomass fuels and solar energy. Analysis is also carried out regarding the design of suitable auxiliary systems like thermal energy storage system, biomass moisture removal system and Fresnel solar collector for the CHP Stirling system.

  7. The effect of cooling rate of cooling system on centrifuge machine performance

    International Nuclear Information System (INIS)

    In this paper, the effect of cooling rate of a cooling system on performance of a centrifuge machine has been studied experimentally. The cooling rate is increased by temperature variation and volumetric flow rate of the inlet water to the cooling system. The results showed that the effect of cooling rate on separative work unit, heads and tails separation factors i.e. α and β are negligible. Also, if the cooling rate is less than a minimum value, the heat produced by moving machine elements cannot be dissipated and some elements of machine may be destroyed.

  8. Invastigate of Theoretical Ejector Cooling System

    OpenAIRE

    Yilmaz, Fatih; SELBAŞ, Reşat; İbrahim ÜÇGÜL

    2014-01-01

    Conventional cooling systems, a large majority, working with electrical energy from fossil fuels and uses huge amounts of energy to drive these systems. In addition, thermal power plants, food industry, such as chemical plants and motor vehicles back into the environment that can be used in many industrial process produces waste heat energy. Alternative sources of energy such as heat exhausted from both the energies used, the drive uses energy as a new research on the mechanical compressio...

  9. Sensitivity Studies of a Low Temperature Low Approach Direct Cooling Tower for Building Radiant Cooling Systems

    OpenAIRE

    Nasrabadi, Mehdi; Finn, Donal; Costelloe, Ben

    2012-01-01

    Recent interest in cooling towers as a mechanism for producing chilled water, together with the evolution of radiant cooling, have prompted a review of evaporative cooling in temperate maritime climates. The thermal efficiency of such systems is a key parameter, as a measure of the degree to which the system has succeeded in exploiting the cooling potential of the ambient air. The feasibility of this concept depends largely however, on achieving low approach water temperatures within an appro...

  10. Study on the importance and sensibility of the parameters used in the Angra-1 auxiliary feedwater system reliability analysis

    International Nuclear Information System (INIS)

    In this paper some procedures are presented in order to develop an importance and sensitivity analysis on the parameters considered in the reliability study of the Auxiliary Feedwater System of Angra-1. The importance analysis is performed to determine the events which have contribution on the top event. The results obtained from the sensitivity analysis can show the effects of variations in probability values of the dominant component failures on the probability of the top event. (author). 7 refs., 9 figs., 5 tabs

  11. Nuclear Reactor RA Safety Report, Vol. 5, Reactor cooling systems

    International Nuclear Information System (INIS)

    RA reactor cooling system enable cooling during normal operation and under possible accidental conditions and include: technical water system, heavy water system, helium gas system, system for heavy water purification and emergency cooling system. Primary cooling system is a closed heavy water circulation system. Heavy water system is designed to enable permanent circulation and twofold function of heavy water. In the upward direction of cooling it has a coolant role and in the downward direction it is the moderator. Separate part of the primary coolant loop is the system for heavy water purification. This system uses distillation and ion exchange processes

  12. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  13. Desiccant Cooling System for Thermal Comfort: A Review

    OpenAIRE

    HEMANT PARMAR; D.A. HINDOLIYA

    2011-01-01

    Desiccant cooling system (DCS) is alternate suitable option against conventional cooling system in humid climates. A typical system combines a dehumidifier that uses dry desiccant wheel, with direct or indirect evaporative systems and a sensible cooling system. DCS is the environmental protection technique for cooling purpose of the building. This system reduces the CFC level in the environment because it restricts the use of conventional refrigerant. In this paper, all the working principles...

  14. Optimized Performance of One-Bed Adsorption Cooling System

    OpenAIRE

    Miyazaki, Takahiko; El-Sharkawy, Ibrahim I.; Saha, Bidyut Baran; Koyama, Shigeru

    2014-01-01

    Adsorption cooling system can be driven by solar energy or waste heat, so it will effectively reduce fossil fuel consumptions when total system is well-designed. On the other hand, the system tends to have a large size, which will be an obstacle to install adsorption cooling systems to small to medium scale cooling demands, such as automobiles, houses, or shops. The study was aiming at the reduction of system size of adsorption cooling systems for refrigeration and air-conditioning applicatio...

  15. Personal cooling systems: Possibilities and limitations

    Science.gov (United States)

    Nunneley, Sarah A.

    1994-01-01

    Personal thermal control by means of gas- or liquid-conditioned garments was developed during the 1960s and has been applied in a variety of aerospace and industrial settings. Both USAF fighter pilots and astronauts are required to wear heavy protective clothing which insulates them from the environment and thus creates stress through storage of metabolic heat. The problem is particularly severe in astronauts who perform heavy physical work during extra-vehicular activity (EVA); without artificial cooling they could reach incapacitating hyperthermia in a matter of minutes. This paper reviews the factors which influence the design of personal cooling systems. An important early step is determination of acceptable heat stress level, taking into account possible interactions of heat stress with other physiological problems such as motion sickness, diminished plasma volume, decompression sickness and acceleration tolerance. Other factors which require consideration include the work schedule, the area to be covered by the cooling garment, and the practicalities of a fixed or body-mounted heat sink and its power source. Nearly every imaginable heat sink has been proposed or tried over the past 30 years, including direct gas systems, phase-change systems with open or closed loops and thermoelectric heat sinks. The latter are now the system of choice for aircraft.

  16. PS auxiliary magnet

    CERN Multimedia

    1974-01-01

    Units of the PS auxiliary magnet system. The picture shows how the new dipoles, used for vertical and horizontal high-energy beam manipulation, are split for installation and removal so that it is not necessary to break the accelerator vacuum. On the right, adjacent to the sector valve and the windings of the main magnet, is an octupole of the set.

  17. Synchronous dynamics of a coupled shaft/bearing/housing system with auxiliary support from a clearance bearing: Analysis and experiment

    Science.gov (United States)

    Lawen, James L., Jr.; Flowers, George T.

    1995-01-01

    This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified.

  18. Cooling system for high speed aircraft

    Science.gov (United States)

    Lawing, P. L.; Pagel, L. L. (Inventor)

    1981-01-01

    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.

  19. Simulation of Transient Scenarios for Passive Auxiliary Feedwater System in APR+

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byounguhn; Kim, Seok; Park, Yusun; Kang, Kyungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this study, postulated transient scenarios occurring in the PAFS were simulated to evaluate the operational performance of system and investigate the thermal hydraulic phenomena of the two-phase natural convection flow. The transient tests simulated in this study are PAFS start-up actuation test (SU) and non-condensable gas effect test (NC). In this study, postulated transient cenarios occurring in the PAFS were simulated to evaluate the performance of the condensation heat transfer and investigate the thermal hydraulic phenomena of the two-phase natural convection flow. Start-up actuation test simulated the initial transient when the PAFS actuation signal was generated and the natural convection flow was initiated in the loop, and any significant two-phase flow instability was not observed in the test. The purpose of the non-condensable gas effect test is to study the characteristics of the condensation heat transfer in the heat exchanger when the nitrogen gas was injected. The test results proved that the existence of the non-condensable gas up did not produce a meaningful decrease of the cooling capability in the PAFS. From the experimental results described above, the cooling and operating performance of the PAFS was validated with respect to occurrence of the various transient scenarios and it was proved that the function of the PAFS can be effectively performed during the transient situation. The result will be also utilized in validation of the thermal hydraulic system code in the future.

  20. Simulation of Transient Scenarios for Passive Auxiliary Feedwater System in APR+

    International Nuclear Information System (INIS)

    In this study, postulated transient scenarios occurring in the PAFS were simulated to evaluate the operational performance of system and investigate the thermal hydraulic phenomena of the two-phase natural convection flow. The transient tests simulated in this study are PAFS start-up actuation test (SU) and non-condensable gas effect test (NC). In this study, postulated transient cenarios occurring in the PAFS were simulated to evaluate the performance of the condensation heat transfer and investigate the thermal hydraulic phenomena of the two-phase natural convection flow. Start-up actuation test simulated the initial transient when the PAFS actuation signal was generated and the natural convection flow was initiated in the loop, and any significant two-phase flow instability was not observed in the test. The purpose of the non-condensable gas effect test is to study the characteristics of the condensation heat transfer in the heat exchanger when the nitrogen gas was injected. The test results proved that the existence of the non-condensable gas up did not produce a meaningful decrease of the cooling capability in the PAFS. From the experimental results described above, the cooling and operating performance of the PAFS was validated with respect to occurrence of the various transient scenarios and it was proved that the function of the PAFS can be effectively performed during the transient situation. The result will be also utilized in validation of the thermal hydraulic system code in the future

  1. Absolute Dynamical Limit to Cooling Weakly-Coupled Quantum Systems

    OpenAIRE

    X. Wang; Vinjanampathy, Sai; Strauch, Frederick W.; Jacobs, Kurt

    2012-01-01

    Cooling of a quantum system is limited by the size of the control forces that are available (the "speed" of control). We consider the most general cooling process, albeit restricted to the regime in which the thermodynamics of the system is preserved (weak coupling). Within this regime, we further focus on the most useful control regime, in which a large cooling factor, and good ground-state cooling can be achieved. We present a control protocol for cooling, and give clear structural argument...

  2. "Cooling system for a hybrid powertrain provided with an EGR"

    OpenAIRE

    Brunetti, Gianmarco

    2011-01-01

    A cooling system comprises a high temperature cooling circuit 20, a low temperature cooling circuit 30 and a motor generator unit (MGU) cooler 36 for a motor generator unit 10 which is connected along the low temperature cooling circuit 30 of an exhaust gas recirculation system (EGR) 300. The MGU 10 is connected downstream of a low temperature radiator 33 and upstream of a low temperature cooler 31 in the low temperature cooling circuit 30. A hybrid powertrain has an internal combustion engin...

  3. Simulation on Cooling System of Automotive Waste Heat Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Xiaohong Yuan

    2013-06-01

    Full Text Available The cooling system of automobile waste heat Thermoelectric Generator (TEG is researched in the study. Integrated model of cooling system and vehicle is built based on GT-Cool, analysis of the different cooling ways shows that when using independent cooling system, the ratio between power consumption and output is high and system performance is poor; By using integrated cooling system, the expectation of keep constant engine warm up time and synchronous change of water temperature between different tanks is realized after water tanks are improved.

  4. Preliminary design package for solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  5. Operating experience with ESCAR magnet cooling system

    International Nuclear Information System (INIS)

    The ESCAR magnet cooling system has been successfully demonstrated. This two-phase helium cooling system includes a CTI-Sulzer gas-bearing turbine refrigerator with two-stage compression by oil-lubricated screw compressors, 120 m of 5-cm-diameter vacuum-insulated transfer line and twelve series-connected magnet cryostats with weirs for liquid level control. The refrigeration plant provides up to 1900 w of refrigeration at 4.5 K with a mass flow of 113 g/s. Heat load within the transfer line has been measured at 0.25 w/m in sub-system testing. Cool-down times to 4.5 K for the 12 warm-iron magnets with a cold mass of 2500 kg have been about 12 hours. The magnet cryostats separate the liquid by gravitational extraction and fill in sequence at a rate of up to 400 l/hr. A heater in the transfer line allows adjustment of the inlet coolant quality (ratio of gas to liquid) to the cryostats. Pressure levels in the cold bore, beam orbit space were below -10 torr

  6. A study on cooling efficiency using 1-d analysis code suitable for cooling system of thermoforming

    International Nuclear Information System (INIS)

    Thermoforming is one of the most versatile and economical processes available for polymer products, but cycle time and production cost must be continuously reduced in order to improve the competitive power of products. In this study, water spray cooling was simulated to apply to a cooling system instead of compressed air cooling in order to shorten the cycle time and reduce the cost of compressed air used in the cooling process. At first, cooling time using compressed air was predicted in order to check the state of mass production. In the following step, the ratio of removed energy by air cooling or water spray cooling among the total removed energy was found by using 1-D analysis code of the cooling system under the condition of checking the possibility of conversion from 2-D to 1-D problem. The analysis results using water spray cooling show that cycle time can be reduced because of high cooling efficiency of water spray, and cost of production caused by using compressed air can be reduced by decreasing the amount of the used compressed air. The 1-D analysis code can be widely used in the design of a thermoforming cooling system, and parameters of the thermoforming process can be modified based on the recommended data suitable for a cooling system of thermoforming

  7. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  8. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  9. Controlled cooling of an electronic system based on projected conditions

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  10. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  11. Heat Structure Coupling of CUPID and MARS for the Passive Auxiliary Feedwater System Analysis

    International Nuclear Information System (INIS)

    The two-phase phenomena in the steam supply system including the condensation in the Passive Condensate Heat Exchanger (PCHX) were calculated by MARS and those in the Passive Condensate Cooling Tank (PCCT) including the natural circulation and the boil-off were modeled by CUPID. This paper presents the coupling method and the simulation results using the coupled codes. In the present study, the multi-scale thermal-hydraulic analysis method using the coupled MARS-CUPID code was applied for the simulation of the passive condensation cooling phenomena. The primary side of the PASCAL test facility including the PCHX was simulated by MARS and the secondary side, the PCCT, was modeled by the CUPID. It was found that the overall two-phase behaviors inside the water pool and the condensation heat transfer inside the heat exchanger were qualitatively well reproduced with the coupled code. Comparison of various parameters between the test and the simulation will be performed in the future for a quantitative analysis

  12. Heat Structure Coupling of CUPID and MARS for the Passive Auxiliary Feedwater System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoungkyu [Seoul National Univ., Seoul (Korea, Republic of); Cho, Yunje; Lee, Seungjun; Yoon, Hanyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The two-phase phenomena in the steam supply system including the condensation in the Passive Condensate Heat Exchanger (PCHX) were calculated by MARS and those in the Passive Condensate Cooling Tank (PCCT) including the natural circulation and the boil-off were modeled by CUPID. This paper presents the coupling method and the simulation results using the coupled codes. In the present study, the multi-scale thermal-hydraulic analysis method using the coupled MARS-CUPID code was applied for the simulation of the passive condensation cooling phenomena. The primary side of the PASCAL test facility including the PCHX was simulated by MARS and the secondary side, the PCCT, was modeled by the CUPID. It was found that the overall two-phase behaviors inside the water pool and the condensation heat transfer inside the heat exchanger were qualitatively well reproduced with the coupled code. Comparison of various parameters between the test and the simulation will be performed in the future for a quantitative analysis.

  13. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  14. The heller system. The economical substitute for wet cooling

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Andras; Szabo, Zoltan [GEA EGI Contracting/Engineering Co. Ltd., Budapest (Hungary)

    2009-11-15

    As a result of growing environmental awareness - at least in the form of verbal statements - there is a consensus about the importance of applying water conservation type cooling systems. In practice, however, their application is still far behind that of the water-thirsty cooling methods. This paper introduces one of the proven dry cooling: the advanced Heller system (an indirect dry cooling) and its dry/wet derivatives. Besides giving a basic technical and environmental review, results of some economic case studies are also presented. These show how a natural draft Heller system can extend the economic viability of water conservation type cooling systems as compared to wet cooling. (orig.)

