WorldWideScience

Sample records for autotrophic sulfide-oxidizing marine

  1. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges.

    Science.gov (United States)

    Lavy, Adi; Keren, Ray; Yu, Ke; Thomas, Brian C; Alvarez-Cohen, Lisa; Banfield, Jillian F; Ilan, Micha

    2018-02-01

    Sponges are benthic filter feeders that play pivotal roles in coupling benthic-pelagic processes in the oceans that involve transformation of dissolved and particulate organic carbon and nitrogen into biomass. While the contribution of sponge holobionts to the nitrogen cycle has been recognized in past years, their importance in the sulfur cycle, both oceanic and physiological, has only recently gained attention. Sponges in general, and Theonella swinhoei in particular, harbour a multitude of associated microorganisms that could affect sulfur cycling within the holobiont. We reconstructed the genome of a Chromatiales (class Gammaproteobacteria) bacterium from a metagenomic sequence dataset of a T. swinhoei-associated microbial community. This relatively abundant bacterium has the metabolic capability to oxidize sulfide yet displays reduced metabolic potential suggestive of its lifestyle as an obligatory symbiont. This bacterium was detected in multiple sponge orders, according to similarities in key genes such as 16S rRNA and polyketide synthase genes. Due to its sulfide oxidation metabolism and occurrence in many members of the Porifera phylum, we suggest naming the newly described taxon Candidatus Porisulfidus. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. SULFIDE OXIDATION UNDER OXYGEN LIMITATION BY A THIOBACILLUS-THIOPARUS ISOLATED FROM A MARINE MICROBIAL MAT

    NARCIS (Netherlands)

    VANDENENDE, FP; VANGEMERDEN, H

    1993-01-01

    The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under

  3. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  4. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly

  5. Parallel assessment of marine autotrophic picoplankton using flow cytometry and chemotaxonomy.

    Science.gov (United States)

    Tamm, Marju; Laas, Peeter; Freiberg, Rene; Nõges, Peeter; Nõges, Tiina

    2018-06-01

    Autotrophic picoplankton (0.2-2μm) can be a significant contributor to primary production and hence play an important role in carbon flow. The phytoplankton community structure in the Baltic Sea is very region specific and the understanding of the composition and dynamics of pico-size phytoplankton is generally poor. The main objective of this study was to determine the contribution of picoeukaryotic algae and their taxonomic composition in late summer phytoplankton community of the West-Estonian Archipelago Sea. We found that about 20% of total chlorophyll a (Chl a) in this area belongs to autotrophic picoplankton. With increasing total Chl a, the Chl a of autotrophic picoplankton increased while its contribution in total Chl a decreased. Picoeukaryotes play an important role in the coastal area of the Baltic Sea where they constituted around 50% of the total autotrophic picoplankton biomass. The most abundant groups of picoeukaryotic algae were cryptophytes (16%), chlorophytes (13%) and diatoms (9%). Picocyanobacteria were clearly dominated by phycoerythrin containing Synechococcus. The parallel use of different assessment methods (CHEMTAX and flow cytometry) revealed the share of eukaryotic and prokaryotic part of autotrophic picoplankton. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Cao, W.; Das, A.; Saren, G.; Jiang, M.; Zhang, H.; Yu, X.

    fixation is the biological process through which CO2 is converted to organic compounds. Apart from the ubiquitous reductive pentose phosphate cycle, prokaryotic al- ternatives for carbon fixation also exist (Bar-Even et al., 2012). There are two widely... for numerous metabolic goals, including energy conservation and the recycling of reduced electron carriers (Bar- Even et al., 2012). Apart from autotrophs, heterotrophic bacteria are known to fix carbon by anaplerotic reactions accounting up to 8% of bac...

  7. Sulfide oxidizing activity as a survival strategy in mangrove clam Polymesoda erosa (Solander, 1786)

    Digital Repository Service at National Institute of Oceanography (India)

    Clemente, S.; Ingole, B.S.; Sumati, M.; Goltekar, R.

    or by specific enzymes known as sulfide oxidases. During the process of bacterial sulfide oxidation, elemental sulfur, thiosulfate, and polysulfides can be formed as intermediate products, while sulfate is formed as an end product. The accumulation and... of sulfur-based symbioses in marine molluscs from a variety of habitats show that these animal-bacteria symbioses are not unique to hydrothermal vents but are a ubiquitous component of such hydrogen sulfide-rich habitats as anoxic basins (Felbeck et al...

  8. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    Science.gov (United States)

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  9. A physiologically based kinetic model for bacterial sulfide oxidation

    NARCIS (Netherlands)

    Klok, J.B.M.; Graaff, de C.M.; Bosch, van den P.L.F.; Boelee, N.C.; Keesman, K.J.; Janssen, A.J.H.

    2013-01-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was

  10. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Science.gov (United States)

    Bonilla-Findji, O.; Gattuso, J.-P.; Pizay, M.-D.; Weinbauer, M. G.

    2010-11-01

    A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP) was followed by maxima of bacterial respiration (BR) and production (BP). The trophic balance (heterotrophy vs. autotrophy) of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l-1 d-1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold), respiration (up to 4.5-fold) and growth efficiency (up to 2.9-fold) but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  11. Prevention of sulfide oxidation in sulfide-rich waste rock

    Science.gov (United States)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  12. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Directory of Open Access Journals (Sweden)

    O. Bonilla-Findji

    2010-11-01

    Full Text Available A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP was followed by maxima of bacterial respiration (BR and production (BP. The trophic balance (heterotrophy vs. autotrophy of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l−1 d−1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold, respiration (up to 4.5-fold and growth efficiency (up to 2.9-fold but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  13. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria.

    Science.gov (United States)

    Park, Byoung-Joon; Park, Soo-Je; Yoon, Dae-No; Schouten, Stefan; Sinninghe Damsté, Jaap S; Rhee, Sung-Keun

    2010-11-01

    The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and "Candidatus Nitrosopumilus maritimus" (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [(13)C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.

  14. Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis

    Directory of Open Access Journals (Sweden)

    Thomas E Hanson

    2013-12-01

    Full Text Available Previously, we presented data that indicated microbial sulfide oxidation would out-compete strictly chemical, abiotic sulfide oxidation reactions under nearly all conditions relevant to extant ecosystems (Luther et al., 2011. In particular, we showed how anaerobic microbial sulfide oxidation rates were several orders of magnitude higher than even metal catalyzed aerobic sulfide oxidation processes. The fact that biotic anaerobic sulfide oxidation is kinetically superior to abiotic reactions implies that nearly all anaerobic and sulfidic environments should host microbial populations that oxidize sulfide at appreciable rates. This was likely an important biogeochemical process during long stretches of euxinia in the oceans suggested by the geologic record. In particular, phototrophic sulfide oxidation allows the utilization of carbon dioxide as the electron acceptor suggesting that this process should be particularly widespread rather than relying on the presence of other chemical oxidants. Using the Chesapeake Bay as an example, we argue that phototrophic sulfide oxidation may be more important in many environments than is currently appreciated. Finally, we present methodological considerations to assist other groups that wish to study this process.

  15. Disguised as a sulfate reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    DEFF Research Database (Denmark)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa Jean Lehsau

    2017-01-01

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D...... of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane......-anchored nitrite reductase....

  16. Predominant Non-additive Effects of Multiple Stressors on Autotroph C:N:P Ratios Propagate in Freshwater and Marine Food Webs

    Science.gov (United States)

    Villar-Argaiz, Manuel; Medina-Sánchez, Juan M.; Biddanda, Bopaiah A.; Carrillo, Presentación

    2018-01-01

    A continuing challenge for scientists is to understand how multiple interactive stressor factors affect biological interactions, and subsequently, ecosystems–in ways not easily predicted by single factor studies. In this review, we have compiled and analyzed available research on how multiple stressor pairs composed of temperature (T), light (L), ultraviolet radiation (UVR), nutrients (Nut), carbon dioxide (CO2), dissolved organic carbon (DOC), and salinity (S) impact the stoichiometry of autotrophs which in turn shapes the nature of their ecological interactions within lower trophic levels in streams, lakes and oceans. Our analysis from 66 studies with 320 observations of 11 stressor pairs, demonstrated that non-additive responses predominate across aquatic ecosystems and their net interactive effect depends on the stressor pair at play. Across systems, there was a prevalence of antagonism in freshwater (60–67% vs. 47% in marine systems) compared to marine systems where synergism was more common (49% vs. 33–40% in freshwaters). While the lack of data impeded comparisons among all of the paired stressors, we found pronounced system differences for the L × Nut interactions. For this interaction, our data for C:P and N:P is consistent with the initial hypothesis that the interaction was primarily synergistic in the oceans, but not for C:N. Our study found a wide range of variability in the net effects of the interactions in freshwater systems, with some observations supporting antagonism, and others synergism. Our results suggest that the nature of the stressor pairs interactions on C:N:P ratios regulates the “continuum” commensalistic-competitive-predatory relationship between algae and bacteria and the food chain efficiency at the algae-herbivore interface. Overall, the scarce number of studies with even more fewer replications in each study that are available for freshwater systems have prevented a more detailed, insightful analysis. Our findings

  17. Predominant Non-additive Effects of Multiple Stressors on Autotroph C:N:P Ratios Propagate in Freshwater and Marine Food Webs

    Directory of Open Access Journals (Sweden)

    Manuel Villar-Argaiz

    2018-01-01

    Full Text Available A continuing challenge for scientists is to understand how multiple interactive stressor factors affect biological interactions, and subsequently, ecosystems–in ways not easily predicted by single factor studies. In this review, we have compiled and analyzed available research on how multiple stressor pairs composed of temperature (T, light (L, ultraviolet radiation (UVR, nutrients (Nut, carbon dioxide (CO2, dissolved organic carbon (DOC, and salinity (S impact the stoichiometry of autotrophs which in turn shapes the nature of their ecological interactions within lower trophic levels in streams, lakes and oceans. Our analysis from 66 studies with 320 observations of 11 stressor pairs, demonstrated that non-additive responses predominate across aquatic ecosystems and their net interactive effect depends on the stressor pair at play. Across systems, there was a prevalence of antagonism in freshwater (60–67% vs. 47% in marine systems compared to marine systems where synergism was more common (49% vs. 33–40% in freshwaters. While the lack of data impeded comparisons among all of the paired stressors, we found pronounced system differences for the L × Nut interactions. For this interaction, our data for C:P and N:P is consistent with the initial hypothesis that the interaction was primarily synergistic in the oceans, but not for C:N. Our study found a wide range of variability in the net effects of the interactions in freshwater systems, with some observations supporting antagonism, and others synergism. Our results suggest that the nature of the stressor pairs interactions on C:N:P ratios regulates the “continuum” commensalistic-competitive-predatory relationship between algae and bacteria and the food chain efficiency at the algae-herbivore interface. Overall, the scarce number of studies with even more fewer replications in each study that are available for freshwater systems have prevented a more detailed, insightful analysis. Our

  18. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate.

    Science.gov (United States)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars

    2017-07-18

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an

  19. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks

    Science.gov (United States)

    Torres, Mark A.; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F.; West, A. Joshua

    2017-08-01

    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

  20. Freshwater autotrophic picoplankton: a review

    Directory of Open Access Journals (Sweden)

    John G. STOCKNER

    2002-02-01

    Full Text Available Autotrophic picoplankton (APP are distributed worldwide and are ubiquitous in all types of lakes of varying trophic state. APP are major players in carbon production in all aquatic ecosystems, including extreme environments such as cold ice-covered and/or warm tropical lakes and thermal springs. They often form the base of complex microbial food webs, becoming prey for a multitude of protozoan and micro-invertebrate grazers, that effectively channel APP carbon to higher trophic levels including fish. In this review we examine the existing literature on freshwater autotrophic picoplankton, setting recent findings and current ecological issues within an historic framework, and include a description of the occurrence and distribution of both single-cell and colonial APP (picocyanobacteria in different types of lakes. In this review we place considerable emphasis on methodology and ecology, including sampling, counting, preservation, molecular techniques, measurement of photosynthesis, and include extensive comment on their important role in microbial food webs. The model outlined by Stockner of an increase of APP abundance and biomass and a decrease of its relative importance with the increase of phosphorus concentration in lakes has been widely accepted, and only recently confirmed in marine and freshwater ecosystems. Nevertheless the relationship which drives the APP presence and importance in lakes of differing trophic status appears with considerable variation so we must conclude that the success of APP in oligotrophic lakes worldwide is not a certainty but highly probable.

  1. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark)

    DEFF Research Database (Denmark)

    Zopfi, J.; Ferdelman, TG; Jørgensen, BB

    2001-01-01

    steady-stare conditions, the upward fluxes of reductants and downward fluxes of oxidants in the water column were balanced. However, changes in the hydrographical conditions caused a transient nonsteady-state at the chemocline and had a great impact on process rates and the distribution of chemical...... a high formation rare and (b) was only transient, caused by chemocline perturbations. Kinetic calculations of chemical sulfide oxidation based on actual conditions in the chemocline revealed that under steady-state conditions with a narrow chemocline and low reactant concentrations, biological sulfide...... oxidation may account for more than 88% of the total sulfide oxidation. Under nonsteady-state conditions, where oxic and sulfidic water masses were recently mixed, resulting in an expanded chemocline, the proportion of chemical sulfide oxidation increased. The sulfide oxidation rate determined by incubation...

  2. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Beusekom, van O.C.; Buisman, C.J.N.; Janssen, A.J.H.

    2007-01-01

    A biotechnological process is described to remove hydrogen sulfide (H2S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO) and

  3. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    Directory of Open Access Journals (Sweden)

    Casper Thorup

    2017-07-01

    Full Text Available This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR. Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase.

  4. The Importance of Microbial Iron Sulfide Oxidation for Nitrate Depletion in Anoxic Danish Sediments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka; Jacobsen, Ole Stig; Jørgensen, Christian Juncher

    2014-01-01

    Nitrate (NO3 −) reduction processes are important for depleting the NO3 − load from agricultural source areas before the discharge water reaches surface waters or groundwater aquifers. In this study, we experimentally demonstrate the co-occurrence of microbial iron sulfide oxidation by NO3 − (MISON...

  5. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.

    Science.gov (United States)

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang

    2010-10-15

    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  7. Simultaneous removal of nitrate and hydrogen sulfide by autotrophic denitrification in nitrate-contaminated water treatment.

    Science.gov (United States)

    Liu, Yongjie; Chen, Nan; Liu, Ying; Liu, Hengyuan; Feng, Chuanping; Li, Miao

    2018-02-23

    Nitrate contamination is a risk to human health and may cause eutrophication, whereas H 2 S is an undesirable constituent in biogas. In order to better understand denitrification using gaseous H 2 S as electron donor, this study investigated denitrification at different molar ratios of sulfur and nitrogen (S/N ratios) and H 2 S dosages. Although nitrate continued to decrease, a lag in sulfate generation was observed, implying the generation of sulfide oxidizing intermediates, which accumulated even though nitrate was in excess at lower S/N ratios of 0.19 and 0.38. More addition of H 2 S could result in a longer lag of sulfate generation. Before depletion of dissolved sulfide, denitrification could proceed with little nitrite accumulation. High throughout sequencing analysis identified two major genera, Thiobacillus and Sulfurimonas, that were responsible for autotrophic denitrification. The simultaneous removal of nitrate and H 2 S using a wide range of concentrations could be able to be achieved.

  8. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment

    DEFF Research Database (Denmark)

    Preisler, André; de Beer, Dirk; Lichtschlag, Anna

    2007-01-01

    The ecological niche of nitrate-storing Beggiatoa, and their contribution to the removal of sulfide were investigated in coastal sediment. With microsensors a clear suboxic zone of 2-10 cm thick was identified, where neither oxygen nor free sulfide was detectable. In this zone most of the Beggiat...

  9. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  10. Phosphorus mobilization by sulfide oxidation in carbonate sediments from seagrass and unvegetated sites in the US Virgin Islands

    DEFF Research Database (Denmark)

    Jensen, Henning; Pedersen, Ole; Koch, M. R.

    PHOSPHORUS MOBILIZATION BY SULFIDE OXIDATION IN CARBONATE SEDIMENTS FROM SEAGRASS AND UNVEGETATED SITES IN THE US VIRGIN ISLANDS Sulfide produced by sulfate reduction (SR) can be oxidized by seagrass root O2 flux in shallow carbonate sediments low in Fe. The sulfuric acid produced from sulfide...... oxidation, as well as metabolic acids from aerobic respiration, has the potential to mobilize solid phase phosphorus (P) pools in support of seagrass nutrition. Fresh sediments from four US Virgin Islands sites were modestly acidified to near-neutral pH in slurries. Following sulfuric acid amendments...... sources of nutrients compared to pristine sites. These results, along with those from our earlier studies in Florida Bay, a carbonate seagrass-dominated estuary, highlight the potential importance of P release from acid dissolution of carbonate-bound P pools. Session #:046 Date: 01-29-09 Time: 16:45...

  11. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    González Sánchez, Armando; Flores Márquez, Trinidad Eliseo; Revah, Sergio; Morgan Sagastume, Juan Manuel

    2014-01-01

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H 2 S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  12. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.

    Science.gov (United States)

    Bekmezci, Ozan K; Ucar, Deniz; Kaksonen, Anna H; Sahinkaya, Erkan

    2011-05-30

    The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L(-1)) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32°C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and metal concentrations to study the robustness of the process. The last compartment of the reactor was aerated at different rates to study the bio-oxidation of sulfide to elemental sulfur. The highest sulfate reduction efficiency (88%) was obtained with a feed sulfate concentration of 3.5 g L(-1), COD/sulfate mass ratio of 0.737, feed pH of 3.0 and HRT of 2 days without aeration in the 4th compartment. The corresponding COD removal efficiency was about 92%. The alkalinity produced in the sulfidogenic ethanol oxidation neutralized the acidic mine water from pH 3.0-4.5 to pH 7.0-8.0. Effluent soluble and total heavy metal concentrations were substantially reduced with removal efficiencies generally higher than 99%, except for Mn (25-77%). Limited aeration in the 4th compartment of ABR promoted incomplete oxidation of sulfide to elemental sulfur rather than complete oxidation to sulfate. Depending on the aeration rate and HRT, 32-74% of produced sulfide was oxidized to elemental sulfur. This study demonstrates that by optimizing operating conditions, sulfate reduction, metal removal, alkalinity generation, and excess sulfide oxidation can be achieved in a single ABR treating AMD. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)

    2017-02-17

    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  14. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea.

    Science.gov (United States)

    Häusler, Stefan; Weber, Miriam; Siebert, Christian; Holtappels, Moritz; Noriega-Ortega, Beatriz E; De Beer, Dirk; Ionescu, Danny

    2014-12-01

    Abundant microbial mats, recently discovered in underwater freshwater springs in the hypersaline Dead Sea, are mostly dominated by sulfur-oxidizing bacteria. We investigated the source of sulfide and the activity of these communities. Isotopic analysis of sulfide and sulfate in the spring water showed a fractionation of 39-50‰ indicative of active sulfate reduction. Sulfate reduction rates (SRR) in the spring sediment (salinity and O2 from the Dead Sea water are responsible for the abundant microbial biomass around the springs. The springs flow is highly variable and accordingly the local salinities. We speculate that the development of microbial mats dominated by either Sulfurimonas/Sulfurovum-like or Thiobacillus/Acidithiobacillus-like sulfide-oxidizing bacteria, results from different mean salinities in the microenvironment of the mats. SRR of up to 10 nmol cm(-3) day(-1) detected in the Dead Sea sediment are surprisingly higher than in the less saline springs. While this shows the presence of an extremely halophilic sulfate-reducing bacteria community in the Dead Sea sediments, it also suggests that extensive salinity fluctuations limit these communities in the springs due to increased energetic demands for osmoregulation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  16. Engineering the Autotroph Methanococcus maripaludis for Geraniol Production.

    Science.gov (United States)

    Lyu, Zhe; Jain, Rachit; Smith, Peyton; Fetchko, Travis; Yan, Yajun; Whitman, William B

    2016-07-15

    The rapid autotrophic growth of the methanogenic archaeon Methanococcus maripaludis on H2 and CO2 makes it an attractive microbial chassis to inexpensively produce biochemicals. To explore this potential, a synthetic gene encoding geraniol synthase (GES) derived from Ocimum basilicum was cloned into a M. maripaludis expression vector under selection for puromycin resistance. Recombinant expression of GES in M. maripaludis during autotrophic growth on H2/CO2 or formate yielded geraniol at 2.8 and 4.0 mg g(-1) of dry weight, respectively. The yield of geraniol decreased 2-3-fold when organic carbon sources were added to stimulate heterotrophic growth. In the absence of puromycin, geraniol production during autotrophic growth on formate increased to 4.6 mg g(-1) of dry weight. A conceptual model centered on the autotrophic acetyl coenzyme A biosynthetic pathway identified strategies to divert more autotrophic carbon flux to geraniol production.

  17. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron......; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies....

  18. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc

    2018-01-01

    Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. AL...... autotrophically and reducing CO2 into acetate more efficiently. Strains developed via this ALE method were also used to gain knowledge on the autotrophic metabolism of S. ovata as well as other acetogenic bacteria....

  19. Marine

    NARCIS (Netherlands)

    Govers, L.; Man in 't Veld, W.A.; Meffert, J.P.; Bouma, T.J.; van Rijswick, P.C.; Heusinkveld, J.H.T.; Orth, R.J.; van Katwijk, M.M.; van der Heide, T.

    2016-01-01

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives.

  20. Comparative effects of autotrophic and heterotrophic growth on ...

    African Journals Online (AJOL)

    Histidine, lysine and phenylalanine constituted 77 and 44% of the total content of essential amino acids in heterotrophic and autotrophic cells, respectively. Methionine concentration was low in both types of cells. Proline content and non essential amino acid in heterotrophic cells was about 2.5 times its corresponding value ...

  1. General medium for the autotrophic cultivation of acetogens.

    Science.gov (United States)

    Groher, Anna; Weuster-Botz, Dirk

    2016-10-01

    Syngas fermentation, a microbial process in which synthesis gas serves as a substrate for acetogens, has attracted increasing interest in the last few years. For the purposeful selection of acetogens for various applications, it would be useful to characterize and compare the process performances of as many autotrophic strains as possible under identical process conditions. Unfortunately, all the media compositions so far recommended for syngas fermentation differ considerably with respect to each individual strain. Therefore, a general medium for syngas fermentation was designed. The suitability of this new general-acetogen medium (GA-medium) was proven based on the autotrophic batch cultivation of Acetobacterium fimetarium, Acetobacterium wieringae, Blautia hydrogenotrophica, Clostridium magnum, Eubacterium aggregans, Sporomusa acidovorans, Sporomusa ovata and Terrisporobacter mayombei in anaerobic flasks with an initial gas phase of H2:CO2 (66:34) (P = 200 kPa). A comparison of the autotrophic batch processes with this medium revealed T. mayombei as the bacterium with the highest maximum growth rate of 5.77 day(-1) which was more than 10 times higher than the lowest identified maximum growth rate of A. fimetarium. The maximum growth rates of A. wieringae, C. magnum and S. acidovorans were all in the same order of magnitude around 1.7 day(-1). The newly designed GA-medium offers the possibility to compare autotrophic process performances of different acetogens under similar conditions absent the effects of various media compositions.

  2. Growth of microalgae in autotrophic stationary systems

    Directory of Open Access Journals (Sweden)

    Paulo Cunha

    2008-06-01

    Full Text Available In this paper we evaluate the growth of nine marine microalgae species (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira fluviatilis and Isochrysis sp. and one freshwater species (Chlorella vulgaris under stationary autotrophy conditions, using erlenmeyers fl asks with 800mL of culture medium exposed to constant light intensities providing a photon flux density of about 150μmol.m-2.s-1 and 25±2oC temperature and constant air flow. The experiment was carried out in a controlled environment considering a block delineating randomized over time with three replicates. The Nannochloropsis oculata showed the highest value of maximum cellular density, but with a longer period of time and a lower growth rate. This was probably due to its tiny cell size, demanding a large number of cells per volume to attain its optimum conditions for light, nutrients, water and atmospheric carbon dioxide. In addition, in spite of showing one of the lowest values of maximum cellular density, Thalassiosira fluviatilis was the species that reached its maximum in a short period of time at the highest growth rate. Chlorella vulgaris was the only freshwater species tested and it showed the poorest performance for all the variables analyzed in the current study.

  3. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux

    Science.gov (United States)

    Maher, D. T.; Eyre, B. D.

    2012-03-01

    Estuaries are `hot spots' in the global carbon cycle, yet data on carbon dynamics, in particular air-sea CO2 fluxes, from autotrophic systems are rare. Estuarine carbon budgets were constructed for three geomorphically distinct warm temperate Australian estuaries over an annual cycle. All three estuaries were net autotrophic, with annual net ecosystem metabolism (NEM) ranging from 8 ± 13.4 molC m-2 yr-1 to 10 ± 14 molC m-2 yr-1. There was a net flux of CO2 from the atmosphere to the estuaries of between 0.4 ± 0.6 molC m-2 yr-1 and 2 ± 0.9 molC m-2 yr-1. Loading of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) to the estuaries varied markedly within and between the estuaries, and was directly related to freshwater inflow. While NEM was similar in all three estuaries, the ratio of benthic versus pelagic contributions to NEM differed, with NEM dominated by pelagic production in the river dominated system, benthic production dominating in the intermediate estuary, and equal contributions of benthic and pelagic production in the marine dominated lagoon. All three estuaries exported more organic carbon than was imported, fueled by additional organic carbon supplied by NEM. The estuaries essentially acted as bioreactors, transforming DIC to organic carbon. Burial of organic carbon ranged from 1.2 ± 0.3 molC m-2 yr-1 to 4.4 ± 1.2 molC m-2 yr-1 and represented up to half of NEM. The annual net uptake of atmospheric CO2 in these systems, along with previous estimates of the global estuarine CO2flux being based predominantly on heterotrophic, large river dominated estuarine systems, indicates that the global estimate of the estuarine air-water CO2flux may be over-estimated due to the lack of studies from autotrophic marine dominated estuaries.

  4. Autotrophic stoichiometry emerging from optimality and variable co-limitation

    Directory of Open Access Journals (Sweden)

    Kai W Wirtz

    2016-11-01

    Full Text Available Autotrophic organisms reveal an astounding flexibility in their elemental stoichiometry, with potentially major implications on biogeochemical cycles and ecological functioning. Notwithstanding, stoichiometric regulation and co-limitation by multiple resources in autotrophs revt were in the past often described by heuristic formulations.In this study, we present a mechanistic model of autotroph growth, which features two major improvements over the existing schemes. First, we introduce the concept of metabolic network independence that defines the degree of phase-locking between accessory machines. Network independence is in particular suggested to be proportional to protein synthesis capability as quantified by variable intracellular N:C. Consequently, the degree of co-limitation becomes variable, contrasting with the dichotomous debate on the use of Liebig's law or the product rule, standing for constantly low and high co-limitation, respectively. Second, we resolve dynamic protein partitioning to light harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition machineries, as well as instantaneous activity regulation of nutrient uptake. For all regulatory processes we assume growth rate optimality, here extended by an explicit consideration of indirect feed-back effects.The combination of network independence and optimal regulation displays unprecedented skill in reproducing rich stoichiometric patterns collected from a large number of published chemostat experiments. This high skill indicates (1 that the current paradigm of fixed co-limitation is a critical short-coming of conventional models, and (2 that stoichiometric flexibility in autotrophs possibly reflects an optimality strategy. Numerical experiments furthermore show that regulatory mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates the effect of the most limiting resource(s while down-regulating machineries for the

  5. Autotrophic biorefinery: dawn of the gaseous carbon feedstock.

    Science.gov (United States)

    Butti, Sai Kishore; Mohan, S Venkata

    2017-10-02

    CO2 is a resource yet to be effectively utilized in the autotrophic biotechnology, not only to mitigate and moderate the anthropogenic influence on our climate, but also to steer CO2 sequestration for sustainable development and carbon neutral status. The atmospheric CO2 concentration has seen an exponential increase with the turn of the new millennia causing numerous environmental issues and also in a way feedstock crisis. To progressively regulate the growing CO2 concentrations and to incorporate the integration strategies to our existing CO2 capturing tools, all the influencing factors need to be collectively considered. The review article puts forth the change in perception of CO2 from which was once considered a harmful pollutant having deleterious effects to a renewable carbon source bearing the potential to replace the fossils as the carbon source through an autotrophic biorefinery. Here, we review the current methods employed for CO2 storage and capture, the need to develop sustainable methods and the ways of improving the sequestration efficiencies by various novice technologies. The review also provides an autotrophic biorefinery model with the potential to operate and produces a multitude of biobased products analogous to the petroleum refinery to establish a circular bioeconomy. Furthermore, fundamental and applied research niches that merit further research are delineated. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Characterization of an autotrophic bioreactor microbial consortium degrading thiocyanate.

    Science.gov (United States)

    Watts, Mathew Paul; Spurr, Liam Patrick; Gan, Han Ming; Moreau, John William

    2017-07-01

    Thiocyanate (SCN - ) forms as a by-product of cyanidation during gold ore processing and can be degraded by a variety of microorganisms utilizing it as an energy, nitrogen, sulphur and/or carbon source. In complex consortia inhabiting bioreactor systems, a range of metabolisms are sustained by SCN - degradation; however, despite the addition or presence of labile carbon sources in most bioreactor designs to date, autotrophic bacteria have been found to dominate key metabolic functions. In this study, we cultured an autotrophic SCN - -degrading consortium directly from gold mine tailings. In a batch-mode bioreactor experiment, this consortium degraded 22 mM SCN - , accumulating ammonium (NH 4 + ) and sulphate (SO 4 2- ) as the major end products. The consortium consisted of a diverse microbial community comprised of chemolithoautotrophic members, and despite the absence of an added organic carbon substrate, a significant population of heterotrophic bacteria. The role of eukaryotes in bioreactor systems is often poorly understood; however, we found their 18S rRNA genes to be most closely related to sequences from bacterivorous Amoebozoa. Through combined chemical and phylogenetic analyses, we were able to infer roles for key microbial consortium members during SCN - biodegradation. This study provides a basis for understanding the behaviour of a SCN - degrading bioreactor under autotrophic conditions, an anticipated approach to remediating SCN - at contemporary gold mines.

  7. Long distance electron transmission couples sulphur, iron, calcium and oxygen cycling in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    Geochemical observations in marine sediment have recently documented that electric currents may intimately couple spatially separated biogeochemical processes (1). When marine sediment rich in iron sulphide was exposed to oxygen we observed how the electric currents resulted in significant...... sulfide oxidation leads to electric field formation, sulfide depletion and acidification of the upper centimeters of the sediment. This promoted ion migration and dissolution of carbonates and iron sulfides. Sulfide released from iron sulfides was the major e-donor in the system. Ferrous iron released...

  8. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen

    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  9. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen

    2012-01-01

    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  10. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Commercial cultivation of autotrophic microalgae for food production dates back to the 1950s. Autotrophic microalgae have also been proposed as a source for lipid-based liquid biofuels. As yet, there is no commercial production of such biofuels and estimated near-term prices are far in excess of

  12. Autotrophic and heterotrophic activity in Arctic first-year sea ice

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in plastic bags with subsequent melting and measurements of changes in total O2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period was followed...... by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic activity in late...... March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m– 2, reflecting the net result of a sea ice-related gross primary production...

  13. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  14. Biokinetic characterization of the acceleration phase in autotrophic ammonia oxidation.

    Science.gov (United States)

    Chandran, Kartik; Smets, Barth F

    2008-08-01

    Batch autotrophic ammonia oxidation tracked through oxygen uptake measurements displays a preliminary acceleration phase. Failure to recognize the acceleration phase and fitting batch ammonia oxidation profiles with standard Monod-type mathematical models can result in meaningless kinetic parameter estimates. The objectives of this study were to examine the factors controlling the acceleration phase and to derive and test empirical and metabolic models for its description. Because of possible sustained reducing power limitation during batch ammonia oxidation, the extent of the acceleration phase (1) increased with increasing initial ammonia concentration, (2) did not systematically vary with initial biomass concentrations, and (3) increased in response to starvation. Concurrent hydroxylamine oxidation significantly reduced the acceleration phase potentially by relieving reducing power limitation. A nonlinear empirical model described the acceleration phase more accurately than a linear empirical model. The metabolic model also captured experimental trends exceedingly well, but required determination of additional parameters and variables.

  15. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson; De Francisci, Davide; Angelidaki, Irini

    2015-01-01

    to autotrophic growth. Chlorella sorokiniana was cultivated in medium supplemented with sodium acetate in concentrations equivalent to the volatile fatty acid concentration found in anaerobic digester effluent. Flat-panel photobioreactors were operated using 16:8 light:dark cycles, with different strategies...... for acetate addition. Acetate was added during the light period for the mixotrophic strategy and during the dark one for the cyclic autotrophic/heterotrophic strategy. Autotrophic productivity of up to 0.99 g L−1 day−1 was obtained using the optimal tested dilution rate of 0.031 h−1. The highest mixotrophic...

  16. Microbial diversity and autotrophic activity in Kamchatka hot springs.

    Science.gov (United States)

    Merkel, Alexander Yu; Pimenov, Nikolay V; Rusanov, Igor I; Slobodkin, Alexander I; Slobodkina, Galina B; Tarnovetckii, Ivan Yu; Frolov, Evgeny N; Dubin, Arseny V; Perevalova, Anna A; Bonch-Osmolovskaya, Elizaveta A

    2017-03-01

    Microbial communities of Kamchatka Peninsula terrestrial hot springs were studied using molecular, radioisotopic and cultural approaches. Analysis of 16S rRNA gene fragments performed by means of high-throughput sequencing revealed that aerobic autotrophic sulfur-oxidizing bacteria of the genus Sulfurihydrogenibium (phylum Aquificae) dominated in a majority of streamers. Another widely distributed and abundant group was that of anaerobic bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). Archaea of the genus Vulcanisaeta were abundant in a high-temperature, slightly acidic hot spring, where they were accompanied by numerous Nanoarchaeota, while the domination of uncultured Thermoplasmataceae A10 was characteristic for moderately thermophilic acidic habitats. The highest rates of inorganic carbon assimilation determined by the in situ incubation of samples in the presence of 14 C-labeled bicarbonate were found in oxygen-dependent streamers; in two sediment samples taken from the hottest springs this process, though much weaker, was found to be not dependent on oxygen. The isolation of anaerobic lithoautotrophic prokaryotes from Kamchatka hot springs revealed a wide distribution of the ability for sulfur disproportionation, a new lithoautotrophic process capable to fuel autonomous anaerobic ecosystems.