  15. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  16. Reliability analysis of the auxiliary feedwater system of Angra-1 including common cause failures using the multiple greek letter model

    International Nuclear Information System (INIS)

    The use of redundancy to increase the reliability of industrial systems make them subject to the occurrence of common cause events. The industrial experience and the results of safety analysis studies have indicated that common cause failures are the main contributors to the unreliability of plants that have redundant systems, specially in nuclear power plants. In this Thesis procedures are developed in order to include the impact of common cause failures in the calculation of the top event occurrence probability of the Auxiliary Feedwater System in a typical two-loop Nuclear Power Plant (PWR). For this purpose the Multiple Greek Letter Model is used. (author). 14 refs., 10 figs., 11 tabs

  17. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    Science.gov (United States)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  18. Cooling load differences between radiant and air systems

    OpenAIRE

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Unlike the case of air systems where the cooling load is purely convective, the cooling load for radiant systems consists of both convective and radiant components. The main objectives of this energy simulation study were to investigate whether the same design cooling load calculation methods can be used for radiant and air systems by studying the magnitude of the cooling load differences between radiant and air systems over a range of configurations and to suggest potential improvem...

  19. Automotive cooling systems based on metal hydrides

    OpenAIRE

    Linder, Marc

    2010-01-01

    The present work focuses on metal hydride sorption systems as an alternative technology for automotive air-conditioning systems. Although this technology offers the possibility to increase the energy efficiency of a car (by utilising waste heat) and consequently reduces the CO2 emissions, its weight specific cooling power has so far been the main obstacle for an automotive application. Based on investigations of various metal hydrides, two alloys (LmNi4.91Sn0.15 and Ti0.99Zr0.01V0.43Fe0.09Cr0...

  20. High temperature solar heating and cooling systems for different Mediterranean climates: Dynamic simulation and economic assessment

    International Nuclear Information System (INIS)

    The paper presents a dynamic model of an innovative solar heating and cooling system (SHC) based on the coupling of Parabolic Trough Collectors (PTC) with a double-stage LiBr-H2O absorption chiller; auxiliary energy for both heating and cooling is supplied by a biomass-fired heater. The system layout also includes a number of additional components such as: cooling tower, pumps, heat exchangers, etc. The consumption of non-renewable energy resources is only due to the small amount of electrical energy consumed by some auxiliary device. A case study is presented, in which the SHC provides space heating and cooling and domestic hot water for a small university hall, all year long. Both the SHC system and the building were dynamically simulated in TRNSYS. In order to evaluate the performance of the investigated system in various climatic conditions, the analyses were performed for seven Mediterranean cities in Italy, Spain, Egypt, France, Greece and Turkey. The analysis was also performed for a similar SHC in which the biomass heater was replaced by a gas-fired heater, in order to evaluate the influence of biomass to the overall system economic and energetic performance. In addition, a parametric analysis was performed in order to evaluate the sensitivity of the results, when varying some of the main design and operating parameters, such as: collector field area, tank volume and set-point temperatures. The results showed that the SHC system layout investigated can be competitive for the majority of the locations analysed, although the economic profitability is higher for the hottest climates. - Highlights: → In the high temperature SHC system the auxiliary heat is provided by biomass. → The energetic performance of the system is excellent during the summer. → In the winter the system suffers of the low beam radiation incident on the PTC. → The Simple Pay Back Period is encouraging, particularly in case of public funding. → An increase of the solar field area

  1. The Selection of Cooling Systems of Giant Hydro-Generators

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The selection of cooling system for hydro-generator in Ertan Hydropower Station is reviewed in this paper. The new viewpoint on air-cooled system of hydraulic generator of recent years is analyzed and described. That is, "Full air-cooled system is always preferred to inner

  2. 40 CFR 89.329 - Engine cooling system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 89.329 Section 89.329 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity...

  3. Decontamination of the reactor pressure vessel and further internals and auxiliary systems in the German boiling water reactor Isar-1

    International Nuclear Information System (INIS)

    The German nuclear power plant ISAR 1 (KKI 1), a 878 MWe boiling water reactor of KWU design, was shut down on March 17th, 2011. With the objective to minimize the plants activity inventory accompanied by the reduction of contact dose rates of systems and components the project 'decontamination of the RPV incl. steam dryer and water separator and the connected auxiliary systems' was implemented in the first quarter of 2015. One major focus within the project was the specific in-situ decontamination of the steam dryer.

  4. Conversion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system

    OpenAIRE

    Vilafranca Manguán, Ana

    2008-01-01

    Astra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CH...

  5. Pre-Analysis of Triga Mark II Reactor Cooling System

    OpenAIRE

    AKAY, Orhan Erdal

    2012-01-01

    In this study, work of the reactor cooling system is divided into two time zone. The second cooling circuit has been that the conditions required operating. Cooling system which is the center of the heat exchanger total heat transfer coefficient correlations were calculated using the theoretical. The design values were compared with results obtained by calculation.

  6. Solar heating and cooling systems design and development

    Science.gov (United States)

    1977-01-01

    The development and delivery of eight prototype solar heating and cooling systems for installation and operational test was reported. Two heating and six heating and cooling units will be delivered for single family residences, multiple family residences and commercial applications.

  7. Integrated exhaust gas recirculation and charge cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  8. Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    terms of energy and exergy. In addition to the energy and exergy input required at the heating and cooling plants, the energy use of auxiliary components (fans and pumps) also vary depending on the chosen terminal unit. In order to study the energy and exergy performances of air-based and water......Different indoor terminal units can be used to heat and cool indoor spaces. These terminal units mostly rely on convection and radiation heat transfer mechanisms but their relative ratios can vary significantly for air-based and water-based systems with implications on whole system performance, in......-based systems, an air heating and cooling system, and a radiant floor heating and cooling system were chosen, respectively. A single-family house was used as a case study assuming that different space heating and cooling systems were used to condition the indoor space of this house. In addition to the thermal...

  9. Misting-cooling systems for microclimatic control in public space

    OpenAIRE

    Nunes, Joao; Zoilo, Inaki; Jacinto, Nuno; Nunes, Ana; Torres-Campos, Tiago; Pacheco, Manuel; Fonseca, David

    2011-01-01

    Misting-cooling systems have been used in outdoor spaces mainly for aesthetic purposes, and punctual cooling achievement. However, they can be highly effective in outdoor spaces’ bioclimatic comfort, in terms of microclimatic control, as an evaporative cooling system. Recent concerns in increasing bioclimatic standards in public outdoor spaces, along with more sustainable practices, gave origin to reasoning where plastic principles are combined with the study of cooling efficacy, in order to ...

  10. Theoretical Analysis of Radiative Cooling for Mobile and Embedded Systems

    OpenAIRE

    De Vogeleer, Karel; Memmi, Gerard; Jouvelot, Pierre,; Coelho, Fabien

    2014-01-01

    A new global analytical model of the heat dissipation process that occurs in passively-cooled embedded systems is introduced, and we explicit under what circumstances the traditional assumption that exponential cooling laws apply in such context is valid. Since the power consumption and reliability of microprocessors are highly dependent on temperature, management units need accurate thermal models. Exponential cooling models are justified for actively-cooled systems. Here, we analyze the tra...

  11. The Scroll Compressor With Internal Cooling System In Cryogenics Applications

    OpenAIRE

    Rak, Józef; Pietrowicz, S?awomir; Gnutek, Zbigniew

    2014-01-01

    In order to decrease the energy cost of a compression process the cooling system has to be applied. Based on the modified vanes geometry the new cooling system for the scroll machines was proposed. The distinctive trait of the new vane is a significant space where the cooling apparatus is possible to install. Applying internal cooling may contribute to decreasing outlet temperature thus increase the efficiency of the process. Based on the initial CFD results a large heat extraction scroll com...

  12. New Directions for Evaporative Cooling Systems.

    Science.gov (United States)

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  13. Determination of the thermal loadings affecting the auxiliary lines of the reactor coolant system in French PWR plants

    International Nuclear Information System (INIS)

    The various incidents, imputed to thermal fatigue, which occurred throughout the world on the auxiliary lines of Reactor Coolant System (SIS, RHR, CVC), led EDF to urge a research program in order to determine the origins and the consequences of these problems for the French nuclear power plants. In 1992, following the crossing crack discovered at Dampierre 2 on the un-isolable part of a Safety Injection System pipe, a program of instrumentation was defined and is described in this paper. Among the objectives, two of the principal goals were to determine the thermal loadings really supported by the various lines and to highlight the thermal hydraulic phenomena affecting them. Indeed, in order to explain the discovered damages, it was essential to know the real thermal loadings to compare them with those of design and to carry out mechanical calculations of resistance to thermal fatigue. The instrumentations installed on the 900 MW units enabled to check the resistance with the fatigue of all the auxiliary lines in spite of significant differences between the real loadings and those envisaged at the design. They contributed to the knowledge improvement on the local thermal hydraulic phenomena but the incidents at Dampierre 1 showed that this knowledge is still imperfect. The results of these instrumentations are also used for the design of the future units by the use of the feedback of several cycles of acquisition on the 900 MW units, but also 1300 MW and 1450 MW since similar instrumentations were installed on the auxiliary lines in Golfech 2 and Chooz B1

  14. Experimental study on a transpiration cooling thermal protection system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Transpiration cooling thermal protection systems (TPS) are investigated for potential applications in hypersonic and re-entry vehicles,which are subjected to the severe aerodynamic heating environment. In this paper a transpiration cooling thermal protection system was designed and manufactured,and an experiment platform with radiant heating at the bottom as heat source was developed. The cooling capacity of the transpiration cooling TPS was experimentally investigated. By combining transpiration cooling method with traditional TPS,the heat load capability of the TPS can be improved. The structure temperature with active cooling applied was much lower than that without active cooling applied under the same heat load as well as the heat load increased with active cooling than the one without active cooling for the same structure temperature. The experimental results showed that at 5800 s,the temperature of inner structure was 100°C with active cooling applied compared to 500°C without active cooling applied,then the temperature increased and reached to 360°C at 8300 s. Heat load of this transpiration cooling TPS can be increased by over 70% as compared to the passion one and the cooling capability of the transpiration TPS was about 1700 kJ/kg. The results can provide fundamental data for developing the transpiration cooling TPS.

  15. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  16. Extended Cooling System for High Power Reactors

    International Nuclear Information System (INIS)

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants (NPPs) and proposed for advanced light water reactors (LWRs). However, it is not clear that currently proposed external reactor vessel cooling (ERVC) could provide sufficient heat removal for higher power reactors. This paper proposes a dual retention strategy to realize fail-proof defense-in-depth in the APR1400 (Advanced Power Reactor 1400 MWe) and the OPR 1000 (Optimized Power Reactor 1000 MWe). The dual retention has the advantage of IVR-ERVC as well as ex-vessel cooling (EVC) strategies. The multilateral, multidisciplinary project calls for national and international cutting-edge technologies to research and produce (R and P) the D2R2 (Duel Retention Demonstration Reactor) equipped with OASIS (Optimized Advanced Safety Injection System) and ROSIS (Reactor Outer Safety Injection System) to cope with design-basis accidents and beyond in a coherent, continual, comprehensive manner. The enterprise aims to develop the design-basis and severe accident engineering solutions. The enterprise aims to develop the design-basis and severe accident engineering solutions. The former embraces ISAIAH (Injection System Annular Interactive Aero Hydrodynamics) and MESIAH (Methodical Evaluation System Interactive Aero Hydrodynamics). The latter comprises GODIVA (Geo metrics of Direct Injection Versatile Arrangement), SONATA (Simulation of Narrow Annular Thermomechanical Arrest or), TOCATA (Termination of Corium Ablation Thermal Attack) and STRADA (Solution to Reactor Advanced Design Alternatives). D2R2 will contribute to enhancement of both safety and economics for an advanced high power particular and nuclear power in general

  17. Open cycle lithium chloride cooling system

    Science.gov (United States)

    Lenz, T. G.; Loef, G. O. G.; Iyer, R.; Wenger, J.

    1983-05-01

    A lithium chloride open cycle absorption chiller has been designed, built and tested. Solution reconcentration takes place in a small counter current packed column supplied with solar heated air. Removal of noncondensable gases that enter the chiller dissolved in the strong solution and the make-up refrigerant streams is accomplished by a liquid-jet ejector and a small vacuum pump. Cooling capacities approaching 1.4 tons and COP levels of 0.58 have been achieved at non-optimum operating conditions. Test results from preliminary system operation suggest that mass transfer processes in both the packed column reconcentrator and the absorber are controlled by concentration gradients in the lithium chloride solution. Liquid phase controlled mass transfer dictates an operating strategy different from the previously assumed gas phase controlled process to obtain maximum rates of evaporation in the packed column. Determination of optimal operating conditions leading to decreased electrical power consumption and improved cooling capacity and coefficient of performance will require further analysis and testing.

  18. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50% of t...

  19. TEVA new cooling system from the point of view electric

    International Nuclear Information System (INIS)

    The objective of the project is to ensure that TEVA temperature reservoir discharge cooling Arrocampo the Torrejon-Tajo does not exceed the limit value 30 degree centigrade. To do this, we have installed a cooling system based on a cooling tower to which water is supplied by four main pumps 1100kW.

  20. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  1. The concept of passive cooling systems for inherently safe BWRs

    International Nuclear Information System (INIS)

    The Fukushima Daiichi Nuclear Power Plant accident and its consequences have led to extensive rethinking about the safety technologies used in boiling water reactors (BWRs). As one of the options of the safety technologies, we have been developing passive cooling systems consisting of a water-cooling system and an infinite-time air-cooling system. These systems achieve core cooling without electricity and are intended to cope with a long-term station blackout (SBO). Both these cooling systems remove relatively high decay heat for the initial 10 days after an accident, and then the infinite-time air-cooling system continues to remove attenuated decay heat after this period. To obtain heat transfer data for the design of the water-cooling system, we conducted heat transfer tests using a full-scale U-shaped single tube. The data were obtained at a system pressure of 0.2 to 3.0 MPa (absolute) and inlet steam velocity of 5 to 56 m/s. To enhance heat transfer of the air-cooling system, we successfully implemented some air-cooling enhancing technologies. The performance was evaluated by heat transfer data obtained from the element heat transfer tests. The heat transfer performance increased at least 100% with the enhancement technologies compared with a bare tube. From these test results, we confirmed good feasibility for application of the cooling systems. (author)

  2. 46 CFR 58.01-35 - Main propulsion auxiliary machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the...

  3. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  4. Derivation of the mass factors for decommissioning cost estimation of low contaminated auxiliary systems

    International Nuclear Information System (INIS)

    Ignalina NPP was operating two RBMK-1500 reactors. Unit 1 was closed at the end of 2004, and Unit 2 - at the end of 2009. Now they are under decommissioning. Decommissioning has been started from the reactor's periphery, with dismantling of non-contaminated and low contaminated equipment and installations. This paper discusses a methodology for derivation of mass factors for preliminary decommissioning costing at NPP when the number of inventory items is significant, and separate consideration of each inventory item is impossible or impractical for preliminary decommissioning plan, especially when the level of radioactive contamination is very low. The methodology is based on detailed data analysis of building V1 taking into account period and inventory based activities, investment and consumables and other decommissioning approach- related properties for building average mass factors. The methodology can be used for cost estimation of preliminary decommissioning planning of NPP auxiliary buildings with mostly very low level contamination. (authors)

  5. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

  6. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    Science.gov (United States)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  7. An objective method for screening and selecting personal cooling systems based on cooling properties.

    Science.gov (United States)

    Elson, John; Eckels, Steve

    2015-05-01

    A method is proposed for evaluation and selection of a personal cooling system (PCS) incorporating PCS, subject, and equipment weights; PCS run time; user task time; PCS cooling power; and average metabolic rate. The cooling effectiveness method presented is derived from first principles and allows those who select PCSs for specific applications to compare systems based on their projected use. This can lower testing costs by screening for the most applicable system. Methods to predict cooling power of PCSs are presented and are compared to data taken through standard manikin testing. The cooling effectiveness ranking is presented and validated against human subject test data. The proposed method provides significant insight into the application of PCS on humans. However, the interaction a humans with a PCS is complex, especially considering the range of clothing ensembles, physiological issues, and end use scenarios, and requires additional analysis. PMID:25683529

  8. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  9. The Selection of Cooling systems of Giant Hydro-Generators

    Institute of Scientific and Technical Information of China (English)

    Li Dingzhong

    2010-01-01

    @@ The selection of cooling system for hydro-generator in Ertan Hydropower Station is reviewed in this pap(ar) The new viewpoint on air-cooled system of hydraul(is)generator of recent years is analyzed and described. That is, "Full air-cooled system is always preferred to inner water cooling system in hydro-generator." Moreov() the decision process and corresponding actions of aircooled system design for hydro-generator in Longtan Hydropower Station, Xiaowan Hydropower Station and Laxiwa Hydropower Station are introduced.

  10. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  11. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  12. Quantitative common cause failure modeling for auxiliary feedwater system involving the seismic-induced degradation of flood barriers

    International Nuclear Information System (INIS)

    Flood barriers are important defenses which will reduce the internal flood-induced failure risk of safety-related equipment in the turbine building. Contrarily, the degradation of flood barriers will increase the risk of internal flood-induced common cause failure (CCF). Two layouts of auxiliary feedwater pumps system are compared to demonstrate the quantitative risk assessment of the possible degradation of flood barriers. The alpha decomposition method has been developed by the authors in order to quantitatively evaluate the CCF parameters based on the causal inference. Occurrence frequency and CCF triggering ability are two important elements which will decide the CCF risk significance of potential common causes. The seismic-induced internal flood combining with the degradation of flood barriers is analyzed. The degradation of flood barriers is treated as a stochastic process and a Markov model is applied to consider the time-dependent states. The failure time of three auxiliary feedwater pumps is calculated based on the water flow rate through flood barriers. CCF triggering abilities of internal floods are calculated which are represented as decomposed alpha factors. This article shows the updating process of CCF parameters according to Bayesian inference and hypothetical databases. It is concluded that the issue of CCF modeling is not only decided by the number of redundant components but also decided by causes and plant-specific design. (author)

  13. GOTHIC Simulation of Passive Containment Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Kim, Hangon [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    The performance of this system depends on the condensation of steam moving downward inside externally cooled vertical tubes. AES-2006: During a DBA, heat is removed by internally cooled vertical tubes, which are located in containment. We are currently developing the conceptual design of Innovative PWR, which is will be equipped with various passive safety features, including PCCS. We have plan to use internal heat exchanger (HX) type PCCS with concrete containment. In this case, the elevation of HXs is important to ensure the heat removal during accidents. In general, steam is lighter than air mixture in containment. So, steam may be collected at the upper side of containment. It means that higher elevation of HXs, larger heat removal efficiency of those. So, the aim of the present paper is to give preliminary study on variation of heat removal performance according to elevation of HXs. With reference to the design specification of the current reactors including APR+, we had determined conceptual design of PCCS. Using it, we developed a GOTHIC model of the APR1400 containment was adopted PCCS. This calculation model is described herein and representative results of calculation are presented. APR 1400 GOTHIC model was developed for PCCS performance calculation and sensitivity test according to installation elevation of PCCXs. Calculation results confirm that PCCS is working properly. It is found that the difference due to the installation elevation of PCCXs is insignificant at this preliminary analysis, however, further studies should be performed to confirm final performance of PCCS according to the installation elevation. These insights are important for developing the PCCS of Innovative PWR.

  14. Desiccant Cooling System for Thermal Comfort: A Review

    Directory of Open Access Journals (Sweden)

    HEMANT PARMAR,

    2011-05-01

    Full Text Available Desiccant cooling system (DCS is alternate suitable option against conventional cooling system in humid climates. A typical system combines a dehumidifier that uses dry desiccant wheel, with direct or indirect evaporative systems and a sensible cooling system. DCS is the environmental protection technique for cooling purpose of the building. This system reduces the CFC level in the environment because it restricts the use of conventional refrigerant. In this paper, all the working principles and expected research areashave been discussed. Through detailed literature survey it has been observed that a desiccant cooling system may be a suitable option for thermal comfort in the climate where the humidity is higher. Thedesiccant cooling system (DCS has proven their feasibility and cost saving in the field of air conditioning. This review provides a brief overview on the development of desiccant cooling system in different fields. Finally, concluding remarks regarding further development of desiccant cooling for thermal comfort are also provided. This technology is economically feasible and optimizes with low cost. This review is useful for making opportunities to further research in different areas of desiccant cooling system.

  15. Optimisation of the cooling systems in industry in CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Ahtila, P.; Hippinen, I.; Ruohonen, P. (Helsinki Univ. of Technology, Industrial Energy Engineering, Espoo (Finland)) (and others)

    2009-07-01

    By optimisating of cooling systems and their integrating them into heating systems we can achieve a significant reduction in total energy consumption and green house gas emissions. Integrating the production of cooling into the combined heat and power generation, i.e. trigeneration, improves the efficiency combined energy production. The aim of the study is to rationalise the production and the use of heat and cooling by integrating the systems in industry and between industry and local municipalities. (orig.)

  16. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  17. Computational study of metal hydride cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh, A.; Muthukumar, P.; Dewan, Anupam [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Guwahati 781039 (India)

    2009-04-15

    A computational study of a metal hydride cooling system working with MmNi{sub 4.6}Al{sub 0.4}/MmNi{sub 4.6}Fe{sub 0.4} hydride pair is presented. The unsteady, two-dimensional mathematical model in an annular cylindrical configuration is solved numerically for predicting the time dependent conjugate heat and mass transfer characteristics between coupled reactors. The system of equations is solved by the fully implicit finite volume method (FVM). The effects of constant and variable wall temperature boundary conditions on the reaction bed temperature distribution, hydrogen concentration, and equilibrium pressures of the reactors are investigated. A dynamic correlation of the pressure-concentration-temperature plot is presented. At the given operating temperatures of 363/298/278 K (T{sub H}/T{sub M}/T{sub C}), the cycle time for the constant and variable wall temperature boundary conditions of a single-stage and single-effect metal hydride system are found to be 1470.0 s and 1765.6 s, respectively. The computational results are compared with the experimental data reported in the literature for LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} hydride pair and a good agreement between the two was observed. (author)

  18. Potential of solar cooling systems for peak demand reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A A [National Renewable Energy Lab., Golden, CO (United States); Neymark, J [Neymark (Joel), Golden, CO (United States)

    1994-11-01

    We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

  19. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    Science.gov (United States)

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  20. A study on the mitigating capability of an auxiliary feedwater system during SBO for APR1400

    International Nuclear Information System (INIS)

    The objective of this paper is to establish an auxiliary feedwater (AFW) operational technical bases for the Korean Next Generation Reactor (APR1400) by modeling the plant, and by analyzing station blackout (SBO) using the MELCOR code. For the integrity of the reactor vessel and containment safety against severe accidents, it is essential to understand the severe accident sequences and to assess accident progression accurately using computer codes. Furthermore, it is important to attain the capability to analyze the advanced nuclear reactor design for the severe accident prevention and mitigation. Accident analyses are also undertaken to find out how effective AFW is mitigating in severe accident progresses. A nominal base case for SBO without AFW, time interval between feedwater stop and reactor vessel failure is 12,740 seconds. When AFW operates to mitigate the SBO accident progression 2, 4 and 8 hours after SBO starts, the reactor vessel failure is delayed for 20,415 seconds, 22,633 seconds and 26,508 seconds, respectively thus the operator has more time available for AC recovery and accident mitigation to prevent reactor vessel failure. (author)

  1. Biofouling problems in freshwater cooling systems

    International Nuclear Information System (INIS)

    In aqueous environments, microorganisms (bacteria, algae, fungi etc.,) are attracted towards surfaces, which they readily colonise resulting in the formation of biofilms. The implications of biofouling are energy losses due to increased fluid frictional resistance and increased heat transfer resistance. The temperatures prevalent inside the condenser system provide a favorable environment for the rapid growth of microorganisms. This results in thick slime deposit, which is responsible for heat transfer losses, thereby enhancing aggregation of deposits on the material surface and induces localised corrosion. There have been instances of increased capital costs due to premature replacement of equipment caused by severe under deposit corrosion due to biofouling. Moreover, fouling of service water systems of nuclear power plants is of concern, because it reduces the heat transfer capacity during an emergency or an accident. The growth of microbial films (slimes) a few tens of microns thick, in a condenser tube is sufficient to induce microbiologically influenced corrosion and cause irreparable damage to the condenser tubes and other structural materials. The down time costs to power plant due to condenser fouling and corrosion are quite large. This paper presents the author's experience in biofouling and corrosion problems in various power plants cooled by freshwater. (author)

  2. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  3. PRELIMINARYANALYSIS OF DIFFERENT COOLING SYSTEMS OF SOWS IN FARROWING ROOM

    Directory of Open Access Journals (Sweden)

    Matteo Barbari

    2007-03-01

    Full Text Available A preliminary evaluation of different cooling systems for farrowing - lactating sows was conducted in a pig farm in the North of Italy. In an experimental farrowing room 16 crates were used to study different cooling solutions during three cycles of observations. The evaluated systems were: drip cooling (five crates, drip and snout cooling (six crates, drip cooling and a full steel sheet placed under the body of the sow (five crates. Rectal and skin temperatures were measured during hot hours of the day. Fat thickness was measured and body condition score of the sows was estimated at the beginning and at the end of the lactating period. A closed-circuit television system was also installed to collect information about the behaviour of the sows cooled with the drip system or with both drip and snout cooling system. While differences concerning body and skin temperatures as well as BCS and fat thickness were not significant, the behavioural patterns showed how the sows appreciated the contemporaneous use of the drip and snout cooling methods. The sows preferred to lie with the snout towards the air outlet especially during the hottest hours of the day. In order to obtain the best thermal conditions inside the farrowing crate, the drip system had to be coupled with the snout cooling system and the full metal floor placed under the head of the sows. Further studies are necessary to confirm the preliminary obtained results.

  4. Cooling power costs from a trigeneration system in a hospital

    OpenAIRE

    Žiher, Dejan; Poredoš, Alojz

    2015-01-01

    Hospitals with high needs for electric, heat and cooling power for the whole year seem to be a promising customer interested in introducing a so-called trigeneration system. The goal of the paper is to calculate the costs of thesethree energy forms produced from such a system taking the energy and exergy approach. The emphasis was placed on the costs of cooling energy and its variation during peak and off-peak periods when using different types of cooling devices.

  5. Design development of aggregates cooling systems for hot weather concreting

    OpenAIRE

    Ahmed, Khaled I. E.; A.M.S. HAMOUDA; Gadala, M.S.

    2015-01-01

    Using hot aggregates, in concrete production, results in a drop in compressive strength of the produced concrete. Various methods have been proposed for cooling concrete aggregates. This paper proposes new two designs for aggregates cooling systems for various production rate demands. Conveyor system for small to moderate production rates and rotating drum for high production rates. Simulation of the heat flow during the cooling process over the conveyor and through the drum are analyzed with...

  6. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  7. Teleporting an unknown quantum state with unit fidelity and unit probability via a non-maximally entangled channel and an auxiliary system

    Science.gov (United States)

    Rashvand, Taghi

    2016-08-01

    We present a new scheme for quantum teleportation that one can teleport an unknown state via a non-maximally entangled channel with certainly, using an auxiliary system. In this scheme depending on the state of the auxiliary system, one can find a class of orthogonal vectors set as a basis which by performing von Neumann measurement in each element of this class Alice can teleport an unknown state with unit fidelity and unit probability. A comparison of our scheme with some previous schemes is given and we will see that our scheme has advantages that the others do not.

  8. Solar-driven ejector-absorption cooling system

    International Nuclear Information System (INIS)

    The usage possibility of ejector-absorption cooling systems (EACSs) in Turkey using meteorological data has been investigated. This study also determines whether or not the required heat for the generator of an EACS can be obtained from solar energy in Turkey. There are two important reasons for the usage of EACSs in Turkey. One of them is that the production and use of the CFCs and HCFCs will be phased out a few years according to the Montreal Protocol, signed in 1987. The other is that Turkey is located between 36 deg. and 42 deg. N latitudes and has a typical Mediterranean climate. Therefore, Turkey has a high solar-energy potential, and the yearly average solar-radiation and the total yearly radiation period are 3.6 kW h/m2 day and ∼2610 h, respectively. Sixteen cities (Ordu, Tekirdag, Sakarya, Corum, Erzincan, Bursa, Balikesir, Afyon, Bingoel, Burdur, Konya, Nigde, Adiyaman, Hakkari, Anamur, Finike) were selected in Turkey for which the radiation data and sunshine-duration information have been collected since 2000. The required optimum collector-surface area was identified by using the meteorological data for maximum coefficient-of-performance (COPmax) conditions of the EACS operated with aqua-ammonia. In addition, the required minimum energy for the auxiliary heater was also calculated so that the system can be used throughout the year. It is shown that the heat-gain factor (HGF) varies in the range from 1.34 to 2.85 for all the seasons in the selected cities. The maximum HGF is 2.85 for Finike. According to the results obtained in this study, for 8 → 9 months (March-October), it is sufficient to have a collector surface-area of 4 m2 with high-performance refrigeration all over of Turkey. This study will provide guidance for the efficient utilisation of renewable energy sources in Turkey, which is heavily dependent upon imported energy sources, i.e. natural gas

  9. Preliminary design activities for solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  10. Venus Surface Power and Cooling System Design

    Science.gov (United States)

    Landis, Geoffrey A.; Mellott, Kenneth D.

    2004-01-01

    A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power

  11. Rankine-cycle solar-cooling systems

    Science.gov (United States)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  12. 46 CFR 61.20-3 - Main and auxiliary machinery and associated equipment, including fluid control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main and auxiliary machinery and associated equipment... SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Periodic Tests of Machinery and Equipment § 61.20-3 Main and auxiliary machinery and associated equipment, including fluid control...