  17. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  18. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Science.gov (United States)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the marine Antarctic soil the poorest (only one). Snow samples from Col du Midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone). The only microorganism identified in the Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  19. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.

    Science.gov (United States)

    Yang, Weiming; Zhao, Qing; Lu, Hui; Ding, Zhi; Meng, Liao; Chen, Guang-Hao

    2016-03-01

    The Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI) process build on anaerobic carbon conversion through biological sulfate reduction and autotrophic denitrification by using the sulfide byproduct from the previous reaction. This study confirmed extra decreases in N2O emissions from the sulfide-driven autotrophic denitrification by investigating N2O reduction, accumulation, and emission in the presence of different sulfide/nitrate (S/N) mass ratios at pH 7 in a long-term laboratory-scale granular sludge autotrophic denitrification reactor. The N2O reduction rate was linearly proportional to the sulfide concentration, which confirmed that no sulfide inhibition of N2O reductase occurred. At S/N = 5.0 g-S/g-N, this rate resulted by sulfide-driven autotrophic denitrifying granular sludge (average granule size = 701 μm) was 27.7 mg-N/g-VSS/h (i.e., 2 and 4 times greater than those at 2.5 and 0.8 g-S/g-N, respectively). Sulfide actually stimulates rather than inhibits N2O reduction no matter what granule size of sulfide-driven autotrophic denitrifying sludge engaged. The accumulations of N2O, nitrite and free nitrous acid (FNA) with average granule size 701 μm of sulfide-driven autotrophic denitrifying granular sludge engaged at S/N = 5.0 g-S/g-N were 4.7%, 11.4% and 4.2% relative to those at 3.0 g-S/g-N, respectively. The accumulation of FNA can inhibit N2O reduction and increase N2O accumulation during sulfide-driven autotrophic denitrification. In addition, the N2O gas emission level from the reactor significantly increased from 14.1 ± 0.5 ppmv (0.002% of the N load) to 3707.4 ± 36.7 ppmv (0.405% of the N load) as the S/N mass ratio in the influent decreased from 2.1 to 1.4 g-S/g-N over the course of the 120-day continuous monitoring period. Sulfide-driven autotrophic denitrification may significantly reduce greenhouse gas emissions from biological nutrient removal when sulfur conversion processes are applied

  20. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.

    Science.gov (United States)

    Guo, Guangxia; Kong, Weidong; Liu, Jinbo; Zhao, Jingxue; Du, Haodong; Zhang, Xianzhou; Xia, Pinhua

    2015-10-01

    Soil microbial autotrophs play a significant role in CO2 fixation in terrestrial ecosystem, particularly in vegetation-constrained ecosystems with environmental stresses, such as the Tibetan Plateau characterized by low temperature and high UV. However, soil microbial autotrophic communities and their driving factors remain less appreciated. We investigated the structure and shift of microbial autotrophic communities and their driving factors along an elevation gradient (4400-5100 m above sea level) in alpine grassland soils on the Tibetan Plateau. The autotrophic microbial communities were characterized by quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning/sequencing of cbbL genes, encoding the large subunit for the CO2 fixation protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). High cbbL gene abundance and high RubisCO enzyme activity were observed and both significantly increased with increasing elevations. Path analysis identified that soil RubisCO enzyme causally originated from microbial autotrophs, and its activity was indirectly driven by soil water content, temperature, and NH4 (+) content. Soil autotrophic microbial community structure dramatically shifted along the elevation and was jointly driven by soil temperature, water content, nutrients, and plant types. The autotrophic microbial communities were dominated by bacterial autotrophs, which were affiliated with Rhizobiales, Burkholderiales, and Actinomycetales. These autotrophs have been well documented to degrade organic matters; thus, metabolic versatility could be a key strategy for microbial autotrophs to survive in the harsh environments. Our results demonstrated high abundance of microbial autotrophs and high CO2 fixation potential in alpine grassland soils and provided a novel model to identify dominant drivers of soil microbial communities and their ecological functions.

  1. DENITRIFIKASI LIMBAH NITRAT PADA BERBAGAI TINGKAT KEASAMAN DENGAN MEMANFAATKAN MIKROBA AUTOTROPH

    OpenAIRE

    Nugroho, Rudi

    2017-01-01

    A biological denitrification using autotrophic bacteria in batch suspension runs was investigated to clarify the effect of pH on denitrification rate. Elemental sulfur was employed as an electron donor. The culture of autotrophic bacteria was obtained from activated sludge by acclimatization. The effect of pH on denitrification rate could be expressed by bell-shape equation with optimum pH of 7,07. However at a pH range of 5,5 to 8,0, the denitrification rate significantly fastl. Therefore, t...

  2. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    and allowed anaerobic ammonium-oxidizing bacteria (AnaerAOB) to develop and be retained for > 250 days. Daily autotrophic nitrogen removal of 1.7 g N/m(2) (75% of influent N load) was achieved at an oxygen/nitrogen surface loading ratio of 2.2, with up to 85% of the influent N proceeding through Anaer...... nearest to and AnaerAOB furthest from the membrane. Despite the presence of nitrite-oxidizing bacteria, this work demonstrated that these autotrophic processes can be successfully coupled in an MABR with continuous aeration, achieving the benefits of competitive specific N removal rates...

  3. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB...... to the membrane, while AnAOB were localized next to them in areas where no oxygen was available. NOB were detected in very low amounts. Results proved the feasibility of developing biofilm structures for high-rate completely autotrophic nitrogen removal....

  4. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren

    2010-01-01

    in situ in plastic bags with subsequent melting and measurements of changes in total O-2 concentrations. The standard incubations showed that the annual succession followed a distinctive pattern, with a low, almost balancing heterotrophic and autotrophic activity during February and March. This period...... was followed by an algal bloom in late March and April, leading to a net autotrophic community. During February and March, the oxygen level in the bag incubations remained constant, validating the low balanced heterotrophic and autotrophic activity. As the autotrophic activity exceeded the heterotrophic...... activity in late March and April, it resulted in a significant net oxygen accumulation in the bag incubations. Integrated over the entire season, the sea ice of Malene Bight was net autotrophic with an annual net carbon fixation of 220 mg C m(-2), reflecting the net result of a sea ice-related gross...

  5. Contrasting effect of Saharan dust and UVR on autotrophic picoplankton in nearshore versus offshore waters of Mediterranean Sea

    Science.gov (United States)

    González-Olalla, J. M.; Medina-Sánchez, J. M.; Cabrerizo, M. J.; Villar-Argáiz, Manuel; Sánchez-Castillo, Pedro M.; Carrillo, Presentación

    2017-08-01

    Autotrophic picoplankton (APP) is responsible for the vast majority of primary production in oligotrophic marine areas, such as the Alboran Sea. The increase in atmospheric dust deposition (e.g., from Sahara Desert) associated with global warming, together with the high UV radiation (UVR) on these ecosystems, may generate effects on APP hitherto unknown. We performed an observational study across the Alboran Sea to establish which factors control the abundance and distribution of APP, and we made a microcosm experiment in two distinct areas, nearshore and offshore, to predict the joint UVR × dust impact on APP at midterm scales. Our observational study showed that temperature (T) was the main factor explaining the APP distribution whereas total dissolved nitrogen positively correlated with APP abundance. Our experimental study revealed that Saharan dust inputs reduced or inverted the UVR damage on the photosynthetic quantum yield (ΦPSII) and picoplanktonic primary production (PPP) in the nearshore area but accentuated it in the offshore. This contrasting effect is partially explained by the nonphotochemical quenching, acting as a photorepair mechanism. Picoeukaryotes reflected the observed effects on the physiological and metabolic variables, and Synechococcus was the only picoprokaryotic group that showed a positive response under UVR × dust conditions. Our study highlights a dual sensitivity of nearshore versus offshore picoplankton to dust inputs and UVR fluxes, just at the time in which these two global-change factors show their highest intensities and may recreate a potential future response of the microbial food web under global-change conditions.

  6. Simultaneous biological removal of sulfide and nitrate by autotrophic denitrification in an activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.; Rossetti, S.

    2006-01-01

    The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their

  7. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  8. Experimental effects of grazers on autotrophic species assemblages across a nitrate gradient in Florida springs

    Science.gov (United States)

    Springs face accelerated degradation of ecosystem structure, namely in the form of autotrophic species assemblage shifts from submerged vascular macrophytes to benthic filamentous algae. Increasing nitrate concentrations have been cited as a primary driver of this shift and numeric nutrient criteria...

  9. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2014-01-01

    The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...

  10. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  11. Performance of an autotrophic nitrogen removing reactor: Diagnosis through fuzzy logic

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Mutlu, Ayten Gizem

    Autotrophic nitrogen removal through nitritation-anammox in one stage SBRs is an energy and cost efficient alternative to conventional treatment methods. Intensification of an already complex biological system challenges our ability to observe, understand, diagnose, and control the system. A fuzzy...

  12. Model-based optimization biofilm based systems performing autotrophic nitrogen removal using the comprehensive NDHA model

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Ma, Yunjie; Morset, Martin

    Completely autotrophic nitrogen removal (CANR) can be obtained in single stage biofilm-based bioreactors. However, their environmental footprint is compromised due to elevated N2O emissions. We developed novel spatially explicit biochemical process model of biofilm based CANR systems that predicts...

  13. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures

    DEFF Research Database (Denmark)

    Harper, W.F.; Terada, Akihiko; Poly, F.

    2009-01-01

    Addition of hydroxylamine (NH2OH) to autotrophic biomass in nitrifying bioreactors affected the activity, physical structure, and microbial ecology of nitrifying aggregates. When NH2OH is added to nitrifying cultures in 6-h batch experiments, the initial NH3-N uptake rates were physiologically...

  14. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  15. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...

  16. A novel control strategy for single-stage autotrophic nitrogen removal in SBR

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2015-01-01

    A novel feedforward–feedback control strategy was developed for complete autotrophic nitrogen removal in a sequencing batch reactor. The aim of the control system was to carry out the regulation of the process while keeping the system close to the optimal operation. The controller was designed...

  17. A fuzzy-logic based diagnosis and control of a reactor performing complete autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2013-01-01

    Diagnosis and control modules based on fuzzy set theory were tested for novel bioreactor monitoring and control. Two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information to control the reactor. The separation in d...... autotrophic nitrogen removal process. The whole module is evaluated by dynamic simulation....

  18. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...

  19. Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction

    NARCIS (Netherlands)

    Pozo, Guillermo; Jourdin, Ludovic; Lu, Yang; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2016-01-01

    Recent evidence suggests that autotrophic sulfate reduction could be driven by direct and indirect electron transfer mechanisms in bioelectrochemical systems. However, much uncertainty still exists about the electron fluxes from the electrode to the final electron acceptor sulfate during

  20. Forest annual carbon cost : A global-scale analysis of autotrophic respiration

    NARCIS (Netherlands)

    Piao, Shilonog; Luyssaert, Sebastiaan; Ciais, Philippe; Janssens, Ivan A.; Chen, Anping; Chao, C. A O; Fang, Jingyun; Friedlingstein, Pierre; Yiqi, L. U O; Wang, Shaopeng

    Forest autotrophic respiration (Ra) plays an important role in the carbon balance of forest ecosystems. However, its drivers at the global scale are not well known. Based on a global forest database, we explore the relationships of annual Ra with mean annual temperature (MAT) and biotic factors

  1. Dynamics of various viral groups infecting autotrophic plankton in Lake Geneva

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Zhong, X.; Jacquet, S.

    Viral community structure and dynamics were investigated for the first time in surface waters (0–20 m) of Lake Geneva over a 5-month period between July and November 2011. Abundances of autotrophic picoplankton, heterotrophic bacteria and virus...

  2. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    of the current status of metabolic engineering of chemolithoautotrophs is carried out in order to identify the challenges and likely routes to overcome them. This is presented in Chapter 3 of this dissertation. The initial metabolic engineering and bioreactor studies was carried out using a number of gene-constructs on R. capsulatus and R. eutropha. The gene-constructs consisted of Plac promoter followed by the triterpene synthase genes (SS or BS) and other upstream genes. A comparison of the production of triterpenes were done in the different growth modes that R. capsulatus was capable of growing---aerobic heterotrophic, anaerobic photoheterotrophic and aerobic chemoautotrophic. Autotrophic productivity could likely be improved much further by increasing the available mass-transfer of the reactor. These efforts are presented in Chapter 4 of this dissertation. (Abstract shortened by UMI.).

  3. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Directory of Open Access Journals (Sweden)

    E. González-Toril

    2009-01-01

    Full Text Available Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area and the Andes (Nevado Illimani summit, Bolivia, from Antarctic aerosol (French station Dumont d'Urville and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas, in a minimal mineral (oligotrophic media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified and the marine Antarctic soil the poorest (only one. Snow samples from Col du Midi (Alps and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones. These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone. The only microorganism identified in the Antarctica soil (Brevundimonas sp. was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  4. Stimulation of autotrophic denitrification by intrusions of the bosporus plume into the anoxic black sea.

    Science.gov (United States)

    Fuchsman, Clara A; Murray, James W; Staley, James T

    2012-01-01

    Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O(2) and [Formula: see text]) into the oxic, suboxic, and anoxic layers. Prominent oxygen intrusions caused an overlap of [Formula: see text] and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume) indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria CandidatusScalindua were present. These results provide evidence for a modified ecosystem with different N(2) production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139) was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N(2) production pathway in the central Black Sea as well.

  5. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Christine eSharp

    2012-08-01

    Full Text Available Genomic analysis of the methanotrophic verrucomicrobium Methylacidiphilum infernorum strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo, ‘universal’ pmoA polymerase chain reaction (PCR primers do not target these bacteria. Unlike proteobacterial methanotrophs, Methylacidiphilum fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic verrucomicrobia in the environment by labelling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in M. infernorum strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs via 13CO2-SIP, a quantitative PCR (qPCR assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labelling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems.

  6. Stimulation of autotrophic denitrification by intrusions of the Bosporus Plume into the anoxic Black Sea

    Directory of Open Access Journals (Sweden)

    Clara A. Fuchsman

    2012-07-01

    Full Text Available Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3- into the oxic, suboxic and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx- and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria Candidatus Scalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139 was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well.

  7. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    liquid. If operated properly, MABRs yield compact and homogeneous redox-stratified biofilms capable of hosting side-by-side aerobic and anaerobic microbial communities. We have recently demonstrated that completely autotrophic nitrogen removal is feasible in MABRs at nitrogen removal rates as high as 5...... bacteria in compact reaction zones about 100 m thick separated by an intermediate zone with low or null metabolic activity. Both identified microbial communities showed a very low diversity and were dominated by halophilic and halotolerant Nitrosomonas sp. and Candidatus Brocadia anammoxidans....... The continuous and sustained inoculation of metabolically active anaerobic oxidizing bacteria from a biofilm reactor placed in the recirculation line of our MABRs showed to shorten considerably the onset of autotrophic nitrogen removal. However, the main hurdle keeping MABRs from attaining high removal...

  8. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  9. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.

    Science.gov (United States)

    Smetana, Sergiy; Sandmann, Michael; Rohn, Sascha; Pleissner, Daniel; Heinz, Volker

    2017-12-01

    The lack of protein sources in Europe could be reduced with onsite production of microalgae with autotrophic and heterotrophic systems, owing the confirmation of economic and environmental benefits. This study aimed at the life cycle assessment (LCA) of microalgae and cyanobacteria cultivation (Chlorella vulgaris and Arthrospira platensis) in autotrophic and heterotrophic conditions on a pilot industrial scale (in model conditions of Berlin, Germany) with further biomass processing for food and feed products. The comparison of analysis results with traditional benchmarks (protein concentrates) indicated higher environmental impact of microalgae protein powders. However high-moisture extrusion of heterotrophic cultivated C. vulgaris resulted in more environmentally sustainable product than pork and beef. Further optimization of production with Chlorella pyrenoidosa on hydrolyzed food waste could reduce environmental impact in 4.5 times and create one of the most sustainable sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  11. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.

    Science.gov (United States)

    Chung, Jinwook; Amin, Khurram; Kim, Seungjin; Yoon, Seungjoon; Kwon, Kiwook; Bae, Wookeun

    2014-07-01

    This study was carried out to determine the possibility of autotrophic denitritation using thiosulfate as an electron donor, compare the kinetics of autotrophic denitrification and denitritation, and to study the effects of pH and sulfur/nitrogen (S/N) ratio on the denitrification rate of nitrite. Both nitrate and nitrite were removed by autotrophic denitrification using thiosulfate as an electron donor at concentrations up to 800 mg-N/L. Denitrification required a S/N ratio of 5.1 for complete denitrification, but denitritation was complete at a S/N ratio of 2.5, which indicated an electron donor cost savings of 50%. Also, pH during denitrification decreased but increased with nitrite, implying additional alkalinity savings. Finally, the highest specific substrate utilization rate of nitrite was slightly higher than that of nitrate reduction, and biomass yield for denitrification was relatively higher than that of denitritation, showing less sludge production and resulting in lower sludge handling costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    Science.gov (United States)

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells.

  13. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  14. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  15. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    Science.gov (United States)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351

  16. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products.

    Science.gov (United States)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-11-04

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.

  17. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under......, by applying periodic aeration to MABRs, one-stage autotrophic N removal biofilm reactors can be easily obtained, displaying very competitive removal rates, and negligible N2O emissions....

  18. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    Science.gov (United States)

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  19. Freshwater mineral nitrogen and essential elements in autotrophs in James Ross Island, West Antarctica

    Directory of Open Access Journals (Sweden)

    Coufalík Pavel

    2016-12-01

    Full Text Available The lakes and watercourses are habitats for various communities of cyanobacteria and algae, which are among the few primary producers in Antarctica. The amount of nutrients in the mineral-poor Antarctic environment is a limiting factor for the growth of freshwater autotrophs in most cases. In this study, the main aim was to assess the availability of mineral nitrogen for microorganisms in cyanobacterial mats in James Ross Island. The nitrate and ammonium ions in water environment were determined as well as the contents of major elements (C, N, P, S, Na, K, Ca, Mg, Al, Fe, Mn in cyanobacterial mats. The molar ratios of C:N, C:P and N:P in mats were in focus. The growth of freshwater autotrophs seems not to be limited by the level of nitrogen, according to the content of available mineral nitrogen in water and the biogeochemical stoichiometry of C:N:P. The source of nutrients in the Ulu Peninsula is not obvious. The nitrogen fixation could enhance the nitrogen content in mats, which was observed in some samples containing the Nostoc sp.

  20. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  1. Significant difference in mycorrhizal specificity between an autotrophic and its sister mycoheterotrophic plant species of Petrosaviaceae.

    Science.gov (United States)

    Yamato, Masahide; Ogura-Tsujita, Yuki; Takahashi, Hiroshi; Yukawa, Tomohisa

    2014-11-01

    Petrosaviaceae is a monocotyledonous plant family that comprises two genera: the autotrophic Japonolirion and the mycoheterotrophic Petrosavia. Accordingly, this plant family provides an excellent system to examine specificity differences in mycobionts between autotrophic and closely related mycoheterotrophic plant species. We investigated mycobionts of Japonolirion osense, the sole species of the monotypic genus, from all known habitats of this species by molecular identification and detected 22 arbuscular mycorrhizal (AM) fungal phylotypes in Archaesporales, Diversisporales, and Glomerales. In contrast, only one AM fungal phylotype in Glomerales was predominantly detected from the mycoheterotrophic Petrosavia sakuraii in a previous study. The high mycobiont diversity in J. osense and in an outgroup plant, Miscanthus sinensis (Poaceae), indicates that fungal specificity increased during the evolution of mycohetrotrophy in Petrosaviaceae. Furthermore, some AM fungal sequences of J. osense showed >99% sequence similarity to the dominant fungal phylotype of P. sakuraii, and one of them was nested within a clade of P. sakuraii mycobionts. These results indicate that fungal partners are not necessarily shifted, but rather selected for in the course of the evolution of mycoheterotrophy. We also confirmed the Paris-type mycorrhiza in J. osense.

  2. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media

    Energy Technology Data Exchange (ETDEWEB)

    Dayananda, C.; Sarada, R.; Ravishankar, G.A. [Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570 020 (India); Usha Rani, M.; Shamala, T.R. [Food Microbiology Department, Central Food Technological Research Institute, Mysore 570 020 (India)

    2007-01-15

    Growth of Botryococcus braunii was studied using different autotrophic media such as bold basal medium (BBM), and bold basal with ammonium carbonate (BBMa), BG11, modified Chu 13 medium. Among the different autotrophic media used, BG11 was found to be the best medium for biomass and hydrocarbon production, although B. braunii showed appreciable level of growth and biomass production in all the tested media. The culture maintained at 16:8h light and dark cycle with 1.2+/-0.2klux light intensity at 25+/-1{sup o}C temperature was found to be the best for growth (2.0 and 2.8gL{sup -1} of biomass was produced by the B. braunii strains SAG 30.81 and LB-572, respectively) and hydrocarbon production (46% and 33%, respectively, by SAG 30.81 and LB 572 strains on dry weight basis) whereas continuous illumination with agitation at 90rpm had maximum influence for the production of exopolysaccharides. The results of the present study indicate that the organism can acclimatize to different culture conditions and to a wide range of culture media with production of more than one metabolite. (author)

  3. The effect of gamma-radiation on the growth and auxin metabolism of autotrophic and heterotrophic tobacco callus tissue

    International Nuclear Information System (INIS)

    Koeves, E.; Szabo, M.; Sirokman, F.

    1980-01-01

    Cell cultures synthesizing and not synthesizing auxin (autotroph and heterothrop, resp.) were prepared from the callus tissue of nicotiana tabacum. They were irradiated by 0.1-40 Gy 60 Co. Increasing the radiation dose the weight of the samples has decreased and the decomposition of indol-acetic acid has increased. Irradiation up to 1.0 Gy had less significant effects in the heterotrophs than in the autotrophs. It is concluded that besides the activation of indol-acetic acid oxidation, gamma-irradiation also inhibits the synthesis of auxin. (author)

  4. THE CALVIN CYCLE ENZYME PHOSPHOGLYCERATE KINASE OF XANTHOBACTER-FLAVUS REQUIRED FOR AUTOTROPHIC CO2 FIXATION IS NOT ENCODED BY THE CBB OPERON

    NARCIS (Netherlands)

    MEIJER, WG

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic

  5. Seasonal variation in marine C:N:P stoichiometry: can the composition of seston explain stable Redfield ratios?

    Directory of Open Access Journals (Sweden)

    H. Frigstad

    2011-10-01

    Full Text Available Seston is suspended particulate organic matter, comprising a mixture of autotrophic, heterotrophic and detrital material. Despite variable proportions of these components, marine seston often exhibits relatively small deviations from the Redfield ratio (C:N:P = 106:16:1. Two time-series from the Norwegian shelf in Skagerrak are used to identify drivers of the seasonal variation in seston elemental ratios. An ordination identified water mass characteristics and bloom dynamics as the most important drivers for determining C:N, while changes in nutrient concentrations and biomass were most important for the C:P and N:P relationships. There is no standardized method for determining the functional composition of seston and the fractions of POC, PON and PP associated with phytoplankton, therefore any such information has to be obtained by indirect means. In this study, a generalized linear model was used to differentiate between the live autotrophic and non-autotrophic sestonic fractions, and for both stations the non-autotrophic fractions dominated with respective annual means of 76 and 55%. This regression model approach builds on assumptions (e.g. constant POC:Chl-a ratio and the robustness of the estimates were explored with a bootstrap analysis. In addition the autotrophic percentage calculated from the statistical model was compared with estimated phytoplankton carbon, and the two independent estimates of autotrophic percentage were comparable with similar seasonal cycles. The estimated C:nutrient ratios of live autotrophs were, in general, lower than Redfield, while the non-autotrophic C:nutrient ratios were higher than the live autotrophic ratios and above, or close to, the Redfield ratio. This is due to preferential remineralization of nutrients, and the P content mainly governed the difference between the sestonic fractions. Despite the seasonal variability in seston composition and the generally low contribution of autotrophic

  6. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.

    Science.gov (United States)

    Wantawin, C; Juateea, J; Noophan, P L; Munakata-Marr, J

    2008-01-01

    Conventional nitrification-denitrification treatment is a common way to treat nitrogen in wastewater, but this process is costly for low COD/N wastewaters due to the addition of air and external carbon-source. However, ammonia may alternatively be converted to dinitrogen gas by autotrophic bacteria utilizing aerobically autotrophically produced nitrite as an electron acceptor under anoxic conditions. Lab-scale sequencing batch biofilm reactors (SBBRs) inoculated with normal nitrifying sludge were employed to study the potential of an oxygen-limited autotrophic nitrification-denitrification process initiated with typical nitrifying sludge for treating a synthetic ammonia wastewater devoid of organic carbon in one step. The ring-laced fibrous carrier (length 0.32 m, surface area 3.4 m2/m) was fixed vertically in a 3 L reactor. Two different air supply modes were applied:continuous aeration to control dissolved oxygen at 1.5 mg/L and intermittent aeration. High nitrogen removals of more than 50% were obtained in both SBBRs. At an ammonia loading of 0.882 gm N/m2-day [hydraulic retention time (HRT) of 24 hr], the SBBR continuously aerated to 1.5 mg DO/L had slightly higher nitrogen removal (64%) than the intermittently alternated SBBR (55%). The main form of residual nitrogen in the effluent was ammonia, at concentrations of 25 mg/L and 37 mg N/L in continuous and intermittent aeration SBBRs, respectively. Ammonia was completely consumed when ammonia loading was reduced to 0.441 gm N/m2-day [HRT extended to 48 hr]. The competitive use of nitrite by aerobic nitrite oxidizing bacteria (ANOB) with anaerobic ammonia-oxidizing bacteria (anammox bacteria) during the expanded aeration period under low remaining ammonia concentration resulted in higher nitrate production and lower nitrogen loss in the continuous aeration SBBR than in the intermittent aeration SBBR. The nitrogen removal efficiencies in SBBRs with continuous and alternating aerated were 80% and 86% respectively

  7. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2012-01-01

    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  8. Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae)

    Science.gov (United States)

    Few studies have addressed the presence and bioactivity of endophytic fungi living in plantlets growing under in vitro conditions. We isolated a fungus UM 109 from autotrophic cultures of the medicinal plant Smallanthus sonchifolius (yacon). The species was identified as Coniochaeta ligniaria using ...

  9. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment.

    Science.gov (United States)

    Li, Jinlong; Li, Desheng; Cui, Yuwei; Xing, Wei; Deng, Shihai

    2017-07-01

    Nitrogen bioremediation in organic insufficient wastewater generally requires an extra carbon source. In this study, nitrate-contaminated wastewater was treated effectively through simultaneous autotrophic and heterotrophic denitrification based on micro-electrolysis carriers (MECs) and retinervus luffae fructus (RLF), respectively. The average nitrate and total nitrogen removal rates reached 96.3 and 94.0% in the MECs/RLF-based autotrophic and heterotrophic denitrification (MRAHD) system without ammonia and nitrite accumulation. The performance of MRAHD was better than that of MEC-based autotrophic denitrification for the wastewater treatment with low carbon nitrogen (COD/N) ratio. Real-time quantitative polymerase chain reaction (qPCR) revealed that the relative abundance of nirS-type denitrifiers attached to MECs (4.9%) and RLF (5.0%) was similar. Illumina sequencing suggested that the dominant genera were Thiobacillus (7.0%) and Denitratisoma (5.7%), which attached to MECs and RLF, respectively. Sulfuritalea was discovered as the dominant genus in the middle of the reactor. The synergistic interaction between autotrophic and heterotrophic denitrifiers played a vital role in the mixotrophic substrate environment.

  10. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    Science.gov (United States)

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Selection of controlled variables in bioprocesses. Application to a SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    Selecting the right controlled variables in a bioprocess is challenging since the objectives of the process (yields, product or substrate concentration) are difficult to relate with a given actuator. We apply here process control tools that can be used to assist in the selection of controlled var...... variables to the case of the SHARON-Anammox process for autotrophic nitrogen removal....

  12. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

    NARCIS (Netherlands)

    Hicks Pries, C.E.; van Logtestijn, R.S.P; Schuur, E.A.G.; Natali, S.M.; Cornelissen, J.H.C.; Aerts, R.; Dorrepaal, E.

    2015-01-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change

  13. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal.

    Science.gov (United States)

    Liu, Sitong; Yang, Fenglin; Gong, Zheng; Meng, Fangang; Chen, Huihui; Xue, Yuan; Furukawa, Kenji

    2008-10-01

    The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.

  15. Influence oFe3+ Ions on Nitrate Removal by Autotrophic Denitrification Using Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Z. Blažková

    2017-07-01

    Full Text Available he sulphur-based autotrophic denitrification process utilizing Thiobacillus denitrificans was studied experimentally as an alternative method of removing nitrates from industrial wastewater. The objective of the work was to examine the effect of ferric iron addition to the reaction mixture and determine optimal dosage for specific conditions. All experiments were carried out in anoxic batch bioreactor, and elemental sulphur was used as an electron donor. Compared to the control operation without ferric iron addition, significant increases in nitrates removal were demonstrated for the concentration of ferric iron equal to 0.1 mg L–1. However, under these conditions, increased nitrite content was detected in the reaction mixture which exceeds the limits for drinking water.

  16. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  17. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    Science.gov (United States)

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  18. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    Directory of Open Access Journals (Sweden)

    Viktoria Shcherbakova

    2015-09-01

    Full Text Available The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  19. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  20. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  1. Residence time of carbon substrate for autotrophic respiration of a grassland ecosystem correlates with the carbohydrate status of its vegetation

    Science.gov (United States)

    Ostler, Ulrike; Lehmeier, Christoph A.; Schleip, Inga; Schnyder, Hans

    2016-04-01

    Ecosystem respiration is composed of two component fluxes: (1) autotrophic respiration, which comprises respiratory activity of plants and plant-associated microbes that feed on products of recent photosynthetic activity and (2) heterotrophic respiration of microbes that decompose organic matter. The mechanistic link between the availability of carbon (C) substrate for ecosystem respiration and its respiratory activity is not well understood, particularly in grasslands. Here, we explore, how the kinetic features of the supply system feeding autotrophic ecosystem respiration in a temperate humid pasture are related to the content of water-soluble carbohydrates and remobilizable protein (as potential respiratory substrates) in vegetation biomass. During each September 2006, May 2007 and September 2007, we continuously labeled 0.8 m2 pasture plots with 13CO2/12CO2 and observed ecosystem respiration and its tracer content every night during the 14-16 day long labeling periods. We analyzed the tracer kinetics with a pool model, which allowed us to precisely partition ecosystem respiration into its autotrophic and heterotrophic flux components. At the end of a labeling campaign, we harvested aboveground and belowground plant biomass and analyzed its non-structural C contents. Approximately half of ecosystem respiration did not release any significant amount of tracer during the labeling period and was hence characterized as heterotrophic. The other half of ecosystem respiration was autotrophic, with a mean residence time of C in the respiratory substrate pool between 2 and 6 d. Both the rate of autotrophic respiration and the turnover of its substrate supply pool were correlated with plant carbohydrate content, but not with plant protein content. These findings are in agreement with studies in controlled environments that revealed water-soluble carbohydrates as the main substrate and proteins as a marginal substrate for plant respiration under favorable growth conditions

  2. Sulfur Geochemistry of a Lacustrine Record from Taiwan Reveals Enhanced Marine Aerosol Input during the Early Holocene.

    Science.gov (United States)

    Ding, Xiaodong; Li, Dawei; Zheng, Liwei; Bao, Hongyan; Chen, Huei-Fen; Kao, Shuh-Ji

    2016-12-12

    Lacustrine record of marine aerosol input has rarely been documented. Here, we present the sulfur geochemistry during the last deglaciation and early Holocene of a sediment core retrieved from the Dongyuan Lake in southern Taiwan. An unusually high sulfur peak accompanying pyrite presence is observed at 10.5 ka BP. Such high sulfur content in lacustrine record is unusual. The δ 34 S of sulfur varied from +9.5 to + 17.1‰ with two significant positive shifts at 10.5 and 9.4 ka BP. The sources of sulfur and potential processes involving the sulfur isotope variation including bacterial sulfate reduction, volcanic emissions, in-catchment sulfide oxidation and marine aerosol input are discussed. Enhanced marine aerosol input is the most likely explanation for such sulfur peaks and δ 34 S shifts. The positive δ 34 S shifts appeared concurrently with the maximum landslide events over Taiwan resulted from enhanced typhoon activities. The synchronicity among records suggests that increased typhoon activities promoted sea spray, and consequently enhanced the marine aerosol input with 34 S-enriched sulfate. Our sulfur geochemistry data revealed sea spray history and marine influence onto terrestrial environment at coastal regions. Wider coverage of spatial-temporal lacustrine sulfur geochemistry record is needed to validate the applicability of sulfur proxy in paleoenvironmental research.

  3. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    Science.gov (United States)

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-03-01

    This paper investigates a novel sulfur-oxidizing autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR) that has the potential to overcome the limitations of conventional sulfur-oxidizing autotrophic denitrification systems. The AnFB-MBR produced consistent high-quality product water when fed by a synthetic groundwater with NO3 (-)-N ranging 25-80 mg/L and operated at hydraulic retention times of 0.5-5.0 h. A nitrate removal rate of up to 4.0 g NO3 (-)-N/Lreactord was attained by the bioreactor, which exceeded any reported removal capacity. The flux of AnFB-MBR was maintained in the range of 1.5-15 L m(-2) h(-1). Successful membrane cleaning was practiced with cleaning cycles of 35-81 days, which had no obvious effect on the AnFB-MBR performance. The (15) N-tracer analyses elucidated that nitrogen was converted into (15) N2-N and (15) N-biomass accounting for 88.1-93.1 % and 6.4-11.6 % of the total nitrogen produced, respectively. Only 0.3-0.5 % of removed nitrogen was in form of (15)N2O-N in sulfur-oxidizing autotrophic denitrification process, reducing potential risks of a significant amount of N2O emissions. The sulfur-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Proteobacteria, Chlorobi, and Chloroflexi phyla, with genera Thiobacillus, Sulfurimonas, and Ignavibacteriales dominating the consortium. The pyrosequencing assays also suggested that the stable microbial communities corresponded to the elevated performance of the AnFB-MBR. Overall, this research described relatively high nitrate removal, acceptable flux, indicating future potential for the technology in practice.

  5. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and PCO2 in a subarctic Greenland fjord

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Krause-Jensen, Dorte; Dalsgaard, Tage

    2014-01-01

    of POC. The planktonic community was net heterotrophic in the photic zone in September (NCP = −21 ± 45 mmol O2 m−2 d−1) and February (NCP = −17 mmol O2 m−2 d−1) but net autotrophic during a developing spring bloom in May (NCP = 129 ± 102 mmol O2 m−2 d−1). In September, higher temperatures, shorter day...... lengths, and lower Chl a concentrations compared with May caused increased rates of CR, lower GPP rates, and net heterotrophy in the photic zone. The GPP required to exceed CR and where NCP becomes positive was low (in May: 1.58 ± 0.48 µmol O2 L−1 d−1 and September: 3.06 ± 0.82 µmol O2 L−1 d−1...... as an important driver of surface , with high rates of autotrophy and vertical export of POC reducing surface during summer. In winter, net heterotrophy added CO2 to the water column, but this postive effect on was balanced by simultaneous cooling of the water column, which decreased because of increased...

  6. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    Science.gov (United States)

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. Copyright © 2016. Published by Elsevier Ltd.

  7. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, D.R. [Wyoming Univ., Laramie, WY (United States). Dept. of Renewable Resources; Gower, S.T. [Wisconsin Univ., Madison, WI (United States). Dept. of Forest Ecology and Management

    2010-04-15

    Substantial increases in climatic temperatures may cause boreal forests to become a carbon source. An improved understanding of the effect of climatic warming on photosynthesis and autotrophic respiration is needed in order to determine the impact of temperature increases on net carbon balances. This study measured the light-saturated photosynthesis foliage respiration and stem respiration of black spruce in heated and control plots during a 3-year period at a site located in Thompson, Manitoba. Greenhouses and soil-heating cables were used to maintain air and soil temperatures at 5 degrees C above ambient air and soil temperatures. Studies were conducted to determine the influence of soil and air warming; soil-only warming; and greenhouses maintained at ambient temperatures. The study showed that treatment differences for photosynthesis, foliage respiration, and stem respiration were not significant over the 3-year period. Results suggested that black spruce may not have significant changes in photosynthesis or respiration rates in warmer climates. 38 refs., 3 tabs., 4 figs.

  9. A study of autotrophic communities in two Victoria Land lakes (Continental Antarctica using photosynthetic pigments

    Directory of Open Access Journals (Sweden)

    Roberto BARGAGLI

    2010-08-01

    Full Text Available The composition of algal pigments and extracellular polymeric substances (EPS was determined in microbial mats from two lakes in Victoria Land (Continental Antarctica with different lithology and environmental features. The aim was to expand knowledge of benthic autotrophic communities in Antarctic lacustrine ecosystems, providing reference data for future assessment of possible changes in environmental conditions and freshwater communities. The results of chemical analyses were supported by microscopy observations. Pigment profiles showed that filamentous cyanobacteria are dominant in both lakes. Samples from the water body at Edmonson Point had greater biodiversity, fewer pigments and lower EPS ratios than those from the lake at Kar Plateau. Differences in mat composition and in pigment and EPS profile between the two lakes are discussed in terms of local environmental conditions such as lithology, ice-cover and UV radiation. The present study suggests that a chemical approach could be useful in the study of benthic communities in Antarctic lakes and their variations in space and time.

  10. [Achieve single-stage autotrophic biological nitrogen removal process by controlling the concentration of free ammonia].

    Science.gov (United States)

    Ji, Li-Li; Yang, Zhao-Hui; Xu, Zheng-Yong; Li, Xiao-Jiang; Tang, Zhi-Gang; Deng, Jiu-Hu

    2011-01-01

    Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C. During the step of the enrichment of nitrite bacteria, pH was about 7.8. Changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N(56-446 mg x L(-1)), in order to inhibit and eliminate the nitrate bacteria. The activity tests of the sludge, 55d after enrichment, showed strong activity of aerobic ammonium oxidation [2.91 kg x (kg x d)(-1)] and low activity of nitrite oxidation [0.03 kg x(kg x d)(-1)]. During the inoculation of the mixture of anammox biomass, changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N and pH. As the inoculation of anammox biomass, abundant of bacteria and nutrient content were into the reactor and there kept high activity of aerobic ammonium oxidation [2.83 kg x (kg x d)(-1)] and a certain activity of nitrite oxidation, at the same time, the activity of anammox and heterotrophic denitrification reached 0.65 kg x (kg x d)(-1) and 0.11 kg x (kg x d)(-1), respectively.

  11. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water.

    Science.gov (United States)

    Wang, Zheng; He, Shengbing; Huang, Jungchen; Zhou, Weili; Chen, Wanning

    2018-03-29

    Phosphorus (P) limitation has been demonstrated for micro-polluted surface water denitrification treatment in previous study. In this paper, a lab-scale comparative study of autotrophic denitrification (ADN) and heterotrophic denitrification (HDN) in phosphorus-limited surface water was investigated, aiming to find out the optimal nitrogen/phosphorus (N/P) ratio and the mechanism of the effect of P limitation on ADN and HDN. Furthermore, the optimal denitrification process was applied to the West Lake denitrification project, aiming to improve the water quality of the West Lake from worse than grade V to grade IV (GB3838-2006). The lab-scale study showed that the lack of P indeed inhibited HDN more greatly than ADN. The optimal N/P ratio for ADN and HDN was 25 and a 0.15 mg PO 4 3- -P L -1 of microbial available phosphorus (MAP) was observed. P additions could greatly enhance the resistance of ADN and HDN to hydraulic loading shock. Besides, The P addition could effectively stimulate the HDN performance via enriching the heterotrophic denitrifiers and the denitrifying phosphate-accumulating organisms (DNPAOs). Additionally, HDN was more effective and cost-effective than ADN for treating P-limited surface water. The study of the full-scale HDBF (heterotrophic denitrification biofilter) indicated that the denitrification performance was periodically impacted by P limitation, particularly at low water temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Start-Up and Aeration Strategies for a Completely Autotrophic Nitrogen Removal Process in an SBR

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2017-01-01

    Full Text Available The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON process were examined in a sequencing batch reactor (SBR with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d, respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h and nonaeration (1 h was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.

  13. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa : relationship with prey fatty acid composition

    DEFF Research Database (Denmark)

    Broglio, E.; Jonasdottir, Sigrun; Calbet, A.

    2003-01-01

    ) and ingestion rates, or as the quotient: EPR/ingestion rate. The diets, offered in monoculture, were the heterotrophic ciliates Strombidium sulcatum or Mesodinium pulex, the heterotrophic dinoflagellate Gymnodinium dominans, the autotrophic cryptophyte Rhodomonas salina and the autotrophic dinoflagellate...... Gymnodinium sanguineum. The diets were also analyzed for fatty acid contents and composition, relationships with EPE and reproductive success were determined. Clear differences were found in the fatty acid contents and the composition of the different diets offered, but these differences did not correspond...

  14. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, A.P.; Jyothibabu, R.; Jagadeesan, L.; Lallu, K.R.; Karnan, C.

    showed that autotrophic picoplankton occurs abundantly in the oceanic/oligotrophic environments where they contribute more than 50% of the gross primary production (Stockner and Antia 1986; Li 1983; Li and Wood 1988). More recent research evidenced... that autotrophic picoplankton are abundant in the nutrient-rich waters such as coastal and estuarine waters as well, though their proportionate contribution to the gross primary production in such environments is lower than the large-sized phytoplankton (Philip...

  15. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott D [Mississippi State Univ., Mississippi State, MS (United States)

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  16. Incidence of plant cover over the autotrophic nitrifying bacteria population in a fragment of Andean forest

    International Nuclear Information System (INIS)

    Gonzalez, Xiomara; Gonzalez, L; Varela, A; Ahumada, J A

    1999-01-01

    It was determined the incidence of plant cover (forest vs. pasture), on the autotrophy nitrifying bacteria, through the effect of biotic factors (radical exudate) and abiotic factors (temperature, ph and humidity), in a high mountain cloud forest fragment. The site of study was located near La Mesa (Cundinamarca) municipality. The temperature of soil was measured in situ, and soil samples were collected and carried to the laboratory for pH and humidity percentage measurements. Serial soil dilution method was used for plating samples on a selective culture medium with ammonium sulphate as nitrogen source, in order to estimate the autotrophic nitrifying bacteria population levels. Grown colonies were examined macro and microscopically. The quantity of nitrates produced by bacteria cultured in vitro was determined spectra-photometrical. In relation to the abiotic factors, there was no significant differences of pH between both plant covers, but there were significant for soil humidity and temperature (p<0.05). There were highly significant differences with respect to the bacteria population levels (p<0.0001) and with respect to nitrate production. This suggests a higher bacterial activity in the under forest cover. The radical exudate from both types of plant cover reduced the viability of bacteria in vitro, from 1:1 to 1:30 exudate bacteria proportions. In the soils physical and chemical analysis, it was found a higher P and Al concentrations, and a higher CIC and organic matter content under the forest cover. It is suggested the importance of this functional group in this ecosystem

  17. Mutualism between autotrophic and heterophic bacteria in leaching of low grade ores

    International Nuclear Information System (INIS)

    Khalid, Z.M.; Naeveke, R.

    1991-01-01

    During solubilization processes of low grade sulphidic ores, the auto trophic bacteria oxidize reduced sulphur compounds and ferrous iron to sulphates and ferric iron respectively. The ore leaching bio topes are not only colonized by auto trophic bacteria (Thiobacillus spp., Leptospirillum ferro oxidans and sulfolobus sp.) but the heterotrophic microorganisms, including bacteria and fungi of various species are also found in these habitats. The autotrophs, in addition to energy metabolism, also produce organic compounds which in excess amount inhibit their growth. Through the utilization of such compounds and also through the production of carbon dioxide and ammonia, these heterotorphs can help bio leaching processes. Effect of one of the heterotrophs; methylobacterium sp., a nitrogen scavenger, found in as association with the thio bacilli in one of the leaching bio tope in Germany was studied in leaching of a carbonate bearing complex (containing copper, iron, zinc and lead) sulphidic ore, in shake flask studies. T. ferro oxidans (Strain F-40) reported to be non nitrogen fixer and strain F-41, a nitrogen fixing thiobacillus were studied for leachability behaviour alone and in combination with T. thio oxidans (lacking nitrogen fixing ability) using media with and without added ammonium nitrogen. In addition the effect of methylobacterium sp. (alt-25) was also tested with the afore mentioned combinations. Nitrogen fixation by T. ferro oxidans did not suffice the nitrogen requirement and the leaching system in laboratory needed addition of nitrogen. The heterotrophic nitrogen scavenger also did not have a positive influence in nitrogen limited system. In case where ammonium nitrogen was also provided in the media, this heterotroph had a negative in own growth and leaving lesser amount available for thio bacilli. This high amount of acid is a limiting factor in bio leaching of high carbonate uranium ores. Uranium ore ecosystems have also been found to contain

  18. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics.......Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  19. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  20. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    Directory of Open Access Journals (Sweden)

    Jessica K Cole

    2014-04-01

    Full Text Available Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural

  1. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    Science.gov (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  2. Temporal variation of autotrophic picoplankton contribution to coastal phytoplankton communities over a seasonal cycle: A case study

    Science.gov (United States)

    Koçum, Esra

    2017-04-01

    Autotrophic pico-plankton form the smallest component of phytoplankton and refers to cells smaller than 2 µM. It is phylogenetically diverse and have both prokaryotic and eukaryotic components. Prokaryotic pico-autotrophs are unicellular cyanobacteria, represented mainly by Prochlorococcus and Synechococcus genera. Pico-eukaryotes are more diverse and include members of Chlorophyta, Cryptophyta, Haptophyta and Heterokontophyta. Owing to their higher nutrient acquisition capacity, relative share of pico-plankton in autotrophic production and biomass can be significant and even dominant in oligotrophic regions such as in warm tropical waters. They also fare better than larger members of phytoplankton communities under light limitation and under increasing temperature. Recent work has shown that autotrophic pico-plankton can be a significant component of coastal phytoplankton. In view of the global warming related increase in the sea surface temperature and nutrient enrichment of coastal waters, it is necessary to understand variation in the relative share of different sized groups in phytoplankton communities of coastal ecosystems including pico-plankton biomass as it shows the potential for development of microbial food web. Here, an interpretation of temporal patterns detected in the biomass and the relative contribution of pico-sized (< 2 µm) members of phytoplankton was made using data collected from two coastal sites over a year. The findings revealed the significant spatio-temporal variation in both actual pico-plankton biomass and its relative share in phytoplankton. The average biomass values of pico-plankton were 0.23 ± 0.02 µ g chl a L-1 and 0.15 ± 0.01 µg chl a L-1 at nutrient-poor and nutrient-rich sites; respectively. The temporal pattern of change displayed by picoplankton biomass was not seasonal at nutrient rich site while at nutrient poor site it was seasonal with low values measured over winter suggesting it was the seasonal changes leading to

  3. Long-term Trends in Particulate Organic Carbon from a Low-Gradient Autotrophic Watershed

    Science.gov (United States)

    Fox, J.; Ford, W. I., III

    2014-12-01

    Recent insights from low-gradient streams dominated by fine surficial sediments have shown fluvial organic matter dynamics are governed by coupled hydrologic and biotic controls at event to seasonal timescales. Notwithstanding the importance of shorter timescales, quantity and quality of carbon in stream ecosystems at annual and decadal scales is of increased interest in order to understand if stream ecosystems are net stores or sinks of carbon and how stream carbon behaves under dynamic climate conditions. As part of an ongoing study in a low-gradient, agricultural watershed in the Bluegrass Region of Central Kentucky, an eight year dataset of transported particulate organic carbon (POC) was analyzed for the present study. The objective was to investigate if POC dynamics at multi-year timescales are governed by biotic or hydrologic processes. A statistical analysis using Empirical Mode Decomposition was performed on an 8 year dataset of transported sediment carbon, temperature, and log-transformed flowrates at the watershed outlet. Simulations from a previously validated, process-based, organic carbon model were utilized as further verification of drivers. Results from the analysis suggest that a 4 degree Celsius mean annual temperature shift corresponds to a 63% increase in organic carbon content at the main-stem, third order outlet and a 33% increase in organic carbon content at the main-stem inlet. Model and stable isotope results for the 8 year study support that long-term increases in organic carbon concentration are governed by biotic growth and humification of algal biomass in which increasing annual temperatures promote increased organic carbon production, relative to ecosystem respiration. This result contradicts conventional wisdom, suggesting projected warming trends will shift autotrophic freshwater systems to net heterotrophic, which has significant implications for the role of benthic stream ecosystems under changing climate conditions. Future work

  4. Forest annual carbon cost: a global-scale analysis of autotrophic respiration.

    Science.gov (United States)

    Piao, Shilong; Luyssaert, Sebastiaan; Ciais, Philippe; Janssens, Ivan A; Chen, Anping; Cao, Chao; Fang, Jingyun; Friedlingstein, Pierre; Luo, Yiqi; Wang, Shaopeng

    2010-03-01

    Forest autotrophic respiration (R(a)) plays an important role in the carbon balance of forest ecosystems. However, its drivers at the global scale are not well known. Based on a global forest database, we explore the relationships of annual R(a) with mean annual temperature (MAT) and biotic factors including net primary productivity (NPP), total biomass, stand age, mean tree height, and maximum leaf area index (LAI). The results show that the spatial patterns of forest annual R(a) at the global scale are largely controlled by temperature. R(a) is composed of growth (R(g)) and maintenance respiration (R(m)). We used a modified Arrhenius equation to express the relationship between R(a) and MAT. This relationship was calibrated with our data and shows that a 10 degrees C increase in MAT will result in an increase of annual R(m) by a factor of 1.9-2.5 (Q10). We also found that the fraction of total assimilation (gross primary production, GPP) used in R(a) is lowest in the temperate regions characterized by a MAT of approximately 11 degrees C. Although we could not confirm a relationship between the ratio of R(a) to GPP and age across all forest sites, the R(a) to GPP ratio tends to significantly increase in response to increasing age for sites with MAT between 8 degrees and 12 degrees C. At the plant scale, direct up-scaled R(a) estimates were found to increase as a power function with forest total biomass; however, the coefficient of the power function (0.2) was much smaller than that expected from previous studies (0.75 or 1). At the ecosystem scale, R(a) estimates based on both GPP - NPP and TER - R(h) (total ecosystem respiration - heterotrophic respiration) were not significantly correlated with forest total biomass (P > 0.05) with either a linear or a power function, implying that the previous individual-based metabolic theory may be not suitable for the application at ecosystem scale.

  5. Marine Science

    African Journals Online (AJOL)

    ment. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, Western Indian Ocean Journal of ...

  6. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  7. Marine Science

    African Journals Online (AJOL)

    The journal publishes original research articles dealing with all aspects of marine science and coastal manage- ment. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/ ...

  8. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting.

  9. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due...... of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... ranged up to 1.59 ± 0.16 μg gdw−1 d−1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin–Benson–Bassham (CBB) cycle, as indicated from quantification of cbbL/cbbM marker genes encoding for RubisCO by quantitative polymerase chain reaction...

  10. Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine

    2015-01-01

    Complete Autotrophic Nitrogen Removal (CANR) is a novel process where ammonia is converted to nitrogen gas by different microbial groups. The performance of the process can be compromised by an unbalanced activity of the biomass caused by disturbances or non-optimal operational conditions...... microbial groups on the other hand, the diagnosis provides information on: nitritation, nitratation, anaerobic ammonium oxidation and overall autotrophic nitrogen removal. These four results give insight into the state of the process and are used as inputs for the controller that manipulates the aeration...... to the reactor.The diagnosis tool was first evaluated using 100 days of real process operation data obtained from a lab-scale single-stage autotrophic nitrogen removing reactor. This evaluation revealed that the fuzzy logic diagnosis is able to provide a realistic description of the microbiological state...

  11. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  12. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  13. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Science.gov (United States)

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions].

    Science.gov (United States)

    Mokrosnop, V M; Polishchuk, A V; Zolotareva, E K

    2016-01-01

    The aim of the work was to find the mode of cultivation of unicellular flagellate Euglena gracilis, favorable for the simultaneous accumulation of α-tocopherol and β-carotene. Cells were grown either in photoautotrophic or photoheterotrophic conditions in the presence of 100 mM ethanol (variant Et) or 40 mM glutamate (variant Gt), or their combination (variant EtGt). The exogenous substrates significantly stimulated light-dependent growth of E. gracilis. The largest increase of biomass was recorded on the 20th day in the variant EtGt and exceeded the autotrophic control by 7 times. The content of β-carotene and chlorophyll (Chl) per cell in mixotrophic cultures exceeded the control by 2-3 and 1.6-2 times, respectively. At the same time, α-tocopherol accumulation in autotrophic cells was greater than in the cells of mixotrophic cultures by 2-7 times. Total yield of tocopherol per unit volume of culture medium, which depended not only on its intracellular content, but also on the amount of accumulated biomass was highest in EtGt variant. A correlation between the accumulation of the antioxidants and the equilibrium concentration of oxygen in the growth medium, which depended on the intensities of photosynthesis and respiration has been analyzed.

  15. Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems.

    Science.gov (United States)

    Cecconet, D; Devecseri, M; Callegari, A; Capodaglio, A G

    2018-02-01

    Nitrates have been detected in groundwater worldwide, and their presence can lead to serious groundwater use limitations, especially because of potential health problems. Amongst different options for their removal, bioelectrochemical systems (BESs) have achieved promising results; in particular, attention has raised on BES-driven autotrophic denitrification processes. In this work, the performance of a microbial electrolysis cell (MEC) for groundwater autotrophic denitrification, is assessed in different conditions of nitrate load, hydraulic retention time (HRT) and process configuration. The system obtained almost complete nitrate removal under all conditions, while nitrite accumulation was recorded at nitrate loads higher than 100mgNO 3 - L -1 . The MEC system achieved, in different tests, a maximum nitrate removal rate of 62.15±3.04gNO 3 - -Nm -3 d -1 , while the highest TN removal rate observed was 35.37±1.18gTNm -3 d -1 . Characteristic of this process is a particularly low (in comparison with other reported works) energy consumption: 3.17·10 -3 ±2.26·10 -3 kWh/gNO 3 - N removed and 7.52·10 -2 ±3.58·10 -2 kWhm -3 treated. The anolyte configuration in closed loop allowed the process to use less clean water, while guaranteeing identical performances as in other conventional configurations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source.

    Science.gov (United States)

    Jourdin, Ludovic; Freguia, Stefano; Donose, Bogdan C; Keller, Jurg

    2015-04-01

    It is still unclear whether autotrophic microbial biocathode biofilms are able to self-regenerate under purely cathodic conditions without any external electron or organic carbon sources. Here we report on the successful development and long-term operation of an autotrophic biocathode whereby an electroactive biofilm was able to grow and sustain itself with CO2 as a sole carbon source and using the cathode as electron source, with H2 as sole product. From a small inoculum of 15 mg COD (in 250 mL), containing 30.3% Archaea, the bioelectrochemical system operating at -0.5 V vs. SHE enabled an estimated biofilm growth of 300 mg as COD over a period of 276 days. A dramatic change in the microbial population was observed during this period with Archaea disappearing completely (hydrogen alone can be sustained with a cathode as the sole electron source, while avoiding the development of H2-consuming microorganisms such as methanogens and acetogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Potential autotrophic metabolisms in ultra-basic reducing springs associated with present-day continental serpentinization

    Science.gov (United States)

    Morrill, P. L.; Miles, S.; Kohl, L.; Kavanagh, H.; Ziegler, S. E.; Brazelton, W. J.; Schrenk, M. O.

    2013-12-01

    Ultra-basic reducing springs at continental sites of serpentinization act as windows into the biogeochemistry of this subsurface exothermic environment rich in H2 and CH4 gases. Biogeochemical carbon transformations in these systems are of interest because serpentinization creates conditions that are amenable to abiotic and biotic reduction of carbon. However, little is known about the metabolic capabilities of the microorganisms that live in this environment. To determine the potential for autotrophic metabolisms, bicarbonate and CO substrate addition microcosm experiments were performed using water and sediment from an ultra-basic reducing spring in the Tablelands, Newfoundland, Canada, a site of present-day continental serpentinization. CO was consistently observed to be utilized in the Live but not the Killed controlled replicates amended with 10% 13C labelled CO and non-labelled (natural C isotope abundance) CO. In the Live CO microcosms with natural C isotope abundance, the residual CO became enriched in 13C (~10 ‰) consistent with a decrease in the fraction of CO remaining. In the Killed CO controlled replicates with natural C isotope abundance the CO showed little 13C enrichment (~1.3 ‰). The data from the Live CO microcosms were well described by a Rayleigh isotopic distillation model, yielding an isotopic enrichment factor for microbial CO uptake of 15.7 ×0.5 ‰ n=2. These data suggest that there was microbial CO utilization in these experiments. The sediment and water from the 13C-labelled and non-labelled, Live and Killed microcosms were extracted for phospholipid fatty acids (PLFAs) to determine changes in community composition between treatments as well as to determine the microbial uptake of CO. The difference in community composition between the Live and Killed microcosms was not readily resolvable based on PLFA distributions. Additionally, the microbial uptake of 13CO had minimal to no affect on the δ13C of the cellular biomarkers, with the

  18. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  19. Marine pollution

    International Nuclear Information System (INIS)

    Clark, R.B.

    1992-01-01

    The effects of petroleum, waste materials, halogenated hydrocarbons, radioactivity and heat on the marine ecosystem, the fishing industry and human health are discussed using the example of the North Sea. (orig.) [de

  20. Formaldehyde as a carbon and electron shuttle between autotroph and heterotroph populations in acidic hydrothermal vents of Norris Geyser Basin, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Isern, Nancy G.; Romine, Margaret F.; Riha, Krystin M.; Inskeep, William P.; Kreuzer, Helen W.

    2016-03-19

    The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonesis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with 13C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.

  1. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from...

  2. Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles : a case study related to the microbial desulfurization of coal

    NARCIS (Netherlands)

    Boogerd, F C; Bos, P; Kuenen, J.G.; Heijnen, J.; van der Lans, R G

    Mass transfers of O(2), CO(2), and water vapor are among the key processes in the aerobic, autotrophic cultivation of moderate and extreme thermophiles. The dynamics and kinetics of these processes are, in addition to the obvious microbial kinetics, of crucial importance for the industrial

  3. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production.

    Science.gov (United States)

    Subramanian, Sowmya; Barry, Amanda N; Pieris, Shayani; Sayre, Richard T

    2013-10-19

    Due to the growing need to provide alternatives to fossil fuels as efficiently, economically, and sustainably as possible there has been growing interest in improved biofuel production systems. Biofuels produced from microalgae are a particularly attractive option since microalgae have production potentials that exceed the best terrestrial crops by 2 to 10-fold. In addition, autotrophically grown microalgae can capture CO2 from point sources reducing direct atmospheric greenhouse gas emissions. The enhanced biomass production potential of algae is attributed in part to the fact that every cell is photosynthetic. Regardless, overall biological energy capture, conversion, and storage in microalgae are inefficient with less than 8% conversion of solar into chemical energy achieved. In this review, we examine the thermodynamic and kinetic constraints associated with the autotrophic conversion of inorganic carbon into storage carbohydrate and oil, the dominant energy storage products in Chlorophytic microalgae. We discuss how thermodynamic restrictions including the loss of fixed carbon during acetyl CoA synthesis reduce the efficiency of carbon accumulation in lipids. In addition, kinetic limitations, such as the coupling of proton to electron transfer during plastoquinone reduction and oxidation and the slow rates of CO2 fixation by Rubisco reduce photosynthetic efficiency. In some cases, these kinetic limitations have been overcome by massive increases in the numbers of effective catalytic sites, e.g. the high Rubisco levels (mM) in chloroplasts. But in other cases, including the slow rate of plastoquinol oxidation, there has been no compensatory increase in the abundance of catalytically limiting protein complexes. Significantly, we show that the energetic requirements for producing oil and starch relative to the recoverable energy stored in these molecules are very similar on a per carbon basis. Presently, the overall rates of starch and lipid synthesis in

  4. Deactivation of the autotrophic sulfate assimilation pathway substantially reduces high-level β-lactam antibiotic biosynthesis and arthrospore formation in a production strain from Acremonium chrysogenum.

    Science.gov (United States)

    Terfehr, Dominik; Kück, Ulrich

    2017-06-01

    The filamentous ascomycete Acremonium chrysogenum is the only industrial producer of the β-lactam antibiotic cephalosporin C. Synthesis of all β-lactam antibiotics starts with the three amino acids l-α-aminoadipic acid, l-cysteine and l-valine condensing to form the δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine tripeptide. The availability of building blocks is essential in every biosynthetic process and is therefore one of the most important parameters required for optimal biosynthetic production. Synthesis of l-cysteine is feasible by various biosynthetic pathways in all euascomycetes, and sequencing of the Acr. chrysogenum genome has shown that a full set of sulfur-metabolizing genes is present. In principle, two pathways are effective: an autotrophic one, where the sulfur atom is taken from assimilated sulfide to synthesize either l-cysteine or l-homocysteine, and a reverse transsulfuration pathway, where l-methionine is the sulfur donor. Previous research with production strains has focused on reverse transsulfuration, and concluded that both l-methionine and reverse transsulfuration are essential for high-level cephalosporin C synthesis. Here, we conducted molecular genetic analysis with A3/2, another production strain, to investigate the autotrophic pathway. Strains lacking either cysteine synthase or homocysteine synthase, enzymes of the autotrophic pathway, are still autotrophic for sulfur. However, deletion of both genes results in sulfur amino acid auxotrophic mutants exhibiting delayed biomass production and drastically reduced cephalosporin C synthesis. Furthermore, both single- and double-deletion strains are more sensitive to oxidative stress and form fewer arthrospores. Our findings provide evidence that autotrophic sulfur assimilation is essential for growth and cephalosporin C biosynthesis in production strain A3/2 from Acr. chrysogenum.

  5. Otters, Marine

    Science.gov (United States)

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  6. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and where pH remains neutral. The "low-acid" oxidation of sulfides with nitrate as an electron acceptor has been demonstrated at the laboratory scale. In 90-day microcosm respirometry experiments, we exposed a mixture of pulverized quartz and pyrite -rich ore to natural, high-nitrate groundwater and inoculated the microcosms with a culture of aerobic and anaerobic nitrate-dependent iron and sulfur-oxidising microorganisms, which were enriched from ore, groundwater and activated waste water. Incubations were performed under both oxic and anoxic conditions, in addition to abiotic controls. Initial results show that oxidation of the sulfides under nitrate-rich and microbially enhanced conditions does produce less acid than the same material under oxic conditions, and to some degree can match the models as long as oxygen ingress can be controlled. These results are the focus of further research into how this process can be enhanced and whether it can be applied in the field. Nitrate-driven oxidation of sulfides could potentially be used as a new approach to reduce acid generation and leaching of contaminants from waste dumps, in a passive or actively managed process designed to deplete and/or ameliorate (i.e. through surface passivation) the mineralogical hazard. Developing our understanding of biological aspects of these processes may also allow testing of longer-term "bio-caps" for various tailings and dump materials.

  7. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO

    1991-01-01

    per day, occurred in anoxic water at the top of the sulfide zone concurrent with the highest rates of dark CO2 assimilation. The main soluble oxidized products of sulfide were thiosulfate (68-82%) and sulfate. Indirect evidence was presented for the formation of elemental sulfur which accumulated...... that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the sulfide zone....

  8. Iron sulfide oxidation and the chemistry of acid generation

    Science.gov (United States)

    Sullivan, Patrick J.; Yelton, Jennifer L.; Reddy, K. J.

    1988-06-01

    Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (AI), iron (Fe), and sulfate (SO4) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6 percent pyrite) and a Chattanooga Shale (1.5 percent pyrite). The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe3+, Fe2+, Al3+, and SO4 2- increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe+pH (redox-potential). The Fe3+ and Fe2+ activities appeared to be controlled by amorphous Fe(OH)3 solid phase above a pH of 6.0 and below pe+pH 11.0. The Fe3+, Fe2+, and SO4 2- activities reached saturation with respect to FeOHSO4 solid phase between pH 3.0 and 6.0 and below pe+pH 11.0 Below a pH of 3.0 and above a pe+pH of 11.0, Fe2+, Fe3+, and SO4 2- activities are supported by FeSO4·7H2O solid phase. Above a pH of 6.0, the Al3+ activity showed an equilibrium with amorphous Al(OH)3 solid phase. Below pH 6.0, Al3+ and SO4 2- activities are regulated by the AlOHSO4 solid phase, irrespective of pe+pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox. As a result, the long-term chemistry associated with disposal environments can be largely predicted (including trace elements).

  9. Climate change and ocean acidification effects on seagrasses and marine macroalgae.

    Science.gov (United States)

    Koch, Marguerite; Bowes, George; Ross, Cliff; Zhang, Xing-Hai

    2013-01-01

    Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2 ], and lower carbonate [CO3 (2-) ] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2 ]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3 (-) ; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2 -only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2 ] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2 ] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2 ] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2 ] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H(+) and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA

  10. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  11. Marine Science

    African Journals Online (AJOL)

    fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans .... ally changing marine environment with small island states faced with issues related to rising sea level. Two field notes .... alter the structure of coral tissue, skeletal morphol- ogy and density ...

  12. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- .... Kaullysing et al. also present a field note on coral-eating gastropods observed around Mauritius. ... and decision making in the field of coral reef studies and management in Mauritius, while contributing.

  13. Marine Science

    African Journals Online (AJOL)

    Mauritius Marine Conservation Society through their. Abstract. While no populations of seals are resident in the tropical Indian Ocean, vagrant animals are occasionally sighted in the region. Here we detail two new sightings of pinnipeds in the Mascarene Islands (Mauritius, Reunion and Rodri- gues) since 1996 and review ...

  14. Marine Science

    African Journals Online (AJOL)

    A. formosa and P. verrucosa responded significantly to seasonal fluctuation in both solar radiation and sea surface temperature by regulating their ... types from the environmental pool. It is concluded that seasonal fluctuations in both solar ..... photoprotection in symbiotic dinoflagellates from reef-building corals. Marine ...

  15. Marine Science

    African Journals Online (AJOL)

    sues of marine gastropods belonging to these genera contain a higher amount of protein and would there- fore benefit from a higher amount of PK added to the lysis buffer of choice. Moreover, it has been reported that PK is very active in the presence of the detergent. Sodium Dodecyl Sulphate (SDS) (Gross-Bellard et al,.

  16. Marine Science

    African Journals Online (AJOL)

    fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between ... ISSN 0856-860X. Western Indian Ocean. J O U R N A L O F. Marine Science. Editorial Board. Serge ANDREFOUËT. France. Ranjeet BHAGOOLI. Mauritius ...... ence Technology, Rhodes, Greece.

  17. Marine Mammals.

    Science.gov (United States)

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  18. Marine Science

    African Journals Online (AJOL)

    As in other oceans, anthropogenic activities have a large impact on marine habitats and ... effects of region (north vs south), country (proxy for latitude) and depth stratum on catch composition were con- sidered. Of 243 genera identified from 206 trawls, .... rather than species level. Two survey vessels with unequal fishing ...

  19. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research ... PAHs are among the persistent organic pollutants that are a worldwide environmental ... combusted and petroleum products are used during boat/dhow making and servicing ...