  13. Solar Cooling System Using Solar-Driven Hybrid Chiller

    OpenAIRE

    HIRAI, Akira

    2012-01-01

    We developed an appropriate Absorption chiller to "Solar cooling system" in 2010. In addition, we added the improvement to the machine. "Solar cooling system" can be easily constructed with the machine. and, we constructed the demonstration plant, and verified the utility

  14. Solar heating and cooling systems design and development. [prototype development

    Science.gov (United States)

    1977-01-01

    The development of twelve prototype solar heating/cooling systems, six heating and six heating and cooling systems, two each for single family, multi-family, and commercial applications, is reported. Schedules and technical discussions, along with illustrations on the progress made from April 1, 1977 through June 30, 1977 are detailed.

  15. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m2. As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m2 and 36 W/m2, respectively

  16. The role of absorption cooling for reaching sustainable energy systems

    OpenAIRE

    Lindmark, Susanne

    2005-01-01

    The energy consumption is continuous to increase around the world and with that follows the demand for sustainable solutions for future energy systems. With growing energy consumption from fossil based fuels the threat of global warming through release of CO2 to the atmosphere increases. The demand for cooling is also growing which would result in an increased consumption of electricity if the cooling demand was to be fulfilled by electrically driven cooling technology. A more sustainable sol...

  17. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    International Nuclear Information System (INIS)

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases

  18. Sodium experiment on fully natural circulation systems for decay heat removal in Japan sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Fully natural circulation system is adopted in a decay heat removal system (DHRS) of Japan Sodium Cooled Fast Reactor (JSFR). The DHRS of JSFR consists of one unit of DRACS (direct reactor auxiliary cooling system), which has a dipped heat exchanger in the reactor vessel and two units of PRACS, which has a heat exchanger in a primary-side inlet plenum of IHX in each loop. In this study, the sodium experiments were conducted using a sodium test loop PLANDTL in order to investigate the effect of operation mode on transient behavior of thermal hydraulic in PRACS loop. The experimental results revealed the effect of increasing heat removal capacity of PRACS and the forced flow operation in PRACS loop on the thermal transient in the PRACS loop and natural circulation behavior of PRACS. (author)

  19. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  20. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  1. Prototype solar heating and combined heating cooling systems

    Science.gov (United States)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  2. Case Study of Indirect Adiabatic Cooling System in Historical Building

    OpenAIRE

    Brahmanis, A; Lešinskis, A; Krūmiņš, A

    2013-01-01

    The objective of the present study is to investigate the efficiency of indirect adiabatic chiller-based cooling system efficiency dependence of outdoor air humidity. The system is located in historical building, in temperate climate of Latvia.

  3. RF and Stochastic Cooling System of the HESR

    CERN Document Server

    Stassen, R; Schug, G; Stockhorst, H; Katayama, T; Thorndahl, L

    2012-01-01

    The High-Energy Storage Ring HESR (1.5-15 GeV/c) for antiprotons at the FAIR complex (Facility for Antiprotons and Ion Research) in Darmstadt (GSI) will have a dedicated stochastic cooling system not only during the experiments to fulfill the beam requirements, but also during the accumulation due to the postponed RESR. Here the cooperation of stochastic cooling with different barrier-bucket configurations is necessary for high accumulation efficiency. The latest hardware configurations and recent tests results of both the RFsystem with air-cooled cavities and the stochastic cooling based on slot-ring couplers will be presented.

  4. Start-up of a power unit of a thermal power plant auxiliary system with supply from a hydropower plant

    OpenAIRE

    Zbigniew Lubośny; Krzysztof Dobrzyński; Jacek Klucznik

    2013-01-01

    This article discusses the issues related to a power unit of a thermal power plant start-up with the use of a hydropower plant. Hydropower plant can supply and will enable start-up of auxiliary equipment in a power unit of a thermal power plant. Due to high capacity of auxiliary drives, startup of auxiliaries in a thermal power plant after blackout (and boiler shutdown) is not possible from emergency energy sources in the power plant. In such a case an external electricity source with high ca...

  5. Start-up of a power unit of a thermal power plant auxiliary system with supply from a hydropower plant

    Directory of Open Access Journals (Sweden)

    Zbigniew Lubośny

    2013-09-01

    Full Text Available This article discusses the issues related to a power unit of a thermal power plant start-up with the use of a hydropower plant. Hydropower plant can supply and will enable start-up of auxiliary equipment in a power unit of a thermal power plant. Due to high capacity of auxiliary drives, startup of auxiliaries in a thermal power plant after blackout (and boiler shutdown is not possible from emergency energy sources in the power plant. In such a case an external electricity source with high capacity is required.

  6. Solar residential heating and cooling system development test program

    Science.gov (United States)

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  7. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  8. Study of the circulation theory of the cooling system in vertical evaporative cooling generator

    Institute of Scientific and Technical Information of China (English)

    YU; Shunzhou; CAI; Jing; GUO; Chaohong

    2006-01-01

    The article briefly states the current development of evaporative cooling generator and its advantages comparing with generators of traditional cooling. Vertical evaporative cooling generator, which adopts Close-Loop-Self-Cycle with no-pump and free convection boil in the hollow stator bar, is one of the great developments in generator design. This article emphasizes the importance of cooling system in generator; expatiates the circulation theory in two aspects, energy and flow; and analyzes the essential reason,motivity and stability of Close-Loop-Self-Cycle. The article points out that the motivity of the circulation is the heat absorbed by coolant. After absorbing heat the coolant will have the ability of doing work because of the phase change. In another words, it is the buoyancy causing by density difference leads to the Close-Loop-Self-Cycle. This conclusion is validated by experimental data.

  9. Evaluation of two cooling systems under a firefighter coverall

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Wang, L.C.; Chou, S.N.; Huang, C.; Jou, G.T.; Daanen, H.A.M.

    2014-01-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10

  10. The performance of a mobile air conditioning system with a water cooled condenser

    Science.gov (United States)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  11. The Computer Simulation Of RSG-GAS Secondary Cooling System

    International Nuclear Information System (INIS)

    The safety operation of RSG-GAS extremely depends on the reliability of the system and its components. Since the RSG-GAS operation age has an enough old, the cooling system components have been degrading. In this age condition, the operation plan that burdening the cooling system should be carefully evaluated before the plan is executed. The safety way to evaluate the heavy burden operation plan is utilize the computer simulation. In the current study, computer simulation of secondary cooling system of RSG-GAS has been carried out by the CATHENA (Canadian Algorithm for THErmalhydraulics Network Analysis) code. The result of this simulation is the performance of the secondary cooling system as the thermal-hydraulics characteristics of the system at the burdening operation plan

  12. Turbine generator and its auxiliaries

    International Nuclear Information System (INIS)

    The turbine generator and its auxiliary systems in Tarapur Atomic Power Station (TAPS) have been performing well and further their performance and availability has increased due to timely assessment of the problems anticipated in the systems by a close co-ordination among the concerned staff. Continued efforts are on for further improvements. (author)

  13. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  14. The analysis of the functional role of man and machine in the control of a notional auxiliary feedwater system

    International Nuclear Information System (INIS)

    We will describe here the simulation of a moderately complex plant, i.e. the Auxiliary Feedwater System (AFWS) of a nuclear power plant, which has been developed for interacting with a cognitive model of operator in a simulation framework of man-machine system studies as well as with an external operator for verifying and validating the hypotheses of the theoretical model by experimental studies. In order to develop such simulation, which must be very flexible for satisfying the needs of interaction with an operator as well as with a cognitive model, a number of special conditions have been respected: the model of functional behaviour of the system has been extended to include the logic of control mechanisms, i.e. components, indicators and actuators; the control tasks for a number of sequences has been developed; the robustness of physical model has been tested in whole possible configuration of the plant; and finally, the interface of the simulation with the model for dynamic failures of components has also been granted. In this paper, these aspects of the deterministic model of the AFWS will be firstly presented in detail. Then, the interface of the plant simulation with an external user or with the cognitive model of the operator will be described focusing on the analysis of the control task. Finally, we will attempt to integrate our approach in an overall framework of taxonomy for studying human actions in complex work context

  15. Computer aided engineering for injection mould cooling system design

    OpenAIRE

    Moran, Niall

    1998-01-01

    The time taken in the cooling stage, of a typical injection moulding cycle, is a large factor in the productivity and efficiency of a plastic manufacturing process, and for this reason, must be minimised. In order to do this a cooling system is employed throughout the mould core. This thesis describes the development and implementation of a PC based analysis system that can be used to optimise the size and position of injection mould cooling systems. The software is fully ‘32-Bit’, operat...

  16. Inside-pipe hydrophobic coating method promoting dropwise condensation in a passive cooling system

    International Nuclear Information System (INIS)

    Submerged by large tsunami, active cooling system was not operated to cool down decay heat. Likewise, station black out can lead to severe accident so that the necessity of cooling system without requesting any electric power was stressed out. Passive Auxiliary Feedwater System(PAFS) is one of the passive cooling systems suggested by Korea Atomic Energy Research Institute(KAERI). It has hundreds of slightly inclined horizontal U-shaped pipes submerged in a large water pool. Under the accident circumstances, this system cools steam that comes from the steam generator into condensed water inside the pipes without any electric power. These pipes are made of stainless steel 304L, with the diameter of 50 mm, and the length of 8 m. The main heat transfer phenomenon inside a pipe is the condensation phenomenon. There are two modes of condensation: one is filmwise condensation(FWC) and the other is dropwise condensation(DWC). On a surface wetted by a liquid well, FWC occurs to form liquid film. The final goal of this study is to increase cooling capacity of passive safety system like PAFS. Up to now, the attempts to increase condensation heat transfer were limited to make finned tube. DWC which has higher heat transfer coefficient was only promoted on vertical plates or external pipes. By promoting DWC inside a pipe, condensation heat transfer will be fundamentally enhanced. In this paper, hydrophobic coating inside a pipe method will be presented for promoting DWC, and its condensation heat transfer performance will be evaluated by conducting condensation experiment on a vertical plate. The inside-pipe hydrophobic coating method was developed using Teflon, and it was checked that DWC was promoted by this method with visualization results. At the saturation pressure of 145kPa, average heat transfer coefficient for DWC was 53.3 kW/m''2/K, and that for FWC was 13.5 kW/m''2/K. Based on this results, it can be concluded that this coating method will

  17. Inside-pipe hydrophobic coating method promoting dropwise condensation in a passive cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Joo Won; Kang, Jun Young; Hwang, Kyoung Won; Park, Hyun Sun; Kiyofumi, Moriyama [POSTECH, Pohang(Korea, Republic of); Kim, Moo Hwan [Korea Institute of nuclear safety, Daejeon(Korea, Republic of)

    2015-05-15

    Submerged by large tsunami, active cooling system was not operated to cool down decay heat. Likewise, station black out can lead to severe accident so that the necessity of cooling system without requesting any electric power was stressed out. Passive Auxiliary Feedwater System(PAFS) is one of the passive cooling systems suggested by Korea Atomic Energy Research Institute(KAERI). It has hundreds of slightly inclined horizontal U-shaped pipes submerged in a large water pool. Under the accident circumstances, this system cools steam that comes from the steam generator into condensed water inside the pipes without any electric power. These pipes are made of stainless steel 304L, with the diameter of 50 mm, and the length of 8 m. The main heat transfer phenomenon inside a pipe is the condensation phenomenon. There are two modes of condensation: one is filmwise condensation(FWC) and the other is dropwise condensation(DWC). On a surface wetted by a liquid well, FWC occurs to form liquid film. The final goal of this study is to increase cooling capacity of passive safety system like PAFS. Up to now, the attempts to increase condensation heat transfer were limited to make finned tube. DWC which has higher heat transfer coefficient was only promoted on vertical plates or external pipes. By promoting DWC inside a pipe, condensation heat transfer will be fundamentally enhanced. In this paper, hydrophobic coating inside a pipe method will be presented for promoting DWC, and its condensation heat transfer performance will be evaluated by conducting condensation experiment on a vertical plate. The inside-pipe hydrophobic coating method was developed using Teflon, and it was checked that DWC was promoted by this method with visualization results. At the saturation pressure of 145kPa, average heat transfer coefficient for DWC was 53.3 kW/m''2/K, and that for FWC was 13.5 kW/m''2/K. Based on this results, it can be concluded that this coating method will

  18. Mini Vapour Cycle System For High Density Electronic Cooling Applications

    OpenAIRE

    Mancin, Simone; Zilio, Claudio; Rossetto, Luisa

    2012-01-01

    This paper reports the preliminary experimental results of a mini Vapour Cycle System (VCS) for electronic thermal management applications. The water cooled miniature scale refrigeration system uses R134a as working fluid and implements a new concept oil-free linear compressor prototype. In the range of operating test conditions investigated, the cooling capacity of the system varied from 46 to 310 W while the coefficient of performance (COP) ranged between 1.05 and 5.54. Particular attention...

  19. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  20. Cooling of advanced aircraft actuation systems

    OpenAIRE

    Gilson, Gareth M.

    2012-01-01

    Electrical machines for aerospace applications often operate close to the allowable thermal limits due to high power density requirements. The power density of electrical machines is generally dependent on the machine and thermal management design. At flight level, a reduced pressure exists which in turn results in more challenging thermal management. Aerospace electric machine manufacturers are often limited with respect to the implemented cooling mechanisms. That is, natural convection syst...

  1. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  2. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  3. CAREM 25: Suppression pool cooling and purification system

    International Nuclear Information System (INIS)

    The suppression pool cooling and purification system has the following main functions: purify and cool water from the suppression pool, cool and send water to the residual heat extraction system, and transfer water to the fuel element transference channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the suppression pool to the spray network, thus cooling and reducing pressure in the primary containment. The system has been designed in accordance with the requirements of the following standards: ANSI/ANS 52.1; ANSI/ANS 57.2; ANSI/ANS 56.2; ANSI/ANS 59.1; ANSI/ANS 58.3; ANSI/ANS 58.9; and ANSI/ANS 56.5. The design of the system fulfils all the assigned functions. (author)

  4. CAREM-25. Suppression Pool Cooling and Purification System

    International Nuclear Information System (INIS)

    The Suppression Pool Cooling and Purification System has the following main functions: purify and cool water from the Suppression Pool, cool and send water to the Residual Heat Extraction System, and transfer water to the Fuel Element Transference Channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the Suppression Pool to the spray network, thus cooling and reducing pressure in the primary containment.The system has been designed in accordance with the requirements of the following standards ANSI/ANS 52.1 [1], ANSI/ANS 57.2 [2], ANSI/ANS 56.2 [3], ANSI/ANS 59.1 [4] ANSI/ANS 58.3 [5], ANSI/ANS 58.9 [6], and ANSI/ANS 56.5 [7]. The design of the system fulfils all the assigned functions

  5. Optimal Scheduling of a Battery Energy Storage System with Electric Vehicles’ Auxiliary for a Distribution Network with Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2015-09-01

    Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.