  20. Marine Science

    African Journals Online (AJOL)

    org/wio-journal-of-marine- science/ and AJOL ... The mangroves around Maputo city in Maputo Bay were studied to assess changes in forest cover area and the effect of cutting ..... factors on forest health condition has not yet been assessed.

  1. Marine Science

    African Journals Online (AJOL)

    determining zonation in intertidal areas (Tomanek &. Helmuth, 2002), it is noteworthy that wave action and. Abstract. This study compared spatial variations in the density and diversity of marine benthic molluscs along Belle Mare and. Gris Gris, a sheltered and an exposed intertidal zone, respectively, in Mauritius. Species ...

  2. The Role of B Vitamins in Marine Biogeochemistry

    Science.gov (United States)

    Sañudo-Wilhelmy, Sergio A.; Gómez-Consarnau, Laura; Suffridge, Christopher; Webb, Eric A.

    2014-01-01

    The soluble B vitamins (B1, B7, and B12) have long been recognized as playing a central metabolic role in marine phytoplankton and bacteria; however, the importance of these organic external metabolites in marine ecology has been largely disregarded, as most research has focused on inorganic nutrients and trace metals. Using recently available genomic data combined with culture-based surveys of vitamin auxotrophy (i.e., vitamin requirements), we show that this auxotrophy is widespread in the marine environment and occurs in both autotrophs and heterotrophs residing in oligotrophic and eutrophic environments. Our analysis shows that vitamins originate from the activities of some bacteria and algae and that taxonomic changes observed in marine phytoplankton communities could be the result of their specific vitamin requirements and/or vitamin availability. Dissolved vitamin concentration measurements show that large areas of the world ocean are devoid of B vitamins, suggesting that vitamin limitation could be important for the efficiency of carbon and nitrogen fixation in those regions.

  3. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  4. The Robin, Erithacus Rubecula (Passeriformes, Turdidae, As a Component of Autotrophic Consortia of Forest Cenoses, Northeast Ukraine

    Directory of Open Access Journals (Sweden)

    Chaplygina A. B.

    2016-08-01

    Full Text Available The role of the robin, Erithacus rubecula Linnaeus, 1758 as a consort of autotrophic consortia is considered. It has been found that representatives of 9 higher taxa of animals (Mammalia, Aves, Gastropoda, Insecta, Arachnida, Acarina, Malacostraca, Diplopoda, Clitellata have trophic and topical links with the robin. At the same time, the robin is a consort of determinants of autotrophic consortia, which core is represented mostly by dominating species of deciduous trees (Quercus robur Linnaeus, 1753 (24.6 %, Tilia cordata Miller, 1768 (17.5 %, Acer platanoides Linnaeus, 1753 (22.8 %, Acer campestre Linnaeus, 1753, and also by sedges (Carex sp. and grasses (Poaceae. The robin also belongs to the concentre of the second and higher orders as a component of forest biogeocenoses and forms a complex trophic system. In the diet of its nestlings, there have been found 717 objects from 32 invertebrate taxa, belonging to the phylums Arthropoda (99.2 %, 31 species and Annelida (0.8 %, 1 species. The phylum Arthropoda was represented by the most numerous class Insecta (76.9 %, in which 10 orders (Lepidoptera (46.8 % dominates and 20 families were recorded, and also by the classes Arachnida (15.0 %, Malacostraca (5.3 % and Diplopoda (1.9 %. The invertebrate species composition was dominated by representatives of a trophic group of zoophages (14 species; 43.8 %; the portion of phytophages (7 species; 21.9 %, saprophages (18.7 %, and necrophages (15.6 % was the less. The highest number of food items was represented by phytophages (N = 717; 51 %, followed by zoophages (34 %, saprophages (12 %, and necrophages (3 %. The difference among study areas according to the number of food items and the number of species in the robin nestling diet is shown. In NNP “HF”, the highest number of food items was represented by phytophages - 47 % (N = 443, whereas zoophages were the most species-rich group (43.3 %, 13 species. In NNP “H”, phytophages also prevailed in

  5. Satellite-Based Inversion and Field Validation of Autotrophic and Heterotrophic Respiration in an Alpine Meadow on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2017-06-01

    Full Text Available Alpine meadow ecosystem is among the highest soil carbon density and the most sensitive ecosystem to climate change. Partitioning autotrophic (Ra and heterotrophic components (Rm of ecosystem respiration (Re is critical to evaluating climate change effects on ecosystem carbon cycling. Here we introduce a satellite-based method, combining MODerate resolution Imaging Spectroradiometer (MODIS products, eddy covariance (EC and chamber-based Re components measurements, for estimating carbon dynamics and partitioning of Re from 2009 to 2011 in a typical alpine meadow on the Tibetan Plateau. Six satellite-based gross primary production (GPP models were employed and compared with GPP_EC, all of which appeared to well explain the temporal GPP_EC trends. However, MODIS versions 6 GPP product (GPP_MOD and GPP estimation from vegetation photosynthesis model (GPP_VPM provided the most reliable GPP estimation magnitudes with less than 10% of relative predictive error (RPE compared to GPP_EC. Thus, they together with MODIS products and GPP_EC were used to estimate Re using the satellite-based method. All satellite-based Re estimations generated an alternative estimation of Re_EC with negligible root mean square errors (RMSEs, g C m−2 day−1 either in the growing season (0.12 or not (0.08. Moreover, chamber-based Re measurements showed that autotrophic contributions to Re (Ra/Re could be effectively reflected by all these three satellite-based Re partitions. Results showed that the Ra contribution of Re were 27% (10–48%, 43% (22–59% and 56% (33–76% from 2009 to 2011, respectively, of which inter-annual variation is mainly attributed to soil water dynamics. This study showed annual temperature sensitivity of Ra (Q10,Ra with an average of 5.20 was significantly higher than that of Q10,Rm (1.50, and also the inter-annual variation of Q10,Ra (4.14–7.31 was larger than Q10,Rm (1.42–1.60. Therefore, our results suggest that the response of Ra to

  6. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China.

    Science.gov (United States)

    Yu, Shiqin; Chen, Yuanqi; Zhao, Jie; Fu, Shenglei; Li, Zhian; Xia, Hanping; Zhou, Lixia

    2017-12-31

    The temperature sensitivity of soil respiration (Q 10 ) is a key parameter for estimating the feedback of soil respiration to global warming. The Q 10 of total soil respiration (R t ) has been reported to have high variability at both local and global scales, and vegetation type is one of the most important drivers. However, little is known about how vegetation types affect the Q 10 of soil heterotrophic (R h ) and autotrophic (R a ) respirations, despite their contrasting roles in soil carbon sequestration and ecosystem carbon cycles. In the present study, five typical plantation forests and a naturally developed shrub and herb land in subtropical China were selected for investigation of soil respiration. Trenching was conducted to separate R h and R a in each vegetation type. The results showed that both R t and R h were significantly correlated with soil temperature in all vegetation types, whereas R a was significantly correlated with soil temperature in only four vegetation types. Moreover, on average, soil temperature explained only 15.0% of the variation in R a in the six vegetation types. These results indicate that soil temperature may be not a primary factor affecting R a . Therefore, modeling of R a based on its temperature sensitivity may not always be valid. The Q 10 of R h was significantly affected by vegetation types, which indicates that the response of the soil carbon pool to climate warming may vary with vegetation type. In contrast, differences in neither the Q 10 of R t nor that of R a among these vegetation types were significant. Additionally, variation in the Q 10 of R t among vegetation types was negatively related to fine root biomass, whereas the Q 10 of R h was mostly related to total soil nitrogen. However, the Q 10 of R a was not correlated with any of the environmental variables monitored in this study. These results emphasize the importance of independently studying the temperature sensitivity of R t and its heterotrophic and

  7. Trophic role of Protozooplankton in northern marine ecosystems

    DEFF Research Database (Denmark)

    Riisgaard, Karen

    Protozooplankton are the major grazers on phytoplankton in the global ocean, but many questions related to their trophic role remain unanswered in particular for northern marine ecosystems. In the present thesis, protozooplankton communities were evaluated with special emphasis on factors......, such as elevated temperature, water column stratification, pH and copepod predation, regulating their biomass, growth- and grazing rates. In addition, it was investigated what role protozooplankton have for the phytoplankton bloom dynamics at present and in a predicted warmer future. The studies were done through...... Iceland and Norway, succession and population dynamics of autotrophic and heterotrophic microbes including protozooplankton were followed prior to the spring bloom in relation to deep ocean convection. A decrease in abundance of small sized phytoplankton relative to larger diatoms was explained...

  8. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae. Copyright © 2012. Published by Elsevier Inc.

  9. Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification (PPAD) process.

    Science.gov (United States)

    Tong, Shuang; Stocks, Justine L; Rodriguez-Gonzalez, Laura C; Feng, Chuanping; Ergas, Sarina J

    2017-11-01

    The use of pyrite as an electron donor for biological denitrification has the potential to reduce alkalinity consumption and sulfate by-product production compared with sulfur oxidizing denitrification. This research investigated the effects of oyster shell and organic substrate addition on the performance of a particulate pyrite autotrophic denitrification (PPAD) process. Side-by-side bench-scale studies were carried out in upflow packed bed bioreactors with pyrite and sand, with and without oyster shells as an alkalinity source. Organic carbon addition (10% by volume wastewater) was found to improve PPAD denitrification performance, possibly by promoting mixotrophic metabolism. After organic carbon addition and operation at a six-hour empty bed contact time, total inorganic nitrogen (TIN) removal reached 90% in the column with oyster shells compared with 70% without. SEM images and biofilm protein measurements indicated that oyster shells enhanced biofilm growth. The results indicate that PPAD is a promising technology for treatment of nitrified wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.

    Science.gov (United States)

    Concas, Alessandro; Malavasi, Veronica; Costelli, Cristina; Fadda, Paolo; Pisu, Massimo; Cao, Giacomo

    2016-07-01

    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of Chlorella sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using the BIOCOIL photobioreactor operated in fed-batch mode. The experimental results, which show that a maximum growth rate of 0.52day(-1) and a lipid content equal to 25%wt can be achieved with the BIOICOIL, have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Finally, the fatty acid methyl esters obtained by trans-esterification of lipids extracted from C. sorokiniana, have been analyzed in view of the assessment of their usability for producing biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cd and Cu accumulation, translocation and tolerance in Populus alba clone (Villafranca) in autotrophic in vitro screening.

    Science.gov (United States)

    Marzilli, Morena; Di Santo, Patrick; Palumbo, Giuseppe; Maiuro, Lucia; Paura, Bruno; Tognetti, Roberto; Cocozza, Claudia

    2018-04-01

    The present study investigated accumulation, translocation and tolerance of autotrophic Populus alba clone "Villafranca" in response to excess concentrations of cadmium (Cd) and copper (Cu) provided to the plants. For this purpose, increasing concentrations of Cd (0, 5, 50 and 250 μM) and Cu (0, 5, 50, 250 and 500 μM) were administered to the growth medium in which micropropagated poplar plantlets were exposed to metal treatments for 15 days. Filter bags, instead of the conventional in vitro screening, were applied to improve the experimental design. Results showed that Cd and Cu increased in shoots and roots at increasing metal concentration in the medium. The highest Cd content was found in leaves, while the highest Cu content was found in roots. In "Villafranca", Cu showed toxic effects on the development of the seedlings, especially at the highest concentrations, reducing plant dry mass. However, the tolerance index (Ti) indicated good tolerance in this clone under exposure to excess metal concentrations, whereas plants had higher translocation factor (Tf). We recommend in vitro selection of tolerant genotypes, aimed at providing early indication on accumulation potentiality and tolerance capability in research on plant sensitivity to excess heavy metal concentrations.

  12. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis.

    Science.gov (United States)

    Terrado, Ramon; Pasulka, Alexis L; Lie, Alle A-Y; Orphan, Victoria J; Heidelberg, Karla B; Caron, David A

    2017-09-01

    Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with 15 N and 13 C, or unlabeled heat-killed bacteria and labeled inorganic substrates ( 13 C-bicarbonate and 15 N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84-99% of its carbon and 88-95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic 13 C-carbon and 15 N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species.

  13. The Effect of Aluminium on Antibacterial Properties and the Content of Some Fatty Acids in Microalgae, Chlorella vulgaris Beijernick, under Heterotrophic and Autotrophic Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Abbaspour

    2017-01-01

    Full Text Available Microalgae are a group of organisms, which have a significant potential for industrial applications. These algae contain large amounts of lipids compounds that are beneficial to health, have antibacterial properties, and their extracted oil can be used for biofuel. In this study, microalgae Chlorella vulgaris Beijernick was grown in the culture medium BG-11 containing aluminium (AlCl3 under autotrophic and heterotrophic conditions. In each case, survival and growth, dry weight, internal aluminium content of the sample, antibacterial properties, the content of fatty acids accumulated in the algae and secreted into the culture medium in the logarithmic growth phase were studied. Aluminium significantly increased (P < .05 growth and dry weight in autotrophic treatment compared to the heterotrophic one. Most antibacterial properties were observed in methanol extracts of heterotrophic treatments containing 0.05% glucose. Aluminium also decreased fatty acids accumulation in the algae and increased fatty acids excretion into the culture medium in heterotrophic treatment compared to the autotrophic treatment. Survival of the sample was maintained in heterotrophic conditions and showed growth without lag phase, which is indicative of rapid acclimation of organisms in heterotrophic conditions. It seems that the mentioned characteristics make the single-celled green algae Chlorella vulgaris more efficient in different ways.

  14. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Science.gov (United States)

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-10-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

  15. Marine pollution

    International Nuclear Information System (INIS)

    Gerlach, S.A.

    1981-01-01

    The author of this book has combined his own vast experience as a marine biologist with a critical evaluation of the ever-increasing literature in a work which highlights those longterm effects and dangerous materials most threatening on a global scale. This English translation of the highly acclaimed German original has been revised and expanded to keep pace with the rapid process of research in the field. A particularly large number of changes were made in the chapter on oil pollution, and new chapters on waste heat and radioactivity in the ocean have been added. (orig.)

  16. Marine Biology

    OpenAIRE

    2015-01-01

    A retired soldier and his timid girlfriend. Two teenagers who are underemployed and overaged. A man who knows what he wants but not how to get it and his ex who knows how to get what she wants but not exactly what that is.What do all of these people have in common? They live in Westfield, New York, a town with just as many traffic lights as panoramic views of nearby Lake Erie and with about as many bartenders as schoolteachers. Everyone wants to leave, but nobody knows where to go.Marine Biol...

  17. Seasonality in autotrophic mesoplankton in a coastal upwelling-mud bank environment along the southwest coast of India and its ecological implications

    Science.gov (United States)

    Karnan, C.; Jyothibabu, R.; Manoj Kumar, T. M.; Balachandran, K. K.; Arunpandi, N.; Jagadeesan, L.

    2017-08-01

    Mesoplankton refers to both autotrophic and heterotrophic plankton with a body size between 200 - 20,000 μm. Here, we applied a FlowCAM to identify the autotrophs present in the mesoplankton size class in a coastal environment along the southwest coast of India (off Alappuzha, Kerala), which is characterized by intense coastal upwelling and mud bank formation during the Southwest Monsoon. 18 time series sampling (weekly/biweekly) sessions were carried out spanning over the Pre-Southwest Monsoon (April) to the Late-Southwest Monsoon (September) period in 2014. The study showed that during the Pre-Southwest Monsoon when nitrate level was relatively low in the study area, the mesoplankton community was entirely contributed by zooplankton, mostly consisting of copepods. During this time, the only autotrophic mesoplankton found in the water column, that too inconsistently, was Trichodesmium erythraeum. However, the entire scenario changed with the onset of the Southwest Monsoon due to hydrographical transformation and nutrient enrichment caused by the coastal upwelling. Especially during the Peak (July) and Late-Southwest Monsoon (August), the mesoplankton composition changed with a significant dominance of larger diatoms such as Fragilaria and Coscinodiscus. The autotrophic mesoplankton abundance was noticeably low during the Pre-Southwest Monsoon (av. 3145 ± 2396 individual m-3 and av. 2045 ± 1907 individual m-3 in M1 and M2, respectively), as compared to the Southwest Monsoon (av. 30436 ± 5983 individual m-3 and av. 32346 ± 11664 individual m-3 in M1 and M2, respectively). Similar was the seasonal trend in the autotrophic mesoplankton biomass, which increased from a low Pre-Southwest Monsoon value (av. 8.45 ± 7.1 mgC m-3and av. 4 ± 3.7 mgC m-3 in M1 and M2, respectively) to a significantly high value during the Southwest Monsoon (av. 117.04 ± 40.2mgC m-3 and av. 136.9 ± 68.1 mgC m-3 in M1 and M2, respectively). The FlowCAM analysis results also showed that

  18. Marine Microbiology: Facets & Opportunities

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    The book titled “Marine Microbiology: Facets & Opportunities” is an attempt to bring together some facets of marine microbiology as have been made out by many contemporaries in particular from the tropical marine regions. There are 18 contributed...

  19. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria.

    Science.gov (United States)

    Matassa, Silvio; Verstraete, Willy; Pikaar, Ilje; Boon, Nico

    2016-09-15

    Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h(-1)) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Genetic System for Clostridium ljungdahlii: a Chassis for Autotrophic Production of Biocommodities and a Model Homoacetogen

    Energy Technology Data Exchange (ETDEWEB)

    Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2013-02-04

    Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.

  1. Increased carbon uptake in marine sediment enabled by naturally occurring electrical conductors

    Science.gov (United States)

    Nielsen, M. E.; Cahoon, D. P.; Girguis, P. R.

    2011-12-01

    Reduction-oxidation (redox) gradients are common across marine sediment-water interfaces and result from microbially-mediated reactions such as the oxidation of organic matter coupled to reduction of electron acceptors. Most microbes living in sediments do not have direct access to oxygen in their immediate environment, however it has recently been shown that sulfide-oxidizing microbes may employ extracellular electron transfer (EET) to couple the oxidation of sulfide in the anoxic zone to reduction of oxygen at the sediment-water interface located several centimeters away. However, no mechanisms for this observed phenomenon have been validated. Accordingly, we tested the hypothesis that conductive minerals in marine sediment (specifically pyrite) can couple spatially separated redox reactions such as anaerobic respiration and oxygen reduction. Marine sediment was amended with naturally occurring pyrite in varying concentrations (0, 2, 10 and 50 weight-percent) and then incubated with 10 μM 13C-labeled acetate. After six hours, the treatments with the greatest amount of added pyrite showed the greatest incorporation of acetate from the labeled pool. The fraction of labeled acetate incorporation more than doubled in the 10 and 50 weight-percent treatments compared to the control sediment. We also designed a circuit to investigate the electrical conductivity of the sediment treatments as a function of added pyrite. A potentiostat was used to establish a known voltage across a sediment column and current was measured. Resistance (the inverse of conductance) was calculated from a linear fit of current data over a range of voltages ranging from 0.5 to 1.0 V. The treatments with added pyrite had lower resistance than background sediment, with the lowest resistance corresponding to the 50% pyrite treatment. We also examined the effect of varying pyrite content on microbial community composition using massively parallel 16S rRNA sequencing. Microbial community analyses

  2. Summer monsoon onset-induced changes of autotrophic pico- and nanoplankton in the largest monsoonal estuary along the west coast of India.

    Science.gov (United States)

    Mohan, Arya P; Jyothibabu, R; Jagadeesan, L; Lallu, K R; Karnan, C

    2016-02-01

    This study presents the response of autotrophic pico- and nanoplankton to southwest monsoon-associated hydrographical transformations in the Cochin backwaters (CBW), the largest monsoonal estuary along the west coast of India. By the onset of the southwest monsoon, the euhaline/mesohaline conditions in the downstream/upstream of CBW usually transform into oligohaline/limnohaline. The flow cytometer analysis revealed the dominance of picoeukaryotes > Synechococcus > nanoautotrophs, with Prochlorococcus either very low or entirely absent. Synechococcus abundance was high during the pre-southwest monsoon (10(6) L(-1)), which dwindled with heavy fresh water influx during the southwest monsoon (10(5) L(-1)). The drastic drop in salinity and faster flushing of the CBW during the southwest monsoon replaced the euhaline/mesohaline strain of Synechococcus with an oligohaline/limnohaline strain. Epifluorescence microscopy analyses showed that, among the two strains of Synechococcus, the phycoerythrin-rich (PE-rich) one was dominant in the mesohaline/euhaline conditions, whereas the phycocyanin-rich (PC-rich) strain dominated in oligohaline/limnohaline conditions. Although Synechococcus abundance diminished during the southwest monsoon, the total abundance of picoplankton community remained virtually unchanged in the upstream due to an increase in the abundance of picoeukaryotes. On the other hand, the autotrophic nanoplankton abundance increased from pre-monsoon levels of av. 3.8 × 10(6)-av. 9.5 × 10(6) L(-1) at the onset of the southwest monsoon. Utilizing suitable multivariate analyses, the study illustrated the differential response and niche preference of various smaller communities of autotrophs to the southwest monsoon-associated hydrographical ramifications in a large monsoonal estuary, which may be applicable to similar such estuaries situated along the Indian coastline.

  3. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    Science.gov (United States)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-12-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon (δ13C) isotope ratios to characterize SOM and its sources in two mofettes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin

  4. Comparing present (DNA) and active (RNA) marine ciliate communities across depth gradients

    Science.gov (United States)

    Tucker, S. J.; Katz, L. A.; McManus, G. B.; Grattepanche, J. D.

    2016-02-01

    Despite their important role in the marine food web, marine ciliate biogeography and ecology remains underexplored. Traditionally, marine ciliate diversity and abundance was believed to be greatest at the chlorophyll maximum, where there is an abundance of autotrophic prey, and then declines dramatically with depth. However, recent studies using high-throughput sequencing of ciliate communities showed that the diversity did not decline with depth (Grattepanche et al submitted). Instead Grattepanche et al (submitted) suggests there is a highly diverse ciliate community present in deep waters. In this study we compared the abundant (DNA) and the active (RNA) marine ciliate communities of the New England coast (Northwest Atlantic) across depth gradients in a transect crossing the continental shelf. We compared estimates of ciliate communities from SSU-rDNA (abundant) and SSU-rRNA (active) on a Denaturing Gradient Gel Electrophoresis (DGGE), which reveals abundant community members based on band brightness. Our findings 1) confirm that ciliate communities are diverse far below the chlorophyll maximum, 2) show that at all depths some ciliate members are abundant but not active (perhaps encysted) and 3) suggests that rare members of the ciliate community are sometimes extremely active. Our study provides a novel approach to understanding marine ciliate ecology and characterizes rare and active ciliates throughout the water column, with a focus on communities below the photic zone.

  5. [Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems].

    Science.gov (United States)

    Gao, Jing-feng; Li, Ting; Zhang, Shu-jun; Fan, Xiao-yan; Pan, Kai-ling; Ma, Qian; Yuan, Ya-lin

    2015-08-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite (CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction (PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2.42 x 10(6) copies x g(-1) dry sludge and 6.51 x 10(6) copies x g(-1) dry sludge, respectively. The abundance of AOA in biofilm was 10.1-14.1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1.8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5.2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8.1, subcluster 4.1, subcluster 1.1 and Nitrosopumilus subcluster 5.2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system.

  6. Lipids as paleomarkers to constrain the marine nitrogen cycle.

    Science.gov (United States)

    Rush, Darci; Sinninghe Damsté, Jaap S

    2017-06-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio-available nitrogen species. As most microorganisms are soft-bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically-important cycle, and provides examples of biomarker applications in the geological past. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse.

    Science.gov (United States)

    Rosa, Luiz H; Tabanca, Nurhayat; Techen, Natascha; Pan, Zhiqiang; Wedge, David E; Moraes, Rita M

    2012-10-01

    The endophytic fungal assemblages associated with Smallanthus sonchifolius (Poepp.) H. Rob. and Smallanthus uvedalius (L.) Mack. ex Small growing in vitro autotrophic cultures and in the greenhouse were identified and evaluated for their ability to produce bioactive compounds. A total of 25 isolates were recovered that were genetically closely related to species of the genera Bionectria , Cladosporium , Colletotrichum , Fusarium , Gibberella , Hypocrea , Lecythophora , Nigrospora , Plectosphaerella , and Trichoderma . The endophytic assemblages of S. sonchifolius presented a greater diversity than the group isolated from S. uvedalius and demonstrated the presence of dominant generalist fungi. Extracts of all fungi were screened against the fungal plant pathogens. Ten extracts (41.6%) displayed antifungal activities; some of them had a broad antifungal activity. The phylotypes Lecythophora sp. 1, Lecythophora sp. 2, and Fusarium oxysporum were isolated from in vitro autotrophic cultures and displayed antifungal activity. The presence of bioactive endophytic fungi within S. sonchifolius and S. uvedalius suggests an ecological advantage against pathogenic attacks. This study revealed reduced numbers of endophytes in association with both Smallanthus species in controlled cultivation conditions compared with the endophytic communities of hosts collected in the wild environments. Even as reduced endophytic communities, these fungi continue to provide chemical protection for the host.

  8. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth.

    Science.gov (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran

    2017-06-01

    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment.

    Science.gov (United States)

    Fonti, Viviana; Dell'Anno, Antonio; Beolchini, Francesca

    2013-09-15

    Bioleaching strategies are still far from finding real applications in sediment clean-up, although metabolic mechanisms governing bioleaching processes have been deeply studied and can be considered well established. In this study, we carried out bioleaching experiments, using autotrophic and heterotrophic acidophilic bacteria strains, and worked with marine sediments characterized by different geochemical properties and metal concentrations and speciations. The solubilization efficiency of the metals was highly variable, with the highest for Zn (40%-76%) and the lowest for Pb (0%-7%). Our data suggest that the role of autotrophic Fe/S oxidizing bacteria is mainly associated with the production and re-cycling of leaching chemical species, mainly as protons and ferric ions. Metal solubilization appears to be more related to establishing environmental conditions that allow each metal or semimetal to remain stable in the solution phase. Thus, the maintenance of acid and oxidative conditions, the chemical behavior in aqueous environment of each metal species and the geochemical characteristics of sediment interact intimately to influence metal solubilization in site-specific and metal-specific way. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Marine animal stings or bites

    Science.gov (United States)

    Stings - marine animals; Bites - marine animals ... Things you can do to prevent a marine animal sting or bite include: Swim near a lifeguard. Observe posted signs that may warn of danger from jellyfish or other hazardous marine life. ...

  11. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  12. Supermarket Marine Biology.

    Science.gov (United States)

    Colby, Jennifer A.; And Others

    1995-01-01

    Describes a survey used to determine the availability of intact marine vertebrates and live invertebrates in supermarkets. Results shows that local supermarkets frequently provide a variety of intact marine organisms suitable for demonstrations, experiments, or dissections. (ZWH)

  13. Marine Jurisdiction Boundaries

    Data.gov (United States)

    Department of Homeland Security — The NOAA Coastal Services Center's Marine Jurisdiction dataset was created to assist in marine spatial planning and offshore alternative energy sitting. This is a...

  14. MarineCadastre.gov

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MarineCadastre.gov is a marine information system that provides authoritative ocean data, offshore planning tools, and technical support to the offshore renewable...

  15. Mariner 10 Image Archive

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mariner 10 Image Archive includes tools to view shaded relief maps of the surface of Mercury, a 3D globe, and all images acquired by NASA's Mariner 10 mission.

  16. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  17. Seashore marine table quiz

    OpenAIRE

    Institute, Marine

    2013-01-01

    Develop an increasing awareness of plants and animals that live in local marine environments including the seashore, seas and oceans of Ireland. After learning all about the seashore and other marine related lessons, this quiz can be used to evaluate the student’s knowledge of the marine related living things and natural environments. The table quiz can be used as a guide, highlighting facts about the marine environment and some of the animals that live there.

  18. Sphingomonads from marine environments

    NARCIS (Netherlands)

    Cavicchioli, R; Fegatella, F; Ostrowski, M; Eguchi, M; Gottschal, J

    1999-01-01

    Sphingomonas species play an important role in the ecology of a range of marine habitats. Isolates and 16S-rRNA clones have been obtained from corals, natural and artificial sources of marine hydrocarbons and eutrophic and oligotrophic waters, and have been isolated as hosts for marine phages. In

  19. Marine Education Knowledge Inventory.

    Science.gov (United States)

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  20. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  2. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  3. Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi in an autotrophic nitrifying biofilm reactor as depicted by molecular analyses and mathematical modelling.

    Science.gov (United States)

    Montràs, Anna; Pycke, Benny; Boon, Nico; Gòdia, Francesc; Mergeay, Max; Hendrickx, Larissa; Pérez, Julio

    2008-03-01

    The autotrophic two-species biofilm from the packed bed reactor of a life-support system, containing Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25391, was analysed after 4.8 years of continuous operation performing complete nitrification. Real-time quantitative polymerase chain reaction (Q-PCR) was used to quantify N. europaea and N. winogradskyi along the vertical axis of the reactor, revealing a spatial segregation of N. europaea and N. winogradskyi. The main parameters influencing the spatial segregation of both nitrifiers along the bed were assessed through a multi-species one-dimensional biofilm model generated with AQUASIM software. The factor that contributed the most to this distribution profile was a small deviation from the flow pattern of a perfectly mixed tank towards plug-flow. The results indicate that the model can estimate the impact of specific biofilm parameters and predict the nitrification efficiency and population dynamics of a multispecies biofilm.

  4. Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean dehesa

    Science.gov (United States)

    Casals, Pere; Lopez-Sangil, Luis; Carrara, Arnaud; Gimeno, Cristina; NoguéS, Salvador

    2011-09-01

    Autotrophic and heterotrophic components of soil CO2 efflux may have differential responses to environmental factors, so estimating the relative contribution of each component during summer precipitation pulses is essential to predict C balance in soils experiencing regular drought conditions. As even small summer rains induced high instantaneous soil respiration rates in Mediterranean wooded grasslands, we hypothesized that standing dead mass, surface litter, and topsoil layer could play a dominant role in the initial flush of CO2 produced immediately after soil rewetting; in contrast, soil CO2 effluxes during drought periods should be mostly derived from tree root activity. In a grazed dehesa, we simulated four summer rain events and measured soil CO2 efflux discontinuously, estimating its δ13C through a Keeling plot nonsteady state static chamber approach. In addition, we estimated litter contribution to soil CO2 efflux and extracted soil available C fractions (K2SO4-extracted C and chloroform-fumigated extracted C). The δ13C-CO2 from in-tube incubated excised tree roots and rewetted root-free soil was -25.0‰ (±0.2) and -28.4‰ (±0.2), respectively. Assuming those values as end-members' sources, the autotrophic component of soil CO2 efflux was dominant during the severe drought, whereas the heterotrophic contribution dominated from the very beginning of precipitation pulses. As standing dead mass and fresh litter contribution was low (<25%) in the first day and negligible after, we concluded that CO2 efflux after rewetting was mostly derived from microbial mineralization of available soil organic C fractions.

  5. The demonstration of a novel sulfur cycle-based wastewater treatment process: sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) biological nitrogen removal process.

    Science.gov (United States)

    Lu, Hui; Wu, Di; Jiang, Feng; Ekama, George A; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2012-11-01

    Saline water supply has been successfully practiced for toilet flushing in Hong Kong since 1950s, which saves 22% of freshwater in Hong Kong. In order to extend the benefits of saline water supply into saline sewage management, we have recently developed a novel biological organics and nitrogen removal process: the Sulfate reduction, Autotrophic denitrification, and Nitrification Integrated (SANI®) process. The key features of this novel process include elimination of oxygen demand in organic matter removal and production of minimal sludge. Following the success of a 500-day lab-scale trial, this study reports a pilot scale evaluation of this novel process treating 10 m(3) /day of 6-mm screened saline sewage in Hong Kong. The SANI® pilot plant consisted of a sulfate reduction up-flow sludge bed (SRUSB) reactor, an anoxic bioreactor for autotrophic denitrification and an aerobic bioreactor for nitrification. The plant was operated at a steady state for 225 days, during which the average removal efficiencies of both chemical oxygen demand (COD) and total suspended solids (TSS) at 87% and no excess sludge was purposefully withdrawn. Furthermore, a tracer test revealed 5% short circuit flow and a 34.6% dead zone in the SRUSB, indicating a good possibility to further optimize the treatment capacity of the process for full-scale application. Compared with conventional biological nitrogen removal processes, the SANI® process reduces 90% of waste sludge, which saves 35% of the energy and reduces 36% of fossil CO(2) emission. The SANI® process not only eliminates the major odor sources originating from primary treatment and subsequent sludge treatment and disposal during secondary saline sewage treatment, but also promotes saline water supply as an economic and sustainable solution for water scarcity and sewage treatment in water-scarce coastal areas. Copyright © 2012 Wiley Periodicals, Inc.

  6. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates

    DEFF Research Database (Denmark)

    Hansen, Per Juel

    2011-01-01

    phototrophic species, and food uptake marginally increased their growth rates at low irradiances. In the remaining species, food uptake increases to a large degree their growth rate when light is limiting and in some cases even when irradiance is not limiting growth. Some of these species grow relatively fast......Mixotrophy (i.e. combined use of photosynthesis and food uptake for growth) is widespread among marine dinoflagellates. Species with permanent chloroplasts generally display a growth response towards irradiance like an ordinary autotrophic alga. However, some species cannot grow in the light...... at high irradiances without food, while other species only grow slowly or cannot even maintain themselves at high irradiances without food. Dinoflagellates, which form symbioses with endo- and ectosymbionts are a very heterogeneous group, which have been studied only sporadically. Some species are clearly...

  8. Innovative processes and products involving marine organisms in ...

    African Journals Online (AJOL)

    ... namely marine aquaculture, omics of marine organisms and marine bioprospecting, and discusses these accomplishments in context to marine biotechnology internationally. Keywords: marine aquaculture, marine bioprospecting, marine biotechnology, marine invertebrates, marine microorganisms, omics, seaweeds

  9. The Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms Emphasizing Groups Involved in Sulfur Cycle.

    Science.gov (United States)

    Jensen, Sigmund; Fortunato, Sofia A V; Hoffmann, Friederike; Hoem, Solveig; Rapp, Hans Tore; Øvreås, Lise; Torsvik, Vigdis L

    2017-04-01

    During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle.

  10. Marine Environmental History

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2012-01-01

    This essay provides an overview of recent trends in the historiography of marine environmental history, a sub-field of environmental history which has grown tremendously in scope and size over the last c. 15 years. The object of marine environmental history is the changing relationship between...... human society and natural marine resources. Within this broad topic, several trends and objectives are discernable. The essay argue that the so-called material marine environmental history has its main focus on trying to reconstruct the presence, development and environmental impact of past fisheries...... and whaling operations. This ambition often entails a reconstruction also of how marine life has changed over time. The time frame rages from Paleolithicum to the present era. The field of marine environmental history also includes a more culturally oriented environmental history, which mainly has come...

  11. Marine infectious disease ecology

    Science.gov (United States)

    Lafferty, Kevin D.

    2017-01-01

    To put marine disease impacts in context requires a broad perspective on the roles infectious agents have in the ocean. Parasites infect most marine vertebrate and invertebrate species, and parasites and predators can have comparable biomass density, suggesting they play comparable parts as consumers in marine food webs. Although some parasites might increase with disturbance, most probably decline as food webs unravel. There are several ways to adapt epidemiological theory to the marine environment. In particular, because the ocean represents a three-dimensional moving habitat for hosts and parasites, models should open up the spatial scales at which infective stages and host larvae travel. In addition to open recruitment and dimensionality, marine parasites are subject to fishing, filter feeders, dosedependent infection, environmental forcing, and death-based transmission. Adding such considerations to marine disease models will make it easier to predict which infectious diseases will increase or decrease in a changing ocean.

  12. Marine electrical practice

    CERN Document Server

    Watson, G O

    1991-01-01

    Marine Engineering Series: Marine Electrical Practice, Sixth Edition focuses on changes in the marine industry, including the application of programmable electronic systems, generators, and motors. The publication first ponders on insulation and temperature ratings of equipment, protection and discrimination, and AC generators. Discussions focus on construction, shaft-drive generators, effect of unbalanced loading, subtransient and transient reactance, protection discrimination, fault current, measurement of ambient air temperature, and basis of machine ratings. The text then examines AC switc

  13. New marine studies center

    Science.gov (United States)

    Temple University has established a Center for Marine Studies with faculty members from four of its colleges. The center will offer courses leading to a certificate in marine studies.Studies will focus on urbanization's impact on the marine environment and will focus on management and economics of waterfront utilization. In addition, faculty members will be constructing an artificial reef off Absecon Inlet to determine if increasing protective environments will permit increased sport fishing.

  14. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    of the marine nitrogen cycle and its influence on atmospheric CO 2 , in: The Ocean Carbon Cycle and Climate, edited by: Follows, M., and Oguz, T., Kluwer Academic, Dordrecht, 97-148, 2004. ISBN 1402020864. Citation Naqvi, Syed. 2006. "Marine nitrogen cycle...]. Marine_nitrogen_cycle> All text is available under the terms of the Creative Commons Attribution-Share Alike license. Please see the Encyclopedia of Earth's website for Terms of Use information. Supported...

  15. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  16. Characterizing Marine Soundscapes.

    Science.gov (United States)

    Erbe, Christine; McCauley, Robert; Gavrilov, Alexander

    2016-01-01

    The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats.

  17. Lipids of Prokaryotic Origin at the Base of Marine Food Webs

    Directory of Open Access Journals (Sweden)

    Maria José Caramujo

    2012-11-01

    Full Text Available In particular niches of the marine environment, such as abyssal trenches, icy waters and hot vents, the base of the food web is composed of bacteria and archaea that have developed strategies to survive and thrive under the most extreme conditions. Some of these organisms are considered “extremophiles” and modulate the fatty acid composition of their phospholipids to maintain the adequate fluidity of the cellular membrane under cold/hot temperatures, elevated pressure, high/low salinity and pH. Bacterial cells are even able to produce polyunsaturated fatty acids, contrarily to what was considered until the 1990s, helping the regulation of the membrane fluidity triggered by temperature and pressure and providing protection from oxidative stress. In marine ecosystems, bacteria may either act as a sink of carbon, contribute to nutrient recycling to photo-autotrophs or bacterial organic matter may be transferred to other trophic links in aquatic food webs. The present work aims to provide a comprehensive review on lipid production in bacteria and archaea and to discuss how their lipids, of both heterotrophic and chemoautotrophic origin, contribute to marine food webs.

  18. Lipids of prokaryotic origin at the base of marine food webs.

    Science.gov (United States)

    de Carvalho, Carla C C R; Caramujo, Maria José

    2012-12-01

    In particular niches of the marine environment, such as abyssal trenches, icy waters and hot vents, the base of the food web is composed of bacteria and archaea that have developed strategies to survive and thrive under the most extreme conditions. Some of these organisms are considered "extremophiles" and modulate the fatty acid composition of their phospholipids to maintain the adequate fluidity of the cellular membrane under cold/hot temperatures, elevated pressure, high/low salinity and pH. Bacterial cells are even able to produce polyunsaturated fatty acids, contrarily to what was considered until the 1990s, helping the regulation of the membrane fluidity triggered by temperature and pressure and providing protection from oxidative stress. In marine ecosystems, bacteria may either act as a sink of carbon, contribute to nutrient recycling to photo-autotrophs or bacterial organic matter may be transferred to other trophic links in aquatic food webs. The present work aims to provide a comprehensive review on lipid production in bacteria and archaea and to discuss how their lipids, of both heterotrophic and chemoautotrophic origin, contribute to marine food webs.

  19. Optical Properties of Nanostructured Silica Structures From Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ali Mcheik

    2018-04-01

    Full Text Available Light is important for the growth, behavior, and development of both phototrophic and autotrophic organisms. A large diversity of organisms used silica-based materials as internal and external structures. Nano-scaled well-organized silica biomaterials are characterized by a low refractive index and an extremely low absorption coefficient in the visible range, which make them interesting for optical studies. Recent studies on silica materials from glass sponges and diatoms, have pointed out very interesting optical properties, such as light waveguiding, diffraction, focusing, and photoluminescence. Light guiding and focusing have been shown to be coupled properties found in spicule of glass sponge or shells of diatoms. Moreover, most of these interesting studies have used purified biomaterials and the properties have addressed in non-aquatic environments, first in order to enhance the index contrast in the structure and second to enhance the spectral distribution. Although there is many evidences that silica biomaterials can present interesting optical properties that might be used for industrial purposes, it is important to emphases that the results were obtained from a few numbers of species. Due to the key roles of light for a large number of marine organisms, the development of experiments with living organisms along with field studies are require to better improve our understanding of the physiological and structural roles played by silica structures.

  20. Marine functional food

    NARCIS (Netherlands)

    Luten, J.B.

    2009-01-01

    This book reviews the research on seafood and health, the use and quality aspects of marine lipids and seafood proteins as ingredients in functional foods and consumer acceptance of (marine) functional food. The first chapter covers novel merging areas where seafood may prevent disease and improve

  1. Marine Mammal Protection Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal Protection Act (MMPA or Act) prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas,...

  2. Marine gamma spectrometric survey

    International Nuclear Information System (INIS)

    Kostoglodov, V.V.

    1979-01-01

    Presented are theoretical problems physical and geochemical prerequisites and possibilities of practical application of the method of continuous submarine gamma-spectrometric survey and radiometric survey destined for rapid study of the surface layer of marine sediments. Shown is high efficiency and advantages of this method in comparison with traditional and widely spread in marine geology methods of bottom sediments investigation

  3. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  4. Marine Viruses: Key Players in Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Mathias Middelboe

    2017-10-01

    Full Text Available Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

  5. Marine fragrance chemistry.

    Science.gov (United States)

    Hügel, Helmut M; Drevermann, Britta; Lingham, Anthony R; Marriott, Philip J

    2008-06-01

    The main marine message in perfumery is projected by Calone 1951 (7-methyl-2H-1,5-benzodioxepin-3(4H)-one). Kraft (Givaudan) and Gaudin (Firmenich) further maximized the marine fragrance molecular membership by extending the carbon chain of the 7-Me group. Our research targeted the polar group of the benzodioxepinone parent compound to investigate how this region of molecular makeup resonates with the dominant marine fragrance of the Calone 1951 structure. The olfactory evaluation of analogues prepared by chemical modification or removal of the CO group resulted in the introduction of aldehydic, sweet and floral-fruity notes with a diluted/diminished potency of the marine odor. To further analyze the olfactory properties of benzodioxepinones containing a diverse range of aromatic ring substituents, a novel synthesis route was developed. We found that a 7-alkyl group in Calone 1951 was essential for the maintenance of the significant marine odor characteristic, and our studies support the concept that the odorant structure occupying the hydrophobic binding pocket adjacent to the aromatic ring-binding site of the olfactory receptor is pivotal in the design and discovery of more potent and characteristic marine fragrances. How the structure of benzodioxepinones connects to marine sea-breeze fragrances is our continuing challenging research focus at the chemistry-biology interface.

  6. Qualitative distinction of autotrophic and heterotrophic processes at the leaf level by means of triple stable isotope (C-O-H patterns

    Directory of Open Access Journals (Sweden)

    Adam eKimak

    2015-11-01

    Full Text Available Foliar samples were harvested from two oaks, a beech and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (d13C, d18O and dD were analysed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the d13C values are in agreement with the transition from remobilized carbohydrates (juvenile period, to current photosynthates (mature phase. While the opponent seasonal trends of d18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for dD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins to 57 permil (oak blades in dD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on dD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.

  7. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    Science.gov (United States)

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An isotope approach based on C-13 pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, C.; Pitkamaki, A. S.; Tavi, N. M.; Koponen, H. T.; Martikainen, P. J. [Univ.of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], e-mail: christina.biasi@uef.fi

    2012-11-01

    We tested an isotope method based on C-13 pulse-chase labelling for determining the fractional contribution of soil microbial respiration to overall soil respiration in an organic soil (cutaway peatland, eastern Finland), cultivated with the bioenergy crop, reed canary grass. The plants were exposed to CO{sub 2}-13 for five hours and the label was thereafter determined in CO{sub 2} derived from the soil-root system. A two-pool isotope mixing model was used to separate sources of respiration. The isotopic approach showed that a minimum of 50% of the total CO{sub 2} originated from soil-microbial respiration. Even though the method uses undisturbed soil-plant systems, it has limitations concerning the experimental determination of the true isotopic signal of all components contributing to autotrophic respiration. A trenching experiment which was comparatively conducted resulted in a 71% fractional contribution of soil-microbial respiration. This value was likely overestimated. Further studies are needed to evaluate critically the output from these two partitioning approaches. (orig.)

  9. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    Directory of Open Access Journals (Sweden)

    Hirotsugu eFujitani

    2015-10-01

    Full Text Available Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representative of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats.

  10. Will marine productivity wane?

    Science.gov (United States)

    Laufkötter, Charlotte; Gruber, Nicolas

    2018-03-01

    If marine algae are impaired severely by global climate change, the resulting reduction in marine primary production would strongly affect marine life and the ocean's biological pump that sequesters substantial amounts of atmospheric carbon dioxide in the ocean's interior. Most studies, including the latest generation of Earth system models, project only moderate global decreases in biological production until 2100 (1, 2), suggesting that these concerns are unwarranted. But on page 1139 of this issue, Moore et al. (3) show that this conclusion might be shortsighted and that there may be much larger long-term changes in ocean productivity than previously appreciated.

  11. PIR Marine Turtle Nesting

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  12. Marine Pollution Prevention Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Pollution Prevention Act of 2008 implements the International Convention for the Prevention of Pollution from Ships, including related Protocols (MARPOL)...

  13. Encyclopedia of marine sciences

    National Research Council Canada - National Science Library

    Baretta-Bekker, J.G; Duursma, E.K; Kuipers, B.R

    1992-01-01

    ...) is reflected in some 1850 up-to-date alphabetically listed keywords, and many illustrations, to give scientists, teachers, and students a helpful and timesaving aid when studying marine scientific literature...

  14. Marine Bacterial Genomics

    DEFF Research Database (Denmark)

    Machado, Henrique

    microorganisms to be used as cell factories for production. Therefore exploitation of new microbial niches and use of different strategies is an opportunity to boost discoveries. Even though scientists have started to explore several habitats other than the terrestrial ones, the marine environment stands out...... as a hitherto under-explored niche. This thesis work uses high-throughput sequencing technologies on a collection of marine bacteria established during the Galathea 3 expedition, with the purpose of unraveling new biodiversity and new bioactivities. Several tools were used for genomic analysis in order...... to better understand the potential harbored in marine bacteria. The work presented makes use of whole genome sequencing of marine bacteria to prove that the genetic repertoire for secondary metabolite production harbored in these bacteria is far larger than anticipated; to identify and develop a new...

  15. Marine Sanitation Devices (MSDs)

    Science.gov (United States)

    Marine sanitation devices treat or retain sewage from vessels, and have performance standards set by the EPA. This page provides information on MSDs, including who must use an MSD, states' roles, types of MSDs and standards.

  16. Marine Acoustic Sensor Assembly

    National Research Council Canada - National Science Library

    Ruffa, Anthony A

    2007-01-01

    A marine acoustic sensor assembly includes an acoustic panel having a forward surface and an after surface, a laser scanner oriented so as to project a laser beam onto the acoustic panel after surface...

  17. PIR Marine Turtle Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  18. The marine cyanobacterium

    NARCIS (Netherlands)

    Pade, N.; Compaoré, J.; Klähn, S.; Stal, L.J.; Hagemann, M.

    2012-01-01

    Compatible solutes are small organic molecules that are involved in the acclimation to various stresses such as temperature and salinity. Marine or moderate halotolerant cyanobacteria accumulate glucosylglycerol, while cyanobacteria with low salt tolerance (freshwater strains) usually accumulate

  19. Marine Trackline Geophysical Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains bathymetry, magnetic, gravity and seismic shot point navigation data collected during marine cruises from 1939 to the present. Coverage is...

  20. Marine Aerosols and Clouds.

    Science.gov (United States)

    Brooks, Sarah D; Thornton, Daniel C O

    2018-01-03

    The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gas-phase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models.

  1. Marine Reference Materials

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various publications and other instructions for taking marine weather observations. includes Weather Service Observing Handbook No. 1, Weather Bureau Circular M, and...

  2. Exploring marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    the diversity, geographic distribution and abundance of marine species from pole to pole covering estuarine coastal and Plankton were first found to be associated with the phenomenon of discolouration of water associated with their swarming. Probably...

  3. Foodborne Marine Biotoxins

    National Research Council Canada - National Science Library

    Poli, Mark

    2003-01-01

    ...). In addition to human intoxications, they cause massive fish kills, negatively impact coastal tourism and fishery industries, and have been implicated in mass mortalities of birds and marine mammals...

  4. LEGACY - EOP Marine Debris

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  5. Mariner Outreach Data -

    Data.gov (United States)

    Department of Transportation — This dataset provides MARAD with the ability to determine available personnel and resources in a time of emergency. It also provides a portal for mariners to update...

  6. Marine prostanoids - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.

    The occurrence and structure of prostaglandins including clavulones, punaglandins and claviridenones in marine organisms is reviewEd. by comparison of the spectral data reported the identity of 20-acetoxy claviridenones b and c with 20 acetoxy...

  7. Permitted Marine Hydrokinetic Projects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data represents pending or issued preliminary permits or issued licenses for marine hydrokinetic projects that produce energy from waves or directly from the...

  8. IAEA Monitors Marine Radioactivity

    International Nuclear Information System (INIS)

    Dixit, Aabha; Kaiser, Peter

    2013-01-01

    The IAEA assists Member States in using scientific tools to precisely identify and track nuclear and nonnuclear contaminants, as well as to investigate their biological effects on the marine ecosystem

  9. Marine Aerosols and Clouds

    Science.gov (United States)

    Brooks, Sarah D.; Thornton, Daniel C. O.

    2018-01-01

    The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gas-phase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models.

  10. WMO Marine Final Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Final reports of the World Meteorological Organization (WMO) Commission for Marine Meteorology, Commission for Synoptic Meteorology, and Commission for Basic...

  11. Marine Ecosystem Services

    DEFF Research Database (Denmark)

    Hasler, Berit; Ahtiainen, Heini; Hasselström, Linus

    MARECOS (Marine Ecosystem Services) er et tværfagligt studie, der har haft til formål at tilvejebringe information vedrørende kortlægning og værdisætning af økosystemtjenester, som kan anvendes i forbindelse med udformning af regulering på det marine område såvel nationalt, som regionalt og...

  12. Marine Anthropogenic Litter

    OpenAIRE

    Bergmann, Melanie; Gutow, Lars; Klages, Michael

    2015-01-01

    This book describes how manmade litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers co...

  13. Marine biodiversity characteristics.

    Science.gov (United States)

    Boeuf, Gilles

    2011-05-01

    Oceans contain the largest living volume of the "blue" planet, inhabited by approximately 235-250,000 described species, all groups included. They only represent some 13% of the known species on the Earth, but the marine biomasses are really huge. Marine phytoplankton alone represents half the production of organic matter on Earth while marine bacteria represent more than 10%. Life first appeared in the oceans more than 3.8 billion years ago and several determining events took place that changed the course of life, ranging from the development of the cell nucleus to sexual reproduction going through multi-cellular organisms and the capture of organelles. Of the 31 animal phyla currently listed, 12 are exclusively marine phyla and have never left the ocean. An interesting question is to try to understand why there are so few marine species versus land species? This pattern of distribution seems pretty recent in the course of Evolution. From an exclusively marine world, since the beginning until 440 million years ago, land number of species much increased 110 million years ago. Specific diversity and ancestral roles, in addition to organizational models and original behaviors, have made marine organisms excellent reservoirs for identifying and extracting molecules (>15,000 today) with pharmacological potential. They also make particularly relevant models for both fundamental and applied research. Some marine models have been the source of essential discoveries in life sciences. From this diversity, the ocean provides humankind with renewable resources, which are highly threatened today and need more adequate management to preserve ocean habitats, stocks and biodiversity. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Marine Pollution and Ecotoxicology

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    . Heavy metals Editorial Guest The special issue of Environment International has come up with selected papers presented in the International workshop on Marine Pollution and Ecotoxicology held at the National Institute of Oceanography, Dona Paula, Goa..., India during 25– 26 February 2004. The theme of the special issue is bMarine Pollution and EcotoxicologyQ. The International workshop was organized in honour of a distinguished scientist, Dr. S.N. De Souza, Deputy Director who superannuated on 29...

  15. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  16. [Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia].

    Science.gov (United States)

    Dul'tseva, N M; Turova, T P; Spiridonova, E M; Kolganova, T V; Osipov, G A; Gorlenko, V M

    2006-01-01

    Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8-9.5, with an optimum at pH 9.3 and in a temperature range of 5-39 degrees C, with an optimum at 28-32 degrees C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3-64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21-29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).

  17. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    Science.gov (United States)

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R

    2008-04-01

    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  18. Bioprospecting Marine Plankton

    Directory of Open Access Journals (Sweden)

    Chris Bowler

    2013-11-01

    Full Text Available The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics.

  19. A Marine Traffic Flow Model

    Directory of Open Access Journals (Sweden)

    Tsz Leung Yip

    2013-03-01

    Full Text Available A model is developed for studying marine traffic flow through classical traffic flow theories, which can provide us with a better understanding of the phenomenon of traffic flow of ships. On one hand, marine traffic has its special features and is fundamentally different from highway, air and pedestrian traffic. The existing traffic models cannot be simply extended to marine traffic without addressing marine traffic features. On the other hand, existing literature on marine traffic focuses on one ship or two ships but does not address the issues in marine traffic flow.

  20. Probabilistic Estimates of Global Marine N2O Emissions within the Bern3D Earth System Model of Intermediate Complexity

    Science.gov (United States)

    Keller, K. M.; Battaglia, G.; Joos, F.

    2016-02-01

    Nitrous oxide (N2O) is a radiatively active atmospheric trace gas (currently 325 ppb, increasing by 0.25% yr-1) and is emitted to the atmosphere from poorly constrained microbial processes on land and in the oceans. The latest estimates given by the IPCC for marine N2O sources range from 1.8-9.4 TgN yr-1. Marine N2O production is commonly parameterized as a function of organic matter remineralization, oxygen concentrations, or temperature to account for (chemo-autotrophic) nitrification and (chemo-heterotrophic) denitrification processes. We implemented different production schemes in the cost-efficient Bern3D Earth-System Model of Intermediate Complexity which features a 3-D frictional-geostrophic ocean and an OCMIP2-type marine carbon cycle. We optimize the parameters governing N2O production in a probabilistic, Monte-Carlo-type, Bayesian framework by applying observed dissolved N2O data, compiled in the MEMENTO database, as constraints. N2O emissions of the observation-constrained model ensemble will then be determined for both future and past (e.g. Younger-Dryas) environmental conditions.

  1. Environmental pollution detection and bioremediation by marine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; De, J.; Iyer, S.R.

    forms of life. These interactions in any ecosystem are of greater significance both in terms of ecological dynamics and stability. Some microbes are autotrophic, capable of generating new organic matter. However, most microbes, in particular bacteria...

  2. Marine biodiversity in Colombia

    International Nuclear Information System (INIS)

    Diaz, Juan Manuel

    2002-01-01

    One decade ago, the seas and oceans were considered biologically less diverse that the terrestrial environment. Now it is known that it is on the contrary; 33 of the 34 categories of animals (phylum), they are represented in the sea, compared with those solely 15 that exist in earth. The investigation about the diversity of life in the sea has been relatively scorned, but there are big benefits that we can wait if this is protected. The captures of fish depend on it; the species captured by the fisheries are sustained of the biodiversity of their trophic chains and habitats. The marine species are probably the biggest reservoir of chemical substances that can be used in pharmaceutical products. The genetic material of some species can be useful in biotechnical applications. The paper treats topics like the current state of the knowledge in marine biodiversity and it is done a diagnostic of the marine biodiversity in Colombia

  3. The marine diversity spectrum

    DEFF Research Database (Denmark)

    Reuman, Daniel C.; Gislason, Henrik; Barnes, Carolyn

    2014-01-01

    of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts...... the form of the diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum...... is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0 center dot 5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0 center...

  4. Marine-Design Education

    DEFF Research Database (Denmark)

    Andersen, Poul; Birmingham, R.; Sortland, B.

    2006-01-01

    This report addresses Marine-Design Education in view of present and forecasted demands of the maritime industry, determined by a drastically transforming economic and technological maritime environment. In this framework, this report discusses in depth IT-based Marine Design education (par. 4...... for continuity between traditional and modern ways of teaching (par. 4) and points out that Marine Design education is not only about Design, but should also address project/business administration and decision making issues (par. 7).......) and reveals innovative educational concepts and initiatives, such as the EiT (Experts in a Team) concept (par. 3), the SFS (Student Friendly Software) initiative (par. 5), Education Driven Research (EDR, par. 6) and Research Based Education (RBE, par. 6). Nevertheless, the paper stresses the need...

  5. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    The past 20 years have seen extensive marine exploration work by the major industrialized countries. Studies have, in part, been concentrated on Pacific manganese nodule occurrences and on massive sulfides on mid-oceanic ridges. An international jurisdictional framework of the sea-bed mineral...... resources was negotiated by the United Nations Conference on the Law of the Sea (UNCLOS III). A most important outcome of this conference was the establishment of an Exclusive Economic Zone (EEZ) of at least 200 nautical miles for all coastal states and the recognition of a deep-sea regime. Mineral deposits...... in EEZ areas are fairly unknown; many areas need detailed mapping and mineral exploration, and the majority of coastal or island states with large EEZ areas have little experience in exploration for marine hard minerals. This book describes the systematic steps in marine mineral exploration...

  6. New Waves in Marine Science Symposium: Marine Animal Communication.

    Science.gov (United States)

    Allen, Betty, Comp.

    1989-01-01

    Presented are the abstracts from three research projects on marine social systems which were a part of a marine science symposium. Five sets of activities on marine animal communication are included, one each for grades K-2, 3-5, 6-8 and 9-12, and informal education. (CW)

  7. Marine natural products.

    Science.gov (United States)

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2016-03-01

    This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.

  8. 75 FR 19670 - Marine Highway Projects

    Science.gov (United States)

    2010-04-15

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration Marine Highway Projects ACTION: Solicitation of applications for Marine highway projects. SUMMARY: The Department of Transportation is soliciting applications for Marine Highway Projects as specified in the America's Marine Highway Program Final Rule, MARAD...

  9. 76 FR 25308 - Marine Mammals

    Science.gov (United States)

    2011-05-04

    ...-XA165 Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... Jennifer Burns, Ph.D., University of Alaska Anchorage, Biology Department, 3101 Science Circle, Anchorage, AK, has been issued a permit to conduct [[Page 25309

  10. Identifying Sources of Marine Litter

    OpenAIRE

    VEIGA Joana Mira; FLEET David; KINSEY Sue; NILSSON Per; VLACHOGIANNI Thomais; WERNER Stefanie; GALGANI Francois; THOMPSON Richard; DAGEVOS Jeroen; GAGO Jesus; SOBRAL Paula; CRONIN Richard

    2016-01-01

    Marine litter is a global problem causing harm to marine wildlife, coastal communities and maritime activities. It also embodies an emerging concern for human health and safety. The reduction of marine litter pollution poses a complex challenge for humankind, requiring adjustments in human behaviour as well as in the different phases of the life-cycle of products and across multiple economic sectors. The Marine Strategy Framework Directive (MSFD) requires European Member States to monitor...

  11. Harm caused by Marine Litter

    NARCIS (Netherlands)

    Werner, S.; Budziak, A.; Franeker, van J.A.; Galgani, F.; Hanke, G.; Maes, T.; Matiddi, M.; Nilsson, P.; Oosterbaan, L.; Priestland, E.; Thompson, R.; Veiga, J.; Vlachogianni, T.

    2016-01-01

    Marine litter is a global concern with a range of problems associated to it, as recognised by the Marine Strategy Framework Directive (MSFD). Marine litter can impact organisms at different levels of biological organization and habitats in a number of ways namely: through entanglement in, or

  12. Oceanic processes in marine pollution

    International Nuclear Information System (INIS)

    Baumgartner, D.J.; Duedall, I.W.

    1990-01-01

    This book covers the following areas: bioaccumulation of Polycyclic Aromatic hydrocarbons in marine environments; behavior of drilling fluid discharges off the coast of California; effects of drilling fluids on marine organisms; and the effects of radioactive waste disposal on marine amphipods

  13. Marine Electrician--Fundamentals.

    Science.gov (United States)

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of electricity, safety, and tools. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work units,…

  14. Marine complex adaptive systems

    NARCIS (Netherlands)

    Bigagli, Emanuele

    2017-01-01

    Anthropogenic and climate-related stressors challenge the health of nearly every part of the global oceans. They affect the capacity of oceans to regulate global weather and climate, as well as ocean productivity and food services, and result in the loss or degradation of marine habitats and

  15. Thai marine fungal diversity

    OpenAIRE

    Rattaket Choeyklin; Souwalak Phongpaichit; Ittichai Chatmala; Jariya Sakayaroj; Apiradee Pilantanapak; E.B. Gareth Jones

    2006-01-01

    The marine fungal diversity of Thailand was investigated and 116 Ascomycota, 3 Basidiomycota, 28 anamorphic fungi, 7 Stramenopiles recorded, with 30 tentatively identified. These species have primarily been collected from driftwood and attached decayed wood of mangrove trees. The holotype number of 15 taxa is from Thailand and 33 are new records from the country.

  16. Thai marine fungal diversity

    Directory of Open Access Journals (Sweden)

    Rattaket Choeyklin

    2006-07-01

    Full Text Available The marine fungal diversity of Thailand was investigated and 116 Ascomycota, 3 Basidiomycota, 28 anamorphic fungi, 7 Stramenopiles recorded, with 30 tentatively identified. These species have primarily been collected from driftwood and attached decayed wood of mangrove trees. The holotype number of 15 taxa is from Thailand and 33 are new records from the country.

  17. Photoinhibition in marine picocyanobacteria.

    Science.gov (United States)

    Soitamo, Arto; Havurinne, Vesa; Tyystjärvi, Esa

    2017-09-01

    Marine Synechococcus and Prochlorococcus cyanobacteria have different antenna compositions although they are genetically near to each other, and different strains thrive in very different illumination conditions. We measured growth and photoinhibition of PSII in two low-light and one high-light Prochlorococcus strains and in one Synechococcus strain. All strains were found to be able to shortly utilize moderate or even high light, but the low-light strains bleached rapidly in moderate light. Measurements of photoinhibition in the presence of the antibiotic lincomycin showed that a low-light Prochlorococcus strain was more sensitive than a high-light strain and both were more sensitive than the marine Synechococcus. The action spectrum of photoinhibition showed an increase from blue to ultraviolet wavelengths in all strains, suggesting contribution of manganese absorption to photoinhibition, but blue light caused less photoinhibition in marine cyanobacteria than expected on the basis of earlier results from plants and cyanobacteria. The visible-light part of the action spectrum resembled the absorption spectrum of the organism, suggesting that photosynthetic antenna pigments, especially divinyl chlorophylls, have a more important role as photoreceptors of visible-light photoinhibition in marine cyanobacteria than in other photoautotrophs. © 2017 Scandinavian Plant Physiology Society.

  18. Marine and Estuarine Pollution.

    Science.gov (United States)

    Reish, Donald J.

    1978-01-01

    Presents a literature review of the effects of various pollutants on marine and estuarine organisms, covering publications of 1976-77. This review includes: (1) effects of pesticides, dredging, dumping, sludge, and petroleum hydrocarbons; and (2) diseases and tissue abnormalities. A list of 441 references is also presented. (HM)

  19. Marine complex adaptive systems

    NARCIS (Netherlands)

    Bigagli, Emanuele

    2017-01-01

    Anthropogenic and climate-related stressors challenge the health of nearly every part of the global oceans. They affect the capacity of oceans to regulate global weather and climate, as well as ocean productivity and food services, and result in the loss or degradation of marine habitats and

  20. Marine fungi: A critique

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.

    in the sea have been ignored to a large extent. However, several instances of terrestrial species of fungi, active in marine environment have been reported. The arguments to support the view that terrestrial species of fungi by virtue of their physiological...

  1. Marine Renewable Energies

    DEFF Research Database (Denmark)

    Azzellino, Arianna; Conley, Daniel; Vicinanza, Diego

    2013-01-01

    Countries with coastlines may have valuable renewable energy resources in the form of tides, currents, waves, and offshorewind.The potential to gather energy from the sea has recently gained interest in several nations, so Marine Renewable Energy Installations (hereinafter MREIs) will likely become...

  2. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  3. Epigenomics in marine fishes.

    Science.gov (United States)

    Metzger, David C H; Schulte, Patricia M

    2016-12-01

    Epigenetic mechanisms are an underappreciated and often ignored component of an organism's response to environmental change and may underlie many types of phenotypic plasticity. Recent technological advances in methods for detecting epigenetic marks at a whole-genome scale have launched new opportunities for studying epigenomics in ecologically relevant non-model systems. The study of ecological epigenomics holds great promise to better understand the linkages between genotype, phenotype, and the environment and to explore mechanisms of phenotypic plasticity. The many attributes of marine fish species, including their high diversity, variable life histories, high fecundity, impressive plasticity, and economic value provide unique opportunities for studying epigenetic mechanisms in an environmental context. To provide a primer on epigenomic research for fish biologists, we start by describing fundamental aspects of epigenetics, focusing on the most widely studied and most well understood of the epigenetic marks: DNA methylation. We then describe the techniques that have been used to investigate DNA methylation in marine fishes to date and highlight some new techniques that hold great promise for future studies. Epigenomic research in marine fishes is in its early stages, so we first briefly discuss what has been learned about the establishment, maintenance, and function of DNA methylation in fishes from studies in zebrafish and then summarize the studies demonstrating the pervasive effects of the environment on the epigenomes of marine fishes. We conclude by highlighting the potential for ongoing research on the epigenomics of marine fishes to reveal critical aspects of the interaction between organisms and their environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Anticoagulant effect of marine algae.

    Science.gov (United States)

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium

    Directory of Open Access Journals (Sweden)

    Leong-Keat eChan

    2012-05-01

    Full Text Available Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC, a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ~50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade under four element limitation regimes (C, N, P, and S. Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S-limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to 6-fold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometery in R. pomeroyi may have implications for global carbon cycling. Strong homeostatic responses to N limitation by heterotrophic marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean.

  6. New marine community

    Science.gov (United States)

    While exploring the West Florida Escarpment, a steep slope in the Gulf of Mexico several hundred kilometers off the Florida coast, the deep submergence research vessel Alvin chanced upon a well-developed community of marine life akin to that found 7 years ago in the eastern Pacific Ocean.According to the Woods Hole Oceanographic Institution, which operates the submersible and its new tender, the Atlantis II (Eos, November 1, 1983, p. 619), the marine community contains large clams, mussels, crabs, fish, and tube worms like those found at hydrothermal vents in the eastern Pacific. While the east Pacific communities exist at spreading centers, the newly discovered group, which may stretch for almost 2 km at a depth of roughly 3200 km, lies in a passive continental margin. Also, whereas the water around the Pacific hydrothermal vents is much warmer than the surrounding seawater, the water around the new found community is apparently the same temperature as the ambient waters.

  7. Mariner 9 Michelson interferometer.

    Science.gov (United States)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.

    1972-01-01

    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  8. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  9. Chemistry of marine sediments

    International Nuclear Information System (INIS)

    Yen, T.F.

    1977-01-01

    Some topics considered are as follows: characterization of sediments in the vicinity of offshore petroleum production; thermal alteration experiments on organic matter in recent marine sediments as a model for petroleum genesis; composition of polluted bottom sediments in Great Lakes harbors; distribution of heavy metals in sediment fractions; recent deposition of lead off the coast of southern California; release of trace constituents from sediments resuspended during dredging operations; and migration of chemical constituents in sediment-seawater interfaces

  10. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  11. Marine botany. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Dawes, C.J. [Univ. of South Florida, Tampa, FL (United States)

    1998-12-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses.