  6. Solutions of system of P1 equations without use of auxiliary differential equations coupled

    International Nuclear Information System (INIS)

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  7. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  8. Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • An integrated thermoelectric generation-cooling system is analyzed numerically. • The system performance is improved through the geometric design. • The effects of contact resistance and heat convection on performance are considered. • With varied TEG length, the system performance depends on boundary conditions. • The study provides a useful insight into the design of integrated TEG–TEC systems. - Abstract: Geometric design of an integrated thermoelectric generation-cooling system is performed numerically using a finite element method. In the system, a thermoelectric cooler (TEC) is powered directly by a thermoelectric generator (TEG). Two different boundary conditions in association with the effects of contact resistance and heat convection on system performance are taken into account. The results suggest that the characteristics of system performance under varying TEG length are significantly different from those under altering TEC length. When the TEG length is changed, the entire behavior of system performance depends highly on the boundary conditions. On the other hand, the maximum distributions of cooling power and coefficient of performance (COP) are exhibited when the TEC length is altered, whether the hot surface of TEG is given by a fixed temperature or heat transfer rate. The system performance will be reduced once the contact resistance and heat convection are considered. When the lengths of TEG and TEC vary, the maximum reduction percentages of system performance are 12.45% and 18.67%, respectively. The numerical predictions have provided a useful insight into the design of integrated TEG–TEC systems

  9. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  10. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Science.gov (United States)

    2010-07-01

    ... Cooling Systems § 749.68 Hexavalent chromium-based water treatment chemicals in cooling systems. (a... distribution in commerce of hexavalent chromium-based water treatment chemicals for use in cooling systems. (d... holds hexavalent chromium-based water treatment chemicals for use in cooling systems. (6) Cooling...

  11. Preliminary design package for prototype solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  12. Costs and cost algorithms for dry cooling tower systems

    Energy Technology Data Exchange (ETDEWEB)

    Ard, P.A.; Henager, C.H.; Pratt, D.R.; Wiles, L.E.

    1976-09-01

    Costs were obtained and cast models prepared for the major components beyond the turbine exhaust flange of a dry cooling system using either water or ammonia as the intermediate heat exchange fluid. (LCL)

  13. Gas-cooled Generation IV systems. VHTR and GFR

    International Nuclear Information System (INIS)

    In this presentation author deals with the development of nuclear reactor type of The Very High Temperature system (VHTR), the Gas-cooled fast reactor (GFR). Some construction parameters are presented.

  14. Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates

    OpenAIRE

    Feng, Jingjuan; Bauman, Fred

    2013-01-01

    Thermally activated building systems (TABS) are gaining popularity as a potentially energy efficient strategy for conditioning buildings. These systems can use large surfaces for heat exchange, and the temperature of the cooling water can be only a few degrees lower than the room air temperature. This small temperature difference allows the use of alternative cooling sources, for example, indirect/direct evaporative cooling, to possibly eliminate refrigerant cooling to reduce energy consumpti...

  15. Cooling systems addendum: capital and total generating cost studies

    International Nuclear Information System (INIS)

    These studies present the capital and total generating costs for alternate cooling systems designed for six power plants--1200 MWe (pressurized water reactor, boiling water reactor, high sulfur coal-fired, low sulfur coal-fired) plants and 800 MWe (low-sulfur coal-fired and high-sulfur coal-fired) plants. In these base-capital cost studies, all of the plants are designed using mechanical-draft evaporate towers. Alternate cooling systems evaluated include: once-through, fan-assisted natural-draft towers, and natural-draft towers. These alternative cooling systems represent viable designs from both an economic and engineering standpoint. The estimated total base construction costs for the six plants incorporating the alternate cooling systems are summarized. Capital cost and fuel cost vary with each cooling system as compared to the base case; i.e., mechanical-draft evaporative towers. The once-through cooling systems have the lowest capital cost of the alternate systems evaluated

  16. A condensation heat transfer model for nearly horizontal tubes of the Passive Auxiliary Feedwater System in APR+

    International Nuclear Information System (INIS)

    A new condensation heat transfer model based on the flow regime in the nearly horizontal tube has been developed for the Passive Auxiliary Feed-water System (PAFS) of Korean Advanced Power Reactor Plus (APR+). This study focused on the stratified flow in horizontal tubes in which two different heat transfer mechanisms are involved. The void fraction was determined from the 1-D separated flow model (SFM) which incorporates closure relations for shear stress defined by single-phase based expressions and geometric relations for a concave interface using the eccentric circles. The wetted angle proposed by Hart's correlation (1989) was used to classify flow regimes into annular, stratified-wavy and stratified-smooth flow. The new film condensation heat transfer correlation based on Nusselt's integral analysis (1916) was proposed to predict the heat transfer coefficient affected by the vapor flow on the upper portion of tube in the stratified flow. Furthermore, the convective heat transfer correlation for single-phase heat transfer was used to predict the heat transfer coefficient for condensate flowing on the entire perimeter of annular flow and the bottom of the stratified flow. Both heat transfer correlations use Reynolds number based on the phasic actual velocities and geometric variables obtained from SFM. Finally, the new condensation heat transfer model package was evaluated against available experimental data for water and it showed good results. (author)

  17. BIOFEAT: Biodiesel fuel processor for a vehicle fuel cell auxiliary power unit. Study of the feed system

    Science.gov (United States)

    Sgroi, M.; Bollito, G.; Saracco, G.; Specchia, S.

    An integrated auxiliary power unit (APU) based on a 10 kW e integrated biodiesel fuel processor has been designed and is being developed. Auto-thermal reforming (ATR) and thermal cracking (TC) were considered for converting the fuel into a hydrogen-rich gas suitable for PEM fuel cells. The fuel processor includes also a gas clean-up system that will reduce the carbon monoxide in the primary processor exit gas to below 10 ppm via a new heat-integrated CO clean-up unit, based on the assembly of catalytic heat exchange plates, so as to meet the operational requirements of a PEMFC stack. This article is devoted to the study and selection of the proper feed strategy for the primary fuel processor. Different pre-treatment and feed alternatives (e.g. based on nozzles or simple coils) were devised and tested for the ATR processors, which turned out to be the preferred primary processing route. A nozzle-based strategy was finally selected along with special recommendations about the constituent materials and the operating procedures to be adopted to avoid coking and nozzle corrosion as well as to allow a wide turn down ratio.

  18. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  19. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  20. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    International Nuclear Information System (INIS)

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  1. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  2. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  3. A microspray-based cooling system for high powered LEDs

    International Nuclear Information System (INIS)

    Highlights: • Microspray-based cooling system for the thermal management of LEDs. • The spray exited the nozzle using piezo-electric micropumping. • The effect of cooling in a non-boiling regime was quantitatively studied. - Abstract: We propose a microspray-based cooling system for the thermal management of high-power, light emitting diodes (LEDs). Experiments were performed by applying a single microspray to a single and a four LED system. The spray exited the nozzle using piezo-electric micropumping. The effect of cooling in a non-boiling regime was quantitatively studied within a range of relevant operating parameters. Furthermore, both μPIV flow visualizations, infrared thermal image observation and flow field measurements were first made to investigate the heat transfer mechanisms involved in this complex process

  4. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    OpenAIRE

    Dezfouli, M. M. S.; Mat, S.; G. Pirasteh; Sahari, K. S. M.; K. Sopian; M.H. Ruslan

    2014-01-01

    A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-st...

  5. Solar heating and cooling system design and development

    Science.gov (United States)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  6. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  7. Prospects for utilisation of solar driven ejector-absorption cooling system in Turkey

    International Nuclear Information System (INIS)

    Solar assisted refrigeration appears to be a promising alternative to the conventional electrical driven units. The main advantages of solar assisted refrigeration systems concern the reduction of peak loads for electricity utilities, the use of zero ozone depletion impact refrigerants, the decreased primary energy consumption and decreased global warming impact. The main focus of this study is to investigate usage possibility of ejector-absorption cooling system (EACS) in Turkey. This study determines whether or not required heat for generator of EACS can be obtained from solar energy in Turkey. There are two important reasons for the utilisation of EACSs in Turkey. One of them is that the production and use of the CFCs and HCFCs will be phased out in a few years according to Montreal Protocol, adopted in 1987. The other is that Turkey has high solar energy potential because of its location in the northern hemisphere with latitudes 36-42 deg. N and longitudes 26-45 deg. E and the yearly average solar radiation is 3.6 kW h/m2 day, and the total yearly radiation period is ∼2610 h. For analysis, 17 cities were selected in different regions of Turkey in which the radiation data and sunshine duration information have been collected since 2000. By using the meteorological data, it was aimed that required optimum collector surface area for maximum coefficient of performance (COPmax) conditions of EACSs operated with aqua-ammonia was defined. In addition, required minimum energy for auxiliary heater was calculated so that the system can be used throughout the year. It was found that the heat gain factor (HGF) varies in the range from 0.5 to 2.68 for the all the seasons in the selected cities. The maximum HGF of about 2.68 was obtained for Van in July. This study shows that there is a great potential for utilisation of solar cooling system for domestic heating/cooling applications in Turkey

  8. Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft

    Science.gov (United States)

    Youn, B.; Mills, A. F.

    1995-01-01

    Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.

  9. Design, construction, and testing of the Colorado State University Solar House I heating and cooling system. United States special format report

    Energy Technology Data Exchange (ETDEWEB)

    Loef, G.O.G.; Ward, D.S.

    1976-06-01

    The primary objective of the project is the design, construction, testing, and evaluation of a practical system for utilizing solar energy to drive heating, cooling, and domestic hot water subsystems, supplemented as necessary with auxiliary fuel. System design was accomplished during the first five months (September 1973 to January 1974) and construction completed during the following five month period (February to June 1974). This report details the evaluation of the system's performance during the period 1 September 1974 through 31 August 1975. Efforts are now underway to modify and improve the performance of the solar system, and conduct a comparative evaluation of the original design and the modified system. (WDM)

  10. Simulation of an active cooling system for photovoltaic modules

    Science.gov (United States)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  11. A parametric study of solar operated cooling system

    International Nuclear Information System (INIS)

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  12. Auxiliary verbs in Dinka

    DEFF Research Database (Denmark)

    Andersen, Torben

    2007-01-01

    Dinka, a Western Nilotic language, has a class of auxiliary verbs which is remarkable in the following four respects: (i) It is unusually large, comprising some 20 members; (ii) it is grammatically homogeneous in terms of both morphology and syntax; (iii) most of the auxiliary verbs correspond to...

  13. New adsorption chillers for CHCP or solar cooling system technology

    OpenAIRE

    Petersen, Stefan; Beil, Alexander; Hennrich, Christian; Lanser, Wolfgang; Hüls, Walther Guido; Stefan, Natzer

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] Sorption cooling technologies are well known as best practice energy efficient cooling supplying apparatus where heat as driving source is delivered by waste heat, trigeneration systems,...

  14. Integrated numerical methods for hypersonic aircraft cooling systems analysis

    Science.gov (United States)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1992-01-01

    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  15. Support on water chemistry and processes for nuclear power plant auxiliary systems

    International Nuclear Information System (INIS)

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D2O/H2O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D2O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  16. Cost Effective, High Efficiency Integrated Systems Approach To Auxiliary Electric Motors

    Energy Technology Data Exchange (ETDEWEB)

    Roy Kessinger; Kanchan Angal; Steve Brewer; Steve Kraihanzel; Lenny Schrank; Jason Wolf

    2003-07-15

    The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

  17. Evaluation of two cooling systems under a firefighter coverall.

    Science.gov (United States)

    Teunissen, Lennart P J; Wang, Li-Chu; Chou, Shih-Nung; Huang, Chin-Hsien; Jou, Gwo-Tsuen; Daanen, Hein A M

    2014-11-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10 min recovery in hot conditions, while physiological and perceptual parameters were measured. No differences were observed in heart rate and rectal temperature, but scapular skin temperature and fluid loss were lower using the perfused vest. Thermal sensation was cooler for the perfused vest than for the other conditions, while the cool pad vest felt initially cooler than control. However, comfort and RPE scores were similar. We conclude that the cooling effect of both tested systems, mainly providing a (temporally) cooler thermal sensation, was limited and did not meet the expectations. PMID:24798511

  18. The RF System for the International Muon Ionisation Cooling Experiment

    CERN Document Server

    Ronald, K.; Dick, A.J.; Speirs, D.C.; Moss, A.; Grant, A.; White, C.; Griffiths, S.; Stanley, T.; Li, D.; DeMello, A.J.; Virostek, S.; Moretti, A.; Pasquinelli, R.; Peterson, D.; Schultz, R.; Volk, J.; Popovic, M.; Torun, Y.; Hanlet, P.; Alsari, S.; Long, K.; Pasternak, J.; Hunt, C.; Summers, D.; Luo, T.; Smith, P.J.

    2014-01-01

    The International Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the effectiveness of ionisation cooling to reduce the phase space footprint of a charged particle beam, principally to allow the subsequent acceleration of muons for next generation colliders and/or neutrino factories. The experiment (and indeed any subsequent accelerator cooling channel based on the same principles) poses certain unusual requirements on its RF system, whilst the precision measurement of the ionisation cooling process demands special diagnostics. This paper shall outline the key features of the RF system, including the low level RF control, the power amplifier chain, distribution network, cavities, tuners and couplers, many parts of which are required to operate in a high magnetic field environment. The RF diagnostics which, in conjunction with the other MICE diagnostics, shall allow detailed knowledge of the amplitude and phase of the acceleration field during the transit of each individual muon will also ...

  19. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    University of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical...

  20. Safety analysis and justification for modification of auxiliary feed-water system in Daya Bay Nuclear Power Plant

    International Nuclear Information System (INIS)

    The major feed-water line break accident is re-analyzed, which is based on Guangdong Daya Bay nuclear power station final safety analysis report, to justify the impacts of the decreasing of auxiliary feed-water flow rate on the safety margin in Daya Bay. The results showed that the accident analysis can meet the demands of acceptance criteria with the auxiliary feed-water flowrate decreasing from 45 m3/h to 41.8 m3/h, and enough safety margin is still retained

  1. Comparative Assessment of an Innovative Dry-Cooled CSP System

    OpenAIRE

    Poullikkas, Andreas; Hadjipaschalis, Ioannis; Kourtis, George

    2013-01-01

    A comparative optimization assessment is carried out in order to identify the competitiveness of an innovative modular air-cooled condenser (MACC) system in relation to conventional water- or air-cooled condensers. Specifically, the technoeconomic performance of the combined cycle gas turbine (CCGT) technology, the parabolic trough concentrated solar power (CSP) technology, and the solar tower CSP technology are compared when all are integrated (a) with a MACC condenser of an optimum tube geo...

  2. Cooling systems for the lu-10 accelerating section

    International Nuclear Information System (INIS)

    Parameters and design of the cooling system of the accelerating section for industrial high power linac are given. It is shown that the heating of the outer surface of the accelerating section constitutes 1 degree C at average r.f.-power of 30 kW and cooling water flow of 80 l/min. Thermal deformations have little effect on the microwave-characteristics of the accelerating structure

  3. Definition of an auxiliary processor dedicated to real-time operating system kernels

    Science.gov (United States)

    Halang, Wolfgang A.