  12. Full scale application of the autotrophic denitrification in trickling filters for treatment of rejection water with high ammonia concentrations from sludge dewatering. Final report; Untersuchungen zur autotrophen Stickstoffentfernung aus ammoniumreichem Filtratwasser der Schlammentwaesserung mit grosstechnischer Realisierung in Tropfkoerpern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Neumueller, B.; Metzger, J.W.; Pinnekamp, J.

    2003-07-01

    At many municipal wastewater treatment plants a considerable fraction of nitrogen is recirculated from the anaerobic sludge dewatering. This amounts up to 20% of the total influent nitrogen load of the wastewater treatment plant. The separate treatment of this sludge liquor creates new capacities for the treatment plant and improves effluent quality. A new process for treatment of this sludge liquor with ammonium-nitrogen concentrations above 600 mg/l is the autotrophic denitrification after partial nitritation. At the University of Stuttgart the first semi-technical trickling filter plant was built by which autotrophic denitrification was achieved. At the wastewater treatment plant of Sindelfingen the first full-scale implementation of the autotrophic denitrification in trickling filters has been designed and built. In a first trickling filter 60% of ammonia is transformed to nitrite. The investigations showed, that a few mg/l of free ammonia in this trickling filter were sufficient to inhibit the nitratation but not the nitritation. To achieve this, operating conditions as pH and temperature are of great importance. The concentration of free ammonia should be kept constant because there is an adaption of the microorganisms to free ammonia. After a decrease of the free ammonia concentration the inhibition of the nitratation declines. By thermally killing the biomass and restarting the process, can guarantee a total inhibition of the nitratation, while the concentration of free ammonia is low. In the second, closed trickling filter (anoxic conditions) ammonium is converted autotrophically to nitrogen with nitrite as electron acceptor. It was possible to set up the anoxic ammonium oxidation in full scale without inoculating the process. The very slow growth of the anammox-bacteria leads to a long adaptation phase of the process. All operating conditions such as anoxic conditions, high temperature and a concentration of nitrite below 70 mg/l have to be observed

  13. Inhibition of microbiological sulfide oxidation at natronophilic conditions by methanethiol and methylated polysulfides

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Graaff, de C.M.; Fortuny-Picornell, M.; Leerdam, van R.C.; Janssen, A.J.H.

    2009-01-01

    To avoid problems related to the discharge of sulfidic spent caustics, a biotechnological process is developed for the treatment of gases containing both hydrogen sulfide and methanethiol. The process operates at natron-alkaline conditions (>1 mol L-1 of sodium- and potassium carbonates and a pH

  14. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes

    NARCIS (Netherlands)

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Keesman, Karel J.; Janssen, Albert J.H.

    2016-01-01

    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S,

  15. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  16. Bad-metal-layered sulfide oxide CsV{sub 2}S{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Valldor, Martin; Merz, Patrick; Prots, Yurii; Schnelle, Walter [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-01-15

    Through a solid-state reaction between stoichiometric amounts of a mixed cesium oxide Cs{sub 2}O{sub 1.3}, VS, S, and V{sub 2}O{sub 5}, a polycrystalline powder of CsV{sub 2}S{sub 2}O was obtained. Small single crystals could be grown in a CsCl melt by allowing Cs{sub 2}SO{sub 4}, V metal and S powders to react. The crystals have a plate-like morphology, consistent with the tetragonal crystal-structure symmetry [P4/mmm, a = 3.9455(1), c = 7.4785(1) Aa]. Magnetic measurements suggest that CsV{sub 2}S{sub 2}O is a temperature-independent paramagnet, and resistivity data concur with a bad metal. The mixed oxidation state of V on one crystallographic site offers a tentative explanation of the electronic properties of the title compound. (Abstract Copyright, Wiley Periodicals, Inc.)

  17. Surface modifications of steels to improve corrosion resistance in sulfidizing-oxidizing environments

    Science.gov (United States)

    Behrani, Vikas

    Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H 2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H 2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was: (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3) understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.

  18. Selection and Application of Sulfide Oxidizing Microorganisms Able to Withstand Thiols in Gas Biodesulfurization Systems

    NARCIS (Netherlands)

    Roman, Pawel; Klok, Johannes B.M.; Bastos Sousa, Joao; Broman, Elias; Dopson, Mark; Zessen, van Erik; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Janssen, Albert J.H.

    2016-01-01

    After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we

  19. Autotrophic and heterotrophic soil respiration determined with trenching, soil CO2 fluxes and 13CO2/12CO2 concentration gradients in a boreal forest ecosystem

    Science.gov (United States)

    Pumpanen, Jukka; Shurpali, Narasinha; Kulmala, Liisa; Kolari, Pasi; Heinonsalo, Jussi

    2017-04-01

    Soil CO2 efflux forms a substantial part of the ecosystem carbon balance, and it can contribute more than half of the annual ecosystem respiration. Recently assimilated carbon which has been fixed in photosynthesis during the previous days plays an important role in soil CO2 efflux, and its contribution is seasonally variable. Moreover, the recently assimilated C has been shown to stimulate the decomposition of recalcitrant C in soil and increase the mineralization of nitrogen, the most important macronutrient limiting gross primary productivity (GPP) in boreal ecosystems. Podzolic soils, typical in boreal zone, have distinctive layers with different biological and chemical properties. The biological activity in different soil layers has large seasonal variation due to vertical gradient in temperature, soil organic matter and root biomass. Thus, the source of CO2 and its components have a vertical gradient which is seasonally variable. The contribution of recently assimilated C and its seasonal as well as spatial variation in soil are difficult to assess without disturbing the system. The most common method of partitioning soil respiration into its components is trenching which entails the roots being cut or girdling where the flow of carbohydrates from the canopy to roots has been isolated by cutting of the phloem. Other methods for determining the contribution of autotrophic (Ra) and heterotrophic (Rh) respiration components in soil CO2 efflux are pulse labelling with 13CO2 or 14CO2 or the natural abundance of 13C and/or 14C isotopes. Also differences in seasonal and short-term temperature response of soil respiration have been used to separate Ra and Rh. We compared the seasonal variation in Ra and Rh using the trenching method and differences between seasonal and short-term temperature responses of soil respiration. I addition, we estimated the vertical variation in soil biological activity using soil CO2 concentration and the natural abundance of 13C and 12C

  20. 75 FR 67948 - Proposed Information Collection; Comment Request; Marine Recreational Information Program (Marine...

    Science.gov (United States)

    2010-11-04

    ... information collection. Marine recreational anglers are surveyed for catch and effort data, fish biology data... Collection; Comment Request; Marine Recreational Information Program (Marine Recreational Fisheries..., regarding conservation and management of fishery resources. Marine recreational fishing catch and effort...

  1. Viruses manipulate the marine environment.

    Science.gov (United States)

    Rohwer, Forest; Thurber, Rebecca Vega

    2009-05-14

    Marine viruses affect Bacteria, Archaea and eukaryotic organisms and are major components of the marine food web. Most studies have focused on their role as predators and parasites, but many of the interactions between marine viruses and their hosts are much more complicated. A series of recent studies has shown that viruses have the ability to manipulate the life histories and evolution of their hosts in remarkable ways, challenging our understanding of this almost invisible world.

  2. Anticancer agents from marine sponges.

    Science.gov (United States)

    Ye, Jianjun; Zhou, Feng; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine sponges are currently one of the richest sources of anticancer active compounds found in the marine ecosystems. More than 5300 different known metabolites are from sponges and their associated microorganisms. To survive in the complicated marine environment, most of the sponge species have evolved chemical means to defend against predation. Such chemical adaptation produces many biologically active secondary metabolites including anticancer agents. This review highlights novel secondary metabolites in sponges which inhibited diverse cancer species in the recent 5 years. These natural products of marine sponges are categorized based on various chemical characteristics.

  3. Marine biogeochemistry of radionuclides

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Radionuclides entering the ocean from runoff, fallout, or deliberate release rapidly become involved in marine biogeochemical cycles. Sources, sinks and transport of radionuclides and analogue elements are discussed with emphasis placed on how these elements interact with marine organisms. Water, food and sediments are the source terms from which marine biota acquire radionuclides. Uptake from water occurs by surface adsorption, absorption across body surfaces, or a combination of both. Radionuclides ingested with food are either assimilated into tissue or excreted. The relative importance of the food and water pathway in uptake varies with the radionuclide and the conditions under which exposure occurs. Evidence suggests that, compared to the water and food pathways, bioavailability of sediment-bound radionuclides is low. Bioaccumulation processes are controlled by many environmental and intrinsic factors including exposure time, physical-chemical form of the radionuclide, salinity, temperature, competitive effects with other elements, organism size, physiology, life cycle and feeding habits. Once accumulated, radionuclides are transported actively by vertical and horizontal movements of organisms and passively by release of biogenic products, e.g., soluble excreta, feces, molts and eggs. Through feeding activities, particles containing radionuclides are ''packaged'' into larger aggregates which are redistributed upon release. Most radionuclides are not irreversibly bound to such particles but are remineralized as they sink and/or decompose. In the pelagic zones, sinking aggregates can further scavenge particle-reactive elements thus removing them from the surface layers and transporting them to depth. Evidence from both radiotracer experiments and in situ sediment trap studies is presented which illustrates the importance of biological scavenging in controlling the distribution of radionuclides in the water column. (author)

  4. Persistent marine debris

    International Nuclear Information System (INIS)

    Levy, E.M.

    1992-01-01

    In this paper the distribution of persistent marine debris, adrift on world oceans and stranded on beaches globally, is reviewed and related to the known inputs and transport by the major surface currents. Since naturally occurring processes eventually degrade petroleum in the environment, international measures to reduce the inputs have been largely successful in alleviating oil pollution on a global, if not on a local, scale. Many plastics, however, are so resistant to natural degradation that merely controlling inputs will be insufficient, and more drastic and costly measures will be needed to cope with the emerging global problem posed by these materials

  5. Extremozymes from Marine Actinobacteria.

    Science.gov (United States)

    Suriya, J; Bharathiraja, S; Krishnan, M; Manivasagan, P; Kim, S-K

    Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications. © 2016 Elsevier Inc. All rights reserved.

  6. A novel marine nitrite-oxidizing

    NARCIS (Netherlands)

    Haaijer, S.C.M.; Ji, K.; van Niftrik, L.; Hoischen, A.; Speth, D.R.; Jetten, M.S.M.; Sinninghe Damsté, J.S.; Op den Camp, H.J.M.

    2013-01-01

    Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to

  7. Preamble to marine microbiology: Facets and opportunities

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    The book titled 'Marine Microbiology: Facets & Opportunities' is an attempt to bring together some facets of marine microbiology as have been made out by many contemporaries in particular from the tropical marine regions. There are 18 contributed...

  8. A global census of marine microbes

    Digital Repository Service at National Institute of Oceanography (India)

    Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; LokaBharathi, P.A; Boetius, A; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedros-Alio, C.; Ramette, A; Schouten, S.; Stal, L.; Thessen, A; De Leeuw, J.; Sogin, M.

    In this chapter we provide a brief history of what is known about marine microbial diversity, summarize our achievements in performing a global census of marine microbes, and reflect on the questions and priorities for the future of the marine...

  9. Marine conservation strategies for Maharashtra Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Dhargalkar, V.K.

    , Wildlife Sanctuaries, Marine Parks and Protected Areas. Detailed studies of 37 sites along the Maharashtra Coast, for their marine biota and also the ecological conditions, were taken up. Out of these, seven most luxuriant areas in marine biodiversity have...

  10. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria.

    Science.gov (United States)

    Jetten, M S M; Sliekers, O; Kuypers, M; Dalsgaard, T; van Niftrik, L; Cirpus, I; van de Pas-Schoonen, K; Lavik, G; Thamdrup, B; Le Paslier, D; Op den Camp, H J M; Hulth, S; Nielsen, L P; Abma, W; Third, K; Engström, P; Kuenen, J G; Jørgensen, B B; Canfield, D E; Sinninghe Damsté, J S; Revsbech, N P; Fuerst, J; Weissenbach, J; Wagner, M; Schmidt, I; Schmid, M; Strous, M

    2003-12-01

    Recently, two fresh water species, " Candidatus Brocadia anammoxidans" and " Candidatus Kuenenia stuttgartiensis", and one marine species, " Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. " Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle--the anammoxosome--in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.

  11. Selective uptake of prokaryotic picoplankton by a marine sponge ( Callyspongia sp.) within an oligotrophic coastal system

    Science.gov (United States)

    Hanson, Christine E.; McLaughlin, M. James; Hyndes, Glenn A.; Strzelecki, Joanna

    2009-09-01

    Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type ( p food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time ( p food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.

  12. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate.

    Science.gov (United States)

    Schink, Bernhard; Thiemann, Volker; Laue, Heike; Friedrich, Michael W

    2002-05-01

    A new sulfate-reducing bacterium was isolated from marine sediment with phosphite as sole electron donor and CO(2) as the only carbon source. Strain FiPS-3 grew slowly, with doubling times of 3-4 days, and oxidized phosphite, hydrogen, formate, acetate, fumarate, pyruvate, glycine, glutamate, and other substrates nearly completely, with concomitant reduction of sulfate to sulfide. Acetate was formed as a side product to a small extent. Glucose, arabinose, and proline were partly oxidized and partly fermented to acetate plus propionate. Growth with phosphite, hydrogen, or formate was autotrophic. Also, in the presence of sulfate, CO dehydrogenase was present, and added acetate did not increase growth rates or growth yields. In the absence of sulfate, phosphite oxidation was coupled to homoacetogenic acetate formation, with growth yields similar to those in the presence of sulfate. Cells were small rods, 0.6 - 0.8 x 2-4 microm in size, and gram-negative, with a G+C content of 53.9 mol%. They contained desulforubidin, but no desulfoviridin. Based on sequence analysis of the 16S rRNA gene and the sulfite reductase genes dsrAB, strain FiPS-3 was found to be closely related to Desulfotignum balticum. However, physiological properties differed in many points from those of D. balticum. These findings justify the establishment of a new species, Desulfotignum phosphitoxidans.

  13. Chloroplast symbiosis in a marine ciliate: ecophysiology and the risks and rewards of hosting foreign organelles

    Directory of Open Access Journals (Sweden)

    George B Mcmanus

    2012-09-01

    Full Text Available Simultaneous use of both heterotrophic and autotrophic metabolism (mixotrophy is common among protists. Strombidium rassoulzadegani is a planktonic mixotrophic marine ciliate that saves chloroplasts from its algal food and obtains a nutritional subsidy via photosynthesis. Cultures from the northeast, northwest, and southwest Atlantic Ocean show similar numerical response parameters (maximum growth rate, food concentration at which growth is half its maximum, and threshold food concentration for growth, and some isolates have been maintained in vitro for over three years. This ciliate grows equally well when fed on the green alga Tetraselmis chui (strain PLY429 or the cryptophyte Rhodomonas lens (strain RHODO. It appears to be an obligate mixotroph, requiring both food and light to achieve positive growth, when feeding on either of these algae. However, it has also been grown for several weeks (> 10 generations heterotrophically on the dinoflagellate Prorocentrum minimum (strain EXUV during which it grows better in dark than in light. In this paper, we review the ecology of S. rassoulzadegani, discuss some aspects of its photo- and feeding physiology, and speculate on benefits and costs to the ciliate of chloroplast symbiosis.

  14. Chloroplast symbiosis in a marine ciliate: ecophysiology and the risks and rewards of hosting foreign organelles.

    Science.gov (United States)

    McManus, George B; Schoener, Donald M; Haberlandt, Katharine

    2012-01-01

    Simultaneous use of both heterotrophic and autotrophic metabolism ("mixotrophy") is common among protists. Strombidium rassoulzadegani is a planktonic mixotrophic marine ciliate that saves chloroplasts from its algal food and obtains a nutritional subsidy via photosynthesis. Cultures from the northeast, northwest, and southwest Atlantic Ocean show similar numerical response parameters (maximum growth rate, food concentration at which growth is half its maximum, and threshold food concentration for growth), and some isolates have been maintained in vitro for over 3 years. This ciliate grows equally well when fed on the green alga Tetraselmis chui (strain PLY429) or the cryptophyte Rhodomonas lens (strain RHODO). It appears to be an obligate mixotroph, requiring both food and light to achieve positive growth, when feeding on either of these algae. However, it has also been grown for several weeks (>10 generations) heterotrophically on the dinoflagellate Prorocentrum minimum (strain EXUV) during which it grows better in dark than in light. In this paper, we review the ecology of S. rassoulzadegani, discuss some aspects of its photo- and feeding physiology, and speculate on benefits and costs to the ciliate of chloroplast symbiosis.

  15. Manganese in Marine Microbiology.

    Science.gov (United States)

    Hansel, Colleen M

    2017-01-01

    The importance of manganese in the physiology of marine microbes, the biogeochemistry of the ocean and the health of microbial communities of past and present is emerging. Manganese is distributed widely throughout the global ocean, taking the form of an essential antioxidant (Mn 2+ ), a potent oxidant (Mn 3+ ) and strong adsorbent (Mn oxides) sequestering disproportionately high levels of trace metals and nutrients in comparison to the surrounding seawater. Manganese is, in fact, linked to nearly all other elemental cycles and intricately involved in the health, metabolism and function of the ocean's microbiome. Here, we briefly review the diversity of microbes and pathways responsible for the transformation of Mn within the three Mn pools and their distribution within the marine environment. Despite decades of interrogation, we still have much to learn about the players, mechanisms and consequences of the Mn cycle, and new and exciting discoveries are being made at a rapid rate. What is clear is the dynamic and ever-inspiring complexity of reactions involving Mn, and the acknowledgement that microorganisms are the catalytic engine driving the Mn cycle. © 2017 Elsevier Ltd. All rights reserved.

  16. Real-Time PCR Quantification and Diversity Analysis of the Functional Genes aprA and dsrA of Sulfate-Reducing Prokaryotes in Marine Sediments of the Peru Continental Margin and the Black Sea.

    Science.gov (United States)

    Blazejak, Anna; Schippers, Axel

    2011-01-01

    Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 10(8)/g sediment close to the sediment surface to less than 10(5)/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5-1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40-121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 10(4)/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere.

  17. Marine debris occurrence and treatment: A review

    OpenAIRE

    Iñiguez, María Esperanza; Conesa, Juan A.; Fullana, Andres

    2016-01-01

    Marine debris produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (as plastics, which are the most abundant type of marine debris), leading to a gradual, but significant accumulation in the coastal and marine environment. Along that time, marine debris is a significant source of chemical contaminants to the marine environment. Once extracted from the water, incineration is the method most widely...

  18. Marine Biology and Human Affairs

    Science.gov (United States)

    Russell, F. S.

    1976-01-01

    Marine biology has become an important area for study throughout the world. The author of this article discusses some of the important discoveries and fields of research in marine biology that are useful for mankind. Topics include food from the sea, fish farming, pesticides, pollution, and conservation. (MA)

  19. Marine line fish research programme

    CSIR Research Space (South Africa)

    SANCOR

    1979-04-01

    Full Text Available This report outlines the framework for a marine line fish programme under the aegis of the South African National Committee for Oceanographic Research (SANCOR). An attempt is made to assess the state of knowledge about South African marine line...

  20. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  1. Biodiversity of arctic marine fishes

    DEFF Research Database (Denmark)

    Mecklenburg, Catherine W.; Møller, Peter Rask; Steinke, Dirk

    2011-01-01

    Taxonomic and distributional information on each fish species found in arctic marine waters is reviewed, and a list of families and species with commentary on distributional records is presented. The list incorporates results from examination of museum collections of arctic marine fishes dating b...

  2. Marine Casualty and Pollution Data for Researchers

    Data.gov (United States)

    Department of Homeland Security — The Marine Casualty and Pollution Data files provide details about marine casualty and pollution incidents investigated by Coast Guard Offices throughout the United...

  3. A Guideline for Marine Corps Financial Managers

    National Research Council Canada - National Science Library

    Wright, Anthone

    1998-01-01

    ...), and Marine Corps orders, publications and directives to determine those keys areas considered most essential to Marine Corps financial management specialists in the performance of their duties...

  4. Public Aquariums and Marine Aesthetics

    Directory of Open Access Journals (Sweden)

    Nola Semczyszyn

    2013-01-01

    Full Text Available Given the inaccessibility of the marine environment, the closest many of us come to viewing it is at public aquariums. Aquariums also provide us with rich aesthetic experiences, but it is not clear whether we appreciate the marine environment at aquariums. I present the dilemma of aquarium appreciation as an inconsistent triad: 1 we treat aquariums as places to appreciate marine environments, 2 aquariums are artifacts, not natural objects, and 3 nature and art should be appreciated differently. I argue that aquarium displays are scientific models of marine environments with aesthetic, educational, and scientific aims. My solution to the dilemma involves accepting the paradox and modifying 2. By appreciating displays as the kind of artifacts they are, we are better able to appreciate the marine environment.

  5. Antimycobacterial Metabolites from Marine Invertebrates.

    Science.gov (United States)

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Directory of Open Access Journals (Sweden)

    Maryam Yazdani Foshtomi

    Full Text Available The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.Our results indicated that bacteria (total and β-AOB showed more spatio-temporal variation than archaea (total and AOA as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal

  7. MERCHANT MARINE SHIP REACTOR

    Science.gov (United States)

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  8. Marine radioecology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E

    1998-06-01

    Results of the EKO-1 project for the period 1994-1997 are summarised in this report. The aim of the project was to make a joint Nordic study on radionuclides in sediment and water and the interaction between these two phases. Relatively less emphasis has been put on this factor compared to others in previous Nordic studies on marine radioecology. For some of the participating countries this work was the first of its kind undertaken. The project work involved field, laboratory and model studies. Results of the study have appeared in various scientific journal and it has formed the bases for two Ph.D. theses and two M.Sc. theses. (au)

  9. Lipides polaires marins

    Directory of Open Access Journals (Sweden)

    Fanni Jacques

    2004-03-01

    Full Text Available Les lipides polaires marins, notamment les phospholipides (PL, retiennent depuis quelques années l’attention des chercheurs et des industriels en raison de leur composition, particulièrement riche en acides gras polyinsaturés à longue chaîne (AGPI-LC. Ils combinent ainsi les propriétés reconnues des AGPI-LC à l’intérêt métabolique et structural des phospholipides. Les sources sont nombreuses et d’accès très diversifié. Le défi industriel provient de leurs caractéristiques amphiphiles et aromatiques particulièrement marquées qui rend leur extraction très difficile.

  10. Monaco and marine environmental protection

    International Nuclear Information System (INIS)

    Grimaldi, Albert II Prince

    2006-01-01

    The importance of the protection of the marine environment for sustainable development and economy of coastal countries, like Monaco, is well known. Sadly, this environment has been under continuous threats from development, tourism, urbanisation and demographic pressure. The semi-enclosed Mediterranean sea is challenged by new pollutant cocktails, problems of fresh water management, over-fishing, and now increasingly climate change impacts. Monaco has a long history in the investigation of the marine environment. Prince Albert I, was one of the pioneers in oceanographic exploration, organizer of European oceanographic research and founder of several international organizations including the Musee Oceanographique. The International Atomic Energy Agency established in 1961 its Marine Environment Laboratory in Monaco, the only marine laboratory in the United Nations system. More than 40 years ago the IAEA joined forces with the Grimaldi family and several interested governments to establish the Marine Environment Laboratory in Monaco. Their first purpose-built facilities, dedicated to marine research, launched a new era in the investigation of the marine environment using radioactive and stable isotopes as tracers for better understanding of processes in the oceans and seas, addressing their pollution and promoting wide international cooperation. The Government of the Principality of Monaco has been actively engaged in these developments and is continuously supporting activities of the Monaco Laboratory

  11. 76 FR 39386 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to the Port of Anchorage...

    Science.gov (United States)

    2011-07-06

    ... graduate and undergraduate marine biology students conducted approximately 600 hours of scientific... Importing Marine Mammals; Taking Marine Mammals Incidental to the Port of Anchorage Marine Terminal Redevelopment Project AGENCY: National Marine Fisheries Service, National Oceanic and Atmospheric Administration...

  12. 75 FR 38465 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to the Port of Anchorage...

    Science.gov (United States)

    2010-07-02

    ..., from May 4 through November 18, 2009, trained graduate and undergraduate marine biology students... Importing Marine Mammals; Taking Marine Mammals Incidental to the Port of Anchorage Marine Terminal Redevelopment Project AGENCY: National Marine Fisheries Service, National Oceanic and Atmospheric Administration...

  13. Databases of the marine metagenomics

    KAUST Repository

    Mineta, Katsuhiko

    2015-10-28

    The metagenomic data obtained from marine environments is significantly useful for understanding marine microbial communities. In comparison with the conventional amplicon-based approach of metagenomics, the recent shotgun sequencing-based approach has become a powerful tool that provides an efficient way of grasping a diversity of the entire microbial community at a sampling point in the sea. However, this approach accelerates accumulation of the metagenome data as well as increase of data complexity. Moreover, when metagenomic approach is used for monitoring a time change of marine environments at multiple locations of the seawater, accumulation of metagenomics data will become tremendous with an enormous speed. Because this kind of situation has started becoming of reality at many marine research institutions and stations all over the world, it looks obvious that the data management and analysis will be confronted by the so-called Big Data issues such as how the database can be constructed in an efficient way and how useful knowledge should be extracted from a vast amount of the data. In this review, we summarize the outline of all the major databases of marine metagenome that are currently publically available, noting that database exclusively on marine metagenome is none but the number of metagenome databases including marine metagenome data are six, unexpectedly still small. We also extend our explanation to the databases, as reference database we call, that will be useful for constructing a marine metagenome database as well as complementing important information with the database. Then, we would point out a number of challenges to be conquered in constructing the marine metagenome database.

  14. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC...

  15. Aspects of Organic Marine Pollution

    International Nuclear Information System (INIS)

    Duursma, E.K.; Marchand, M.

    1976-01-01

    A literature review is intended to summarize available information on the various aspects of pollution of the marine environment by organic substances. Chemicals such as pesticides, particularly the organo chlorine insecticides and herbicides, polychlorinated biphenyls (PCBs), oil and hydrocarbons, sewage, detergents, wastes from wood processing industries, cyanides and other organic pollutants are discussed. For each of these pollutants, information has been presented on their determination, their distribution in the marine environment, biogeochemical phenomena such as persistence, degradation and bioaccumulation, and finally on their effects on marine organisms. (author)

  16. 75 FR 952 - Draft Marine Sanitation Device Discharge Regulations for the Florida Keys National Marine...

    Science.gov (United States)

    2010-01-07

    ... Marine Sanitation Device Discharge Regulations for the Florida Keys National Marine Sanctuary; Public... generated by marine sanitation devices, and to require marine sanitation devices be locked to prevent... biodegradable effluent incidental to vessel use and generated by marine sanitation devices, and to require...

  17. Preface to: Special issue on Marine mycology

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    in the meantime. This sparked a debate on “what is a marine fungus?” The terms “marine-derived fungi” or fungi from marine environment slowly but reluctantly got acceptance from true marine mycologists and thus paved way for a special issue of the journal Fungal... in which it was found buried was dated to be 0.43 million years old. These findings highlight the presence of terrestrial or geofungi in the marine environment. This special issue on Marine Mycology in Indian Journal of Marine Sciences covers articles...

  18. Disease in marine aquaculture

    Science.gov (United States)

    Sindermann, C. J.

    1984-03-01

    It has become almost a truism that success in intensive production of animals must be based in part on development of methods for disease diagnosis and control. Excellent progress has been made in methods of diagnosis for major pathogens of cultivated fish, crustacean and molluscan species. In many instances these have proved to be facultative pathogens, able to exert severe effects in populations of animals under other stresses (marginal physical or chemical conditions; overcrowding). The concept of stress management as a critical prophylactic measure is not new, but its significance is being demonstrated repeatedly. The particular relationship of water quality and facultative pathogens such as Vibrio, Pseudomonas and Aeromonas species has been especially apparent. Virus diseases of marine vertebrates and invertebrates — little known two decades ago — are now recognized to be of significance to aquaculture. Virus infections of oysters, clams, shrimps and crabs have been described, and mortalities have been attributed to them. Several virus diseases of fish have also been recognized as potential or actual problems in culture. In some instances, the pathogens seem to be latent in natural populations, and may be provoked into patency by stresses of artificial environments. One of the most promising approaches to disease prophylaxis is through immunization. Fish respond well to various vaccination procedures, and new non-stressing methods have been developed. Vibriosis — probably the most severe disease of ocean-reared salmon — has been controlled to a great extent through use of a polyvalent bacterin, which can be modified as new pathogenic strains are isolated. Prophylactic immunization for other bacterial diseases of cultivated fish has been attempted, especially in Japan, with some success. There is also some evidence that the larger crustaceans may be immunologically responsive, and that at least short-term protection may be afforded to cultured

  19. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria RID B-8834-2011 RID B-5428-2008 RID C-3269-2011 RID D-1875-2009

    DEFF Research Database (Denmark)

    Jetten, MSM; Sliekers, O.; Kuypers, M.

    2003-01-01

    Recently, two fresh water species, 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis', and one marine species, 'Candidatus Scalindua sorokinii', of planctomycete anammox bacteria have been identified. 'Candidatus Scalindua sorokinii' was discovered in the Black Sea...... membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which...... protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater....

  20. Radiochemical tracers in marine biology

    International Nuclear Information System (INIS)

    Petrocelli, S.R.; Anderson, J.W.; Neff, J.M.

    1977-01-01

    Tracers have been used in a great variety of experimentation. More recently, labeled materials have been applied in marine biological research. Some of the existing tracer techniques have been utilized directly, while others have been modified to suit the specific needs of marine biologists. This chapter describes some of the uses of tracers in marine biological research. It also mentions the problems encountered as well as offering possible solutions and discusses further applications of these techniques. Only pertinent references are cited and additional information may be obtained by consulting these references. Due to their relative ease of maintenance, freshwater species are also utilized in studies which involve radiotracer techniques. Since most of these techniques e directly applicable to marine species, some of these studies will also be included

  1. NCEI Marine Geology Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses,...

  2. Response to marine oil spills

    International Nuclear Information System (INIS)

    1987-01-01

    This book reviews the problems posed by marine oil spills and the practical response measures which can be implemented. Aspects discussed include containment and recovery, the use of dispersants, shoreline clean-up and planning and operations. (UK)

  3. Endstrength: Forecasting Marine Corps Losses

    National Research Council Canada - National Science Library

    Hattiangadi, Anita U; Kimble, Theresa H; Lambert, William B; Quester, Aline O

    2005-01-01

    The Marine Corps' manpower costs are 60 percent of its annual budget. The Enlisted and Officer Strength Planners must develop plans, by paygrade and month, to meet endstrength requirements in the budget execution year and 6 out-years...

  4. Marine archaeological research in India

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.; Sundaresh; Vora, K.H.; Bandodkar, S.N.

    has undertaken the exploration and excavation of submerged ports and shipwrecks in Indian waters. The paper highlight the objectives, methodology, tools, findings and the progress made in India in the field of marine archaeology during the 50 years...

  5. 76 FR 75524 - Marine Mammals

    Science.gov (United States)

    2011-12-02

    ... griseus), killer whale (Orcinus orca) and Mesoplodont beaked whales (Mesoplodon spp); (3) add a new... cetacean behavior, sound production, and responses to sound. The research methods include tagging marine... measures vocalization, behavior, and physiological parameters. Research also involves conducting sound...

  6. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  7. Marine biotechnology: Opportunities for India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.

    manipulation is now reality. High yielding, fast growing and disease resistant strains of fish, shellfish and algae will boost the aquaculture industry. There may be a solution for all the problems of waste disposal in the marine environment. Considering...

  8. Coastal marine contamination in Colombia

    International Nuclear Information System (INIS)

    Garay T, Jesus A; Marin Z, Bienvenido; Velez G, Ana Maria

    2002-01-01

    The paper tries about the problem of the marine contamination and their marked influence in the health of the coastal ecosystems, of their narrow relationship with the growing increase of the populations that they inhabit the coastal areas and of equal it forms, with the increment of the domestic, agricultural and industrial activities that, for the wrong handling and inadequate control of the solid and liquid waste, they affect the marine environment with significant implications at ecological, socioeconomic level and of health. Another component of the environmental problem of the marine ecosystems in the country, resides in that don't exist in general normative on the chemical quality and sanitary for its marine waters, that which limits the categorization of this agreement ecosystems with its environmental quality, conditioning this the lack of adequate mechanisms to mitigate the causes that originate the deterioration of the quality of the Colombian coasts

  9. Marine archeology: The hidden history

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.

    Goa, with its 120 kms long coastline, had been the attraction for the mariners since the ancient historical period. There are several ancient ports mentioned in the literature and antiquity of the same has been attested. The important sites include...

  10. Cavitation simulation on marine propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo

    Cavitation on marine propellers causes thrust breakdown, noise, vibration and erosion. The increasing demand for high-efficiency propellers makes it difficult to avoid the occurrence of cavitation. Currently, practical analysis of propeller cavitation depends on cavitation tunnel test, empirical...

  11. Seagrasses - The forgotton marine habitat

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Rodrigues, R.S.

    Seagrasses, a specialized group of flowering plants, submerged in the marine, estuarine, bay and backwater regions of the world. Though seagrass beds are of great ecological and socio economic importance, they are mostly unknown to Indians. Seagrass...

  12. Pre-1947 Marine Monthly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board U.S. Navy and merchant marine vessels and submitted to the U.S. Weather Bureau. Merchant ships are of many nationalities, and mainly...