    1988-01-01

    In order to increase the efficiency of process control data processing, it is necessary to enhance the productivity of real time high level languages and to automate the task administration, because presently 60 percent or more of the applications are still programmed in assembly languages. This may be achieved by migrating apt functions for the support of process control oriented languages into the hardware, i.e., by new architectures. Whereas numerous high level languages have already been defined or realized, there are no investigations yet on hardware assisted implementation of real time features. The requirements to be fulfilled by languages and operating systems in hard real time environment are summarized. A comparison of the most prominent languages, viz. Ada, HAL/S, LTR, Pearl, as well as the real time extensions of FORTRAN and PL/1, reveals how existing languages meet these demands and which features still need to be incorporated to enable the development of reliable software with predictable program behavior, thus making it possible to carry out a technical safety approval. Accordingly, Pearl proved to be the closest match to the mentioned requirements.

  4. Thermal management systems for cooling nuclear reactor during emergency

    International Nuclear Information System (INIS)

    This paper discusses two different thermal management systems for nuclear reactor during emergency situation. First system will provide safer and reliable heat pipe based emergency core cooling system (ECCS) for nuclear-reactor, with initial 10 sec gravity feed water for accelerated cooling response. The designed loop type heat pipe ECCS is composed of cylindrical evaporator with 62 vertical tubes, each 150 mm diameter and 6 m length, mounted around the circumference of nuclear fuel assembly and 21 m x 10 m x 5 m naturally cooled finned condenser installed outside the primary containment. Proposed ECCS will be able to cool down core after reactor shutdown from 282degC to below 250degC within 4.3 hours of shutdown thereby providing safer environment to nuclear power plants. Second system proposes debris cooling system for nuclear reactor chamber, based on open air Bryton cycle. Such a system will provide cleaner and safer system for the nuclear reactor chamber after accident. (author)

  5. Effect of input power on cooling property of a thermoacoustic cooling system with diameter-expanded prime movers

    Science.gov (United States)

    Ueno, So; Sakamoto, Shin-ichi; Orino, Yuichiro; Wada, Takahiro; Inui, Yoshitaka; Watanabe, Yoshiaki

    2016-07-01

    We studied a thermoacoustic cooling system driven at low temperatures to make practical use of the system. Aiming to reduce the driving temperature of the thermoacoustic system, we developed a loop-tube-type thermoacoustic system with diameter-expanded two-stage prime movers, i.e., a heat-to-sound transducer. The system drove at 67 °C. Additionally, we developed a prototype for a thermoacoustic cooling system with a diameter-expanded two-stage prime mover. In the experiment, the cooling point temperature was decreased by 4.4 °C from room temperature, i.e., 20 °C. To improve the cooling performance of the prototype thermoacoustic cooling system, we experimentally investigated the effect of increasing the input power on the cooling performance.

  6. A spacecraft cooling system for a charged coupled device

    Science.gov (United States)

    Walker, Mary S.; Tulkoff, Philip

    1986-01-01

    This paper describes the thermal analysis, design, and testing of a dedicated cooling system for a Spartan spacecraft payload. A simple reliable design that requires minimum power consumption and minimum weight was developed. The payload has a CCD detector that must be maintained at a temperature of approximately -40 C or colder. The cooling system consists of a fin radiator, dual redundant heat pipes, and a thermal electric device (TED). The system was analytically modeled through the use of the Simplified Shuttle Payload Thermal Analyzer (SSPTA) computer program. A thermal test of the system simulating flight conditions was conducted to correlate the computer model and verify performance specifications.

  7. Inhibitor analysis for a solar heating and cooling system

    Science.gov (United States)

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  8. Emergency reactor core cooling system of BWR type reactor

    International Nuclear Information System (INIS)

    The present invention provides an emergency reactor core cooling system which can reduce a capacity of a power source required upon occurrence of emergency, extending an start-up time of an emergency reactor core cooling system (ECCA) to provide a plant endurable to a common factor accident and can provide time margin up to the start-up time. Namely, the system of the present invention comprises a division I equipped with an isolation condenser (IC), an after-heat removing system (low pressure system)(LPFL/RHR) and an emergency gas turbine generator (GT), a division II equipped with a diesel driving water injection system (high pressure system)(HDIS), LPFL/RHR, and GT, and a division III equipped with a reactor isolation time cooling system (high pressure system)(ARCIC), LPFL/RHR and GT. With such a constitution, since the IC, HDIS and ARCIC are used in combination as a high pressure system, an electromotive pump required to be operated upon high pressure state can be saved. In addition, if a static reactor cooling system (PCCS) is adopted and is provided with a back-up function for LPFL/RHR with respect to heat removal of the container upon occurrence of an accident, the countermeasure for occurrence of severe accidents can be enhanced. (I.S.)

  9. Emergency cooling system for nuclear reactors

    International Nuclear Information System (INIS)

    Upon the occasion of loss of coolant in a nuclear reactor as when a coolant supply or return line breaks, or both lines break, borated liquid coolant from an emergency source is supplied in an amount to absorb heat being generated in the reactor even after the control rods have been inserted. The liquid coolant flows from pressurized storage vessels outside the reactor to an internal manifold from which it is distributed to unused control rod guide thimbles in the reactor fuel assemblies. Since the guide thimbles are mounted at predetermined positions relative to heat generating fuel elements in the fuel assemblies, holes bored at selected locations in the guide thimble walls, sprays the coolant against the reactor fuel elements which continue to dissipate heat but at a reduced level. The cooling water evaporates upon contacting the fuel rods thereby removing the maximum amount of heat (970 BTU per pound of water) and after heat absorption will leave the reactor in the form of steam through the break which is the cause of the accident to help assure immediate core cooldown

  10. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  11. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  12. The Straw Cooling System in the ATLAS TRT

    CERN Document Server

    Godlewski, J

    2002-01-01

    This technical note deals with the straw cooling system for the TRT End-caps in the ATLAS detector. The combination of a high gas flow requirement and small gas volumes yield unfavourable properties in terms of control stability. Early experiments on a prototype of the final cooling system, showed that pressure losses in the gas distribution lines must be decreased to fulfil the pressure control requirements. One part of this note is devoted to a cfd analysis of a critical component, an elbow duct, in the gas distribution line. To enable analyses of the overall cooling system dynamics, generic simulation components were created and applied in a simulation of the prototype cooling system. The simulation was verified by an equivalent experiment on the prototype cooling system. The manifolds that distribute and collect the gas in the group-of-wheels are dealt with in the last chapter where results from a fluid mechanical model implemented in Matlab are compared to values obtained by experiments

  13. The convection cooling system of the Yakutsk permafrost seed repository

    Institute of Scientific and Technical Information of China (English)

    Vladimir N.Panin; Georgii P.Kuzmin

    2014-01-01

    Temperature is critical to maintaining seed viability under long term storage conditions. It has been common practice to use refrigeration systems to maintain required storage temperatures. A seed repository constructed in permafrost in Ya kutsk, Russia is the first seed storage facility that relies solely on natural cold. This paper describes the design and per formance of the cooling system of the repository. An innovative aspect of the cooling system is that it utilizes the patterns of temperature wave propagation in permafrost. Predicted and measured ground temperatures for the first year of operation are presented and analyzed. Results indicate that convection air cooling systems can be used to control the temperature regime in underground facilities in permafrost.

  14. A moving image system for cardiovascular nuclear medicine. A dedicated auxiliary device for the total capacity imaging system for multiple plane dynamic colour display

    International Nuclear Information System (INIS)

    The recent device of the authors, the dedicated multiplane dynamic colour image display system for nuclear medicine, is discussed. This new device is a hardware-based auxiliary moving image system (AMIS) attached to the total capacity image processing system of the authors' department. The major purpose of this study is to develop the dedicated device so that cardiovascular nuclear medicine and other dynamic studies will include the ability to assess the real time delicate processing of the colour selection, edge detection, phased analysis, etc. The auxiliary system consists of the interface for image transferring, four IC refresh memories of 64x64 matrix with 10 bit count depth, a digital 20-in colour TV monitor, a control keyboard and a control panel with potentiometers. This system has five major functions for colour display: (1) A microcomputer board can select any one of 40 different colour tables preset in the colour transformation RAM. This key also provides edge detection at a certain level of the count by leaving the optional colour and setting the rest of the levels at 0 (black); (2) The arithmetic processing circuit performs the operation of the fundamental rules, permitting arithmetic processes of the two images; (3) The colour level control circuit is operated independently by four potentiometers for four refresh image memories, so that the gain and offset of the colour level can be manually and visually controlled to the satisfaction of the operator; (4) The simultaneous CRT display of the maximum four images with or without cinematic motion is possible; (5) The real time movie interval is also adjustable by hardware, and certain frames can be freezed with overlapping of the dynamic frames. Since this system of AMIS is linked with the whole capacity image processing system of the CPU size of 128kW, etc., clinical applications are not limited to cardiovascular nuclear medicine. (author)

  15. Safety analysis of reactor's cooling system

    International Nuclear Information System (INIS)

    Results of the analysis of reactor's RBMK-1500 coolant system during normal operation mode, hydrodynamic testing and in the case of earthquake are presented. Analysis was performed using RELAP5 code. Calculations showed the most vulnerable place in the reactor's coolant system. It was found that in the case of earthquake the horizontal support system of drum separator could be damaged

  16. COMMIX analysis of AP-600 Passive Containment Cooling System

    International Nuclear Information System (INIS)

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  17. Integrating Externally Developed Systems For SNS Linac Cooling And Vacuum

    OpenAIRE

    Marroquin, Pilar

    2001-01-01

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks o...

  18. Integrating externally developed systems for SNS Linac cooling and vacuum.

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, P. S. (Pilar S.)

    2001-01-01

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks operating system and Experimental Physics and Industrial Control System (EPICS) front-end controller software. This paper describes the interface and integration issues driven by project, cooling system and vacuum system requirements and hardware selections.

  19. Integrating Externally Developed Systems For SNS Linac Cooling And Vacuum

    CERN Document Server

    Marroquin, F

    2001-01-01

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks operating system and Experimental Physics and Industrial Control System (EPICS) front-end controller software. This paper describes the interface and integration issues driven by project, cooling system and vacuum system requirements and hardware selections.

  20. Integrating Externally Developed Systems for SNS Linac Cooling and Vacuum

    Science.gov (United States)

    Marroquin, Pilar

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks operating system and Experimental Physics and Industrial Control System (EPICS) front-end controller software. This paper describes the interface and integration issues driven by project, cooling system and vacuum system requirements and hardware selections.

  1. Problems encountered in solar heating and cooling systems

    Science.gov (United States)

    Cash, M.

    1979-01-01

    Report discussing various experiences of workers at Marshall Space Flight Center in developing solar heating and cooling systems is presented. Presents compilation of problems and their resolutions which can assist designers of solar-energy systems and prevent repetition of errors.

  2. A System for Cooling inside a Glove Box

    Science.gov (United States)

    Sanz, Martial

    2010-01-01

    An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…

  3. Solar cooling system. Cooling with solar energy and hot air. Solare Kuehlanlage. Kuehlen mit Sonne und heisser Luft

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-06-01

    Engineers of Stuttgart Technical University are working on a solar cooling system with air-filled solar collectors. The first of these systems will start operation in July in a production hall in the Calw district. It will be Europe's first commercially used system for cooling and heating on the basis of solar energy and hot air.

  4. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant h...

  5. Operation practice and implications of circulating cooling water system of American nuclear power plants

    International Nuclear Information System (INIS)

    In this paper, the circulating cooling water system of nuclear power plants (NPP) in United States is summarized, and the operation practices of different cooling water systems, such as once-through, natural and mechanical draft cooling tower, cooling pond, and mixed cooling mode, used by several coastal and inland NPPs are given. Also, based on the related experiences, some suggestions for use of cooling water system in China NPPs are presented. (authors)

  6. Thermotunneling Based Cooling Systems for High Efficiency Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aimi, Marco; Arik, Mehmet; Bray, James; Gorczyca, Thomas; Michael, Darryl; Weaver, Stan

    2007-09-30

    GE Global Research's overall objective was to develop a novel thermotunneling-cooling device. The end use for these devices is the replacement of vapor cycle compression (VCC) units in residential and commercial cooling and refrigeration systems. Thermotunneling devices offer many advantages over vapor cycle compression cooling units. These include quiet, reliable, non-moving parts operation without refrigerant gases. Additionally theoretical calculations suggest that the efficiency of thermotunneling devices can be 1.5-2x that of VCC units. Given these attributes it can be seen that thermotunneling devices have the potential for dramatic energy savings and are environmentally friendly. A thermotunneling device consists of two low work function electrodes separated by a sub 10 nanometer-sized gap. Cooling by thermotunneling refers to the transport of hot electrons across the gap, from the object to be cooled (cathode) to the heat rejection electrode (anode), by an applied potential. GE Global Research's goal was to model, design, fabricate devices and demonstrate cooling base on the thermotunneling technology.

  7. Optimization of relay protection for a auxiliary power system%厂用电系统继电保护优化

    Institute of Scientific and Technical Information of China (English)

    李子峰

    2015-01-01

    基于对厂用电系统继电保护中存在的配置不完整、后备保护动作时间过长等问题的分析,提出了配置6 kV 母线专用主保护、在低压厂用电系统变压器高压侧增加限时电流速断保护装置、优化后备保护之间配合的方案,并以此对厂用电系统的继电保护配置进行了优化,以600 MW机组为例,进行了保护整定计算,结果表明,优化后的厂用电系统继电保护配置完整,保护范围合理,后备保护动作时间显著缩短。从而,提高了厂用电系统继电保护动作的快速性和厂用电系统运行安全性。%On the basis of analysis on some questions of relay protection in auxiliary power systems,like the imperfection in configuration and the actuation time is too long,a scheme was proposed for relay protection design,such as configuring a specialized main protection for 6 kV busbar,adding a time limited current fast-trip protection on the high-voltage side of low-voltage transformers in auxiliary power system,optimizing the cooperation of reserve protections and then designing the configuration of relay protection in auxiliary power system according to the optimizing rule.Taking a 600 MW unit as the example,settings calculation was carried out.The results proved that the configuration of relay protection in auxiliary power system is integrated perfectly due to the optimization,the coverage of protection is reasonable and the actuation time of reserve protection has been remarkably shortened.Thus,the actuation speed and security of the auxiliary power system are promoted.