  13. Evolution of Geochemical and Mineralogical Parameters during In Situ Remediation of a Marine Shore Tailings Deposit by the Implementation of a Wetland Cover

    Directory of Open Access Journals (Sweden)

    Nouhou Diaby

    2014-07-01

    Full Text Available We present data of the time-evolution of a remediation approach on a marine shore tailings deposit by the implementation of an artificial wetland. Two remediation cells were constructed: one in the northern area at sea-level and one in the central delta area (above sea-level of the tailings. At the beginning, the “sea-level” remediation cell had a low pH (3.1, with high concentrations of dissolved metals and sulfate and chloride ions and showed sandy grain size. After wetland implementation, the “sea-level” remediation cell was rapidly water-saturated, the acidity was consumed, and after four months the efficiency of metal removal from solution was up to 79.5%–99.4% for Fe, 94.6%–99.9% for Mn, and 96.1%–99.6% for Zn. Al and Cu concentrations decreased below detection limit. The “above sea-level” remediation cell was characterized by the same pH (3.1 and finer grain size (clayey–silty, and with some lower element concentrations than in the “sea-level” cell. Even after one year of flooding, the “above sea-level” cell was not completely flooded, showing on-going sulfide oxidation in between the wetland cover and the groundwater level; the pH increased only to 4.4 and metal concentrations decreased only by 96% for Fe, 88% for Al, 51% for Cu, 97% for Mn, and 95% for Zn. During a dry period, the water level dropped in the “sea-level” cell, resulting in a seawater ingression, which triggered the desorption of As into solution. These data show that the applied remediation approach for this tailings deposit is successful, if the system is maintained water-saturated. Metal removal from solution was possible in both systems: first, as a result of sorption on Fe(III hydroxide/and/or clay minerals and/or co-precipitation processes after rise of pH; and then, with more reducing conditions, due to metal sulfides precipitation.

  14. Veteran Unemployment of Transitioning Marines

    Science.gov (United States)

    2013-11-01

    military experience. C2 Marines have high AFQT scores and work with information systems; they may pursue, for example, computer science degrees in college...i.e., they made a rational decision based on lack of information). DOD actuarial officials use the low MGIB benefit use rate to maintain program...such as computer science , to make their military skills transferable, while others may not. Marines in services, repair/maintenance, operator, and

  15. Marine sponges as microbial fermenters

    OpenAIRE

    Hentschel, Ute; Usher, Kayley M.; Taylor, Michael W.

    2006-01-01

    The discovery of phylogenetically complex, yet highly sponge-specific microbial communities in marine sponges, including novel lineages and even candidate phyla, came as a surprise. At the same time, unique research opportunities opened up, because the microorganisms of sponges are in many ways more accessible than those of seawater. Accordingly, we consider sponges as microbial fermenters that provide exciting new avenues in marine microbiology and biotechnology. This review covers recent fi...

  16. Marine Tar Residues: a Review

    OpenAIRE

    Warnock, April M.; Hagen, Scott C.; Passeri, Davina L.

    2015-01-01

    Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean environment indefinitely, decomposing or becoming buried in ...

  17. Marine genomics: News and views.

    Science.gov (United States)

    Ribeiro, Ângela M; Foote, Andrew D; Kupczok, Anne; Frazão, Bárbara; Limborg, Morten T; Piñeiro, Rosalía; Abalde, Samuel; Rocha, Sara; da Fonseca, Rute R

    2017-02-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag between observed and estimated diversity is in part due to the elusiveness of most aquatic species and the technical difficulties of exploring extreme environments, as for instance the abyssal plains and polar waters. In the last decade, the rapid development of affordable and flexible high-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Marine biogeochemistry of mercury

    International Nuclear Information System (INIS)

    Gill, G.A.

    1986-01-01

    Noncontaminating sample collection and handling procedures and accurate and sensitive analysis methods were developed to measure sub-picomolar Hg concentrations in seawater. Reliable and diagnostic oceanographic Hg distributions were obtained, permitting major processes governing the marine biogeochemistry of Hg to be identified. Mercury concentrations in the northwest Atlantic, central Pacific, southeast Pacific, and Tasman Sea ranged from 0.5 to 12 pM. Vertical Hg distributions often exhibited a maximum within or near the main thermocline. At similar depths, Hg concentrations in the northwest Atlantic Ocean were elevated compared to the N. Pacific Ocean. This pattern appears to result from a combination of enhanced supply of Hg to the northwest Atlantic by rainfall and scavenging removal along deep water circulation pathways. These observations are supported by geochemical steady-state box modelling which predicts a relatively short mean residence time for Hg in the oceans; demonstrating the reactive nature of Hg in seawater and precluding significant involvement in nutrient-type recyclic. Evidence for the rapid removal of Hg from seawater was obtained at two locations. Surface seawater Hg measurements along 160 0 W (20 0 N to 20 0 S) showed a depression in the equatorial upwelling area which correlated well with the transect region exhibiting low 234 Th/ 238 U activity ratios. This relationship implies that Hg will be scavenged and removed from surface seawater in biologically productive oceanic zones. Further, a broad minimum in the vertical distribution of Hg was observed to coincide with the intense oxygen minimum zone in the water column in coastal waters off Peru

  19. Marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1980-01-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the adsorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strenghs and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area. (orig.) [de

  20. Viral lysis of marine microbes in relation to vertical stratification

    NARCIS (Netherlands)

    Mojica, K.D.A.

    2015-01-01

    The overall aim of this thesis is to investigate how changes in vertical stratification affect autotrophic and heterotrophic microbial communities along a meridional gradient in the Atlantic Ocean. The Northeast Atlantic Ocean is a key area in global ocean circulation and a important sink for

  1. International laboratory of marine radioactivity

    International Nuclear Information System (INIS)

    1981-08-01

    The director's report presents the overall aims and objectives of the laboratory, and some of the significant findings to date. Among these is the different behaviour in oceans of Pu and Am. Thus, fallout Pu, in contrast to Am, tends to remain in the soluble form. The vertical downward transport of Am is much quicker than for Pu. Since 1980, uptake and depuration studies of sup(95m)Tc have been carried out on key marine species. Marine environmental behaviour of Tc is being evaluated carefully in view of its being a significant constituent of nuclear wastes. Growing demands are being made on the laboratory for providing intercalibration and instrument maintenance services, and for providing training for scientists from developing countries. The body of the report is divided into 5 sections dealing with marine biology, marine chemistry, marine geochemistry/sedimentation, environmental studies, and engineering services, respectively. Appendices list laboratory staff, publications by staff members, papers and reports presented at meetings or conferences, consultants to the laboratory from 1967-1980, fellowships, trainees and membership of committees, task forces and working groups

  2. Marine oils: Complex, confusing, confounded?

    Directory of Open Access Journals (Sweden)

    Benjamin B. Albert

    2016-09-01

    Full Text Available Marine oils gained prominence following the report that Greenland Inuits who consumed a high-fat diet rich in long-chain n-3 polyunsaturated fatty acids (PUFAs also had low rates of cardiovascular disease. Marine n-3 PUFAs have since become a billion dollar industry, which will continue to grow based on current trends. However, recent systematic reviews question the health benefits of marine oil supplements, particularly in the prevention of cardiovascular disease. Marine oils constitute an extremely complex dietary intervention for a number of reasons: i the many chemical compounds they contain; ii the many biological processes affected by n-3 PUFAs; iii their tendency to deteriorate and form potentially toxic primary and secondary oxidation products; and iv inaccuracy in the labelling of consumer products. These complexities may confound the clinical literature, limiting the ability to make substantive conclusions for some key health outcomes. Thus, there is a pressing need for clinical trials using marine oils whose composition has been independently verified and demonstrated to be minimally oxidised. Without such data, it is premature to conclude that n-3 PUFA rich supplements are ineffective.

  3. Marine oil spill response organizations

    International Nuclear Information System (INIS)

    Hendry, C.

    1997-01-01

    The obligations under the law relative to the prevention of marine oil spills and the type of emergency plans needed to mitigate any adverse effects caused by a marine oil spill were discussed. The organizational structure, spill response resources and operational management capabilities of Canada's newly created Response Organizations (ROs) were described. The overall range of oil spill response services that the RO provides to the domestic oil handling, oil transportation and the international shipping industries were reviewed. Amendments to the Canada Shipping Act which require that certain ships and oil handling facilities take oil spill preparedness and response measures, including having an arrangement with an RO certified by the Canadian Coast Guard, were outlined. Canadians now benefit from five ROs established to provide coast-to-coast oil spill response coverage. These include the Western Canada Marine Response Corporation, the Canadian Marine Response Management Corporation, the Great Lakes Response Corporation, the Eastern Canada Response Corporation and the Atlantic Emergency Response Team Ltd. ROs have the expertise necessary to organize and manage marine oil spill response services. They can provide equipment, personnel and operational management for the containment, recovery and cleanup of oil spilled on water

  4. Marine Tar Residues: a Review.

    Science.gov (United States)

    Warnock, April M; Hagen, Scott C; Passeri, Davina L

    Marine tar residues originate from natural and anthropogenic oil releases into the ocean environment and are formed after liquid petroleum is transformed by weathering, sedimentation, and other processes. Tar balls, tar mats, and tar patties are common examples of marine tar residues and can range in size from millimeters in diameter (tar balls) to several meters in length and width (tar mats). These residues can remain in the ocean environment indefinitely, decomposing or becoming buried in the sea floor. However, in many cases, they are transported ashore via currents and waves where they pose a concern to coastal recreation activities, the seafood industry and may have negative effects on wildlife. This review summarizes the current state of knowledge on marine tar residue formation, transport, degradation, and distribution. Methods of detection and removal of marine tar residues and their possible ecological effects are discussed, in addition to topics of marine tar research that warrant further investigation. Emphasis is placed on benthic tar residues, with a focus on the remnants of the Deepwater Horizon oil spill in particular, which are still affecting the northern Gulf of Mexico shores years after the leaking submarine well was capped.

  5. Food enrichment with marine phospholipid emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    of marine PL emulsions, iii) evaluation of non-enzymatic browning reactions in marine PL emulsions, iv) evaluation of sensory properties and oxidative stability of yoghurt enriched with marine PL. The obtained results showed that marine PL have good emulsifying properties and it was feasible to prepare...... to the interaction between lipid oxidation products with amine group either from phosphatidylethanolamine or residues of amino acids/proteins in marine PL. The study on enrichment of yoghurt with marine PL showed that the oxidative stability and sensory acceptability was highly dependent on the quality...

  6. Fouling diatom community with reference to substratum variability in tropical marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Desai, D.V.; Khandeparker, L.; Anil, A.C.; Wagh, A.B.

    Diatoms are the earliest autotrophic colonizers and are responsible for the major input of energy in the form of reduced carbon to the surfce. However, information regarding the population structure of diatoms in theearly phases of fouling is very...

  7. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  8. Survey on marine food consumption

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Predicting the future effluence of low level radioactive waste water from the nuclear fuel retreating facilities to the ocean, critical food and critical group were investigated in the inhabitants of the coast of Ibaragi Prefecture since 1969. The survey included investigation of drinking water, menu of meal, and marine food consumption, and the results of the third item were chiefly presented in this paper. Both interview by visiting each family, and questionaire were adopted for investigation. Subjects were fishermans' families in Wada-cho in Chiba Prefecture and Kuji-cho in Hitachi City, non-fishermans' families in Tokai vilage, and both families in Nakaminato City and Oarai. The ratio of animal protein consumption per whole protein consumption was remarkably higher than the average of all over the country(23.8 per cent), showing 49 per cent in Kuji-cho. Fishermans' families in Kuji-cho revealed to be a critical group. Marine products of their whole body edible included immature anchovy, sardine, and immature prawn with their maximum individual consumption being 5 kg, 10 kg, and 5.6 kg respectively. Therefore, sardine and immature prawn should be taken care of other than immature anchovy. Marine food consumption of a person per day was estimated from the amount consumed during one week in every season, i.e., during 28 days a year. Marine food consumption of fishermans' families in Kuji-cho showed no seasonal change. Average of marine food consumption in fishermans' families of Kuji-cho and Nakaminato, was 190 g and 132 g of raw fishes, 8 g and 6 g of raw shells, and 4 g and 5 g of dried algae. Consumption frequency and consumption rate of marine foods by kinds and seasons were presented in the tables. (Mukohata, S.)

  9. Marine sponges as microbial fermenters.

    Science.gov (United States)

    Hentschel, Ute; Usher, Kayley M; Taylor, Michael W

    2006-02-01

    The discovery of phylogenetically complex, yet highly sponge-specific microbial communities in marine sponges, including novel lineages and even candidate phyla, came as a surprise. At the same time, unique research opportunities opened up, because the microorganisms of sponges are in many ways more accessible than those of seawater. Accordingly, we consider sponges as microbial fermenters that provide exciting new avenues in marine microbiology and biotechnology. This review covers recent findings regarding diversity, biogeography and population dynamics of sponge-associated microbiota, and the data are discussed within the larger context of the microbiology of the ocean.

  10. Conservation physiology of marine fishes

    DEFF Research Database (Denmark)

    Jørgensen, Christian; Peck, Myron A.; Antognarelli, Fabio

    2012-01-01

    At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology...... to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity...

  11. Status and strategies for marine biodiversity of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The status of marine biodiversity and factors responsible for the degradation and loss of marine biodiversity are discussed. Goa has abundant marine wealth. Phytoplankton, marine algae, manglicolous fungi, seagrasses, mangrove flora and other...

  12. Marine’ Character of the United States Marine Band

    Science.gov (United States)

    2008-04-01

    nation and our Corps. Marine "musics" trace their roots back to the days of the Revolutionary War when fifes and drums inspired men to enlist in the...today. 14. D. Michael Ressler, 15-18. When Sousa left the Band on July 30, 1892, he was presented with an engraved baton. In 1953, Sousa’s daughters

  13. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  14. Ocean Disposal of Marine Mammal Carcasses

    Science.gov (United States)

    Ocean dumping of marine mammal carcasses is allowed with a permit issued by EPA under the Marine Protection, Research and Sanctuaries Act. Includes permit information, potential environmental impacts, and instructions for getting the general permit.

  15. Computerizing marine biota: a rational approach

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Chandramohan, D.; Parulekar, A.H.

    Data on marine biota while being extensive are also patchy and scattered; thus making retrieval and dissemination of information time consuming. This emphasise the need for computerizing information on marine biota with the objective to collate...

  16. Emulsifying activity of hydrocarbonoclastic marine yeasts

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.

    Marine yeast growth on four petroleum hydrocarbons induced the production of extracellular emulsifying agents (biosurfactants). Out of the 17 marine yeast isolates tested, 7 isolates, i.e., Candida parapsilosis, C. cantarelli, C. membranae...

  17. Marine environment news. Vol. 2, no. 1

    International Nuclear Information System (INIS)

    2004-03-01

    In this issue of the IAEA's Marine Environment Newsletter topics including radiotracers as new barometers of ocean-climate coupling, bio-indicatos species in detecting marine radioactvity and pollution as well as training activities are covered

  18. Summary report on marine research 1988.

    CSIR Research Space (South Africa)

    SANCOR

    1989-12-01

    Full Text Available , Estuaries/ Marine Linefish, Marine Pollution, Ocean Engineering and a South African contribution to the World Ocean Circulation Experiment (WOCE). This report includes brief statements on the activities of each of these programmes in 1988 and emphasizes...

  19. 76 FR 6430 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-02-04

    ..., many marine animals may need to remain in areas where they are exposed to chronic stimuli (Richardson... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Pacific Ocean off Costa Rica, April Through May, 2011 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic...

  20. 76 FR 77782 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-12-14

    ..., 1963), but because of ecological or physiological requirements, many marine animals may need to remain... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Commonwealth of the Northern Mariana Islands, February to March 2012 AGENCY: National Marine Fisheries Service (NMFS), National...

  1. 76 FR 33246 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-06-08

    ... ecological or physiological requirements, many marine animals may need to remain in areas where they are... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Central-Western Bering Sea, August 2011 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  2. 78 FR 33357 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Science.gov (United States)

    2013-06-04

    ... confidence in these values is unknown. Table 3--Marine Mammal Density Estimates Density Species (animals/km\\2... unintentional taking of marine animals occurring incidental to the shock testing which involved large explosives... Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Conducting...

  3. 75 FR 8652 - Incidental Takes of Marine Mammals During Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2010-02-25

    ... for marine animals before and during airgun operations. NMFS believes that the realistic possibility... Takes of Marine Mammals During Specified Activities; Marine Geophysical Survey in the Commonwealth of the Northern Mariana Islands, April to June 2010 AGENCY: National Marine Fisheries Service (NMFS...

  4. 76 FR 57959 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-09-19

    ..., many marine animals may need to remain in areas where they are exposed to chronic stimuli (Richardson... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Central Pacific Ocean, November, 2011 Through January, 2012 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  5. 76 FR 18167 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-04-01

    ..., many marine animals may need to remain in areas where they are exposed to chronic stimuli (Richardson... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Central Gulf of Alaska, June, 2011 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  6. 77 FR 25966 - Takes of Marine Mammals Incidental to Specified Activities; Three Marine Geophysical Surveys in...

    Science.gov (United States)

    2012-05-02

    ..., 1963), but because of ecological or physiological requirements, many marine animals may need to remain... Marine Mammals Incidental to Specified Activities; Three Marine Geophysical Surveys in the Northeast Pacific Ocean, June Through July 2012 AGENCY: National Marine Fisheries Service, National Oceanic and...

  7. 77 FR 11401 - Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters

    Science.gov (United States)

    2012-02-27

    ... Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters AGENCY... (EPA) is establishing a No Discharge Zone (NDZ) for marine waters of the State of California for sewage... while the vessel was outside of the marine waters of the State of California, pursuant to Section 312(f...

  8. Whale Multi-Disciplinary Studies: A Marine Education Infusion Unit. Northern New England Marine Education Project.

    Science.gov (United States)

    Maine Univ., Orono. Coll. of Education.

    This multidisciplinary unit deals with whales, whaling lore and history, and the interaction of the whale with the complex marine ecosystem. It seeks to teach adaptation of marine organisms. It portrays the concept that man is part of the marine ecosystem and man's activities can deplete and degrade marine ecosystems, endangering the survival of…

  9. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  10. 75 FR 38779 - Nomination of Existing Marine Protected Areas to the National System of Marine Protected Areas

    Science.gov (United States)

    2010-07-06

    ... Marine Protected Areas to the National System of Marine Protected Areas AGENCY: NOAA, Department of... federal, state and territorial marine protected area programs to join the National System of Marine Protected Areas. [[Page 38780

  11. NODC Standard Format Marine Mammals of Coastal Alaska Data (1975-1981): Marine Mammal Specimens (F025) (NODC Accession 0014150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC maintains data in three NODC Standard Format Marine Mammal Data Sets: Marine Mammal Sighting and Census (F127); Marine Mammal Specimens (F025); Marine Mammal...

  12. Promotion Factors For Enlisted Infantry Marines

    Science.gov (United States)

    2017-06-01

    End of Active Service (EAS) date Date a Marine terminated contract with the Marine Corps Awards Type and Number of Awards a Marine has earned Waivers...oai/ oai?verb=getRecord&metadataPrefix=html&identifier=ADA479928. Hovey, Erik. 2005. “Fuzzy Math : Do Current Relative Values Tell An Accurate Story

  13. Identification & Registration of Marine Animals (IRMA)

    NARCIS (Netherlands)

    Benders, F.P.A.; Zwan, T. van der; Verboom, W.C.

    2005-01-01

    Knowledge about habitats and behaviour of marine animals has become more important following an increased concern that acoustic sources may have an influence on marine life. Databases containing the habitats and behaviour are being filled all over the world. However, at present marine mammal

  14. Radioactivity in the Marine Environment. Chapter 1

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Abdul Kadir Ishak; Norfaizal Mohamad; Wo, Y.M.; Kamarudin Samuding

    2015-01-01

    Radionuclide (radioactive isotopes or radioisotopes is widely distributed on the ground primarily in marine environments. Nowadays, more than 340 isotopes has been identified exist in our earth especially in marine environment. From that total, 80 isotopes was radioactive. The existence of radioactivity in the marine environment is through the direct and indirect distribution of radionuclides

  15. The 10. Danish marine research meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The publication comprises the programme for the 10th Danish meeting for marine researchers held in Hirtshals (Denmark) on January 21 - 27, 1998, and the abstracts of the papers that were presented at that meeting. Subjects covered are marine biology, sediments and sedimentation, fish, fishing and fishing regulations, marine processes and the monitoring of Danish straits. (EG)

  16. 8. Danish meeting for marine researchers

    International Nuclear Information System (INIS)

    1994-01-01

    The publication comprises the programme for the 8th Danish meeting for marine researchers held in Odense (Denmark) on January 25th - 27th, 1994, and the abstracts of the papers that were presented at that meeting. Subjects covered are marine biology, sediments and sedimentation, fish, fishing and fishing regulation, marine processes and the monitoring of Danish straits. (AB)

  17. 50 CFR 14.18 - Marine mammals.

    Science.gov (United States)

    2010-10-01

    ... Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR TAKING... a marine mammal on the high seas and who is authorized to import such marine mammal in accordance...) may import such marine mammal at any port or place. ...

  18. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  19. Bioactive Terpenes from Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elissawy

    2015-04-01

    Full Text Available Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.

  20. Marine environment news. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2003-09-01

    This is the first issue of the IAEA's Marine Environment Newsletter which is hoped to inform Member States, research partners, visitors and other stakeholders of highlights of the marine projects, surveys, hot issues, discoveries and training programmes being delivered by the IAEA's Marine Environment Laboratory (MEL) in Monaco. In this issue the mission of the MEL and its various activities are presented

  1. The Physics of Marine Biology.

    Science.gov (United States)

    Conn, Kathleen

    1992-01-01

    Discusses ways in which marine biology can be integrated into the physics classroom. Topics suggested for incorporation include the harmonic motion of ocean waves, ocean currents, the interaction of visible light with ocean water, pressure, light absorption, and sound transfer in water. (MDH)

  2. Sexual selection in marine plankton

    DEFF Research Database (Denmark)

    Sichlau, Mie Hylstofte

    Copepods are among the most abundant metazoans on the planet and play an important role in the marine food web. Many aspects of their ecology have consequently been studied, including details of their reproductive biology and mating behaviour. Sexual selection, the part of evolution which selects...

  3. Marine Picoeukaryotes in Cold Water

    DEFF Research Database (Denmark)

    Sørensen, Nikolaj

    Picoeukaryotes form an important part of marine ecosystems, both as primary producers, bacterial grazers and parasites. The Arctic is experiencing accelerated global warming and picoeukaryotes may thus be considered to be at the forefront of climate change. This PhD thesis sets out to investigate...

  4. Blood rheology in marine mammals

    Directory of Open Access Journals (Sweden)

    Michael Castellini

    2010-12-01

    Full Text Available The field of blood oxygen transport and delivery to tissues has been studied by comparative physiologists for many decades. Within this general area, the particular differences in oxygen delivery between marine and terrestrial mammals has focused mainly on oxygen supply differences and delivery to the tissues under low blood flow diving conditions. Yet, the study of the inherent flow properties of the blood itself (hemorheology is rarely discussed when addressing diving. However, hemorheology is important to the study of marine mammals because of the critical nature of the oxygen stores that are carried in the blood during diving periods. This review focuses on the essential elements of hemorheology, how they are defined and on fundamental rheological applications to marine mammals. While the comparative rationale used throughout the review is much broader than the particular problems associated with diving, the basic concepts focus on how changes in the flow properties of whole blood would be critical to oxygen delivery during diving. This review introduces the reader to most of the major rheological concepts that are relevant to the unique and unusual aspects of the diving physiology of marine mammals.

  5. Marine Planning Benefits the Environment

    Science.gov (United States)

    Coastal and Marine Spatial Planning (CMSP) and Ecosystem-Based Management (EBM) are management approaches that allow sustainable coastal and ocean planning. The basic unit of management under CMSP is a large region, with the United States coastlines and Great Lakes divided into ...

  6. Sunnyvale Marine Climate Deep Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

  7. Sunnyvale Marine Climate Deep Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Siddiqui, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing mechanical ventilation.

  8. Performance optimization of marine propellers

    Directory of Open Access Journals (Sweden)

    Chang-Sup Lee

    2010-12-01

    In this paper, a design method for increasing performance of the marine propellers including the WCT propeller is suggested. It is described to maximize the performance of the propeller by adjusting expanded areas of the propeller blade. Results show that efficiency can be increased up to over 2% through the suggested design method.

  9. Corrosion Failures in Marine Environment

    OpenAIRE

    R. Krishnan

    1985-01-01

    This paper gives a brief description of typical marine environments and the most common form of corrosion of materials used in this environment. Some typical case histories of failures pertaining to pitting, bimetallic corrosion, dealloying, cavitation and stress corrosion cracking are illustrated as typical examples of corrosion failures.

  10. Opportunities to improve marine forecasting

    National Research Council Canada - National Science Library

    Committee on Opportunities to Improve Marine Obser; Marine Board; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council

    1989-01-01

    ... and Forecasting Marine Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1989 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publication files other XML and from thi...

  11. The Netherlands’ marine Cladophora species

    NARCIS (Netherlands)

    Slootweg, A.F.G.

    1947-01-01

    When studying the marine species of the genus Cladophora in the Netherlands, I had the disposal of the material of the National Herbarium at Leiden, the herbaria of the Universities of Amsterdam, Groningen and Utrecht and those of the “Zoölogisch Station” at Den Helder and the “Koninklijke

  12. Transuranic behaviour in marine environment

    International Nuclear Information System (INIS)

    Bowen, V.T.

    1982-01-01

    This document summarizes the following specific studies concerning the transuranic behaviour in marine environment: 1. Radionuclides in deep sea amphipods; 2. Actinides, 55 Fe and 137 Cs in N. pacific water columns; 3. Vertical profile of artificial radionuclide concentrations in the central Arctic Ocean; 4. Bioturbation and the distributions of fallout radionuclides in Pacific Ocean sediments

  13. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, includin...

  14. Bicarbonate uptake by marine Crenarchaeota

    NARCIS (Netherlands)

    Wuchter, C.; Schouten, S.; Boschker, H.T.S.; Sinninghe Damsté, J.S.

    2003-01-01

    Biphytanyl membrane lipids and 16S rRNA sequences derived from marine Crenarchaeota were detected in shallow North Sea surface water in February 2002. To investigate the carbon fixation mechanism of these uncultivated archaea in situ 13C bicarbonate tracer experiments were performed with this water

  15. Marin Mersenne, 1588–1648

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 3. Marin Mersenne, 1588-1648. Shailesh A Shirali. General Article Volume 18 Issue 3 March 2013 pp 226-240. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/018/03/0226-0240. Keywords.

  16. The marine renewable energies file

    International Nuclear Information System (INIS)

    2009-01-01

    A set of articles addresses several aspects and issues related to the development of renewable marine energies: the objectives defined by the French government and the European Union in terms of share of renewable energies in energy consumption, some existing projects, the definition and assessment of the different renewable marine energies (offshore wind energy, sea thermal energy, sea current energy, sea tide energy, sea wave energy, marine biomass, osmotic energy), the need for a national strategy according to two researchers belonging to IFREMER, the implementation of the first offshore test platform by the Ecole Centrale de Nantes, the role of the ADEME (financial support, marketing studies, legislation, definition of a national programme), the recommendation by the European Commission of a large scale offshore wind energy development, the activities of EDF and Total in the field of marine energy, the problems faced by the first French offshore wind generator project, the actions undertaken in La Reunion in the field of sea thermal energy, and the opportunities in the use of micro-algae for hydrogen, bio-fuel or biogas production

  17. Microplastics Monitoring in Marine Environment

    Directory of Open Access Journals (Sweden)

    Agung Dhamar Syakti

    2017-11-01

    Full Text Available This review summarizes the need for future spatiotemporal comparisons of microplastic abundance across marine environment, through standardized methods for microplastic sampling and analysis in sea water, beach and seabed sediment and marine organism. Pretreatment of the sample prior to the elimination of organic matter should be done using appropriate reagents was also described. Extraction of microplastics from environmental matrices is based on the different density of targeted microplastics with saturated salt solutions (NaCl, NaI, CaCl2, ZnCl2 and lithium metatungstate. Quantification can be achieved by microscopic techniques (binocular, stereomicroscope, fluorescence microscope and scanning electron microscope and discussion on identification methods including FTIR, Pyr-GC/MS and Raman spectroscopy will be provided. This review also endorses the importance of further study regarding the fate and impact of microplastics on marine biota and human health, especially when we acknowledge that co-pollution may occur during the transport on microplastic in marine environment.

  18. Alternative Fuel for Marine Application

    Science.gov (United States)

    2012-02-29

    The U.S. Maritime Administration (MARAD) is participating in the U.S. Navy's ongoing efforts to test alternative fuels for marine use by demonstrating their applicability on commercial vessels. In support of this effort, the Navy provided neat hydrot...

  19. African Journal of Marine Science

    African Journals Online (AJOL)

    The African (formerly South African) Journal of Marine Science provides an international forum for the publication of original scientific contributions or critical reviews, involving oceanic, shelf or estuarine waters, inclusive of oceanography, studies of organisms and their habitats, and aquaculture. Papers on the conservation ...

  20. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    Energy Technology Data Exchange (ETDEWEB)

    Frischer, Marc E. [Skidaway Institute of Oceanography; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  1. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    Science.gov (United States)

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures.

    Directory of Open Access Journals (Sweden)

    Laura Farías

    Full Text Available Despite the importance of nitrous oxide (N2O in the global radiative balance and atmospheric ozone chemistry, its sources and sinks within the Earth's system are still poorly understood. In the ocean, N2O is produced by microbiological processes such as nitrification and partial denitrification, which account for about a third of global emissions. Conversely, complete denitrification (the dissimilative reduction of N2O to N2 under suboxic/anoxic conditions is the only known pathway accountable for N2O consumption in the ocean. In this work, it is demonstrated that the biological assimilation of N2O could be a significant pathway capable of directly transforming this gas into particulate organic nitrogen (PON. N2O is shown to be biologically fixed within the subtropical and tropical waters of the eastern South Pacific Ocean, under a wide range of oceanographic conditions and at rates ranging from 2 pmol N L(-1 d(- to 14.8 nmol N L(-1 d(-1 (mean ± SE of 0.522 ± 1.06 nmol N L(-1 d(-1, n = 93. Additional assays revealed that cultured cyanobacterial strains of Trichodesmium (H-9 and IMS 101, and Crocosphaera (W-8501 have the capacity to directly fix N2O under laboratory conditions; suggesting that marine photoautotrophic diazotrophs could be using N2O as a substrate. This metabolic capacity however was absent in Synechococcus (RCC 1029. The findings presented here indicate that assimilative N2O fixation takes place under extreme environmental conditions (i.e., light, nutrient, oxygen where both autotrophic (including cyanobacteria and heterotrophic microbes appear to be involved. This process could provide a globally significant sink for atmospheric N2O which in turn affects the oceanic N2O inventory and may also represent a yet unexplored global oceanic source of fixed N.

  3. From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin

    Science.gov (United States)

    Haskell, Craig A.

    2018-01-01

    Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed <0.2% of the total annual P load into John Day Reservoir, but during June when most adult shad are migrating into John Day Reservoir, they contributed as much as 2.0% of the P load. Nutrient inputs by American shad were similar to current but far less than historical inputs of Pacific salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.

  4. Global marine radioactivity database (GLOMARD)

    International Nuclear Information System (INIS)

    2000-06-01

    The GLOMARD stores all available data on marine radioactivity in seawater, suspended matter, sediments and biota. The database provides critical input to the evaluation of the environmental radionuclide levels in regional seas and the world's oceans. It can be used as a basis for the assessment of the radiation doses to local, regional and global human populations and to marine biota. It also provides information on temporal trends of radionuclide levels in the marine environment and identifies gaps in available information. The database contains information on the sources of the data; the laboratories performing radionuclide analysis; the type of samples (seawater, sediment, biota) and associated details (such as volume and weight); the sample treatment, analytical methods, and measuring instruments; and the analysed results (such as radionuclide concentrations, uncertainties, temperature, salinity, etc.). The current version of the GLOMARD allows the input, maintenance and extraction of data for the production of various kinds of maps using external computer programs. Extracted data are processed by these programs to produce contour maps representing radionuclide distributions in studied areas. To date, development work has concentrated on the Barents and Kara Seas in the Arctic and the Sea of Japan in the northwest Pacific Ocean, in connection with the investigation of radioactive waste dumping sites, as well as on marine radioactivity assessment of the Mururoa and Fangataufa nuclear weapons tests sites in French Polynesia. Further data inputs and evaluations are being carried out for the Black and Mediterranean Seas. In the framework of the project on Worldwide Marine Radioactivity Studies, background levels of 3 H, 90 Sr, 137 Cs and 239,240 Pu in water, sediment and biota of the world's oceans and seas will be established

  5. Freshwater savings from marine protein consumption

    Science.gov (United States)

    Gephart, Jessica A.; Pace, Michael L.; D'Odorico, Paolo

    2014-01-01

    Marine fisheries provide an essential source of protein for many people around the world. Unlike alternative terrestrial sources of protein, marine fish production requires little to no freshwater inputs. Consuming marine fish protein instead of terrestrial protein therefore represents freshwater savings (equivalent to an avoided water cost) and contributes to a low water footprint diet. These water savings are realized by the producers of alternative protein sources, rather than the consumers of marine protein. This study quantifies freshwater savings from marine fish consumption around the world by estimating the water footprint of replacing marine fish with terrestrial protein based on current consumption patterns. An estimated 7 600 km3 yr-1 of water is used for human food production. Replacing marine protein with terrestrial protein would require an additional 350 km3 yr-1 of water, meaning that marine protein provides current water savings of 4.6%. The importance of these freshwater savings is highly uneven around the globe, with savings ranging from as little as 0 to as much as 50%. The largest savings as a per cent of current water footprints occur in Asia, Oceania, and several coastal African nations. The greatest national water savings from marine fish protein occur in Southeast Asia and the United States. As the human population increases, future water savings from marine fish consumption will be increasingly important to food and water security and depend on sustainable harvest of capture fisheries and low water footprint growth of marine aquaculture.

  6. Marine Litter, Eutrophication and Noise Assessment Tools

    Science.gov (United States)

    Palazov, Atanas; Velcheva, Maya; Milkova, Tanya; Slabakova, Violeta; Marinova, Veselka

    2017-04-01

    MARLEN - Marine Litter, Eutrophication and Noise Assessment Tools is a project under the Programme BG02.03: Increased capacity for assessing and predicting environmental status in marine and inland waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Burgas municipality and Bulgarian Black Sea Basin Directorate. Initial assessment of ecological state of Bulgarian marine waters showed lack of data for some descriptors of MSFD. The main goal of MARLEN is to build up tools for assessment of marine environment by implementing new technologies and best practices for addressing three main areas of interest with lack of marine data in particular: a) Marine litter detection and classification in coastal areas; b) Regular near real time surface water eutrophication monitoring on large aquatory; c) Underwater noise monitoring. Developed tools are an important source of real time, near real time and delay mode marine data for Bulgarian Black Sea waters. The partnership within the project increased capacity for environmental assessments and training of personnel and enhances collaboration between scientific institutes, regional and local authorities. Project results supported implementation of MSFD in Bulgarian marine waters for the benefit of coastal population, marine industry, tourism, marine research and marine spatial planning.

  7. Proceedings of the 2008 marine biodiesel symposium

    International Nuclear Information System (INIS)

    2008-01-01

    In addition to producing lower hydrocarbon emissions, marine biodiesel is biodegradable and does not harm fish. This symposium was held to discuss current marine biodiesel applications and examine methods of increasing the use of biodiesel in marine environments in British Columbia (BC). Biofuel policies and mandates in the province were reviewed, and methods of expanding the biodiesel market were explored. Updates on the use of biodiesel in ferries, tugboats, and smaller marine diesel engine applications were provided. Biodiesel projects in the United States were discussed. The environmental impacts of marine biodiesel were evaluated, and federal policies and standards for biodiesel were also outlined. The symposium was divided into the following 5 main sessions: (1) policy, (2) overviews, (3) using biodiesel in marine engines, (4) biodiesel in larger marine vessels, and (5) biodiesel quality and environmental considerations. The conference featured 13 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  8. Marine (Brander-Smith report) and non-marine spills

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Current activities related to Canada's Green Plan are reviewed in the area of research on, and response to, marine and non-marine spills. The Emergency Response section of Environment Canada's Conservation and Protection Service has had a 130% increase in funding and 50% increase in personnel resources. Two thirds of these resources are assigned to regional operations where spill incidents occur and the rest to research. The section's first priority is to improve its spill prevention program. A national standard for emergency planning for industry has been prepared and thousands of copies have been sold. A Canada-USA joint inland pollution contingency plan will be established and training programs on response to oil and hazardous chemical spills has been implemented. Resources applied to spill response have also increased 150%; a computerized communications network has been provided for spill response personnel, with the aim to develop a single national spill reporting system. In terms of policy initiatives, amendments are being made to the Canada Shipping Act that will require on-board pollution emergency plans for ships operating in Canadian waters. A liability and compensation regime for chemical spills is being considered, as well as reimposition of a levy on petroleum products that resulted in creation of a ship-source oil pollution fund. Radar-based traffic control systems for heavily congested marine areas, electronic charting, and increased inspection of ships are among the spill prevention initiatives in progress. Research is being conducted on mapping environmentally sensitive shorelines and in oil spill cleanup methods

  9. Encyclopedic approach to Marine History of Russia

    Directory of Open Access Journals (Sweden)

    Andrey V. Ishin

    2017-01-01

    Full Text Available Marine direction of foreign policy is for Russia one of key. It is determined geographical position of the Russian state banks of which is washed plenty of Maureies. Also it is related to that considerable part of population lives on the coast of Russian Maureies, and industry, located in an off-shore bar brings, in a large contribution to the economy.Many Russian marine travelers were the discoverers of «new» earths. The contribution of the Russian scientists to the hydrophysical, geological and biological study of Maureies and Oceans is great. Russia possesses a navy, to the constituents approximately one-third of total tonnage of world VMF and one of large in the world a rybopromyslovym fleet. Transport ships under the flag of Russian Federation it is possible to meet planets in the remotest corners. In a number of areas of military shipbuilding and civil shipbuilding Russia had and continues to save priority.Enhanceable interest to the Seas and Oceans found the reflection in the fundamental Russian documents, including, in the Marine doctrine of Russian Federation, ratified Russia President in 2015. In it the value of marine spaces for the Russian state is marked. In the Marine doctrine of Russian Federation is writtenin: «The skilled providing, marine teaching and education play an important role in the increase of efficiency of marine activity. They are directed on preparation, bringing in and maintainance of skilled shots of all levels, maintenance of professionalism, marine traditions and not indifferent relation of citizens to marine history of country, serve positive presentation, propaganda and support of national marine policy, to marine activity and marine service in society».Marine direction, marine science about regions found a reflection in the publications of row of the Russian authors, devoted research of policy of Russia in such regions, as: Black Sea region, Caspian region, Arctic, and also in the series of Encyclopaedias

  10. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi

    Science.gov (United States)

    Overy, David P.; Bayman, Paul; Kerr, Russell G.; Bills, Gerald F.

    2014-01-01

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from ‘marine-derived’ fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment. PMID:25379338

  11. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China

    Directory of Open Access Journals (Sweden)

    YANG Yuanxi

    2017-01-01

    Full Text Available Territorial water is a significant part of national sovereignty of China, thus the infrastructures of national space datum and location services should not only cover the land areas, but also the sea areas. China has established relatively complete geodetic datum in land areas over the past decades, including the new developed China Geodetic Coordinate System 2000 (CGCS 2000 and the national gravity datum 2000. However, the currently used geodetic infrastructures have not well covered the sea areas of China. The marine geodetic datum and marine navigation technologies need to be further developed and extended to satisfy the national demands of marine defense and marine economy development in new era of China. This paper mainly reviews the developing states and progress of Chinese marine geodetic datum and marine navigation, analyses key technologies in establishing the national marine geodetic datum. The develop current trends and future directions for the national marine geodetic datum and marine navigation technologies are listed.

  12. Antitumoral activity of marine organism

    International Nuclear Information System (INIS)

    Valdes Iglesias, O; Perez Gil, R; Colom, Y

    2010-01-01

    The study of the natural products from marine organism constitute a relatively recent scientific researcher field with high potentialities tanking in consideration that the oceans cover the three of the four parts of the earth. Poryphera and Bryozoans have been the Phylum more studied owning to the vulnerability, their soft body, their habitat on rocks, their slow movement and bright colors, for these reason these organisms are able to produce chemical substances as defense methods against depredators. Same mechanism is exhibit by the seaweeds with the production of secondary metabolites . In the present communication are exposed the main results obtained on the world a Cuba until the present in the looking for of substances with antitumor action from marine organism

  13. Ancient DNA from marine mammals

    DEFF Research Database (Denmark)

    Foote, Andrew David; Hofreiter, Michael; Morin, Philip A.

    2012-01-01

    discuss studies recon- structing inter- and intra-specific phylogenies from aDNA sequences and discuss how aDNA sequences could be used to estimate mutation rates. Finally, we highlight some of the problems of aDNA studies on marine mammals, such as obtaining sufficient sample sizes and calibrating...... such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an oppor- tunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have...... focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes...

  14. From fresh to marine waters

    DEFF Research Database (Denmark)

    Gonçalves-Araujo, Rafael; Stedmon, Colin; Heim, Birgit

    2015-01-01

    and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved...... organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results...... demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation...

  15. Marine propellers: the latest topics.

    Science.gov (United States)

    Kubo, H

    1996-02-01

    The impeller of the axial flow blood pump in an artificial heart is essentially based on the same principle as a marine propeller. Impellers designed for artificial hearts and marine propellers have a number of points in common. Decreased cavitation and relieved fluctuation load are only representative of them. As for a distinct concept of pressure distribution, the inverse method could be very useful. Skew may led to a more mild and natural character in the blood. Highly skewed blades and super elastic blades have the potential to decrease the burden on the entire circulatory system. This paper will address the main points and latest issues in propeller design concluding with a discussion of the implications of these issues for blood pump impellers.

  16. Marine cloud brightening: regional applications.

    Science.gov (United States)

    Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack

    2014-12-28

    The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet.

  17. Biological importance of marine algae.

    Science.gov (United States)

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  18. Radioactivity in the marine environment

    International Nuclear Information System (INIS)

    Preston, A.

    1977-01-01

    Reference is made to an editorial by Dr. Goldberg (Mar. Pollut. Bull.; 8:49 (1977)) in which he proposed that concerned scientists should combine their expertise both to gather information of radioactive disposal to the marine environment and to assess the implications of such pollution on marine resources. It is here stated that such data on their own, unsupported by any guidance as to their significance in environmental terms, may simply cause unwarranted alarm and provide yet another source of uninterpreted data to feed uninformed environmental discussion. Some examples of such observations and commentary are cited. In a reply Dr. Goldberg asserts that the possible misinterpretations of either the data or their evaluation is a small risk compared to the benefits to be gained from joint efforts by scientists of many nations to describe and predict possible jeopardies to the ocean system. (U.K.)

  19. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    Directory of Open Access Journals (Sweden)

    Axel eSchippers

    2011-12-01

    Full Text Available A quantitative, real-time PCR (Q-PCR assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA of sulfate-reducing bacteria (SRB was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf and the Black Sea (0 – 6 mbsf. Clone libraries of aprA show that all isolated sequences originate from SRB showing a close relationship to aprA of characterised species or form a new cluster with only distant relation to aprA of isolated SRB. Below 40 mbsf no aprA genes could be amplified. This finding corresponds with results of the applied new Q-PCR assay for aprA. In contrast to the aprA the dsrA gene could be amplified up to sediment depths of 121 mbsf. Even in such an extreme environment a high diversity of this gene was detected. The 16S rRNA gene copy numbers of total Bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRB to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5 - 1 % of the 16S rRNA gene copy numbers of total Bacteria in the sediments up to a depth of ca. 40 mbsf. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 108 / g sediment close to the sediment surface to less than 105 / g sediment at 5 mbsf. In the zone without detectable sulfate in the pore water from ca. 40 – 121 mbsf (Peru margin ODP site 1227, only dsrA (but not aprA was detected with copy numbers of less than 104 / g sediment, comprising ca. 14 % of the 16S rRNA gene copy numbers of total Bacteria. In this zone sulfate might be provided for SRB by anaerobic sulfide oxidation.

  20. Island biogeography of marine organisms

    Science.gov (United States)

    Pinheiro, Hudson T.; Bernardi, Giacomo; Simon, Thiony; Joyeux, Jean-Christophe; Macieira, Raphael M.; Gasparini, João Luiz; Rocha, Claudia; Rocha, Luiz A.

    2017-09-01

    Studies on the distribution and evolution of organisms on oceanic islands have advanced towards a dynamic perspective, where terrestrial endemicity results from island geographical aspects and geological history intertwined with sea-level fluctuations. Diversification on these islands may follow neutral models, decreasing over time as niches are filled, or disequilibrium states and progression rules, where richness and endemism rise with the age of the archipelago owing to the splitting of ancestral lineages (cladogenesis). However, marine organisms have received comparatively little scientific attention. Therefore, island and seamount evolutionary processes in the aquatic environment remain unclear. Here we analyse the evolutionary history of reef fishes that are endemic to a volcanic ridge of seamounts and islands to understand their relations to island evolution and sea-level fluctuations. We also test how this evolutionary history fits island biogeography theory. We found that most endemic species have evolved recently (Pleistocene epoch), during a period of recurrent sea-level changes and intermittent connectivity caused by repeated aerial exposure of seamounts, a finding that is consistent with an ephemeral ecological speciation process. Similar to findings for terrestrial biodiversity, our data suggest that the marine speciation rate on islands is negatively correlated with immigration rate. However, because marine species disperse better than terrestrial species, most niches are filled by immigration: speciation increases with the random accumulation of species with low dispersal ability, with few opportunities for in situ cladogenesis and adaptive radiation. Moreover, we confirm that sea-level fluctuations and seamount location play a critical role in marine evolution, mainly by intermittently providing stepping stones for island colonization.

  1. Mixotrophy in the marine plankton

    DEFF Research Database (Denmark)

    Stoecker, Diane K.; Hansen, Per Juel; Caron, David

    2017-01-01

    Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotroph....... Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump....

  2. The Marine Mask of War

    Science.gov (United States)

    2011-11-10

    character of the institutions that make up our armed services. More specifically, on this date, celebrated around the world as the 236th birthday of the U.S...sometimes puzzling, frequently paradoxical , and unusually distinctive “personality” or institutional DNA of each of America’s armed services. The...So, give thanks if you know any Marines and Happy Birthday to our Corps! FPRI, 1528 Walnut Street, Suite 610, Philadelphia, PA 19102

  3. Global Marine Science and Carlsberg

    DEFF Research Database (Denmark)

    Poulsen, Bo

    By accident, the world-famous brewery Carlsberg became a central force in global marine science during the first three decades of the 20th century. Within a core group of scientists and managers, Johannes Schmidt (1877-1933) was the key figure combining the efforts of the International Council...... the World’s oceans. While the formal North Atlantic Empire of the small state of Denmark was in decline, an informal empire of science was erected instead....

  4. Ecological Significance of Marine Microzooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Godhantaraman, N.

    al., 1996). Extensive research have been conducted on the ecological significance of major plankton communities in marine coastal and aquatic ecosystems both tropical as well as temperate waters. Research on microzooplankton received less attention... by planktologists because of their important role in the aquatic ecosystems/pelagic food web by providing a link between pico- and nanoplankton and higher trophic levels of meso- and macrozooplankton and fish larvae. Researchers have identified that microzooplankton...

  5. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Aquilonius, Karin

    2010-12-01

    mean for the Baltic Sea and slightly lower in Laxemar-Simpevarp. The sea level at Forsmark has since 2003 fluctuated between 0.6 m below and 1.3 m above the mean level, and the corresponding values for Laxemar-Simpevarp are 0.5 and 0.7 m. Due to the gentler slope of the coastline, the sea level fluctuations have a more marked effect in Forsmark, than in the Laxemar-Simpevarp landscape, exhibiting a steeper slope. In Forsmark the macrophyte vegetation in the photic zone is dominated by red algae and brown filamentous algae. In Laxemar-Simpevarp, the red algae community covers the largest area. The benthic biomass at the bottom sampling sites in Forsmark has been dominated by the Baltic mussel. In Laxemar-Simpevarp the sessile macro fauna attached to hard substrates is completely dominated by the blue mussel in terms of both biomass and abundance. Test fishing in Forsmark and Laxemar-Simpevarp show similar development as in other nearby coastal areas and herring and sprat are the dominant species in offshore areas at both sites. In the inner bays at the sites, perch and pike are the most frequent species. The biomass in Forsmark is dominated by the primary producers and is focused along the shoreline of the area. On average, the marine area in Forsmark shows a positive Net Ecosystem Production (NEP), although most of the area is heterotrophic. The coastal shallow basins tend to be autotrophic, whereas the more offshore basins are heterothropic. The largest carbon pool in all basins in Forsmark is the abiotic pools (i.e. sediment, DIC and DOC) followed by the macrophytes. The major carbon flux in the ecosystem is the advective flux caused by the movement of sea water. All biotic fluxes are small in comparison with the advective flux. The largest biotic flux is fixation of carbon by primary producers. On average 4% of the initially consumed carbon in the marine ecosystem food web is transferred to the top predators. For nitrogen, phosphorus and thorium, the major pool in

  6. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (ed.) (Studsvik Nuclear AB (Sweden))

    2010-12-15

    mean for the Baltic Sea and slightly lower in Laxemar-Simpevarp. The sea level at Forsmark has since 2003 fluctuated between 0.6 m below and 1.3 m above the mean level, and the corresponding values for Laxemar-Simpevarp are 0.5 and 0.7 m. Due to the gentler slope of the coastline, the sea level fluctuations have a more marked effect in Forsmark, than in the Laxemar-Simpevarp landscape, exhibiting a steeper slope. In Forsmark the macrophyte vegetation in the photic zone is dominated by red algae and brown filamentous algae. In Laxemar-Simpevarp, the red algae community covers the largest area. The benthic biomass at the bottom sampling sites in Forsmark has been dominated by the Baltic mussel. In Laxemar-Simpevarp the sessile macro fauna attached to hard substrates is completely dominated by the blue mussel in terms of both biomass and abundance. Test fishing in Forsmark and Laxemar-Simpevarp show similar development as in other nearby coastal areas and herring and sprat are the dominant species in offshore areas at both sites. In the inner bays at the sites, perch and pike are the most frequent species. The biomass in Forsmark is dominated by the primary producers and is focused along the shoreline of the area. On average, the marine area in Forsmark shows a positive Net Ecosystem Production (NEP), although most of the area is heterotrophic. The coastal shallow basins tend to be autotrophic, whereas the more offshore basins are heterothropic. The largest carbon pool in all basins in Forsmark is the abiotic pools (i.e. sediment, DIC and DOC) followed by the macrophytes. The major carbon flux in the ecosystem is the advective flux caused by the movement of sea water. All biotic fluxes are small in comparison with the advective flux. The largest biotic flux is fixation of carbon by primary producers. On average 4% of the initially consumed carbon in the marine ecosystem food web is transferred to the top predators. For nitrogen, phosphorus and thorium, the major pool in

  7. Collocations in Marine Engineering English

    Directory of Open Access Journals (Sweden)

    Mirjana Borucinsky

    2016-05-01

    Full Text Available Collocations are very frequent in the English language (Hill, 2000, and they are probably the most common and most representative of English multi-word expressions (Lewis, 2000. Furthermore, as a subset of formulaic sequences, collocations are considered to be a central aspect of communicative competence (Nation, 2001. Hence, the importance of teaching collocations in General English (GE as well as in English for Specific Purposes (ESP is undeniable. Understanding and determining the relevant collocations and their mastery are of “utmost importance to a ME instructor” (Cole et al., 2007, p. 137, and collocations are one of the most productive ways of enriching vocabulary and terminology in modern ME. Vişan & Georgescu (2011 have undertaken a relevant study on  collocations and “collocational competence” on board ships, including mostly nautical terminology. However, no substantial work on collocations in Marine Engineering English as a sub-register of ME has been carried out. Hence, this paper tries to determine the most important collocations in Marine Engineering English, based on a small corpus of collected e-mails. After determining the most relevant collocations, we suggest how to implement these in the language classroom and how to improve the collocational competence of marine engineering students.

  8. Antifouling Compounds from Marine Macroalgae.

    Science.gov (United States)

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  9. Ecological Genomics of Marine Picocyanobacteria†

    Science.gov (United States)

    Scanlan, D. J.; Ostrowski, M.; Mazard, S.; Dufresne, A.; Garczarek, L.; Hess, W. R.; Post, A. F.; Hagemann, M.; Paulsen, I.; Partensky, F.

    2009-01-01

    Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level. PMID:19487728

  10. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  11. Neoproterozoic marine carbonates and their paleoceanographic significance

    Science.gov (United States)

    Hood, Ashleigh van Smeerdijk; Wallace, Malcolm William

    2018-01-01

    The primary mineralogy of marine carbonate precipitates has been a crucial factor in constraining the major element composition of ancient oceans. Secular changes in Phanerozoic marine chemistry, including Mg/Ca, have been well-documented using the original carbonate mineralogy of ooids, marine cements and biominerals. However, the history of Precambrian seawater chemistry is not as well constrained, partially due to the prevalence of dolomitisation in the Precambrian geological record. The Neoproterozoic ( 1000 Ma to 541 Ma) record of primary carbonate mineralogy is documented here using a combination of literature data and new analysis of marine carbonate precipitates from the Otavi Fold Belt, Namibia, the Death Valley succession, USA and the Adelaide Fold Belt, Australia. These data suggest that the last 460 million years of the Proterozoic were dominated by aragonite and high-Mg calcite precipitation in shallow marine settings. In contrast, low-Mg calcite has only been recognised in a small number of formations. In addition to aragonite and calcite precipitation, marine dolomite precipitation was widespread in Neoproterozoic oceans, including mimetic (syn-sedimentary) dolomitisation and primary dolomite marine cementation. The combination of marine aragonite, high Mg-calcite and dolomite precipitation during the Neoproterozoic suggests extremely high seawater Mg/Ca conditions relative to Phanerozoic oceans. Marine dolomite precipitation may also be linked to widespread marine anoxia during this time.

  12. Diversity of Nitrate-Reducing and Denitrifying Bacteria in a Marine Aquaculture Biofilter and their Response to Sulfide

    DEFF Research Database (Denmark)

    Krieger, Bärbel; Schwermer, Carsten U.; Rezakhani, Nastaran

    2006-01-01

    was developed containing a 3-stage biofilter for nitrification, denitrification/anaerobic sludge digestion, and sulfide oxidation. Sulfate reduction in the anaerobic part of the system leads to sulfide concentrations exceeding 5 mM, which may affect nitrate reduction and denitrification. Sulfide can inhibit...... nitrous oxide reductase, trigger a shift from denitrification to dissimilatory nitrate reduction to ammonium (DNRA), or be used as electron donor for nitrate reduction. The goal of this study was to identify and isolate nitrate-reducing and denitrifying bacteria from the biofilter and to investigate...

  13. Delineation of marine ecosystem zones in the northern Arabian Sea during winter

    Science.gov (United States)

    Shalin, Saleem; Samuelsen, Annette; Korosov, Anton; Menon, Nandini; Backeberg, Björn C.; Pettersson, Lasse H.

    2018-03-01

    The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50-75° E and 15-30° N) during the winter months (November-March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The

  14. The impact of debris on marine life.

    Science.gov (United States)

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nutraceutical and pharmacological implications of marine carbohydrates.

    Science.gov (United States)

    Pallela, Ramjee

    2014-01-01

    Current day's research has been focusing much on the potential pharmacological or nutraceutical agents of selective health benefits with less toxicity. As a consequence of increased demand of nutritional supplements of great medicinal values, development of therapeutic agents from natural sources, in particular, marine environment are being considered much important. A diverse array of marine natural products containing medicinally useful nutritional substances, i.e., marine nutraceuticals have been focused to the benefit of mankind. Carbohydrates, by being constituted in considerable amount of many marine organisms display several nutraceutical and pharmaceutical behavior to defend from various diseases. Moreover, the carbohydrates from algae as well as from shellfish wastes, like chitosan and its derivatives, showed tremendous applications in biology and biomedicine. In the current chapter, several of marine carbohydrates from various marine flora and fauna have been covered with their applications and prospects in the development of nutraceuticals and pharmaceuticals. © 2014 Elsevier Inc. All rights reserved.

  16. Communicating marine reserve science to diverse audiences

    Science.gov (United States)

    Grorud-Colvert, Kirsten; Lester, Sarah E.; Airamé, Satie; Neeley, Elizabeth; Gaines, Steven D.

    2010-01-01

    As human impacts cause ecosystem-wide changes in the oceans, the need to protect and restore marine resources has led to increasing calls for and establishment of marine reserves. Scientific information about marine reserves has multiplied over the last decade, providing useful knowledge about this tool for resource users, managers, policy makers, and the general public. This information must be conveyed to nonscientists in a nontechnical, credible, and neutral format, but most scientists are not trained to communicate in this style or to develop effective strategies for sharing their scientific knowledge. Here, we present a case study from California, in which communicating scientific information during the process to establish marine reserves in the Channel Islands and along the California mainland coast expanded into an international communication effort. We discuss how to develop a strategy for communicating marine reserve science to diverse audiences and highlight the influence that effective science communication can have in discussions about marine management. PMID:20427745

  17. Communicating marine reserve science to diverse audiences.

    Science.gov (United States)

    Grorud-Colvert, Kirsten; Lester, Sarah E; Airamé, Satie; Neeley, Elizabeth; Gaines, Steven D

    2010-10-26

    As human impacts cause ecosystem-wide changes in the oceans, the need to protect and restore marine resources has led to increasing calls for and establishment of marine reserves. Scientific information about marine reserves has multiplied over the last decade, providing useful knowledge about this tool for resource users, managers, policy makers, and the general public. This information must be conveyed to nonscientists in a nontechnical, credible, and neutral format, but most scientists are not trained to communicate in this style or to develop effective strategies for sharing their scientific knowledge. Here, we present a case study from California, in which communicating scientific information during the process to establish marine reserves in the Channel Islands and along the California mainland coast expanded into an international communication effort. We discuss how to develop a strategy for communicating marine reserve science to diverse audiences and highlight the influence that effective science communication can have in discussions about marine management.

  18. Marine Arctic Ecosystem Study (MARES): Pilot Project - Marine Mammal Tagging and Tracking

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Marine Arctic Ecosystem Study (MARES): Pilot Project...inter-relationships of biophysical and chemical parameters on living resources, including marine mammals that use this ecosystem . This larger picture

  19. Marine renewable energies: status and development perspectives

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes an overview of the marine renewable energy (MRE) market, of the development perspectives, of the industrial, academic and institutional actors, of current technologies and technologies under development, and of French and European research and development programs. These energies comprise: tidal energy, the exploitation of sea temperature differences with respect with depth, wave energy, marine current power energy, osmotic and marine biomass energy

  20. Antifungal potential of marine natural products

    OpenAIRE

    El-Hossary, Ebaa M.; Cheng, Cheng; Hamed, Mostafa M.; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-01

    Highlights: • Fungal infections represent an increasing threat to human health. • Fungal infections in plants are a worldwide problem to the agricultural industry. • Diverse antifungal compounds were isolated from different marine organisms. • The number of new antifungal marine natural products is rapidly developing. • Marine sponges and bacteria are the predominant sources for antifungal compounds. Abstract: Fungal diseases represent an increasing threat to human healt...

  1. Biotechnological potential of marine natural products

    OpenAIRE

    Fusetani, Nobuhiro

    2010-01-01

    The number of marine natural products (MNPs) that have been applied to biotechnological industry is very limited, although nearly 20000 new compounds were discovered from marine organisms since the birth of MNPs in the early 1970s. However, it is apparent that they have a significant potential as pharmaceuticals, cosmetics, nutraceuticals, research tools, and others. This article focuses on selective antitumor metabolites isolated from marine sponges and tunicates, and their modes of action, ...

  2. Characterizing changes in marine ecosystem services

    OpenAIRE

    Chan, Kai MA; Ruckelshaus, Mary

    2010-01-01

    The benefits of marine ecosystems for people are increasingly being characterized through the concept of ecosystem services, with the promise to aid decision making from marine spatial planning to ecosystem-based management. The characterization of changes in marine ecosystem services is central to the application of ecological science to policy contexts, and this field is quickly evolving with innovations in frameworks for integrating science, understanding of ecosystems and human benefits, ...

  3. Biomarkers of marine pollution and bioremediation

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    pollution and bioremediation Anupam Sarkar Accepted: 1 February 2006 / Published online: 4 May 2006 C211 Springer Science+Business Media, LLC 2006 This special issue of Ecotoxicology is dealt with selected papers presented at the ‘International Workshop... on Marine Pollution and Ecotoxicology’ held during February 25–26, 2004 at the National Institute of oceanography, Dona Paula, Goa, India. The theme of this special issue is ‘Biomarkers of marine pollution and microbial degradation of pollutants. Marine...

  4. Global Marine Fisheries with Economic Growth

    OpenAIRE

    Sugiawan, Yogi; Islam, Moinul; Managi, Shunsuke

    2017-01-01

    This study explores the state of global marine fisheries and empirically analyzes its relationship to economic factors. We apply the pooled mean group estimator method to examine 70 fishing countries for the period of 1961-2010. We use both catch and the estimated size of stock as proxies for marine ecosystems. Our results confirm that economic growth initially leads to the deterioration of marine ecosystems. However, for a per capita income level of approximately 3,827 USD for the catch mode...

  5. Reliability Based Management of Marine Fouling

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Hansen, Peter Friis

    1999-01-01

    The present paper describes the results of a recent study on the application of methods from structural reliability to optimise management of marine fouling on jacket type structures.In particular the study addresses effects on the structural response by assessment and quantification...... and more representative marine fouling profiles for design of new structures and finally an approach is outlined on how to include inspections of marine fouling into a risk based inspection philosophy....

  6. 46 CFR 70.20-1 - Marine engineering details.

    Science.gov (United States)

    2010-10-01

    ... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... 46 Shipping 3 2010-10-01 2010-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... subchapter F (Marine Engineering) of this chapter. ...

  7. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina ...

    Indian Academy of Sciences (India)

    have been synthesized using marine fungi (Kathiresan et al. 2009), marine cyanobacteria (Ali et al 2011) and marine algal extracts (Venkatpurwar and Pokharkar 2011). However, there are no reports on SNP synthesis by marine bacteria. In this paper, we report the synthesis of SNPs by a marine bac- terium, Idiomarina sp.

  8. Economic impacts of marine protected areas: A case study of the Mombasa Marine Park

    OpenAIRE

    Ngugi, I.

    2000-01-01

    The conservation of the marine environment is an integral part of the broader initiatives of environmental conservation in Kenya. A major motivation for the delineation of marine protected areas (MPAs) in Kenya has been the promotion of tourism and also the need to conserve marine biodiversity for posterity. However, the conservation of marine resources in Kenya has led to certain resource-use conflicts between national conservation agencies such as the Kenya Wildlife Servic...

  9. Chemical Investigations of Marine Filamentous and Zoosporic Fungi and Studies in Marine Microbial Chemical Ecology

    OpenAIRE

    Jenkins, Kelly M.

    1998-01-01

    The natural products chemistry of marine microorganisms is an emerging area of organic chemistry with the aim of discovering novel secondary metabolites exhibiting both biomedical and ecological activities. While marine bacteria have proven to be a productive source of new natural products, there are many groups of marine microorganisms which have not been fully investigated. In particular, marine fungi represent an untapped and potentially novel source of bioactive secondary metabolites. Whi...

  10. Marine Riparian Vegetation Communities of Puget Sound

    National Research Council Canada - National Science Library

    Brennan, James S

    2007-01-01

    .... Coastal trees and other vegetation on backshore areas, banks, and bluffs help stabilize the soil, control pollution entering marine waters, provide fish and wildlife habitat, and modify stressful...

  11. Marine eutrophication is the process of enrich- ment of marine ...

    African Journals Online (AJOL)

    spamer

    Marine eutrophication is the process of enrich- ment of marine systems with plant nutrients that stim- ulate primary production, and, in its most serious manifestation, leads to visible algal blooms and at times massive growth of macrophytes” (Vollenweider. 1992, p. 3). Marine eutrophication has become a.

  12. 78 FR 52135 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental To...

    Science.gov (United States)

    2013-08-22

    ...--Marine Mammal Density Estimates Density Species (animals/km \\2\\) Bottlenose dolphin \\1\\ 0.455 Atlantic... criteria and thresholds in a final rule on the unintentional taking of marine animals occurring incidental... analysis assumed the marine species populations were 100 percent small animals. The criterion with the...

  13. 75 FR 72655 - Marine Sanitation Device Discharge Regulations for the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    2010-11-26

    .... 090122044-0403-02] RIN 0648-AX58 Marine Sanitation Device Discharge Regulations for the Florida Keys... incidental to vessel use and generated by marine sanitation devices (MSDs) approved under the Clean Water Act...; (B) Sewage incidental to vessel use and generated by a marine sanitation device approved in...

  14. Use of marine algae as biological indicator of heavy metal pollution in Turkish marine environment

    OpenAIRE

    Topcuoğlu, Sayhan; Kılıç, Önder; Belivermiş, Murat; Kalaycı, Halim Aytekin Ergül and Gülşah; Kalaycı, Gülşah

    2015-01-01

    Abstract The heavy metal concentrations were reviewed in marine algae species collected from Turkish marine environment and the new data also given in the marine algae samples at some stations at the Turkish coast of the Mediterranean Sea. Some data also reviewed at the neighbors countries of the Black Sea, Aegean Sea and Mediterranean Sea.

  15. Use of marine algae as biological indicator of heavy metal pollution in Turkish marine environment

    OpenAIRE

    Topcuoğlu, Sayhan; Kılıç, Önder; Belivermiş, Murat; Kalaycı, Halim Aytekin Ergül and Gülşah

    2010-01-01

    Abstract The heavy metal concentrations were reviewed in marine algae species collected from Turkish marine environment and the new data also given in the marine algae samples at some stations at the Turkish coast of the Mediterranean Sea. Some data also reviewed at the neighbors countries of the Black Sea, Aegean Sea and Mediterranean Sea.

  16. 77 FR 65059 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Science.gov (United States)

    2012-10-24

    ... harassment, small numbers of nine species of marine mammals incidental to in-ice marine seismic surveys in..., by harassment, from ION's in-ice seismic survey will have a negligible impacton the affected species... whales and other marine mammal species in the Beaufort and Chukchi Seas during ION's in-ice seismic...

  17. 77 FR 43270 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Coastal Commercial...

    Science.gov (United States)

    2012-07-24

    ... Marine Mammals Incidental to Coastal Commercial Fireworks Displays at Monterey Bay National Marine... supporting documentation are available for review in the Permits, and Conservation Division, Office of... of marine mammals by United States citizens who engage in a specified activity (other than commercial...

  18. 76 FR 11205 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Construction and...

    Science.gov (United States)

    2011-03-01

    ... Marine Mammals Incidental to Construction and Operation of a Liquefied Natural Gas Deepwater Port in the Gulf of Mexico AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... marine mammal species incidental to construction and operation of a liquefied natural gas (LNG) deepwater...

  19. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    Science.gov (United States)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  20. Cold adaptation in marine organisms.

    Science.gov (United States)

    Johnston, I A

    1990-01-30

    Animals from polar seas exhibit numerous so called resistance adaptations that serve to maintain homeostasis at low temperature and prevent lethal freezing injury. Specialization to temperatures at or below 0 degrees C is associated with an inability to survive at temperatures above 3-8 degrees C. Polar fish synthesize various types of glycoproteins or peptides to lower the freezing point of most extracellular fluid compartments in a non-colligative manner. Antifreeze production is seasonal in boreal species and is often initiated by environmental cues other than low temperature, particularly short day lengths. Most of the adaptations that enable intertidal invertebrates to survive freezing are associated with their ability to withstand ariel exposure. Unique adaptations for freezing avoidance include the synthesis of low molecular mass ice-nucleating proteins that control and induce extracellular ice-formation. Marine poikilotherms also exhibit a range of capacity adaptations that increase the rate of some physiological processes so as to partially compensate for the effects of low temperature. However, the rate of embryonic development in a diverse range of marine organisms shows no evidence of temperature compensation. This results in a significant lengthening of the time from fertilization to hatching in polar, relative to temperate, species. Some aspects of the physiology of polar marine species, such as low metabolic and slow growth rates, probably result from a combination of low temperature and other factors such as the highly seasonal nature of food supplies. Although neuromuscular function shows a partial capacity adaptation in Antarctic fish, maximum swimming speeds are lower than for temperate and tropical species, particularly for early stages in the life history.