  8. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  9. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  10. Design and Control of Hydronic Radiant Cooling Systems

    Science.gov (United States)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air

  11. The new cooling system of the IPR-RI reactor

    International Nuclear Information System (INIS)

    A 250 Kw cooling system was designed and installed to cool the demineralized water of the IPR-RI reactor (Triga Mark I). The primary circuit is made of 304 stainless steel. The secondary circuit is made of carbon steel, and the cooling tower of fiberglass.The heat exchanger is of the shell-and-tube type with four tube passes. The demineralized water (primary side) flows through the shell and the ordinary water flows inside the tubes. This arrangement allows cleaning of the tubes (straight tubes) by simply disassembling the top of the heat exchanger. The cooling system was designed to operate at a pool temperature of 40.7 deg C. Cold water returns to the reactor tank in summer days at a maximum temperature of 33.1 deg C. The water flow in the primary side can be varied from 28 m3/h to 32 m3/h. Interlocks and protection devices coupled to pressure gauges, temperature and water level meters provide a very safe and reliable performance to the cooling system. (author)

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  13. Solar cooling with concentrating photovoltaic/thermal (CPVT) systems

    International Nuclear Information System (INIS)

    Simultaneous production of electrical and high grade thermal energy is proposed with a concentrating photovoltaic/thermal (CPVT) system operating at elevated temperature. CPVT collectors may operate at temperatures above 100 oC, and the thermal energy can drive processes such as refrigeration, desalination and steam production. The performance and cost of a CPVT system with single effect absorption cooling are investigated in detail. The results show that under a wide range of economic conditions, the combined solar cooling and power generation plant can be comparable to, and sometimes even significantly better than, the conventional alternative

  14. Environmental aspects of the district cooling system application

    International Nuclear Information System (INIS)

    The use of air-conditioning equipment based on CFC and HCFC fluids has a direct influence on the occurrence of the greenhouse effect and damage of the ozone layer. Besides the obligatory shift og HCF cooling fluids, the reduction of such negative influences may also be achieved by the application of the district cooling system to the air-conditioning plants in the area. The paper includes example of the application of the district system, with positive effect regarding the ozone layer protection and greenhouse effect prevention. (Author)

  15. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Marquino, W.; Mistreanu, A.; Yang, J., E-mail: euqrop@hotmail.com [General Electric Hitachi Nuclear Energy, Wilmington, 28401 North Carolina (United States)

    2015-09-15

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  16. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    International Nuclear Information System (INIS)

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  17. Wind turbine generators having wind assisted cooling systems and cooling methods

    Energy Technology Data Exchange (ETDEWEB)

    Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  18. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  19. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  20. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  1. Prototype solar heating and cooling systems

    Science.gov (United States)

    1979-01-01

    A combination of monthly progress reports are presented. It contains a summary of activities and progress made from November 1, 1978, to February 28, 1979. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation.

  2. Energy Integrated Lighting-Heating-Cooling System.

    Science.gov (United States)

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  3. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  4. Continuous vapour adsorption cooling system with three adsorber beds

    International Nuclear Information System (INIS)

    In this paper, the design of a new solar operated adsorption cooling system with two identical small and one large adsorber beds, which is capable of producing cold continuously, has been proposed. In this system, cold energy is stored in the form of refrigerant in a separate refrigerant storage tank at ambient temperature. Silica gel–water is used as a working pair and system is driven by solar energy. The operating principle is described in details and its thermodynamic transient analysis is presented. Effect of COP and SCE for different adsorbent mass and adsorption/desorption time of smaller beds are discussed. Recommended mass and number of cycles of operation for smaller beds to attain continuous cooling with average COP and SCE of 0.63 and 337.5 kJ/kg, respectively are also discussed, at a generation, condenser and evaporator temperatures of 368 K, 303 K and 283 K, respectively. - Highlights: • A three-bed silica gel–water continuous adsorption cooling system is analyzed. • Cold energy is stored in the form of liquid refrigerant at ambient temperature. • The influence of mass of beds and cycle time on the system performance is discussed. • Sizing of the beds for a given cooling capacity is recommended

  5. France uses the sun to cool its wine: the Banyuls winery solar cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The engineering consultancy Tecsol was asked to design a cooling system for a winery that would limit the variations in temperature during the year. Tecsol proposed a solar system. The total investment cost amounted to nearly two million French Francs (300,000 euros), almost double the cost of a conventional air-conditioning system. However, because the solar system reduced the conventional energy needs of the warehouse by about 40%, the French Agency for Environment and Energy Management (ADEME) provided a 37% subsidy for its rational use of energy. The 'Solarclim' solar installation has three functions: it produces hot water via 693 vacuum tube collectors with a useful surface of 130 m{sup 2}. The collectors are fixed to the roof of the wine cellar, which has an angle of 15 deg. Heat from the collectors is transferred to a 1000-litre hot water storage tank; it produces chilled water using a lithium bromide absorption plant with a nominal cooling capacity of 52 kW. This is housed in the technical premises on the lowest level and is used in conjunction with a 180 kW open-circuit cooling tower on the north facade; and the third function combines air-conditioning and, when necessary, space heating. The installation has been operating for 12 years with no particular problems. The equipment is environmentally friendly. The solar heat source avoids CO{sub 2} emissions, the absorption machine does not use CFCs or HCFCs, and the system is totally silent. (UK)

  6. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.;

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from the...... air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...

  7. He-3 cooling systems for space

    Science.gov (United States)

    Kittel, P.

    1984-01-01

    The development of a space-compatible He(3) refrigerator would provide a significant improvement in several areas of research in the 0.3 to 1 K temperature range. There are several methods of achieving these temperatures on Earth: He(3) refrigeration, dilution refrigeration, and adiabatic demagnetization refrigeration. The progress of adapting He(3) refrigeration for use in space is described. Various cycles and possible embodiments of He(3) refrigerators are described. Also included is an analysis of the liquid confinement and liquid-vapor phase-separation system. A possible configuration is then analyzed. Finally, the results of ground-based experiments will be discussed.

  8. The Marginalized Auxiliary Particle Filter

    OpenAIRE

    Fritsche, Carsten; Schön, Thomas; Klein, Anja

    2010-01-01

    In this paper we are concerned with nonlinear systems subject to a conditionally linear, Gaussian sub-structure. This structure is often exploited in high-dimensional state estimation problems using the marginalized (aka Rao-Blackwellized) particle filter. The main contribution in the present work is to show how an efficient filter can be derived by exploiting this structure within the auxiliary particle filter. Based on a multisensor aircraft tracking example, the superior performance of the...

  9. Maximization of primary energy savings of solar heating and cooling systems by transient simulations and computer design of experiments

    International Nuclear Information System (INIS)

    In this paper, the simulation of the performance of solar-assisted heating and cooling systems is analyzed. Three different plant layouts are considered: (i) the first one consists of evacuated solar collectors and a single-stage LiBr-H2O absorption chiller; here in order to integrate the system in case of insufficient solar radiation, an electric water-cooled chiller is activated; (ii) configuration of the secondly considered system is similar to the first one, but the absorption chiller and the solar collector area are sized for balancing about 30% of the building cooling load only; (iii) the layout of the thirdly considered system differs from the first one since the auxiliary electric chiller is replaced by a gas-fired heater. Such system configurations also include: circulation pumps, storage tanks, feedback controllers, mixers, diverters and on/off hysteresis controllers. All such devices are modelled for maximizing the system energy efficiency. In order to simulate the systems' performance for dynamic heating/cooling loads, a single-lumped capacitance building is also modelled and implemented in the computer code. A cost model is also developed in order to calculate the systems' operating and capital costs. All the models and the relative simulations are carried out by TRNSYS. A design of experiment procedure is also included. By such tool the effects of the system operating parameters' variation on the relative energy efficiency are analyzed. In addition, the set of synthesis/design variables maximizing the system's energetic performance can be also identified. The annual primary energy saving is chosen as the optimization objective function, whereas collector slope, pump flows, set-point temperatures and tank volume are selected as optimizing system design variables. A case study was developed for an office building located in South Italy. Here, the energetic and the economic analysis for all the three considered system layouts are carried out. The

  10. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  11. Study On A Cooling System For Rotary Compressor

    OpenAIRE

    Zhang, Haifeng; Wang, Shuoyuan; Xie, Fei

    2012-01-01

    It is well known that the isothermal compression is an ideal process to consume least power for compressor. The isothermal compression can't be really reached, but can be approached by decreasing the discharge temperature during compression. For this purpose, a cooling system has been built in the paper. Firstly, an innovative circulation system has been built to absorb the heat generated by compression, which is segregated from the refrigeration circulation system. The principle and the stru...

  12. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines

  13. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Fong, K.F., E-mail: bssquare@cityu.edu.hk [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China); Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China)

    2011-08-15

    Highlights: {yields} A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. {yields} An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. {yields} Year-round cooling and energy performances were evaluated through dynamic simulation. {yields} Its annual primary energy consumption was lower than conventional system up to 36.5%. {yields} The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual

  14. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  15. Thermohydraulic safety issues for liquid metal cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, Gunter; Stefani, Frank [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Eckert, Sven

    2016-05-15

    In this paper recent developments of various techniques for single-phase and two-phase flow measurements with relevance to liquid metal cooled systems will be presented. Further, the status of the DRESDYN platform for large-scale experiments with liquid sodium is sketched.

  16. Cooling Water System Monitoring by Means of Mossbauer Spectroscopy

    International Nuclear Information System (INIS)

    Mossbauer spectroscopy have been applied to the analysis of corrosion sediments formed on mild steel coupons, which were placed in the different points of the Bourgas Petrochemical Plant Recilculating Cooling Water System. It was shown that the created corrosion products can successfully reflect the ambient water medium pollution to which the coupons were exposed

  17. Performance test of solar-assisted ejector cooling system

    KAUST Repository

    Huang, Bin-Juine

    2014-03-01

    A solar-assisted ejector cooling/heating system (SACH-2k) is built and test result is reported. The solar-driven ejector cooling system (ECS) is connected in series with an inverter-type air conditioner (IAC). Several advanced technologies are developed in SACH-k2, including generator liquid level control in ECS, the ECS evaporator temperature control, and optimal control of fan power in cooling tower of ECS. From the field test results, the generator liquid level control performs quite well and keeps stable performance of ejector. The ECS evaporator temperature control also performs satisfactorily to keep ejector performance normally under low or fluctuating solar radiation. The fan power control system cooling tower performs stably and reduces the power consumption dramatically without affecting the ECS performance. The test results show that the overall system COPo including power consumptions of peripheral increases from 2.94-3.3 (IAC alone) to 4.06-4.5 (SACH-k2), about 33-43%. The highest COPo is 4.5. © 2013 Elsevier Ltd and IIR. All rights reserved.

  18. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  19. Cooling System: Automotive Mechanics Instructional Program. Block 6.

    Science.gov (United States)

    O'Brien, Ralph D.

    The last of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the automotive cooling system at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  20. System design package for a solar heating and cooling system installed at Akron, Ohio

    Science.gov (United States)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  1. Steam Driven Triple Effect Absorption Solar Cooling System

    OpenAIRE

    Yabase, Hajime; Makita, Kazuyuki

    2012-01-01

    The authors propose a solar cooling system employing a steam-driven triple effect absorption chiller as a new technique for saving CO2 emission in the air conditioning field. The absorption chiller is a cooling machine using thermal energy as a drive source, and it is ideal for utilizing solar heat. In addition, by employing a triple effect absorption chiller of high efficiency, a high energy saving effect and a significant CO2 saving effect can be expected. As a result of studies, it has bee...

  2. Application of Hastelloy X in Gas-Cooled Reactor Systems

    DEFF Research Database (Denmark)

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.;

    1976-01-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...... extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between...... Hastelloy X and a number of other structural alloys are given....

  3. Air conditioning system with supplemental ice storing and cooling capacity

    Science.gov (United States)

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  4. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  5. Comparison of Air Cooled and Evaporatively Cooled Refrigerartion Systems – A Review Paper

    OpenAIRE

    V. V. Birangane; A.M.Patil

    2014-01-01

    The air cooled condensers are widely used as they are less costly and give satisfactory performance. But their performance is greatly affected by the temperature of cooling media which is ambient air. To deal this problem we can use water cooled condenser. But their cost and maintenance limit their use. The performance improvement of Air cooled condensers can be achieved by using evaporative cooling. This method may prove quiet effective and less costly. There are researchers ...

  6. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  7. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  8. Conceptual design modifications of the cooling system of MNSR reactor to increase its maximum continuous operation time

    International Nuclear Information System (INIS)

    To increase the maximum daily operation time of Miniature Neutron Source Reactor (MNSR) reactor several conceptual thermal hydraulic design modifications have been investigated aiming at the improvement of reactor cooling conditions to limit the increase of average core temperature. For this purpose an integrated full-scale thermal hydraulic-neutronics model using the advanced code ATHLET has been developed, tested and verified. The selected design modifications rely upon introducing auxiliary cooling systems operating in four different modes to cool pool water or reactor water using heat exchanger located either inside or outside of reactor pool. The simulation results show that the increase of continuous reactor operation time varies between 1 and 8 additional operation hours. The optimal results are achieved for the second and the fourth options that use external heat exchanger. The second option enables the extending of continuous operation time up to 10 h and the fourth up to 15 h, both at nominal reactor power and under the assumption of initial excess reactivity corresponding to the fresh reactor core. The analysis included the evaluation of xenon poisoning effect on the increase of operation time. It has been shown that its remarkable effect starts after the first 3 operation hours and increases continuously after that. For the best cooling options, where the average core temperature is being fixed at certain value resulting in complete elimination of reactivity feedback of cooling temperature, xenon effect becomes the exclusive limiting effect during the later operation phase. The analysis discuss also general aspects of technical realization for the different cooling options in relation with the specific features of MNSR and the preliminary engineering safety measures and operational radiological protection that have to be taken. The performed analysis and the achieved results during this work would make valuable contribution for updating the Safety

  9. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  10. Strategies for controlling residential combined cooling, heating and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2004-07-01

    Residential cogeneration technologies are considered to be excellent candidates for combined cooling, heating and power (CCHP) technology. The characteristics of CCHP technology were outlined in this paper along with control strategies required for meeting concurrent cooling, heating and electrical loads. The integration of these control strategies into a CCHP system controller model was also discussed. In particular, a model of a thermally-activated cooling (TAC) unit was developed at the CANMET Energy Technology Centre. The model was integrated into the ESP-r/HOT3000 residential simulation modelling tool. The TAC unit model was then combined with a previously developed fuel cell model in a residential HVAC network. The study showed that if a cogeneration system was coupled to a TAC unit such as an absorption chiller, any surplus heat could be exploited during the summer months to deliver useful cooling to the building using CCHP technology. The modelling results suggest that a CCHP controller can be compatible with improved, dynamic fuel-cells models. Future work will focus on including electrical storage systems and on-site renewable technologies such as photovoltaic panels. 6 refs., 2 tabs., 8 figs.

  11. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    Science.gov (United States)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  12. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  13. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  14. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    The MARS nuclear plant is a 600 MWth PWR with completely passive core safeguards. The most relevant innovative safety system is the Emergency Core Cooling System (ECCS), which is based on natural circulation, and on a passive-type activation that follows a core flow decrease, whatever was the cause (only one component, 400% redundant, is not static). The main thermal hydraulic transients occurring as a consequence of design basis accidents for the MARS plant were presented at the ICONE 3 Conference. Those transients were analyzed in the first stage, with the aim at pointing out the capability of the innovative ECCS to intervene. So, they included only a short-time analysis (extended for a few hundreds of seconds) and the well known RELAP 5 computer program was used for this purpose. In the present paper, the long-term analyses (extended for several thousands of seconds) of the same transients are shown. These analyses confirmed that the performance of the Emergency Core Cooling System of the MARS reactor is guaranteed also in long-term scenarios

  15. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H2O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C-1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H2O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  16. Leakage from biological shield cooling system in Pickering NGS A

    International Nuclear Information System (INIS)

    Over the past eight years, a number of leaks have developed in the Biological Shield Cooling (BSC) system of the Pickering NGS A reactors. The highest leak rate exists in Unit 4. The failure mechanism is not known, but corrosion and/or weld failure are suspected. This paper summarizes the concerns associated with the leaks and possible solutions. It should be noted that the BSC system is peculiar to Pickering A reactors only

  17. Method and system for powering and cooling semiconductor lasers

    Science.gov (United States)

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  18. CLASSIFICATION OF THE MGR POOL WATER TREATMENT AND COOLING SYSTEM

    International Nuclear Information System (INIS)

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) pool water treatment and cooling system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  19. Economic Performance Optimization of an Absorption Cooling System under Uncertainty

    OpenAIRE

    Gebreslassie, Berhane H.; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Boer, Dieter

    2009-01-01

    Abstract Many of the strategies devised so far to address the optimization of energy systems are deterministic approaches that rely on estimated data. However, in real world applications there are many sources of uncertainty that introduce variability into the decision-making problem. Within this general context, we propose a novel approach to address the design of absorption cooling systems under uncertainty in the energy cost. As opposed to other approaches that optimize the expe...

  20. Critical review of water based radiant cooling system design methods

    OpenAIRE

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01

    Interests in radiant cooling systems have increased in recent years. There is, however, no standardized method for radiant system design that is broadly accepted by the building industry. Through literature review, twelve surveys and eight interviews with leading practitioners, this paper summarizes the design methods documented in the guidelines, assesses the state of the industry, and identifies potential gaps and limitations in current design practice. The findings include: 1) design guide...

  1. Heat pipe cooling system with sensible heat sink

    Science.gov (United States)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  2. HEAT PIPE RADIATIVE COOLING SYSTEMS FOR SPACE OPTICAL SENSORS

    OpenAIRE

    Baturkin, Volodya

    2007-01-01

    The heat pipes application in passive radiative cooling system is considered on the base of the analysis of thermal balance of consecutive thermal elements in system „Sensor - heat pipe – radiator-space“. This analysis defines the points of main thermal attention – heat leakage from mounting place, heat exchange with external radiative surrounding, minimization of thermal resistance of conductors and interaction between these factors. The secularities of heat pipe application as a heat tra...

  3. Cooling the intact loop of primary heat transport system using shut down cooling system after events such as LOCA

    International Nuclear Information System (INIS)

    The purpose of this paper is to model the Shutdown Cooling System operation for CANDU 6 NPP in case of LOCA accident, using Flowmaster calculation code by delimiting models and setting calculation assumptions and input data for hydraulic analysis, and and assumptions for the calculation and input data for calculating thermal performance check heat exchangers that are part of this system. The Flowmaster V7.8 code provides system engineers with a powerful tool to investigate pressure surge, pressure drop, flow rate, temperature and system response times - removing the uncertainty from fluid flow systems. Flowmaster is a one-dimensional thermal-hydraulic calculation code for dimensioning, analyzing and verifying the pipeline systems operation. Each component of Flowmaster is a mathematical model for an equipment that is included in a facility. Selected components are connected via nodes in order to form a network, which constitutes a computerized model of the system. Analyzing the parameters of the cooling system for all cooling processes considered it was found that the values obtained for thermal-hydraulic parameters, as well as the duration up to reaching specified limits fall within the design values of the system. This document is made up of an abstract and the slides of the presentation

  4. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  5. Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae;

    2016-01-01

    Deep generative models parameterized by neural networks have recently achieved state-of-the-art performance in unsupervised and semi-supervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave the...... generative model unchanged but make the variational distribution more expressive. Inspired by the structure of the auxiliary variable we also propose a model with two stochastic layers and skip connections. Our findings suggest that more expressive and properly specified deep generative models converge...... faster with better results. We show state-of-the-art performance within semi-supervised learning on MNIST (0.96%), SVHN (16.61%) and NORB (9.40%) datasets....

  6. Startup time of closed loop spray cooling system

    International Nuclear Information System (INIS)

    Using water as coolant,a closed loop spray cooling system with a built-in condenser is established and the variation of startup time is measured dynamically. The optimized startup sequence for different modules is condenser, pump and heater. Under the optimized startup sequence,experimental investigation of the effect of operation parameters, such as cooling water flow rate, heating power, pump height and spray flow rate, on startup characteristics is made. The startup time decreases with the increase of the cooling water flow rate and spray flow rate. The descending order of influence of the factors is as follows: spray flow rate, cooling water flow rate, heating power, and relative height of pump. The startup time reduces by about 5 000 s when the spray flow rate increases from 10 mL/min to 35 mL/min. There exists a maximum of startup time with the variation of heating power. Under the same operation condition, the startup time of the closed loop system is 15% to 20% longer than that of the open one. (authors)

  7. Experimental exergoeconomic assessment of a desiccant cooling system

    International Nuclear Information System (INIS)

    Highlights: ► Assessing a novel desiccant cooling system exergoeconomically for the first time. ► Investigating dead state temperatures on efficiencies and irreversibilities. ► Correlating some thermoeconomic parameters with the dead state temperature. ► Changing the exergy efficiencies of the system from 36.40% to 31.08%. ► Ranging the ratio of thermodynamic loss rate to capital cost from 1.14 to 1.19 MW/USD. - Abstract: Desiccant cooling has become a well established technology in most parts of the world, especially recently in Turkey. The increased growth of the technology was caused by the contribution of refrigerants used in conventional cooling systems to the depletion of the ozone layer. This technology provides a tool to control humidity (moisture) levels in conditioned air spaces. In this study, a desiccant cooling system was designed, constructed and tested in Cukurova University, Adana, Turkey while it has been successfully operated since 2008. Exergy, cost, energy and mass (EXCEM) analysis was applied to this system for the first time to the best of the authors‘ knowledge. The relations between thermodynamic losses and capital costs were also parametrically investigated and illustrated in figures. Based on the overall system (OS) results, some components of the whole system, namely the electric heater unit, the expansion valve, the pump, the fresh air fan and the condenser fan were obtained to be inefficient. Particularly, the electric heater unit was important as its exergy loss rate (R.ex) value was 29.36 times greater than that of the OS

  8. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks

    International Nuclear Information System (INIS)

    The paper investigates different control strategies for the thermal storage management in SHC (Solar Heating and Cooling) systems. The SHC system under investigation is based on a field of evacuated solar collectors coupled with a single-stage LiBr–H2O absorption chiller; auxiliary thermal energy is supplied by a gas-fired boiler. The SHC is also equipped with a novel thermal storage system, consisting in a variable volume storage tank. It includes three separate tanks and a number of mixers and diverters managed by novel control strategies, based on combinations of series/parallel charging and discharging approaches. The aim of this component is to vary the thermal storage capacity as a function of the combinations of solar radiation availability and user thermal/cooling energy demands. The system allows one to increase the number of active tanks when the time shift between solar energy and user demand is high. Conversely, when this time shift is low, the number of active tanks is automatically reduced. In addition, when the solar energy in excess cannot be stored in such tanks, a heat exchanger is also used in the solar loop for producing DHW (Domestic Hot Water). The analysis is carried out by means of a zero-dimensional transient simulation model, developed by using the TRNSYS software. In order to assess the operating and capital costs of the systems under analysis, an economic model is also proposed. In addition, in order to determine the set of the synthesis/design variables which maximize the system profitability, a parametric analysis was implemented. The novel variable-volume storage system, in both the proposed configurations, was also compared with a constant-volume storage system from the energy and economic points of view. The results showed that the presented storage system allows one to save up to 20% of the natural gas used by the auxiliary boiler only for very high solar fractions. In all the other cases, marginal savings are achieved by the

  9. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  10. Characteristics of cooling water fouling in a heat exchange system

    International Nuclear Information System (INIS)

    This study investigated the efficiency of the physical water treatment method in preventing and controlling fouling accumulation on heat transfer surfaces in a laboratory heat exchange system with tap and artificial water. To investigate the fouling characteristics, an experimental test facility with a plate type heat exchange system was newly built, where cooling and hot water moved in opposite directions forming a counter-flow heat exchanger. The obtained fouling resistances were used to analyze the effects of the physical water treatment on fouling mitigation. Furthermore, the surface tension and pH values of water were also measured. This study compared the fouling characteristics of cooling water in the heat exchange system with and without the mitigation methods for various inlet velocities. In the presence of the electrode devices with a velocity of 0.5m/s, the fouling resistance was reduced by 79% compared to that in the absence of electrode devices

  11. Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    This thesis is devoted to the investigation of passive safety and inherent features of subcritical nuclear transmutation systems - accelerator-driven systems. The general objective of this research has been to improve the safety performance and avoid elevated coolant temperatures in worst-case scenarios like unprotected loss-of-flow accidents, loss-of-heat-sink accidents, and a combination of both these accident initiators. The specific topics covered are emergency decay heat removal by reactor vessel auxiliary cooling systems, beam shut-off by a melt-rupture disc, safety aspects from locating heat-exchangers in the riser of a pool-type reactor system, and reduction of pressure resistance in the primary circuit by employing bypass routes. The initial part of the research was focused on reactor vessel auxiliary cooling systems. It was shown that an 80 MWth Pb/Bi-cooled accelerator-driven system of 8 m height and 6 m diameter vessel can be well cooled in the case of loss-of-flow accidents in which the accelerator proton beam is not switched off. After a loss-of-heat-sink accident the proton beam has to be interrupted within 40 minutes in order to avoid fast creep of the vessel. If a melt-rupture disc is included in the wall of the beam pipe, which breaks at 150 K above the normal core outlet temperature, the grace period until the beam has to be shut off is increased to 6 hours. For the same vessel geometry, but an operating power of 250 MWth the structural materials can still avoid fast creep in case the proton beam is shut off immediately. If beam shut-off is delayed, additional cooling methods are needed to increase the heat removal. Investigations were made on the filling of the gap between the guard and the reactor vessel with liquid metal coolant and using water spray cooling on the guard vessel surface. The second part of the thesis presents examinations regarding an accelerator-driven system also cooled with Pb/Bi but with heat-exchangers located in the

  12. Development of Personalized Radiant Cooling System for an Office Room

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Vaibhav [Malaviya National Institute of Technology (MNIT), Jaipur, India; Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    The building industry nowadays is facing two major challenges increased concern for energy reduction and growing need for thermal comfort. These challenges have led many researchers to develop Radiant Cooling Systems that show a large potential for energy savings. This study aims to develop a personalized cooling system using the principle of radiant cooling integrated with conventional all-air system to achieve better thermal environment at the workspace. Personalized conditioning aims to create a microclimatic zone around a single workspace. In this way, the energy is deployed only where it is actually needed, and the individual s needs for thermal comfort are fulfilled. To study the effect of air temperature along with air temperature distribution for workspace, air temperature near the vicinity of the occupant has been obtained as a result of Computational Fluid Dynamics (CFD) simulation using FLUENT. The analysis showed that personalized radiant system improves thermal environment near the workspace and allows all-air systems to work at higher thermostat temperature without compromising the thermal comfort, which in turn reduces its energy consumption.

  13. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    Science.gov (United States)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  14. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    Science.gov (United States)

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  15. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  16. Interaction between retrofittable and existing emergency cooling systems in BWRs

    International Nuclear Information System (INIS)

    The concept of an autarkic and retrofittable residual heat removal system, which utilizes ambient air as the alternative ultimate heat sink, is presented with respect to boiling water reactors (BWR). The cooling system is self-propelled by an integrated Brayton cycle, which is driven by the temperature difference between the primary circuit and the ambient air. Supercritical carbon dioxide (sCO2) is employed as the working fluid of the heat removal system. Due to its specific fluid properties, the system can be designed extremely compact, which facilitates the integration into existing safety classified buildings. In addition to the self-propelling heat removal system, a Reactor Core Isolation Cooling (RCIC) system is anticipated, as standardly implemented in some BWR concepts. A typical RCIC consists of a steam-driven turbo-pump, which injects water from the wetwell into the reactor pressure vessel, powered by primary steam. The interaction and capability of the two above mentioned systems are analyzed for a loss of ultimate heat sink scenario with a concurrent station blackout. The scenario is exemplarily simulated with the thermo-hydraulic computer code ATHLET for a generic BWR with 3840 MW thermal power, for a time period of 72 hours. The synergy of steam-driven systems for coolant injection, the Reactor Core Isolation Cooling system, as well as residual heat removal, the Turbo Compressor System, is demonstrated. The systems’ performance and the influence of the overall behavior of the BWR are discussed. The presented study shows that the combination of heat removal and coolant injection ensures the fundamental safety functions even during certain beyond design basis scenarios, such as a Station Blackout (SBO) and / or Loss of Ultimate Heat Sink (LUHS) independently for at least three days. Only very slight interferences could be detected at the beginning of the scenario, as the depressurization of the primary circuit through the RCIC reduces the heat removal

  17. Application of small diameter nozzles systems for cyclotron targets cooling

    International Nuclear Information System (INIS)

    In the present work estimating calculations of cadmium targets cooling conditions under proton beam irradiation are cited. Irradiation conditions and targets parameters are as follows: a) proton initial energy - 16 MeV, beam current - 20 μA; b) metallic cadmium layer thickness - 660 μm; target diameter - 9 mm, it squire - 0.64 cm2; c) vanadium substrate thickness, on which the cadmium layer is fixed - 200 μm; d) proton energy losses in the target - 15 MeV, heat release in the cadmium layer - 300 W, heat release on the target surface - 471 W·cm-2; e) proton energy losses in the substrate - 1 MeV, heat release in vanadium - 15 W. For the calculation the system of 7 nozzles was selected. It is noted, that cooling change by single jet of nozzle systems with small diameter provides to heat transfer coefficient increase and sharply reduces (into 3 times) water flow

  18. Oil cooling system for a gas turbine engine

    Science.gov (United States)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  19. Method and system for providing cooling for turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Victor John; Lacy, Benjamin Paul

    2016-08-16

    A system for providing cooling for a turbine component that includes an outer surface exposed to combustion gases is provided. A component base includes at least one fluid supply passage coupleable to a source of cooling fluid. At least one feed passage communicates with the at least one fluid supply passage. At least one delivery channel communicates with the at least one feed passage. At least one cover layer covers the at least one feed passage and the at least one delivery channel, defining at least in part the component outer surface. At least one discharge passage extends to the outer surface. A diffuser section is defined in at least one of the at least one delivery channel and the at least one discharge passage, such that a fluid channeled through the system is diffused prior to discharge adjacent the outer surface.

  20. Auxiliary building structures

    International Nuclear Information System (INIS)

    Five types of auxiliary structures are described such as were used during the construction of the Dukovany nuclear power plant, namely a portable staircase tower, a stable staircase tower, mobile tower scaffolding, mobile scaffolding on a crane track and a scaffold cradle. Basic technical data for all types of scaffolding are given. (Pu)